JP2000007440A - Silicon nitride-base corrosion resistant member and its production - Google Patents

Silicon nitride-base corrosion resistant member and its production

Info

Publication number
JP2000007440A
JP2000007440A JP10182061A JP18206198A JP2000007440A JP 2000007440 A JP2000007440 A JP 2000007440A JP 10182061 A JP10182061 A JP 10182061A JP 18206198 A JP18206198 A JP 18206198A JP 2000007440 A JP2000007440 A JP 2000007440A
Authority
JP
Japan
Prior art keywords
silicon nitride
weight
resistant member
sio
terms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10182061A
Other languages
Japanese (ja)
Inventor
Masahiro Sato
政宏 佐藤
Masashi Sakagami
勝伺 坂上
Takeo Fukutome
武郎 福留
Yumiko Ito
裕見子 伊東
Koji Kusaka
浩次 日下
Yasuhiro Nakahori
安浩 中堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10182061A priority Critical patent/JP2000007440A/en
Publication of JP2000007440A publication Critical patent/JP2000007440A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a silicon nitride-base corrosion resistant member comprising a silicon nitride-base sintered compact excellent in heat resistance and capable of suppressing the generation of particles and its production method. SOLUTION: A power contg. β-silicon nitride as a principal phase, 0.1-3 wt.% (expressed in terms of RE2O3) rare earth element (RE), 1-5 wt.% (expressed in terms of Al2O3) aluminum and 1-6 wt.% (expressed in terms of SiO2) excess oxygen in an Al2O3 to RE2O3 ratio of 1-6 and an SiO2 to RE2O3 ratio of 2-15 and contg. <=0.1 wt.%, in total, of other cationic impurities is compacted and pressureless-fired at 1,700-1,800 deg.C in a non-oxidizing atmosphere contg. gaseous SiO to obtain the objective corrosion resistant member comprising a silicon nitride-base sintered compact having >=90% relative density. The member has a surface in contact with corrosive gas or plasma composed of the above sintered compact.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、塩素系の腐食ガス
或いはそのプラズマに対して高い耐食性を有するプラズ
マ処理装置や半導体・液晶製造用プラズマ装置内の内壁
材や治具等として好適に使用される窒化珪素質耐食性部
材とその製造方法に関する。
The present invention is suitably used as an inner wall material or a jig in a plasma processing apparatus having a high corrosion resistance to chlorine-based corrosive gas or its plasma or a plasma apparatus for manufacturing semiconductor / liquid crystal. And a method of manufacturing the same.

【0002】[0002]

【従来技術】半導体・液晶製造のドライプロセスやプラ
ズマコーティング等のプロセスにおけるプラズマ利用が
近年急速に進んでいる。半導体・液晶製造におけるプラ
ズマプロセスとしては、塩素系等のハロゲン系腐食ガス
がその反応性の高さから、気相成長デポジション、エッ
チングやクリーニングに利用されている。これら腐食性
ガス及びプラズマに接触する部材は、高い耐食性が要求
される。
2. Description of the Related Art In recent years, the use of plasma in processes such as a dry process and a plasma coating process for manufacturing semiconductors and liquid crystals has rapidly advanced. As a plasma process in semiconductor / liquid crystal production, a halogen-based corrosive gas such as a chlorine-based gas is used for vapor-phase growth deposition, etching and cleaning because of its high reactivity. Members that come into contact with these corrosive gases and plasma are required to have high corrosion resistance.

【0003】従来より、被処理物以外のこれら腐食性ガ
ス及びそのプラズマに接触する部材としては、一般に、
ガラスや石英などのSiO2 を主成分とする材料や、ス
テンレス、モネル等の耐食性金属が多用されている。
Conventionally, members that come into contact with these corrosive gases other than the object to be treated and the plasma thereof are generally:
Materials mainly composed of SiO 2 such as glass and quartz, and corrosion-resistant metals such as stainless steel and Monel are often used.

【0004】また、半導体製造時において、Siウェハ
を支持固定するサセプタ材として、アルミナ焼結体、サ
ファイア、AlN焼結体、又はこれらをCVD法等によ
り表面被覆したものが耐食性に優れるとして使用されて
いる。また、グラファイト、窒化硼素をコーティングし
たヒータ等も使用されている。
In the manufacture of semiconductors, as a susceptor material for supporting and fixing a Si wafer, an alumina sintered body, a sapphire, an AlN sintered body, or a surface-coated material thereof by a CVD method or the like is used because of its excellent corrosion resistance. ing. Further, a heater coated with graphite or boron nitride is also used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来か
ら用いられているガラスや石英ではプラズマ中の耐食性
が不充分で消耗が激しく、特に塩素系プラズマに接する
と接触面がエッチングされ、表面性状が変化してエッチ
ング条件に影響する等の問題が生じていた。
However, conventionally used glass and quartz have inadequate corrosion resistance in plasma and are intensely depleted. In particular, when they come into contact with chlorine-based plasma, the contact surface is etched and the surface properties change. Thus, problems such as affecting the etching conditions have occurred.

【0006】また、ステンレスなどの金属を使用した部
材でも耐食性が不充分なため、腐食によってパーティク
ルが発生するなどの問題が発生し、特に半導体製造にお
いては不良品発生率を上昇させる大きな原因の1つとな
っていた。
[0006] Further, even members made of metal such as stainless steel have insufficient corrosion resistance, causing problems such as generation of particles due to corrosion. Particularly, in semiconductor manufacturing, one of the major causes for increasing the defective product generation rate is one. Had one.

【0007】アルミナ焼結体、サファイア、AlN焼結
体、又はこれらをCVD法等により表面被覆したもの
は、上記の材料に比較して塩素系腐食性ガス及びそのプ
ラズマに対して耐食性に優れるものの、高温でプラズマ
と接すると腐食が徐々に進行して、しまいには表面から
ガスとの反応生成物粒子及び結晶粒子の脱粒によるパー
ティクルが発生するという問題が生じている。
[0007] Alumina sintered bodies, sapphire, AlN sintered bodies, or those obtained by surface-coating them by the CVD method or the like, have higher corrosion resistance to chlorine-based corrosive gases and their plasmas than the above materials. However, when it comes into contact with the plasma at a high temperature, the corrosion gradually progresses, and in the end, there arises a problem that particles are generated from the surface due to the reaction product particles with the gas and the crystallization of the crystal particles.

【0008】また、このような問題を解決するため、塩
素系プラズマに対して材料表面に安定な塩素化物を形成
する周期律表第2A、3A族元素を主成分とする材料を
用いることも提案されているが、さらなる半導体の高集
積化、プロセスの更なるクリーン化に伴い、イオン衝撃
や、気相で反応生成したごく微細なパーティクルが不良
を発生する恐れが生じている。
In order to solve such a problem, it has also been proposed to use a material mainly composed of Group 2A or 3A element of the periodic table, which forms a stable chlorinated material on the surface of the material with respect to chlorine-based plasma. However, with the further increase in the degree of integration of semiconductors and the further cleanliness of the process, there is a risk that ion bombardment and extremely fine particles generated by reaction in the gas phase may cause defects.

【0009】従って、本発明は、耐熱性に優れた窒化珪
素質焼結体からなり、耐食性およびパーティクルの発生
を抑制し得る窒化珪素質耐食性部材とその製造方法を提
供することを目的とする。
Accordingly, an object of the present invention is to provide a silicon nitride-based corrosion-resistant member made of a silicon nitride-based sintered body having excellent heat resistance and capable of suppressing corrosion resistance and generation of particles, and a method of manufacturing the same.

【0010】[0010]

【課題を解決するための手段】本発明者らは、塩素系腐
食ガス或いはプラズマ中においても、半導体の性能を損
ねるパーティクルの発生を抑制できる高耐食性を有する
セラミック材料について検討を行ったところ、窒化珪素
や炭化珪素等のSiを構成元素とし共有結合性の高い化
合物が優れた耐食性能を有すること、半導体や液晶製造
装置用の耐食性部材としては、電気絶縁性を必要とする
部材が多く、更に優れた熱衝撃性が求められることか
ら、窒化珪素が広範囲の耐食性部材として適しているこ
とに着目した。
DISCLOSURE OF THE INVENTION The present inventors have studied a ceramic material having high corrosion resistance which can suppress generation of particles which impair the performance of a semiconductor even in a chlorine-based corrosive gas or plasma. A compound having a high covalent bond with Si as a constituent element such as silicon or silicon carbide has excellent corrosion resistance performance, and as a corrosion resistant member for a semiconductor or a liquid crystal manufacturing apparatus, there are many members requiring electrical insulation, and Since excellent thermal shock resistance is required, attention was paid to the fact that silicon nitride is suitable for a wide range of corrosion resistant members.

【0011】そして、この窒化珪素系焼結体を用いた耐
食性部材として最適な組成について鋭意研究したとこ
ろ、焼結による緻密化を図る上で焼結助剤を必須の成分
とするが、この焼結助剤成分により、耐食性が大きく異
なり、その中で、希土類元素化合物の添加量を極力低減
し、アルミナ、シリカを所定の量添加することにより、
焼結性を損なうことなく、窒化珪素質焼結体の耐食性を
飛躍的に向上できることを見いだし、本発明に至った。
[0011] Then, as a result of diligent research on the optimum composition as a corrosion-resistant member using the silicon nitride-based sintered body, a sintering aid is an essential component for achieving densification by sintering. Depending on the binder component, the corrosion resistance greatly differs, among which the addition amount of the rare earth element compound is reduced as much as possible, by adding a predetermined amount of alumina and silica,
The present inventors have found that the corrosion resistance of a silicon nitride-based sintered body can be significantly improved without impairing the sinterability, and have led to the present invention.

【0012】すなわち、本発明の窒化珪素質耐食性部材
は、腐食性ガスあるいはプラズマと直接接触する表面
が、β−窒化珪素を主相とし、希土類元素を酸化物換算
(RE2 3 )で0.1〜3重量%と、アルミニウムを
酸化物換算(Al2 3 )で1〜5重量%と、過剰酸素
をSiO2 換算(SiO2 )で1〜6重量%の割合でそ
れぞれ含み、かつAl2 3 /RE2 3 が1〜6、か
つSiO2 /RE2 3が2〜15の範囲内であって、
かつその他の陽イオン不純物の総量が0.1重量%以
下、相対密度90%以上の焼結体からなることを特徴と
するものである。なお、上記希土類元素としては、Yb
2 3 が最も望ましい。
That is, in the silicon nitride-based corrosion-resistant member of the present invention, the surface in direct contact with a corrosive gas or plasma has β-silicon nitride as a main phase, and rare earth elements are converted to oxides (RE 2 O 3 ). .1~3% by weight, each comprise aluminum and 1 to 5% by weight in terms of oxide (Al 2 O 3), the excess oxygen at a ratio of 1-6 wt% in terms of SiO 2 (SiO 2), and Al 2 O 3 / RE 2 O 3 is in the range of 1 to 6, and SiO 2 / RE 2 O 3 is in the range of 2 to 15,
The sintered body has a total amount of other cationic impurities of 0.1% by weight or less and a relative density of 90% or more. The rare earth element is Yb
2 O 3 is most desirable.

【0013】また、その製造方法は、陽イオン不純物の
総量が0.1重量%以下の窒化珪素原料粉末に対して、
希土類元素を酸化物換算(RE2 3 )で0.1〜3重
量%と、アルミニウムを酸化物換算(Al2 3 )で1
〜5重量%と、過剰酸素をSiO2 換算(SiO2 )で
1〜6重量%とを含み、かつAl2 3 /RE2 3
1〜6、かつSiO2 /RE2 3 が2〜15の範囲内
である粉末を成形し、焼成してなることを特徴とするも
のである。焼成については、常圧焼成であることが望ま
しい。
[0013] Further, the production method is characterized in that a silicon nitride raw material powder having a total amount of cationic impurities of 0.1% by weight or less is used.
And 0.1 to 3% by weight in terms of oxide of rare earth element (RE 2 O 3), in terms of oxide of aluminum (Al 2 O 3) 1
-5% by weight, and excess oxygen in terms of SiO 2 (SiO 2 ) of 1-6% by weight, and Al 2 O 3 / RE 2 O 3 is 1-6, and SiO 2 / RE 2 O 3 is It is characterized in that a powder in the range of 2 to 15 is molded and fired. The firing is desirably normal pressure firing.

【0014】[0014]

【発明の実施の形態】本発明の耐食性部材は、塩素系ガ
スの腐食性ガス、またはそのプラズマに直接接触する部
材であり、塩素系ガスとしては、Cl2 、SiCl4
BCl3 、HCl等が挙げられる。これらのガスが導入
される雰囲気にマイクロ波や高周波等を導入するとこれ
らのガスがプラズマ化される。
BEST MODE FOR CARRYING OUT THE INVENTION The corrosion-resistant member of the present invention is a member which is in direct contact with a corrosive gas of a chlorine-based gas or its plasma. As the chlorine-based gas, Cl 2 , SiCl 4 ,
BCl 3 , HCl and the like can be mentioned. When microwaves, high-frequency waves, or the like are introduced into the atmosphere in which these gases are introduced, these gases are turned into plasma.

【0015】本発明によれば、このような塩素系ガスの
腐食性ガス、またはそのプラズマに直接接触する表面
を、窒化珪素を主成分とする窒化珪素質焼結体により構
成するものである。窒化珪素は、塩素と反応した場合、
SiCl4 などの蒸気圧の低い反応物を生じ、酸素を含
まない塩素系ガス或いはプラズマとは反応しにくいため
に塩素系ガスに対して優れた耐食性を示すものである。
また、耐熱衝撃性および強度の点から、焼結体の少なく
とも内部は相対密度90%以上、特に95%であること
が必要である。
According to the present invention, such a corrosive gas of a chlorine-based gas or a surface thereof which comes into direct contact with plasma is formed of a silicon nitride sintered body containing silicon nitride as a main component. When silicon nitride reacts with chlorine,
Since a reactant having a low vapor pressure such as SiCl 4 is generated and hardly reacts with a chlorine-based gas or plasma containing no oxygen, it exhibits excellent corrosion resistance to a chlorine-based gas.
From the viewpoint of thermal shock resistance and strength, it is necessary that at least the inside of the sintered body has a relative density of 90% or more, particularly 95%.

【0016】窒化珪素は、単独では焼結しないことか
ら、従来より希土類元素等の周期律表第3A族元素や、
MgO等のアルカリ土類金属酸化物、Al2 3 、Si
2 などの焼結助剤を添加することにより緻密化が図ら
れる。そして、この焼結体の組織は、窒化珪素からなる
主結晶相と、主として焼結助剤として添加した成分や不
純物成分によって形成される粒界相から構成されるもの
である。
Since silicon nitride does not sinter alone, it has heretofore been a group 3A element of the periodic table such as a rare earth element,
Alkaline earth metal oxides such as MgO, Al 2 O 3 , Si
Densification is achieved by adding a sintering aid such as O 2 . The structure of the sintered body is composed of a main crystal phase made of silicon nitride and a grain boundary phase formed mainly by a component added as a sintering aid or an impurity component.

【0017】塩素系ガスに対する耐食性の観点からは、
窒化珪素は、それ自体共有結合を有する化学的に安定な
化合物からなるために耐食性に優れるが、前記焼結助剤
や不純物として混入する成分によっては耐食性に劣り、
その粒界相が局所的にエッチングされたり、ガスと容易
に反応してしまう。
From the viewpoint of corrosion resistance to chlorine-based gas,
Silicon nitride is excellent in corrosion resistance because it is composed of a chemically stable compound having a covalent bond itself, but is inferior in corrosion resistance depending on the sintering aid and components mixed as impurities.
The grain boundary phase is locally etched or easily reacts with the gas.

【0018】そこで、本発明によれば、希土類化合物の
含有量を低減するとともに、耐食性を損なわない程度に
焼結性を維持するため、所定の比率でAl2 3 、Si
2を添加することが重要である。すなわち、β−窒化
珪素を主相とし、希土類元素を酸化物換算量(RE2
3 )で0.1〜3重量%、好ましくは0.5〜2重量%
と、アルミニウムを酸化物換算(Al2 3 )で1〜5
重量%、好ましくは2〜4重量%と、過剰酸素をSiO
2 換算(SiO2 )で1〜6重量%、好ましくは2〜4
重量%とを含み、かつAl2 3 /RE2 3 が1〜
6、好ましくは2〜4、かつSiO2 /RE2 3 が2
〜15、望ましくは4〜10の範囲内であって、かつそ
の他の陽イオン不純物の総量が0.1重量%以下である
ことが重要である。
Therefore, according to the present invention, in order to reduce the content of the rare earth compound and maintain the sinterability to the extent that corrosion resistance is not impaired, Al 2 O 3 , Si
It is important to add the O 2. That is, β-silicon nitride is used as a main phase, and rare earth elements are converted into oxides (RE 2 O
3 ) 0.1 to 3% by weight, preferably 0.5 to 2% by weight
And aluminum is 1 to 5 in terms of oxide (Al 2 O 3 ).
Wt%, preferably 2-4 wt%, and excess oxygen
1-6% by weight 2 equivalent (SiO 2), preferably 2 to 4
% And Al 2 O 3 / RE 2 O 3 is 1 to
6, preferably 2 to 4 and SiO 2 / RE 2 O 3 of 2
It is important that the total amount of other cationic impurities is within a range of from 0.1 to 15, preferably from 4 to 10, and not more than 0.1% by weight.

【0019】ここで、過剰酸素量とは、窒化珪素焼結体
中の全酸素量から焼結体中に含まれる希土類元素および
Alと化学量論組成にて結合している酸素量を差し引い
た残りの酸素量であり、そのほとんどはSi3 4 原料
中の不可避的酸素量あるいは意図的に添加したSiO2
中の酸素である。
Here, the amount of excess oxygen is obtained by subtracting the amount of oxygen combined with the rare earth element and Al contained in the sintered body in a stoichiometric composition from the total amount of oxygen in the silicon nitride sintered body. Most of the remaining oxygen amount is the unavoidable oxygen amount in the Si 3 N 4 raw material or SiO 2 added intentionally.
The oxygen inside.

【0020】焼結体組成を上記範囲に限定した理由は、
希土類元素が0.1重量%以下である場合、またはアル
ミナが1重量%以下である場合、あるいは過剰酸素量
(SiO2 )が1重量%以下である場合には、焼結性が
劣化し、緻密な磁器が得られず、プラズマ中で多量のパ
ーティクルが発生するためである。また、希土類酸化物
が3重量%以上である場合、またはアルミナが5重量%
以上である場合、あるいは過剰酸素量(SiO2 )が6
重量%以上である場合には、耐食性が劣化するためであ
る。またその比率が上記範囲外である場合、焼結性が劣
化したり、耐食性が劣化する。
The reason for limiting the composition of the sintered body to the above range is as follows.
When the rare earth element is 0.1% by weight or less, when the alumina is 1% by weight or less, or when the excess oxygen amount (SiO 2 ) is 1% by weight or less, the sinterability deteriorates, This is because dense porcelain cannot be obtained and a large amount of particles are generated in the plasma. When the rare earth oxide is 3% by weight or more, or when the alumina is 5% by weight.
If it is more than the above, or if the excess oxygen amount (SiO 2 ) is 6
If the content is not less than% by weight, the corrosion resistance deteriorates. If the ratio is out of the above range, the sinterability deteriorates and the corrosion resistance deteriorates.

【0021】なお、本発明における希土類元素として
は、Y、Ce、La、Yb、Er、Lu、Dy、Nd、
Sm、Gd等が挙げられるが、これらのうち、Ybが少
量の添加量で緻密化できる点で最適である。また、N
a、Ca、Mg、Fe、Cr、Ni等の陽イオン不純物
については、パーティクルとして半導体製造装置内に混
入した場合、半導体の特性に悪影響を及ぼしたり、ま
た、焼結体に対して粒界の浸食を助長するため、それら
の金属換算による合量が0.1重量%以下、特に0.0
5重量%以下であることが必要である。
The rare earth elements in the present invention include Y, Ce, La, Yb, Er, Lu, Dy, Nd,
Sm, Gd and the like can be mentioned, and among them, Yb is most suitable because it can be densified with a small amount of addition. Also, N
When cationic impurities such as a, Ca, Mg, Fe, Cr, and Ni are mixed as particles into a semiconductor manufacturing apparatus, they may adversely affect the characteristics of the semiconductor or may cause grain boundaries with respect to the sintered body. In order to promote erosion, the total amount thereof in terms of metal is 0.1% by weight or less, particularly 0.0% by weight.
It is necessary that the content be 5% by weight or less.

【0022】本発明の窒化珪素質耐食性部材は、以下の
方法によって作製される。まず、出発原料として、N
a、Ca、Mg、Fe、Cr、Ni等の陽イオン不純物
の総量が0.1重量%以下である窒化珪素粉末を準備す
る。この原料粉末は、平均粒径が2μm以下、不純物酸
素量0.5〜2.0重量%のα型、β型のいずれでも使
用できる。
The silicon nitride-based corrosion-resistant member of the present invention is manufactured by the following method. First, as a starting material, N
A silicon nitride powder is prepared in which the total amount of cationic impurities such as a, Ca, Mg, Fe, Cr, and Ni is 0.1% by weight or less. This raw material powder can be used in either α-type or β-type having an average particle diameter of 2 μm or less and an impurity oxygen amount of 0.5 to 2.0% by weight.

【0023】窒化珪素原料粉末中の陽イオン不純物量の
総量が0.1重量%を越える場合、高濃度に不純物を含
む低融点の粒界相が生成され、塩素系腐食ガスあるいは
プラズマに曝される環境下で長時間使用した場合、焼結
体内部の粒界相成分が部材表面に向かって容易に拡散移
動するために、浸食が焼結体内部まで進行し、耐食性を
低下させるとともに、半導体に対して悪影響を及ぼす。
When the total amount of cationic impurities in the silicon nitride raw material powder exceeds 0.1% by weight, a low-melting grain boundary phase containing impurities at a high concentration is generated and exposed to a chlorine-based corrosive gas or plasma. When used for an extended period of time in an environment, the grain boundary phase component inside the sintered body easily diffuses and moves toward the surface of the member, so that erosion proceeds inside the sintered body and reduces corrosion resistance, Adversely affect

【0024】次に、上記窒化珪素原料粉末に、希土類元
素酸化物を酸化物換算で0.1〜3重量%と、アルミニ
ウムを酸化物換算(Al2 3 )で1〜5重量%と、過
剰酸素をSiO2 換算(SiO2 )で1〜6重量%、か
つAl2 3 /RE2 3 が1〜6、かつSiO2 /R
2 3 が2〜15の範囲内となるように添加、混合す
る。
Next, in the silicon nitride raw material powder, 0.1 to 3% by weight of a rare earth element oxide in terms of oxide, and 1 to 5% by weight of aluminum in terms of oxide (Al 2 O 3 ), Excess oxygen is 1 to 6% by weight in terms of SiO 2 (SiO 2 ), Al 2 O 3 / RE 2 O 3 is 1 to 6, and SiO 2 / R
Add and mix so that E 2 O 3 is in the range of 2 to 15.

【0025】焼結体の密度を向上させるためには、これ
らの粉末もしくはこれらの粉末からなる凝集体を、ボー
ルミル等の公知の粉末混合法により、平均粒径3μm以
下、好ましくは2μm以下に粉砕することが望ましい。
In order to improve the density of the sintered body, these powders or aggregates made of these powders are pulverized by a known powder mixing method such as a ball mill to an average particle size of 3 μm or less, preferably 2 μm or less. It is desirable to do.

【0026】この混合粉末を所望の成形手段、例えば、
金型プレス、冷間静水圧プレス、射出成形、押出し成形
等により任意の耐食性部材の形状に成形し、焼成する。
焼成は、SiOガスを含む窒素等の非酸化性雰囲気中で
1700〜1800℃、好ましくは1750〜1800
℃の温度域で行うことが望ましい。
The mixed powder is formed into a desired molding means, for example,
It is formed into an arbitrary shape of a corrosion resistant member by a die press, a cold isostatic press, an injection molding, an extrusion molding or the like, and is fired.
The firing is performed at 1700 to 1800 ° C., preferably 1750 to 1800 ° C. in a non-oxidizing atmosphere such as nitrogen containing SiO gas.
It is desirable to carry out in a temperature range of ° C.

【0027】焼結方法としては、常圧焼成、ホットプレ
ス、窒素ガス加圧焼成、熱間静水圧焼成等が採用できる
が、コスト、および大型品を焼成できる点から、常圧焼
成が好ましい。このような焼結方法によれば、複雑な形
状を有する大型部材に対しても容易に適用でき、効率よ
く耐食性の高い部材を製造することができる。
As the sintering method, normal pressure calcination, hot pressing, nitrogen gas pressure calcination, hot isostatic pressure calcination, etc. can be adopted. However, normal pressure calcination is preferred from the viewpoint of cost and sintering of large products. According to such a sintering method, it can be easily applied to a large member having a complicated shape, and a member having high corrosion resistance can be efficiently manufactured.

【0028】上記の焼成により相対密度90%以上の焼
結体を得る。なお、上記焼結体が低密度で多量の気孔を
有する場合は、それだけガスやプラズマとの接触面積が
増加し消耗が速くなる。特に、相対密度は、95%以上
がよい。得られた焼結体に対し、適宜研削加工を施し、
所定の寸法の製品形状に仕上げる。
By the above-mentioned firing, a sintered body having a relative density of 90% or more is obtained. In the case where the sintered body has a low density and a large number of pores, the contact area with the gas or the plasma increases and the consumption speed increases. In particular, the relative density is preferably 95% or more. The obtained sintered body is subjected to appropriate grinding,
Finish the product with the specified dimensions.

【0029】耐食性を高める上では、プラズマと直接接
触する表面の表面粗さ(Ra)が、1μm以下、好まし
くは0.1μm以下であることが望ましい。
In order to enhance the corrosion resistance, it is desirable that the surface which directly contacts the plasma has a surface roughness (Ra) of 1 μm or less, preferably 0.1 μm or less.

【0030】[0030]

【実施例】以下に具体的なプラズマに対する耐食性評価
実験を行った。まず、平均粒径0.7μm、珪素以外の
陽イオン金属不純物量が200ppmのα型窒化珪素粉
末に対して表1に示す割合で焼結助剤を添加、混合し、
成形した後、窒素雰囲気中1750℃で5時間焼成し
た。なお、表中に含まれるSiO2 量は原料中に含まれ
る過剰酸素量と添加したシリカ粉末の合計量である。
EXAMPLE An experiment for evaluating the corrosion resistance to specific plasma was carried out below. First, a sintering aid was added and mixed at a ratio shown in Table 1 with respect to α-type silicon nitride powder having an average particle diameter of 0.7 μm and a cation metal impurity amount other than silicon of 200 ppm,
After being formed, it was baked at 1750 ° C. for 5 hours in a nitrogen atmosphere. The amount of SiO 2 contained in the table is the total amount of excess oxygen contained in the raw material and the added silica powder.

【0031】得られた焼結体に対し、まず、アルキメデ
ス法により窒化珪素質焼結体の密度を測定し、理論密度
に対する比率である相対密度(%)を算出した。つい
で、表面をプラズマと直接接触する表面の表面粗さ(R
a)が、0.1μm以下となるように研削、鏡面加工を
行った。
For the obtained sintered body, first, the density of the silicon nitride based sintered body was measured by the Archimedes method, and the relative density (%), which was a ratio to the theoretical density, was calculated. Then, the surface roughness (R) of the surface that directly contacts the plasma
Grinding and mirror finishing were performed so that a) became 0.1 μm or less.

【0032】次に、上記の焼結体に対して、RIEプラ
ズマエッチング装置にて、BCl3(100sccm)
の塩素プラズマ中に室温で曝し、焼結体表面のパーティ
クルの有無を調査した。エッチング条件は、圧力4P
a、RF出力1.8kW、プラズマ照射時間240時間
とした。パーティクルの有無はレーザーの散乱を用いて
ウエハ表面の凹凸を検出し、凹凸の形状と数をカウント
できるシリコンウエハ用のパーティクルカウンタを用
い、0.3μm以上のパーティクルの8インチウエファ
ー1枚当たりの個数を表1に記した。
Next, the above sintered body was subjected to BCl 3 (100 sccm) using an RIE plasma etching apparatus.
Was exposed at room temperature to the presence of particles on the sintered body. Etching conditions are pressure 4P
a, RF output was 1.8 kW, and plasma irradiation time was 240 hours. The presence / absence of particles is detected by using laser scattering to detect irregularities on the surface of the wafer and using a particle counter for silicon wafers that can count the shape and number of irregularities. The number of particles of 0.3 μm or more per 8-inch wafer Are shown in Table 1.

【0033】[0033]

【表1】 [Table 1]

【0034】表1の結果から明らかなように、本発明の
組成範囲より焼結助剤量が少ないかまたはAl2 3
RE2 3 、SiO2 /RE2 3 が大きい試料No.
6、10、20、22、25では、焼結体の密度が上が
らず、3000個以上のパーティクルが発生し使用に耐
えない。また、本発明の組成範囲より焼結助剤量が多い
かまたはAl2 3 /RE2 3 、SiO2 /RE2
3 が小さい試料No.8、12、18、24では、焼結
体の密度は高いものの、耐食性が低下し、3000個以
上のパーティクルが発生し使用に耐えない。さらに、そ
の他の陽イオン不純物の総量が0.1重量%を越える試
料No.27でも、焼結体の密度は高いものの、耐食性
が低下し、3000個以上のパーティクルが発生し使用
に耐えない。
As is clear from the results in Table 1, the amount of the sintering aid was smaller than the composition range of the present invention, or the amount of Al 2 O 3 /
Sample No. 2 having large RE 2 O 3 and SiO 2 / RE 2 O 3 .
In 6, 10, 20, 22, and 25, the density of the sintered body does not increase, and 3000 or more particles are generated, which is not usable. Further, the amount of the sintering aid is larger than the composition range of the present invention, or Al 2 O 3 / RE 2 O 3 , SiO 2 / RE 2 O
Sample No. 3 is small. In Nos. 8, 12, 18, and 24, although the density of the sintered body is high, the corrosion resistance is reduced, and 3000 or more particles are generated, which is not usable. Further, the sample No. 3 in which the total amount of other cationic impurities exceeded 0.1% by weight. Even with 27, although the density of the sintered body is high, the corrosion resistance is reduced, and 3000 or more particles are generated, which is not usable.

【0035】これに対し、本発明の範囲内のものでは、
シリコンウエハ上のパーティクルの発生が1000個以
下に制御されており、かつ試料表面自体にも反応生成物
の堆積などは見られなかった。
On the other hand, within the scope of the present invention,
The generation of particles on the silicon wafer was controlled to 1000 or less, and no deposition of reaction products was observed on the sample surface itself.

【0036】[0036]

【発明の効果】以上詳述したように、本発明によれば、
塩素系腐食性ガス或いはプラズマに曝される部材とし
て、焼結助剤組成を限定した窒化珪素焼結体を用いるこ
とにより、プラズマとの反応性を抑制し、パーティクル
の発生が少ない材料が得られ、苛酷な塩素系腐食雰囲気
における耐食性を高めることができる。
As described in detail above, according to the present invention,
By using a silicon nitride sintered body with a limited sintering aid composition as a member exposed to chlorine-based corrosive gas or plasma, it is possible to obtain a material that suppresses the reactivity with plasma and generates less particles. And corrosion resistance in a severe chlorine-based corrosive atmosphere can be improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊東 裕見子 鹿児島県国分市山下町1番4号 京セラ株 式会社総合研究所内 (72)発明者 日下 浩次 山梨県韮崎市本町1丁目3番7号文光堂ビ ル2F 京セラ株式会社山梨営業所内 (72)発明者 中堀 安浩 鹿児島県国分市山下町1番1号 京セラ株 式会社鹿児島国分工場内 Fターム(参考) 4G001 BA03 BA04 BA08 BA32 BA71 BA73 BB03 BB04 BB08 BB32 BB71 BB73 BD36 BD37 BD38 BE33 4G075 AA30 AA53 BC06 BC10 CA02 CA47 FB04 FC09  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yumiko Ito 1-4-4 Yamashita-cho, Kokubu-shi, Kagoshima Inside the Kyocera Research Institute (72) Inventor Koji Kusaka 1-3-7 Honcho, Nirasaki-shi, Yamanashi Bunkodo Building 2F Kyocera Corporation Yamanashi Sales Office (72) Inventor Yasuhiro Nakabori 1-1-1, Yamashita-cho, Kokubu-shi, Kagoshima Kyocera Corporation Kagoshima Kokubu Plant F-term (reference) 4G001 BA03 BA04 BA08 BA32 BA71 BA73 BB03 BB04 BB08 BB32 BB71 BB73 BD36 BD37 BD38 BE33 4G075 AA30 AA53 BC06 BC10 CA02 CA47 FB04 FC09

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】腐食性ガスあるいはプラズマと直接接触す
る表面が、β−窒化珪素を主相とし、希土類元素を酸化
物換算(RE2 3 )で0.1〜3重量%と、アルミニ
ウムを酸化物換算(Al2 3 )で1〜5重量%と、過
剰酸素をSiO2換算(SiO2 )で1〜6重量%の割
合でそれぞれ含み、かつAl2 3 /RE2 3 が1〜
6、かつSiO2 /RE2 3 が2〜15の範囲内であ
って、かつその他の陽イオン不純物の総量が0.1重量
%以下、相対密度90%以上の焼結体からなることを特
徴とする窒化珪素質耐食性部材。
A surface which is in direct contact with a corrosive gas or plasma has a main phase of β-silicon nitride, contains 0.1 to 3% by weight of a rare earth element in terms of oxide (RE 2 O 3 ), and contains aluminum. and 1 to 5% by weight in terms of oxide (Al 2 O 3), wherein each of excess oxygen at a ratio of 1-6 wt% in terms of SiO 2 (SiO 2), and the Al 2 O 3 / RE 2 O 3 1 to
6. A sintered body having a SiO 2 / RE 2 O 3 within the range of 2 to 15 and a total amount of other cationic impurities of 0.1% by weight or less and a relative density of 90% or more. Characteristic silicon nitride corrosion resistant member.
【請求項2】希土類元素酸化物がYb2 3 である請求
項1記載の窒化珪素質耐食性部材。
2. The silicon nitride-based corrosion-resistant member according to claim 1, wherein the rare earth element oxide is Yb 2 O 3 .
【請求項3】プラズマが塩素プラズマであることを特徴
とする請求項1記載の窒化珪素質耐食性部材。
3. The silicon nitride-based corrosion-resistant member according to claim 1, wherein the plasma is chlorine plasma.
【請求項4】腐食性ガスあるいはそのプラズマと直接接
触する表面を有する耐食性部材の製造方法であって、陽
イオン不純物の総量が0.1重量%以下の窒化珪素原料
粉末に対して、希土類元素を酸化物換算(RE2 3
で0.1〜3重量%と、アルミニウムを酸化物換算(A
2 3 )で1〜5重量%と、過剰酸素をSiO2 換算
(SiO2 )で1〜6重量%とを含み、かつAl2 3
/RE23 が1〜6、かつSiO2 /RE2 3 が2
〜15の範囲内である粉末を成形し、焼成してなること
を特徴とする窒化珪素質耐食性部材の製造方法。
4. A method for producing a corrosion-resistant member having a surface which is in direct contact with a corrosive gas or its plasma, wherein a silicon nitride raw material powder having a total amount of cationic impurities of 0.1% by weight or less is mixed with a rare earth element. In oxide conversion (RE 2 O 3 )
And 0.1 to 3% by weight of aluminum, in terms of oxide (A
l 2 O 3 ), 1 to 6% by weight of excess oxygen in terms of SiO 2 (SiO 2 ), and Al 2 O 3
/ RE 2 O 3 is 1 to 6 and SiO 2 / RE 2 O 3 is 2
A method for producing a silicon nitride-based corrosion-resistant member, comprising molding and firing a powder within the range of from 15 to 15.
【請求項5】希土類元素酸化物がYb2 3 である請求
項4記載の窒化珪素質耐食性部材の製造方法。
5. The method for producing a silicon nitride-based corrosion-resistant member according to claim 4, wherein the rare earth element oxide is Yb 2 O 3 .
【請求項6】焼成が常圧焼成である請求項4記載の窒化
珪素質耐食性部材の製造方法。
6. The method according to claim 4, wherein the firing is normal pressure firing.
JP10182061A 1998-06-29 1998-06-29 Silicon nitride-base corrosion resistant member and its production Pending JP2000007440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10182061A JP2000007440A (en) 1998-06-29 1998-06-29 Silicon nitride-base corrosion resistant member and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10182061A JP2000007440A (en) 1998-06-29 1998-06-29 Silicon nitride-base corrosion resistant member and its production

Publications (1)

Publication Number Publication Date
JP2000007440A true JP2000007440A (en) 2000-01-11

Family

ID=16111668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10182061A Pending JP2000007440A (en) 1998-06-29 1998-06-29 Silicon nitride-base corrosion resistant member and its production

Country Status (1)

Country Link
JP (1) JP2000007440A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012206913A (en) * 2011-03-30 2012-10-25 Ngk Insulators Ltd Magnesium fluoride-sintered body, method for manufacturing the same, and member for semiconductor manufacturing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012206913A (en) * 2011-03-30 2012-10-25 Ngk Insulators Ltd Magnesium fluoride-sintered body, method for manufacturing the same, and member for semiconductor manufacturing apparatus

Similar Documents

Publication Publication Date Title
US6383964B1 (en) Ceramic member resistant to halogen-plasma corrosion
TWI540635B (en) Corrosion resistant member for semiconductor manufacturing apparatus and method for making the same
KR100204268B1 (en) Aluminium nitride sinter and producing method therefor
JP2000001362A (en) Corrosion resistant ceramic material
JP4987238B2 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and aluminum nitride sintered body manufacturing method
JPH1045461A (en) Corrosion resistant member
JPH11214365A (en) Member for semiconductor element manufacturing device
US6670294B2 (en) Corrosion-resistive ceramic materials and members for semiconductor manufacturing
JP4493264B2 (en) Aluminum nitride ceramics, semiconductor manufacturing members and corrosion resistant members
JP2002249379A (en) Aluminum nitride sintered compact and member for device for manufacturing of semiconductor
JP2000103689A (en) Alumina sintered compact, its production and plasma- resistant member
JP5190809B2 (en) Corrosion resistant member and manufacturing method thereof
JP2000086344A (en) High density fluoride sintered body, its production, and member for semiconductor-producing apparatus by using the same
JP3706488B2 (en) Corrosion-resistant ceramic material
JP2001240482A (en) Plasma resistance material, high-frequency transmission material, and plasma equipment
JP2001151559A (en) Corrosion-resistant member
TWI499574B (en) A corrosion resistant material for a semiconductor manufacturing apparatus and fabricated method thereof
JP4641609B2 (en) Corrosion resistant material
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP2000007440A (en) Silicon nitride-base corrosion resistant member and its production
JPH0948668A (en) Aluminum nitride sintered compact and its production and device for producing semiconductor
US20100067165A1 (en) Electrostatic chuck and method for manufacturing same
JPH11278944A (en) Silicon nitride corrosion resistant member and its production
JP2000239066A (en) Corrosionproof member and its production, and member for plasma treatment device using the same
JP3769416B2 (en) Components for plasma processing equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060530