JP2001220243A - Corrosion-resistant composite member and method for producing the same - Google Patents

Corrosion-resistant composite member and method for producing the same

Info

Publication number
JP2001220243A
JP2001220243A JP2000027286A JP2000027286A JP2001220243A JP 2001220243 A JP2001220243 A JP 2001220243A JP 2000027286 A JP2000027286 A JP 2000027286A JP 2000027286 A JP2000027286 A JP 2000027286A JP 2001220243 A JP2001220243 A JP 2001220243A
Authority
JP
Japan
Prior art keywords
group
corrosion
mol
composite member
resistant composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000027286A
Other languages
Japanese (ja)
Inventor
Masahiro Sato
政宏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000027286A priority Critical patent/JP2001220243A/en
Publication of JP2001220243A publication Critical patent/JP2001220243A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a corrosion-resistant composite member having excellent heat resistance, composed of a composite material of silicon nitride and silicon oxynitride, capable of controlling occurrence of particle and to provide a method for producing the corrosion-resistant composite member. SOLUTION: This corrosion-resistant composite member comprises silicon nitride and silicon oxynitride as a main phase, contains 0.5-3 mol% of oxide of element of the group 2a or the group 3a of the periodic table and 20-60 mol% of silicon dioxide in the molar ratio of silicon dioxide to the oxides of >=10 and has >=70% relative density and <=0.01 wt.% of the total of cation impurities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、塩素系の腐食ガス
またはそのプラズマに対して高い耐食性を有し、プラズ
マ処理装置や半導体・液晶製造用プラズマ装置内の内壁
材や治具等として好適に使用される耐食性部材や、その
部品の表面にスパッタするターゲット材に使用される耐
食性部材とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has high corrosion resistance to chlorine-based corrosive gas or its plasma, and is suitably used as an inner wall material or a jig in a plasma processing apparatus or a plasma apparatus for semiconductor / liquid crystal production. The present invention relates to a corrosion-resistant member used, a corrosion-resistant member used for a target material sputtered on the surface of a component thereof, and a method of manufacturing the same.

【0002】[0002]

【従来技術】半導体・液晶製造のドライプロセスやプラ
ズマコーティング等のプロセスにおけるプラズマ利用は
近年急速に進んでいる。半導体・液晶製造におけるプラ
ズマプロセスとしては、塩素系等のハロゲン系腐食ガス
がその反応性の高さから、気相成長デポジション、エッ
チングやクリーニングに利用されている。これら腐食性
ガス及びプラズマに接触する部材は、高い耐食性が要求
される。
2. Description of the Related Art In recent years, the use of plasma in processes such as a dry process and a plasma coating process for manufacturing semiconductors and liquid crystals has been rapidly progressing. As a plasma process in semiconductor / liquid crystal production, a halogen-based corrosive gas such as a chlorine-based gas is used for vapor-phase growth deposition, etching and cleaning because of its high reactivity. Members that come into contact with these corrosive gases and plasma are required to have high corrosion resistance.

【0003】従来から、被処理物以外のこれら腐食性ガ
ス及びそのプラズマに接触する部材としては、一般に、
ガラスや石英などの二酸化珪素を主成分とする材料や、
ステンレス、モネル等の耐食性金属が多用されている。
[0003] Conventionally, members that come into contact with these corrosive gases other than the object to be treated and the plasma thereof are generally
Materials mainly composed of silicon dioxide such as glass and quartz,
Corrosion-resistant metals such as stainless steel and Monel are frequently used.

【0004】また、半導体製造工程において、Siウェ
ハを支持固定するサセプタ材として、アルミナ、サファ
イア、窒化アルミニウムまたはこれらをCVD法等によ
り表面被覆したものが耐食性に優れるとして使用されて
いる。また、グラファイトや窒化硼素をコーティングし
たヒータ等も使用されている。
In a semiconductor manufacturing process, as a susceptor material for supporting and fixing a Si wafer, alumina, sapphire, aluminum nitride, or a material coated with a surface thereof by a CVD method or the like is used because of its excellent corrosion resistance. Further, a heater or the like coated with graphite or boron nitride is also used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来か
ら用いられているガラスや石英ではプラズマ中の耐食性
が不充分で消耗が激しく、特に塩素系プラズマに接する
と接触面がエッチングされ、表面性状が変化してエッチ
ング条件に影響する等の問題が生じていた。
However, conventionally used glass and quartz have inadequate corrosion resistance in plasma and are intensely depleted. In particular, when they come into contact with chlorine-based plasma, the contact surface is etched and the surface properties change. Thus, problems such as affecting the etching conditions have occurred.

【0006】また、ステンレスなどの金属を使用した部
材でも耐食性が不充分なため、腐食によってパーティク
ルが発生するなどの問題が発生し、特に半導体製造にお
いては不良品発生率を上昇させる大きな原因の1つとな
っていた。
[0006] Further, even members made of metal such as stainless steel have insufficient corrosion resistance, causing problems such as generation of particles due to corrosion. Particularly, in semiconductor manufacturing, one of the major causes for increasing the defective product generation rate is one. Had one.

【0007】アルミナ、サファイア、窒化アルミニウム
またはこれらをCVD法等により表面被覆したものは、
上記の材料に比較して塩素系腐食性ガス及びそのプラズ
マに対して耐食性に優れるものの、高温でプラズマと接
すると腐食が徐々に進行してしまい、表面からガスとの
反応生成物粒子及び結晶粒子の脱粒が生じ、パーティク
ル発生の原因になるという問題が生じている。
[0007] Alumina, sapphire, aluminum nitride or those obtained by surface-coating them by CVD or the like,
Compared to the above materials, it has excellent corrosion resistance to chlorine-based corrosive gas and its plasma, but when it comes in contact with plasma at high temperature, corrosion gradually progresses, and reaction product particles and crystal particles with the gas from the surface This causes a problem that the particles are shed and cause the generation of particles.

【0008】また、このような問題を解決するため、塩
素系プラズマに対して材料表面に安定な塩素化物を形成
する周期律表第2a、3a族元素を主成分とする材料を
用いることも提案されているが、さらなる半導体の高集
積化、プロセスの更なるクリーン化に伴い、イオン衝撃
や気相で反応生成したごく微細なパーティクルが不良を
発生する恐れが生じている。
In order to solve such a problem, it is also proposed to use a material mainly composed of an element of Groups 2a and 3a of the periodic table, which forms a stable chlorinated material on the surface of the material with respect to chlorine-based plasma. However, with the further increase in the degree of integration of semiconductors and the further cleanliness of the process, there is a risk that extremely fine particles generated by reaction in the ion bombardment or gas phase may cause defects.

【0009】したがって、本発明は、耐熱性に優れた窒
化珪素と酸窒化珪素との複合材料からなり、パーティク
ルの発生を抑制し得る耐食性部材とその製造方法を提供
することを目的とする。
Accordingly, an object of the present invention is to provide a corrosion-resistant member made of a composite material of silicon nitride and silicon oxynitride having excellent heat resistance and capable of suppressing generation of particles, and a method of manufacturing the same.

【0010】[0010]

【課題を解決するための手段】本発明は、窒化珪素と酸
窒化珪素との複合材料は、電気絶縁性と熱衝撃性とに優
れるとともに、パーティクル発生を抑制できるため、半
導体や液晶製造装置用の耐食性部材に適するという知見
に基づくものである。そして、窒化珪素と酸窒化珪素と
の複合材料からなる焼結体の粒界相が選択的に腐食さ
れ、パーティクル発生や耐食性は助剤組成によって大き
く変化するため、焼結体の組織を制御することが重要で
ある。
According to the present invention, a composite material of silicon nitride and silicon oxynitride is excellent in electric insulation and thermal shock resistance and can suppress the generation of particles. It is based on the finding that it is suitable for a corrosion-resistant member. The grain boundary phase of the sintered body composed of a composite material of silicon nitride and silicon oxynitride is selectively corroded, and the generation of particles and the corrosion resistance vary greatly depending on the composition of the auxiliary agent, so that the structure of the sintered body is controlled. This is very important.

【0011】したがって、本発明によれば、窒化珪素と
酸窒化珪素との複合材料からなる焼結体の助剤組成にお
いて、焼結による緻密化を図る上で焼結助剤を必須の成
分とするが、この助剤成分により耐食性が大きく異な
り、その中で、周期律表第2a族元素または第3a族元
素を所定量添加することにより、焼結性を損なうことな
く、前記複合材料の耐食性を向上し、パーティクルの発
生を抑制することができる。
Therefore, according to the present invention, in the auxiliary composition of a sintered body made of a composite material of silicon nitride and silicon oxynitride, the sintering auxiliary is an essential component for achieving densification by sintering. However, the corrosion resistance greatly differs depending on the auxiliary component. Among them, by adding a predetermined amount of a Group 2a element or a Group 3a element of the periodic table, the corrosion resistance of the composite material is not impaired. And generation of particles can be suppressed.

【0012】すなわち、本発明の耐食性複合部材は、腐
食性ガスあるいはプラズマと直接接触する表面が、窒化
珪素と酸窒化珪素との複合材料を主相とし、周期律表第
2a族元素(A)または第3a族元素(RE)を酸化物
換算(AOまたはRE23)で合計で0.5〜3モル
%、過剰酸素を二酸化珪素換算(SiO2)で20〜6
0モル%の割合でそれぞれ含み、かつSiO2/(AO
+RE23)が10以上、かつ陽イオン不純物の総量が
0.1重量%以下、相対密度が70%以上の焼結体から
なることを特徴とし、半導体製造装置用部品として、特
に塩素系ガスおよびそのプラズマ中での耐食性に優れ
る。特に、周期律表第3a族元素を酸化物換算で0.5
〜3モル%含有することが好ましい。
That is, in the corrosion-resistant composite member of the present invention, the surface directly in contact with a corrosive gas or plasma has a main phase of a composite material of silicon nitride and silicon oxynitride, and a group 2a element (A) of the periodic table. Alternatively, the group 3a element (RE) is 0.5 to 3 mol% in total as oxide (AO or RE 2 O 3 ), and excess oxygen is 20 to 6 mol as silicon dioxide (SiO 2 ).
0 mol% each, and SiO 2 / (AO
+ RE 2 O 3 ) and a sintered body having a total amount of cationic impurities of 0.1% by weight or less and a relative density of 70% or more. Excellent corrosion resistance in gas and its plasma. In particular, the Group 3a element of the periodic table is converted to oxide in an amount of 0.5%.
Preferably, it is contained in an amount of 3 mol%.

【0013】また、その製造方法は、腐食性ガスあるい
はプラズマと直接接触する表面を有する耐食性複合部材
の製造方法であって、陽イオン不純物の総量が0.1重
量%以下の窒化珪素原料粉末に対して、周期律表第2a
族元素の酸化物(AO)または第3a族元素の酸化物
(RE23)を合計で0.5〜3モル%と、陽イオン不
純物が総量中0.1重量%以下の二酸化珪素(Si
2)を20〜60モル%とを含み、かつ二酸化珪素と
周期律表第2a族元素の酸化物(AO)および周期律表
第3a族元素の酸化物(RE23)とのモル比SiO2
/(AO+RE23)が10以上である混合粉末の成形
体を焼成することを特徴とするものである。特に、周期
律表第3a族元素を酸化物換算で0.5〜3モル%含有
することが、焼結性に優れるために好ましい。また、焼
成については常圧焼成であることが、低コスト化の観点
で望ましい。
[0013] The manufacturing method is a method for manufacturing a corrosion-resistant composite member having a surface which is in direct contact with a corrosive gas or plasma. The method includes manufacturing a silicon nitride raw material powder having a total amount of cationic impurities of 0.1% by weight or less. On the other hand, Periodic Table 2a
Group oxides (AO) or group 3a element oxides (RE 2 O 3 ) in total of 0.5 to 3 mol%, and silicon dioxide (0.1% by weight or less in total amount of cationic impurities) Si
O 2) and includes a 20 to 60 mol%, and the molar with an oxide of a Group 2a element periodic table and silicon dioxide (AO) and the periodic table oxides of Group 3a element (RE 2 O 3) Specific SiO 2
The method is characterized in that a molded body of a mixed powder having / (AO + RE 2 O 3 ) of 10 or more is fired. In particular, it is preferable to contain a Group 3a element of the periodic table in an amount of 0.5 to 3 mol% in terms of oxide, because of excellent sinterability. The firing is preferably carried out at normal pressure from the viewpoint of cost reduction.

【0014】[0014]

【発明の実施の形態】本発明の耐食性複合部材は、塩素
系ガスの腐食性ガス、またはそのプラズマに直接接触す
る部材であり、塩素系ガスとしては、Cl2、SiC
4、BCl3、HCl、ClF3等が挙げられる。これ
らのガスが導入される雰囲気にマイクロ波や高周波など
を導入するとこれらのガスがプラズマ化される。
Corrosion resistant composite member of the embodiment of the present invention is a member in direct contact with the corrosive gas or plasma thereof, chlorine gas, as the chlorine-based gas, Cl 2, SiC
l 4, BCl 3, HCl, ClF 3 and the like. When microwaves or high frequencies are introduced into the atmosphere in which these gases are introduced, these gases are turned into plasma.

【0015】本発明によれば、このような塩素系ガスの
腐食性ガス、またはそのプラズマに直接接触する表面
を、窒化珪素相と酸窒化珪素相とを主成分の相とする複
合材料で構成するものである。この複合材料には、前記
相間の粒界にSiと周期律表第2a族元素または第3a
族元素との複合材料を形成する。例えば、ダイシリケー
ト、モノシリケート、RE2Si325の群から選ばれ
る少なくとも1種が粒界相として形成されている。これ
らの粒界相は耐食性が高く、塩素系ガス或いはプラズマ
とは反応しにくいために塩素系ガスに対して優れた耐食
性を示すものである。
According to the present invention, the surface of such a chlorine-based corrosive gas or the surface thereof which comes into direct contact with the plasma is made of a composite material mainly composed of a silicon nitride phase and a silicon oxynitride phase. Is what you do. In this composite material, Si and the element of Group 2a or 3a of the periodic table are present at the grain boundaries between the phases.
Form a composite material with a group III element. For example, at least one selected from the group consisting of disilicate, monosilicate, and RE 2 Si 3 N 2 O 5 is formed as a grain boundary phase. Since these grain boundary phases have high corrosion resistance and do not easily react with chlorine gas or plasma, they exhibit excellent corrosion resistance to chlorine gas.

【0016】また、ガスの浸透の点から、焼結体の少な
くとも内部は相対密度70%以上で、閉気孔が生成して
いることが必要である。これは、相対密度が70%未満
では気孔が開気孔からなり、パーティクルが発生しやす
くなる。また、製造時に気孔内部にゴミが進入し、不純
物の発生原因になるとともに、大気から真空に排気した
ときに脱ガスが大きく、装置稼働率を低下させる問題が
生じる。特に、相対密度が80%以上であることが好ま
しく、強度が要求される場合には95%以上であること
が好ましい。
From the viewpoint of gas permeation, it is necessary that at least the inside of the sintered body has a relative density of 70% or more and closed pores are generated. When the relative density is less than 70%, the pores are formed of open pores, and particles are easily generated. In addition, dust enters the pores during manufacturing, causing impurities to be generated. In addition, when exhausted from the atmosphere to a vacuum, large degassing occurs, which causes a problem of lowering the operation rate of the apparatus. In particular, the relative density is preferably 80% or more, and when strength is required, it is preferably 95% or more.

【0017】また、窒化珪素と酸窒化珪素との複合材料
は単独では焼結しないことが従来から知られており、Y
23等の周期律表第3a族元素や、MgO等の周期律
表第2a族元素などの焼結助剤を添加することにより緻
密化を図ることができる。そして、この焼結体は、組織
上、窒化珪素および酸窒化珪素からなる主結晶相と、主
に焼結助剤として添加した成分と不純物成分とによって
形成される粒界相から構成されるものである。
It has been conventionally known that a composite material of silicon nitride and silicon oxynitride does not sinter alone.
Densification can be achieved by adding a sintering aid such as a Group 3a element of the periodic table such as b 2 O 3 or a Group 2a element of the periodic table such as MgO. This sintered body is composed of a main crystal phase composed of silicon nitride and silicon oxynitride, and a grain boundary phase formed mainly by a component added as a sintering aid and an impurity component. It is.

【0018】塩素系ガスに対する耐食性の観点からは、
窒化珪素および酸窒化珪素は、それ自体共有結合を有す
る化学的に安定な化合物からなるために耐食性に優れる
が、前記焼結助剤や不純物として混入する成分は、組成
によっては耐食性に劣り、その粒界相が局所的にエッチ
ングされたり、ガスと容易に反応してしまう。
From the viewpoint of corrosion resistance to chlorine-based gas,
Silicon nitride and silicon oxynitride have excellent corrosion resistance because they are composed of chemically stable compounds having a covalent bond per se, but the components mixed as the sintering aid and impurities are inferior in corrosion resistance depending on the composition. The grain boundary phase is locally etched or easily reacts with the gas.

【0019】そこで、本発明によれば、耐食性を損なわ
ず、焼結性を向上するため、所定の比率で周期律表第2
a族元素または周期律表第3a族元素、および二酸化珪
素(SiO2)を添加する。すなわち、周期律表第2a
族元素(A)または周期律表第3a族元素(RE)が酸
化物換算(AOまたはRE23)で0.5〜3モル%、
二酸化珪素(SiO2)を20〜60モル%、二酸化珪
素と周期律表第2a族元素(A)または周期律表第3a
族元素(RE)とのモル比SiO2/(AO+RE
23)が10以上とすることが重要である。特に、AO
および/またはRE 2Oが合計で1〜2.5モル%、二
酸化珪素が30〜50モル%含まれることが好ましい。
Therefore, according to the present invention, corrosion resistance is impaired.
In order to improve the sinterability, the periodic table 2
Group a element or Group 3a element of the periodic table, and silicon dioxide
Element (SiOTwo) Is added. That is, the periodic table 2a
Group element (A) or group 3a element (RE) of the periodic table is an acid
Compound conversion (AO or RETwoOThree) At 0.5-3 mol%,
Silicon dioxide (SiOTwo) Of 20 to 60 mol%, silicon dioxide
Element and Group 2a element (A) or Periodic table 3a
Molar ratio of SiO with group element (RE)Two/ (AO + RE
TwoOThreeIs important to be 10 or more. In particular, AO
And / or RE TwoO is 1 to 2.5 mol% in total,
It is preferable that silicon oxide be contained in an amount of 30 to 50 mol%.

【0020】組成を上記の範囲に限定したのは、AOお
よび/またはRE23が0.5モル%未満では焼結性が
悪く、3モル%を越えるとパーティクルが発生しやすく
なるためである。また、SiO2が20〜60モル%の
範囲において焼結性が良好になり、そのモル比SiO2
/(AO+RE23)が10未満であっても、焼結性が
劣化するためである。
The reason why the composition is limited to the above range is that if the content of AO and / or RE 2 O 3 is less than 0.5 mol%, the sinterability is poor, and if it exceeds 3 mol%, particles are likely to be generated. is there. Further, when the content of SiO 2 is in the range of 20 to 60 mol%, the sinterability is improved, and the molar ratio of SiO 2 is improved.
This is because the sinterability deteriorates even if / (AO + RE 2 O 3 ) is less than 10.

【0021】なお、本発明における周期律表第2a族元
素としてMg、Ca、Sr、Ba、Raの群から選ばれ
る少なくとも1種、または、周期律表第3a族元素とし
てY、Ce、La、Yb、Er、Lu、Dy、Nd、S
m、Gdの群から選ばれる少なくとも1種を含有するこ
とが重要である。特に、周期律表第3a族元素を含有す
ることが好ましく、さらにそのうち、Yb、Lu、E
r、Ce、Yのうち少なくとも1種を含有することが、
少量で緻密化させる上で好ましい。そして、これらの中
でも、Ybが最も好適である。
In the present invention, at least one element selected from the group consisting of Mg, Ca, Sr, Ba, and Ra as a Group 2a element of the periodic table, or Y, Ce, La, or Yb, Er, Lu, Dy, Nd, S
It is important to contain at least one selected from the group consisting of m and Gd. In particular, it is preferable to contain a Group 3a element of the periodic table, and among them, Yb, Lu, E
containing at least one of r, Ce and Y,
It is preferable in order to densify with a small amount. And among these, Yb is the most suitable.

【0022】なお、焼結体中の陽イオン不純物の総量が
0.1重量%を越える場合、高濃度に不純物を含む低融
点の粒界相が生成され、塩素系腐食ガス、あるいはプラ
ズマにさらされる環境下で長時間使用した場合、焼結体
内部の粒界相成分が、部材表面に向かって容易に拡散移
動するため、侵食が内部まで進行し、耐食性を劣化させ
るとともに、半導体に対し、悪影響を及ぼす場合が生じ
る。したがって、陽イオン不純物が0.1重量%以下、
特に0.05重量%以下、さらには0.01重量%以下
であることが必要である。
If the total amount of cationic impurities in the sintered body exceeds 0.1% by weight, a low-melting grain boundary phase containing a high concentration of impurities is generated and exposed to chlorine-based corrosive gas or plasma. When used for a long time in an environment where the sintered body is used, the grain boundary phase component inside the sintered body easily diffuses and moves toward the surface of the member, so that erosion proceeds to the inside and the corrosion resistance deteriorates, A negative effect may occur. Therefore, the content of cationic impurities is 0.1% by weight or less,
In particular, it must be 0.05% by weight or less, and more preferably 0.01% by weight or less.

【0023】なお、陽イオン不純物とは、周期律表第2
a族元素、周期律表第3a族元素および珪素以外の陽イ
オンになりうる元素のすべてのものを言う。特に、陽イ
オン不純物のうち、半導体製造時に、半導体に悪影響を
及ぼしたり、粒界の浸食を助長するため、Na、K、F
e、Cr、Niについては、それらの金属換算による合
量が0.05重量%以下、特に0.01重量%以下であ
ることが望ましい。
The cation impurity is defined in the second part of the periodic table.
It refers to all elements that can be cations other than group a elements, group 3a elements of the periodic table, and silicon. Particularly, among the cationic impurities, Na, K, and F are used to adversely affect the semiconductor and promote erosion of the grain boundary during semiconductor manufacturing.
As for e, Cr, and Ni, the total amount in terms of metal is preferably 0.05% by weight or less, particularly preferably 0.01% by weight or less.

【0024】本発明の耐食性複合部材は、以下の方法に
よって作製される。
The corrosion-resistant composite member of the present invention is manufactured by the following method.

【0025】まず、出発原料として、陽イオン不純物の
総量が0.1重量%以下の窒化珪素粉末を準備する。陽
イオン不純物は、焼成しても大部分が残留するため、原
料中の陽イオン不純物を0.1重量%以下にすることが
重要である。特に、0.05重量%以下であることが好
ましい。この原料粉末は、平均粒径1μm以下が焼結性
の点で好ましく、不純物酸素量0.5〜2.0重量%の
α型、β型のいずれでも使用できる。
First, a silicon nitride powder having a total amount of cationic impurities of 0.1% by weight or less is prepared as a starting material. Since most of the cationic impurities remain even after firing, it is important to reduce the amount of the cationic impurities in the raw material to 0.1% by weight or less. In particular, the content is preferably 0.05% by weight or less. This raw material powder preferably has an average particle size of 1 μm or less in terms of sinterability, and may be any of α-type and β-type with an oxygen content of 0.5 to 2.0% by weight.

【0026】次に、上記窒化珪素原料粉末に、周期律表
第2a族元素または第3a族元素の酸化物を0.5〜3
モル%、不純物の総量が0.1重量%以下の二酸化珪素
を20〜60モル%の範囲で、かつ二酸化珪素と周期律
表第2a族元素および第3a族元素とのモル比SiO2
/(AO+RE23)が10以上となるように添加す
る。なお、これらの原料組成は、通常の焼成では飛散な
どを伴わないため、ほぼ焼結体組成となるため、上記の
範囲の組成にすることが重要である。
Next, an oxide of a Group 2a element or a Group 3a element of the periodic table is added to the silicon nitride raw material powder in an amount of 0.5 to 3%.
Mol%, the total amount of impurities is 0.1% by weight or less, silicon dioxide in the range of 20 to 60 mol%, and the molar ratio of silicon dioxide to the group 2a element and the group 3a element of the periodic table is SiO 2.
/ (AO + RE 2 O 3 ) is added so as to be 10 or more. Note that these raw material compositions do not involve scattering or the like in normal firing, and thus substantially become a sintered body composition. Therefore, it is important to set the composition in the above range.

【0027】これらの粉末をボールミル等により平均粒
径3μm以下、好ましくは2μm以下に粉砕する。原料
粉末が、3μmよりも大きくなると焼結性が悪くなる傾
向にあるため、3μm以下になるように粉砕または解砕
の条件を設定する。その後、この混合粉末を所望の成形
手段、例えば、金型プレス、冷間静水圧プレス、射出成
形、押出し成形等により任意の耐食性複合部材の形状に
成形後、焼成する。
These powders are pulverized by a ball mill or the like to an average particle size of 3 μm or less, preferably 2 μm or less. If the raw material powder is larger than 3 μm, the sinterability tends to deteriorate. Therefore, the conditions for pulverization or crushing are set so as to be 3 μm or less. Thereafter, the mixed powder is formed into a desired shape of a corrosion-resistant composite member by a desired forming means, for example, a mold press, a cold isostatic press, an injection molding, an extrusion molding and the like, and then fired.

【0028】焼成は、窒素等の非酸化性雰囲気中で17
00℃〜1850℃、好ましくは1750℃〜1800
℃の温度域でSiOガスを含む雰囲気で焼成する。これ
により、相対密度70%以上の焼結体を得ることができ
る。
The firing is performed in a non-oxidizing atmosphere such as nitrogen.
00 ° C to 1850 ° C, preferably 1750 ° C to 1800
Firing is performed in an atmosphere containing SiO gas in a temperature range of ° C. Thereby, a sintered body having a relative density of 70% or more can be obtained.

【0029】焼結方法としては、常圧焼成、ホットプレ
ス、窒素ガス加圧焼成、熱間静水圧焼成等が採用できる
が、コスト、および大型品を焼成する観点から、常圧焼
成が好ましい。そして、上記のようにして相対密度70
%以上に緻密化された焼結体を研削加工施し、所定の寸
法の製品形状に仕上げる。
As the sintering method, normal pressure firing, hot pressing, nitrogen gas pressure firing, hot isostatic pressure firing, and the like can be employed, but normal pressure firing is preferred from the viewpoint of cost and firing of large products. Then, as described above, the relative density 70
% Of the sintered body is subjected to a grinding process to finish the product in a predetermined size.

【0030】このような熱処理方法によれば、複雑な形
状を有する大型部材に対しても容易に適用でき、効率よ
く耐食性の高い部材を製造することができる。
According to such a heat treatment method, it can be easily applied to a large member having a complicated shape, and a member having high corrosion resistance can be efficiently manufactured.

【0031】[0031]

【実施例】まず、珪素以外の陽イオン金属不純物量が
0.006重量%、平均粒径0.7μmのα型窒化珪素
粉末を用い、これに、陽イオン金属不純物量が0.05
重量%および0.1重量%、平均粒径1.2μmのYb
23、Y23、Er23、Lu23、Lu23およびC
eO2の粉末およびSrCO3またはMgCO3の粉末を
表1に示すように調合し、振動ミルで20時間粉砕し、
金型プレスにより成形した。そして、この成形体を窒素
雰囲気中において1750℃で5時間焼成した。ただ
し、試料No.27は、1800℃で5時間焼成した。
EXAMPLE First, α-type silicon nitride powder having an amount of cationic metal impurities other than silicon of 0.006% by weight and an average particle diameter of 0.7 μm was used.
% And 0.1% by weight of Yb having an average particle size of 1.2 μm
2 O 3 , Y 2 O 3 , Er 2 O 3 , Lu 2 O 3 , Lu 2 O 3 and C
powder eO 2 powder and SrCO 3 or MgCO 3 were formulated as shown in Table 1, was pulverized for 20 hours in a vibrating mill,
It was formed by a mold press. Then, the formed body was fired at 1750 ° C. for 5 hours in a nitrogen atmosphere. However, the sample No. 27 was baked at 1800 ° C. for 5 hours.

【0032】得られた焼結体中の不純物量はICP発光
分析により測定した。なお、陽イオン不純物とは、組成
に含まれない元素で、陽イオンに成りうる元素の全てで
あり、例えば、表1の試料No.2では、SiおよびY
b以外の元素を全て不純物として扱った。また、相対密
度は、アルキメデス法による嵩比重と真比重を測定し、
嵩比重/真比重を相対密度とした。
The amount of impurities in the obtained sintered body was measured by ICP emission analysis. The cation impurities are elements that are not included in the composition and are all elements that can be cations. In 2, Si and Y
All elements other than b were treated as impurities. In addition, relative density measures the bulk specific gravity and true specific gravity by Archimedes method,
Bulk specific gravity / true specific gravity was defined as relative density.

【0033】次に、パーティクル量の測定は、8インチ
サイズの上記焼結体を作製し、表面を鏡面状態に加工
し、RIEプラズマエッチング装置にて、BCl3 (1
00sccm)の塩素プラズマ中に室温で曝した。エッ
チング条件は、圧力4Pa、RF出力1.8kW、プラ
ズマ照射時間240時間とした。そして、8インチウエ
ハに接触させ、ウエハ上のパーティクル数をレーザー散
乱法によりパーティクルカウンタを用いて、0.3μm
以上のパーティクルを測定した。結果を表1に示す。
Next, for the measurement of the amount of particles, the above-mentioned sintered body having a size of 8 inches was prepared, the surface was processed into a mirror surface state, and BCl 3 (1
(00 sccm) in a chlorine plasma at room temperature. The etching conditions were a pressure of 4 Pa, an RF output of 1.8 kW, and a plasma irradiation time of 240 hours. Then, the wafer was brought into contact with an 8-inch wafer, and the number of particles on the wafer was measured to be 0.3 μm using a particle counter by a laser scattering method.
The above particles were measured. Table 1 shows the results.

【0034】[0034]

【表1】 [Table 1]

【0035】本発明の試料No.2〜5、8〜10、1
3〜20および22〜27は、パーティクル量が500
個以下であった。
Sample No. of the present invention 2-5, 8-10, 1
3 to 20 and 22 to 27 have a particle amount of 500
Or less.

【0036】一方、SiO2含有量が20モル%に達し
ない試料No.1および60モル%を越える試料No.
6は、いずれも相対密度が70%に満たず、本発明の範
囲外であり、パーティクル量が1600個以上であっ
た。
On the other hand, the sample No. in which the SiO 2 content did not reach 20 mol%. Sample No. 1 and more than 60 mol%
Sample No. 6 had a relative density of less than 70%, out of the range of the present invention, and a particle amount of 1600 or more.

【0037】また、AO+RE23が0.5モル%に満
たない試料No.7および3モル%を越える試料No.
11は、本発明の範囲外であり、パーティクル量が12
00個以上であった。
In the case of Sample No. in which AO + RE 2 O 3 was less than 0.5 mol%. Sample No. 7 and more than 3 mol%
11 is out of the range of the present invention, and the particle amount is 12
The number was 00 or more.

【0038】さらに、SiO2/(AO+RE23)比
が10未満の試料No.12は、パーティクル量が12
00個であった。
Further, the sample No. having an SiO 2 / (AO + RE 2 O 3 ) ratio of less than 10 was used. 12 means that the particle amount is 12
There were 00 pieces.

【0039】さらにまた、陽イオン不純物量が0.1重
量%を越える試料No.21は、パーティクル量が18
00個であった。
Further, the sample No. having a cationic impurity amount exceeding 0.1% by weight was used. 21 is 18 particles
There were 00 pieces.

【0040】[0040]

【発明の効果】以上詳述したように、本発明によれば、
窒化珪素および酸窒化珪素からなる複合材料を用いるこ
とにより、パーティクル発生の少ない耐食性複合部材を
実現できる。
As described in detail above, according to the present invention,
By using a composite material including silicon nitride and silicon oxynitride, a corrosion-resistant composite member with less generation of particles can be realized.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】腐食性ガスあるいはプラズマと直接接触す
る表面が、窒化珪素と酸窒化珪素との複合材料を主相と
し、周期律表第2a族元素(A)または第3a族元素
(RE)を酸化物換算(AOまたはRE23)で合計で
0.5〜3モル%、過剰酸素を二酸化珪素換算(SiO
2)で20〜60モル%の割合でそれぞれ含み、かつS
iO2/(AO+RE23)が10以上、かつ陽イオン
不純物の総量が0.1重量%以下、相対密度が70%以
上の焼結体からなることを特徴とする耐食性複合部材。
A surface which is in direct contact with a corrosive gas or plasma is mainly composed of a composite material of silicon nitride and silicon oxynitride, and is a Group 2a element (A) or a Group 3a element (RE) of the periodic table. In terms of oxide (AO or RE 2 O 3 ) in total of 0.5 to 3 mol%, and excess oxygen in terms of silicon dioxide (SiO
2 ) containing 20 to 60 mol% in each case, and
A corrosion-resistant composite member comprising a sintered body having iO 2 / (AO + RE 2 O 3 ) of 10 or more, a total amount of cationic impurities of 0.1% by weight or less, and a relative density of 70% or more.
【請求項2】周期律表第3a族元素を酸化物換算で0.
5〜3モル%含有することを特徴とする請求項1記載の
耐食性複合部材。
2. An element of Group 3a of the periodic table in an amount of 0.
The corrosion-resistant composite member according to claim 1, wherein the content is 5 to 3 mol%.
【請求項3】腐食性ガスあるいはプラズマと直接接触す
る表面を有する耐食性複合部材の製造方法であって、陽
イオン不純物の総量が0.1重量%以下の窒化珪素原料
粉末に対して、周期律表第2a族元素の酸化物(AO)
または第3a族元素の酸化物(RE23)を合計で0.
5〜3モル%と、陽イオン不純物が総量中0.1重量%
以下の二酸化珪素(SiO2)を20〜60モル%とを
含み、かつ二酸化珪素と周期律表第2a族元素の酸化物
(AO)および周期律表第3a族元素の酸化物(RE2
3)とのモル比SiO2/(AO+RE23)が10以
上である混合粉末の成形体を焼成することを特徴とする
耐食性複合部材の製造方法。
3. A method for producing a corrosion-resistant composite member having a surface directly in contact with a corrosive gas or plasma, wherein the silicon nitride raw material powder having a total amount of cationic impurities of 0.1% by weight or less is subjected to a periodic rule. Table 2a Group Oxides (AO)
Alternatively, an oxide of a Group 3a element (RE 2 O 3 ) may be added in a total amount of 0.
5 to 3 mol% and 0.1% by weight of cationic impurities in the total amount
The following silicon dioxide (SiO 2 ) is contained in an amount of 20 to 60 mol%, and silicon oxide and an oxide of a group 2a element of the periodic table (AO) and an oxide of a group 3a element of the periodic table (RE 2)
O 3) molar ratio SiO 2 / (AO + RE 2 O 3) are provided methods for producing corrosion-resistant composite member and firing the shaped body of the mixed powder is 10 or more.
【請求項4】周期律表第3a族元素を酸化物換算で0.
5〜3モル%含有することを特徴とする請求項3記載の
耐食性複合部材の製造方法。
4. An element of Group 3a of the periodic table which is contained in an amount of 0.
The method for producing a corrosion-resistant composite member according to claim 3, wherein the content is 5 to 3 mol%.
【請求項5】焼成が常圧焼成であることを特徴とする請
求項3または4記載の耐食性複合部材の製造方法。
5. The method for producing a corrosion-resistant composite member according to claim 3, wherein the firing is normal pressure firing.
JP2000027286A 2000-01-31 2000-01-31 Corrosion-resistant composite member and method for producing the same Pending JP2001220243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000027286A JP2001220243A (en) 2000-01-31 2000-01-31 Corrosion-resistant composite member and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000027286A JP2001220243A (en) 2000-01-31 2000-01-31 Corrosion-resistant composite member and method for producing the same

Publications (1)

Publication Number Publication Date
JP2001220243A true JP2001220243A (en) 2001-08-14

Family

ID=18552875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000027286A Pending JP2001220243A (en) 2000-01-31 2000-01-31 Corrosion-resistant composite member and method for producing the same

Country Status (1)

Country Link
JP (1) JP2001220243A (en)

Similar Documents

Publication Publication Date Title
KR101400598B1 (en) Corrosion-resistant member for a semiconductor manufacturing device, and manufacturing method therefor
US6139983A (en) Corrosion-resistant member, wafer-supporting member, and method of manufacturing the same
TWI695822B (en) Method and apparatus which reduce the erosion rate of surfaces exposed to halogen-containing plasmas
JP2000001362A (en) Corrosion resistant ceramic material
JPH1045461A (en) Corrosion resistant member
JPH11214365A (en) Member for semiconductor element manufacturing device
JP5577287B2 (en) Magnesium fluoride sintered body, manufacturing method thereof, and member for semiconductor manufacturing apparatus
US6670294B2 (en) Corrosion-resistive ceramic materials and members for semiconductor manufacturing
JP2000103689A (en) Alumina sintered compact, its production and plasma- resistant member
JP3706488B2 (en) Corrosion-resistant ceramic material
US20030087751A1 (en) Ceramic member for semiconductor manufacturing equipment
JP4641609B2 (en) Corrosion resistant material
TWI499574B (en) A corrosion resistant material for a semiconductor manufacturing apparatus and fabricated method thereof
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP2000313656A (en) Corrosionproof ceramic material and corrosionproof member
JP2001240482A (en) Plasma resistance material, high-frequency transmission material, and plasma equipment
JP2002220282A (en) Aluminum nitride sintered compact and method of manufacture
JP2001151559A (en) Corrosion-resistant member
JP3769416B2 (en) Components for plasma processing equipment
JPH11278944A (en) Silicon nitride corrosion resistant member and its production
JP2001220243A (en) Corrosion-resistant composite member and method for producing the same
JP3732966B2 (en) Corrosion resistant material
JP2002255634A (en) Free cutting high strength alumina sintered compact and corrosion resistant member using the sintered compact
JP4651145B2 (en) Corrosion resistant ceramics
JP2000007440A (en) Silicon nitride-base corrosion resistant member and its production