JPH11238513A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH11238513A
JPH11238513A JP10040403A JP4040398A JPH11238513A JP H11238513 A JPH11238513 A JP H11238513A JP 10040403 A JP10040403 A JP 10040403A JP 4040398 A JP4040398 A JP 4040398A JP H11238513 A JPH11238513 A JP H11238513A
Authority
JP
Japan
Prior art keywords
electrolyte
positive electrode
negative electrode
phosphorus compound
organic phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10040403A
Other languages
Japanese (ja)
Other versions
JP4438103B2 (en
Inventor
Hiroyoshi Yoshihisa
洋悦 吉久
Seijiro Ochiai
誠二郎 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP04040398A priority Critical patent/JP4438103B2/en
Publication of JPH11238513A publication Critical patent/JPH11238513A/en
Application granted granted Critical
Publication of JP4438103B2 publication Critical patent/JP4438103B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery capable of enhancing high temperature characteristics, storage characteristic under high temperature, and safety. SOLUTION: A positive electrode prepared by supporting a positive mix 1 on a positive current collector 2, and a negative electrode prepared by supporting a negative mix 3 on a negative current collector 4 are arranged via a separator 5, and at least one of the positive electrode, the negative electrode, and the separator 5 contains an aromatic organic phosphorus compound. Also the aromatic organic phosphorus compound is an oxide or a halide. The content of the aromatic organic phosphorus compound is limited to 1-10 wt.% based on the weight of the electrolyte, a high polymer solid electrolyte, or a high polymer gelled electrolyte contained in the positive electrode, the negative electrode, or the separator.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解質電池に関
するもので、さらに詳しく言えば、高温特性および高温
下での保存性、安全性が向上できる非水電解質電池に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery, and more particularly, to a non-aqueous electrolyte battery capable of improving high-temperature characteristics, storage stability at high temperatures, and safety.

【0002】[0002]

【従来の技術】近年、高性能化、小型化が進む電子機器
用電源、電力貯蔵用電源、電気自動車用電源として、高
起電力、高エネルギー密度が得られる種々の非水電解質
電池が注目されている。
2. Description of the Related Art In recent years, various non-aqueous electrolyte batteries capable of obtaining a high electromotive force and a high energy density have been attracting attention as power supplies for electronic devices, power storage power supplies, and electric vehicle power supplies that have been improved in performance and miniaturization. ing.

【0003】このような非水電解質電池には、正極と負
極に、固有の電位水準においてリチウムを吸蔵または放
出、吸蔵および放出が可能な材料を活物質として使用
し、電解質に非水系の液体を使用した液系のものと電解
質に固体またはゲルを使用した高分子系のものがある。
In such a nonaqueous electrolyte battery, a material capable of occluding or releasing lithium at a specific potential level is used as an active material for a positive electrode and a negative electrode, and a nonaqueous liquid is used as an electrolyte. There are liquid type used and polymer type using solid or gel as the electrolyte.

【0004】上記した非水電解質電池のうち、電解質に
非水系の液体を使用した液系のものは、電解質に固体ま
たはゲルを使用した高分子系のものよりリチウムイオン
伝導性が良好であるため、高率放電を必要とする負荷に
広く用いられているが、このような高率放電は電池温度
の上昇や内圧の上昇の原因になり、それによって電池が
設置される周囲温度が上昇し、漏液や可燃性ガスが発生
するといった危険性があるため、高温下での保存性、安
全性に配慮する必要がある。
Among the non-aqueous electrolyte batteries described above, a liquid battery using a non-aqueous liquid as an electrolyte has a better lithium ion conductivity than a polymer battery using a solid or gel as an electrolyte. Widely used for loads that require high-rate discharge, such high-rate discharge causes an increase in battery temperature and internal pressure, thereby increasing the ambient temperature where the battery is installed, Because of the danger of liquid leakage and the generation of flammable gas, it is necessary to consider storage stability and safety at high temperatures.

【0005】一方、電解質に固体またはゲルを使用した
高分子系のものは、高率放電用には多用されていなかっ
たが、液系のものより安全性が高いことから、徐々にこ
のような用途に適したものが普及してきており、液系の
ものと同様の配慮が必要になってきている。
On the other hand, polymer-based electrolytes using solids or gels as electrolytes have not been widely used for high-rate discharges, but because of their higher safety than liquid-based electrolytes, such electrolytes are gradually used. The thing suitable for a use is spreading, and the same consideration as a liquid thing is needed.

【0006】上記した非水電解質電池は、正極がLiC
oO2 ,LiMn2 4 などの正極活物質、黒鉛やカー
ボンブラックなどの導電助剤、ポリフッ化ビニリデンな
どの結着剤からなる正極合剤をアルミニウムなどからな
る正極集電体上に担持したものであり、負極が炭素材料
や遷移金属酸化物などの負極活物質、ポリフッ化ビニリ
デンなどの結着剤からなる負極合剤を銅などからなる負
極集電体上に担持したものであり、これらが隔離体を介
して配されてなる。
In the above nonaqueous electrolyte battery, the positive electrode is LiC
A positive electrode active material such as oO 2 or LiMn 2 O 4 , a conductive additive such as graphite or carbon black, and a positive electrode mixture comprising a binder such as polyvinylidene fluoride supported on a positive electrode current collector made of aluminum or the like The negative electrode is a negative electrode active material such as a carbon material or a transition metal oxide, and a negative electrode mixture comprising a binder such as polyvinylidene fluoride supported on a negative electrode current collector made of copper or the like. It is arranged via an isolator.

【0007】そして、電解質に非水系の液体を使用した
液系のものは、隔離体が多孔性ポリエチレンフィルムか
らなるセパレータであり、このセパレータ、前記正極お
よび負極に、プロピレンカーボネート、エチレンカーボ
ネートなどの環状炭酸エステルやジエチルカーボネー
ト、ジメチルカーボネートなどの鎖状炭酸エステルのよ
うなエステル類、ジメトキシエタンなどの鎖状エーテ
ル、テトラヒドロフランなどの環状エーテルなどのエー
テル類、γ−ブチルラクトンなどのラクトン類などから
なる混合溶媒に、過塩素酸リチウム(LiClO4 )、
4フッ化硼酸リチウム(LiBF4 )、6フッ化燐酸リ
チウム(LiPF6 )、トリフルオロメタンスルホン酸
リチウム(LiCF3 SO3 )のようなリチウム塩を溶
解させた電解液が含浸されてなる。
In a liquid system using a non-aqueous liquid as an electrolyte, a separator in which a separator is made of a porous polyethylene film, and the separator, the positive electrode and the negative electrode are provided with a cyclic material such as propylene carbonate or ethylene carbonate. Mixtures composed of esters such as chain carbonates such as carbonates, diethyl carbonate and dimethyl carbonate, chain ethers such as dimethoxyethane, ethers such as cyclic ethers such as tetrahydrofuran, and lactones such as γ-butyl lactone. Lithium perchlorate (LiClO 4 ) as a solvent,
An electrolyte in which a lithium salt such as lithium tetrafluoroborate (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), or lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) is dissolved is impregnated.

【0008】また、電解質に固体またはゲルを使用した
高分子系のものは、隔離体がポリエチレンオキシドまた
はポリアクリロニトリルなどのポリマー溶媒と前記エス
テル類、前記エーテル類、前記ラクトン類などを混合し
た混合溶媒に前記リチウム塩を溶解したポリマー溶液を
多孔性ポリエチレンフィルムなどに含浸して得た高分子
固体電解質や高分子ゲル電解質であり、この高分子固体
電解質や高分子ゲル電解質は前記正極および負極中にも
含有されてなる。
[0008] In the case of a high-molecular type electrolyte using a solid or gel as an electrolyte, the separator is a mixed solvent in which a polymer solvent such as polyethylene oxide or polyacrylonitrile is mixed with the esters, ethers, lactones and the like. A polymer solid electrolyte or a polymer gel electrolyte obtained by impregnating a polymer solution in which the lithium salt is dissolved in a porous polyethylene film or the like, and the polymer solid electrolyte or the polymer gel electrolyte is contained in the positive electrode and the negative electrode. Is also contained.

【0009】[0009]

【発明が解決しようとする課題】上記のような非水電解
質電池では、溶媒であるエステル類、エーテル類、ラク
トン類は高温下において耐酸化性が低下するため、周囲
温度が60〜80℃の雰囲気下で電池を動作させたり、
このような雰囲気下で電池を放置すると、放電容量の低
下が大きくなるという問題があった。
In the above-mentioned non-aqueous electrolyte battery, the solvents such as esters, ethers and lactones have low oxidation resistance at high temperatures, and therefore have an ambient temperature of 60 to 80 ° C. Operating the battery in an atmosphere,
If the battery is left in such an atmosphere, there is a problem that the discharge capacity is greatly reduced.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するた
め、請求項1記載の発明は、正極と負極とが隔離体を介
して配されてなる非水電解質電池において、正極、負
極、隔離体の少なくとも一つが、芳香族有機リン化合物
を含有することを特徴とするものであり、これにより、
高温下において正極中で電解液、高分子固体電解質、高
分子ゲル電解質に含まれるエステル類、エーテル類、ラ
クトン類が酸化され、劣化するのを抑制することができ
るとともに、正極から活性酸素が発生するほどの異常な
高温下においては活性酸素の強い酸化力を失活させるこ
とができる。
In order to solve the above-mentioned problems, the invention according to claim 1 is directed to a non-aqueous electrolyte battery in which a positive electrode and a negative electrode are arranged via an isolator. At least one of which is characterized by containing an aromatic organic phosphorus compound, whereby
Ester, ethers, and lactones contained in the electrolyte, polymer solid electrolyte, and polymer gel electrolyte can be oxidized and degraded in the positive electrode at high temperatures, and active oxygen can be generated from the positive electrode. Under an abnormally high temperature, the strong oxidizing power of active oxygen can be deactivated.

【0011】また、請求項2記載の発明は、請求項1記
載の非水電解質電池において、芳香族有機リン化合物は
酸化物またはハロゲン化物であることを特徴とするもの
であり、これにより、エステル類、エーテル類、ラクト
ン類の酸化を効率よく抑制することができる。
According to a second aspect of the present invention, in the nonaqueous electrolyte battery according to the first aspect, the aromatic organic phosphorus compound is an oxide or a halide. , Ethers and lactones can be efficiently suppressed from being oxidized.

【0012】また、請求項3記載の発明は、請求項1ま
たは2記載の非水電解質電池において芳香族有機リン化
合物の含有量は正極、負極、隔離体中に含まれる電解
液、高分子固体電解質、高分子ゲル電解質の重量の0.
1〜5%であることを特徴とするものであり、これによ
り、電池の充電効率や放電容量を低下させることなく、
エステル類、エーテル類、ラクトン類の酸化を抑制する
ことができる。
According to a third aspect of the present invention, there is provided the nonaqueous electrolyte battery according to the first or second aspect, wherein the content of the aromatic organic phosphorus compound is a positive electrode, a negative electrode, an electrolytic solution contained in the separator, a polymer solid. 0% of the weight of the electrolyte and polymer gel electrolyte.
1 to 5%, thereby reducing the charging efficiency and discharge capacity of the battery.
Oxidation of esters, ethers and lactones can be suppressed.

【0013】[0013]

【発明の実施の形態】以下、本発明をその実施の形態に
基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described based on its embodiments.

【0014】本発明の実施の形態に係る非水電解質電池
の特徴は、正極、負極、隔離体の少なくとも一つに、芳
香族有機リン化合物を含有させたことである。
A feature of the nonaqueous electrolyte battery according to the embodiment of the present invention is that at least one of the positive electrode, the negative electrode, and the separator contains an aromatic organic phosphorus compound.

【0015】前記芳香族有機リン化合物としては、ジフ
ェニルフォスフィン、トリフェニルフォスフィン、トリ
オルトトリルフォスフィン、メタトリルフォスフィン、
パラトリルフォスフィン、ジシクロヘキシルフェニルフ
ォスフィン、ジフェニルシクロヘキシルフォスフィンが
あり、特にトリフェニルフォスフィンオキシドのような
酸化物やジフェニルフォスフィナスクロライドのような
ハロゲン化物が好ましい。
The aromatic organic phosphorus compound includes diphenylphosphine, triphenylphosphine, triorthotolylphosphine, metatolylphosphine,
There are paratolylphosphine, dicyclohexylphenylphosphine, and diphenylcyclohexylphosphine, and an oxide such as triphenylphosphine oxide and a halide such as diphenylphosphine chloride are particularly preferable.

【0016】また、前記芳香族有機リン化合物の含有量
は正極、負極、隔離体中に含まれる電解液、高分子固体
電解質、高分子ゲル電解質の重量の1〜10%とするの
がよく、より好ましくは3〜10%とするのがよい。こ
のことは、芳香族有機リン化合物の含有量が1%以下で
あると高温下でエステル類、エーテル類、ラクトン類が
酸化され、劣化するのを抑制できなくなることに基づく
ものであり、10%以上であると電池の充電効率や放電
容量が低下することに基づくものである。
The content of the aromatic organic phosphorus compound is preferably 1 to 10% of the weight of the electrolyte solution, the solid polymer electrolyte, and the polymer gel electrolyte contained in the positive electrode, the negative electrode, and the separator. More preferably, it is 3 to 10%. This is based on the fact that when the content of the aromatic organic phosphorus compound is 1% or less, esters, ethers, and lactones are oxidized at high temperatures and cannot be suppressed from deteriorating. This is based on the fact that the charging efficiency and discharge capacity of the battery decrease.

【0017】[0017]

【実施例】図1は本発明の実施例および比較例に係る非
水電解質電池の断面図である。
FIG. 1 is a sectional view of a nonaqueous electrolyte battery according to an example of the present invention and a comparative example.

【0018】図1に示した非水電解質電池は、正極活物
質、導電助剤および結着剤からなる正極合剤1がアルミ
ニウム製の正極集電体2上に担持された正極、負極活物
質および結着剤からなる負極合剤3が銅製の負極集電体
4上に担持された負極、前記正、負極間に介在させた隔
離体5からなる。
The nonaqueous electrolyte battery shown in FIG. 1 has a positive electrode mixture 1 comprising a positive electrode active material, a conductive auxiliary agent and a binder supported on an aluminum positive electrode current collector 2, and a negative electrode active material. A negative electrode mixture 3 comprising a binder is supported on a negative electrode current collector 4 made of copper, and a separator 5 is interposed between the positive and negative electrodes.

【0019】(実施例1)正極活物質としてのLiCo
2 が85重量%、導電助剤としてのカーボンブラック
が10重量%、結着剤としてのポリフッ化ビニリデンが
5重量%からなる正極合剤1をアルミニウム製の正極集
電体2上に担持した合剤の厚さが約100μmの正極、
負極活物質としての黒鉛が95重量%、結着剤としての
ポリフッ化ビニリデンが5重量%からなる負極合剤3を
銅製の負極集電体4上に担持した合剤の厚さが約100
μmの負極、前記正、負極間に介在させた隔離体5から
なり、前記隔離体5が多孔性ポリエチレンフィルムから
なるセパレータであり、このセパレータと前記正極、負
極とに、リチウム塩としての1モルのLiPF4 を、溶
媒としてのエチレンカーボネートとジメチルカーボネー
トとの混合溶媒に溶解した電解液が含浸されるととも
に、前記電解液中には芳香族有機リン化合物としてのジ
フェニルフォスフィンを5重量%含有させたものであ
る。こうして得られた電池の容量は1000mAhであ
る。
(Example 1) LiCo as a positive electrode active material
A positive electrode mixture 1 composed of 85% by weight of O 2, 10% by weight of carbon black as a conductive additive, and 5% by weight of polyvinylidene fluoride as a binder was supported on a positive electrode current collector 2 made of aluminum. A cathode having a mixture thickness of about 100 μm,
A negative electrode mixture 3 comprising 95% by weight of graphite as a negative electrode active material and 5% by weight of polyvinylidene fluoride as a binder is supported on a negative electrode current collector 4 made of copper with a thickness of about 100%.
μm, a separator 5 interposed between the positive and negative electrodes, wherein the separator 5 is a separator made of a porous polyethylene film. Of LiPF 4 in a mixed solvent of ethylene carbonate and dimethyl carbonate as a solvent is impregnated, and 5% by weight of diphenylphosphine as an aromatic organic phosphorus compound is contained in the electrolyte. It is a thing. The capacity of the battery thus obtained is 1000 mAh.

【0020】(実施例2)隔離体5が約10万の平均分
子量をもったポリアクリロニトリル1重量部に、前述し
た電解液5重量部を含浸した厚さが約30μmの高分子
ゲル電解質であり、この高分子ゲル電解質中に3重量%
のジフェニルフォスフィンを含有させたものであり、正
極活物質としてのLiCoO2 が67重量%、導電助剤
としてのアセチレンブラックが8重量%、前記高分子ゲ
ル電解質が25重量%からなる正極合剤1をアルミニウ
ム製の正極集電体2上に担持した合剤の厚さが約100
μmの正極、負極活物質としての黒鉛が80重量%、前
記高分子ゲル電解質が20重量%からなる負極合剤3を
銅製の負極集電体4上に担持した合剤の厚さが約100
μmの負極、前記正、負極間に前記隔離体5を介在させ
たものである。こうして得られた電池の容量は1000
mAhである。
(Example 2) The separator 5 is a polymer gel electrolyte having a thickness of about 30 μm in which 1 part by weight of polyacrylonitrile having an average molecular weight of about 100,000 is impregnated with 5 parts by weight of the above-mentioned electrolytic solution. 3% by weight in this polymer gel electrolyte
A positive electrode mixture comprising 67% by weight of LiCoO 2 as a positive electrode active material, 8% by weight of acetylene black as a conductive aid, and 25% by weight of the polymer gel electrolyte 1 is supported on a positive electrode current collector 2 made of aluminum and has a thickness of about 100
The negative electrode mixture 3 comprising 80% by weight of graphite as a positive electrode and negative electrode active material and 20% by weight of the polymer gel electrolyte on a negative electrode current collector 4 made of copper has a thickness of about 100 μm.
The separator 5 is interposed between the negative electrode of μm and the positive and negative electrodes. The capacity of the battery thus obtained is 1000
mAh.

【0021】(実施例3)隔離体5が約5000の平均
分子量をもったポリエチレンオキシドの架橋体1重量部
に、前述した電解液2重量部を含浸した厚さが約30μ
mの高分子固体電解質であり、この高分子固体電解質中
に1重量%のジフェニルフォスフィンを含有させたもの
であり、正極活物質としてのLiCoO2 が67重量
%、導電助剤としてのアセチレンブラックが8重量%、
前記高分子固体電解質が25重量%からなる正極合剤1
をアルミニウム製の正極集電体2上に担持した合剤の厚
さが約100μmの正極、負極活物質としての黒鉛が8
0重量%、前記高分子ゲル電解質が20重量%からなる
負極合剤3を銅製の負極集電体4上に担持した合剤の厚
さが約100μmの負極、前記正、負極間に前記隔離体
5を介在させたものである。こうして得られた電池の容
量は1000mAhである。
Example 3 A separator 5 was prepared by impregnating 1 part by weight of a crosslinked polyethylene oxide having an average molecular weight of about 5,000 with 2 parts by weight of the above-mentioned electrolytic solution to a thickness of about 30 μm.
m, a solid polymer electrolyte containing 1% by weight of diphenylphosphine, 67% by weight of LiCoO 2 as a positive electrode active material, and acetylene black as a conductive additive. Is 8% by weight,
Positive electrode mixture 1 comprising 25% by weight of the polymer solid electrolyte
Of a mixture having a thickness of about 100 μm and a graphite serving as a negative electrode active material having a thickness of about 100 μm, on a positive electrode current collector 2 made of aluminum.
A negative electrode mixture 3 comprising 0% by weight and 20% by weight of the polymer gel electrolyte is supported on a negative electrode current collector 4 made of copper, and the thickness of the mixture is about 100 μm. The body 5 is interposed. The capacity of the battery thus obtained is 1000 mAh.

【0022】(比較例1)電解液中に芳香族有機リン化
合物としてのジフェニルフォスフィンを含有させていな
いこと以外は実施例1と同じのものである。
Comparative Example 1 The same as Example 1 except that diphenylphosphine as an aromatic organic phosphorus compound was not contained in the electrolytic solution.

【0023】(比較例2)高分子ゲル電解質中に芳香族
有機リン化合物としてのジフェニルフォスフィンを含有
させていないこと以外は実施例2と同じのものである。
Comparative Example 2 The same as Example 2 except that diphenylphosphine as an aromatic organic phosphorus compound was not contained in the polymer gel electrolyte.

【0024】(比較例3)高分子固体電解質中に芳香族
有機リン化合物としてのジフェニルフォスフィンを含有
させていないこと以外は実施例3と同じのものである。
Comparative Example 3 The same as Example 3 except that diphenylphosphine as an aromatic organic phosphorus compound was not contained in the solid polymer electrolyte.

【0025】上記した実施例1〜3に係る非水電解質電
池および比較例1〜3に係る非水電解質電池を、周囲温
度60℃の雰囲気下で1か月間放置し、放置後の各電池
の自己放電量を調査し、結果を表1に示す。
The nonaqueous electrolyte batteries according to Examples 1 to 3 and the nonaqueous electrolyte batteries according to Comparative Examples 1 to 3 were allowed to stand for one month in an atmosphere at an ambient temperature of 60 ° C. The amount of self-discharge was investigated, and the results are shown in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】表1から、実施例1〜3に係る非水電解質
電池は、自己放電量が15〜20%であり、比較例1〜
3に係る非水電解質電池より小さくなることがわかっ
た。
From Table 1, it can be seen that the non-aqueous electrolyte batteries according to Examples 1 to 3 have a self-discharge amount of 15 to 20% and Comparative Examples 1 to 5.
3 was smaller than the non-aqueous electrolyte battery according to Example 3.

【0028】次に、上記した実施例1〜3に係る非水電
解質電池および比較例1〜3に係る非水電解質電池につ
いて充放電サイクル試験を行い、各電池の放電容量の変
化を調査した結果を図2に示す。なお、充放電サイクル
は、周囲温度が60℃の雰囲気下で、充電を0.2Cの
定電流で終止電圧が4.2Vまでとし、放電を0.2C
の定電流で終止電圧が2.7Vまでとした。
Next, charge-discharge cycle tests were performed on the non-aqueous electrolyte batteries according to Examples 1 to 3 and the non-aqueous electrolyte batteries according to Comparative Examples 1 to 3, and the change in the discharge capacity of each battery was examined. Is shown in FIG. In the charge / discharge cycle, in an atmosphere at an ambient temperature of 60 ° C., charging was performed at a constant current of 0.2 C, the final voltage was set to 4.2 V, and discharging was performed at a rate of 0.2 C.
And the final voltage was set to 2.7 V.

【0029】図2から、実施例1〜3に係る非水電解質
電池は、比較例1〜3に係る非水電解質電池より放電容
量の低下が小さいことがわかった。
From FIG. 2, it was found that the non-aqueous electrolyte batteries according to Examples 1 to 3 exhibited a smaller decrease in discharge capacity than the non-aqueous electrolyte batteries according to Comparative Examples 1 to 3.

【0030】上記した実施例1〜3に係る非水電解質電
池および比較例1〜3に係る非水電解質電池電池を、満
充電状態にして周囲温度を250℃まで上昇させた時の
状況を調査し、結果を表2に示す。
The situation when the ambient temperature was raised to 250 ° C. with the non-aqueous electrolyte batteries according to Examples 1 to 3 and the non-aqueous electrolyte batteries according to Comparative Examples 1 to 3 being fully charged was investigated. The results are shown in Table 2.

【0031】[0031]

【表2】 [Table 2]

【0032】表2から、実施例1〜3に係る非水電解質
電池は、比較例1〜3に係る非水電解質電池のような異
常が発生しないことがわかった。
From Table 2, it was found that the non-aqueous electrolyte batteries according to Examples 1 to 3 did not cause an abnormality unlike the non-aqueous electrolyte batteries according to Comparative Examples 1 to 3.

【0033】上記した実施例では、芳香族有機リン化合
物は電解液、高分子ゲル電解質または高分子固体電解質
中に含有させているが、正極および/または負極中に含
有させてもよい。特に、正極中に含有させると、高温下
において正極中で電解液または電解質が酸化されて劣化
するのを抑制することができるとともに、上述した異常
な高温下においては正極から発生する活性酸素の酸化力
を失活させることができるので、発火に至るといった危
険性を回避することができる。
In the above embodiment, the aromatic organic phosphorus compound is contained in the electrolytic solution, the polymer gel electrolyte or the polymer solid electrolyte, but may be contained in the positive electrode and / or the negative electrode. In particular, when contained in the positive electrode, it is possible to prevent the electrolyte or the electrolyte from being oxidized and degraded in the positive electrode at high temperatures, and to oxidize active oxygen generated from the positive electrode at abnormal abnormal high temperatures. Since the force can be deactivated, the danger of firing can be avoided.

【0034】また、上記した実施例では、芳香族有機リ
ン化合物としてジフェニルフォスフィンを用いたもので
あるが、前述した酸化物やハロゲン化物であっても同様
の効果が得られる。
In the above-described embodiment, diphenylphosphine is used as the aromatic organic phosphorus compound. However, the same effects can be obtained with the above-mentioned oxides and halides.

【0035】[0035]

【発明の効果】上記した如く、各請求項記載の発明は、
正極、負極、隔離体の少なくとも一つに芳香族有機リン
化合物を含有させたことにより、高温特性および高温下
での保存性、安全性を向上させることができるので、こ
のような雰囲気下で非水電解質電池を使用する際の信頼
性の向上に寄与することができる。
As described above, the invention described in each claim is
By including an aromatic organic phosphorus compound in at least one of the positive electrode, the negative electrode, and the separator, high-temperature characteristics, storage stability at high temperatures, and safety can be improved. This can contribute to improvement of reliability when using the water electrolyte battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例および比較例に係る非水電解質
電池の断面図である。
FIG. 1 is a cross-sectional view of a non-aqueous electrolyte battery according to an example of the present invention and a comparative example.

【図2】本発明の実施例および比較例に係る非水電解質
電池の充放電サイクル特性を調査した図である。
FIG. 2 is a diagram illustrating the charge / discharge cycle characteristics of nonaqueous electrolyte batteries according to Examples and Comparative Examples of the present invention.

【符号の説明】[Explanation of symbols]

1 正極合剤 2 正極集電体 3 負極合剤 4 負極集電体 5 隔離体 DESCRIPTION OF SYMBOLS 1 Positive electrode mixture 2 Positive electrode collector 3 Negative electrode mixture 4 Negative electrode collector 5 Isolator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極とが隔離体を介して配されて
なる非水電解質電池において、正極、負極、隔離体の少
なくとも一つが、芳香族有機リン化合物を含有すること
を特徴とする非水電解質電池。
1. A non-aqueous electrolyte battery in which a positive electrode and a negative electrode are arranged via an isolator, wherein at least one of the positive electrode, the negative electrode, and the isolator contains an aromatic organic phosphorus compound. Water electrolyte battery.
【請求項2】 請求項1記載の非水電解質電池におい
て、芳香族有機リン化合物は酸化物またはハロゲン化物
であることを特徴とする非水電解質電池。
2. The non-aqueous electrolyte battery according to claim 1, wherein the aromatic organic phosphorus compound is an oxide or a halide.
【請求項3】 請求項1または2記載の非水電解質電池
において、芳香族有機リン化合物の含有量は正極、負
極、隔離体中に含まれる電解液、高分子固体電解質、高
分子ゲル電解質の重量の1〜10%であることを特徴と
する非水電解質電池。
3. The non-aqueous electrolyte battery according to claim 1, wherein the content of the aromatic organic phosphorus compound is selected from the group consisting of a positive electrode, a negative electrode, an electrolyte contained in the separator, a polymer solid electrolyte, and a polymer gel electrolyte. Non-aqueous electrolyte battery characterized by being 1 to 10% by weight.
JP04040398A 1998-02-23 1998-02-23 Non-aqueous electrolyte battery Expired - Fee Related JP4438103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04040398A JP4438103B2 (en) 1998-02-23 1998-02-23 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04040398A JP4438103B2 (en) 1998-02-23 1998-02-23 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH11238513A true JPH11238513A (en) 1999-08-31
JP4438103B2 JP4438103B2 (en) 2010-03-24

Family

ID=12579711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04040398A Expired - Fee Related JP4438103B2 (en) 1998-02-23 1998-02-23 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4438103B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198090A (en) * 2000-12-25 2002-07-12 Mitsubishi Chemicals Corp Non-aqueous electrolyte secondary cell
KR100791426B1 (en) 2000-06-16 2008-01-07 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Oil clearing sheet for makeup
WO2012117826A1 (en) * 2011-03-03 2012-09-07 株式会社豊田中央研究所 Nonaqueous-electrolyte halogen cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100791426B1 (en) 2000-06-16 2008-01-07 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Oil clearing sheet for makeup
JP2002198090A (en) * 2000-12-25 2002-07-12 Mitsubishi Chemicals Corp Non-aqueous electrolyte secondary cell
WO2012117826A1 (en) * 2011-03-03 2012-09-07 株式会社豊田中央研究所 Nonaqueous-electrolyte halogen cell
JP2012195269A (en) * 2011-03-03 2012-10-11 Toyota Central R&D Labs Inc Nonaqueous electrolyte halogen battery

Also Published As

Publication number Publication date
JP4438103B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
EP0759641B1 (en) Polymerizable aromatic additives for overcharge protection in non-aqueous rechargeable lithium batteries
JP3675460B2 (en) Organic electrolyte and lithium battery using the same
US5928812A (en) High performance lithium ion polymer cells and batteries
JP4625231B2 (en) Non-aqueous secondary battery
US20040072080A1 (en) Nonaqueous electrolyte secondary cell
KR20030051609A (en) Electrolyte for non-aqueous cell and non-aqueous secondary cell
KR100573109B1 (en) Organic electrolytic solution and lithium battery employing the same
JPH11339850A (en) Lithium-ion secondary battery
KR20050040974A (en) Lithium battery having effective performance
JPH10247517A (en) Nonaqueous electrolyte and secondary battery using it
JP2015088370A (en) Positive electrode, and lithium ion secondary battery
JP2009048815A (en) Nonaqueous electrolyte solution secondary battery
JP2005294028A (en) Lithium secondary battery
JP4198997B2 (en) Lithium polymer battery
JP3107300B2 (en) Lithium secondary battery
JP4438103B2 (en) Non-aqueous electrolyte battery
KR20190088333A (en) Electrode for solid electrolyte battery and solid electrolyte battery including the same
KR100766930B1 (en) An electrolyte for a lithium secondary battery and a lithium secondary battery comprising the same
JPH08162155A (en) Nonaqueous electrolytic battery
JP3448544B2 (en) Non-aqueous electrolyte battery
KR100693288B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP4359942B2 (en) Non-aqueous electrolyte battery
JP2000323126A (en) Nonaqueous electrolyte secondary battery and its charging method
JP2004103372A (en) Nonaqueous electrolytic solution for electrochemical device, and electrochemical device using the same
KR20010106515A (en) High performance lithium ion polymer cells and batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees