JP2020063476A - Vapor deposition device - Google Patents

Vapor deposition device Download PDF

Info

Publication number
JP2020063476A
JP2020063476A JP2018195980A JP2018195980A JP2020063476A JP 2020063476 A JP2020063476 A JP 2020063476A JP 2018195980 A JP2018195980 A JP 2018195980A JP 2018195980 A JP2018195980 A JP 2018195980A JP 2020063476 A JP2020063476 A JP 2020063476A
Authority
JP
Japan
Prior art keywords
vapor
thin film
film forming
gas
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018195980A
Other languages
Japanese (ja)
Other versions
JP7129310B2 (en
Inventor
恭平 大槻
Kyohei Otsuki
恭平 大槻
祐介 川村
Yusuke Kawamura
祐介 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2018195980A priority Critical patent/JP7129310B2/en
Publication of JP2020063476A publication Critical patent/JP2020063476A/en
Application granted granted Critical
Publication of JP7129310B2 publication Critical patent/JP7129310B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a vapor deposition device capable of keeping a mass flow controller (MFC) clean from mixture of a thin film forming material, in a room temperature and normal pressure gas flowing system including the MFC at an upstream side of a vapor-containing gas flowing system for securing stability and precision of constant amount supply of the thin film forming material to a film manufacturing chamber.SOLUTION: A vapor deposition device has an evaporation device including a film manufacturing chamber and an evaporation chamber for generating vapor-containing gas containing vapor of a thin film forming material, and supplying the vapor-containing gas to the film manufacturing chamber, and deposits the thin film forming material onto a substrate by blowing the vapor-containing gas. A gas supplying system includes a room temperature and normal pressure gas flowing system only to flow room temperature and normal pressure gas which is gas at room temperature and normal pressure, and a vapor-containing gas flowing system including the evaporation chamber at its downstream side. The room temperature and normal pressure gas flowing system includes the MFC, and at the downstream side of the MFC, comprises a back flow prevention valve automatically closed according to pressure on the further downstream side.SELECTED DRAWING: Figure 1

Description

本発明は、蒸着装置に関するものである。本発明は、例えば有機EL(ElectroLuminesence)装置の機能層を構成する有機層の製膜に用いる蒸着装置として好適である。   The present invention relates to a vapor deposition device. INDUSTRIAL APPLICABILITY The present invention is suitable as, for example, a vapor deposition device used for forming an organic layer forming a functional layer of an organic EL (Electro Luminescence) device.

近年、蛍光灯やLEDに変わる照明装置として有機EL装置が注目され、多くの研究がなされている。また、ディスプレイ部材においても液晶方式やプラズマ方式に変わる方式として有機EL方式が注目され、製品化されている。ここで有機EL装置は、ガラス基板や透明樹脂フィルム等の基材に、有機EL素子を積層したものである。   In recent years, attention has been paid to organic EL devices as lighting devices that replace fluorescent lamps and LEDs, and much research has been done. In addition, the organic EL method has attracted attention as a method for replacing the liquid crystal method and the plasma method in the display member, and has been commercialized. Here, the organic EL device is one in which an organic EL element is laminated on a substrate such as a glass substrate or a transparent resin film.

また、有機EL素子は、一方又は双方が透光性を有する2つの電極を対向させ、この電極の間に有機化合物を含む発光層を積層したものである。有機EL素子は、電気的に励起された電子と正孔との再結合のエネルギーによって発光する。有機EL装置は、自発光デバイスであるため、ディスプレイ材料として使用すると高コントラストの画像を得ることができる。また、発光層の材料を適宜選択することにより、種々の波長の光を発光することができる。また蛍光灯に比べて厚さが極めて薄いため、設置場所の制約が少なく、かつ、面状で発光するため、指向性が強いLEDに比べ、影ができにくい。   Further, the organic EL element is one in which two electrodes, one or both of which have translucency, are opposed to each other, and a light emitting layer containing an organic compound is laminated between these electrodes. The organic EL element emits light by the energy of recombination of electrically excited electrons and holes. Since the organic EL device is a self-luminous device, it can obtain a high-contrast image when used as a display material. In addition, light of various wavelengths can be emitted by appropriately selecting the material of the light emitting layer. In addition, since the thickness is extremely smaller than that of a fluorescent lamp, there are few restrictions on the installation place, and since it emits light in a planar shape, it is less likely to cause a shadow as compared to an LED having a strong directivity.

有機EL装置の代表的な層構成は、図3の通りである。図3に示される有機EL装置100は、ボトムエミッション型と称される構成であり、ガラス基板110に、透明電極層120と、機能層130と、裏面電極層140が積層され、これらが封止部150によって封止されたものである。また、機能層130は、複数の有機化合物の薄膜が積層されたものである。代表的な機能層130は、正孔注入層131、正孔輸送層132、発光層133、及び電子輸送層134を有している。有機EL装置100は、ガラス基板110上に、前記した層を順次製膜することによって製造される。   A typical layer structure of the organic EL device is as shown in FIG. The organic EL device 100 shown in FIG. 3 has a configuration called a bottom emission type, in which a transparent electrode layer 120, a functional layer 130, and a back electrode layer 140 are laminated on a glass substrate 110, and these are sealed. It is sealed by the part 150. Further, the functional layer 130 is formed by laminating a plurality of thin films of organic compounds. The representative functional layer 130 includes a hole injection layer 131, a hole transport layer 132, a light emitting layer 133, and an electron transport layer 134. The organic EL device 100 is manufactured by sequentially forming the above layers on the glass substrate 110.

ここで上記した各層の内、透明電極層120は、酸化インジウム錫(ITO)等の透明導電膜であり、主にスパッタ法あるいはCVD法によって製膜される。機能層130は、前記した様に複数の有機化合物の薄膜が積層されたものであり、各薄膜を真空蒸着法によって製膜することができる。裏面電極層140は、一般に、アルミニウム、銀等の金属薄膜であり、真空蒸着法によって製膜することができる。   Among the layers described above, the transparent electrode layer 120 is a transparent conductive film of indium tin oxide (ITO) or the like, and is mainly formed by a sputtering method or a CVD method. The functional layer 130 is formed by laminating a plurality of thin films of organic compounds as described above, and each thin film can be formed by a vacuum deposition method. The back electrode layer 140 is generally a metal thin film of aluminum, silver or the like, and can be formed by a vacuum evaporation method.

このように、有機EL装置を製造する際には、その各層を構成する薄膜を製膜する工程に真空蒸着法が多用される。ここで真空蒸着法は、例えば特許文献1に開示された様な蒸着装置を使用して製膜する技術である。即ち蒸着装置は、一般に真空に保持された製膜室と、薄膜形成用材料を蒸発させる蒸発装置によって構成されるものである。製膜室は、例えばガラス基板等の基材を設置することができるものである。一般的な蒸発装置は、電気抵抗や電子ビームを利用した加熱装置と、薄膜形成用材料を入れる坩堝とによって構成されている。   As described above, when manufacturing the organic EL device, the vacuum vapor deposition method is often used in the step of forming the thin films forming the respective layers. Here, the vacuum vapor deposition method is a technique for forming a film by using a vapor deposition apparatus as disclosed in Patent Document 1, for example. That is, the vapor deposition apparatus is generally composed of a film forming chamber kept in vacuum and an evaporation apparatus for evaporating a thin film forming material. In the film forming chamber, a base material such as a glass substrate can be installed. A general evaporation device is composed of a heating device using electric resistance and electron beam, and a crucible for containing a thin film forming material.

特許文献1は、具体的には、薄膜材料の成膜中の材料劣化を抑え、所望の蒸着速度で安定した膜厚が得られる蒸着装置に関し、真空室内に基材を設置し、材料ガス供給機構から供給された材料ガスに含まれる薄膜材料を基材に着膜させる蒸着装置であって、材料ガス供給機構は、エアロゾル供給機構が接続された気化部を含み、材料ガスは、気化部においてエアロゾル供給機構から供給されたエアロゾルに含まれる粉体が気化されてなる薄膜材料の蒸気を含み、エアロゾル供給機構が、エアロゾルから粉体を分離する粉体分離部、分離され回収された粉体を貯蔵する粉体貯蔵部、及び粉体貯蔵部から供給された粉体からエアロゾルを形成するエアロゾル形成部を含み、かつ、エアロゾル供給機構全体が、大気の流入から遮断可能に構成されてなる蒸着装置を開示する。即ち、特許文献1は、気化部である蒸発装置に薄膜形成用材料を定量供給し、蒸発装置において、その加熱装置または加熱されたキャリアガスによって薄膜形成用材料の一部または全部を蒸発させ、蒸発した材料を真空室である製膜室に移送し製膜する方法を開示する。ここで、供給された材料の全部を一気に蒸発させ、蒸発装置内に未蒸発の材料を滞留させない方法が、いわゆるフラッシュ蒸着、又は、フラッシュ蒸発と呼ばれる方法である。   Patent Document 1 specifically relates to a vapor deposition apparatus that suppresses material deterioration during deposition of a thin film material and obtains a stable film thickness at a desired vapor deposition rate, in which a base material is installed in a vacuum chamber and a material gas is supplied. A vapor deposition apparatus for depositing a thin film material contained in a material gas supplied from a mechanism on a substrate, wherein the material gas supply mechanism includes a vaporization section to which an aerosol supply mechanism is connected, and the material gas is in the vaporization section. The powder contained in the aerosol supplied from the aerosol supply mechanism contains the vapor of the thin film material obtained by vaporization, and the aerosol supply mechanism separates the powder from the aerosol, the powder separation unit, and the separated and recovered powder. A powder storage unit for storing, and an aerosol forming unit for forming an aerosol from the powder supplied from the powder storage unit, and the entire aerosol supply mechanism is configured to be capable of blocking the inflow of air. Disclose that vapor deposition apparatus. That is, in Patent Document 1, a thin film forming material is quantitatively supplied to an evaporator that is a vaporization unit, and in the evaporator, a part or all of the thin film forming material is evaporated by the heating device or a heated carrier gas, Disclosed is a method for forming a film by transferring the evaporated material to a film forming chamber which is a vacuum chamber. Here, a method in which all the supplied materials are vaporized at once and the non-evaporated material is not retained in the vaporization device is a so-called flash vaporization or a method called flash vaporization.

特開2015−101770号公報JP, 2005-101770, A

本発明の発明者らは、このような蒸発装置から移送された材料蒸気を製膜室で基材上に着膜する蒸着方法につき鋭意検討した。その結果、このような蒸着方法においては、同条件で製膜した場合であっても、蒸着装置の状態によって膜質や製膜速度が異なり、その原因の一つとして着膜する蒸気ガスに含まれる不純物、所謂コンタミの問題があることに気付いた。   The inventors of the present invention have earnestly studied a vapor deposition method for depositing a material vapor transferred from such an evaporator on a substrate in a film forming chamber. As a result, in such a vapor deposition method, even when the film is formed under the same conditions, the film quality and the film forming speed are different depending on the state of the vapor deposition apparatus, and one of the causes is that the vapor gas is contained in the film. I noticed that there was a problem of impurities, so-called contamination.

例えば、有機EL装置はコンタミに非常に弱く、コンタミにより膜質が予期せず変動することは、安定して高収率に生産しようとした際の弊害となる。そして、このような変動の原因について更に詳細に検討した結果、停電や予期せぬトラブルの際、ガス供給ラインが汚染されてしまった場合に、そのことをきっかけに変動することを見出した。このようなトラブルはその復旧に非常に時間が掛かる場合が多く、抜本的な対策を蒸着装置そのものに施して、ガスラインからの不純物の混入に起因する着膜材料による汚染を防ぐことは、量産する上で非常に重要である。   For example, the organic EL device is very vulnerable to contamination, and the film quality unexpectedly fluctuates due to contamination, which is an adverse effect when a stable high-yield production is attempted. As a result of further detailed investigation of the cause of such fluctuation, it was found that when the gas supply line is contaminated during a power outage or an unexpected trouble, the fluctuation is triggered. In many cases, such troubles take a very long time to recover, so it is important to apply drastic measures to the vapor deposition equipment itself to prevent the contamination of the coating material due to the mixing of impurities from the gas line. It is very important to do.

特に、薄膜形成用材料蒸気を含む蒸気含有ガスを流送する蒸気含有ガス流送系を下流に有する、特許文献1の加熱されたキャリアガスのような、常温常圧で気体である常温常圧ガスのみの流送を目的とする常温常圧ガス流送系であって、着膜に供する薄膜形成用材料蒸気の供給量を安定的に精密に制御する為に、当該蒸気含有ガス流送系の上流に、マスフローコントローラー(MFC)を含む常温常圧ガス流送系において、薄膜形成用材料そのものの混入から、MCFを完全に清浄に維持することは極めて重要である。   In particular, at room temperature and atmospheric pressure, which is a gas at room temperature and atmospheric pressure, such as the heated carrier gas of Patent Document 1, which has a vapor-containing gas flow system for sending a vapor-containing gas containing a thin film forming material vapor at the downstream side. A normal-temperature and normal-pressure gas transfer system intended to transfer only gas, in order to stably and precisely control the supply amount of the thin film forming material vapor to be used for film formation, the vapor-containing gas transfer system It is extremely important to keep the MCF completely clean from the mixing of the thin film forming material itself in the normal temperature and normal pressure gas flow system including the mass flow controller (MFC) upstream of the above.

そこで本発明は、このような蒸気含有ガス流送系を下流に有する、このような常温常圧ガス流送系であって、薄膜形成用材料の製膜室への定量供給の安定性、正確性を確保する為に、当該蒸気含有ガス流送系の上流に、マスフローコントローラー(MFC)を含む常温常圧ガス流送系において、当該常温常圧ガス流送系内の当該MFCの下流であって、かつ、蒸気含有ガス流送系の上流に、逆流防止バルブを含む特定の常温常圧ガス流送系を含む蒸着装置とすることで、薄膜形成用材料そのものの混入から、MCFを完全に清浄に維持可能な蒸着装置を提供することを目的とする。   Therefore, the present invention is such a room-temperature and normal-pressure gas flow system having such a vapor-containing gas flow system on the downstream side, and the stability and accuracy of the quantitative supply of the thin film forming material to the film forming chamber can be improved. In order to secure the property, in a room temperature and normal pressure gas transfer system including a mass flow controller (MFC) upstream of the steam-containing gas transfer system, it is downstream of the MFC in the room temperature and normal pressure gas transfer system. In addition, by using a vapor deposition apparatus including a specific room temperature and normal pressure gas flow system including a backflow prevention valve upstream of the vapor-containing gas flow system, the MCF can be completely removed from the mixture of the thin film forming material itself. An object of the present invention is to provide a vapor deposition device that can be kept clean.

一方で、上記特許文献1は、その[図3]に関して、[0055]の記載「粉体分離部451に供給されたエアロゾルは、粉体材料とキャリアガスに分離され、粉体材料は粉体貯蔵部421に還流され、分離後ガスはマスフローコントローラー434を介して排出される。」に記載されている「マスフローコをントローラー434」について、その[0058]の記載「マスフローコントローラー434の下流側に逆流防止弁481が設置されていると、材料ガス供給機構に異物が逆流して混入することを防止できるので好ましい。」に記載されているように、その「下流側に逆流防止弁481が設置されている」ものの、この「逆流防止弁481」は、分離後のキャリアガスを下流側の装置外、基本的には大気中に、排出する部分に設置されており、装置外、基本的には大気中から、異物が装置内に逆流することを防止する機能を有するのみであり、装置内において、製膜室に蒸発室から蒸気含有ガスを供給するに際し、薄膜形成用材料の当該蒸発室への定量供給の安定性、正確性を確保する為のMFCに逆流することを防止する機能を有する本発明に係る逆流防止バルブとは、その設置箇所もその機能も全く異なるものである。   On the other hand, in the above-mentioned Patent Document 1, with respect to [FIG. 3] thereof, the description in [0055] “The aerosol supplied to the powder separating section 451 is separated into a powder material and a carrier gas, and the powder material is a powder. Regarding the “mass flow controller 434” described in “The gas is returned to the storage unit 421 and the separated gas is discharged via the mass flow controller 434. It is preferable that the check valve 481 is installed in the above because it can prevent foreign matter from flowing back and mixing into the material gas supply mechanism. ”, The check valve 481 is provided on the downstream side. Although it is "installed," this "backflow prevention valve 481" is installed in the part that discharges the separated carrier gas to the outside of the downstream device, basically to the atmosphere. It has only the function of preventing foreign matter from flowing back into the device from the outside of the device, basically from the atmosphere, and when supplying the vapor-containing gas from the evaporation chamber to the film forming chamber inside the device. The backflow prevention valve according to the present invention having a function of preventing backflow into the MFC for ensuring the stability and accuracy of the constant amount supply of the thin film forming material to the evaporation chamber, and its installation location The functions are also completely different.

従って、特許文献1の蒸着装置は、本発明の蒸着装置と同様に、製膜室に蒸発室から蒸気含有ガスを供給して製膜装置であるものの、特許文献1記載の「逆流防止弁」は、本発明に係る逆流防止バルブとは全く異なる構成要素であり、薄膜形成用材料蒸気の供給量の安定的精密制御性において、改善の余地があった。   Therefore, although the vapor deposition apparatus of Patent Document 1 is a film deposition apparatus that supplies vapor-containing gas from the evaporation chamber to the film deposition chamber, as in the vapor deposition apparatus of the present invention, the "backflow prevention valve" described in Patent Document 1 is used. Is a component completely different from the check valve according to the present invention, and there is room for improvement in the stable precision controllability of the supply amount of the thin film forming material vapor.

上記した課題を解決するための方策を種々検討し本発明を完成させた。   The present invention has been completed by studying various measures for solving the above problems.

即ち本発明は、基材を保持可能な基材保持部を備える製膜室、薄膜形成用材料の蒸気を含む蒸気含有ガスを発生させる蒸発室を含み、かつ、該蒸気含有ガスを該製膜室に供給する蒸発装置、ガス供給系、及び排気系を有し、該蒸気含有ガスを基材上に吹き付けることで、該薄膜形成用材料を該基材上に着膜させる蒸着装置であって、
該ガス供給系が、常温常圧で気体である常温常圧ガスのみの流送を目的とする常温常圧ガス流送系、及びその下流の該蒸発室を含む蒸気含有ガス流送系であって、該蒸気含有ガスを流送する蒸気含有ガス流送系を含み、
該常温常圧ガス流送系が、マスフローコントローラー(MFC)を含み、さらに
該MFCの下流に、そのさらに下流の圧力に基づき自動的に閉じる逆流防止バルブを備える、蒸着装置に関する。
That is, the present invention includes a film forming chamber having a base material holding portion capable of holding a base material, an evaporation chamber for generating a vapor containing gas containing vapor of a thin film forming material, and the vapor containing gas containing the vapor forming gas. An evaporation apparatus that has an evaporator for supplying gas to a chamber, a gas supply system, and an exhaust system, and sprays the vapor-containing gas onto a substrate to deposit the thin film-forming material on the substrate. ,
The gas supply system is a normal-temperature normal-pressure gas transfer system intended to transfer only normal-temperature normal-pressure gas that is a gas at normal temperature and normal pressure, and a vapor-containing gas transfer system including the evaporation chamber downstream thereof. And including a vapor-containing gas flow system for feeding the vapor-containing gas,
The present invention relates to a vapor deposition apparatus in which the normal temperature and normal pressure gas flow system includes a mass flow controller (MFC), and further includes a backflow prevention valve that is automatically closed on the downstream side of the MFC based on the pressure downstream thereof.

このような蒸着装置によれば、
下流に薄膜形成用材料を蒸発させた蒸気を含む蒸気含有ガスを流送する蒸気含有ガス流送系を有する、常温常圧で気体である常温常圧ガスのみの流送を目的とする常温常圧ガス流送系であって、マスフローコントローラー(MFC)を含む常温常圧ガス流送系において、MFCの下流に、そのさらに下流の圧力に基づき自動的に閉じる逆流防止バルブを備えるガスキャリア蒸着装置なので、停電や予期せぬトラブル、薄膜形成用材料の急激な大量の蒸発が発生等が生じた際に、ガス供給ラインが汚染され難くなるので、安定的に高品質の膜質の薄膜を製膜可能な蒸着装置となる。
According to such a vapor deposition device,
It has a vapor-containing gas flow system for feeding a vapor-containing gas containing vapor obtained by evaporating a thin film-forming material in the downstream, and it is intended to feed only normal-temperature and normal-pressure gas that is a gas at normal-temperature and normal pressure. Gas carrier vapor deposition system, which is a pressurized gas flow system and includes a mass flow controller (MFC) and a normal temperature and atmospheric pressure gas flow system, which is provided with a backflow prevention valve which is automatically closed on the downstream side of the MFC based on the pressure further downstream thereof. Therefore, in the event of a power outage, unexpected trouble, or sudden large amount of evaporation of the thin film forming material, the gas supply line is less likely to be contaminated, so a stable, high quality thin film can be formed. It becomes a possible vapor deposition device.

また、前記常温常圧ガス流送系は、さらに、前記MFCの下流に、前記薄膜形成用材料を捕集する材料捕集機構を備えることが好ましく、前記MFCの制御を含めて装置全体をより安定的に制御可能となる。   In addition, it is preferable that the normal temperature and normal pressure gas flow system further includes a material collecting mechanism that collects the thin film forming material downstream of the MFC, and the entire apparatus including the control of the MFC is more preferable. It becomes possible to control stably.

また、前記材料捕集機構は、冷却可能な冷却部材により前記捕集し、かつ該冷却部材が加熱により前記薄膜形成用材料を放散することが好ましく、本発明に係るMFCの清浄製を維持しつつ簡便にメンテナンス可能となる。   Further, it is preferable that the material collecting mechanism collects the material by a cooling member capable of cooling, and the cooling member dissipates the thin film forming material by heating, and maintains the cleanness of the MFC according to the present invention. However, maintenance can be done easily.

また、前記常温常圧ガス流送系は、さらに、前記MFCの下流に、前記常温状圧ガスを加熱するためのガス加熱機構を備えることが好ましく、正常運転時に本発明に係るMFCを含む上流側は、この加熱機構による加熱による温度上昇の影響を受けず、ほぼ常温で維持されることとなるので、安定的に高品質の薄膜を製膜できる。   Further, it is preferable that the normal temperature and normal pressure gas flow system further includes a gas heating mechanism for heating the normal temperature pressure gas downstream of the MFC, and an upstream side including the MFC according to the present invention during normal operation. Since the side is not affected by the temperature rise due to the heating by the heating mechanism and is maintained at almost room temperature, a high quality thin film can be stably formed.

また、前記常温常圧ガス流送系は、さらに、前記MFCからの下流側に順に、前記薄膜形成用材料を捕集する材料捕集機構、前記常温状圧ガスを加熱するためのガス加熱機構、及び前記逆流防止バルブを備えることが好ましく、設置位置による全体的な相乗効果により、本発明に係るMFCの清浄性がより確実になると共に、装置全体をより安定的に制御可能となる。   In addition, the normal temperature and normal pressure gas flow system further includes a material collecting mechanism that collects the thin film forming material in order on the downstream side from the MFC, and a gas heating mechanism that heats the normal temperature pressurized gas. , And the above-mentioned check valve are preferably provided, and due to the overall synergistic effect of the installation position, the cleanliness of the MFC according to the present invention becomes more reliable and the entire apparatus can be controlled more stably.

また、前記常温常圧ガス流送系は、その前記逆流防止バルブの下流側から、即ち、前記常温常圧ガス流送系内であって、少なくとも前記蒸発室の上流側から、前記蒸気含有ガス流送系を介さず、前記排気系により排気可能であることが好ましく、薄膜形成用材料が付着している虞がある蒸気含有ガス流送系と無関係に常温常圧ガス流送系の清浄化が可能なので、本発明に係るMFCの清浄性がより確実になると共に、装置全体のメンテナンス性が向上し、前記蒸気含有ガス流送系は、その前記蒸発室の下流側から、前記製膜室を介さず、前記排気系により排気可能であることが好ましく、より好ましくは、当該蒸気含有ガス流送系の圧力に応じて自動的に当該排気を可能とすることであり、薄膜形成用材料が付着している虞がある蒸気含有ガス流送系を、非製膜時には滞留材料が極力少ないことが望ましく、かつ、ガス滞留時間が長いことに起因し真空引きに時間を要する製膜室を迂回して、好ましくは例えば別材料の蒸気に流送する材料蒸気を切り替える際迅速に、清浄化することが可能になると共に、装置全体のメンテナンス性が向上する。   In addition, the normal temperature and normal pressure gas transfer system, from the downstream side of the backflow prevention valve, that is, in the normal temperature and normal pressure gas transfer system, at least from the upstream side of the evaporation chamber, the vapor-containing gas It is preferable that the gas can be exhausted by the exhaust system without passing through a flow system, and there is a possibility that the thin film forming material is attached. Cleaning of the normal temperature and normal pressure gas flow system regardless of the vapor-containing gas flow system. Therefore, the cleanability of the MFC according to the present invention becomes more reliable, the maintainability of the entire apparatus is improved, and the vapor-containing gas flow system is provided from the downstream side of the evaporation chamber to the film forming chamber. It is preferable that the gas can be exhausted by the exhaust system without going through, and more preferably, the exhaust can be automatically performed according to the pressure of the vapor-containing gas flow system, and the thin film forming material is Vapor-containing gas that may adhere It is desirable that the amount of staying material is as small as possible during non-film-forming, and bypasses the film-forming chamber, which requires a long time for evacuation due to long gas residence time, and preferably vapor of another material, for example. When switching the material vapor to be sent to, the cleaning can be performed quickly and the maintainability of the entire apparatus is improved.

また、前記蒸発装置は、さらに、前記蒸発室に前記薄膜形成用材料を供給する材料供給系を含むことが好ましく、材料を蒸発する為に高温となる蒸発室に、薄膜形成用材料を長時間保持しつつ、そのごく一部を製膜室に供給することで生じる材料の高温劣化を防止して、各瞬間に製膜室に供給する必要がある材料を、その分量だけ当該材料供給系から蒸発室に供給することで、このような材料の高温劣化を防止でき、高品質の薄膜を形成できる蒸着装置となり、当該材料供給系は、材料保管容器、及び該材料保管容器から前記薄膜形成用材料を受入れ、かつ、吐出により前記蒸発室に前記薄膜形成用材料を該供給する材料吐出部を含むことが好ましく、このような吐出により蒸発室に薄膜形成用材料を供給するので、高温となる蒸発室から材料保管容器への伝熱が防止され前述の高温劣化や、例えば好ましい態様である粉体で保管・供給される薄膜形成用材料の融着が防止され、さらに、蒸発室の圧力に影響されず、安定的に一定量の材料の供給が可能となる。   In addition, it is preferable that the evaporation device further includes a material supply system that supplies the thin film forming material to the evaporation chamber, and the thin film forming material is kept in the evaporation chamber heated to a high temperature for a long time. The amount of the material that needs to be supplied to the film forming chamber at each moment from the material supply system while preventing it from being deteriorated at high temperature by supplying a small part of it to the film forming chamber while holding it By supplying the material to the evaporation chamber, such a high temperature deterioration of the material can be prevented, and a vapor deposition apparatus capable of forming a high quality thin film can be obtained. The material supply system includes a material storage container and a material storage container for forming the thin film. It is preferable to include a material discharge part that receives the material and supplies the thin film forming material to the evaporation chamber by discharging, and since the thin film forming material is supplied to the evaporation chamber by such discharging, the temperature becomes high. Material from the evaporation chamber The heat transfer to the storage container is prevented and the above-mentioned high temperature deterioration and, for example, the fusion of the thin film forming material stored / supplied in a powder in a preferable mode is prevented, and further, the pressure in the evaporation chamber is not affected, It is possible to stably supply a constant amount of material.

また、前記蒸発室は、前記ガス供給系より加熱されたキャリアガスを導入可能で有り、かつ、粉体として前記吐出により供給された前記薄膜形成用材料が、該加熱キャリアガスによりフラッシュ蒸発され、該粉体として前記蒸発室の底に滞留しない状態で、前記蒸気化することが好ましく、前述の高温劣化が防止された状態で安定的に製膜可能な蒸着装置となる。   Further, the evaporation chamber can introduce a heated carrier gas from the gas supply system, and the thin film forming material supplied by the discharge as powder is flash-evaporated by the heated carrier gas, The powder is preferably vaporized in a state where it does not stay at the bottom of the evaporation chamber, and a vapor deposition apparatus capable of forming a film stably while preventing the above-mentioned high temperature deterioration is obtained.

本発明の蒸着装置は、特定のガス供給系を含むので、ガス供給ラインが汚染され難く、即ち、本発明に係るMFCへの薄膜形成用材用の混入や蒸気含有ガスからの材料付着が防止可能であり、流量の不正確性や不安定性が抑制され、トラブルが少なく安定的な高度に制御された高品質の薄膜の製膜が可能な蒸着装置となる。   Since the vapor deposition apparatus of the present invention includes a specific gas supply system, the gas supply line is unlikely to be contaminated, that is, the MFC according to the present invention can be prevented from being mixed with the material for forming a thin film and adhering the material from the gas containing vapor. Thus, the vapor deposition apparatus can suppress the inaccuracy and instability of the flow rate, and can form a highly controlled, high-quality thin film that is stable and has few troubles.

本発明の蒸着装置1の構成図の一例である。It is an example of the block diagram of the vapor deposition apparatus 1 of this invention. 本発明の蒸着装置1の製膜室201を含む部分的構成詳細図の一例であるIt is an example of a partial structural detail view including the film forming chamber 201 of the vapor deposition device 1 of the present invention. 有機EL装置の一般的なデバイス構成を示す断面図である。It is sectional drawing which shows the general device structure of an organic EL device.

以下本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されるものではなく、当業者の技術常識内で種々の変更が可能である。また、以下の記載において本発明に関し図1〜図3における符号を付し説明するが、この符号の記載により本発明が何らの制限を受けるものではない。   Embodiments of the present invention will be described below. The present invention is not limited to the following embodiments, and various modifications can be made within the technical common sense of those skilled in the art. Further, in the following description, the present invention is described with reference to the reference numerals in FIGS. 1 to 3, but the present invention is not limited by the description of the reference numerals.

(蒸着装置1)
本発明の蒸着装置1は、蒸気含有ガスを基材上に吹き付けることで、薄膜形成用材料を基材上に着膜させる装置であって、製膜室201、蒸発装置3、ガス供給系6、及び排気系7を含み、一つまたは複数の蒸発装置3を含んでいても良く、図1では一つのみの蒸発装置3を含む例について示しているが、それぞれの蒸発装置の構造や系列数を限定するものではなく、製膜形成する薄膜製品や製膜する薄膜の種類、数に応じて、これらの要素を様々に組み合わせて構成することができ、その好適な適用例としては、例えば、有機EL装置のような、コンタミに弱いデバイス薄膜製品の製膜が挙げられる。
(Evaporation apparatus 1)
The vapor deposition device 1 of the present invention is a device for spraying a vapor-containing gas onto a base material to deposit a thin film forming material on the base material, and includes a film forming chamber 201, an evaporation device 3, and a gas supply system 6. , And an exhaust system 7, and may include one or a plurality of evaporators 3. FIG. 1 shows an example including only one evaporator 3, but the structure and series of each evaporator are shown. The number is not limited, depending on the type of thin film product to be formed into a film or a thin film to be formed, depending on the number, it is possible to configure various combinations of these elements, as a suitable application example, for example, , A device such as an organic EL device, which is vulnerable to contamination.

本発明の蒸着装置1は、複数の高品質な薄膜を短いタクトタイムで製膜可能とする観点から、好ましくは複数の蒸発装置3を備え、より好ましくは、各々の材料供給系の内部を、排気系7により個別に直接排気可能であり、材料供給系を個別にクリーニング可能なため、高い膜品質安定性を確保できる。   The vapor deposition apparatus 1 of the present invention preferably comprises a plurality of vaporizers 3 from the viewpoint of enabling the formation of a plurality of high-quality thin films in a short tact time, and more preferably the inside of each material supply system, The exhaust system 7 can directly exhaust the gas individually, and the material supply system can be individually cleaned, so that high film quality stability can be secured.

また、本発明の蒸着装置1は、後述する特定のガス供給系6を含むので、ガス供給ラインが汚染され難く、高品質の薄膜を安定的に製膜可能である。   Further, since the vapor deposition device 1 of the present invention includes the specific gas supply system 6 described later, the gas supply line is less likely to be contaminated and a high quality thin film can be stably formed.

(ガス供給系6)
本発明に係るガス供給系6は、アルゴンや窒素等の好ましくは不活性ガスであるキャリアガスや、本発明に係る蒸気含有ガス、クリーニング用のガス、あるいは、これらを任意の比率で混合した混合ガスを、複数の装置に供給可能な設備であり、本発明に係る後述する、特定の常温常圧ガス流送系、及び、蒸気含有ガス流送系を含み、少なくとも本発明に係る、マスフローコントローラー(MFC)373、及び、逆流防止バルブ395を含み、これら以外にも、仕切りバルブ501、502,503、504、505、506、507、508、509、511、512、513・・・や、その他のマスフローコントローラー371、372、374、375・・・、熱交換器361、362、363・・・を含むことができ、例えば熱交換器を介すことで、加熱されたキャリアガスを供給可能であり、他にも、冷却ガスや脱気用ガス、押出し用ガスとして、各種ガスを供給可能とすることができる。
(Gas supply system 6)
The gas supply system 6 according to the present invention is a carrier gas, which is preferably an inert gas such as argon or nitrogen, a vapor-containing gas according to the present invention, a cleaning gas, or a mixture of these in an arbitrary ratio. Gas is a facility that can supply gas to a plurality of devices, and includes a specific room temperature and normal pressure gas transfer system, and a vapor-containing gas transfer system, which will be described later according to the present invention, and at least the present invention, a mass flow controller. (MFC) 373 and backflow prevention valve 395, and in addition to these, partition valves 501, 502, 503, 504, 505, 506, 507, 508, 509, 511, 512, 513 ... Mass flow controllers 371, 372, 374, 375, ..., Heat exchangers 361, 362, 363 ,. By going through the vessel, it can be supplied a heated carrier gas, Additional cooling gas and deaeration gas, as an extrusion gas, various gases can allow supply.

(常温常圧ガス流送系61)
本発明に係るガス供給系6は、特定の常温常圧ガス流送系61を含むことを特徴とする。即ち、本発明に係る常温常圧ガス流送系61は、前述したようなアルゴンや窒素等に代表される不活性ガスの如き常温常圧で気体である常温常圧ガスのみの流送を目的とし、又は少なくとも正常運転時において当該常温常圧ガスのみを流送し、その下流に蒸気含有ガスを流送する蒸気含有ガス流送系62を有し、また、マスフローコントローラー(MFC)373を含み、即ち、当該常温常圧ガス流送系61内である、前記蒸気含有ガス流送系62の上流に、MFC373を含み、さらに、当該MFC373の下流に逆流防止バルブ395を含み、即ち、当該常温常圧ガス流送系61内である、当該MFC373の下流、かつ、前記蒸気含有ガス流送系62の上流に、逆流防止バルブ395を含み、さらに、前記加熱されたキャリアガスを流送可能である。
(Normal temperature and pressure gas delivery system 61)
The gas supply system 6 according to the present invention is characterized by including a specific room temperature and normal pressure gas flow system 61. That is, the room temperature and pressure gas delivery system 61 according to the present invention is intended to transfer only a room temperature and pressure gas that is a gas at room temperature and pressure, such as an inert gas represented by argon or nitrogen as described above. In addition, or at least in normal operation, only the normal temperature and normal pressure gas is sent, and a steam-containing gas flow system 62 for sending the steam-containing gas is provided downstream thereof, and a mass flow controller (MFC) 373 is included. That is, the MFC 373 is included upstream of the vapor-containing gas flow system 62 in the room temperature and atmospheric pressure gas flow system 61, and the check valve 395 is included downstream of the MFC 373. A backflow prevention valve 395 is provided downstream of the MFC 373 in the normal pressure gas delivery system 61 and upstream of the vapor-containing gas delivery system 62, and the heated carrier gas is passed through the valve. Possible it is.

本発明に係る常温常圧ガス流送系61は、上述したようにMFC373、及び当該MFC373の下流に逆流防止バルブ395を含み、これら以外にも好ましくは、ガス加熱機構362、及び材料捕集機構390からなる群から選ばれる1つ以上の機構を含むことができ、好ましくは、その前記逆流防止バルブ395の下流側から排気系7により排気可能であり、より好ましくは、後述する蒸気含有ガス流送系62を介さず排気可能である。   The room-temperature and normal-pressure gas flow system 61 according to the present invention includes the MFC 373 and the backflow prevention valve 395 downstream of the MFC 373 as described above, and other than these, preferably, the gas heating mechanism 362 and the material collecting mechanism. One or more mechanisms selected from the group consisting of 390 can be included, preferably can be exhausted by the exhaust system 7 from the downstream side of the check valve 395, more preferably, the vapor-containing gas flow described below. The gas can be exhausted without going through the feeding system 62.

前記ガス加熱機構362は、前記常温状圧ガスを加熱するための機構であり、好ましくは、本発明に係るMFC373の下流に設置され、正常運転時には、当該MFC373を含む上流側は、この加熱機構362による加熱による温度上昇の影響を受けず、ほぼ常温で維持されることとなるので、当該MFC373の制御を含めて装置全体をより安定的に制御可能となり、より好ましくは、発明に係る逆流防止バルブ395の上流に設置され、加熱機構362の加熱が中止され加熱機構362の温度が低下する際においても、当該逆流防止バルブ395により、蒸気含有ガスの加熱機構362を含む上流側への逆流が防止されるので、発明に係るMFC373の清浄性が維持されると共に、加熱機構362に付着した薄膜形成用材料に起因する製膜初期における材料供給過多を防止できる。   The gas heating mechanism 362 is a mechanism for heating the room temperature pressure gas, and is preferably installed downstream of the MFC 373 according to the present invention. During normal operation, the upstream side including the MFC 373 is the heating mechanism. Since the temperature is not affected by the temperature rise due to heating by 362 and the temperature is maintained at about room temperature, the entire apparatus including the control of the MFC 373 can be controlled more stably, and more preferably, the backflow prevention according to the invention is prevented. The backflow prevention valve 395 is installed upstream of the valve 395 to stop the heating of the heating mechanism 362 and lower the temperature of the heating mechanism 362, so that the backflow of the vapor-containing gas to the upstream side including the heating mechanism 362 is prevented. Since it is prevented, the cleanliness of the MFC 373 according to the invention is maintained, and the MFC 373 is caused by the thin film forming material adhered to the heating mechanism 362. The material surplus can be prevented in the film formation initial.

前記材料捕集機構390は、本発明に係る薄膜形成用材料を捕集するための機構であり、好ましくは、冷却可能な冷却部材により薄膜形成用材料を常温常圧ガス流送系61の経路内壁面に付着させることで捕集する機構であり、当該冷却部材の加熱により薄膜形成用材料を放散可能であり、また、好ましくは、本発明に係るMFC373の下流に設置され、この材料捕集機構390による捕集により、当該MFC373を含む上流側には、膜形成用材料が流入し難くなるので、当該MFC373の清浄性がより維持され易くなり、より好ましくは、発明に係る逆流防止バルブ395の上流に設置され、当該バルブ395による逆流防止が不完全であった場合でも、当該MFC373を含む上流側の清浄性が確実に維持されることとなると共に、当該バルブ395により正常運転時にも当該材料捕集機構に薄膜形成用材料が蓄積せず、製膜中における予期せぬ材料供給量変動の発生を防でき、さらに好ましくは、前記ガス加熱機構362の下流に設置され、当該ガス加熱機構362を含む上流側には、膜形成用材料が流入し難くなるので、本発明に係るMFC373の清浄性がより維持され易くなる。   The material collecting mechanism 390 is a mechanism for collecting the thin film forming material according to the present invention, and is preferably a path of the thin film forming material at room temperature and atmospheric pressure by a cooling member capable of cooling. It is a mechanism that collects by adhering to the inner wall surface, can dissipate the thin film forming material by heating the cooling member, and is preferably installed downstream of the MFC 373 according to the present invention and collects the material. The collection by the mechanism 390 makes it difficult for the film-forming material to flow into the upstream side including the MFC 373, so that the cleanliness of the MFC 373 is more easily maintained, and more preferably, the check valve 395 according to the present invention. Even if the valve 395 is installed upstream of the MFC 373 and the backflow prevention is incomplete, the cleanliness of the upstream side including the MFC 373 can be reliably maintained. By the valve 395, the thin film forming material does not accumulate in the material collecting mechanism even during normal operation, and it is possible to prevent the occurrence of an unexpected material supply amount variation during film formation. More preferably, the gas heating mechanism 362 is provided. Since the film forming material is less likely to flow into the upstream side including the gas heating mechanism 362 installed downstream, the cleanliness of the MFC 373 according to the present invention is more easily maintained.

(逆流防止バルブ395)
逆流防止バルブは、逆止弁、チェックバルブ、逆止め弁、チャッキ等とも呼称され、一般に、気体や液体等の流体を流送する配管に取り付けられ、当該流体のその上流及び下流の圧力差である背圧によって、上流側の圧力が下流側の圧力より低い場合に下流側から上流側に流体が逆流することを防止するよう作動する弁である。
(Backflow prevention valve 395)
The backflow prevention valve is also called a check valve, check valve, check valve, check, etc., and is generally attached to a pipe for sending a fluid such as gas or liquid, and the pressure difference between the upstream and the downstream of the fluid. It is a valve that is operated by a certain back pressure so as to prevent the fluid from flowing backward from the downstream side to the upstream side when the pressure on the upstream side is lower than the pressure on the downstream side.

本発明に係る逆流防止バルブ395は、このようにそのさらに下流の圧力に基づき自動的に流路を閉じる機能を有する。   The check valve 395 according to the present invention thus has a function of automatically closing the flow path on the basis of the pressure further downstream thereof.

(蒸気含有ガス流送系62)
本発明に係るガス供給系6は、前記常温常圧ガス流送系61の下流に、本発明に係る蒸気含有ガスを流送し、かつ、後述する蒸発室351を含む、蒸気含有ガス流送系62を含むことを特徴とする。即ち、本発明に係る蒸気含有ガス流送系62は、少なくとも製膜室201に蒸気含有ガスを供給する際、蒸発室351で発生せしめた蒸気含有ガスを製膜室201に流送する。
(Steam-containing gas flow system 62)
The gas supply system 6 according to the present invention sends the vapor-containing gas according to the present invention downstream of the room-temperature and normal-pressure gas delivery system 61, and also includes a vaporization chamber 351 to be described later. A system 62 is included. That is, the vapor-containing gas flow system 62 according to the present invention feeds the vapor-containing gas generated in the evaporation chamber 351 to the film-forming chamber 201 at least when the vapor-containing gas is supplied to the film-forming chamber 201.

本発明に係る蒸気含有ガス流送系62は、好ましくは、その前記蒸発室351の下流側から排気系7により排気可能であり、より好ましくは、後述する製膜室201を介さず排気可能である。   The vapor-containing gas flow system 62 according to the present invention can be preferably exhausted from the downstream side of the evaporation chamber 351 by the exhaust system 7, and more preferably can be exhausted without the film forming chamber 201 described later. is there.

(加熱キャリアガス)
本発明に係る加熱キャリアガスは、特に、蒸発室351にて薄膜形成用材料を蒸気化する前記加熱されたキャリアガスであり、具体的には例えば、100℃〜700℃程度に、加熱された窒素ガス、アルゴンガス等であり、不活性ガスであることが好ましく、より好ましくは窒素ガスである。
(Heating carrier gas)
The heated carrier gas according to the present invention is, in particular, the heated carrier gas that vaporizes the material for forming a thin film in the evaporation chamber 351, and specifically, is heated to about 100 ° C. to 700 ° C., for example. Nitrogen gas, argon gas and the like are preferable, and inert gas is preferable, and nitrogen gas is more preferable.

図1においては、熱交換器362と下部材料移送管411を通じて、加熱キャリアガスと薄膜形成用材料が蒸発室351に供給され、ここで蒸気含有ガスが生成される。   In FIG. 1, the heating carrier gas and the thin film forming material are supplied to the evaporation chamber 351 through the heat exchanger 362 and the lower material transfer pipe 411, and the vapor-containing gas is generated therein.

前記熱交換器としては、スタティックミキサー型のガス配管を用いることが好ましく、配管内部のエレメントとキャリアガスが接触して加熱されるので、熱交換効率が向上できる。   As the heat exchanger, it is preferable to use a static mixer-type gas pipe, and the element inside the pipe and the carrier gas are heated in contact with each other, so that the heat exchange efficiency can be improved.

なお、加熱キャリアガスと接触する各機器、配管、バルブ等は、その温度を維持する為、適宜必要なリボンヒーターやジャケットヒーター等によって加熱し、適切な制御方法で調温することが重要であり、特に、蒸気含有ガスを流送したり、これが逆流してくる部位については、蒸発した材料の固着、及び材料劣化を抑制するため、このような温調が重要である。   In order to maintain the temperature of each device, pipes, valves, etc. that come into contact with the heated carrier gas, it is important to heat them with a ribbon heater, jacket heater, etc., as necessary, and adjust the temperature with an appropriate control method. In particular, such temperature control is important for the portion where the vapor-containing gas is fed or flows backward, in order to prevent the vaporized material from sticking and the material from deteriorating.

(製膜室201)
本発明に係る製膜室201は、基材を保持可能な基材保持部221、及び保持された当該基材に対して蒸気含有ガスを吹き付ける蒸着ヘッド231を有し、好ましくは、気密性を有し、排気系7に直接的、又は間接的に接続されており、より好ましくは、当該製膜室201内に、基材9の搬入、搬出の為のゲートバルブ241を有し、排気系7に直接的、に接続されており、さらに好ましくは、ガス供給系6に直接的、又は間接的に接続されており、特に好ましくは、ガス供給系6に直接的に接続されており、即ち、製膜室201単独でのガス導入、及び排気が可能であることが好ましい。
(Film forming chamber 201)
The film forming chamber 201 according to the present invention has a base material holding portion 221 capable of holding a base material, and a vapor deposition head 231 that blows a vapor-containing gas onto the held base material, and is preferably airtight. It has, and is directly or indirectly connected to the exhaust system 7, and more preferably has a gate valve 241 for loading and unloading the substrate 9 in the film forming chamber 201. 7 directly, more preferably directly or indirectly connected to the gas supply system 6, and particularly preferably directly connected to the gas supply system 6, ie, It is preferable that gas can be introduced and exhausted by the film forming chamber 201 alone.

本実施形態では、基材9がゲートバルブ241を介して製膜室201内に導入され、基材保持部221に載置される。次に、蒸気含有ガスが蒸着ヘッド231を介して基材9に向かって吹き出されることで、製膜が実施される。蒸着ヘッド231の吹き出し部は適度な開孔パターンを有し、基材9の製膜面側に均一に蒸気含有ガスを吹き出す機構であることが好ましい。   In the present embodiment, the base material 9 is introduced into the film forming chamber 201 via the gate valve 241 and placed on the base material holding portion 221. Next, the vapor-containing gas is blown out toward the substrate 9 via the vapor deposition head 231, so that the film formation is performed. It is preferable that the blowing portion of the vapor deposition head 231 has a proper opening pattern and that the vapor-containing gas is blown out uniformly to the film forming surface side of the base material 9.

(基材保持部221)
前記基材保持部221は、上述の如く製膜室201内において基材を保持する機能を有する。
(Base material holding part 221)
The base material holding section 221 has a function of holding the base material in the film forming chamber 201 as described above.

(基材9)
本発明に係る基材9は、例えばガラス等の透明な材料からなる。基材上の透明電極層120は、ITO(Indium Tin Oxide)等の透明な導電性材料からなることが好ましい。なお、透明電極層120は、例えばスパッタリング法により形成される。
(Base material 9)
The substrate 9 according to the present invention is made of a transparent material such as glass. The transparent electrode layer 120 on the base material is preferably made of a transparent conductive material such as ITO (Indium Tin Oxide). The transparent electrode layer 120 is formed by, for example, a sputtering method.

(薄膜形成用材料)
本発明に係る薄膜形成用材料は、加熱により蒸気化し、該蒸気が冷却により基材9上に着膜可能であれば各種材料を使用できるが、常温で固体であり、かつ、粉体として本発明の蒸着装置に導入できる材料であることが、本発明の効果を十分に発揮せしめる観点から好ましく、例えば、有機EL素子を構成する有機EL材料等を挙げることができる。
(Material for thin film formation)
As the thin film forming material according to the present invention, various materials can be used as long as they can be vaporized by heating and the vapor can be deposited on the substrate 9 by cooling, but they are solid at room temperature and are formed as powder. A material that can be introduced into the vapor deposition apparatus of the invention is preferable from the viewpoint of sufficiently exerting the effects of the present invention, and examples thereof include an organic EL material that constitutes an organic EL element.

このような本発明に係る薄膜形成用材料は、本発明において好ましくは、例えば、図1に示すように、材料保管容器311より仕切りバルブ508、上部材料移送管401を通じて材料保持部471に補給され、材料保持部471内の薄膜形成用材料は、駆動部491を駆動させることにより、駆動動力が動力伝達機構481を通じて、材料移送部461に伝わり、該動力で材料移送部461が駆動することにより、材料移送部461、材料払出し部451、真空室301の内部雰囲気である材料受送経路441、材料下部受け部431、下部材料移送管411を通じて蒸発室351に移送され、蒸気化され、その後、薄膜形成用材料の蒸気を含む蒸気含有ガスとして製膜室201に供給され、基材9上に着膜する。   In the present invention, such a thin film forming material according to the present invention is preferably replenished to the material holding unit 471 through the partition valve 508 and the upper material transfer pipe 401 from the material storage container 311 as shown in FIG. The driving force of the thin film forming material in the material holding unit 471 is transmitted to the material transfer unit 461 through the power transmission mechanism 481 by driving the driving unit 491, and the material transfer unit 461 is driven by the power. The material transfer section 461, the material delivery section 451, the material receiving path 441 which is the internal atmosphere of the vacuum chamber 301, the lower material receiving section 431, and the lower material transfer pipe 411 are transferred to the evaporation chamber 351 and vaporized, and thereafter, The vapor-containing gas containing the vapor of the thin film forming material is supplied to the film forming chamber 201 and is deposited on the substrate 9.

(蒸発装置3)
本発明に係る蒸発装置3は、薄膜形成用材料の蒸気を含む蒸気含有ガスを発生させ、発生させた蒸気含有ガスを製膜室に供給する装置であり、少なくとも固体、又は液体の薄膜形成用材料を蒸発させて薄膜形成用材料の蒸気を含む蒸気含有ガスを発生させる、即ち、薄膜形成用材料を蒸気化する場所である蒸発室351を含み、蒸発室351に薄膜形成用材料を、好ましくは粉体として、供給する材料供給系4を、好ましくは含む。
(Evaporator 3)
The evaporation device 3 according to the present invention is a device for generating a vapor-containing gas containing vapor of a thin film forming material and supplying the generated vapor-containing gas to a film forming chamber, and for forming a thin film of at least solid or liquid. The material is evaporated to generate a vapor-containing gas containing the vapor of the thin film forming material, that is, an evaporation chamber 351 which is a place for vaporizing the thin film forming material is included, and the thin film forming material is preferably contained in the evaporation chamber 351. Preferably contains a material supply system 4 to be supplied as a powder.

(蒸発室351)
本発明に係る蒸発室351は、薄膜形成用材料を蒸気化することで生成した蒸気含有ガスを、蒸気含有ガス移送部を介して、製膜室201に供給する。
(Evaporation chamber 351)
The evaporation chamber 351 according to the present invention supplies the vapor-containing gas generated by vaporizing the thin film forming material to the film forming chamber 201 via the vapor-containing gas transfer unit.

前記蒸発室351は、ガス供給系6から、前述の加熱されたキャリアガスを導入可能であることが好ましく、好ましくは粉体として供給された薄膜形成用材料は、より好ましくは粉体として蒸発室351の底に滞留しない状態で、当該加熱キャリアガスからの伝熱により、フラッシュ蒸発される。   The evaporation chamber 351 is preferably capable of introducing the above-mentioned heated carrier gas from the gas supply system 6, and the thin film forming material supplied as powder is more preferably powder as the evaporation chamber. While not staying at the bottom of the 351, it is flash-evaporated by heat transfer from the heating carrier gas.

ここで、蒸発室351は、前記加熱キャリアガスと薄膜形成用材料との熱交換を効率よく行う観点から、らせん状の配管で構成されてることが好ましく、当該らせん状の配管は、その内周および外周から均一に加熱されるようシステム構成されていることがより好ましい。   Here, from the viewpoint of efficiently exchanging heat between the heating carrier gas and the thin film forming material, the evaporation chamber 351 is preferably configured by a spiral pipe, and the spiral pipe has an inner circumference thereof. It is more preferable that the system is configured so that the heat is uniformly heated from the outer circumference.

さらに、蒸発室351は、これと配管やバルブを介して直結された排気系7により、単独で排気可能であることが好ましく、このようにすることで、例えば蒸発室351内部を加熱キャリアガスで個別にクリーニングすることが可能となるため、製膜された膜の中の不純物量が低く維持され、膜品質が高レベルで安定維持される。例えば、図1において、蒸発室351は、排気バルブ215を介し、排気系7に直結している。   Further, it is preferable that the evaporation chamber 351 can be independently evacuated by the exhaust system 7 directly connected to the evaporation chamber 351 through a pipe or a valve. By doing so, for example, the inside of the evaporation chamber 351 can be heated with a heating carrier gas. Since individual cleaning is possible, the amount of impurities in the formed film is kept low, and the film quality is stably maintained at a high level. For example, in FIG. 1, the evaporation chamber 351 is directly connected to the exhaust system 7 via an exhaust valve 215.

またさらに、蒸発室351内の圧力は、材料蒸発効率を十分なものに維持せしめる観点から、制御可能であることが好ましく、この制御を可能とする為に、蒸気含有ガス移送部の経路に配された仕切りバルブは、図1おいては仕切りバルブ514は、開度調整が可能なものであることが好ましい。   Furthermore, the pressure in the evaporation chamber 351 is preferably controllable from the viewpoint of maintaining sufficient material evaporation efficiency. In order to enable this control, the pressure in the vapor-containing gas transfer section is arranged. It is preferable that the partition valve 514 shown in FIG. 1 has an adjustable opening degree.

(材料供給系4)
前記材料供給系4は、薄膜形成用材料を保管する保管空間を備える材料保管容器311、及び、当該材料保管容器311から薄膜形成用材料を受入れ、かつ、吐出により蒸発室に薄膜形成用材料を供給する材料吐出部5を含む。
(Material supply system 4)
The material supply system 4 receives the thin film forming material from the material storing container 311 having a storage space for storing the thin film forming material and the material storing container 311, and discharges the thin film forming material into the evaporation chamber. The material discharge part 5 to supply is included.

(材料保管容器311)
前記材料保管容器311は、薄膜形成用材料を一時的に保管する容器であり、薄膜形成用材料を保管する保管空間を備え、好ましくは薄膜形成用材料を導入可能な材料導入機構381を有し、配管やバルブを介して直結された排気系7により、単独で排気可能である。
(Material storage container 311)
The material storage container 311 is a container for temporarily storing the thin film forming material, has a storage space for storing the thin film forming material, and preferably has a material introducing mechanism 381 capable of introducing the thin film forming material. The exhaust system 7 directly connected through the pipes and the valves enables the individual exhaust.

(材料吐出部5)
前記材料吐出部5は、前記材料保管容器311から薄膜形成用材料を受入れる材料供給装置331、及び、吐出により蒸発室351に薄膜形成用材料を供給する吐出口を少なくとも含み、高温となる蒸発室351からの熱を遮断する観点から、好ましくは内部を減圧保持可能な真空室301である。
(Material discharge part 5)
The material discharge unit 5 includes at least a material supply device 331 that receives the thin film forming material from the material storage container 311 and a discharge port that supplies the thin film forming material to the evaporation chamber 351 by discharging, and the evaporation chamber becomes high temperature. From the viewpoint of shutting off heat from the 351, it is preferably the vacuum chamber 301 capable of holding the inside under reduced pressure.

即ち、前記材料供給装置331は、材料吐出部5である真空室301の内部に格納されていることが好ましく、前記吐出口は、蒸発室351の内部と連通し、当該蒸発室351に薄膜形成用材料を。好ましくは、粉体として、吐出する、好ましくは真空室301の内面の、より好ましくはその底面の孔であり、その場合、当該吐出口は、真空室301が有する材料下部受け部431に含まれ、このような、材料吐出部5を用いることで、いずれも後述する、材料保持部471に保持された薄膜形成用材料を、材料移送部461により、材料保持部471と材料払出し部451を等圧の状態で、移送することができるので、蒸発室351に供給される薄膜形成用材料の供給速度を安定させることができる。   That is, the material supply device 331 is preferably housed inside the vacuum chamber 301 which is the material discharge unit 5, and the discharge port communicates with the inside of the evaporation chamber 351 to form a thin film in the evaporation chamber 351. Materials for. It is preferably a hole for discharging as powder, preferably on the inner surface of the vacuum chamber 301, more preferably on the bottom surface thereof, and in this case, the discharge port is included in the lower material receiving portion 431 of the vacuum chamber 301. By using the material discharge unit 5 as described above, the thin film forming material held in the material holding unit 471, which will be described later, is transferred to the material holding unit 471 and the material dispensing unit 451 by the material transfer unit 461. Since the material can be transferred under pressure, the supply rate of the thin film forming material supplied to the evaporation chamber 351 can be stabilized.

(材料供給装置331)
前記材料供給装置331は、蒸発室351に定量的に薄膜形成用材料を供給する目的で本発明の蒸着装置に好ましく組み込まれる装置であり、前述したように好ましくは、真空室301内部に収容され、その場合より好ましくは、真空室301内で材料供給装置支持部341により支持される。
(Material supply device 331)
The material supply device 331 is a device that is preferably incorporated in the vapor deposition device of the present invention for the purpose of quantitatively supplying the thin film forming material to the evaporation chamber 351, and as described above, is preferably housed in the vacuum chamber 301. In that case, more preferably, it is supported by the material supply device supporting portion 341 in the vacuum chamber 301.

材料供給装置331が材料供給装置支持部341により支持される場合、当該材料供給装置支持部341が秤量機構を有することが好ましく、材料供給装置331が材料供給装置支持部341を介してのみ真空室301内で保持される機構であればより好ましく、材料供給装置331に保持されている薄膜形成用材料の重量を計測できるので、より正確に薄膜形成用材料の移送量を制御することが可能となり、基材9上に得られる膜厚の制御が容易となる。   When the material supply device 331 is supported by the material supply device support part 341, it is preferable that the material supply device support part 341 has a weighing mechanism, and the material supply device 331 is a vacuum chamber only via the material supply device support part 341. It is more preferable if the mechanism is held in 301, and since the weight of the thin film forming material held in the material supply device 331 can be measured, it is possible to more accurately control the transfer amount of the thin film forming material. Therefore, it becomes easy to control the film thickness obtained on the base material 9.

このような材料供給装置331は、少なくとも、材料保管容器311より上部材料移送管401を介し、好ましくはさらに真空室301の内部雰囲気を介し、薄膜形成用材料を受入れ可能な材料上部受け部421、及び薄膜形成用材料を吐出口に払出し可能な材料払出し部451を有し、好ましくは、当該受け入れた薄膜形成用材料を一時的に保持する材料保持部471、及び材料保持部471に保持された薄膜形成用材料を、材料払出し部451に定量的に移送する材料移送部461を含む。   Such a material supply device 331 has at least a material upper receiving portion 421 capable of receiving a thin film forming material via the upper material transfer pipe 401 from the material storage container 311 and preferably further via the internal atmosphere of the vacuum chamber 301. And a material dispensing unit 451 capable of dispensing the thin film forming material to the discharge port, and preferably, the material holding unit 471 that temporarily holds the received thin film forming material and the material holding unit 471 hold the material. A material transfer unit 461 that quantitatively transfers the thin film forming material to the material delivery unit 451 is included.

材料吐出部5が真空室301である場合に、材料上部受け部421は、当該真空室301の機密性を維持した状態で、材料保管容器311から順に、上部材料移送管401、真空室301の内部雰囲気を介して、薄膜形成用材料を受け入れることが好ましく、材料下部受け部431は、当該真空室301の機密性を維持した状態で、材料払出し部451から、真空室301の内部雰囲気を介して、薄膜形成用材料を受け入れることが好ましい。   When the material discharge part 5 is the vacuum chamber 301, the material upper part receiving part 421 keeps the airtightness of the vacuum chamber 301, and sequentially from the material storage container 311 to the upper material transfer pipe 401 and the vacuum chamber 301. It is preferable to receive the material for forming a thin film through the internal atmosphere, and the material lower part receiving portion 431 can maintain the airtightness of the vacuum chamber 301, and then the material discharging portion 451 through the internal atmosphere of the vacuum chamber 301. Therefore, it is preferable to receive the thin film forming material.

材料供給装置331は、好ましくはさらに、材料移送部461を駆動するための駆動部491、及び駆動部491より材料移送部461に動力を伝達する動力伝達機構481を有する。   The material supply device 331 preferably further includes a drive unit 491 for driving the material transfer unit 461, and a power transmission mechanism 481 for transmitting power from the drive unit 491 to the material transfer unit 461.

この場合、前記材料払出し部、及び前記吐出口との間の薄膜形成用材料が流通する当該真空室内301の空間を材料送受経路441としたとき、材料受送経路441の経路断面積は、真空室301内面の当該断面の面積の1/10以下であれば、材料保持部471と材料払出し部451とを均圧に維持することが容易であり好ましい。   In this case, when the space in the vacuum chamber 301 through which the material for forming a thin film flows between the material dispensing part and the discharge port is the material transfer path 441, the path cross-sectional area of the material transfer path 441 is a vacuum. If it is 1/10 or less of the area of the cross section of the inner surface of the chamber 301, it is easy and preferable to maintain the pressure equalization between the material holding portion 471 and the material dispensing portion 451.

前記吐出口は、好ましくは、下部材料移送管411を通じて蒸発室351の内部と連通し、蒸発室351に薄膜形成用材料を、好ましくは、粉体として、吐出する。   The discharge port preferably communicates with the inside of the evaporation chamber 351 through the lower material transfer pipe 411, and discharges the thin film forming material, preferably as powder, into the evaporation chamber 351.

前記材料下部受け部431は、材料供給装置331より払い出された薄膜形成用材料を効率よく受け入れる観点から、好ましくは、真空室301の内側に大開口し、吐出口を小開口とする漏斗状であり、当該吐出口は前記下部材料移送管411の材料吐出部5側の入り口であり、この場合、真空室301の内部雰囲気を介して薄膜形成用材料は材料下部受け部431に向かって吐出される。   From the viewpoint of efficiently receiving the thin film forming material dispensed from the material supply device 331, the lower material receiving portion 431 preferably has a large opening inside the vacuum chamber 301 and a discharge opening having a small opening. The discharge port is an inlet of the lower material transfer pipe 411 on the material discharge unit 5 side, and in this case, the thin film forming material is discharged toward the lower material receiving unit 431 through the internal atmosphere of the vacuum chamber 301. To be done.

さらに好ましくは、ガス供給系6よりキャリアガスの一部を真空室301に供給することができる構造であれば、材料移送配管411内で薄膜形成用材料が付着することを抑えられ、また、蒸発室351で発生する蒸気含有ガスが、真空室301に逆流することを防ぐことができ、真空室301の汚染が防止できることを通じ、製膜された薄膜の品質が高いレベルで維持され易くなる。   More preferably, a structure capable of supplying a part of the carrier gas from the gas supply system 6 to the vacuum chamber 301 can prevent the thin film forming material from adhering to the inside of the material transfer pipe 411 and evaporate. The vapor-containing gas generated in the chamber 351 can be prevented from flowing back to the vacuum chamber 301, and the vacuum chamber 301 can be prevented from being contaminated. Therefore, the quality of the formed thin film can be easily maintained at a high level.

さらに好ましくは、排気系7により、真空室301を個別に排気可能とする構造であれば、内部に保管された薄膜形成用材料から脱離した水分等の不純物ガスを排気することが容易となる。   More preferably, if the vacuum system 301 can be individually exhausted by the exhaust system 7, it becomes easy to exhaust the impurity gas such as moisture desorbed from the thin film forming material stored inside. .

(排気系7)
本発明に係る排気系7は、ドライポンプ等の真空排気ポンプや、これと製膜室201や蒸発装置3、ガス供給系6等とを接続する配管やバルブ等から構成され、接続される設備の用途に応じて、適切な真空排気ポンプを選択する必要があり、それぞのれの設備が個別の排気系7を備えることが好ましい。
(Exhaust system 7)
The exhaust system 7 according to the present invention includes a vacuum exhaust pump such as a dry pump, and pipes and valves that connect the vacuum exhaust pump to the film forming chamber 201, the evaporator 3, the gas supply system 6 and the like, and the connected equipment. It is necessary to select an appropriate vacuum exhaust pump according to the application of (3), and it is preferable that each equipment has an individual exhaust system 7.

このような排気系7に係るバルブとして、図1には、排気バルブ213、214、215が例示されており、これらの各々を通じて材料保管容器311、材料吐出部5、及び蒸発室351を個別に排気可能な好ましい例となっており、排気バルブ211、212も例示されており、これらの各々を通じて製膜室201、及び蒸気含有ガス供給系を個別に排気可能な好ましい例となっており、このような排気系7は、1つのポンプにより切り替えて複数を排気しても良く、個別のポンプにより排気してもよく、このような排気バルブは、ポンプ性能を十分に発揮せしめ、到達真空度を高め高品質の薄膜を製膜する観点から、仕切りバルブよりコンダクタンスが大きいものであることが好ましい。   As valves related to such an exhaust system 7, exhaust valves 213, 214, and 215 are illustrated in FIG. 1, and the material storage container 311, the material discharge part 5, and the evaporation chamber 351 are individually provided through each of them. Exhaust valves 211 and 212 are also illustrated, and the film forming chamber 201 and the vapor-containing gas supply system can be individually exhausted through these exhaust valves, respectively. Such an exhaust system 7 may be switched by one pump to exhaust a plurality of pumps, or may be exhausted by an individual pump. Such an exhaust valve allows pump performance to be sufficiently exerted and the ultimate vacuum degree to be achieved. From the viewpoint of forming a high quality thin film, it is preferable that the conductance is larger than that of the partition valve.

またさらに、製膜室201、蒸発装置3にそれぞれ単独の排気系7を接続する方が、製膜室201と蒸発装置3を個別に排気することができるため好ましい。このような装置構成とすることで、例えば、薄膜形成用材料の蒸発が不安定な間は仕切りバルブ212を通じて排気系7に流送し、前記蒸発が安定した後に、仕切りバルブ514を通じて蒸着ヘッド231へ流送することができる。   Furthermore, it is preferable to connect a separate exhaust system 7 to the film forming chamber 201 and the evaporator 3, because the film forming chamber 201 and the evaporator 3 can be separately exhausted. With such a device configuration, for example, while the evaporation of the thin film forming material is unstable, it is sent to the exhaust system 7 through the partition valve 212, and after the evaporation is stabilized, the evaporation head 231 is supplied through the partition valve 514. Can be sent to.

またさらに、製膜室201と排気系7を繋ぐ排気バルブ211は、開度コントロールが可能なバルブである方が、製膜室内部の圧力調整により製膜速度等をコントロールできるため好ましい。   Furthermore, it is preferable that the exhaust valve 211 connecting the film forming chamber 201 and the exhaust system 7 is a valve whose opening can be controlled because the film forming speed and the like can be controlled by adjusting the pressure inside the film forming chamber.

製膜室201は、ドライポンプ、TMP(ターボ分子ポンプ)やCP(クライオポンプ)を用いて、製膜室201内を高真空排気できることが好ましく、例えば製膜室内部の残留水分等を除去可能となり、薄膜の品質向上の観点から好ましい。   In the film forming chamber 201, it is preferable that the film forming chamber 201 can be evacuated to a high vacuum by using a dry pump, a TMP (turbo molecular pump) or a CP (cryo pump). For example, residual moisture in the film forming chamber can be removed. Therefore, it is preferable from the viewpoint of improving the quality of the thin film.

(製膜方法)
以下本発明の蒸着装置を用いた製膜方法の具体例を説明する。
(Film forming method)
A specific example of a film forming method using the vapor deposition device of the present invention will be described below.

まず、材料導入機構381を介して材料保管容器311に薄膜形成用材料を適量充填し密閉する。なお共蒸着を実施する場合、事前に使用する薄膜形成用材料同士の重量比率を調整する方が好ましい。次に、排気バルブ213を開け、排気系7を用いて材料保管用器311を真空排気し、材料脱気を実施する。なお、排気バルブ213は、排気時に材料保管容器311内の急激な圧力変動によって内部の薄膜形成用材料が舞上ることを抑制するため、開度調整が可能であり、減圧速度をコントロールできる方が好まし。   First, the material storage container 311 is filled with an appropriate amount of the thin film forming material via the material introduction mechanism 381 and sealed. When co-deposition is performed, it is preferable to adjust the weight ratio of the thin film forming materials to be used in advance. Next, the exhaust valve 213 is opened, the material storage device 311 is evacuated using the exhaust system 7, and the material is degassed. The exhaust valve 213 is capable of adjusting the opening and controlling the depressurization rate in order to prevent the internal thin film forming material from soaring due to a sudden pressure change in the material storage container 311 during exhaust. I like it.

真空排気は、ドライポンプ、ターボ分子ポンプ、もしくはクライオポンプを用いて高真空排気を実施し、有機ELデバイス等の特性低下に繋がる残留水分等を極力除去することが好ましい。材料脱気は、加熱機構を用いて、材料保管容器311を薄膜形成用材料の分解劣化に影響しない範囲で加熱することで、脱気に要する時間を短縮することができる。   For vacuum evacuation, it is preferable to perform high vacuum evacuation by using a dry pump, a turbo molecular pump, or a cryopump to remove residual water and the like that lead to deterioration of characteristics of the organic EL device and the like as much as possible. For the material degassing, the time required for degassing can be shortened by heating the material storage container 311 within a range that does not affect the decomposition and deterioration of the thin film forming material using a heating mechanism.

次に、各部に設置したヒーターで各部を所定温度に昇温する。設定温度は、装置の運用方法や特徴に合わせて適宜設定すればよい。   Next, each part is heated to a predetermined temperature with a heater installed in each part. The set temperature may be appropriately set according to the operation method and characteristics of the device.

次に、仕切りバルブ508、及び上部材料移送管401を通じて、材料保管容器311から材料供給装置331に薄膜形成用材料を移送する。なお、事前に、排気バルブ214を介して排気系7により真空室301の圧力を材料保管容器311と同等程度にすることで、薄膜形成用材料を移送する際、材料保管容器311と真空室301の圧力差によって薄膜形成用材料が舞上り、真空室301内を汚染することを抑制できるため好ましい。   Next, the thin film forming material is transferred from the material storage container 311 to the material supply device 331 through the partition valve 508 and the upper material transfer pipe 401. Note that the pressure of the vacuum chamber 301 is made approximately equal to that of the material storage container 311 by the exhaust system 7 via the exhaust valve 214 in advance, so that the material storage container 311 and the vacuum chamber 301 can be transferred when the thin film forming material is transferred. This is preferable because it is possible to suppress the thin film forming material from flying up due to the pressure difference and contaminating the inside of the vacuum chamber 301.

この場合に、上部材料移送管401内で材料詰まりが発生する場合には、仕切りバルブ503、511を通じてガス供給系6より押出し用ガスを供給し、圧送することができ、また、この場合に、材料供給装置支持部341が秤量機構であれば、材料供給装置331に供給される薄膜形成用材料の供給量を制御できる。   In this case, when material clogging occurs in the upper material transfer pipe 401, the extrusion gas can be supplied from the gas supply system 6 through the partition valves 503 and 511 and pressure-fed, and in this case, If the material supply device support portion 341 is a weighing mechanism, the supply amount of the thin film forming material supplied to the material supply device 331 can be controlled.

次に、ゲートバルブ241を介して、製膜室201に基材9を投入し、基材支持機構221に載置する。また、基材保持部221内に冷媒を流通させ(251)基材9の冷却を実施する。冷媒には例えばエチレングリコール等が用いられる。   Next, the substrate 9 is put into the film forming chamber 201 via the gate valve 241 and placed on the substrate support mechanism 221. Further, the coolant is circulated in the base material holding portion 221 (251) to cool the base material 9. For example, ethylene glycol or the like is used as the refrigerant.

次にMFC373及び熱交換器362等で、キャリアガスを所定流量および温度に制御して蒸発室351等に供給し、この熱交換器362で加熱されたキャリアガスにより、蒸発室351内において、薄膜形成用材料が加熱されて蒸気化することとなる。また、MFC372でキャリアガスを所定流量に制御して、仕切りバルブ505、509を通じて蒸発室351に供給することで、このキャリアガスに随伴して材料吐出部5から蒸発室351に薄膜形成用材料が供給されることとなる。この場合、MFC372で制御されるキャリアガス流量は、蒸発室351で蒸発した薄膜形成用材料の蒸気を含む蒸気含有ガスの逆流を抑える程度の少量でよい。   Next, the carrier gas is controlled to a predetermined flow rate and temperature by the MFC 373 and the heat exchanger 362 and supplied to the evaporation chamber 351 and the like, and the carrier gas heated by the heat exchanger 362 causes the thin film in the evaporation chamber 351. The forming material is heated and vaporized. Further, by controlling the carrier gas at a predetermined flow rate by the MFC 372 and supplying it to the evaporation chamber 351 through the partition valves 505 and 509, the thin film forming material is transferred from the material discharge part 5 to the evaporation chamber 351 along with the carrier gas. Will be supplied. In this case, the carrier gas flow rate controlled by the MFC 372 may be small enough to suppress the backflow of the vapor-containing gas containing the vapor of the thin film forming material vaporized in the vaporization chamber 351.

この際、本発明においては、薄膜系形成用材料が、脈動により一時的に多量に供給されたり、予定外に在留しそれが突沸したり、材料吐出部5からのキャリアガス供給量が予期せず過剰となったりして、、蒸発室351を含む下流側の蒸気含有ガス流送系62の圧力が、上流側の常温常圧ガス流送系6の圧力より高くなっても、逆流防止バルブ395の存在により、MFC373の薄膜形成用材料による汚染は防止される。   At this time, in the present invention, the thin film system forming material is temporarily supplied in a large amount due to pulsation, is unexpectedly stayed and bumps, and the carrier gas supply amount from the material discharge part 5 is unexpected. Even if the pressure of the vapor-containing gas flow system 62 on the downstream side including the evaporation chamber 351 becomes higher than the pressure of the normal-temperature / normal-pressure gas flow system 6 on the upstream side due to excess, the backflow prevention valve The presence of 395 prevents the MFC 373 from being contaminated by the thin film forming material.

また、上述のMFC373及び熱交換器362等による加熱キャリアガスの蒸発室351等への供給においては、MFC373と熱交換器362との間に、材料捕集機構として熱交換器390を設け、キャリアガスを一旦室温以下に冷却してから、熱交換器362で加熱することが好ましい。このようにすることで、キャリアガス中の水分等の不純物の下流側の蒸発室351への流入が防止されると共に、上流側のMFC373が、下流側からの薄膜形成材料等の逆流が防止される。このような材料捕集機構390でトラップされた材料はメンテナンス時に材料捕集機構390を加熱しながら排気系7ではいきすることで系外に放出することができる。   In supplying the heated carrier gas to the evaporation chamber 351 and the like by the MFC 373 and the heat exchanger 362 and the like, the heat exchanger 390 is provided as a material collecting mechanism between the MFC 373 and the heat exchanger 362, and the carrier It is preferable that the gas is once cooled to room temperature or lower and then heated in the heat exchanger 362. By doing so, impurities such as water in the carrier gas are prevented from flowing into the evaporation chamber 351 on the downstream side, and the MFC 373 on the upstream side is prevented from backflowing the thin film forming material or the like from the downstream side. It The material trapped by the material collecting mechanism 390 can be discharged to the outside of the system by heating in the material collecting mechanism 390 during maintenance and moving in the exhaust system 7.

次に、材料供給装置331より、所定の供給速度で薄膜形成用材料を、材料送受経路441、下部材料移送管411を通じて蒸発室351に供給する。この場合、仕切りバルブ509を、例えばボールバルブとすることで、下部材料移送管411を通る薄膜形成用材料が移送管内で詰まることなく、全量を蒸発室351に供給可能であるため好ましい。   Next, the material supply device 331 supplies the thin film forming material at a predetermined supply rate to the evaporation chamber 351 through the material transfer path 441 and the lower material transfer pipe 411. In this case, it is preferable that the partition valve 509 is, for example, a ball valve, because the thin film forming material passing through the lower material transfer pipe 411 can be supplied to the evaporation chamber 351 in its entirety without being clogged in the transfer pipe.

この場合、例えば、蒸発装置351に供給された薄膜形成用材料を全量蒸発させることが可能なキャリアガスの流量、温度、等の諸条件とすることで、薄膜形成用材料の供給速度で、製膜速度を制御することができる。薄膜形成用材料の供給速度は、材料供給装置331の機構により制御することもできるが、好ましくは、秤量機構を有する材料供給装置支持部341を用いることで、より正確に、所定の供給速度に制御できる。   In this case, for example, by setting various conditions such as the flow rate and temperature of the carrier gas that can completely evaporate the thin film forming material supplied to the evaporation device 351, the thin film forming material can be manufactured at the supply speed of the thin film forming material. The membrane speed can be controlled. The supply speed of the thin film forming material can be controlled by the mechanism of the material supply device 331, but preferably, by using the material supply device supporting portion 341 having a weighing mechanism, the supply speed can be more accurately adjusted to a predetermined supply speed. You can control.

また、蒸発室351等の内部の圧力は、例えば仕切りバルブ514等の開度を調整し、10000Pa程度に調整することで、能率的に材料蒸発を実施することができる。   Further, the pressure inside the evaporation chamber 351 and the like can be efficiently evaporated by adjusting the opening of the partition valve 514 and the like to about 10,000 Pa.

このようにして、蒸発装置3で発生した薄膜形成用材料の蒸気を含む蒸気含有ガスは、キャリアガスと共に、蒸着ヘッド231より吐出され、基材9上で冷却され析出することで着膜する。   In this way, the vapor-containing gas containing the vapor of the thin film forming material generated in the evaporation device 3 is discharged from the vapor deposition head 231 together with the carrier gas, cooled on the base material 9 and deposited to form a film.

この場合、蒸着ヘッド231から吐出されるキャリアガスの流量および温度により、基材9への着膜効率及び着膜分布が変化する。   In this case, the film deposition efficiency and the film deposition distribution on the substrate 9 change depending on the flow rate and temperature of the carrier gas discharged from the vapor deposition head 231.

蒸発装置3のプロセス条件によらず、蒸着ヘッド231から吐出されるキャリアガスの流量及び温度を一定とする場合には、バイパスキャリアガス流送部8より、マスフローコントローラー374及び熱交換器363で、キャリアガスの流量及び温度を適宜制御して製膜室201に流送することで実施できる。   When the flow rate and temperature of the carrier gas discharged from the vapor deposition head 231 are constant regardless of the process conditions of the evaporator 3, the bypass carrier gas flow section 8 allows the mass flow controller 374 and the heat exchanger 363 to This can be performed by appropriately controlling the flow rate and temperature of the carrier gas and sending the carrier gas to the film forming chamber 201.

また、基材9への着膜量を精密にコントロールする場合には、最初は、薄膜形成用材料の蒸気含有ガスを排気バルブ212を通して排気系7に流送し、薄膜形成用材料の蒸発速度安定後に蒸着ヘッド231へ流送する方法が好ましい。   Further, in the case of precisely controlling the film deposition amount on the base material 9, first, the vapor-containing gas of the thin film forming material is sent to the exhaust system 7 through the exhaust valve 212 to evaporate the thin film forming material. A method of sending to the vapor deposition head 231 after stabilizing is preferable.

製膜終了後は、材料供給装置331を停止し、適宜バルブを閉めるとよい。   After the film formation is completed, the material supply device 331 may be stopped and the valve may be closed appropriately.

本発明の蒸着装置1及び、前述した蒸着方法をを用いれば、一つの蒸発装置3で複数種類の薄膜形成用材料を用いた共蒸着膜を製膜可能である。また、例えば図3に示した機能層130のような多層積層膜であっても、機能層130を形成する層の種類に応じた数の蒸発装置3を設置すれば、本発明の蒸着装置1台で全ての層を製膜可能である。   By using the vapor deposition apparatus 1 of the present invention and the vapor deposition method described above, a single vaporization apparatus 3 can form a co-deposited film using a plurality of types of thin film forming materials. Further, even in the case of a multilayer laminated film such as the functional layer 130 shown in FIG. 3, if the evaporation devices 3 are installed in the number corresponding to the type of layers forming the functional layer 130, the vapor deposition device 1 of the present invention. All layers can be formed on the table.

このような本発明の蒸着装置として、図1に示す装置を用いて、加熱キャリアガスの温度が450℃、加熱キャリアガス中に含有される薄膜形成材料の濃度が約200μg/sccm、製膜室201内部の圧力が200Pa、基材9の表面温度が70℃、の条件で薄膜を製膜したところ、絶対的な着膜効率が0.6と算出できる蒸着において、ほぼ一定の製膜速度で、繰り返し製膜が可能であり、蒸着装置のメンテナンス前後でも、同一条件なら同一の製膜速度で製膜可能であり、本発明に係るMFCが、蒸気含有ガス流送系を含む蒸着装置であっても、清浄に維持可能であるあることが確認できた。   Using the apparatus shown in FIG. 1 as the vapor deposition apparatus of the present invention, the temperature of the heating carrier gas is 450 ° C., the concentration of the thin film forming material contained in the heating carrier gas is about 200 μg / sccm, and the film forming chamber is When a thin film was formed under the condition that the pressure inside 201 was 200 Pa and the surface temperature of the substrate 9 was 70 ° C., the absolute film deposition efficiency could be calculated as 0.6. It is possible to repeatedly form a film, and it is possible to form a film at the same film forming speed under the same conditions even before and after the maintenance of the evaporation device. The MFC according to the present invention is an evaporation device including a vapor-containing gas flow system. However, it was confirmed that it could be kept clean.

1.蒸着装置
3.蒸発装置
4.材料供給系
5.材料吐出部
6.ガス供給系
61.常温常圧ガス流送系
62.蒸気含有ガス流送系
7.排気系
9.基材
101.有機EL装置
111.ガラス基板
121.透明電極層
131.機能層
141.裏面電極層
151.封止部
201.製膜室
211.排気バルブ
221.基材保持部
231.蒸着ヘッド
241.ゲートバルブ
301.真空室
311.材料保管容器
331.材料協供給装置
341.(材料供給装置)支持部
351.蒸発室
361.熱交換器
372.ガス加熱機構
371.MFC
373.本発明に係るマスフローコントローラー(MFC)
381.材料導入機構
390.材料捕集機構
395.本発明に係る逆流防止バルブ
401.上部材料移送管
411.下部材料移送管
421.材料上部受け部
431.材料下部受け部
441.材料送受経路
451.材料吐出部
461.材料移送部
471.材料保持部
481.動力伝達機構
491.駆動部
501.仕切りバルブ
511.仕切りバルブ
521.仕切りバルブ
601.駆動側シャフト
611.被駆動側シャフト
701.排気バルブ
711.マスフローコントローラー
721.熱交換器
1. Evaporation device 3. Evaporator 4. Material supply system 5. Material discharge part 6. Gas supply system 61. Room temperature and pressure gas delivery system 62. Steam-containing gas flow system 7. Exhaust system 9. Substrate 101. Organic EL device 111. Glass substrate 121. Transparent electrode layer 131. Functional layer 141. Back electrode layer 151. Sealing portion 201. Film forming chamber 211. Exhaust valve 221. Base material holding portion 231. Vapor deposition head 241. Gate valve 301. Vacuum chamber 311. Material storage container 331. Material cooperative supply device 341. (Material Supply Device) Support Unit 351. Evaporation chamber 361. Heat exchanger 372. Gas heating mechanism 371. MFC
373. Mass flow controller (MFC) according to the present invention
381. Material introduction mechanism 390. Material collection mechanism 395. Backflow prevention valve 401. Upper material transfer pipe 411. Lower material transfer pipe 421. Upper material receiving portion 431. Lower material receiving portion 441. Material transfer route 451. Material discharging unit 461. Material transfer unit 471. Material holding unit 481. Power transmission mechanism 491. Drive unit 501. Partition valve 511. Partition valve 521. Partition valve 601. Drive shaft 611. Driven shaft 701. Exhaust valve 711. Mass flow controller 721. Heat exchanger

Claims (8)

基材を保持可能な基材保持部を備える製膜室、薄膜形成用材料の蒸気を含む蒸気含有ガスを発生させる蒸発室を含み、かつ、該蒸気含有ガスを該製膜室に供給する蒸発装置、ガス供給系、及び排気系を有し、該蒸気含有ガスを基材上に吹き付けることで、該薄膜形成用材料を該基材上に着膜させる蒸着装置であって、
該ガス供給系が、常温常圧で気体である常温常圧ガスのみの流送を目的とする常温常圧ガス流送系、及びその下流の該蒸発室を含む蒸気含有ガス流送系であって、該蒸気含有ガスを流送する蒸気含有ガス流送系を含み、
該常温常圧ガス流送系が、マスフローコントローラー(MFC)を含み、さらに
該MFCの下流に、そのさらに下流の圧力に基づき自動的に閉じる逆流防止バルブを備える、蒸着装置。
A vapor deposition chamber including a substrate holding unit capable of holding a substrate, an evaporation chamber for generating a vapor-containing gas containing a vapor of a thin film forming material, and vaporization for supplying the vapor-containing gas to the film-forming chamber A vapor deposition apparatus having a device, a gas supply system, and an exhaust system, and spraying the vapor-containing gas onto a substrate to deposit the thin film forming material on the substrate,
The gas supply system is a normal-temperature normal-pressure gas transfer system intended to transfer only normal-temperature normal-pressure gas that is a gas at normal temperature and normal pressure, and a vapor-containing gas transfer system including the evaporation chamber downstream thereof. And including a vapor-containing gas flow system for feeding the vapor-containing gas,
A vapor deposition apparatus in which the room-temperature and normal-pressure gas flow system includes a mass flow controller (MFC), and further includes a backflow prevention valve that is automatically closed downstream of the MFC based on the pressure downstream thereof.
前記常温常圧ガス流送系が、さらに、前記MFCの下流に、前記薄膜形成用材料を捕集する材料捕集機構を備える、請求項1に記載の蒸着装置。   The vapor deposition apparatus according to claim 1, wherein the room temperature and normal pressure gas flow system further includes a material collecting mechanism that collects the thin film forming material downstream of the MFC. 前記材料捕集機構が、冷却可能な冷却部材により前記捕集し、かつ
該冷却部材が加熱により前記薄膜形成用材料を放散する、請求項2に記載の蒸着装置。
The vapor deposition apparatus according to claim 2, wherein the material collecting mechanism collects the material by a cooling member that can be cooled, and the cooling member diffuses the thin film forming material by heating.
前記常温常圧ガス流送系が、さらに、前記MFCの下流に、前記常温状圧ガスを加熱するためのガス加熱機構を備える、請求項1〜3のいずれかに記載の蒸着装置。   The vapor deposition apparatus according to any one of claims 1 to 3, wherein the normal temperature and normal pressure gas flow system further includes a gas heating mechanism downstream of the MFC for heating the normal temperature pressure gas. 前記常温常圧ガス流送系が、さらに、前記MFC(373)からの下流側に順に、前記薄膜形成用材料を捕集する材料捕集機構(390)、前記常温状圧ガスを加熱するためのガス加熱機構(362)、及び前記逆流防止バルブ(395)を備える、請求項4に記載の蒸着装置。   In order to heat the room temperature and pressure gas, the room temperature and normal pressure gas delivery system further sequentially collects the thin film forming material in the downstream side from the MFC (373). The vapor deposition apparatus according to claim 4, further comprising a gas heating mechanism (362) according to claim 4 and the backflow prevention valve (395). 前記常温常圧ガス流送系が、その前記逆流防止バルブの下流側から、前記蒸気含有ガス流送系を介さず、前記排気系により排気可能であり、かつ、
前記蒸気含有ガス流送系が、その前記蒸発室の下流側から、前記製膜室を介さず、前記排気系により排気可能である、請求項1〜5のいずれかに記載の蒸着装置。
The normal temperature and normal pressure gas flow system, from the downstream side of the backflow prevention valve, without passing through the vapor-containing gas flow system, can be exhausted by the exhaust system, and
The vapor deposition apparatus according to any one of claims 1 to 5, wherein the vapor-containing gas flow system can be exhausted from the downstream side of the vaporization chamber by the exhaust system without going through the film forming chamber.
前記蒸発装置が、さらに、前記蒸発室に前記薄膜形成用材料を供給する材料供給系を含み、
該材料供給系が、材料保管容器、及び該材料保管容器から前記薄膜形成用材料を受入れ、かつ、吐出により前記蒸発室に前記薄膜形成用材料を該供給する材料吐出部を含む、請求項1〜6のいずれかに記載の蒸着装置。
The evaporation device further includes a material supply system for supplying the thin film forming material to the evaporation chamber,
The material supply system includes a material storage container, and a material discharge unit that receives the thin film formation material from the material storage container and supplies the thin film formation material to the evaporation chamber by discharging. The vapor deposition device according to any one of to 6.
前記蒸発室が、前記ガス供給系より加熱されたキャリアガスを導入可能で有り、かつ、粉体として前記吐出により供給された前記薄膜形成用材料が、該加熱キャリアガスによりフラッシュ蒸発され、該粉体として前記蒸発室の底に滞留しない状態で、前記蒸気化する、請求項7に記載の蒸着装置。   The evaporation chamber is capable of introducing a heated carrier gas from the gas supply system, and the thin film forming material supplied as a powder by the discharge is flash-evaporated by the heated carrier gas to produce a powder. The vapor deposition apparatus according to claim 7, wherein the vaporization is performed in a state where the vapor does not stay as a body on the bottom of the evaporation chamber.
JP2018195980A 2018-10-17 2018-10-17 Evaporation equipment Active JP7129310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018195980A JP7129310B2 (en) 2018-10-17 2018-10-17 Evaporation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018195980A JP7129310B2 (en) 2018-10-17 2018-10-17 Evaporation equipment

Publications (2)

Publication Number Publication Date
JP2020063476A true JP2020063476A (en) 2020-04-23
JP7129310B2 JP7129310B2 (en) 2022-09-01

Family

ID=70388139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018195980A Active JP7129310B2 (en) 2018-10-17 2018-10-17 Evaporation equipment

Country Status (1)

Country Link
JP (1) JP7129310B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6959680B1 (en) * 2020-11-13 2021-11-05 株式会社シンクロン Film deposition equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63245813A (en) * 1978-10-20 1988-10-12 ロイ ジー ゴードン Improved stannic oxide film
JP2015101770A (en) * 2013-11-26 2015-06-04 株式会社カネカ Vapor deposition apparatus, film deposition method, and production method for organic el device
JP2015101769A (en) * 2013-11-26 2015-06-04 株式会社カネカ Vapor deposition apparatus, film deposition method, and organic el device manufacturing method
JP2016098417A (en) * 2014-11-21 2016-05-30 株式会社カネカ Vapor deposition apparatus and method for manufacturing organic el device
JP2017535413A (en) * 2014-10-23 2017-11-30 ラシリック, インコーポレイテッドRASIRC, Inc. Method, system and apparatus for process gas delivery
JP2018526201A (en) * 2015-08-10 2018-09-13 ラシルク, インコーポレイテッドRasirc, Inc. Method and system for generating process gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63245813A (en) * 1978-10-20 1988-10-12 ロイ ジー ゴードン Improved stannic oxide film
JP2015101770A (en) * 2013-11-26 2015-06-04 株式会社カネカ Vapor deposition apparatus, film deposition method, and production method for organic el device
JP2015101769A (en) * 2013-11-26 2015-06-04 株式会社カネカ Vapor deposition apparatus, film deposition method, and organic el device manufacturing method
JP2017535413A (en) * 2014-10-23 2017-11-30 ラシリック, インコーポレイテッドRASIRC, Inc. Method, system and apparatus for process gas delivery
JP2016098417A (en) * 2014-11-21 2016-05-30 株式会社カネカ Vapor deposition apparatus and method for manufacturing organic el device
JP2018526201A (en) * 2015-08-10 2018-09-13 ラシルク, インコーポレイテッドRasirc, Inc. Method and system for generating process gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6959680B1 (en) * 2020-11-13 2021-11-05 株式会社シンクロン Film deposition equipment
WO2022102355A1 (en) * 2020-11-13 2022-05-19 株式会社シンクロン Film formation device
JP2022078588A (en) * 2020-11-13 2022-05-25 株式会社シンクロン Film formation device

Also Published As

Publication number Publication date
JP7129310B2 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
KR101363147B1 (en) Deposition method and deposition apparatus
JP5054020B2 (en) Deposition system using sealed refill containers
JP5568729B2 (en) Film forming apparatus and film forming method
JP5324010B2 (en) Vapor deposition particle injection apparatus, vapor deposition apparatus, and vapor deposition method
US20110268870A1 (en) Film forming apparatus and film forming method
WO2007123891A1 (en) Vapor deposition of a layer
TW201243073A (en) Manufacturing apparatus
TW200828403A (en) Deposition apparatus and method for operating the same
JP4602054B2 (en) Vapor deposition equipment
US20100259162A1 (en) Film forming device control method, film forming method, film forming device, organic el electronic device, and recording medium storing its control program
JP7129310B2 (en) Evaporation equipment
JP6549835B2 (en) Vapor deposition apparatus, and method of manufacturing organic EL apparatus
JP6282852B2 (en) Vapor deposition apparatus, film forming method, and manufacturing method of organic EL apparatus
JP6276007B2 (en) Vapor deposition apparatus, film forming method, and manufacturing method of organic EL apparatus
JP7129280B2 (en) Gas carrier vapor deposition system
JPH10270164A (en) Manufacture of organic electroluminescent element and its manufacturing device
CN110616403A (en) Continuous material source for thermally excited OLED materials
JP2004220852A (en) Film forming device and manufacturing device of organic el element
KR20040009579A (en) Method for organic material deposition and the apparatus adopting the same
JP6271241B2 (en) Vapor deposition apparatus and organic EL device manufacturing method
KR20190090414A (en) Deposition apparatus
US20050241585A1 (en) System for vaporizing materials onto a substrate surface
JP2002334783A (en) Manufacturing device of organic electroluminescent(el) element
JP2019131869A (en) Vapor deposition apparatus
KR101773038B1 (en) Depositing apparatus having vaporizer and depositing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220822

R150 Certificate of patent or registration of utility model

Ref document number: 7129310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150