JP2002179457A - Corrosion-resisting member - Google Patents

Corrosion-resisting member

Info

Publication number
JP2002179457A
JP2002179457A JP2001327655A JP2001327655A JP2002179457A JP 2002179457 A JP2002179457 A JP 2002179457A JP 2001327655 A JP2001327655 A JP 2001327655A JP 2001327655 A JP2001327655 A JP 2001327655A JP 2002179457 A JP2002179457 A JP 2002179457A
Authority
JP
Japan
Prior art keywords
sintered body
plasma
fluorine
corrosion
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001327655A
Other languages
Japanese (ja)
Other versions
JP4012714B2 (en
Inventor
Yumiko Ito
裕見子 伊東
Hiroshi Aida
比呂史 会田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001327655A priority Critical patent/JP4012714B2/en
Publication of JP2002179457A publication Critical patent/JP2002179457A/en
Application granted granted Critical
Publication of JP4012714B2 publication Critical patent/JP4012714B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve problems that a conventionally used sintered body of glass, quartz, stainless, steel alumina, aluminum nitride does not exhibit sufficient corrosion resistance to a fluorine based plasma, and in the sintered body, corrosion gradually advances and the degranulation of crystal particles is caused from the surface of the sintered body and particles are produced. SOLUTION: A site exposed to a fluorine based corrosive gas such as CF4 and SF6 or its plasma is constituted of a sintered body of the element of group IIIa ion the periodic table such as Y, La, Ce, Nd and Dy and the multiple oxide containing Si (not containing Al), for example, disilicate and monosilicate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特にフッ素系腐食
性ガスおよびフッ素系プラズマに対して高い耐食性を有
する、プラズマ処理装置や半導体製造用又は液晶用プラ
ズマプロセス装置の内の内壁材や治具等として使用され
る耐食性部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inner wall material or a jig in a plasma processing apparatus, a semiconductor manufacturing or a plasma processing apparatus for a liquid crystal, which has a high corrosion resistance especially to a fluorine-based corrosive gas and a fluorine-based plasma. The present invention relates to a corrosion-resistant member used as a member.

【0002】[0002]

【従来技術】半導体製造のドライプロセスやプラズマコ
ーティングなど、プラズマの利用は近年急速に進んでい
る。半導体におけるプラズマプロセスとしては、フッ素
系等のハロゲン系腐食ガスがその反応性の高さから、気
相成長、エッチングやクリーニングに利用されている。
2. Description of the Related Art The use of plasma, such as a dry process for semiconductor manufacturing and plasma coating, has been rapidly advancing in recent years. As a plasma process in a semiconductor, a halogen-based corrosive gas such as a fluorine-based gas is used for vapor phase growth, etching and cleaning due to its high reactivity.

【0003】これら腐食性ガスに接触する部材には高い
耐食性が要求され、従来より被処理物以外のこれらプラ
ズマに接触する部材は、一般にガラスや石英などのSi
2を主成分とする材料やステンレス、モネル等の耐食
性金属が多用されている。
[0003] The members that come into contact with these corrosive gases are required to have high corrosion resistance. Conventionally, the members that come into contact with these plasmas other than the object to be processed are generally made of Si such as glass or quartz.
Materials containing O 2 as a main component and corrosion-resistant metals such as stainless steel and Monel are often used.

【0004】また、半導体製造時において、ウェハを支
持固定するサセプタ材としてアルミナ焼結体、サファイ
ア、AlNの焼結体、又はこれらをCVD法等により表
面被覆したものが耐食性に優れるとして使用されてい
る。また、グラファイト、窒化硼素をコーティングした
ヒータ等も使用されている。
[0004] In the manufacture of semiconductors, as a susceptor material for supporting and fixing a wafer, a sintered body of alumina, sapphire, or a sintered body of AlN, or a surface-coated body thereof by a CVD method or the like is used as having excellent corrosion resistance. I have. Further, a heater coated with graphite or boron nitride is also used.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来から用い
られているガラスや石英ではプラズマ中の耐食性が不充
分で消耗が激しく、特にフッ素プラズマに接すると接触
面がエッチングされ、表面性状が変化したり、光透過性
が必要とされる部材では、表面が次第に白く曇って透光
性が低下する等の問題が生じていた。
However, the glass and quartz used conventionally have insufficient corrosion resistance in plasma and are intensely depleted. In particular, when they come into contact with fluorine plasma, the contact surface is etched and the surface properties change. In the case of a member that requires light transmissivity, there have been problems such as that the surface gradually becomes cloudy and the light transmissivity decreases.

【0006】また、ステンレスなどの金属を使用した部
材でも耐食性が不充分なため、腐食によって、特に半導
体製造においては不良品発生の原因となっていた。
[0006] Further, even members made of metal such as stainless steel have insufficient corrosion resistance, so that corrosion causes a defective product, particularly in semiconductor manufacturing.

【0007】アルミナ、AlNの焼結体は、上記の材料
に比較してフッ素系ガスに対して耐食性に優れるもの
の、高温でプラズマと接すると腐食が徐々に進行して焼
結体の表面から結晶粒子の脱粒が生じ、パーティクル発
生の原因になるという問題が起きている。
[0007] Alumina and AlN sintered bodies are more excellent in corrosion resistance to fluorine-based gas than the above materials, but when they come into contact with plasma at high temperature, the corrosion gradually progresses, and the surface of the sintered body crystallizes. There is a problem that particles are shed and cause particles to be generated.

【0008】[0008]

【課題を解決するための手段】本発明者らは、フッ素系
腐食ガス及びプラズマに対する耐食性を高めるための方
法について検討を重ねた結果、まず、フッ素系腐食ガス
又はプラズマとの反応が進行すると高融点のフッ化物が
生成されること、特に周期律表第3a族元素とSiとの
複合酸化物は、安価に入手できるとともに、そのフッ化
物が表面に安定なフッ化物層を形成し部材の腐食性が抑
制され、従来のアルミナやガラス、AlN、Si34
どよりも優れた耐食性を実現できることを知見したもの
である。
Means for Solving the Problems The present inventors have repeatedly studied methods for improving the corrosion resistance to a fluorine-based corrosive gas and plasma. The generation of fluoride having a melting point, in particular, a composite oxide of a Group 3a element of the periodic table and Si can be obtained at a low cost, and the fluoride forms a stable fluoride layer on the surface to cause corrosion of members. It has been found that the corrosion resistance is suppressed, and the corrosion resistance superior to conventional alumina, glass, AlN, Si 3 N 4 and the like can be realized.

【0009】即ち、本発明の耐食性部材は、上記の知見
に基づき完成されたものであり、フッ素系腐食ガス或い
はそのプラズマに曝される耐食性部材における少なくと
も前記腐食ガスやプラズマに直接接触する部位が、周期
律表第3a族元素とSiとを含む複合酸化物(但しAl
を含まず)によって構成することにより、高温、高密度
のフッ素系腐食雰囲気において長時間の耐性を有する比
較的安価な部材を提供できるものである。
That is, the corrosion-resistant member of the present invention has been completed based on the above findings, and at least a portion of the corrosion-resistant member exposed to a fluorine-based corrosive gas or its plasma is in direct contact with the corrosive gas or plasma. , A composite oxide containing a Group 3a element of the periodic table and Si (however, Al
), It is possible to provide a relatively inexpensive member having long-time resistance in a high-temperature, high-density fluorine-based corrosive atmosphere.

【0010】本発明によれば、フッ素系ガス及びプラズ
マに曝される部材として周期律表第3a族元素とSiと
を含む複合酸化物材料(但しAlを含まず)を使用する
ことにより、材料表面がフッ素との反応によって安定な
フッ化物層を生成し、幅広い温度範囲で過酷なフッ素系
腐食雰囲気への耐性向上が達成される。
According to the present invention, by using a composite oxide material (but not including Al) containing a Group 3a element of the periodic table and Si as a member exposed to a fluorine-based gas and plasma, A stable fluoride layer is generated on the surface by the reaction with fluorine, and the resistance to a severe fluorine-based corrosive atmosphere is improved over a wide temperature range.

【0011】さらに、フッ素と反応して容易に揮発して
しまうようなSi、Ge、Mo、W等の元素化合物の粒
界への析出を抑え、その遍在を防ぐことにより、局部的
な耐食性の低下とそれを原因とした脱粒パーティクル発
生を防止し、更なる耐食性の向上を図ることが可能とな
る。これらの元素は腐食の初期段階で揮発していくが、
材料表面には周期律表第3a族元素を含むフッ化物が残
留して、次第に周期律表第3a族元素に富むフッ化物層
が形成される結果、腐食の進行を抑制することができ
る。
Further, by suppressing the precipitation of elemental compounds such as Si, Ge, Mo, W, etc., which easily react with fluorine and volatilize, at the grain boundaries and prevent their ubiquity, local corrosion resistance can be prevented. It is possible to prevent the reduction of the particle size and the generation of particles that fall due to the reduction, and to further improve the corrosion resistance. These elements evaporate during the early stages of corrosion,
The fluoride containing the Group 3a element of the periodic table remains on the material surface, and a fluoride layer rich in the Group 3a element of the periodic table is gradually formed. As a result, the progress of corrosion can be suppressed.

【0012】しかも、周期律表第3a族元素とSiとを
含む複合酸化物は、周期律表第3a族元素酸化物に比較
して、PVD法、CVD法などの薄膜技術によって形成
するのに止まらず、緻密な焼結体として作製することが
できるために、あらゆる形状品に適合することが可能と
なる。
Moreover, the composite oxide containing a Group 3a element of the periodic table and Si is more easily formed by a thin film technique such as a PVD method and a CVD method than the group 3a element oxide of the periodic table. Since it can be manufactured as a dense sintered body without stopping, it can be adapted to all shaped products.

【0013】[0013]

【発明の実施の形態】本発明の耐食性部材は、フッ素系
の腐食ガスまたはフッ素系プラズマに曝される部材であ
り、フッ素系ガスとしては、SF6、CF4、CHF3
ClF3、HF等が挙げられ、これらのガスが導入され
た雰囲気にマイクロ波や高周波等を導入するとこれらの
ガスがプラズマ化される。
BEST MODE FOR CARRYING OUT THE INVENTION The corrosion-resistant member of the present invention is a member that is exposed to a fluorine-based corrosive gas or a fluorine-based plasma. Examples of the fluorine-based gas include SF 6 , CF 4 , CHF 3 , and the like.
ClF 3 , HF and the like can be mentioned. When a microwave or a high frequency is introduced into an atmosphere in which these gases are introduced, these gases are turned into plasma.

【0014】本発明によれば、このようなフッ素系ガス
あるいはそのプラズマに曝される部位を、少なくとも周
期律表第3a族元素とSiとを含む複合酸化物から構成
するものである。但しAlを含まない。ここで、複合酸
化物を構成する周期律表第3a族元素としては、Sc、
Y、La、Ce、Nd、Sm、Eu、Tb、Dy、H
o、Er、Tm、Yb、Luなどいずれでの使用される
が、特にY、La、Ce、Nd、Dyがコストの点で望
ましい。
According to the present invention, the portion exposed to such a fluorine-based gas or its plasma is made of a composite oxide containing at least a Group 3a element of the periodic table and Si. However, it does not contain Al. Here, Sc, as an element belonging to Group 3a of the periodic table constituting the composite oxide, is Sc,
Y, La, Ce, Nd, Sm, Eu, Tb, Dy, H
Although any of o, Er, Tm, Yb, Lu and the like can be used, Y, La, Ce, Nd, and Dy are particularly desirable in terms of cost.

【0015】この複合酸化物の耐食性は周期律表第3a
族元素量に大きく影響され、周期律表第3a族元素は、
複合酸化物中の全金属元素中、30原子%以上、特に4
0原子%以上存在することが望ましい。これは、周期律
表第3a族元素量が30原子%より少ないと、ハロゲン
化ガスやそのプラズマ中での初期の腐食が激しく次第に
表面に保護層が形成されるものの、長時間を要するため
に実用的ではない。
[0015] The corrosion resistance of this composite oxide is 3a of the periodic table.
Greatly influenced by the amount of group elements, group 3a elements of the periodic table
30 atomic% or more, especially 4%, of all metal elements in the composite oxide
Desirably, it is present at 0 atomic% or more. This is because if the amount of the element of Group 3a of the periodic table is less than 30 atomic%, the initial corrosion in the halogenated gas or its plasma is severe and a protective layer is gradually formed on the surface, but it takes a long time. Not practical.

【0016】また、複合酸化物としては、上記の少なく
とも2種の金属元素を含むガラス、セラミック焼結体の
他、単結晶であってもよいが、セラミック焼結体の場合
には、粒界に析出した粒界相の耐食性が主結晶粒子より
著しく劣る場合、粒界相が選択的に腐食され、脱粒、パ
―ティクル発生の原因となる。そのため、フッ素に腐食
されやすいSi、Ge、Mo、Wの粒界中の含有量は全
量中1重量%以下に抑えることが好ましい。これらのフ
ッ素に腐食されやすい元素が主結晶粒子内に固溶して粒
界に存在しない場合はこの限りでない。
The composite oxide may be a single crystal in addition to the above-mentioned glass and ceramic sintered body containing at least two types of metal elements. When the corrosion resistance of the grain boundary phase precipitated in the steel is remarkably inferior to that of the main crystal grains, the grain boundary phase is selectively corroded, causing degranulation and generation of particles. Therefore, the content of Si, Ge, Mo, and W, which are easily corroded by fluorine, in the grain boundaries is preferably suppressed to 1% by weight or less of the total amount. This does not apply when these elements which are easily corroded by fluorine are dissolved in the main crystal grains and do not exist at the grain boundaries.

【0017】複合酸化物は、望ましくは、結晶質を主体
とすることがよく、特にガーネット型結晶、単斜晶型結
晶、ペロブスカイト型結晶、モノシリケ―ト(Y23
SiO2)、ダイシリケート(Y23・2SiO2)など
のシリケート化合物を主体とするものが優れた耐食性を
有する点で望ましい。これらの中でもガーネット型結
晶、ダイシリケート型結晶が焼結性と製造コストが安価
である点で最も望ましい。或いは、上記以外の酸化物と
してRE(Nd)、Si、Al等の複合酸化物のよう
に、Siが主結晶相を構成しているものも例示できる。
The composite oxide is desirably mainly composed of a crystalline material. Particularly, a garnet crystal, a monoclinic crystal, a perovskite crystal, and a monosilicate (Y 2 O 3.
A material mainly composed of a silicate compound such as SiO 2 ) or disilicate (Y 2 O 3 .2SiO 2 ) is desirable in that it has excellent corrosion resistance. Among these, garnet-type crystals and disilicate-type crystals are most desirable in terms of sinterability and low production cost. Alternatively, examples of oxides other than those described above include those in which Si constitutes a main crystal phase, such as a composite oxide such as RE (Nd), Si, and Al.

【0018】また、上記複合酸化物の焼結体は、例え
ば、周期律表第3a族元素酸化物とSiO2粉末との混
合物を1100〜1900℃の酸化性雰囲気中又は真空
雰囲気中で焼成することにより作製することができる。
焼成方法としては、常圧焼成の他、ホットプレス法など
が採用される。
The above-mentioned sintered body of the composite oxide is fired, for example, in a oxidizing atmosphere or a vacuum atmosphere at a temperature of 1100 to 1900 ° C. from a mixture of a Group 3a element oxide of the periodic table and SiO 2 powder. It can be manufactured by the following.
As a firing method, a hot press method or the like is employed in addition to normal pressure firing.

【0019】また、本発明の耐食性部材としては、かか
る焼結体にとどまらず、PVD法、CVD法などの周知
の薄膜形成法によって、所定の基体表面に薄膜として形
成したものであってもよい。また、周知のゾルゲル法に
より液相を塗布し焼成した薄膜でもよい。これらの中で
は、粉末を成形し焼成した焼結体であることが、あらゆ
る部材への適用性に優れることから最も望ましい。な
お、この複合酸化物は、ハロゲン系腐食ガスまたはその
プラズマに曝される部位に形成されるものであるが、か
かる金属酸化物は、少なくともその厚みが10μm以上
であることが、優れた耐食性を付与する上で望ましい。
つまり、その厚みが10μmより薄いと優れた耐食効果
が期待できないためである。
The corrosion-resistant member of the present invention is not limited to the sintered body, but may be a thin film formed on a predetermined substrate surface by a known thin film forming method such as a PVD method or a CVD method. . Further, a thin film obtained by applying and baking a liquid phase by a well-known sol-gel method may be used. Among these, a sintered body obtained by molding and firing a powder is most desirable because of its excellent applicability to all members. The composite oxide is formed at a site exposed to a halogen-based corrosive gas or its plasma, and such a metal oxide must have at least a thickness of 10 μm or more to have excellent corrosion resistance. It is desirable in giving.
That is, if the thickness is less than 10 μm, excellent corrosion resistance cannot be expected.

【0020】[0020]

【実施例】各種酸化物粉末を用いて、表1に記載の各種
の材料を作製した。表1中、試料No.1〜5は、表1
の希土類酸化物とSiO2との混合物を2000℃で溶
融した後、急冷してガラス化したものである。試料N
o.6、7はY23とSiO 2を所定の割合で混合した
成形体を1300〜1600℃で焼成したものである。
EXAMPLES Various oxide powders described in Table 1 were used using various oxide powders.
Was prepared. In Table 1, sample no. Tables 1 to 5 are
Rare earth oxides and SiOTwoAt 2000 ° C
After being melted, it is rapidly cooled and vitrified. Sample N
o. 6, 7 is YTwoOThreeAnd SiO TwoWere mixed in a predetermined ratio
The compact was fired at 1300 to 1600 ° C.

【0021】そして、表1の種々の材料をRIEプラズ
マエッチング装置内に設置し、CF 4とO2の混合ガス
(CF4:O2=9:1)、ArとSF6の混合ガス(A
r:SF6=2:3)のいずれかを導入するとともに、
マイクロ波を導入してプラズマを発生させた。このプラ
ズマ中で最高3時間保持して、処理前後の材料の重量減
少を測定し、その値から1分あたりのエッチングされる
厚み(エッチングレート)を算出した。また、試験後の
試料の表面状態を観察しその結果を表1に示した。
The various materials shown in Table 1 were used in RIE plasma.
Installed in the etching equipment, CF FourAnd OTwoMixed gas
(CFFour: OTwo= 9: 1), Ar and SF6Mixed gas (A
r: SF6= 2: 3), and
Microwaves were introduced to generate plasma. This plastic
Hold for up to 3 hours in Zuma to reduce material weight before and after processing
Measure a small amount and etch from that value per minute
The thickness (etching rate) was calculated. Also, after the test
The surface condition of the sample was observed, and the results are shown in Table 1.

【0022】なお、比較例として、従来のBN焼結体、
石英ガラス、Si34焼結体、Al 23焼結体、AlN
焼結体についても同様に試験を行った。
As a comparative example, a conventional BN sintered body,
Quartz glass, SiThreeNFourSintered body, Al TwoOThreeSintered body, AlN
The same test was performed on the sintered body.

【0023】[0023]

【表1】 [Table 1]

【0024】表1に示すように、比較例の従来の各種材
料(試料No.6〜13)は、いずれもエッチング速度
が70Å/min以上であり、しかも表面状態も荒れが
ひどく、Si34焼結体では、表面にパーティクルの発
生が確認された。Al23やAlNの焼結体もエッチン
グによる窪みが多数観察された。
As shown in Table 1, the conventional various materials (samples Nos. 6 to 13) of the comparative examples all had an etching rate of 70 ° / min or more, had a rough surface, and had an Si 3 N 4 In the sintered body, generation of particles on the surface was confirmed. Many cavities due to etching were observed in the sintered bodies of Al 2 O 3 and AlN.

【0025】これらの比較例に対して試料No.1〜5
の本発明の試料は、いずれもフッ素系プラズマに対して
高い耐食性を示した。特に、試料形態がガラスからなる
ものは、その表面に窪みの形成が確認されたが、焼結体
からなるものは、いずれも表面状態も優れたものであっ
た。また、本発明のいずれの試料にも試験後において周
期律表第3a族元素に富むフッ化物層が表面に形成され
ていることを確認した。
For these comparative examples, sample Nos. 1-5
All of the samples of the present invention showed high corrosion resistance to fluorine-based plasma. In particular, when the sample was made of glass, the formation of dents on the surface was confirmed, but in the case of the sintered body, the surface condition was excellent. In addition, it was confirmed that a fluoride layer rich in an element of Group 3a of the periodic table was formed on the surface of each of the samples of the present invention after the test.

【0026】[0026]

【発明の効果】以上詳述した通り、本発明によれば、フ
ッ素系腐食性ガス及びそのプラズマに曝される部材とし
て周期律表第3a族元素とSiとの複合酸化物により構
成することで、少なくとも材料表面が安定なフッ化物層
を生成し、過酷なフッ素系腐食雰囲気で高い耐食性が達
成される。しかも焼結体を容易に作製できることから、
あらゆる形状品に適用することができる。
As described in detail above, according to the present invention, the member exposed to the fluorine-based corrosive gas and its plasma is made of a complex oxide of Group 3a element of the periodic table and Si. In addition, a stable fluoride layer is formed on at least the material surface, and high corrosion resistance is achieved in a severe fluorine-based corrosive atmosphere. Moreover, since a sintered body can be easily manufactured,
It can be applied to all shapes.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】フッ素系腐食ガス或いはそのプラズマに曝
される部位が、周期律表第3a族元素とSiとを含む複
合酸化物(但しAlを含まず)からなることを特徴とす
る耐食性部材。
1. A corrosion-resistant member wherein a portion exposed to a fluorine-based corrosive gas or its plasma is made of a complex oxide (but not containing Al) containing a Group 3a element of the periodic table and Si. .
JP2001327655A 2001-10-25 2001-10-25 Corrosion resistant material Expired - Fee Related JP4012714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001327655A JP4012714B2 (en) 2001-10-25 2001-10-25 Corrosion resistant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001327655A JP4012714B2 (en) 2001-10-25 2001-10-25 Corrosion resistant material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP20156396A Division JP3261044B2 (en) 1996-07-31 1996-07-31 Components for plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2002179457A true JP2002179457A (en) 2002-06-26
JP4012714B2 JP4012714B2 (en) 2007-11-21

Family

ID=19143848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001327655A Expired - Fee Related JP4012714B2 (en) 2001-10-25 2001-10-25 Corrosion resistant material

Country Status (1)

Country Link
JP (1) JP4012714B2 (en)

Also Published As

Publication number Publication date
JP4012714B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
JP3261044B2 (en) Components for plasma processing equipment
KR101456539B1 (en) A sintered solid solution coating which reduces the erosion rate of surfaces exposed to halogen plasma while exhibiting improved mechanical properties
US10840112B2 (en) Coated article and semiconductor chamber apparatus formed from yttrium oxide and zirconium oxide
US9051219B2 (en) Semiconductor processing apparatus comprising a solid solution ceramic formed from yttrium oxide, zirconium oxide, and aluminum oxide
US7696117B2 (en) Method and apparatus which reduce the erosion rate of surfaces exposed to halogen-containing plasmas
US10622194B2 (en) Bulk sintered solid solution ceramic which exhibits fracture toughness and halogen plasma resistance
JP3488373B2 (en) Corrosion resistant materials
JPH11214365A (en) Member for semiconductor element manufacturing device
JP3618048B2 (en) Components for semiconductor manufacturing equipment
JP2000159572A (en) Anticorrosive ceramic member
JPH09295863A (en) Anticorrosive member
JP2001151559A (en) Corrosion-resistant member
JP2001199762A (en) Corrosion-resisting ceramic material
JP2000239066A (en) Corrosionproof member and its production, and member for plasma treatment device using the same
JP3784180B2 (en) Corrosion resistant material
JP4012714B2 (en) Corrosion resistant material
JP2005097722A (en) Corrosion resistant member, and method for manufacturing the same
JP2003137648A (en) Member for plasma process system
JP2003137647A (en) Member for plasma process system
JP2003176170A (en) Discharge wall member for lamp
JP2001206764A (en) Corrosion-resistant ceramics and its manufacturing method
JPH11246263A (en) Production of alumina ceramics excellent in plasma resistance
JP2003119073A (en) Discharge wall member for lamp
JP2001220243A (en) Corrosion-resistant composite member and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees