JP2002228543A - 光学系ズレ推定装置、光学系ズレ調整装置、光学系ズレ推定方法、及び光学系ズレ調整方法 - Google Patents

光学系ズレ推定装置、光学系ズレ調整装置、光学系ズレ推定方法、及び光学系ズレ調整方法

Info

Publication number
JP2002228543A
JP2002228543A JP2001283674A JP2001283674A JP2002228543A JP 2002228543 A JP2002228543 A JP 2002228543A JP 2001283674 A JP2001283674 A JP 2001283674A JP 2001283674 A JP2001283674 A JP 2001283674A JP 2002228543 A JP2002228543 A JP 2002228543A
Authority
JP
Japan
Prior art keywords
optical system
wavefront
measured
optical
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001283674A
Other languages
English (en)
Other versions
JP4140684B2 (ja
Inventor
Jiro Suzuki
二郎 鈴木
Toshiyuki Ando
俊行 安藤
Hiroshi Suzuki
浩志 鈴木
Shuzo Wadaka
修三 和高
Yoshihito Hirano
嘉仁 平野
Izumi Mikami
泉 三神
Tadashi Matsushita
匡 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001283674A priority Critical patent/JP4140684B2/ja
Priority to EP02715783A priority patent/EP1429132A1/en
Priority to PCT/JP2002/000284 priority patent/WO2003025537A1/ja
Priority to US10/415,936 priority patent/US7098433B2/en
Publication of JP2002228543A publication Critical patent/JP2002228543A/ja
Application granted granted Critical
Publication of JP4140684B2 publication Critical patent/JP4140684B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Telescopes (AREA)

Abstract

(57)【要約】 【課題】 無重力下で使用する光学系を地上で簡単に測
定でき、光学系の組み立て調整誤差を環境条件の影響を
受けることなく高精度、かつ高速に検査し、更に、組み
立て調整誤差を操作者に対し視覚的にわかりやすく図示
する光学系ズレ推定装置を得る。 【解決手段】 被測定光学系の設置姿勢を変化させる正
立・倒立姿勢設定手段9、光の干渉現象を用いずに各設
置姿勢における波面を測定する非干渉方式波面計測手段
10、非干渉方式波面計測手段10にて求められた波面
測定値を多項式に展開する多項式近似手段15、非干渉
方式波面計測手段10の測定値、あるいは多項式近似手
段15の演算値を平均する平均化演算手段11、及び多
項式の特定の係数値を抽出する多項式特定係数抽出演算
手段16を有する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は反射望遠鏡などの光
学系の検査装置、軸調整装置、検査方法、及び軸調整方
法に関し、特に、アライメントずれによる波面誤差のみ
を測定することができ、無重力下で使用する光学系を地
上で簡単に測定できることができる光学系ズレ推定装
置、光学系ズレ調整装置、光学系ズレ推定方法、及び光
学系ズレ調整方法に関するものである。
【0002】
【従来の技術】宇宙で運用予定の大型高精度光学系を宇
宙空間に設置する前に地上で組み立て、調整、評価する
ことが要求されている。一般に高精度な光学系を地上で
調整するためには光学系の結像性能を実測し、その実測
値に基づき調整する。
【0003】望遠鏡のような高精度光学系の検査方法
は、例えば文献 O plus E No 143, P109-113「光学系の
テスト(1)干渉による方法」に概説されている。すなわ
ち、被測定光学系に平行光を入射し、被測定光学系の内
部で発生する収差をうけた波面誤差を測定するものであ
る。
【0004】地上での測定時に波面誤差を発生させる要
因として、(1)被測定光学系光学要素の光学的配置の
ズレ(以下光学系ズレという)による波面収差、(2)
被測定光学系光学要素の研磨誤差による波面収差、
(3)大気揺らぎにより生じる波面収差、(4)被測定
光学系光学要素の重力変形による波面収差、及び(5)
被測定光学系や測定装置の振動による波面収差があげら
れる。
【0005】上記、波面誤差要因のうち、(2)は高精
度に加工研磨されている場合がほとんどであるため、高
次数の収差は極限まで最小化されている。しかしなが
ら、上記(3),(4),(5)は地上測定に起因して
発生するため、これらの影響を補正せずに波面誤差測定
値が極小となるように光学的配置を調整した場合光学系
ズレが生じ、宇宙空間では光学系ズレが無い場合と比較
して波面誤差が増大する。
【0006】また、従来、例えば電球等の低輝度の光源
を光源として用いることが多く、処理に必要な信号対雑
音比(SNR)を得るために、撮像素子の暗電流を冷却
により最小化し、長時間露光と読み出し回数を低減して
画像を取得していた。
【0007】一般に大気揺らぎによって生じる波面収差
は時間的にランダムに変動すると考えられているため、
長時間露光による時間積算作用を利用して大気揺らぎ低
減化を行うことができる。しかしながら、上記の測定で
は1回の測定にかかる時間が長くなり、測定時間内での
大気揺らぎによる波面収差の時間変動量や変動周期を解
析することができなかった。
【0008】そのため、測定データに基づく大気揺らぎ
に対する測定環境の最適化や、測定環境に応じた積算時
間の短縮を行えなかった。特にアライメント調整に非干
渉方式波面計測装置を用いる場合、測定環境を最適化し
て可能な限り高速に測定と調整を繰り返す必要があっ
た。
【0009】一方、従来のように低輝度の光源(電球)
を光源として用いた場合においては、光源を平行化する
ためにピンホールを設置し、ピンホールの出射光を光源
としていた。このため、光源光量の利用効率が低下し、
さらに露光時間を延長する必要があった。また、光源を
非干渉方式波面計測装置主筐体、あるいはごく近傍に設
置する必要があり、主筐体を小型軽量化する際の障壁と
なっていた。また光源による発熱の影響も無視できず、
主筐体や各光学素子の伸縮や応力付与による波面収差変
化が問題となっている。
【0010】さらに長時間露光を行う際には撮像素子の
暗電流の影響を最小化する必要があり、このため、たと
えば半導体撮像素子を用いる場合には素子を冷却する方
式がよくとられる。
【0011】しかしながら、撮像素子に冷却装置を組み
込む必要があり、その結果、非干渉方式波面計測装置主
筐体部分が大型化し、重量増加する。そのため、非干渉
方式波面計測装置を小型化する際の制限要因となってい
た。この課題解決のためには、光源を高輝度化し、光源
部を非干渉方式波面計測装置主筐体から分離する必要が
ある。
【0012】さらには、近年、天体観測の分野におい
て、光学系の結像性能の向上が望まれている。天体観測
用反射望遠鏡において、暗い天体の高精細な画像を得る
ために、大口径かつ形状精度が理想的な反射鏡の製造が
開発されている。
【0013】このような大型反射望遠鏡の結像性能の良
否を左右する技術課題として、組み立て調整誤差の低減
がある。所定の結像性能を得るためには、反射鏡の相対
位置関係のずれ(以下、これを組み立て調整誤差とい
う)を所定の範囲に収める必要がある。例えば、“So
lar−B可視光望遠鏡”、常田 佐久、2001年1
月、国立天文台ニュース、No.91、に示されたグレ
ゴリアン式反射望遠鏡においては、開口500mmの主
鏡とそれより小型の副鏡を1500mmの間隔に配置し
た構成において、組み立て調整誤差10μm以下が要求
されている。このような精度を、調整なしの組み立てで
保証することは困難であり、解決手段の1つとして反射
望遠鏡の結像性能を検査し、所定の性能範囲となるよう
に調整していく方法がとられる。
【0014】そして、測定した波面誤差の図示方法とし
ては、一般的に図33に示すような等高線図や図34に
示すような3次元波面図が用いられる。
【0015】また、波面誤差を関数フィッティングする
ことで、コマ収差、非点収差、などのモード別の波面誤
差成分を図示する方法がある。
【0016】反射望遠鏡の主鏡と副鏡の相対位置関係が
設計値からのずれが大きいほど、上記した波面誤差の図
示値も大きくなる。主鏡と副鏡の組み立て調整と上記し
た波面誤差の検査を繰り返し行い、波面誤差を所定範囲
内に追い込むことができる。
【0017】
【発明が解決しようとする課題】上述の問題を解決する
ためには、地上測定に起因して生じる波面収差を測定値
から除去して光学系ズレによる波面誤差のみを取り出
し、これがゼロとなるまで調整してゆくことが必要とな
る。
【0018】特に高精度の光学配置調整を行う場合にお
いては、(3),(4),(5)に起因する波面誤差成
分が相対的に大きくなり、波面測定装置のダイナミック
レンジと測定分解能とを確保することも課題となってい
る。
【0019】そして、波面誤差要因のうち(3)及び
(5)は時間的にランダムに変動するものなので、時間
平均処理することで低減できる可能性がある。これが可
能であれば(3)及び(5)を除いた波面誤差成分を測
定できることになりダイナミックレンジを拡大できる。
【0020】しかしながら、通常、高精度鏡面検査に用
いられる干渉測定法において、基準波面と被測定波面と
の干渉縞から波面誤差を求めているため、干渉縞形成時
に時間的平均処理をした場合、干渉縞は消失してしま
う。
【0021】干渉縞を積算するためには、一旦干渉縞画
像を取得した後、振動や大気揺らぎによる干渉縞シフト
を補正して加算平均する必要がある。このためには膨大
な干渉画像を測定し、縞補正量を推定し、縞補正して加
算する処理系が必要となる。またそれに伴い、1回の測
定に縞補正の処理時間を要してしまう。
【0022】従って、計測時間を短縮するためには被測
定波面から(3),(4),(5)の波面誤差成分を補
正し、測定値から光学的配置ズレに起因する成分だけを
抽出する処理を短時間で行う波面計測手段が必要とな
る。さらに抽出した波面誤差量から光学系ズレ、すなわ
ち光学的配置ずれ量、ズレ方向を推定し、無重力状態で
最適となる光学的配置に調整することが強く要求されて
いる。
【0023】また、従来技術による光学系組み立て調整
方法は、上述のように波面誤差の図示値から光学系組み
立て調整誤差を操作者が推定する必要があった。しか
し、図示された波面誤差の成分は、組み立て調整誤差以
外にも、温度変化、大気ゆらぎ、自重変形などの環境に
依存する要因を反映している。従って、環境条件に依存
して組み立て調整精度が悪化するという問題があった。
【0024】また、組み立て調整誤差は、位置、角度、
方向、大きさのパラメータが複数あり、図示された波面
誤差からこれを判断することが困難であり、従って、調
整と検査を何度も繰り返す必要があり、効率が悪いとい
う問題があった。
【0025】この発明は、上述のような課題を解決する
ためになされたもので、光学系ズレによる波面誤差のみ
を調整することができ、無重力下で使用する光学系を地
上で簡単に測定できることができる光学系ズレ推定装
置、光学系ズレ調整装置、光学系ズレ推定方法、及び光
学系ズレ調整方法を得ることを目的とする。
【0026】また、光学系の組み立て調整誤差を環境条
件の影響を受けることなく高精度、かつ高速に検査し、
更に、組み立て調整誤差を操作者に対し視覚的にわかり
やすく図示する光学系ズレ推定装置を得ることを目的と
する。
【0027】
【課題を解決するための手段】この発明の請求項1の光
学系ズレ推定装置は、被測定光学系通過後に空間を伝播
する波面を測定し、その測定波面から被測定光学系の光
学的配置のズレ量を推定する装置であって、 a)被測定光学系の設置姿勢を複数に変化させる正立・
倒立姿勢設定手段、 b)光の干渉現象を用いずに各設置姿勢における波面を
測定する非干渉方式波面計測手段、 c)非干渉方式波面計測手段にて求められた波面測定値
を多項式に展開する多項式近似手段、 d)非干渉方式波面計測手段の測定値、あるいは多項式
近似手段の演算値を平均する平均化演算手段、及び e)多項式の特定の係数値を抽出する多項式特定係数抽
出演算手段を有する。
【0028】この発明の請求項2の光学系ズレ推定装置
は、正立・倒立姿勢設定手段は、重力に対する水平度を
測定する水平度測定手段を有する。
【0029】この発明の請求項3の光学系ズレ推定装置
は、非干渉方式波面計測手段は、被測定光学系に直接接
続される。
【0030】この発明の請求項4の光学系ズレ推定装置
は、非干渉方式波面計測手段は、被測定光学系から空間
的に離れた位置に設置される。
【0031】この発明の請求項5の光学系ズレ推定装置
は、非干渉方式波面計測手段は、被測定光学系を通過後
の光束を分割して、各分割光束の波面傾きを求める。
【0032】この発明の請求項6の光学系ズレ推定装置
は、非干渉方式波面計測手段は、 a)平行光を発生する平行光発生手段、 b)平行光発生手段の平行光を被測定光学系に曲げて導
く屈曲手段、 c)被測定光学系を通過後の光束を分割して結像する結
像手段、 d)結像手段の結像面に設置された撮像手段、 e)撮像手段による画像から集光強度スポットの重心位
置を求める重心位置測定手段、 f)重心位置測定手段の重心位置から波面の傾き量を求
める波面傾き演算手段を有する。
【0033】この発明の請求項7の光学系ズレ推定装置
は、非干渉方式波面計測手段は、被測定光学系を通過後
の光束の波面曲率を求める。
【0034】この発明の請求項8の光学系ズレ推定装置
は、平均化演算手段は、撮像手段の画像を積算平均す
る。
【0035】この発明の請求項9の光学系ズレ推定装置
は、撮像手段として蓄積作用を持つ撮像手段を用い、平
均化演算手段は蓄積作用を利用して値を平均する。
【0036】この発明の請求項10の光学系ズレ推定装
置は、平均化演算手段は、重心位置測定手段により求め
た集光強度スポット位置座標値を平均する。
【0037】この発明の請求項11の光学系ズレ推定装
置は、多項式近似手段は、波面測定値をゼルニケ形式の
多項式に展開する。
【0038】この発明の請求項12の光学系ズレ推定装
置は、多項式特定係数抽出演算手段は、ゼルニケ形式の
係数項のうちコマ収差係数項とフォーカス係数項とを抽
出する。
【0039】この発明の請求項13の光学系ズレ推定装
置は、平均化演算手段は、正立・倒立姿勢設定手段を用
いて重力方向に対し正立姿勢および倒立姿勢の状態で測
定した各波面測定値を加算平均する。
【0040】この発明の請求項14の光学系ズレ調整装
置は、被測定光学系の各光学要素の光学的配置を調整す
る光学素子配置調整手段を有し、請求項1から13に記
載の光学系ズレ推定装置を用いて、被測定光学系の各光
学要素の光学的配置を調整する。
【0041】この発明の請求項15の光学系ズレ推定方
法は、被測定光学系通過後に空間を伝播する波面を測定
し、その測定波面から被測定光学系の光学的配置のズレ
量を推定する方法であって a)被測定光学系の設置姿勢を複数に変化させる正立・
倒立姿勢設定工程、 b)光の干渉現象を用いずに各設置姿勢における波面を
測定する非干渉方式波面計測工程、 c)非干渉方式波面計測工程にて求められた波面測定値
を多項式に展開する多項式近似工程、 d)非干渉方式波面計測工程の測定値、あるいは多項式
近似工程の演算値を平均する平均化演算工程、及び e)多項式の特定の係数値を抽出する多項式特定係数抽
出演算工程を有する。
【0042】この発明の請求項16の光学系ズレ推定方
法は、正立・倒立姿勢設定工程は、重力に対する水平度
を測定する水平度測定工程を有する。
【0043】この発明の請求項17の光学系ズレ推定方
法は、非干渉方式波面計測工程は、被測定光学系を通過
後の光束を分割して、各分割光束の波面傾きを求める。
【0044】この発明の請求項18の光学系ズレ調整方
法は、被測定光学系の各光学要素の光学的配置を調整す
る光学素子配置調整工程を有し、請求項15から17に
記載の光学系ズレ推定方法を用いて、被測定光学系の各
光学要素の光学的配置を調整する。
【0045】この発明の請求項19の光学系ズレ調整装
置は、光学素子配置調整手段を外部から駆動する外部駆
動手段をさらに有し、光学系ズレ推定装置の出力する測
定値は、誤差信号として光学素子配置調整手段にフィー
ドバックされる。
【0046】この発明の請求項20の光学系ズレ推定装
置は、平行光発生手段には、高輝度、低コヒーレンスの
基準光源が用いられ、また、撮像手段は、高速取り込み
可能とされている。
【0047】この発明の請求項21の光学系ズレ推定装
置は、平行光発生手段は、基準光源として、点発光可能
な光源を用い、基準光源の光を平行光に変換するコリメ
ート手段をさらに有する。
【0048】この発明の請求項22の光学系ズレ推定装
置は、平行光発生手段は、基準光源として、可視波長帯
を発光中心波長に持つ光源を用いる。
【0049】この発明の請求項23の光学系ズレ推定装
置は、平行光発生手段は、基準光源の光を導波する導波
手段をさらに有する。
【0050】この発明の請求項24の光学系ズレ推定装
置は、導波手段は、シングルモードファイバ或いは偏波
面保持ファイバと、ファイバ終端面を平面あるいは球面
研磨した光ファイバコネクタとを有する。
【0051】この発明の請求項25の光学系ズレ推定装
置は、コリメート手段はコリメートレンズを有し、平行
光発生手段は、コリメートレンズを保持するコリメート
レンズ保持具と、光ファイバコネクタを保持する光ファ
イバコネクタ保持具と、コリメートレンズと光ファイバ
コネクタ中心を一致させながらコリメートレンズ保持具
と光ファイバコネクタ保持具とをコリメートレンズの光
軸に沿って相対的に移動させる移動手段とを有する。
【0052】この発明の請求項26の光学系ズレ推定装
置は、移動手段は、コリメートレンズ保持具と光ファイ
バコネクタ保持具のいずれか一方の外周面に設けられた
第1のはめあい面と、他方に設けられ第1のはめあい面
と係合する第2のはめあい面と、コリメートレンズ保持
具と光ファイバコネクタ保持具とを相対的に移動させる
移動機構とを有する。
【0053】この発明の請求項27の光学系ズレ推定装
置は、コリメートレンズ保持具と光ファイバコネクタ保
持具とは、異なる種類の材料によって作製されている。
【0054】この発明の請求項28の光学系ズレ推定装
置は、コリメートレンズ保持具と光ファイバコネクタ保
持具との相対位置を固定する相対位置固定手段をさらに
有し、移動機構は、コリメートレンズ保持具及び光ファ
イバコネクタ保持具に着脱自在に設けられている。
【0055】この発明の請求項29の光学系ズレ推定装
置は、基準光源は、外部から強度を調節可能である。
【0056】この発明の請求項30の光学系ズレ推定装
置は、撮像手段の取得する全画素信号値が所定のしきい
値以下で且つ最大となるように基準光源の強度を調節す
る光源強度制御手段をさらに有する。
【0057】この発明の請求項31の光学系ズレ推定装
置は、基準光源の温度を計測する温度センサと、温度セ
ンサの出力に基づいて基準光源の温度を一定に保つペル
チェクーラ及びペルチェクーラの駆動手段とを有し、基
準光源の筐体は、ペルチェクーラの放熱手段をかねてい
る。
【0058】この発明の請求項32の光学系ズレ推定装
置は、撮像手段は、高速取り込みを可能とするために正
方画素の素子を有する。
【0059】この発明の請求項33の光学系ズレ推定装
置は、組み立て調整誤差と波面誤差との関係を計算する
波面誤差計算手段と、波面誤差計算手段の出力する波面
誤差を、一つ以上の要素の組み立て調整誤差を座標軸と
した直交座標系で表す波面誤差図示手段とをさらに有す
る。
【0060】この発明の請求項34の光学系ズレ推定装
置は、波面誤差計算手段は、波面誤差として、任意の多
項式で展開したときの係数を用いる。
【0061】この発明の請求項35の光学系ズレ推定装
置は、波面誤差計算手段は、波面誤差を展開する多項式
として、ゼルニケ多項式を用いる。
【0062】この発明の請求項36の光学系ズレ推定装
置は、組み立て調整誤差と波面誤差との関係を計算する
波面誤差計算手段と、波面誤差計算手段の出力する二つ
の要素の波面誤差に対して、組み立て調整誤差を座標軸
とした2次元直交座標系で表す波面誤差図示手段とをさ
らに有し、波面誤差図示手段は、波面誤差計算手段が波
面誤差として用いる多項式の係数を2つ同時に図示し、
波面誤差図示手段の表す直線または曲線で図示された波
面誤差の交点から組み立て調整誤差を推定する組み立て
調整誤差推定手段をさらに有する。
【0063】この発明の請求項37の光学系ズレ推定装
置は、波面誤差図示手段は、2次元直交座標系におい
て、波面誤差を等高線図示する。
【0064】この発明の請求項38の光学系ズレ推定装
置は、波面誤差図示手段は、二つの要素の波面誤差に対
して、組み立て調整誤差及び波面誤差を座標軸とした3
次元直交座標系表す。
【0065】この発明の請求項39の光学系ズレ推定装
置は、波面誤差図示手段は、波面誤差の許容値をしきい
値とし、しきい値以下の領域を所定の色または模様で図
示し、しきい値を越える領域を他の色または他の模様で
図示する。
【0066】この発明の請求項40の光学系ズレ調整装
置は、被測定光学系の各光学要素の光学的配置を調整す
る光学素子配置調整手段を有し、上述に記載の光学系ズ
レ推定装置を用いて、被測定光学系の各光学要素の光学
的配置を調整する。
【0067】
【発明の実施の形態】実施の形態1.図1は本発明の光
学系ズレ推定装置の機能を示す図である。被測定光学系
の被測定波面収差1としては、光学系ズレによる波面収
差4、光学要素の研磨誤差による波面収差5、大気揺ら
ぎによる波面収差6、光学要素の重力変形による波面収
差7、及び振動による波面収差8が存在する。
【0068】そして、本発明の光学系ズレ推定装置2
は、被測定光学系を正立・倒立状態に設定する正立・倒
立姿勢設定手段9、非干渉方式波面計測手段10、平均
化演算手段11、測定値を多項式近似する多項式近似手
段15、多項式の係数のうち、アライメント収差に関連
した特定係数のみを取り出す多項式特定係数抽出演算手
段16から構成される。さらに平均化演算手段11は、
測定値の空間的平均手段12,測定値の時間平均手段1
3,正立・倒立時の各測定値の加算平均手段14から構
成される。
【0069】上記の各手段により、符号4〜8の波面収
差から目的となる光学系ズレによる波面収差4のみが推
定した波面収差3として抽出される。その後、この推定
した波面収差3を評価し、所定の規定値以外であれば、
光学配置を調整する。一方、推定した波面収差3が所定
の規定値以内に収まっていれば光学配置の調整を終了す
る。
【0070】図2は本発明の光学系ズレ推定装置を説明
する説明図である。図2の(a)は被測定光学系が正立
状態の場合を示し、(b)は被測定光学系が倒立状態の
場合を示す。本実施の形態においては、主鏡21と副鏡
22およびコリメートレンズ23とで構成される反射望
遠鏡を被測定光学系として、該反射望遠鏡のアライメン
ト検査へ応用した場合について示してある。
【0071】図2の光学系では宇宙空間において光学系
ズレが無ときに平行光が入射したとき、望遠鏡の焦点に
集光する。一方、符号4〜8の波面収差の影響として焦
点の位置が光軸外にずれたり、光軸方向に移動する。一
方、宇宙空間で生じる波面収差の原因となるのは符号
4,5のみである。従って地上における被測定波面収差
の原因測定値1から符号6〜8の影響を差し引く手段が
必要となる。
【0072】被測定光学系以外の構成要素として、非干
渉方式波面計測手段10、正立・倒立姿勢設定手段9、
演算手段27、演算結果の出力手段28および、被測定
光学系の光学的配置を調整する光学素子配置調整手段2
9、重力に対する水平度を測定する水平度測定手段26
とから構成される。
【0073】図3に演算手段27の構成図を示す。演算
手段27は、波面測定値を時間平均処理する時間平均演
算手段31、波面測定値を多項式係数に展開する多項式
近似手段32、多項式係数から特定係数成分を抽出する
ための多項式特定係数抽出手段33、多項式近似係数記
憶手段34、加算平均手段35から構成される。
【0074】図2に戻り、この本実施の形態において
は、簡単のため主鏡21、副鏡22に偏心と傾き誤差の
みが存在し、各鏡面の研磨誤差は最小化されている場合
を想定して説明する。従って、光学素子配置調整手段2
9は主鏡21、副鏡22の偏心、傾きの調整を独立して
行えることを仮定している。そして、正立状態と倒立状
態の2つの姿勢で測定を繰り返す。
【0075】図4に本実施の形態の調整手順を示す。図
4において、まず1回目(図4において、iはくり返し
回数を示す)においては、被測定光学系を重力方向に対
して正立させて設置し、非干渉方式波面計測手段10に
より波面を計測する(ステップS3,S4:非干渉方式
波面計測工程)。
【0076】このとき、被測定対象の姿勢設定には重力
に対する水平度を測定する水平度測定手段26を用い
て、十分な水平度を確保する(水平度測定工程)。
【0077】上述の水平度測定手段26は、被測定光学
系の基準面に設置するが、非干渉方式波面計測手段10
の基準面を被測定対象の基準面と水平に保つことができ
れば、非干渉方式波面計測手段10の基準面に設置して
もよい。
【0078】つぎに波面測定値を時間積分し(ステップ
S5)、大気揺らぎによる波面収差6を平均化する。大
気揺らぎが時間に対してランダムに変化する場合、被測
定波面収差1の固定成分をSとすると、SNRは積算時
間をN倍すれば√N倍に改善される。積算時間を十分に
とることによる時間平均効果により、被測定波面収差1
から大気揺らぎによる波面収差6を除去できる。
【0079】次に、多項式近似手段32を用いて時間平
均演算手段31の出力を多項式に近似し、多項式係数を
算出する(ステップS6)。この係数値を多項式近似係
数記憶手段34に記憶し(ステップS8)、その後、被
測定対象を倒立姿勢に設定し(ステップS2:正立・倒
立姿勢設定工程)、倒立姿勢での波面を上記と同様の手
順で測定し、ゼルニケ(Zernike)係数を算出す
る(ステップS6)。
【0080】次に各姿勢で算出した波面収差のゼルニケ
係数値を加算平均する(ステップS10:平均化演算工
程)。以下で述べるように、この加算平均操作により被
測定波面収差1から重力変形による波面収差7を取り除
くことができる。
【0081】以上説明した重力変形による波面収差7を
取り除く方法の原理を説明する。被測定光学系を正立姿
勢および、倒立姿勢にする場合、主鏡21、及び副鏡2
2は重力変形を受けるが、その変形量は姿勢変更の前後
で等しく変形方向のみが異なる。このことは重力変形に
よる波面収差7が姿勢変化の前後で大きさが等しく、反
対符号であることを意味する。
【0082】一方、主鏡1、副鏡22を非対象点で支持
する場合や、支持点の剛性が異なる場合は姿勢変更前後
で偏心や傾きが変化するため、波面収差成分が変化す
る。しかしながらその変化量は姿勢変更の前後で大きさ
が等しく変化方向のみが異なる。このことは偏心、傾き
による波面収差成分は姿勢変更の前後で変化しないか、
あるいは大きさが等しく、反対符号であることを意味す
る。
【0083】従って、姿勢変化の前後で被測定波面収差
1を加算平均することにより、重力変形による波面収差
7を除去できる。この結果、光学系ズレによる波面収差
4、および、光学系の研磨誤差による波面収差5が取り
出される。
【0084】このうち研磨誤差によって生じる波面収差
5の量は光学系ズレによる波面収差4に比べて十分に小
さいため無視できる。
【0085】次に加算平均により求めたゼルニケ係数値
から低次収差成分のみを抽出する(ステップS11:多
項式近似工程,多項式特定係数抽出演算工程)。以下に
述べるように偏心と傾きに関する波面収差成分は多項式
係数低次項にのみ現れるためこの成分のみを評価すれば
よい。
【0086】直交座標系で定義されるゼルニケ多項式に
おいて直交座標系を(X,Y)とする。図5に副鏡22
をX方向に偏心させた場合に発生する波面収差を示す。
横軸は副鏡22の偏心量、縦軸は発生する波面収差を表
す。これを見ると、多項式係数のうち波面傾きをあらわ
す係数(A11)40、コマ収差を表す係数(A31)
41のみが偏心量に比例して変化し、他の係数42は変
化しないことが分かる。
【0087】図6に副鏡22の傾きをX軸方向に変化さ
せた場合に発生する波面収差を示す。横軸は副鏡22の
理想値からの傾き量、縦軸は発生する波面収差を表す。
偏心の場合と同様にA11(波面傾き成分)40、A3
1(コマ収差成分)41のみが傾き量に比例することが
分かる。
【0088】従って、抽出した低次収差成分のうち、
(A11)40あるいは(A31)41のみを求め、こ
の値を目標値以内におさまるように光学系配置を調整す
ることで調整を終了する(ステップS13)。上記の目
標値となるのは理想的にはゼロであるが、調整精度にあ
わせてゼロに近い値を設定する。
【0089】図4においては、コマ収差成分(A31)
41が目標値以下となるように条件を設定しているが、
波面傾き成分(A11)40を用いて条件設定してもよ
い。
【0090】以上の実施の形態1の説明において、被測
定光学系は偏心と傾きのみ残存することを仮定している
が、主鏡21と副鏡22との間隔が偏位している場合に
も次のようにして適用可能である。
【0091】図7に主鏡21、副鏡22間隔偏位による
波面収差の測定、および間隔調整に用いる処理の流れを
示す。図3の手順と異なる点は調整終了前の波面収差の
評価、条件分岐の部分である。
【0092】図4で評価に用いたコマ収差成分(A3
1)41の代わりに図6ではデフォーカス成分(A2
0)を用いる(ステップS15)。
【0093】図8に主鏡21、副鏡22間隔の偏位によ
り生じる波面収差の変化を示す。横軸は間隔の理想値か
らの偏位を、縦軸に発生する波面収差を示す。図8か
ら、デフォーカス波面収差成分(A20)44のみ間隔
の偏位に比例し、残りの波面収差成分45は変化しない
ことが分かる。従って、デフォーカス成分(A20)4
4の値を評価量として目標値以下となるように、間隔を
調整すればよい。図7において、デフォーカス成分(A
20)が目標値以下となるように条件設定しているが、
球面収差成分(A40)を用いて条件設定しても良い。
【0094】上述の目標値は、偏心、傾きの場合と同様
に理想的にはゼロであるが、調整精度にあわせてゼロに
近い値を設定する。
【0095】図9に非干渉方式波面計測装置の代表例と
してシャックハルトマンセンサを用いる場合の説明図を
示す。
【0096】シャックハルトマンセンサは、平行光を発
生する平行光発生手段52と、屈曲手段としてのハーフ
ミラー53、結像手段としてのマイクロレンズアレイ5
4、CCDなどの撮像手段55、及び重心位置測定手段
・波面傾き演算手段としての演算手段56とで構成され
る。
【0097】平行光発生手段52からハーフミラー53
を介して被測定光学系51に入射させる。被測定光学系
51からの反射光の波面はマイクロレンズアレイ54に
より、複数の集光スポット像57が撮像手段(CCD)
55上に結像される。
【0098】まず被測定対象物の代わりに理想平面鏡を
設置して集光スポットを撮像し、演算手段56によりス
ポットの重心位置を算出し、これをスポット重心位置の
基準位置として演算手段56に記憶する。
【0099】次に被測定対象光学系51を設置して集光
スポットを撮像し、先と同様にスポット重心位置を算出
し、基準位置からの変化量を算出する。
【0100】マイクロレンズアレイ54のi番目のレン
ズによる集光スポットの移動量をΔxi、レンズ焦点距
離をfMLAとすると、このレンズの有効開口内の波面の
傾きΔWiは、
【0101】ΔWi = Δxi / fMLA
【0102】と求めることができる。
【0103】上述のシャックハルトマンセンサを用いる
場合、図3における時間平均手段31の代わりに、シャ
ックハルトマンセンサの演算手段56を用いてCCDに
より得られた集光スポット画像を積算処理してもよい。
【0104】また、時間平均手段31の代わりに撮像素
子55の蓄積作用を利用して時間積算してもよい。
【0105】さらに、波面の測定値に対して時間平均を
行う代わりに、集光スポット画像から算出した重心値を
平均することにより時間積算してもよい。
【0106】このような構成の光学系ズレ推定装置は、
被測定光学系通過後に空間を伝播する波面を測定し、そ
の測定波面から被測定光学系の光学的配置のズレ量を推
定する装置であって、被測定光学系の設置姿勢を変化さ
せる正立・倒立姿勢設定手段9、光の干渉現象を用いず
に各設置姿勢における波面を測定する非干渉方式波面計
測手段10、非干渉方式波面計測手段10にて求められ
た波面測定値を多項式に展開する多項式近似手段15、
非干渉方式波面計測手段10の測定値、あるいは多項式
近似手段15の演算値を平均する平均化演算手段11、
及び多項式の特定の係数値を抽出する多項式特定係数抽
出演算手段16を有する。そのため、被測定光学系を正
立及びおよび倒立姿勢で測定することができ、各状態で
の測定値を加算平均処理して重力による波面収差成分を
相殺することができ、また、非干渉方式波面計測手段1
0と多項式特定係数抽出演算手段16とにより、アライ
メントずれによる波面誤差のみを測定することができ
る。その結果、無重力下で使用する光学系を地上で簡単
に測定できることができる。
【0107】また、正立・倒立姿勢設定手段9は、重力
に対する水平度を測定する水平度測定手段26を有す
る。そのため、水平度測定手段26により被測定光学系
を正確に正立及び倒立姿勢に設置することができる。こ
れにより、重力変形による波面誤差の完全な相殺をする
ことができる。
【0108】さらにまた、非干渉方式波面計測手段10
は、被測定光学系に直接接続される。そのため、正立及
び倒立姿勢毎の波面測定時の装置セッティング(設置お
よび光軸調整)が簡便化される。また、セッティング変
更にともなう寄生誤差が軽減され、さらに、測定時間が
短縮される。また、このセッティング時間の短縮は、姿
勢変化を繰り返して測定・調整する場合の作業時間、作
業負荷の軽減に有効である。さらには、測定環境の変化
(例えば、温度の長期的変動)による影響を避けること
ができる。
【0109】また、非干渉方式波面計測手段10は、被
測定光学系から空間的に離れた位置に設置される。その
ため、別の波面測定装置(例えば、干渉計など)と同じ
セッティングで測定することができる。これにより、例
えば光学系ズレ推定装置の校正が容易となる。
【0110】さらにまた、非干渉方式波面計測手段10
は、被測定光学系を通過後の光束を分割して、各分割光
束の波面傾きを求める。そのため、大気揺らぎによる波
面の時間変動を積算により平均化することが可能とな
る。
【0111】また、非干渉方式波面計測手段10は、平
行光を発生する平行光発生手段52、平行光発生手段5
2の平行光を被測定光学系に曲げて導く屈曲手段(ハー
フミラー53)、被測定光学系を通過後の光束を分割し
て結像する結像手段(マイクロレンズアレイ54)、結
像手段54の結像面に設置された撮像手段55、撮像手
段55による画像から集光強度スポットの重心位置を求
める重心位置測定手段(演算手段56)、及び重心位置
測定手段の重心位置から波面の傾き量を求める波面傾き
演算手段(演算手段56)を有する。そのため、大気揺
らぎによる波面の時間変動を積算により平均化すること
が可能となる。
【0112】さらにまた、非干渉方式波面計測手段10
は、被測定光学系を通過後の光束の波面曲率を求める。
そのため、波面曲率の測定により、被測定光学系の集
光、発散作用、およびデフォーカス波面収差の推定に有
効となる。
【0113】また、平均化演算手段11は、撮像手段5
5の画像を積算平均する。そのため、大気揺らぎや振動
による波面の時間変動の平均化に有効となる。
【0114】さらにまた、撮像手段として蓄積作用を持
つ撮像手段を用い、平均化演算手段11は蓄積作用を利
用して値を平均する。そのため、積算手段を撮像手段と
共用することができ、処理時間の短縮とコスト低減に有
効である。
【0115】また、平均化演算手段11は、重心位置測
定手段(演算手段56)により求めた集光強度スポット
位置座標値を平均する。そのため、データ数が低減さ
れ、演算量が低減するので、処理時間の短縮に有効であ
る。
【0116】さらにまた、多項式近似手段15は、波面
測定値をゼルニケ形式の多項式に展開する。そのため、
波面誤差解析及びアライメント誤差推定に有効となる。
【0117】また、多項式特定係数抽出演算手段16
は、ゼルニケ形式の係数項のうちコマ収差係数項とフォ
ーカス係数項とを抽出する。そのため、コマ収差係数項
は、光学系の偏心あるいは傾きの推定に有効であり、フ
ォーカス係数項は、主に光学系のレンズ間隔の推定に有
効である。
【0118】さらにまた、平均化演算手段11は、正立
・倒立姿勢設定手段9を用いて重力方向に対し正立姿勢
および倒立姿勢の状態で測定した各波面測定値を加算平
均する。そのため、光学素子の重力変形や、光学系レン
ズ間隔の重力による変化により生じる波面誤差を相殺す
るのに有効となる。
【0119】また、本実施の形態の光学系ズレ調整装置
は、被測定光学系の各光学要素の光学的配置を調整する
光学素子配置調整手段29を有し、上述の光学系ズレ推
定装置を用いて、被測定光学系の各光学要素の光学的配
置を調整する。そのため、測定値に基づく被測定光学系
の調整が可能となる。そして、無重力下で使用する光学
系を地上で簡単に調整することができる。さらには、光
学素子配置調整手段29を外部駆動できるようにすれ
ば、測定値を誤差信号として光学素子配置調整手段29
にフィードバックすることができ、被測定光学系の調整
を自動化することができる。
【0120】実施の形態2.図10は本発明の光学系ズ
レ推定装置の実施の形態2を説明する非干渉方式波面計
測手段としての非干渉方式波面計測装置の説明図であ
る。図10において、平行光発生手段52から発生させ
た光は屈曲手段53を通過して被測定光学系51へと伝
播する。そして、被測定光学系51によって反射された
波面は同じ経路を逆向きに伝播し、再び屈曲手段53へ
と到達する。そして、屈曲手段53は、被測定光学系5
1からの反射光の光路をおり曲げて、後段のマイクロレ
ンズアレイ54に入射させる。
【0121】尚、図10では平行光発生手段52からの
ビームの射出方向と被測定光学系51への伝播ビームの
進行方向を同一線上にとっているが、マイクロレンズア
レイ54への伝播光の入射方向と被測定光学系51への
伝播ビームの進行方向とが同一線上となるようにしても
よい。この場合は、屈曲手段53が平行光発生手段52
からのビームの光路を折り曲げ、被測定光学系51への
伝播ビームの光路に変化を与えないようにすることとな
る。
【0122】マイクロレンズアレイ54は、伝播してき
た波面を複数の部分開口に分割し、後ろ側焦点面近傍に
集光スポットを形成する。マイクロレンズアレイ54の
後段には、高速取り込み可能な撮像手段55が、その光
電面がマイクロレンズアレイ54の後ろ側焦点位置付近
となるように設置されている。
【0123】高速取り込み可能な撮像手段55として、
近年、短時間露光で且つ高信号対雑音比の高解像度の画
像をAD変換して高速取得可能なCCDが容易に入手可
能となってきた。そして、このようなCCDを用いるこ
とで30フレーム/秒以上の更新レートで画像の取り込
みを実行することができる。
【0124】一方、本実施の形態においては、高速取り
込み可能な撮像手段55として、正方画素をもつ素子を
用いる。これにより、画像の縦横比の校正のための演算
が不要となり処理高速化を図ることができる。そして、
撮像手段55により得られた画像信号は後段の演算手段
56に伝達される。
【0125】図11は演算手段56の内部処理構成を示
すブロック図である。演算手段56は、波面誤差推定機
能を実現するために、スポット基準画像記憶手段60、
スポット重心演算手段61、波面傾き演算手段62、波
面傾きの多項式フィッティング演算手段63、及び時間
積算手段64を有している。
【0126】演算手段56の動作に関しては、まずはじ
めに、被測定光学系51のかわりに理想平面鏡58が設
置されて集光スポットが撮像され、この画像がスポット
基準画像記憶手段60に記憶される。以後この動作を校
正と呼ぶ。
【0127】この校正は、測定環境の変化により、被測
定光学系51以外の光学的特性の変化による波面収差の
変動がある場合に取り直す必要があるが、測定環境の変
動が小さい場合や、測定環境の測定波面収差に対する影
響が小さい場合には、この校正は毎回行われる必要はな
く、一旦測定した基準画像を共通して用いれば良い。
【0128】スポット重心演算手段61は、取得した2
種類のスポット画像、すなわち、スポット基準画像およ
び被測定物による測定スポット画像に対して、各部分開
口における重心位置を算出し各々の重心位置の差を求め
る。
【0129】スポット像の重心を求める際に注意するこ
とは、撮像手段55、および撮像手段55に付加される
量子化手段が有する光強度に対する有限なダイナミック
レンジの範囲内に、入射光強度を調整することである。
もし、入射光強度の最大値がこのダイナミックレンジよ
り大きい場合、撮像したスポット画像は飽和し、その結
果、スポット重心位置に誤差を生じることとなるからで
ある。
【0130】これを防ぐために、しきい値演算手段65
を用いる。しきい値演算手段65のしきい値としては撮
像手段55のダイナミックレンジから決まる飽和レベル
以下に予め設定しておく。次にこのしきい値を超えた画
素信号の有無を検索する。
【0131】基準光源強度値演算手段66は、しきい値
を超えた画素がない場合は基準光源の強度を増加させ、
最終的にしきい値を超える直前の光強度に設定する。す
なわち、しきい値演算手段65と基準光源強度値演算手
段66は、撮像手段55の取得する全画素信号値が所定
のしきい値以下で且つ最大となるように平行光発生手段
52の強度を調節する光源強度制御手段を構成してい
る。
【0132】これにより、撮像手段55のダイナミック
レンジを最大限に利用することが可能となり、重心演算
誤差を最小化できる。また、被測定光学系51の透過率
の違いや、反射鏡の反射率の違い、さらには背景光強度
の変化による撮像手段55での飽和を自動的に回避する
ことが可能となり、測定者は被測定光学系51の透過率
反射率、背景光強度の変化を気にせず簡便に測定するこ
とができる。
【0133】次に、波面傾き演算手段62は、重心位置
の変化分から、次のように波面傾きを算出する。すなわ
ち、マイクロレンズアレイ3のi番目のレンズによる集
光スポットの重心位置の変化分Δxi、マイクロレンズ
アレイ3の焦点距離をfMLAとすると、このレンズの
有効開口内での波面傾きΔwiは Δwi=Δxi/fMLA と求めることができる。
【0134】算出した波面傾きは、多項式フィッティン
グ手段63により、例えばゼルニケ多項式にフィッティ
ングされ、各次数に対する展開係数が算出される。算出
されたスポット画像、スポット重心位置の変位値、波面
収差多項式展開値などは後段の出力、表示手段28に送
られる。これら一連の動作を繰り返すことで波面収差測
定を高速に繰り返すことができる。
【0135】一方、時間積算演算手段64では測定画像
あるいは各演算手段での信号を時間積算平均する。測定
時間内にランダム変化する雑音成分が存在する場合、同
じ測定をN回繰り返し、積算平均することによりランダ
ム雑音を1/√N倍に低減することができる。
【0136】この時間積算動作は、積算方式選択手段6
7により、撮像手段55からの画像信号、またはスポッ
ト重心演算手段61の出力信号、または波面収差の多項
式フィッティング演算手段63の出力信号のいずれかの
信号を積算平均することで行われる。
【0137】そして、演算部の後段部でもランダムな雑
音が混入することを考慮すると、演算部後段で積算平均
する方がランダム雑音の軽減効果がある。さらに後段で
の積算平均演算はスポット画像の積算平均演算より、演
算点数を低減できるため高速化が可能である。
【0138】また、各々の演算手段には汎用の計算機
(パーソナルコンピュータあるいはワークステーショ
ン)に演算用のプログラムをロードして実現することを
想定しているが、高速演算可能な専用演算手段、例えば
DSP(Digital Signal Processor)などを用いてもよ
い。これにより、演算部の小型、低電力化、高信頼化が
実現できる。
【0139】さらに、画像信号の量子化機能を撮像手段
55に割り当てることを想定しているが、演算手段のフ
ロントエンドに上述のDSPに整合したAD変換手段を
設置してもよい。これにより、画像収集、転送、演算を
あわせた処理速度を向上させることができる。
【0140】これらのことにより、波面収差測定を高速
にしかも、収差の各係数ごとに行えるため、従来の長時
間露光、低更新レートの測定では不可能であった測定環
境(大気ゆらぎや振動)による波面収差の時間的ばらつ
きを周波数解析することができる。
【0141】この周波数解析をすることにより、従来不
可能であった測定環境に応じた積算時間の最適化を行う
ことができる。さらに、測定に必要な収差係数のみに着
目して、さらに積算時間を短縮できる可能性もある。
【0142】図12は非干渉方式波面計測手段を説明す
るための説明図である。本実施の形態では、被測定光学
系51としての反射型望遠鏡を、反射鏡24をもちいて
ダブルパス測定する。非干渉方式波面計測手段の主筐体
10aは高輝度光源部ユニット52a、演算手段56、
出力表示手段28とは分離して設置されているため、主
筐体10aを小型軽量化することが可能である。この構
成はまた、主筐体10aを被測定光学系51に直接設置
固定することができ、振動、大気揺らぎによる影響を軽
減することができる。
【0143】図13は非干渉方式波面計測手段の具体的
な構成例を示す一部を断面とする側面図である。この例
においては、基準光源からの光を導波する導波手段とし
ての光ファイバケーブル52bと、点光源を形成するた
めの点発光可能な光源としての光ファイバコネクタ52
cと、平行ビーム化するためのコリメート手段としての
コリメートレンズ52dと、基準光の進行方向を90度
折り曲げるための屈曲手段53(ビームスプリッタ)
と、被測定光学系51からの伝播光を複数の部分開口ご
とに集光するためのマイクロレンズアレイ54と、集光
スポットを撮像するための撮像手段55(CCD)と、
各々を保持固定するための主筐体10aとから構成され
ている。
【0144】この例では、図示しない高輝度光源部ユニ
ット52aからの光を光ファイバケーブル52bを用い
て導波し、平面研磨または球面研磨した光ファイバコネ
クタ52cの端面から放射させ、コリメートレンズ52
dにより平行化している。すなわち、高輝度光源部ユニ
ット52a、光ファイバケーブル52b、光ファイバコ
ネクタ52c、及びコリメートレンズ52dは、平行光
発生手段52を構成している。
【0145】光ファイバケーブル52bを用いること
で、高輝度光源部ユニット52aと非干渉方式波面計測
手段の主筐体10aとを分離して設置することができ、
波面測定装置主筐体部を小型軽量化することができる。
また、高輝度光源部ユニット52aの発熱に起因する主
筐体10aの歪も未然に回避することができる。
【0146】さらに、光ファイバケーブル52bとし
て、シングルモードファイバや偏波面保持ファイバを用
いることで、出射端でのビームプロファイルを対称な形
状(ガウシアン分布)にすることができ、光源での発光
分布に起因する波面収差の影響を除去することができ
る。
【0147】図14は高輝度光源部ユニット52aと非
干渉方式波面計測装置主筐体10aとを分離設置する場
合の例を示す説明図である。この例では波面計測装置主
筐体10aと高輝度光源部ユニット52aとを光ファイ
バケーブル52bを用いて分離し、さらに高輝度光源部
ユニット52aの内部において、光源部52e及び光源
部52eの駆動用電源52gを電源ケーブル52fを用
いて分離している。
【0148】このような構成とすることにより、主筐体
10aを小型軽量化できると同時に光源部52eにより
発生する熱の影響を低減することができる。また、両者
を光ファイバケーブル52b及び両端部に設けられる光
ファイバコネクタを用いて接続することにより簡易にフ
ァイバ長を延長することができる。
【0149】図15に光源部52eの内部構成を示す。
光源部52eは、光源モジュールユニット52e1と光
ファイバケーブル52e2と光ファイバアダプタ52e
3と制御用信号線コネクタ52e4と光源部固定用筐体
52e5とから構成されている。
【0150】光源モジュールユニット52e1として
は、高輝度(数1000[W/cm^2]以上)、低コ
ヒーレンス(数10[μm]程度以下)の基準光源が用
いられている。そして、本実施の形態では、光源として
SLD(Super Luminescent Diode)が用いられている
が、これ以外にも高輝度LED(Light Emitting Diode)
などの光源を用いてもよく、すなわち、高輝度・低コヒ
ーレンスの条件を満たす光源であれば何が用いられても
良い。
【0151】そして、光源が高輝度であることにより、
短時間の露光で十分な信号対雑音比を確保でき、また、
低コヒーレンスの特性により、光学素子表裏面での内面
反射光と伝播光との不要な干渉現象を抑制することがで
きる。
【0152】また、本実施の形態においては、光源モジ
ュールユニット52e1の波長として可視波長を発光中
心にもつ光源を用いる。また、光源モジュールユニット
52e1の光強度を外部から電気的または機械的に制御
できる機構を設ける。
【0153】尚、光源強度を増加させることで、波面計
測装置主筐体10aから出射され空間を伝播する光束を
目視可能とすることができる。これは、被測定光学系5
1と光学系ズレ推定装置との粗アライメント用の光束と
して用いることができ、これにより測定機器のセッティ
ングを容易に行うことができる。
【0154】また、光源モジュールユニット52e1に
は、基準光源の温度を一定に保つために図示しない温度
センサ及びペルチェクーラが設けられ、さらに光源部固
定用筐体52e5はペルチェクーラの放熱手段を兼ねて
いる。これにより、周囲温度の変化あるいは光源モジュ
ールユニット52e1自体が発熱した場合において、光
源部52eの温度を一定に維持することができ、発光波
長安定化を図ることができる。
【0155】図16は非干渉方式波面計測装置主筐体1
0aに組み込まれる主要部の構成例(間隔位置調整時)
を示す説明図である。波面計測装置主筐体10aに組み
込まれる主要部は、光ファイバコネクタ52cとコリメ
ートレンズ52dと光ファイバコネクタ保持具72とコ
リメートレンズ保持具73とスプリング74とマイクロ
メータ75とから構成されている。
【0156】光ファイバコネクタ52cのフェルール外
周部と光ファイバコネクタ保持具72の固定穴内周と
は、公差最小ではめあい固定されている。また、コリメ
ートレンズ52dも同様にコリメートレンズ保持具73
と公差最小ではめあい固定されている。
【0157】さらに、光ファイバコネクタ保持具72
は、コリメートレンズ保持具73に対して各々の中心が
一致するはめあい面(第1のはめあい面とこれに係合す
る第2のはめあい面)を有し、且つコリメートレンズ5
2dの光軸方向に各々を相対移動する移動機構(マイク
ロメータ75とスプリング74)がさらに設けられてい
る。こような構成とすることにより、コリメートレンズ
52dと光ファイバコネクタ52cとの軸外方向の調整
が不要となり、さらには光ファイバ着脱時の光軸ずれを
最小化することができる。
【0158】上述の校正時においては、反射鏡24を非
干渉方式波面計測装置から異なる距離において複数回ス
ポット像を撮像し、その変位が最小となるようにコリメ
ートレンズ52dと光ファイバコネクタ52c端面との
間隔調整を、マイクロメータ75を用いて行う。
【0159】ここで、光ファイバコネクタ保持具72と
コリメートレンズ保持具73とは異なる種類の材料、例
えば、ステンレスとアルミニウムにて作製されている。
これにより各保持具の摺動移動を平滑に行うことが可能
となる。尚、異なる種類の材料としては、これ以外に、
ステンレスとジルコニアでもよく。さらには、セラミッ
クと金属、あるいはイオン化傾向が異なる金属の組み合
わせ等でもよい。
【0160】図17は光ファイバコネクタ52c端面と
コリメートレンズ52dとの間隔位置調整後の主要部の
様子を示す説明図である。光ファイバコネクタ52c端
面とコリメートレンズ52dとの間隔位置調整の後は、
光ファイバコネクタ保持具72とコリメートレンズ保持
具73とが、相対位置固定手段としての固定ねじ76に
て固定され、一方、調整時に用いた移動機構としてのマ
イクロメータ75やスプリング74は主要部から取り外
される。このような構成とすることで、非干渉方式波面
計測装置主筐体10aをさらに小型軽量化することがで
きる。
【0161】実施の形態3.次に、非干渉測定計測手段
を用いた実施の形態を説明する。図18は本発明の光学
系ズレ推定装置の実施の形態3を説明する説明図であ
る。図18において、56は演算手段、28は出力表示
手段である。演算手段56内には、波面誤差計算手段5
6a、波面誤差図示手段56b及び組み立て調整誤差推
定手段56cが設けられている。
【0162】マイクロメータ75は、副鏡22を支持す
る図示しない架台に複数取り付けられ、操作者の操作に
より副鏡22を押し引きすることで、副鏡22の位置、
角度、及びそれらの方向を自在に調整可能とされてい
る。
【0163】撮像手段55は、干渉縞検出面に設置さ
れ、干渉縞を撮像し、画像データに変換する。波面誤差
計算手段56aは前記干渉縞を撮像した画像データから
波面誤差分布を計算する。また、波面誤差図示手段56
bは、演算して得られた波面誤差の計測値を以下に述べ
る方法で処理し出力表示手段28に出力する。出力表示
手段28は、例えば、CRTディスプレイなどで構成さ
れ、波面誤差図示手段56bの出力を文字や図の形で操
作者に示す。
【0164】次に、副鏡22の組み立て調整要素につい
て説明する。図19は副鏡22の組み立て調整要素を説
明する説明図である。図19において図18と同じ記
号、または数字は同一のものであり、説明を省略する。
80は主鏡21の光軸である。副鏡22の組み立て調整
誤差の要素である位置の誤差は、副鏡光軸と副鏡反射面
との交点が理想的な位置にある場合を原点とした3次元
直交座標系XYZで定義する。XYZの原点は光軸20
上にあり、またXY平面は光軸20に直交し、座標軸Z
は光軸20上にある。
【0165】副鏡22の組み立て調整誤差の要素である
角度の誤差は、副鏡22の光軸と光軸80との成す角度
で定義される。角度の誤差のうち、YZ平面に投影した
成分をβ、XZ平面に投影した成分をαとする。
【0166】副鏡22の組み立て調整要素は、X、Y、
Z、α、βの5要素がある。本実施の形態では、組み立
て調整誤差X、Z、βが十分小さく、Y、αの調整のみ
を行えば良い場合について説明する。
【0167】図20は本実施の形態の演算手段56にお
ける処理の流れを示すフローチャートである。ステップ
S1では、撮像手段55で撮像された干渉縞画像データ
から波面誤差の2次元分布を計算する。ステップS2で
は、ステップS1で計算された波面誤差の2次元分布か
ら波面誤差のRMS値を計算する。
【0168】ステップS3では、後で説明する波面誤差
計算手段56aが生成する波面誤差マップに、ステップ
S2で演算した波面誤差を図示する。ステップS4では
出力表示手段28に出力する図、または文字を作成す
る。ここで、ステップS3,S4の動作は、波面誤差図
示手段56bの動作である。
【0169】図21は図20のステップS3で使用する
等高線表示した波面誤差マップの一例を示す図である。
波面誤差計算手段56aは、以下に示す作図方法によっ
て、波面誤差マップを生成する。すなわち、被測定光学
系である反射望遠鏡51の設計データを用いて、光線追
跡により組み立て調整誤差に対する波面誤差を数値演算
し、2次元マップ状データ、あるいは組み立て調整誤差
をパラメータとした関数(数式)を作成する。
【0170】そして、これらをもとに波面誤差図示手段
56bは、組み立て調整誤差を直交座標軸にとり、波面
誤差を図21に示すような等高線表示、あるいは3次元
図で表示する。
【0171】ステップS5においては、波面誤差図示手
段56bの出力する表示に基づいて、組み立て調整誤差
推定手段56cが、組み立て調整誤差を推定する。組み
立て調整誤差推定手段56cの動作は、実用的には、操
作者の動作及び判断にて行ってもよい。
【0172】図21において、領域82は波面誤差が許
容値以下である領域を示す。このように表示すること
で、操作者は、目標とする組み立て調整誤差の精度を簡
単に知ることができる。また、実線83は図20のステ
ップS2で演算した波面誤差計測値を示す等高線であ
る。この等高線83上の点と、原点との距離から組み立
て調整誤差の大きさを容易に知ることができる。
【0173】実施の形態4.実施の形態3の図20のス
テップS4において作成される出力は、図21の波面誤
差マップが、そのまま出力表示手段28に出力される場
合の他に、この波面誤差マップを用いて、波面誤差図示
手段56bが組み立て調整誤差を判断し、これを数値や
グラフなどの形式で表示するようにしてもよい。
【0174】組み立て調整誤差は、等高線83上のすべ
てのY、αの組み合わせが考えられ、1点に特定するこ
とができない。この場合、マイクロメータ75を用いて
Yまたはαを独立で変化させたときの出力の変化から、
等高線83上のおおよその位置を推定することが可能で
ある。
【0175】以上は、組み立て調整誤差要素のうち、
X、Z、βが十分小さく、従ってY,αのみを調整すれ
ばよいことを前提にしている。言うまでもないが、組み
立て調整誤差要素のうち、3つが十分に小さく、従って
残る2つの組み立て調整誤差要素のみを調整すればよい
場合についても同様に行うことができる。
【0176】実施の形態5.実施の形態3及び4に示し
た発明は、以上説明したように構成されているので、組
み立て調整誤差の推定を行うために、複数回のマイクロ
メータ75の操作と波面誤差の計測を繰り返す必要があ
り、組み立て調整に時間を要してしまう。
【0177】本実施の形態は、これを改善し、組み立て
調整誤差の推定をより短時間に行うことができるもので
ある。以下の説明においては、演算手段56の処理内容
以外は実施の形態3及び4に示した発明と同じ構成であ
り、既に説明した部分の説明を省略する。
【0178】以下、本実施の形態の演算手段56におけ
る処理内容を説明する。図22は本実施の形態の演算手
段56における処理の流れを示すフローチャートであ
る。図において図20と同じ記号、または数字は同等の
機能であり説明を省略する。ステップS12では、ステ
ップS1で演算した波面誤差分布を多項式でフィッティ
ングする。多項式WFEは式(1)のように、波面誤差
の定義面における直交座標系(X,Y)で表されるn項
の関数である。
【0179】
【数1】
【0180】ただし、Ck(k=1〜n)は第k項の係
数、Gk(k=1〜n)は第k項の関数、nは項数であ
る。ステップS12の出力は、多項式の各項の係数値で
ある。
【0181】ステップS13では、ステップS12で演
算した係数値を波面誤差マップに記入する。以下、ステ
ップS13において波面誤差マップの作図方法、及び波
面誤差マップから組み立て調整誤差を推定する方法を述
べる。副鏡22の組み立て調整誤差x、y、z、α、β
を一般化し、a1,a2,・,・,aiとする。多項式の
係数Ckはアライメント誤差akと関数関係にあり、Ck
(a1,a2,・,・,ai)のように表す。
【0182】ある一つの係数Ckが一つの組み立て調整
誤差aiの関数F1(ai)で表され、akを除く組み立て
調整誤差と相関が無い場合を考える。
【0183】
【数2】
【0184】
【数3】
【0185】ステップS2で求めた係数CkがCk=W1
であったとき、ステップS3において図23のような波
面誤差マップを作成する。図23からCkの値W1が求
まれば、組み立て調整誤差aiを容易に推定することが
できる。上記した関数F1(a i)は、被測定光学系の設
計データに対し、光線追跡を用いた数値計算手法で求め
る。
【0186】実施の形態6.次に、ある一つの係数Ck1
がある二つの組み立て調整誤差ai、ajの関数F
2(ai、aj)を用いて次式のように表される場合を考
える。
【0187】
【数4】
【0188】同様にCk1とは別の係数Ck2が次式のよう
に表されるとする。
【0189】
【数5】
【0190】本実施の形態においては、ステップS3に
おいて、図24及び図25に示すような波面誤差マップ
を作成する。Ck1、Ck2の測定結果がそれぞれW1,W
2であったとき、図24及び図25のように測定値W
1,W2の等高線を記入する。
【0191】そして、組み立て調整誤差推定手段56c
は、図26のように、波面誤差マップに図示した測定値
W1,W2の等高線の交点がただ1点であるとき、その
交点の座標からai、ajを推定する。
【0192】実施の形態7.実施の形態5及び6におい
て、図示した波面誤差マップから組み立て調整誤差を推
定した。実施の形態5のバリエーションとして、式
(2)の逆関数を求めておき、波面誤差図示手段56b
が、自動的に組み立て調整誤差を推定し、数値、グラフ
などで、出力表示手段28に出力するようにしてもよ
い。
【0193】実施の形態8.あるいは、実施の形態6の
バリエーションとして、式(4)及び(5)の逆関数を
求めておき、それら二つの関数を連立方程式とみなし、
解析的に解(ai,aj)を求めることで、組み立て調整
誤差を推定して出力するようにしてもよい。
【0194】実施の形態9.以下に、実施の形態6〜8
に示した組み立て調整誤差推定手段について具体例を示
す。本実施の形態においては、反射望遠鏡51がグレゴ
リー式の場合を想定する。また式(1)に示した多項式
としてゼルニケ多項式を用いる。一般的なゼルニケ多項
式は極座標系で表されるが、本発明では、座標変換によ
り直交座標系(X,Y)で定義する。ゼルニケ多項式の
各項を図27に示す。ゼルニケ多項式では、多項式の係
数は記号Anm,Bnm(n=0,1,2..,m=
0,1,2..)で表す。
【0195】本発明の実施の形態においては、光線追跡
による解析により、以下のことがわかっている。 (1) ゼルニケ係数A11、及びA31はx,βの関数で
表され、その他の組み立て調整誤差に対し独立である。 (2) ゼルニケ係数B11、及びB31はy,αの関数で
表され、その他の組み立て調整誤差に対し独立である。 (3) ゼルニケ係数A20はzの関数で表され、その他
の組み立て調整誤差に対し独立である。
【0196】この解析結果を利用し、本発明の実施の形
態では、A11、及びA31の波面誤差マップを作成するこ
とで、組み立て調整誤差x,βを推定する。また、
11、及びB31の波面誤差マップを作成することで、
y,αを推定する。また、A20の波面誤差マップを作成
することで、組み立て調整誤差zを推定する。
【0197】zの推定方法は上記(3)の条件から、実
施の形態6,7で説明されているので、ここでは説明を
省略する。また、x、βの推定と、y、αの推定は座標
系のとり方の差だけでまったく同じ手順で可能であるた
め、以下x、βの推定方法のみを述べる。解析により、
式(4)、(5)として以下の関係式を得る。
【0198】
【数6】
【0199】ここで、p,q,r,sは定数である。解
析手法の実際は、以下を行う。 (i)x=0において、A11/β及びA31/βを計算によ
り求め、それぞれp,rとする。 (ii)β=0において、A11/x及びA31/xを計算によ
り求め、それぞれq,sとする。 (iii)測定した波面誤差を、ゼルニケ多項式で展開し、
11、及びA31を求める。 (iV) (i)〜(iii)で求めたp,q,r,s,A11、及び
31を式(6)に代入し、x,βについて連立方程式を
解く。
【0200】以上の手法を用いることで、組み立て調整
誤差x、y、z、α、βを一度の波面誤差計測値から独
立に求めることができる。
【0201】実施の形態10.実施の形態9で述べたA
11、及びB11の結像性能に与える影響は、結像のぼけは
生じず結像位置を変化させるだけである。従って、一般
には無視して良い場合が多い。本実施の形態では、上記
前提における組み立て調整誤差推定方法を述べる。
【0202】実施の形態9と同じ理由で、z、y、αに
関する組み立て調整誤差推定方法の説明は省略し、x、
βの推定方法についてのみ説明する。図28は本実施の
形態において用いる波面誤差マップである。図におい
て、86は組み立て調整誤差目標である。
【0203】被検光学系の組み立て調整誤差x、βに起
因する波面誤差をゼルニケ多項式で近似した場合、
11、A31の係る項が支配的であり、また、前述の理由
からA11を無視するとA31だけを考えれば良いといえ
る。すなわち、被検光学系の結像性能に影響する波面誤
差をWFE1(単位:λRMS)すると、WFE1のx、
β依存性は次式のように表すことができる。
【0204】
【数7】
【0205】A31のx、β依存性は式(6)に示した式
で表される。式(6)、(7)を使って、任意のWFE
1に関する等高線を波面誤差マップに図示することがで
きる。
【0206】ここで、波面誤差WFE1の許容誤差をし
きい値WFE1maxとして、次式を満足することを組み立
て調整の目標とする。
【0207】
【数8】
【0208】式(6)、(7)より、WFE1=WFE
1maxを満足するx、βは、次式で表される2本の直線と
なる。
【0209】
【数9】
【0210】上記2本の直線で挟まれた領域が、組み立
て調整誤差目標86となる。
【0211】以上説明したように、本実施の形態におい
ては、組み立て調整誤差目標86が波面誤差マップにお
いて帯状に記述される。次に、この波面誤差マップを使
用して組み立て調整誤差を推定する方法について説明す
る。
【0212】ステップS12において、計測した波面誤
差をゼルニケ多項式に展開し、A31=W1を得る。次
に、図28の波面誤差マップに以下の式で表される直線
を図示する。
【0213】
【数10】
【0214】式(10)の直線は図29のようにA31
0を満足する直線を平行移動した図形である。これか
ら、(x,β)を組み立て調整誤差目標86に収めるた
めには、xまたはβのどちらか一方を図に示した矢印の
大きさだけ調整すればよい。
【0215】以上説明したように、波面誤差マップを用
いることで、組み立て調整誤差を容易に求めることがで
きる。
【0216】なお、本実施の形態では、A31のみについ
て着目しているが、実際はx、βに依存して2次の波面
誤差もわずかながら生ずる。従って、図28の波面誤差
マップにおいて、組み立て調整目標86の内部であって
も、x、βが極端に大きい場合は前記2次の波面誤差が
無視できない場合があるので、x、βが極端に大きくな
ることを防止する必要がある。この手段としては、従来
の技術であるアライメントテレスコープを用いた方法が
ある。
【0217】実施の形態11.実施の形態10において
は、波面誤差マップを用いて視覚的に組み立て調整誤差
を推定し、求めた。これのバリエーションとして、演算
手段56が組み立て調整誤差を推定し、数値またはグラ
フなどの形式で出力表示手段28に出力するように構成
してもよい。このときの調整量Δx,Δβは、次式によ
り得られる。
【0218】
【数11】
【0219】
【数12】
【0220】実施の形態12.実施の形態3〜11にお
いては、波面誤差を評価する方式として干渉計測法を使
用した。干渉計測法は高い分解能を有するが、大気のゆ
らぎや振動の影響を受けやすく、また、干渉計の装置重
量が数10kgと重く、取り扱いに手間がかかる。ま
た、既に述べたように、粗調整を行うには波面誤差を計
測する時間がかかりすぎ使いにくい。本実施の形態は、
このような干渉計測法の欠点を改善することを目的とす
る。
【0221】図30は本実施の形態の本発明の光学系ズ
レ推定装置を説明する説明図である。図18と同じ記
号、または数字は同等の部位を表し、説明を省略する。
図30において、52eはSLD(Super Luminescent D
iode)、52bは光ファイバケーブル、54はマイクロ
レンズアレイ、91は演算手段である。
【0222】図30に示した装置構成による波面誤差計
測方法を以下シャックハルトマン法という。SLD52
eは高輝度で可干渉性が低く、かつ波長大域幅が低いこ
とを特徴とした光源である。この光源は、光ファイバケ
ーブル52bにより所定位置まで導光され、光ファイバ
ケーブル52bの出射端は点光源として機能する。
【0223】この点光源はレンズ52dで平行光に変換
され、半透過ミラー53を経て被検光学系である反射望
遠鏡51に入射する。この平行光の波面には、図18の
場合と同様反射望遠鏡を往復2回透過することで波面誤
差が生じる。マイクロレンズアレイ54は、この波面誤
差を含んだ波面を分割集光する。撮像手段55は、マイ
クロレンズアレイ54により集光された光(以下、集光
スポットという)を撮像する。演算手段91は、撮像手
段55が撮像した集光スポットの結像位置から波面誤差
を演算する。
【0224】図31及び図32は撮像手段55により撮
像された集光スポット96の画像を示す概念図である。
図31は、反射望遠鏡51の組み立て調整誤差が十分に
小さく、従ってマイクロレンズアレイ54に入射する波
面が波面誤差のない平面波93の場合の画像を示す。図
32は、反射望遠鏡51の組み立て調整誤差が無視でき
ず、従ってマイクロレンズアレイ54に入射する波面が
波面誤差を含んだ波面94の場合を示す。このように、
波面誤差に応じて集光スポット96の位置が変動するこ
とがわかる。
【0225】演算手段91は、この集光スポット96の
結像位置のずれから、波面誤差を推定し、ゼルニケ多項
式によりフィッティングする。
【0226】以上説明したシャックハルトマン法は、マ
イクロレンズアレイの数により、空間分解能が決定され
るため、高次の波面誤差計測には適さない。しかしなが
ら、本実施の形態における組み立て調整誤差を評価する
ためには、既に述べたように、3次の波面であるA31
31及び2次の波面であるA20を計測すればよいので、
シャックハルトマン法を適用しても問題はない。
【0227】一方、シャックハルトマン法によれば、ダ
イナミックレンジが広いという利点がある。また、SL
D52eを使用したことにより、短時間露光で十分なS
/Nが得られ、干渉法よりも演算処理が簡易なため、高
い計測レートでの測定が可能である。この特徴により、
干渉法では計測不可能な程度の大気揺らぎの影響を受け
た状態でも、波面誤差の計測が可能となる。また、粗調
整を行う場合にも、使いやすい。
【0228】なお、大気揺らぎによる波面誤差の測定精
度の低下が問題となる場合は、測定を連続して複数回繰
り返し、平均化処理を行うことで測定精度の向上を図る
ことができる。また、測定値をゼルニケ多項式でフィッ
ティングすると、揺らぎによる波面誤差成分はゼルニケ
多項式の各項に配分されるので、単項あたりの分散は小
さくなる。従ってゼルニケ多項式によるフィッティング
は、上記平均化処理に要する計測回数を少なくする効果
がある。
【0229】
【発明の効果】この発明の請求項1の光学系ズレ推定装
置は、被測定光学系通過後に空間を伝播する波面を測定
し、その測定波面から被測定光学系の光学的配置のズレ
量を推定する装置であって、 a)被測定光学系の設置姿勢を変化させる正立・倒立姿
勢設定手段、 b)光の干渉現象を用いずに各設置姿勢における波面を
測定する非干渉方式波面計測手段、 c)非干渉方式波面計測手段にて求められた波面測定値
を多項式に展開する多項式近似手段、 d)非干渉方式波面計測手段の測定値、あるいは多項式
近似手段の演算値を平均する平均化演算手段、及び e)多項式の特定の係数値を抽出する多項式特定係数抽
出演算手段を有する。そのため、被測定光学系を正立及
びおよび倒立姿勢で測定することができ、各状態での測
定値を平均処理して重力による波面収差成分を相殺する
ことができ、また、非干渉方式波面計測手段と多項式特
定係数抽出演算手段とにより、アライメントずれによる
波面誤差のみを測定することができる。その結果、無重
力下で使用する光学系を地上で簡単に測定できることが
できる。
【0230】この発明の請求項2の光学系ズレ推定装置
は、正立・倒立姿勢設定手段は、重力に対する水平度を
測定する水平度測定手段を有する。そのため、水平度測
定手段により被測定光学系を正確に正立及び倒立姿勢に
設置することができる。これにより、重力変形による波
面誤差の完全な相殺をすることができる。
【0231】この発明の請求項3の光学系ズレ推定装置
は、非干渉方式波面計測手段は、被測定光学系に直接接
続される。そのため、正立及び倒立姿勢毎の波面測定時
の装置セッティング(設置および光軸調整)が簡便化さ
れる。また、セッティング変更にともなう寄生誤差が軽
減され、さらに、測定時間が短縮される。また、このセ
ッティング時間の短縮は、姿勢変化を繰り返して測定・
調整する場合の作業時間、作業負荷の軽減に有効であ
る。さらには、測定環境の変化(例えば、温度の長期的
変動)による影響を避けることができる。
【0232】この発明の請求項4の光学系ズレ推定装置
は、非干渉方式波面計測手段は、被測定光学系から空間
的に離れた位置に設置される。そのため、別の波面測定
装置(例えば、干渉計など)と同じセッティングで測定
することができる。これにより、例えば光学系ズレ推定
装置の校正が容易となる。
【0233】この発明の請求項5の光学系ズレ推定装置
は、非干渉方式波面計測手段は、被測定光学系を通過後
の光束を分割して、各分割光束の波面傾きを求める。そ
のため、大気揺らぎによる波面の時間変動を積算により
平均化することが可能となる。
【0234】この発明の請求項6の光学系ズレ推定装置
は、非干渉方式波面計測手段は、 a)平行光を発生する平行光発生手段、 b)平行光発生手段の平行光を被測定光学系に曲げて導
く屈曲手段、 c)被測定光学系を通過後の光束を分割して結像する結
像手段、 d)結像手段の結像面に設置された撮像手段、 e)撮像手段による画像から集光強度スポットの重心位
置を求める重心位置測定手段、 f)重心位置測定手段の重心位置から波面の傾き量を求
める波面傾き演算手段を有する。そのため、大気揺らぎ
による波面の時間変動を積算により平均化することが可
能となる。
【0235】この発明の請求項7の光学系ズレ推定装置
は、非干渉方式波面計測手段は、被測定光学系を通過後
の光束の波面曲率を求める。そのため、波面曲率の測定
により、被測定光学系の集光、発散作用、およびデフォ
ーカス波面収差の推定に有効となる。
【0236】この発明の請求項8の光学系ズレ推定装置
は、平均化演算手段は、撮像手段の画像を積算平均す
る。そのため、大気揺らぎや振動による波面の時間変動
の平均化に有効となる。
【0237】この発明の請求項9の光学系ズレ推定装置
は、撮像手段として蓄積作用を持つ撮像手段を用い、平
均化演算手段は蓄積作用を利用して値を平均する。その
ため、積算手段を撮像手段と共用することができ、処理
時間の短縮とコスト低減に有効である。
【0238】この発明の請求項10の光学系ズレ推定装
置は、平均化演算手段は、重心位置測定手段により求め
た集光強度スポット位置座標値を平均する。そのため、
データ数が低減され、演算量が低減するので、処理時間
の短縮に有効である。
【0239】この発明の請求項11の光学系ズレ推定装
置は、多項式近似手段は、波面測定値をゼルニケ形式の
多項式に展開する。そのため、波面誤差解析及びアライ
メント誤差推定に有効となる。
【0240】この発明の請求項12の光学系ズレ推定装
置は、多項式特定係数抽出演算手段は、ゼルニケ形式の
係数項のうちコマ収差係数項とフォーカス係数項とを抽
出する。そのため、コマ収差係数項は、光学系の偏心あ
るいは傾きの推定に有効であり、フォーカス係数項は、
主に光学系のレンズ間隔の推定に有効である。
【0241】この発明の請求項13の光学系ズレ推定装
置は、平均化演算手段は、正立・倒立姿勢設定手段を用
いて重力方向に対し正立姿勢および倒立姿勢の状態で測
定した各波面測定値を加算平均する。そのため、光学素
子の重力変形や、光学系レンズ間隔の重力による変化に
より生じる波面誤差を相殺するのに有効となる。
【0242】この発明の請求項14の光学系ズレ調整装
置は、被測定光学系の各光学要素の光学的配置を調整す
る光学素子配置調整手段を有し、請求項1から13に記
載の光学系ズレ推定装置を用いて、被測定光学系の各光
学要素の光学的配置を調整する。そのため、測定値に基
づく被測定光学系の調整が可能となる。そして、無重力
下で使用する光学系を地上で簡単に調整することができ
る。さらには、光学素子配置調整手段を外部駆動できる
ようにすれば、測定値を誤差信号として光学素子配置調
整手段にフィードバックすることができ、被測定光学系
の調整を自動化することができる。
【0243】この発明の請求項15の光学系ズレ推定方
法は、被測定光学系通過後に空間を伝播する波面を測定
し、その測定波面から被測定光学系の光学的配置のズレ
量を推定する方法であって a)被測定光学系の設置姿勢を複数に変化させる正立・
倒立姿勢設定工程、 b)光の干渉現象を用いずに各設置姿勢における波面を
測定する非干渉方式波面計測工程、 c)非干渉方式波面計測工程にて求められた波面測定値
を多項式に展開する多項式近似工程、 d)非干渉方式波面計測工程の測定値、あるいは多項式
近似工程の演算値を平均する平均化演算工程、及び e)多項式の特定の係数値を抽出する多項式特定係数抽
出演算工程 を有する。そのため、被測定光学系を正立及びおよび倒
立姿勢で測定することができ、各状態での測定値を平均
処理して重力による波面収差成分を相殺することがで
き、また、非干渉方式波面計測工程と多項式特定係数抽
出演算工程とにより、アライメントずれによる波面誤差
のみを測定することができる。その結果、無重力下で使
用する光学系を地上で簡単に測定できることができる。
【0244】この発明の請求項16の光学系ズレ推定方
法は、正立・倒立姿勢設定工程は、重力に対する水平度
を測定する水平度測定工程を有する。そのため、水平度
測定工程により被測定光学系を正確に正立及び倒立姿勢
に設置することができる。これにより、重力変形による
波面誤差の完全な相殺をすることができる。
【0245】この発明の請求項17の光学系ズレ推定方
法は、非干渉方式波面計測工程は、被測定光学系を通過
後の光束を分割して、各分割光束の波面傾きを求める。
そのため、大気揺らぎによる波面の時間変動を積算によ
り平均化することが可能となる。
【0246】この発明の請求項18の光学系ズレ調整方
法は、被測定光学系の各光学要素の光学的配置を調整す
る光学素子配置調整工程を有し、請求項15から17に
記載の光学系ズレ推定方法を用いて、被測定光学系の各
光学要素の光学的配置を調整する。そのため、測定値に
基づく被測定光学系の調整が可能となる。そして、無重
力下で使用する光学系を地上で簡単に調整することがで
きる。さらには、光学素子配置調整工程を外部にて駆動
できるようにすれば、測定値を誤差信号として光学素子
配置調整工程にフィードバックすることができ、被測定
光学系の調整を自動化することができる。
【0247】この発明の請求項19の光学系ズレ調整装
置は、光学素子配置調整手段を外部から駆動する外部駆
動手段をさらに有し、光学系ズレ推定装置の出力する測
定値は、誤差信号として光学素子配置調整手段にフィー
ドバックされる。このような構成とすることにより、被
測定光学系の調整を自動化することができる。
【0248】この発明の請求項20の光学系ズレ推定装
置は、平行光発生手段には、高輝度、低コヒーレンスの
基準光源が用いられ、また、撮像手段は、高速取り込み
可能とされている。そのため、短時間露光であっても処
理に必要な信号対雑音比を得ることができる。
【0249】この発明の請求項21の光学系ズレ推定装
置は、平行光発生手段は、基準光源として、点発光可能
な光源を用い、基準光源の光を平行光に変換するコリメ
ート手段をさらに有する。そのため、容易な方法で平行
光を発生することができ、装置を安価に作製することが
できる。
【0250】この発明の請求項22の光学系ズレ推定装
置は、平行光発生手段は、基準光源として、可視波長帯
を発光中心波長に持つ光源を用いる。そのため、測定対
象の粗アライメント時に、光源の強度を増加させ可視度
を向上させることにより、基準光源を測定対象の粗アラ
イメント用の光源として用いることが可能となる。ま
た、可視波長帯を発光中心波長にもつ光源を用いた干渉
計評価結果を直接比較することもできる。さらに、従来
の電球等の光源に比べて色収差の影響を低減することが
できる。さらには、光束径変換用の光学系に色消しの手
段が不要となる効果もある。
【0251】この発明の請求項23の光学系ズレ推定装
置は、平行光発生手段は、基準光源の光を導波する導波
手段をさらに有する。そのため、基準光源と主筐体とを
分離設置することが可能となり、主筐体の小型軽量化を
図ることができる。また、主筐体に対する光源発熱の影
響をなくすことができ、装置の高精度で高信頼性のもの
とすることができる。
【0252】この発明の請求項24の光学系ズレ推定装
置は、導波手段は、シングルモードファイバ或いは偏波
面保持ファイバと、ファイバ終端面を平面あるいは球面
研磨した光ファイバコネクタとを有する。そのため、光
源のビームプロファイルをガウシアン形状にすることが
でき、光源での発光分布に起因する波面収差の影響を除
去することができる。また、光ファイバコネクタにより
導波手段は、主筐体に対して着脱自在となり、簡易にフ
ァイバ長を延長可能とすることができる。
【0253】この発明の請求項25の光学系ズレ推定装
置は、コリメート手段はコリメートレンズを有し、平行
光発生手段は、コリメートレンズを保持するコリメート
レンズ保持具と、光ファイバコネクタを保持する光ファ
イバコネクタ保持具と、コリメートレンズと光ファイバ
コネクタ中心を一致させながらコリメートレンズ保持具
と光ファイバコネクタ保持具とをコリメートレンズの光
軸に沿って相対的に移動させる移動手段とを有する。そ
のため、コリメートレンズと光ファイバとの径方向の調
整をと不要とすることができる。また、光ファイバ交換
時に光軸ずれが生じないようにすることができる。
【0254】この発明の請求項26の光学系ズレ推定装
置は、移動手段は、コリメートレンズ保持具と光ファイ
バコネクタ保持具のいずれか一方の外周面に設けられた
第1のはめあい面と、他方に設けられ第1のはめあい面
と係合する第2のはめあい面と、コリメートレンズ保持
具と光ファイバコネクタ保持具とを相対的に移動させる
移動機構とを有する。そのため、相対的な移動手段とし
て、はめあい面を用いることにより、部品点数を減らし
て低コスト化を図ることができる。また、軸心のずれ誤
差を低減することができ、高精度な装置とすることがで
きる。
【0255】この発明の請求項27の光学系ズレ推定装
置は、コリメートレンズ保持具と光ファイバコネクタ保
持具とは、異なる種類の材料によって作製されている。
そのため、はめあい面の摺動を滑らかとすることがで
き、両保持具の移動を平滑に行うことが可能となる。
【0256】この発明の請求項28の光学系ズレ推定装
置は、コリメートレンズ保持具と光ファイバコネクタ保
持具との相対位置を固定する相対位置固定手段をさらに
有し、移動機構は、コリメートレンズ保持具及び光ファ
イバコネクタ保持具に着脱自在に設けられている。その
ため、移動機構を主筐体から取り外すことで主筐体を小
型軽量化することができる。
【0257】この発明の請求項29の光学系ズレ推定装
置は、基準光源は、外部から強度を調節可能である。そ
のため、測定対象の粗アライメント時に、基準光源の強
度を大きくすることにより可視度を向上させることがで
き、粗アライメントの作業性を向上させることができ
る。
【0258】この発明の請求項30の光学系ズレ推定装
置は、撮像手段の取得する全画素信号値が所定のしきい
値以下で且つ最大となるように基準光源の強度を調節す
る光源強度制御手段をさらに有する。そのため、基準光
源の強度を自動的に設定補正することが可能となる。
【0259】この発明の請求項31の光学系ズレ推定装
置は、基準光源の温度を計測する温度センサと、温度セ
ンサの出力に基づいて基準光源の温度を一定に保つペル
チェクーラ及びペルチェクーラの駆動手段とを有し、基
準光源の筐体は、ペルチェクーラの放熱手段をかねてい
る。そのため、基準光源の温度を一定に維持でき、発光
波長の安定化を図ることができる。
【0260】この発明の請求項32の光学系ズレ推定装
置は、撮像手段は、高速取り込みを可能とするために正
方画素の素子を有する。そのため、画像の縦横比の校正
のための演算が不要となり、処理の高速化を図ることが
できる。
【0261】この発明の請求項33の光学系ズレ推定装
置は、組み立て調整誤差と波面誤差との関係を計算する
波面誤差計算手段と、波面誤差計算手段の出力する波面
誤差を、一つ以上の要素の組み立て調整誤差を座標軸と
した直交座標系で表す波面誤差図示手段とをさらに有す
る。そのため、組み立て調整誤差と波面誤差との関係を
操作者に解りやすく表示することができる。さらに、組
み立て調整誤差の精度を容易に読み取ることができる。
【0262】この発明の請求項34の光学系ズレ推定装
置は、波面誤差計算手段は、波面誤差として、任意の多
項式で展開したときの係数を用いる。そのため、組み立
て調整要素が複数ある場合(例えば主鏡、副鏡の傾きと
間隔)でも組み立て調整誤差を推定することができる。
【0263】この発明の請求項35の光学系ズレ推定装
置は、波面誤差計算手段は、波面誤差を展開する多項式
として、ゼルニケ多項式を用いる。そのため、組み立て
調整要素が複数ある場合(例えば主鏡、副鏡の傾きと間
隔)でも、波面計測器の出力として一般的であるゼルニ
ケ多項式を用いて組み立て調整誤差を推定することがで
きる。
【0264】この発明の請求項36の光学系ズレ推定装
置は、組み立て調整誤差と波面誤差との関係を計算する
波面誤差計算手段と、波面誤差計算手段の出力する二つ
の要素の波面誤差に対して、組み立て調整誤差を座標軸
とした2次元直交座標系で表す波面誤差図示手段とをさ
らに有し、波面誤差図示手段は、波面誤差計算手段が波
面誤差として用いる多項式の係数を2つ同時に図示し、
波面誤差図示手段の表す直線または曲線で図示された波
面誤差の交点から組み立て調整誤差を推定する組み立て
調整誤差推定手段をさらに有する。そのため、2つの光
学部品(例えば主鏡、副鏡)の傾きと偏心を推定するこ
とができる。
【0265】この発明の請求項37の光学系ズレ推定装
置は、波面誤差図示手段は、2次元直交座標系におい
て、波面誤差を等高線図示する。そのため、組み立て調
整目標範囲を正確に定義することができる。
【0266】この発明の請求項38の光学系ズレ推定装
置は、波面誤差図示手段は、二つの要素の波面誤差に対
して、組み立て調整誤差及び波面誤差を座標軸とした3
次元直交座標系表す。そのため、組み立て調整目標範囲
を正確に定義することができるとともに、視点を様々に
変化させることができ、等高線よりも、直感的にわかり
やすいものとすることができる。
【0267】この発明の請求項39の光学系ズレ推定装
置は、波面誤差図示手段は、波面誤差の許容値をしきい
値とし、しきい値以下の領域を所定の色または模様で図
示し、しきい値を越える領域を他の色または他の模様で
図示する。そのため、組み立て調整目標範囲を正確に定
義することができるとともに、線が減り、等高線表示よ
りも見やすいとすることができる。
【0268】この発明の請求項40の光学系ズレ調整装
置は、被測定光学系の各光学要素の光学的配置を調整す
る光学素子配置調整手段を有し、上述に記載の光学系ズ
レ推定装置を用いて、被測定光学系の各光学要素の光学
的配置を調整する。そのため、測定値に基づく被測定光
学系の調整が可能となる。そして、無重力下で使用する
光学系を地上で簡単に調整することができる。さらに
は、光学素子配置調整手段を外部駆動できるようにすれ
ば、測定値を誤差信号として光学素子配置調整手段にフ
ィードバックすることができ、被測定光学系の調整を自
動化することができる。
【図面の簡単な説明】
【図1】 本発明の光学系ズレ推定装置の機能を示す図
である。
【図2】 本発明の光学系ズレ推定装置を説明する説明
図であり、(a)は被測定光学系が正立状態の場合を示
す図であり、(b)は被測定光学系が倒立状態の場合を
示す図である。
【図3】 演算手段の構成を示す図である。
【図4】 主鏡や副鏡に偏心や傾きずれが存在する場合
の処理流れ図である。
【図5】 副鏡の偏心に対する波面収差の変化を示すグ
ラフである。
【図6】 副鏡の傾きに対する波面収差の変化を示すグ
ラフである。
【図7】 主鏡・副鏡間隔が偏位している場合の処理流
れ図である。
【図8】 主鏡・副鏡間隔偏位により発生する波面収差
の変化を示すグラフである。
【図9】 非干渉方式波面計測手段に用いるシャックハ
ルトマンセンサに関する説明図である。
【図10】 本発明の光学系ズレ推定装置の実施の形態
2を説明する非干渉方式波面計測手段としての非干渉方
式波面計測装置の説明図である。
【図11】 演算手段の内部処理構成を示すブロック図
である。
【図12】 非干渉方式波面計測手段を説明するための
説明図である。
【図13】 非干渉方式波面計測手段の具体的な構成例
を示す一部を断面とする側面図である。
【図14】 高輝度光源部ユニットと非干渉方式波面計
測装置主筐体とを分離設置する場合の例を示す説明図で
ある。
【図15】 光源部の内部構成を示す説明図である。
【図16】 非干渉方式波面計測装置主筐体に組み込ま
れる主要部の構成例(間隔位置調整時)を示す説明図で
ある。
【図17】 光ファイバコネクタ端面とコリメートレン
ズとの間隔位置調整後の主要部の様子を示す説明図であ
る。
【図18】 本発明の光学系ズレ推定装置の実施の形態
3を説明する説明図である。
【図19】 副鏡の組み立て調整要素を説明する説明図
である。
【図20】 実施の形態3の演算手段における処理の流
れを示すフローチャートである。
【図21】 図20のステップS3で使用する等高線表
示した波面誤差マップの一例を示す図である。
【図22】 実施の形態5の演算手段における処理の流
れを示すフローチャートである。
【図23】 実施の形態5にて作成された波面誤差マッ
プの一例を示す図である。
【図24】 実施の形態6にて作成された波面誤差マッ
プの一例を示す図である。
【図25】 実施の形態6にて作成された波面誤差マッ
プの一例を示す図である。
【図26】 組み立て調整誤差推定手段の組み立て調整
誤差を推定する方法を示す図である。
【図27】 ゼルニケ多項式の各項を示す図である。
【図28】 実施の形態10にて作成された波面誤差マ
ップの一例を示す図である。
【図29】 直線を平行移動した様子を説明する波面誤
差マップの図である。
【図30】 本発明の光学系ズレ推定装置の実施の形態
12を説明する説明図である。
【図31】 反射望遠鏡の組み立て調整誤差が十分に小
さい場合の撮像手段により撮像された集光スポットの画
像を示す概念図である。
【図32】 反射望遠鏡の組み立て調整誤差が大きい場
合の撮像手段により撮像された集光スポットの画像を示
す概念図である。
【図33】 従来の波面誤差の図示方法の一つである等
高線図である。
【図34】 従来の波面誤差の図示方法の一つである3
次元波面図である。
【符号の説明】 1 被測定波面収差、2 光学配置ズレ推定装置、3
推定した波面収差、4光学配置のズレによる波面収差、
5 光学要素の研磨誤差による波面収差、6大気揺らぎ
による波面収差、7 重力変形による波面収差、8 振
動による波面収差、9 正立・倒立姿勢設定手段、10
非干渉方式波面計測手段、11平均化演算手段、15
多項式近似手段、16 多項式特定係数抽出演算手
段、21 主鏡、22 副鏡、23 コリメートレン
ズ、24 平面鏡、26 水平度測定手段、27 演算
手段、28 演算結果の出力手段、29 光学素子配置
調整手段、30 入力値、31 時間平均演算手段、3
2 多項式近似手段、33 多項式特定係数抽出手段、
34 多項式近似係数記憶手段、35 加算平均手段、
36 出力値、40 波面傾き成分、41 コマ収差成
分、44 デフォーカス波面収差成分、45 デフォー
カス波面収差以外の波面収差成分、51被測定光学系、
52 平行光発生手段、53 ハーフミラー(屈曲手
段)、54マイクロレンズアレイ(結像手段)、55
撮像手段、56 演算手段(波面傾き演算手段,重心位
置測定手段)、56a 波面誤差計算手段、56b 波
面誤差図示手段、56c 組み立て調整誤差推定手段、
57 集光スポット像、65 しきい値演算手段(光源
強度制御手段)、66 基準光源強度値演算手段(光源
強度制御手段)、52 平行光発生手段、52a 高輝
度光源部ユニット、52b 光ファイバケーブル(導波
手段)、52c 光ファイバコネクタ(点発光可能な光
源)、52d コリメートレンズ(コリメート手段)、
72 光ファイバコネクタ保持具、73 コリメートレ
ンズ保持具、75 マイクロメータ(移動機構,移動手
段)、76 固定ねじ(相対位置固定手段)。
フロントページの続き (72)発明者 鈴木 浩志 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 和高 修三 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 平野 嘉仁 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 三神 泉 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 松下 匡 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 2G086 FF04 GG02 2H039 AA02 AB12 AB24

Claims (40)

    【特許請求の範囲】
  1. 【請求項1】 被測定光学系通過後に空間を伝播する波
    面を測定し、その測定波面から上記被測定光学系の光学
    的配置のズレ量を推定する装置であって、 a)上記被測定光学系の設置姿勢を変化させる正立・倒
    立姿勢設定手段、 b)光の干渉現象を用いずに上記各設置姿勢における波
    面を測定する非干渉方式波面計測手段、 c)上記非干渉方式波面計測手段にて求められた波面測
    定値を多項式に展開する多項式近似手段、 d)上記非干渉方式波面計測手段の測定値、あるいは上
    記多項式近似手段の演算値を平均する平均化演算手段、
    及び e)上記多項式の特定の係数値を抽出する多項式特定係
    数抽出演算手段を有することを特徴とする光学系ズレ推
    定装置。
  2. 【請求項2】 上記正立・倒立姿勢設定手段は、重力に
    対する水平度を測定する水平度測定手段を有することを
    特徴とする請求項1に記載の光学系ズレ推定装置。
  3. 【請求項3】 上記非干渉方式波面計測手段は、上記被
    測定光学系に直接接続されることを特徴とする請求項1
    に記載の光学系ズレ推定装置。
  4. 【請求項4】 上記非干渉方式波面計測手段は、上記被
    測定光学系から空間的に離れた位置に設置されることを
    特徴とする請求項1に記載の光学系ズレ推定装置。
  5. 【請求項5】 上記非干渉方式波面計測手段は、上記被
    測定光学系を通過後の光束を分割して、各分割光束の波
    面傾きを求めることを特徴とする請求項1に記載の光学
    系ズレ推定装置。
  6. 【請求項6】 上記非干渉方式波面計測手段は、 a)平行光を発生する平行光発生手段、 b)上記平行光発生手段の平行光を上記被測定光学系に
    曲げて導く屈曲手段、 c)上記被測定光学系を通過後の光束を分割して結像す
    る結像手段、 d)上記結像手段の結像面に設置された撮像手段、 e)上記撮像手段による画像から集光強度スポットの重
    心位置を求める重心位置測定手段 f)上記重心位置測定手段の重心位置から波面の傾き量
    を求める波面傾き演算手段 を有することを特徴とする請求項1に記載の光学系ズレ
    推定装置。
  7. 【請求項7】 上記非干渉方式波面計測手段は、上記被
    測定光学系を通過後の光束の波面曲率を求めることを特
    徴とする請求項1に記載の光学系ズレ推定装置。
  8. 【請求項8】 上記平均化演算手段は、上記撮像手段の
    画像を積算平均することを特徴とする請求項6に記載の
    光学系ズレ推定装置。
  9. 【請求項9】 上記撮像手段として蓄積作用を持つ撮像
    手段を用い、上記平均化演算手段は該蓄積作用を利用し
    て値を平均することを特徴とする請求項6に記載の光学
    系ズレ推定装置。
  10. 【請求項10】 上記平均化演算手段は、上記重心位置
    測定手段により求めた集光強度スポット位置座標値を平
    均することを特徴とする請求項6に記載の光学系ズレ推
    定装置。
  11. 【請求項11】 上記多項式近似手段は、波面測定値を
    ゼルニケ形式の多項式に展開することを特徴とする請求
    項1に記載の光学系ズレ推定装置。
  12. 【請求項12】 上記多項式特定係数抽出演算手段は、
    上記ゼルニケ形式の係数項のうちコマ収差係数項とフォ
    ーカス係数項とを抽出することを特徴とする請求項11
    に記載の光学系ズレ推定装置。
  13. 【請求項13】 上記平均化演算手段は、上記正立・倒
    立姿勢設定手段を用いて重力方向に対し正立姿勢および
    倒立姿勢の状態で測定した各波面測定値を加算平均する
    ことを特徴とする請求項1項記載の光学系ズレ推定装
    置。
  14. 【請求項14】 上記被測定光学系の各光学要素の光学
    的配置を調整する光学素子配置調整手段を有し、請求項
    1から13に記載の光学系ズレ推定装置を用いて、上記
    被測定光学系の各光学要素の光学的配置を調整すること
    を特徴とする光学系ズレ調整装置。
  15. 【請求項15】 被測定光学系通過後に空間を伝播する
    波面を測定し、その測定波面から上記被測定光学系の光
    学的配置のズレ量を推定する方法であって a)上記被測定光学系の設置姿勢を複数に変化させる正
    立・倒立姿勢設定工程、 b)光の干渉現象を用いずに上記各設置姿勢における波
    面を測定する非干渉方式波面計測工程、 c)上記非干渉方式波面計測工程にて求められた波面測
    定値を多項式に展開する多項式近似工程、 d)上記非干渉方式波面計測工程の測定値、あるいは上
    記多項式近似工程の演算値を平均する平均化演算工程、
    及び e)上記多項式の特定の係数値を抽出する多項式特定係
    数抽出演算工程を有することを特徴とする光学系ズレ推
    定方法。
  16. 【請求項16】 上記正立・倒立姿勢設定工程は、重力
    に対する水平度を測定する水平度測定工程を有すること
    を特徴とする請求項15に記載の光学系ズレ推定方法。
  17. 【請求項17】 上記非干渉方式波面計測工程は、上記
    被測定光学系を通過後の光束を分割して、各分割光束の
    波面傾きを求めることを特徴とする請求項15に記載の
    光学系ズレ推定方法。
  18. 【請求項18】 上記被測定光学系の各光学要素の光学
    的配置を調整する光学素子配置調整工程を有し、請求項
    15から17に記載の光学系ズレ推定方法を用いて、上
    記被測定光学系の各光学要素の光学的配置を調整するこ
    とを特徴とする光学系ズレ調整方法。
  19. 【請求項19】 上記光学素子配置調整手段を外部から
    駆動する外部駆動手段をさらに有し、上記光学系ズレ推
    定装置の出力する測定値は、誤差信号として該光学素子
    配置調整手段にフィードバックされることを特徴とする
    請求項14に記載の光学系ズレ調整装置。
  20. 【請求項20】 上記平行光発生手段には、高輝度、低
    コヒーレンスの基準光源が用いられ、また、上記撮像手
    段は、高速取り込み可能とされていることを特徴とする
    請求項6に記載の光学系ズレ推定装置。
  21. 【請求項21】 上記平行光発生手段は、 上記基準光源として、点発光可能な光源を用い、 該基準光源の光を平行光に変換するコリメート手段をさ
    らに有することを特徴とする請求項20に記載の光学系
    ズレ推定装置。
  22. 【請求項22】 上記平行光発生手段は、 上記基準光源として、可視波長帯を発光中心波長に持つ
    光源を用いることを特徴とする請求項20に記載の光学
    系ズレ推定装置。
  23. 【請求項23】 上記平行光発生手段は、 上記基準光源の光を導波する導波手段をさらに有するこ
    とを特徴とする請求項20に記載の光学系ズレ推定装
    置。
  24. 【請求項24】 上記導波手段は、 シングルモードファイバ或いは偏波面保持ファイバと、 ファイバ終端面を平面あるいは球面研磨した光ファイバ
    コネクタとを有することを特徴とする請求項23に記載
    の光学系ズレ推定装置。
  25. 【請求項25】 上記コリメート手段はコリメートレン
    ズを有し、 上記平行光発生手段は、 上記コリメートレンズを保持するコリメートレンズ保持
    具と、 上記光ファイバコネクタを保持する光ファイバコネクタ
    保持具と、 上記コリメートレンズと上記光ファイバコネクタ中心を
    一致させながら上記コリメートレンズ保持具と上記光フ
    ァイバコネクタ保持具とを上記コリメートレンズの光軸
    に沿って相対的に移動させる移動手段とを有することを
    特徴とする請求項24に記載の光学系ズレ推定装置。
  26. 【請求項26】 上記移動手段は、上記コリメートレン
    ズ保持具と上記光ファイバコネクタ保持具のいずれか一
    方の外周面に設けられた第1のはめあい面と、他方に設
    けられ該第1のはめあい面と係合する第2のはめあい面
    と、 上記コリメートレンズ保持具と上記光ファイバコネクタ
    保持具とを相対的に移動させる移動機構とを有すること
    を特徴とする請求項25に記載の光学系ズレ推定装置。
  27. 【請求項27】 上記コリメートレンズ保持具と上記光
    ファイバコネクタ保持具とは、異なる種類の材料によっ
    て作製されていることを特徴とする請求項26に記載の
    光学系ズレ推定装置。
  28. 【請求項28】 上記コリメートレンズ保持具と上記光
    ファイバコネクタ保持具との相対位置を固定する相対位
    置固定手段をさらに有し、上記移動機構は、上記コリメ
    ートレンズ保持具及び上記光ファイバコネクタ保持具に
    着脱自在に設けられていることを特徴とする請求項26
    に記載の光学系ズレ推定装置。
  29. 【請求項29】 上記基準光源は、外部から強度を調節
    可能であることを特徴とする請求項20に記載の光学系
    ズレ推定装置。
  30. 【請求項30】 上記撮像手段の取得する全画素信号値
    が所定のしきい値以下で且つ最大となるように上記基準
    光源の強度を調節する光源強度制御手段をさらに有する
    ことを特徴とする請求項29に記載の光学系ズレ推定装
    置。
  31. 【請求項31】 上記基準光源の温度を計測する温度セ
    ンサと、上記温度センサの出力に基づいて上記基準光源
    の温度を一定に保つペルチェクーラ及び該ペルチェクー
    ラの駆動手段とを有し、 上記基準光源の筐体は、上記ペルチェクーラの放熱手段
    をかねていることを特徴とする請求項20に記載の光学
    系ズレ推定装置。
  32. 【請求項32】 上記撮像手段は、高速取り込みを可能
    とするために正方画素の素子を有することを特徴とする
    請求項6に記載の光学系ズレ推定装置。
  33. 【請求項33】 組み立て調整誤差と波面誤差との関係
    を計算する波面誤差計算手段と、 上記波面誤差計算手段の出力する上記波面誤差を、一つ
    以上の要素の上記組み立て調整誤差を座標軸とした直交
    座標系で表す波面誤差図示手段とをさらに有することを
    特徴とする請求項1に記載の光学系ズレ推定装置。
  34. 【請求項34】 上記波面誤差計算手段は、上記波面誤
    差として、任意の多項式で展開したときの係数を用いる
    ことを特徴とする請求項33に記載の光学系ズレ推定装
    置。
  35. 【請求項35】 上記波面誤差計算手段は、上記波面誤
    差を展開する上記多項式として、ゼルニケ多項式を用い
    ることを特徴とする請求項34に記載の光学系ズレ推定
    装置。
  36. 【請求項36】 組み立て調整誤差と波面誤差との関係
    を計算する波面誤差計算手段と、 上記波面誤差計算手段の出力する二つの要素の上記波面
    誤差に対して、上記組み立て調整誤差を座標軸とした2
    次元直交座標系で表す波面誤差図示手段とをさらに有
    し、 上記波面誤差図示手段は、上記波面誤差計算手段が上記
    波面誤差として用いる多項式の係数を2つ同時に図示
    し、 上記波面誤差図示手段の表す直線または曲線で図示され
    た上記波面誤差の交点から組み立て調整誤差を推定する
    組み立て調整誤差推定手段をさらに有することを特徴と
    する請求項1に記載の光学系ズレ推定装置。
  37. 【請求項37】 上記波面誤差図示手段は、上記2次元
    直交座標系において、上記波面誤差を等高線図示するこ
    とを特徴とする請求項36に記載の光学系ズレ推定装
    置。
  38. 【請求項38】 上記波面誤差図示手段は、上記二つの
    要素の上記波面誤差に対して、上記組み立て調整誤差及
    び波面誤差を座標軸とした3次元直交座標系表すことを
    特徴とする請求項36に記載の光学系ズレ推定装置。
  39. 【請求項39】 上記波面誤差図示手段は、波面誤差の
    許容値をしきい値とし、しきい値以下の領域を所定の色
    または模様で図示し、しきい値を越える領域を他の色ま
    たは他の模様で図示することを特徴とする請求項33ま
    たは請求項36に記載の光学系ズレ推定装置。
  40. 【請求項40】 上記被測定光学系の各光学要素の光学
    的配置を調整する光学素子配置調整手段を有し、請求項
    19から39に記載の光学系ズレ推定装置を用いて、上
    記被測定光学系の各光学要素の光学的配置を調整するこ
    とを特徴とする光学系ズレ調整装置。
JP2001283674A 2000-11-28 2001-09-18 光学系ズレ推定装置、光学系ズレ調整装置、光学系ズレ推定方法、及び光学系ズレ調整方法 Expired - Fee Related JP4140684B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001283674A JP4140684B2 (ja) 2000-11-28 2001-09-18 光学系ズレ推定装置、光学系ズレ調整装置、光学系ズレ推定方法、及び光学系ズレ調整方法
EP02715783A EP1429132A1 (en) 2001-09-18 2002-01-17 Optical system misalignment estimating device, optical system misalignment adjusting device, optical system misalignment estimating method, and optical system misalignment correcting method
PCT/JP2002/000284 WO2003025537A1 (fr) 2001-09-18 2002-01-17 Dispositif et procede d'estimation, dispositif de reglage, et un procede de correction d'un mauvais alignement d'un systeme optique
US10/415,936 US7098433B2 (en) 2001-09-18 2002-01-17 Apparatus and method for estimating and adjusting deviations in an optical system based on wavefront aberrations ascribable to misalignment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000361236 2000-11-28
JP2000-361236 2000-11-28
JP2001283674A JP4140684B2 (ja) 2000-11-28 2001-09-18 光学系ズレ推定装置、光学系ズレ調整装置、光学系ズレ推定方法、及び光学系ズレ調整方法

Publications (2)

Publication Number Publication Date
JP2002228543A true JP2002228543A (ja) 2002-08-14
JP4140684B2 JP4140684B2 (ja) 2008-08-27

Family

ID=26604721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001283674A Expired - Fee Related JP4140684B2 (ja) 2000-11-28 2001-09-18 光学系ズレ推定装置、光学系ズレ調整装置、光学系ズレ推定方法、及び光学系ズレ調整方法

Country Status (1)

Country Link
JP (1) JP4140684B2 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303802A (ja) * 2001-04-04 2002-10-18 Nikon Corp 被検光学系の焦点位置調整装置、光学系の焦点位置の測定方法、及び望遠鏡光学系
WO2005024488A1 (en) * 2003-09-11 2005-03-17 Koninklijke Philips Electronics, N.V. Adjustment of optical components in optical devices
JP2007085788A (ja) * 2005-09-20 2007-04-05 Nikon Corp ハルトマンセンサ
JP2008249415A (ja) * 2007-03-29 2008-10-16 Fujinon Corp 非球面レンズの面ずれ測定方法および装置
JP2009080016A (ja) * 2007-09-26 2009-04-16 Olympus Corp 測定架台及び干渉計
JP2009121954A (ja) * 2007-11-15 2009-06-04 Opcell Co Ltd 光束測定装置
JP2010015002A (ja) * 2008-07-04 2010-01-21 Nikon Corp アライメント装置および光学装置
JP2010169424A (ja) * 2009-01-20 2010-08-05 Nikon Corp 光学性能評価装置
JP2011179968A (ja) * 2010-03-01 2011-09-15 Mitsubishi Electric Corp 波面計測装置
JP2012122794A (ja) * 2010-12-07 2012-06-28 Mitsubishi Electric Corp 波面計測装置および波面計測方法
JP2012163899A (ja) * 2011-02-09 2012-08-30 Mitsubishi Electric Corp 光学調整装置及び光学調整方法
JP2012177920A (ja) * 2011-02-24 2012-09-13 Thales 望遠鏡用の単純化された検査台及び自動検査可能な望遠鏡
US20160341547A1 (en) * 2014-02-13 2016-11-24 Mitsubishi Electric Corporation Orientation variation measurement system, satellite, and orientation variation measurement method
JP2016225883A (ja) * 2015-06-01 2016-12-28 三菱電機株式会社 空間光通信装置
CN110082074A (zh) * 2019-05-23 2019-08-02 中国科学院光电技术研究所 一种干涉波前检测中剔除平面反射镜引入的系统误差的方法
US11966036B2 (en) 2018-11-26 2024-04-23 Carl Zeiss Microscopy Gmbh Light microscope and microscopy method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886689A (ja) * 1994-09-16 1996-04-02 Mitsubishi Electric Corp 波面センサ
JPH11337306A (ja) * 1998-05-25 1999-12-10 Nikon Corp 干渉計測装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886689A (ja) * 1994-09-16 1996-04-02 Mitsubishi Electric Corp 波面センサ
JPH11337306A (ja) * 1998-05-25 1999-12-10 Nikon Corp 干渉計測装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
RAJIV BHATIA, ADRIANA CIANI: "Using the Shack-Hartmann system for a complete analysis of optical telescopes", PROC. SPIE, vol. 3134, JPN4007008085, 1997, pages 167 - 176, ISSN: 0000849125 *
RAJIV BHATIA, ADRIANA CIANI: "Using the Shack-Hartmann system for a complete analysis of optical telescopes", PROC. SPIE, vol. 3134, JPN6008024388, 1997, pages 167 - 176, ISSN: 0001047099 *
RAJIV BHATIA, ADRIANA CIANI: "Using the Shack-Hartmann system for a complete analysis of optical telescopes", PROC. SPIE, vol. 3134, JPNX007042304, 1997, pages 167 - 176, ISSN: 0000880949 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4613340B2 (ja) * 2001-04-04 2011-01-19 株式会社ニコン 被検光学系の焦点位置の測定方法
JP2002303802A (ja) * 2001-04-04 2002-10-18 Nikon Corp 被検光学系の焦点位置調整装置、光学系の焦点位置の測定方法、及び望遠鏡光学系
WO2005024488A1 (en) * 2003-09-11 2005-03-17 Koninklijke Philips Electronics, N.V. Adjustment of optical components in optical devices
JP2007085788A (ja) * 2005-09-20 2007-04-05 Nikon Corp ハルトマンセンサ
JP2008249415A (ja) * 2007-03-29 2008-10-16 Fujinon Corp 非球面レンズの面ずれ測定方法および装置
JP2009080016A (ja) * 2007-09-26 2009-04-16 Olympus Corp 測定架台及び干渉計
JP2009121954A (ja) * 2007-11-15 2009-06-04 Opcell Co Ltd 光束測定装置
JP2010015002A (ja) * 2008-07-04 2010-01-21 Nikon Corp アライメント装置および光学装置
JP2010169424A (ja) * 2009-01-20 2010-08-05 Nikon Corp 光学性能評価装置
JP2011179968A (ja) * 2010-03-01 2011-09-15 Mitsubishi Electric Corp 波面計測装置
JP2012122794A (ja) * 2010-12-07 2012-06-28 Mitsubishi Electric Corp 波面計測装置および波面計測方法
JP2012163899A (ja) * 2011-02-09 2012-08-30 Mitsubishi Electric Corp 光学調整装置及び光学調整方法
JP2012177920A (ja) * 2011-02-24 2012-09-13 Thales 望遠鏡用の単純化された検査台及び自動検査可能な望遠鏡
EP2492659B1 (fr) * 2011-02-24 2019-12-25 Thales Banc de contrôle simplifié de télescopes et télescopes auto-contrôlables
US20160341547A1 (en) * 2014-02-13 2016-11-24 Mitsubishi Electric Corporation Orientation variation measurement system, satellite, and orientation variation measurement method
US10054427B2 (en) * 2014-02-13 2018-08-21 Mitsubishi Electric Corporation Orientation variation measurement system, satellite, and orientation variation measurement method
JP2016225883A (ja) * 2015-06-01 2016-12-28 三菱電機株式会社 空間光通信装置
US11966036B2 (en) 2018-11-26 2024-04-23 Carl Zeiss Microscopy Gmbh Light microscope and microscopy method
CN110082074A (zh) * 2019-05-23 2019-08-02 中国科学院光电技术研究所 一种干涉波前检测中剔除平面反射镜引入的系统误差的方法

Also Published As

Publication number Publication date
JP4140684B2 (ja) 2008-08-27

Similar Documents

Publication Publication Date Title
JP4140684B2 (ja) 光学系ズレ推定装置、光学系ズレ調整装置、光学系ズレ推定方法、及び光学系ズレ調整方法
EP1869401B1 (en) Method for accurate high-resolution measurements of aspheric surfaces
US6714308B2 (en) Rapid in-situ mastering of an aspheric fizeau
CN110888240B (zh) 一种Offner型光谱成像光学系统的快速装调方法
CN106767545A (zh) 一种高精度高空间分辨角度测量仪及角度测量方法
Huang High precision optical surface metrology using deflectometry
US6717679B2 (en) Dispersive null-optics for aspheric surface and wavefront metrology
US7098433B2 (en) Apparatus and method for estimating and adjusting deviations in an optical system based on wavefront aberrations ascribable to misalignment
JP4340625B2 (ja) 光学検査方法および装置
Zhang et al. Screen-monitored stitching deflectometry based on binocular stereo vision
Xing et al. Laboratory calibration of star tracker with brightness independent star identification strategy
Sekulic et al. DKIST visible broadband imager alignment in laboratory: first results
Bautsch et al. Traceable calibration of Shack–Hartmann wavefront sensors employing spherical wavefronts
Sekulic et al. Daniel K. Inouye solar telescope optical alignment plan
Amorim et al. The final design of the GRAVITY acquisition camera and associated VLTI beam monitoring strategy
US11333487B2 (en) Common path mode fiber tip diffraction interferometer for wavefront measurement
Freudenthaler Effects of spatially inhomogeneous photomultiplier sensitivity on lidar signals and remedies
CN112504631A (zh) 一种探测器像素内响应变化测量方法及系统
JP6558975B2 (ja) 形状計測方法、形状計測装置および形状計測プログラム
CN117991493B (zh) 一种基于哈特曼检测的天文望远镜光学系统现场装调方法
CN105910630B (zh) 基于空间光程差调制的光程差测量方法及其装置
Lowman et al. Phase retrieval camera for testing NGST optics
Furlong et al. Sensitivity, accuracy, and precision issues in opto-electronic holography based on fiber optics and high-spatial-and high-digitial-resolution cameras
Huang et al. Development of precision angle measurement system
CN115183695B (zh) 一种便携式反射镜面形测量装置及反射镜面形测量方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees