JP2002198090A - Non-aqueous electrolyte secondary cell - Google Patents

Non-aqueous electrolyte secondary cell

Info

Publication number
JP2002198090A
JP2002198090A JP2000392412A JP2000392412A JP2002198090A JP 2002198090 A JP2002198090 A JP 2002198090A JP 2000392412 A JP2000392412 A JP 2000392412A JP 2000392412 A JP2000392412 A JP 2000392412A JP 2002198090 A JP2002198090 A JP 2002198090A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium
aqueous electrolyte
formula
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000392412A
Other languages
Japanese (ja)
Other versions
JP4876313B2 (en
JP2002198090A5 (en
Inventor
Noriko Shima
紀子 島
Hirofumi Suzuki
裕文 鈴木
Kunihisa Shima
邦久 島
Hitoshi Suzuki
仁 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2000392412A priority Critical patent/JP4876313B2/en
Publication of JP2002198090A publication Critical patent/JP2002198090A/en
Publication of JP2002198090A5 publication Critical patent/JP2002198090A5/ja
Application granted granted Critical
Publication of JP4876313B2 publication Critical patent/JP4876313B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte secondary cell by which HF in an electrolyte is reduced, and a state that the HF content has been reduced can be retained even when water is mixed into the electrolyte from an electrode or the like upon assembly of the cell. SOLUTION: For the non-aqueous electrolyte secondary cell comprising at least a negative electrode and a positive electrode which can store and release lithium, and a non-aqueous electrolyte containing a solute and an organic solvent, a phosphine compound represented by the formula (I) or (II) is added into the organic solvent. In the formula (I), R1, R2 and R3, independently represent a hydrocarbon group which may have an aromatic ring and may be substituted by halogen(s). In the formula (II), R4, R5 and R6, independently represent a hydrocarbon group which may have an aromatic ring and may be substituted by halogen(s).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水系電解液二次
電池に関する。詳しくは、特定のホスフィン化合物が添
加された有機系溶媒を含む電解液を用いる非水系電解液
二次電池に関する。本発明によれば、電解液中の酸分が
低いため、長期安定性、サイクル特性に優れた高エネル
ギー密度の非水系電解液二次電池が得られる。
[0001] The present invention relates to a non-aqueous electrolyte secondary battery. More specifically, the present invention relates to a non-aqueous electrolyte secondary battery using an electrolyte containing an organic solvent to which a specific phosphine compound is added. ADVANTAGE OF THE INVENTION According to this invention, since the acid content in electrolyte solution is low, the non-aqueous electrolyte secondary battery of high energy density excellent in long-term stability and cycle characteristics is obtained.

【0002】[0002]

【従来の技術】近年、電気製品の軽量化、小型化に伴
い、高いエネルギー密度を持つリチウム二次電池が注目
されている。また、リチウム二次電池の適用分野の拡大
に伴い電池特性の改善も要望されている。このようなリ
チウム二次電池の電解液の溶媒としては、例えばエチレ
ンカーボネート、プロピレンカーボネート、ジエチルカ
ーボネート、γ−ブチロラクトン等のカーボネート類又
はエステル類の高誘電率非水系有機溶媒とジエチルカー
ボネート、ジメチルカーボネート、ジメトキシエタン等
の鎖状カーボネート類又はエーテル類を適宜混合したも
のが用いられている。
2. Description of the Related Art In recent years, lithium secondary batteries having a high energy density have been attracting attention as electric appliances have become lighter and smaller. In addition, with the expansion of the application field of the lithium secondary battery, improvement in battery characteristics is also demanded. As a solvent for the electrolyte solution of such a lithium secondary battery, for example, ethylene carbonate, propylene carbonate, diethyl carbonate, a high dielectric constant non-aqueous organic solvent such as carbonates or esters such as γ-butyrolactone and diethyl carbonate, dimethyl carbonate, A mixture in which chain carbonates or ethers such as dimethoxyethane are appropriately mixed is used.

【0003】また、溶質としてはLiClO4、LiP
6、LiBF4等の無機リチウム塩又はLiCF3
3、LiN(CF3SO22、LiN(CF3CF2SO
22、LiN(CF3SO2)(C49SO2)、LiC
(CF3SO23等の有機リチウム塩が用いられている
が、この中でも特性が好適なことからLiPF6を最も
よく使われている。しかし一方、このLiPF6或いは
LiBF4等の含フッ素無機リチウムは水分と反応し、
電解液中にHFが発生することも知られている。HF
は、電池缶の腐食を引き起こすだけでなく、電池容量を
低下させたり、サイクル特性に悪影響を及ぼす。上記の
ような問題点を改善するため、モレキュラーシーブで処
理して水分を除去した非水溶媒を用いた電解液(特開平
10−270074号公報)や、電解液中のHFを除去
するため、水素化リチウム、リチウムエトキサイド等の
ようなリチウム化合物を添加して処理した電解液(特開
平10−270077号公報)が提案されている。
The solutes are LiClO 4 , LiP
Inorganic lithium salts such as F 6 and LiBF 4 or LiCF 3 S
O 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO
2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC
Organic lithium salts such as (CF 3 SO 2 ) 3 are used, and among these, LiPF 6 is most often used because of its favorable characteristics. However, on the other hand, this fluorine-containing inorganic lithium such as LiPF 6 or LiBF 4 reacts with moisture,
It is also known that HF is generated in the electrolyte. HF
Not only causes corrosion of the battery can, but also lowers the battery capacity and adversely affects the cycle characteristics. In order to improve the above problems, an electrolytic solution using a non-aqueous solvent which has been treated with a molecular sieve to remove water (Japanese Patent Application Laid-Open No. 10-270074), and in order to remove HF in the electrolytic solution, An electrolyte (JP-A-10-270077) which has been treated by adding a lithium compound such as lithium hydride or lithium ethoxide has been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
の方法により、電解液中に最初から含まれている水分は
除去できるが、電池として組み上げる際に他の部材から
持ち込まれる水分によってHFが発生するので、電池全
体の特性については十分ではないという問題がある。ま
た、これらの添加剤はいずれも溶解性が低いため、添加
剤を濾別した電解液を用いるので、注液後の工程におい
て発生するHF分を除去することはできないという問題
もある。本発明はかかる問題点を踏まえて、電解液中の
HFを低減し、なお且つ電池組立時に電極等から水分が
混入してもHF分を低減させた状態を持続することので
きる非水系電解液二次電池を提供しようとするものであ
る。
However, although these methods can remove the moisture contained in the electrolyte from the beginning, HF is generated by moisture brought in from other members when the battery is assembled. However, there is a problem that the characteristics of the entire battery are not sufficient. In addition, since all of these additives have low solubility, an electrolyte solution obtained by filtering the additives is used, so that there is a problem that HF generated in a step after the injection cannot be removed. The present invention has been made in view of the above-described problems, and is intended to reduce a HF in an electrolytic solution, and to maintain a state in which a HF component is reduced even when moisture is mixed in from an electrode or the like during battery assembly. It is intended to provide a secondary battery.

【0005】[0005]

【課題を解決するための手段】即ち、本発明の要旨は、
リチウムを吸蔵・放出することが可能な負極及び正極
と、溶質及び有機系溶媒を含む非水系電解液とを少なく
とも備えた非水系電解液二次電池において、有機系溶媒
中に下記構造式(I)又は(II)で示されるホスフィン
化合物が添加されてなることを特徴とする非水系電解液
二次電池、にある。
That is, the gist of the present invention is as follows.
In a non-aqueous electrolyte secondary battery including at least a negative electrode and a positive electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte containing a solute and an organic solvent, the following structural formula (I) ) Or a non-aqueous electrolyte secondary battery comprising a phosphine compound represented by (II).

【0006】[0006]

【化3】 (式中、R1、R2及びR3は、それぞれ独立して、芳香
環を有していてもよく、且つハロゲンで置換されていて
もよい炭化水素基を表す)
Embedded image (Wherein, R 1 , R 2 and R 3 each independently represent a hydrocarbon group which may have an aromatic ring and may be substituted with halogen)

【0007】[0007]

【化4】 (式中、R4、R5及びR6は、それぞれ独立して、芳香
環を有していてもよく、且つハロゲンで置換されていて
もよい炭化水素基を表す)
Embedded image (In the formula, R 4 , R 5 and R 6 each independently represent a hydrocarbon group which may have an aromatic ring and may be substituted with halogen.)

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明は、リチウムを吸蔵・放出することが可能な負極
及び正極と、溶質及び有機溶媒を含む非水系電解液とを
少なくとも備えた、好ましくはリチウムを吸蔵・放出す
ることが可能な負極及び正極と、負極集電体及び正極集
電体と、溶質及び有機系溶媒を含む非水系電解液と、セ
パレータ及び外缶とを備えた非水系二次電池において、
有機系溶媒中に式(I)又は(II)で示されるホスフィ
ン化合物が添加されてなるところの非水系電解液二次電
池である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The present invention provides a negative electrode and a positive electrode, which preferably include at least a negative electrode and a positive electrode capable of inserting and extracting lithium, and a non-aqueous electrolytic solution containing a solute and an organic solvent, and preferably store and release lithium. And, a non-aqueous secondary battery including a negative electrode current collector and a positive electrode current collector, a non-aqueous electrolyte containing a solute and an organic solvent, and a separator and an outer can.
A non-aqueous electrolyte secondary battery in which a phosphine compound represented by the formula (I) or (II) is added to an organic solvent.

【0009】(非水系電解液)非水系電解液は、溶質、
有機系溶媒及び添加剤の式(I)及び(II)のホスフィ
ン化合物を含有してなる。有機系溶媒としては、特に限
定されるものではないが、通常、非プロトン性の有機溶
媒が用いられる。
(Non-Aqueous Electrolyte) The non-aqueous electrolyte is a solute,
It comprises an organic solvent and additives phosphine compounds of formulas (I) and (II). The organic solvent is not particularly limited, but usually an aprotic organic solvent is used.

【0010】非プロトン性有機溶媒の具体例としては、
例えばエチレンカーボネート、プロピレンカーボネート
等の環状カーボネート類、ジメチルカーボネート、ジエ
チルカーボネート、エチルメチルカーボネート等の鎖状
カーボネート類、γ−ブチロラクトン、γ−バレロラク
トン等の環状エステル類、酢酸メチル、プロピオン酸メ
チル等の鎖状エステル類、テトラヒドロフラン、2−メ
チルテトラヒドロフラン、テトラヒドロピラン等の環状
エーテル類、ジメトキシエタン、ジメトキシメタン等の
鎖状エーテル類、スルフォラン、ジエチルスルホン等の
含硫黄有機溶媒等を挙げることができる。これらの中、
環状カーボネート類、鎖状カーボネート類、環状エステ
ル類、鎖状エステル類が好ましい。なお、これらの溶媒
は、単独で、或いは二種以上混合して用いてもよい。本
発明においては、有機系溶媒に式(I)又は(II)のホ
スフィン化合物が添加される。
Specific examples of the aprotic organic solvent include:
For example, ethylene carbonate, cyclic carbonates such as propylene carbonate, dimethyl carbonate, diethyl carbonate, chain carbonates such as ethyl methyl carbonate, γ-butyrolactone, cyclic esters such as γ-valerolactone, methyl acetate, methyl propionate and the like Examples thereof include chain esters, cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, and tetrahydropyran; chain ethers such as dimethoxyethane and dimethoxymethane; and sulfur-containing organic solvents such as sulfolane and diethyl sulfone. Of these,
Preferred are cyclic carbonates, chain carbonates, cyclic esters, and chain esters. These solvents may be used alone or as a mixture of two or more. In the present invention, a phosphine compound of the formula (I) or (II) is added to an organic solvent.

【0011】[0011]

【化5】 (式中、R1、R2及びR3は、それぞれ独立して、芳香
環を有していてもよく、且つハロゲンで置換されていて
もよい炭化水素基を表す)
Embedded image (Wherein, R 1 , R 2 and R 3 each independently represent a hydrocarbon group which may have an aromatic ring and may be substituted with halogen)

【0012】式(I)において、R1、R2及びR3が芳
香環を有していてもよい炭化水素基である場合、その具
体例としては、例えばメチル基、エチル基、プロピル
基、ブチル基等のようなアルキル基、及びフェニル基、
ナフチル基等のようなアリール基が挙げられる。そし
て、このような式(I)の化合物の具体例としては、例
えばジメトキシメチルホスフィン、ジエトキシエチルホ
スフィン、ジプロポキシプロピルホスフィン等のような
ジアルコキシアルキルホスフィン、ジメトキシフェニル
ホスフィン、ジエトキシフェニルホスフィン等のような
ジアルコキシアリールホスフィン、メトキシフェノキシ
メチルホスフィン、エトキシフェノキシエチルホスフィ
ン等のようなアルコキシアリールオキシアルキルホスフ
ィン、メチルジフェノキシホスフィン、エチルジフェノ
キシホスフィン等のようなアルキルジアリールオキシホ
スフィン、ジフェノキシフェニルホスフィン等のような
ジアリールオキシアリールホスフィン等が挙げられる。
これらの中、ジフェノキシフェニルホスフィン、ジメチ
ルジフェノキシホスフィン、エチルジフェノキシホスフ
ィン等のようなR1又はR2にフェニル基を有するものが
好ましい。
In the formula (I), when R 1 , R 2 and R 3 are a hydrocarbon group which may have an aromatic ring, specific examples thereof include a methyl group, an ethyl group, a propyl group, An alkyl group such as a butyl group, and a phenyl group,
And an aryl group such as a naphthyl group. Specific examples of the compound of the formula (I) include dialkoxyalkylphosphines such as dimethoxymethylphosphine, diethoxyethylphosphine, and dipropoxypropylphosphine; dimethoxyphenylphosphine; and diethoxyphenylphosphine. Alkoxyaryloxyalkylphosphines such as dialkoxyarylphosphine, methoxyphenoxymethylphosphine, ethoxyphenoxyethylphosphine, etc., alkyldiaryloxyphosphines such as methyldiphenoxyphosphine, ethyldiphenoxyphosphine, etc., diphenoxyphenylphosphine, etc. Such diaryloxyaryl phosphines and the like.
Among these, those having a phenyl group at R 1 or R 2 such as diphenoxyphenylphosphine, dimethyldiphenoxyphosphine, ethyldiphenoxyphosphine and the like are preferable.

【0013】[0013]

【化6】 (式中、R4、R5及びR6は、それぞれ独立して、芳香
環を有していてもよく、且つハロゲンで置換されていて
もよい炭化水素基を表す)
Embedded image (In the formula, R 4 , R 5 and R 6 each independently represent a hydrocarbon group which may have an aromatic ring and may be substituted with halogen.)

【0014】式(II)において、R4、R5及びR6が芳香
環を有していてもよい炭化水素基である場合、その具体
例としては、例えばメチル基、エチル基、プロピル基、
ブチル基等のようなアルキル基、及びフェニル基、ナフ
チル基等のようなアリール基が挙げられる。そして、こ
のような式(II)の化合物の具体例としては、例えばメ
トキシジメチルホスフィン、エトキシジエチルホスフィ
ン、プロポキシジプロピルホスフィン等のようなアルコ
キシジアルキル、ジメチルフェノキシホスフィン、ジエ
チルフェノキシホスフィン等のようなアリールオキシジ
アルキルホスフィン、フェノキシジフェニルホスフィン
等のようなアリールオキシジアリールホスフィン等が挙
げられる。これらの中、フェノキシジフェニルホスフィ
ン、ジメチルフェノキシホスフィン、ジエチルフェノキ
シホスフィン等のようなR4にフェニルを有するものが
好ましい。
In the formula (II), when R 4 , R 5 and R 6 are a hydrocarbon group which may have an aromatic ring, specific examples thereof include a methyl group, an ethyl group, a propyl group,
Examples include an alkyl group such as a butyl group and the like, and an aryl group such as a phenyl group and a naphthyl group. Specific examples of such a compound of the formula (II) include, for example, alkoxydialkyl such as methoxydimethylphosphine, ethoxydiethylphosphine, and propoxydipropylphosphine, and aryloxy such as dimethylphenoxyphosphine and diethylphenoxyphosphine. And aryloxydiarylphosphines such as dialkylphosphine and phenoxydiphenylphosphine. Among these, those having phenyl at R 4 such as phenoxydiphenylphosphine, dimethylphenoxyphosphine, diethylphenoxyphosphine and the like are preferable.

【0015】なお、式(I)の化合物又は式(II)の化
合物の添加量は、これらの化合物と有機系溶媒との合計
量に対して0.001〜20重量%、好ましくは0.0
1〜10重量%、より好ましくは0.1〜5重量%であ
る。溶質としては、LiPF6、LiBF4から選ばれる
無機リチウム塩を用いる。電解液中の溶質のリチウム塩
のモル濃度は、0.5〜2.0モル/リットルであるこ
とが望ましい。0.5モル/リットルより少ないか2.
0モル/リットルを越えると、電解液の電気伝導率が低
く、電池の性能が低下するため好ましくない。
The amount of the compound of the formula (I) or the compound of the formula (II) is 0.001 to 20% by weight, preferably 0.0 to 20% by weight, based on the total amount of the compound and the organic solvent.
It is 1 to 10% by weight, more preferably 0.1 to 5% by weight. As the solute, an inorganic lithium salt selected from LiPF 6 and LiBF 4 is used. The molar concentration of the solute lithium salt in the electrolyte is desirably 0.5 to 2.0 mol / liter. Less than 0.5 mol / l or 2.
If it exceeds 0 mol / liter, the electric conductivity of the electrolytic solution is low, and the performance of the battery is undesirably reduced.

【0016】(負極)電池を構成する負極材料として
は、様々な熱分解条件での有機物の熱分解物や人造黒
鉛、天然黒鉛等のリチウムを吸蔵・放出可能な炭素質材
料、酸化錫、酸化珪素等のリチウムを吸蔵・放出可能な
金属酸化物材料、リチウム金属、種々のリチウム合金を
用いることができる。これらの負極材料は二種類以上混
合して用いてもよい。黒鉛系の炭素質材料を負極材料と
して用いる場合は、好適には種々の原料から得た易黒鉛
性ピッチの高温熱処理によって製造された人造黒鉛及び
天然黒鉛或いはこれらの黒鉛に種々の表面処理を施した
材料が主として使用されるが、これらの黒鉛材料はX線
回折で求めた格子面(002面)のd値(層間距離)が
0.335〜0.34nm、より好ましくは0.335
〜0.337nmであるものが好ましい。
(Negative Electrode) As negative electrode materials constituting a battery, pyrolytic products of organic substances under various thermal decomposition conditions, carbonaceous materials capable of occluding and releasing lithium such as artificial graphite and natural graphite, tin oxide, oxides Metal oxide materials capable of occluding and releasing lithium such as silicon, lithium metal, and various lithium alloys can be used. These negative electrode materials may be used as a mixture of two or more. When a graphite-based carbonaceous material is used as a negative electrode material, artificial graphite and natural graphite produced by high-temperature heat treatment of easily-graphitizable pitch obtained from various raw materials, or these graphites are subjected to various surface treatments. These materials are mainly used. These graphite materials have a d value (interlayer distance) of a lattice plane (002 plane) determined by X-ray diffraction of 0.335 to 0.34 nm, and more preferably 0.335 nm.
It is preferably about 0.337 nm.

【0017】これらの負極材料を用いて負極を製造する
方法については、特に限定されない。例えば、負極材料
に、必要に応じて結着剤、増粘剤、導電材、溶媒等を加
えてスラリー状とし、集電体の基板に塗布し、乾燥する
ことにより負極を製造することができるし、また、該負
極材料をそのままロール成形してシート電極としたり、
圧縮成形によりペレット電極とすることもできる。
The method for producing a negative electrode using these negative electrode materials is not particularly limited. For example, a negative electrode can be manufactured by adding a binder, a thickener, a conductive material, a solvent, and the like to a negative electrode material as needed to form a slurry, applying the slurry to a current collector substrate, and drying. Alternatively, the negative electrode material may be directly roll-formed into a sheet electrode,
A pellet electrode can be obtained by compression molding.

【0018】電極の製造に用いられる結着剤について
は、電極製造時に使用する溶媒や電解液に対して安定な
材料であれば、特に限定されない。その具体例として
は、ポリフッ化ビニリデン、ポリテトラフルオロエチレ
ン、スチレン・ブタジエンゴム、イソプレンゴム、ブタ
ジエンゴム等を挙げることができる。増粘剤としては、
カルボキシメチルセルロース、メチルセルロース、ヒド
ロキシメチルセルロース、エチルセルロース、ポリビニ
ルアルコール、酸化スターチ、リン酸化スターチ、カゼ
イン等が挙げられる。導電材としては、銅やニッケル等
の金属材料、グラファイト、カーボンブラック等のよう
な炭素材料が挙げられる。
The binder used in the production of the electrode is not particularly limited as long as it is a material that is stable with respect to the solvent and electrolyte used in the production of the electrode. Specific examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, styrene / butadiene rubber, isoprene rubber, and butadiene rubber. As a thickener,
Examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein and the like. Examples of the conductive material include metal materials such as copper and nickel, and carbon materials such as graphite and carbon black.

【0019】(負極集電体)負極用集電体の材質は、
銅、ニッケル、ステンレス等の金属が使用され、これら
の中で薄膜に加工しやすいという点とコストの点から銅
箔が好ましい。
(Negative electrode current collector) The material of the negative electrode current collector is as follows.
Metals such as copper, nickel, and stainless steel are used, and among these, copper foil is preferred from the viewpoint of easy processing into a thin film and cost.

【0020】(正極)本発明の電池を構成する正極の材
料としては、リチウムコバルト酸化物、リチウムニッケ
ル酸化物、リチウムマンガン酸化物等のリチウム遷移金
属複合酸化物材料等のリチウムを吸蔵及び放出可能な材
料を使用することができる。正極の製造方法について
は、特に限定されず、上記の負極の製造方法に準じて製
造することができる。また、その形状については、正極
材料に必要に応じて結着剤、導電材、溶媒等を加えて混
合後、集電体の基板に塗布してシート電極としたり、プ
レス成形を施してペレット電極とすることができる。
(Positive Electrode) As the material of the positive electrode constituting the battery of the present invention, lithium such as lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, and other lithium transition metal composite oxide materials can absorb and release lithium. Material can be used. The method for manufacturing the positive electrode is not particularly limited, and the positive electrode can be manufactured according to the above-described method for manufacturing the negative electrode. As for the shape, a binder, a conductive material, a solvent, and the like are added to the positive electrode material as necessary and mixed, and then applied to a current collector substrate to form a sheet electrode, or a pellet electrode formed by press molding. It can be.

【0021】(正極集電体)正極用集電体の材質は、ア
ルミニウム、チタン、タンタル等の金属又はその合金が
用いられる。これらの中で、特にアルミニウム又はその
合金が軽量であるためエネルギー密度の点で望ましい。
(Positive Electrode Current Collector) As the material of the positive electrode current collector, a metal such as aluminum, titanium, and tantalum or an alloy thereof is used. Among these, aluminum or its alloy is desirable in terms of energy density because it is lightweight.

【0022】(セパレータ)本発明の電池に使用するセ
パレータの材質や形状については、特に限定されない。
但し、電解液に対して安定で、保液性の優れた材料の中
から選ぶのが好ましく、ポリエチレン、ポリプロピレン
等のポリオレフィンを原料とする多孔性シート又は不織
布等を用いるのが好ましい。
(Separator) The material and shape of the separator used in the battery of the present invention are not particularly limited.
However, it is preferable to select from materials that are stable with respect to the electrolyte and have excellent liquid retention properties, and it is preferable to use a porous sheet or nonwoven fabric made of a polyolefin such as polyethylene or polypropylene as a raw material.

【0023】(その他)負極、正極及び非水系電解液を
少なくとも有する本発明の電池を製造する方法について
は、特に限定されず、通常採用されている方法の中から
適宜選択することができる。また、電池の形状について
は特に限定されず、シート電極及びセパレータをスパイ
ラル状にしたシリンダータイプ、ペレット電極及びセパ
レータを組み合わせたインサイドアウト構造のシリンダ
ータイプ、ペレット電極及びセパレータを積層したコイ
ンタイプ等が使用可能である。図1にコインタイプの非
水系電解液電池の断面図を示す。図中、1は正極、2は
負極、3は正極缶、4は封口板、5はセパレータ、6は
ガスケット、7は正極集電体、8は負極集電体である。
(Others) The method for producing the battery of the present invention having at least a negative electrode, a positive electrode, and a non-aqueous electrolyte is not particularly limited, and can be appropriately selected from commonly employed methods. The shape of the battery is not particularly limited, and a cylinder type in which a sheet electrode and a separator are formed into a spiral shape, a cylinder type having an inside-out structure in which a pellet electrode and a separator are combined, and a coin type in which a pellet electrode and a separator are stacked are used. It is possible. FIG. 1 shows a sectional view of a coin-type non-aqueous electrolyte battery. In the figure, 1 is a positive electrode, 2 is a negative electrode, 3 is a positive electrode can, 4 is a sealing plate, 5 is a separator, 6 is a gasket, 7 is a positive electrode current collector, and 8 is a negative electrode current collector.

【0024】[0024]

【実施例】以下、実施例により、本発明を更に具体的に
説明するが、本発明はその要旨を越えない限りこれらに
限定されるものではない。 (実施例1、比較例1)電解液については、乾燥アルゴ
ン雰囲気下で、十分に乾燥を行った六フッ化リン酸リチ
ウム(LiPF6)を溶質として用い、エチレンカーボ
ネート(EC)、ジエチルカーボネート(DEC)を表
−1に示す組成で混合した溶液にLiPF6を1モル/
リットルの割合で溶解して調製した。その後、ジフェニ
ルホスフィン酸メチルを電解液に表−1で示す濃度にて
添加、各電解液の酸分を測定する。結果を表−1に示
す。
EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these without departing from the gist thereof. (Example 1, Comparative Example 1) For an electrolyte solution, lithium carbonate hexafluoride (LiPF 6 ), which was sufficiently dried under a dry argon atmosphere, was used as a solute, and ethylene carbonate (EC), diethyl carbonate ( the LiPF 6 1 mol DEC) in a mixed solution of the compositions shown in Table 1 /
It was prepared by dissolving at a liter rate. Thereafter, methyl diphenylphosphinate is added to the electrolyte at the concentration shown in Table 1, and the acid content of each electrolyte is measured. The results are shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】(実施例2、比較例2)実施例1、比較例
1において、調製した電解液に水を500ppm添加、
乾燥アルゴン雰囲気下で12時間静置し各電解液の酸分
を測定する。結果を表−2に示す。
Example 2, Comparative Example 2 In Example 1, Comparative Example 1, 500 ppm of water was added to the prepared electrolyte solution.
The mixture is allowed to stand for 12 hours in a dry argon atmosphere, and the acid content of each electrolytic solution is measured. Table 2 shows the results.

【0027】[0027]

【表2】 [Table 2]

【0028】(実施例3、比較例3)正極活物質として
LiCoO2(85重量部)にカーボンブラック(6重
量部)、ポリフッ化ビニリデン(9重量部)を加え混合
し、N−メチル−2−ピロリドンで分散し、スラリー状
としたものを正極集電体である厚さ20μmのアルミニ
ウム箔上に均一に塗布し、乾燥後、所定の形状に打ち抜
いて正極とした。負極活物質として、X線回折における
格子面(002面)のd値が0.336nmである人造
黒鉛粉末KS−44(ティムカル社製、商品名)(94
重量部)にポリフッ化ビニリデン(6重量部)を混合
し、N−メチル−2−ピロリドンで分散させスラリー状
としたものを負極集電体である厚さ18μmの銅箔上に
均一に塗布し、乾燥後、所定の形状に打ち抜いて負極と
した。電解液については実施例1、比較例1で調製した
ものを用いた。これらの正極、負極、電解液を用いて、
図1に示すようなコイン型非水系電解液電池を、乾燥ア
ルゴン雰囲気下で作製した。以下、図1に基づき説明す
ると、正極1と負極2とを、それぞれステンレス製の正
極缶3と封口板4に収容し、各電解液を含浸させたポリ
プロピレンの微孔性フィルムからなるセパレータ5を介
して積層して使用した。続いて、正極缶3と封口板4と
をガスケット7を介してかしめ密封して、コイン型電池
を作製した。これらの電池を25℃において、0.5m
Aの定電流で充電終止電圧4.2V、放電終止電圧2.
5Vで充放電試験を行った。これらの電池の100サイ
クル後の放電容量維持率を表−3に示す。放電容量維持
率とは下記の式に示す通りである。
(Example 3, Comparative Example 3) Carbon black (6 parts by weight) and polyvinylidene fluoride (9 parts by weight) were added to LiCoO 2 (85 parts by weight) as a positive electrode active material and mixed, and N-methyl-2 was added. -A slurry obtained by dispersing with pyrrolidone and forming a slurry was uniformly applied on a 20 μm-thick aluminum foil serving as a positive electrode current collector, dried, and punched into a predetermined shape to obtain a positive electrode. As the negative electrode active material, artificial graphite powder KS-44 (trade name, manufactured by Timcal Co.) having a lattice plane (002 plane) d value of 0.336 nm in X-ray diffraction (94)
Parts by weight) of polyvinylidene fluoride (6 parts by weight), dispersed in N-methyl-2-pyrrolidone to form a slurry, and uniformly coated on a 18 μm-thick copper foil as a negative electrode current collector. After drying, the resultant was punched into a predetermined shape to obtain a negative electrode. As the electrolytic solution, those prepared in Example 1 and Comparative Example 1 were used. Using these positive electrode, negative electrode, and electrolyte,
A coin-type non-aqueous electrolyte battery as shown in FIG. 1 was produced under a dry argon atmosphere. In the following, referring to FIG. 1, the positive electrode 1 and the negative electrode 2 are accommodated in a stainless steel positive electrode can 3 and a sealing plate 4, respectively, and a separator 5 made of a polypropylene microporous film impregnated with each electrolytic solution is formed. Used for lamination. Subsequently, the positive electrode can 3 and the sealing plate 4 were caulked and sealed via the gasket 7 to produce a coin-type battery. At 25 ° C., these batteries
At a constant current of A, the charge end voltage is 4.2 V and the discharge end voltage is 2.
A charge / discharge test was performed at 5V. Table 3 shows the discharge capacity retention ratio of these batteries after 100 cycles. The discharge capacity retention ratio is as shown in the following equation.

【0029】[0029]

【数1】放電容量維持率=(100サイクル目の放電容
量/1サイクル目の放電容量)×100
## EQU1 ## Discharge capacity retention ratio = (discharge capacity at 100th cycle / discharge capacity at 1st cycle) × 100

【0030】[0030]

【表3】 [Table 3]

【0031】表−1から表−3の結果よりメトキシジフ
ェニルホスフィンを含有する電解液は酸分を除去するこ
とにより、特にサイクル特性に優れた非水系電解液二次
電池が作製できる。
From the results shown in Tables 1 to 3, it is possible to manufacture a nonaqueous electrolyte secondary battery having particularly excellent cycle characteristics by removing the acid component from the methoxydiphenylphosphine-containing electrolyte.

【0032】[0032]

【発明の効果】非水系電解液二次電池の電解液の添加剤
として式(I)又は(II)のホスフィン化合物を選択す
ることによって、電解液中の酸分、更には、電池部材由
来の水分により発生する酸分も抑えることにより長期安
定性、サイクル特性が優れた電池を作成することがで
き、非水系電解液二次電池の小型化、高性能化に寄与す
ることができる。
By selecting the phosphine compound of the formula (I) or (II) as an additive of the electrolytic solution of the non-aqueous electrolytic solution secondary battery, the acid content in the electrolytic solution and furthermore the origin of the battery component By suppressing the acid content generated by moisture, a battery having excellent long-term stability and cycle characteristics can be produced, which can contribute to miniaturization and high performance of the non-aqueous electrolyte secondary battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】コイン型電池の構造を示した断面図である。FIG. 1 is a sectional view showing a structure of a coin-type battery.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 正極缶 4 封口板 5 セパレータ 6 ガスケット 7 正極集電体 8 負極集電体 Reference Signs List 1 positive electrode 2 negative electrode 3 positive electrode can 4 sealing plate 5 separator 6 gasket 7 positive electrode current collector 8 negative electrode current collector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 島 邦久 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 (72)発明者 鈴木 仁 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 Fターム(参考) 5H029 AJ03 AJ04 AJ05 AK03 AL01 AL06 AL12 AM02 AM03 AM04 AM05 AM07 BJ03 DJ09 HJ01 HJ02 HJ10 5H050 AA07 AA08 AA09 BA16 BA17 CA07 CA08 CB01 CB07 CB08 CB12 DA02 DA03 EA10 EA24 FA19 HA13  ──────────────────────────────────────────────────続 き Continued on the front page (72) Kunihisa Shima 8-3-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Prefecture Inside the Tsukuba Research Laboratory, Mitsubishi Chemical Corporation (72) Inventor Hitoshi Suzuki 8-Chome, Ami-cho, Inashiki-gun, Ibaraki Prefecture No.3-1 F-term in the Tsukuba Research Laboratory, Mitsubishi Chemical Corporation (reference) FA19 HA13

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを吸蔵・放出することが可能な
負極及び正極と、溶質及び有機系溶媒を含む非水系電解
液とを少なくとも備えた非水系電解液二次電池におい
て、有機系溶媒中に下記構造式(I)又は(II)で示さ
れるホスフィン化合物が添加されてなることを特徴とす
る非水系電解液二次電池。 【化1】 (式中、R1、R2及びR3は、それぞれ独立して、芳香
環を有していてもよく、且つハロゲンで置換されていて
もよい炭化水素基を表す) 【化2】 (式中、R4、R5及びR6は、それぞれ独立して、芳香
環を有していてもよく、且つハロゲンで置換されていて
もよい炭化水素基を表す)
1. A non-aqueous electrolyte secondary battery comprising at least a negative electrode and a positive electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte containing a solute and an organic solvent, wherein the organic solvent contains A non-aqueous electrolyte secondary battery comprising a phosphine compound represented by the following structural formula (I) or (II). Embedded image (Wherein, R 1 , R 2 and R 3 each independently represent a hydrocarbon group which may have an aromatic ring and may be substituted with halogen). (In the formula, R 4 , R 5 and R 6 each independently represent a hydrocarbon group which may have an aromatic ring and may be substituted with halogen.)
【請求項2】 式(I)のホスフィン化合物又は式(I
I)のホスフィン化合物の含有量がこれらの化合物と有
機系溶媒との合計量に対して0.001〜20重量%で
ある請求項1に記載の二次電池。
2. A phosphine compound of the formula (I) or a compound of the formula (I
The secondary battery according to claim 1, wherein the content of the phosphine compound of I) is 0.001 to 20% by weight based on the total amount of these compounds and the organic solvent.
【請求項3】 溶質がLiPF6又はLiBF4である請
求項1又は2に記載の二次電池。
3. The secondary battery according to claim 1, wherein the solute is LiPF 6 or LiBF 4 .
【請求項4】 非水系電解液中の溶質濃度が0.5〜
2.0モル/リットルである請求項1ないし3のいずれ
かに記載の二次電池。
4. A solute concentration in a non-aqueous electrolytic solution of 0.5 to 0.5.
4. The secondary battery according to claim 1, wherein the amount is 2.0 mol / liter.
【請求項5】 リチウムを吸蔵・放出することが可能な
正極がリチウムを吸蔵・放出することが可能なリチウム
遷移金属複合酸化物を含有する請求項1ないし4のいず
れかに記載の二次電池。
5. The secondary battery according to claim 1, wherein the positive electrode capable of inserting and extracting lithium contains a lithium transition metal composite oxide capable of inserting and extracting lithium. .
【請求項6】 リチウムを吸蔵・放出することが可能な
負極がリチウムを吸蔵・放出することが可能に炭素質
物、金属化合物及びリチウム合金から選ばれる少なくと
も一種である請求項1ないし5のいずれかに記載の二次
電池。
6. The negative electrode capable of occluding and releasing lithium is at least one selected from a carbonaceous substance, a metal compound, and a lithium alloy capable of occluding and releasing lithium. 2. The secondary battery according to 1.
【請求項7】 リチウムを吸蔵・放出することが可能な
負極が、X線回折における格子面(002面)のd値が
0.335〜0.34nmの炭素材料からなる請求項1
ないし6のいずれかに記載の二次電池。
7. The negative electrode capable of inserting and extracting lithium is made of a carbon material having a lattice plane (002 plane) having a d value of 0.335 to 0.34 nm in X-ray diffraction.
7. The secondary battery according to any one of claims 6 to 6.
JP2000392412A 2000-12-25 2000-12-25 Non-aqueous electrolyte secondary battery Expired - Fee Related JP4876313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000392412A JP4876313B2 (en) 2000-12-25 2000-12-25 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000392412A JP4876313B2 (en) 2000-12-25 2000-12-25 Non-aqueous electrolyte secondary battery

Publications (3)

Publication Number Publication Date
JP2002198090A true JP2002198090A (en) 2002-07-12
JP2002198090A5 JP2002198090A5 (en) 2008-03-06
JP4876313B2 JP4876313B2 (en) 2012-02-15

Family

ID=18858408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000392412A Expired - Fee Related JP4876313B2 (en) 2000-12-25 2000-12-25 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4876313B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004038846A1 (en) * 2002-10-22 2004-05-06 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous electrolyte secondary battery containing the same
WO2005099023A1 (en) * 2004-04-07 2005-10-20 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
WO2005104289A1 (en) * 2004-04-19 2005-11-03 Bridgestone Corporation Nonaqueous electrolyte solution for battery and nonaqueous electrolyte battery using same
WO2005106906A1 (en) * 2004-04-27 2005-11-10 Bridgestone Corporation Additive for non-aqueous electrolyte solution of electric double layer capacitor, non-aqueous electrolyte solution for electric double layer capacitor and non-aqueous electrolyte solution electric double layer capacitor
JP2006004746A (en) * 2004-06-17 2006-01-05 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution for secondary battery and nonaqueous electrolytic solution secondary battery using it
US8277973B2 (en) 2006-06-16 2012-10-02 Sony Corporation Nonaqueous electrolyte composition and nonaqueous electrolyte secondary battery
CN111342134A (en) * 2020-03-13 2020-06-26 河南电池研究院有限公司 Wide-temperature-range lithium ion battery non-aqueous electrolyte and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280976A (en) * 1985-10-01 1987-04-14 Hitachi Maxell Ltd Organic electrolyte battery
JPH08321313A (en) * 1995-05-24 1996-12-03 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH10154528A (en) * 1996-11-22 1998-06-09 Mitsui Chem Inc Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JPH11238513A (en) * 1998-02-23 1999-08-31 Yuasa Corp Nonaqueous electrolyte battery
JP2000228216A (en) * 1999-02-08 2000-08-15 Denso Corp Non-aqueous electrolyte and non-aqueous electrolyte secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280976A (en) * 1985-10-01 1987-04-14 Hitachi Maxell Ltd Organic electrolyte battery
JPH08321313A (en) * 1995-05-24 1996-12-03 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH10154528A (en) * 1996-11-22 1998-06-09 Mitsui Chem Inc Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JPH11238513A (en) * 1998-02-23 1999-08-31 Yuasa Corp Nonaqueous electrolyte battery
JP2000228216A (en) * 1999-02-08 2000-08-15 Denso Corp Non-aqueous electrolyte and non-aqueous electrolyte secondary battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7169511B2 (en) 2002-10-22 2007-01-30 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and nonaqueous electrolyte solution secondary battery employing the same
WO2004038846A1 (en) * 2002-10-22 2004-05-06 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous electrolyte secondary battery containing the same
WO2005099023A1 (en) * 2004-04-07 2005-10-20 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
CN100463284C (en) * 2004-04-07 2009-02-18 松下电器产业株式会社 Nonaqueous electrolyte secondary battery
US7468225B2 (en) 2004-04-07 2008-12-23 Panasonic Corporation Non-aqueous electrolyte secondary battery
US7947399B2 (en) 2004-04-19 2011-05-24 Bridgestone Corporation Non-aqueous electrolyte for battery and non-aqueous electrolyte battery comprising the same
WO2005104289A1 (en) * 2004-04-19 2005-11-03 Bridgestone Corporation Nonaqueous electrolyte solution for battery and nonaqueous electrolyte battery using same
WO2005106906A1 (en) * 2004-04-27 2005-11-10 Bridgestone Corporation Additive for non-aqueous electrolyte solution of electric double layer capacitor, non-aqueous electrolyte solution for electric double layer capacitor and non-aqueous electrolyte solution electric double layer capacitor
JP2006004746A (en) * 2004-06-17 2006-01-05 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution for secondary battery and nonaqueous electrolytic solution secondary battery using it
JP4599901B2 (en) * 2004-06-17 2010-12-15 三菱化学株式会社 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same
US8277973B2 (en) 2006-06-16 2012-10-02 Sony Corporation Nonaqueous electrolyte composition and nonaqueous electrolyte secondary battery
CN111342134A (en) * 2020-03-13 2020-06-26 河南电池研究院有限公司 Wide-temperature-range lithium ion battery non-aqueous electrolyte and preparation method thereof
CN111342134B (en) * 2020-03-13 2022-09-13 河南电池研究院有限公司 Wide-temperature-range lithium ion battery non-aqueous electrolyte and preparation method thereof

Also Published As

Publication number Publication date
JP4876313B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
JP5348090B2 (en) Non-aqueous electrolyte and lithium secondary battery
JP2001006729A (en) Nonaqueous electrolyte secondary battery
JP2000133304A (en) Non-aqueous electrolyte and lithium secondary battery using it
JP2004031079A (en) Nonaqueous electrolyte secondary battery
JP2001313071A (en) Nonaqueous electrolyte and lithium secondary cell using it
JP2007173014A (en) Nonaqueous electrolyte secondary battery
JP2003297423A (en) Nonaqueous system electrolyte solution and nonaqueous system electrolyte solution secondary battery using the same
JP4934917B2 (en) Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor
JP2000235866A (en) Nonaqueous electrolyte secondary battery
JP4910239B2 (en) Non-aqueous electrolyte secondary battery
JP2001023688A (en) Nonaqueous electrolyte and lithium secondary battery using it
JP4197079B2 (en) Non-aqueous electrolyte secondary battery
JP4211159B2 (en) Non-aqueous electrolyte secondary battery
JPH11121032A (en) Nonaqueous electrolyte secondary battery
JP3978960B2 (en) Non-aqueous electrolyte secondary battery
JP4876313B2 (en) Non-aqueous electrolyte secondary battery
JP3893627B2 (en) Method for manufacturing lithium ion battery
JP2003203675A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary cell
JP4075180B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2002352851A (en) Nonaqueous electrolyte secondary cell
JP3959927B2 (en) Non-aqueous electrolyte secondary battery and electrolyte used therefor
JP4706088B2 (en) Non-aqueous electrolyte secondary battery
JP4406947B2 (en) Non-aqueous electrolyte battery
JP4237531B2 (en) Lithium secondary battery and method for producing lithium secondary battery
JP2000331709A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees