JP4406947B2 - Non-aqueous electrolyte battery - Google Patents
Non-aqueous electrolyte battery Download PDFInfo
- Publication number
- JP4406947B2 JP4406947B2 JP36656298A JP36656298A JP4406947B2 JP 4406947 B2 JP4406947 B2 JP 4406947B2 JP 36656298 A JP36656298 A JP 36656298A JP 36656298 A JP36656298 A JP 36656298A JP 4406947 B2 JP4406947 B2 JP 4406947B2
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- aqueous electrolyte
- battery
- group
- solution according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Primary Cells (AREA)
- Secondary Cells (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、非水系電解液電池に関する。詳しくは、特定の環状サルファイトを含有する電解液を用いる非水系電解液電池に関する。
本発明の電池は、高容量、長期安定性に優れ、二次電池の場合には、その上サイクル特性にも優れている。
【0002】
【従来の技術】
近年の電気製品の軽量化、小型化に伴い、高いエネルギー密度を持つリチウム電池が注目され様々な研究が行われている。また、リチウム電池の適用分野の拡大に伴い電池特性の改善も要望されている。
このようなリチウム電池の電解液の溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、γ−ブチロラクトン等のカーボネート類又はエステル類の非水系有機溶媒が用いられてきた。
【0003】
一次電池においては溶媒としてプロピレンカーボネート、或いは、1,2−ジメトキシエタンとの混合溶媒が広く用いられている。プロピレンカーボネートは高誘電率溶媒であり、電解質をよく溶かし、電気伝導率は高いが、単独で用いた場合には電解液の粘度が高くなり、特に低温での放電特性が著しく低下する。そのため低温での使用を考慮した電池では1,2−ジメトキシエタンと混合して用いる場合が多い。しかし、1,2−ジメトキシエタンは沸点が低く、長期安定性、安全性の面では問題があった。
二次電池においては、電極材の種類によっては前記のプロピレンカーボネートを用いるとガス発生等の問題が起きたりすることもあるため、代わりにエチレンカーボネートが用いられる。エチレンカーボネートはプロピレンカーボネートに比べ、凝固点が36.4℃と高いため単独で用いられることはなく、低粘度溶媒と混合して用いられる。
【0004】
【発明が解決しようとする課題】
低粘度溶媒として用いられている溶媒としては、種々の溶媒が検討されているが、低粘度溶媒は一般的に沸点も低い場合が多いため、大量に添加すると安全性の面で問題があり、少量しか添加しないと低温での電気伝導率及び粘度の面で問題がある。このような状況下、リチウム二次電池用電解液にはエチレンカーボネートとジエチルカーボネートの混合溶媒等が用いられている。しかし、これらの電解液を用いた電池でもサイクル特性等の面で問題があった。
本発明の目的は、高容量で、且つ長期安定性に優れ、二次電池の場合にはサイクル特性の優れた非水系電解液電池を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、かかる事情に鑑み鋭意検討した結果、特定の環状サルファイトを含有する電解液を用いる非水系電解液電池が前記課題を解決し得ることを見出し、本発明を完成するに至った。
即ち、本発明の要旨は、リチウムを吸蔵・放出することが可能な負極及び正極と、溶質及び有機系溶媒とからなる非水系電解液と、セパレータ及び外缶とを備えた非水系電解液電池に使用される非水電解液であって、前記有機系溶媒が下記一般式(I)で表される化合物を0.1〜30質量%含有することを特徴とする非水系電解液及びこれを用いた非水系電解液電池。
【0006】
【化3】
【0007】
(式中、R1 及びR2 は、それぞれ独立して、二価の炭素数1ないし4の炭化水素基を表す。また、Xは、O、NR3 、PR4 又はR5 P=O(但し、R3 、R4 及びR5 は、水素原子又は炭素数1〜4の炭化水素基を示す)のいずれかを表す。)
、にある。
【0008】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の非水系電解液電池は、その電解液の有機系溶媒が式(I)で表される化合物を含有することを特徴とする。
【0009】
【化4】
【0010】
(式中、R1 及びR2 は、それぞれ独立して、二価の炭素数1ないし4の炭化水素基を表す。また、Xは、O、NR3 、PR4 又はR5 P=O(但し、R3 、R4 及びR5 は、水素原子又は炭素数1〜4の炭化水素基を示す)のいずれかを表す。)
【0011】
式(I)において、R1 及びR2 は、それぞれ独立して、二価の炭素数1ないし4の炭化水素基を表す。その具体例としては、メチレン基、エチレン基、プロピレン基、メチルメチレン基、ジメチルメチレン基、プロピルメチレン基、メチルエチレン基、エチルエチレン基、メチルプロピレン基、等が挙げられる。これらの中、置換基があってもよいメチレン基が好ましい。
また、Xは、O、NR3 、PR4 又はR5 P=Oのいずれかを表し、ここに、R3 、R4 及びR5 は、水素原子又はメチル基、エチル基、プロピル基若しくはブチル基のような炭素数1〜4の炭化水素基を表す。これらの中、Xとしては、OとR5 P=Oが好ましく、Oが最も好ましい。また、R3 、R4 及びR5 としては、水素原子及びメチル基が好ましい。
そして、このような環状サルファイトの具体例としては、例えばエリスリタンサルファイト、
【0012】
【化5】
【0013】
等が挙げられる。これらの中、式(II)のエリスリタンサルファイトが好ましい。
【0014】
【化6】
【0015】
有機系溶媒の他の成分としては、エチレンカーボネート、プロピレンカーボネート等の環状カーボネート類、ジメチルカーボネート、ジエチルカーボネート等の鎖状カーボネート類、γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類、酢酸メチル、プロピオン酸メチル等の鎖状エステル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類、ジメトキシエタン、ジメトキシメタン等の鎖状エーテル類、スルフォラン、2−メチルスルフォラン等の環状スルホン類やジメチルスルホン、ジエチルスルホン等の鎖状スルホン類等を用いることができる。これらの溶媒は二種類以上混合して用いても良い。
そして、式(I)の化合物は、有機系溶媒中の含有量が0.1〜30質量%、好ましくは0.1〜15質量%となるように用いられる。その含有量が0.1質量%未満であると、十分な保護被膜の形成がなされず、また、30質量%を越えると電解液の粘度が高くなって、電気伝導率が低くなり、電池の性能が低下するため好ましくない。
【0016】
溶質としては、通常、リチウム塩が用いられる。リチウム塩については特に限定はされないが、その具体例としては、例えばLiClO4 、LiPF6、LiBF4、LiSbF6等の無機リチウム塩又はLiCF3SO3、LiN(CF3SO2)2、LiN(CF3CF2SO2)2、LiN(CF3SO2)(C4F9SO2)、LiC(CF3SO2)3等の含フッ素有機リチウム塩が挙げられる。これらの中、LiPF6、LiBF4、LiCF3SO3、LiN(CF 3 SO 2 ) 2等が好ましい。なお、これらの溶質は二種類以上混合して用いても良い。
また、電解液中の溶質の濃度は、通常、0.5〜2.0モル/L、好ましくは0.5〜1.5モル/Lである。0.5モル/L未満又は2モル/Lを越える範囲では、電解液の電気伝導率が低くなり、電池の性能が低下するため好ましくない。
【0017】
電池を構成する負極材料としては、様々な熱分解条件での有機物の熱分解物や人造黒鉛、天然黒鉛等のリチウムを吸蔵・放出可能な炭素質材料、酸化錫、酸化珪素等のリチウムを吸蔵・放出可能な金属酸化物材料、リチウム金属、種々のリチウム合金等を用いることができる。これらの負極材料は二種類以上混合して用いても良い。
負極の形状は、必要に応じて結着剤及び導電剤と共に混合した後、集電体に塗布したシート電極及びプレス成形を施したペレット電極が使用可能である。
【0018】
電池を構成する正極材料としては、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物等のリチウム遷移金属複合酸化物材料、二酸化マンガン等の遷移金属酸化物材料、フッ化黒鉛等の炭素質材料等のリチウムを吸蔵・放出可能な材料が使用可能である。
正極の形状は、必要に応じて結着剤及び導電剤と共に混合した後、集電体に塗布したシート電極及びプレス成形を施したペレット電極が使用可能である。
電池を構成するセパレータとしては、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布が使用可能である。
電池の形状は、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ等が使用可能である。
【0019】
【実施例】
以下に、実施例を挙げて、本発明を更に具体的に説明するが、本発明はその要旨を越えない限り、これらの実施例に限定されるものではない。
(実施例1)
負極活物質として、KS−44(人造黒鉛粉末、ティムカル社製、商品名)94重量部にポリフッ化ビニリデンKF−1000(クレハ化学社製、商品名)6重量部を混合し、N−メチル−2−ピロリドンで分散させスラリー状としたものを負極集電体である厚さ18μmの銅箔上に均一に塗布し、乾燥後、直径12.5mmの円板状に打ち抜いて負極とした。
電解液については、乾燥アルゴン雰囲気下で、十分に乾燥を行った六フッ化リン酸リチウム(LiPF6 )を溶質として用い、エチレンカーボネート、ジエチルカーボネート及びエリスリタンサルファイトを5:4:1(重量比)の割合で混合した溶液にLiPF6 を1モル/Lの割合で溶解して調製した。
この電解液と、上記の電極及びリチウム金属を対極及び参照極として用いコイン型非水系電解液電池を、乾燥アルゴン雰囲気下で作製した。
この電池を25℃において、放電を0.2mA・充電を0.4mAの定電流、カットオフ電圧を0.0/1.5Vで充放電試験を行った。
この電池における1サイクル目及び3サイクル目の負極重量当りの可逆容量を表1に示す。
【0020】
(比較例1)
エチレンカーボネート及びジエチルカーボネートを5:4(重量比)の割合で混合した溶液にLiPF6 を1モル/Lの割合で溶解した電解液を用い、それ以外は実施例1と同様にしてコイン型電池を作製し充放電試験を行った。
この電池における1サイクル目及び3サイクル目の負極重量当りの可逆容量を表1に示す。
実施例1及び比較例1から明らかなように、電解液中にエリスリタンサルファイトを含有することによって、可逆容量及びサイクル特性が改善されている。
【0021】
(実施例2)
実施例2では、プロピレンカーボネート及びエリスリタンサルファイトを9:1(重量比)で混合した溶液にLiPF6 を1モル/Lの割合で溶解した電解液を用い、それ以外については前記実施例1と同様にコイン型電池を作製した。
この電池の1サイクル目及び3サイクル目の負極重量当りの可逆容量を表1に示す。
【0022】
(比較例2)
プロピレンカーボネートにLiPF6 を1モル/Lの割合で溶解した電解液を用い、それ以外は実施例2と同様にしてコイン型電池を作製した。
これらの電池の1サイクル目及び3サイクル目の負極重量当りの可逆容量を表1に示す。
実施例2及び比較例2よりプロピレンカーボネート単独の電解液の場合にはプロピレンカーボネートが負極の炭素材料表面で分解し、容量を得ることはできないが、プロピレンカーボネートにエリスリタンサルファイトを添加することにより負極上での電解液の分解を防ぎ、可逆容量、サイクル特性が著しく改善されている。
【0023】
【表1】
注)EC:エチレンカーボネート、DEC:ジエチルカーボネート、
ETNS:エリスリタンサルファイト、PC:プロピレンカーボネート
【0024】
【発明の効果】
式(I)の化合物を電解液の成分として選択することにより、高容量、長期安定性、二次電池の場合にはサイクル特性に優れた非水系電解液電池を作製することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte battery. Specifically, the present invention relates to a non-aqueous electrolyte battery using an electrolyte containing a specific cyclic sulfite.
The battery of the present invention has high capacity and excellent long-term stability, and in the case of a secondary battery, it also has excellent cycle characteristics.
[0002]
[Prior art]
With the recent reduction in weight and size of electric products, lithium batteries having high energy density have attracted attention and various studies have been conducted. In addition, with the expansion of the application field of lithium batteries, improvement of battery characteristics is also demanded.
As the solvent for the electrolyte solution of such a lithium battery, nonaqueous organic solvents such as carbonates or esters such as ethylene carbonate, propylene carbonate, diethyl carbonate, and γ-butyrolactone have been used.
[0003]
In primary batteries, propylene carbonate or a mixed solvent with 1,2-dimethoxyethane is widely used as a solvent. Propylene carbonate is a high dielectric constant solvent, dissolves the electrolyte well, and has high electrical conductivity. However, when used alone, the viscosity of the electrolytic solution increases, and the discharge characteristics particularly at low temperatures are remarkably lowered. For this reason, a battery considering use at a low temperature is often mixed with 1,2-dimethoxyethane. However, 1,2-dimethoxyethane has a low boiling point and has a problem in terms of long-term stability and safety.
In the secondary battery, depending on the type of the electrode material, if the propylene carbonate is used, problems such as gas generation may occur. Therefore, ethylene carbonate is used instead. Since ethylene carbonate has a high freezing point of 36.4 ° C. compared to propylene carbonate, it is not used alone, and is used by mixing with a low viscosity solvent.
[0004]
[Problems to be solved by the invention]
As a solvent used as a low viscosity solvent, various solvents have been studied, but since a low viscosity solvent generally has a low boiling point, there is a problem in terms of safety when added in a large amount. If only a small amount is added, there is a problem in terms of electrical conductivity and viscosity at low temperatures. Under such circumstances, a mixed solvent of ethylene carbonate and diethyl carbonate or the like is used for the electrolyte solution for a lithium secondary battery. However, batteries using these electrolytes also have problems in terms of cycle characteristics.
An object of the present invention is to provide a non-aqueous electrolyte battery having a high capacity, excellent long-term stability, and excellent cycle characteristics in the case of a secondary battery.
[0005]
[Means for Solving the Problems]
As a result of intensive studies in view of such circumstances, the present inventors have found that a non-aqueous electrolyte battery using an electrolyte containing a specific cyclic sulfite can solve the above-mentioned problems, and has completed the present invention. It was.
That is, the gist of the present invention is a nonaqueous electrolyte battery comprising a negative electrode and a positive electrode capable of occluding and releasing lithium, a nonaqueous electrolytic solution comprising a solute and an organic solvent, a separator and an outer can. A non-aqueous electrolyte solution, wherein the organic solvent contains 0.1 to 30% by mass of a compound represented by the following general formula (I), and The non-aqueous electrolyte battery used .
[0006]
[Chemical 3]
[0007]
(Wherein R 1 and R 2 each independently represents a divalent hydrocarbon group having 1 to 4 carbon atoms. X represents O, NR 3 , PR 4 or R 5 P═O ( However, R 3, R 4 and R 5 represents either a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms).)
,It is in.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The non-aqueous electrolyte battery of the present invention is characterized in that the organic solvent of the electrolyte contains a compound represented by the formula (I).
[0009]
[Formula 4]
[0010]
(Wherein R 1 and R 2 each independently represents a divalent hydrocarbon group having 1 to 4 carbon atoms. X represents O, NR 3 , PR 4 or R 5 P═O ( However, R 3, R 4 and R 5 represents either a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms).)
[0011]
In the formula (I), R 1 and R 2 each independently represents a divalent hydrocarbon group having 1 to 4 carbon atoms. Specific examples thereof include a methylene group, an ethylene group, a propylene group, a methylmethylene group, a dimethylmethylene group, a propylmethylene group, a methylethylene group, an ethylethylene group, and a methylpropylene group. Among these, a methylene group which may have a substituent is preferable.
X represents any of O, NR 3 , PR 4 or R 5 P═O, wherein R 3 , R 4 and R 5 are a hydrogen atom, a methyl group, an ethyl group, a propyl group or a butyl group. A C1-C4 hydrocarbon group such as a group is represented. Among these, as X, O and R 5 P═O are preferable, and O is most preferable. Moreover, as R < 3 >, R < 4 > and R < 5 >, a hydrogen atom and a methyl group are preferable.
And as a specific example of such cyclic sulfite, for example, erythritan sulfite,
[0012]
[Chemical formula 5]
[0013]
Etc. Of these, erythritan sulfite of formula (II) is preferred.
[0014]
[Chemical 6]
[0015]
Other components of the organic solvent include cyclic carbonates such as ethylene carbonate and propylene carbonate, chain carbonates such as dimethyl carbonate and diethyl carbonate, cyclic esters such as γ-butyrolactone and γ-valerolactone, methyl acetate, Chain esters such as methyl propionate, cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, chain ethers such as dimethoxyethane and dimethoxymethane, cyclic sulfones such as sulfolane and 2-methylsulfolane, dimethyl sulfone, A chain sulfone such as diethyl sulfone can be used. Two or more of these solvents may be used in combination.
And the compound of a formula (I) is used so that content in an organic solvent may be 0.1-30 mass %, Preferably it is 0.1-15 mass %. When the content is less than 0.1% by mass , a sufficient protective film is not formed. When the content exceeds 30% by mass , the viscosity of the electrolytic solution is increased and the electrical conductivity is decreased. This is not preferable because the performance is lowered.
[0016]
As the solute, a lithium salt is usually used. The lithium salt is not particularly limited, and specific examples thereof include inorganic lithium salts such as LiClO 4 , LiPF 6 , LiBF 4 , LiSbF 6, or LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN ( Fluorine-containing organic lithium salts such as CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 and the like can be mentioned. Among these, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 and the like are preferable. In addition, you may use these solutes in mixture of 2 or more types.
Moreover, the density | concentration of the solute in electrolyte solution is 0.5-2.0 mol / L normally, Preferably it is 0.5-1.5 mol / L. In the range of less than 0.5 mol / L or more than 2 mol / L, the electrical conductivity of the electrolytic solution is lowered, and the performance of the battery is deteriorated.
[0017]
The negative electrode materials that make up the battery include organic pyrolysis products under various pyrolysis conditions, carbonaceous materials that can occlude and release lithium such as artificial graphite and natural graphite, and occlusion of lithium such as tin oxide and silicon oxide. A releasable metal oxide material, lithium metal, various lithium alloys, etc. can be used. Two or more kinds of these negative electrode materials may be mixed and used.
As the shape of the negative electrode, a sheet electrode applied to a current collector and a pellet electrode subjected to press molding can be used after mixing with a binder and a conductive agent as necessary.
[0018]
Examples of the positive electrode material constituting the battery include lithium transition metal composite oxide materials such as lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide, transition metal oxide materials such as manganese dioxide, and carbonaceous materials such as graphite fluoride. Materials that can occlude and release lithium, such as materials, can be used.
As the shape of the positive electrode, a sheet electrode applied to a current collector and a pellet electrode subjected to press molding can be used after being mixed with a binder and a conductive agent as necessary.
As the separator constituting the battery, a porous sheet or a nonwoven fabric made of a polyolefin such as polyethylene or polypropylene can be used.
As the shape of the battery, a cylinder type in which a sheet electrode and a separator are spiral, a cylinder type having an inside-out structure in which a pellet electrode and a separator are combined, a coin type in which a pellet electrode and a separator are stacked, and the like can be used.
[0019]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples as long as the gist thereof is not exceeded.
Example 1
As a negative electrode active material, 6 parts by weight of polyvinylidene fluoride KF-1000 (manufactured by Kureha Chemical Co., Ltd., trade name) is mixed with 94 parts by weight of KS-44 (artificial graphite powder, trade name, manufactured by Timcal), and N-methyl- A slurry dispersed with 2-pyrrolidone was uniformly applied onto a negative electrode current collector 18 μm thick copper foil, dried, and then punched into a disk shape having a diameter of 12.5 mm to form a negative electrode.
As for the electrolytic solution, lithium hexafluorophosphate (LiPF 6 ) sufficiently dried under a dry argon atmosphere was used as a solute, and ethylene carbonate, diethyl carbonate and erythritan sulfite were used at 5: 4: 1 (weight). LiPF 6 was prepared by dissolving LiPF 6 at a ratio of 1 mol / L.
Using this electrolytic solution, the above electrode and lithium metal as a counter electrode and a reference electrode, a coin-type non-aqueous electrolyte battery was produced in a dry argon atmosphere.
This battery was subjected to a charge / discharge test at 25 ° C. with a discharge of 0.2 mA, a charge of 0.4 mA constant current, and a cut-off voltage of 0.0 / 1.5V.
Table 1 shows the reversible capacity per negative electrode weight of the first and third cycles in this battery.
[0020]
(Comparative Example 1)
A coin-type battery in the same manner as in Example 1 except that an electrolytic solution in which LiPF 6 was dissolved at a ratio of 1 mol / L was used in a solution in which ethylene carbonate and diethyl carbonate were mixed at a ratio of 5: 4 (weight ratio). And a charge / discharge test was conducted.
Table 1 shows the reversible capacity per negative electrode weight of the first and third cycles in this battery.
As is clear from Example 1 and Comparative Example 1, the reversible capacity and cycle characteristics are improved by containing erythritan sulfite in the electrolyte.
[0021]
(Example 2)
In Example 2, an electrolytic solution in which LiPF 6 was dissolved at a ratio of 1 mol / L in a solution in which propylene carbonate and erythritan sulfite were mixed at a ratio of 9: 1 (weight ratio) was used. A coin-type battery was produced in the same manner as described above.
Table 1 shows the reversible capacity per negative electrode weight in the first and third cycles of the battery.
[0022]
(Comparative Example 2)
A coin-type battery was fabricated in the same manner as in Example 2 except that an electrolytic solution in which LiPF 6 was dissolved in propylene carbonate at a ratio of 1 mol / L was used.
Table 1 shows the reversible capacity per negative electrode weight of the first and third cycles of these batteries.
In the case of the electrolyte solution of propylene carbonate alone from Example 2 and Comparative Example 2, propylene carbonate decomposes on the surface of the carbon material of the negative electrode and capacity cannot be obtained, but by adding erythritan sulfite to propylene carbonate The electrolytic solution is prevented from being decomposed on the negative electrode, and the reversible capacity and cycle characteristics are remarkably improved.
[0023]
[Table 1]
Note) EC: ethylene carbonate, DEC: diethyl carbonate,
ETNS: erythritan sulfite, PC: propylene carbonate
【The invention's effect】
By selecting the compound of formula (I) as a component of the electrolytic solution, a non-aqueous electrolytic solution battery having high capacity, long-term stability, and excellent cycle characteristics in the case of a secondary battery can be produced.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36656298A JP4406947B2 (en) | 1998-12-24 | 1998-12-24 | Non-aqueous electrolyte battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36656298A JP4406947B2 (en) | 1998-12-24 | 1998-12-24 | Non-aqueous electrolyte battery |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2000188127A JP2000188127A (en) | 2000-07-04 |
JP2000188127A5 JP2000188127A5 (en) | 2005-12-02 |
JP4406947B2 true JP4406947B2 (en) | 2010-02-03 |
Family
ID=18487096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36656298A Expired - Fee Related JP4406947B2 (en) | 1998-12-24 | 1998-12-24 | Non-aqueous electrolyte battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4406947B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4618469B2 (en) * | 2000-12-27 | 2011-01-26 | ソニー株式会社 | Image separation device |
CN101243575B (en) | 2005-08-18 | 2010-09-29 | 宇部兴产株式会社 | Nonaqueous electrolyte solution and lithium secondary battery using same |
US9203113B2 (en) | 2010-03-30 | 2015-12-01 | Ube Industries, Ltd. | Nonaqueous electrolyte solution, electrochemical element using same, and 1,2-dioxypropane compound used in same |
JP2011039532A (en) * | 2010-09-13 | 2011-02-24 | Sony Corp | Image separating device |
-
1998
- 1998-12-24 JP JP36656298A patent/JP4406947B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000188127A (en) | 2000-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11646447B2 (en) | Electrolyte and electrochemical device | |
JP5095090B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4407205B2 (en) | Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery using the same | |
KR100467696B1 (en) | Organic electrolytic solution and lithium battery employing the same | |
JP4862555B2 (en) | Non-aqueous electrolyte and electrochemical energy storage device including the same | |
WO1999016144A1 (en) | Non-aqueous electrolyte cell | |
WO2000079632A1 (en) | Nonaqueous electrolytic solution type secondary battery | |
JPWO2006115023A1 (en) | Non-aqueous electrolyte, electrochemical energy storage device using the same, and non-aqueous electrolyte secondary battery | |
JP2009283463A (en) | Electrolyte solution for lithium ion secondary battery, and lithium ion secondary battery | |
JP2004342585A (en) | Electrolyte for lithium secondary battery and lithium secondary battery containing it | |
JP4626020B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3883726B2 (en) | Non-aqueous electrolyte secondary battery | |
JP5279045B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2005190754A (en) | Nonaqueous electrolyte secondary battery | |
JP3560119B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3691987B2 (en) | Lithium secondary battery | |
JP4211159B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4406947B2 (en) | Non-aqueous electrolyte battery | |
JP4172175B2 (en) | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same | |
JP2013101968A (en) | Nonaqueous electrolyte secondary battery and manufacturing method therefor, nonaqueous electrolyte, and system of nonaqueous electrolyte secondary battery | |
JP4197785B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2002198090A (en) | Non-aqueous electrolyte secondary cell | |
JP2002352851A (en) | Nonaqueous electrolyte secondary cell | |
JP4085450B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4706088B2 (en) | Non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051013 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051013 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070914 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070914 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070914 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080904 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090310 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091020 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091102 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121120 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131120 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |