JP2012206913A - Magnesium fluoride-sintered body, method for manufacturing the same, and member for semiconductor manufacturing apparatus - Google Patents

Magnesium fluoride-sintered body, method for manufacturing the same, and member for semiconductor manufacturing apparatus Download PDF

Info

Publication number
JP2012206913A
JP2012206913A JP2011075280A JP2011075280A JP2012206913A JP 2012206913 A JP2012206913 A JP 2012206913A JP 2011075280 A JP2011075280 A JP 2011075280A JP 2011075280 A JP2011075280 A JP 2011075280A JP 2012206913 A JP2012206913 A JP 2012206913A
Authority
JP
Japan
Prior art keywords
magnesium fluoride
sintered body
particles
dispersed particles
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011075280A
Other languages
Japanese (ja)
Other versions
JP5577287B2 (en
Inventor
Asumi Shindo
明日美 神藤
Morimichi Watanabe
守道 渡邊
Yuji Katsuta
祐司 勝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2011075280A priority Critical patent/JP5577287B2/en
Publication of JP2012206913A publication Critical patent/JP2012206913A/en
Application granted granted Critical
Publication of JP5577287B2 publication Critical patent/JP5577287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnesium fluoride-sintered body which has high strength and high corrosion resistance, and an alkaline metal content of ≤500 ppm.SOLUTION: The magnesium fluoride sintered body is a sintered body containing magnesium fluoride as a principal phase, and contains at least one dispersed particle having a lower average linear expansion coefficient than magnesium fluoride, wherein the average particle diameter of dispersed particles in the sintered body and the average particle diameter of the magnesium fluoride particles are ≤5 μm; the open porosity is ≤1%; and the alkaline metal element content is ≤500 ppm.

Description

本発明は、フッ化マグネシウム焼結体、その製法及び半導体製造装置用部材に関する。   The present invention relates to a magnesium fluoride sintered body, a manufacturing method thereof, and a member for a semiconductor manufacturing apparatus.

半導体製造におけるドライプロセスやプラズマコーティングなどを実施する際に利用される半導体製造装置では、エッチング、クリーニング用として、反応性の高いF、Cl系プラズマが使用される。このため、こうした装置に利用される部材には高い耐食性が必要であり、静電チャックやヒーター等のSiウエハと接する部材は更なる高耐食が求められる。このような要求に応えられる耐食性部材として、Al23やY23の焼結体が知られているものの、よりエッチングレートを小さく抑えることのできる焼結体材料の開発が望まれている。例えばY23の焼結体を利用した半導体製造装置は、特許文献1〜3に開示されている。 In a semiconductor manufacturing apparatus used when performing a dry process or plasma coating in semiconductor manufacturing, highly reactive F and Cl based plasma is used for etching and cleaning. For this reason, the member utilized for such an apparatus needs high corrosion resistance, and the member which touches Si wafers, such as an electrostatic chuck and a heater, is calculated | required further high corrosion resistance. As a corrosion-resistant member that can meet such requirements, Al 2 O 3 and Y 2 O 3 sintered bodies are known, but the development of sintered body materials that can further reduce the etching rate is desired. Yes. For example, Patent Documents 1 to 3 disclose a semiconductor manufacturing apparatus using a Y 2 O 3 sintered body.

フッ化物セラミックスは、フッ素系の腐食ガスやそれらのプラズマに対して高い耐食性を有している。このため、半導体製造装置で使用される内壁材等の材料として用いられている。こうしたフッ化物セラミックスとして、フッ化マグネシウムが知られている(特許文献4参照)。フッ化マグネシウムはアルミナに比べて2倍以上の耐食性を持つと言われているが、機械的強度が弱いことが問題とされている。こうした問題点を克服するために、フッ化マグネシウムにアルミナを添加した混合粉末を焼成したフッ化物基複合セラミックス焼結体が開示されている(特許文献5参照)。特許文献5には、平均粒径1.6μmのフッ化マグネシウム粉末にフッ化リチウムを1mol%添加して得られたフッ化物粉末と平均粒径0.2μmのアルミナ粉末とを、所定の重量比となるように調合して湿式混合を行い、その混合粉末を加圧して成形体を作製し、600〜800℃の温度範囲で3時間保持の条件で常圧焼結を行い、更にその焼結体を550〜700℃でHIP処理してフッ化物基複合セラミックス焼結体を得ている。   Fluoride ceramics have high corrosion resistance against fluorine-based corrosive gases and their plasmas. For this reason, it is used as a material such as an inner wall material used in a semiconductor manufacturing apparatus. As such a fluoride ceramic, magnesium fluoride is known (see Patent Document 4). Magnesium fluoride is said to have twice or more corrosion resistance compared to alumina, but has a problem of low mechanical strength. In order to overcome such problems, a fluoride-based composite ceramic sintered body obtained by firing a mixed powder obtained by adding alumina to magnesium fluoride has been disclosed (see Patent Document 5). In Patent Document 5, a fluoride powder obtained by adding 1 mol% of lithium fluoride to magnesium fluoride powder having an average particle diameter of 1.6 μm and alumina powder having an average particle diameter of 0.2 μm are mixed at a predetermined weight ratio. The mixture is mixed and wet-mixed, the mixed powder is pressed to form a molded body, and pressureless sintering is performed in a temperature range of 600 to 800 ° C. for 3 hours. The body was subjected to HIP treatment at 550 to 700 ° C. to obtain a fluoride-based composite ceramic sintered body.

特開平11−278935号公報JP 11-278935 A 特開2001−179080号公報JP 2001-179080 A 特開2006−69843号公報JP 2006-69843 A 特開2000−86344号公報JP 2000-86344 A 特開2000−302553号公報JP 2000-302553 A

しかしながら、特許文献2のフッ化物基複合セラミック焼結体は、焼結助剤であるフッ化リチウムに由来するリチウム元素を含有している。従来、半導体製造プロセスにおいてカリウム、ナトリウム、リチウムといったアルカリ金属元素はプラズマ中、更にはシリコンウエハや構成部材中へ拡散しやすいため、半導体製造装置用部材としてはアルカリ金属元素を可能な限り含まない高純度な材料が要求される。   However, the fluoride-based composite ceramic sintered body of Patent Document 2 contains a lithium element derived from lithium fluoride as a sintering aid. Conventionally, in a semiconductor manufacturing process, alkali metal elements such as potassium, sodium, and lithium are likely to diffuse into plasma, and further into silicon wafers and constituent members. Pure materials are required.

本発明はこのような課題を解決するためになされたものであり、高強度かつ高耐食性であり、アルカリ金属含有量が500ppm以下のフッ化マグネシウム焼結体を提供することを主目的とする。   The present invention has been made to solve such problems, and has as its main object to provide a magnesium fluoride sintered body having high strength and high corrosion resistance and having an alkali metal content of 500 ppm or less.

本発明のフッ化マグネシウム焼結体は、
フッ化マグネシウムを主相とする焼結体であって、
平均線熱膨張係数がフッ化マグネシウムよりも低い少なくとも1種の非アルカリ金属系の分散粒子を含み、
焼結体中の分散粒子の平均粒径とフッ化マグネシウム粒子の平均粒径が5μm以下でかつ開気孔率が1%以下であり、
アルカリ金属元素含有量が500ppm以下
のものである。
The magnesium fluoride sintered body of the present invention is
A sintered body mainly composed of magnesium fluoride,
Comprising at least one non-alkali metal-based dispersed particle having an average linear thermal expansion coefficient lower than that of magnesium fluoride,
The average particle size of the dispersed particles in the sintered body and the average particle size of the magnesium fluoride particles are 5 μm or less and the open porosity is 1% or less,
The alkali metal element content is 500 ppm or less.

このフッ化マグネシウム焼結体では、フッ化マグネシウム粒子単体で製造した焼結体に比べて、耐食性を高く維持したまま強度が向上する。また、アルカリ金属元素が500ppm以下であるため、アルカリ金属元素が他の部品や最終製品に悪影響を与えるような用途にも使用することができる。   In this magnesium fluoride sintered body, the strength is improved while maintaining high corrosion resistance as compared with a sintered body produced with magnesium fluoride particles alone. Moreover, since an alkali metal element is 500 ppm or less, it can be used also for the use which an alkali metal element has a bad influence on other components and final products.

本発明のフッ化マグネシウム焼結体の製法は、
平均線熱膨張係数がフッ化マグネシウムよりも低い少なくとも1種の非アルカリ金属系の分散粒子とフッ化マグネシウム粒子とを、フッ化マグネシウム100体積部に対して分散粒子が1〜20体積部となるように秤量し、これらにアルカリ金属元素を加えることなく混合し、混合粉末を成形した後、900〜1100℃でホットプレス焼成する
ものである。
The manufacturing method of the magnesium fluoride sintered body of the present invention is as follows:
At least one non-alkali metal-based dispersed particle and magnesium fluoride particle having an average linear thermal expansion coefficient lower than that of magnesium fluoride is 1 to 20 parts by volume with respect to 100 parts by volume of magnesium fluoride. Thus, they are weighed and mixed without adding an alkali metal element to form a mixed powder, followed by hot press firing at 900 to 1100 ° C.

この製法は、上述したフッ化マグネシウム焼結体を製造するのに適している。   This manufacturing method is suitable for manufacturing the magnesium fluoride sintered body described above.

本発明のフッ化マグネシウム焼結体は、フッ化マグネシウムを主相とする焼結体であって、平均線熱膨張係数がフッ化マグネシウムよりも低い少なくとも1種の非アルカリ金属系の分散粒子を含み、焼結体中の分散粒子の平均粒径とフッ化マグネシウム粒子の平均粒径が5μm以下でかつ開気孔率が1%以下であり、アルカリ金属元素含有量が500ppm以下のものである。   The magnesium fluoride sintered body of the present invention is a sintered body having magnesium fluoride as a main phase, and includes at least one non-alkali metal-based dispersed particle having an average linear thermal expansion coefficient lower than that of magnesium fluoride. In addition, the average particle size of the dispersed particles in the sintered body and the average particle size of the magnesium fluoride particles are 5 μm or less, the open porosity is 1% or less, and the alkali metal element content is 500 ppm or less.

本発明のフッ化マグネシウム焼結体において、分散粒子は、通常、焼結体の粒界か粒内に存在する。この分散粒子は、平均線熱膨張係数がフッ化マグネシウムよりも低いものであればよく、例えば、酸化物、窒化物、炭化物及び酸フッ化物粒子からなる群より選ばれる少なくとも1種の粒子が挙げられる。フッ化マグネシウムの平均線熱膨張係数は16.9ppm/K(293K−1273K)であるため、分散粒子の平均線熱膨張係数はそれより低い値である。   In the magnesium fluoride sintered body of the present invention, the dispersed particles are usually present at grain boundaries or within the grains of the sintered body. The dispersed particles only have to have an average linear thermal expansion coefficient lower than that of magnesium fluoride, and examples thereof include at least one particle selected from the group consisting of oxide, nitride, carbide, and oxyfluoride particles. It is done. Since the average linear thermal expansion coefficient of magnesium fluoride is 16.9 ppm / K (293K-1273K), the average linear thermal expansion coefficient of the dispersed particles is a lower value.

本発明のフッ化マグネシウム焼結体において、焼結体中の分散粒子の平均粒径は、5μm以下であることが好ましい。5μmを超えると、フッ化マグネシウム粒子単体で製造した焼結体に比べて、強度が低下してしまうし、場合によっては耐食性も低下することがあるため、好ましくない。この平均粒径は、3.5μm以下であることがより好ましい。なお、焼結体中の分散粒子の平均粒径の下限値は、特に限定するものではないが、例えば0.4μm以上としてもよい。   In the magnesium fluoride sintered body of the present invention, the average particle diameter of the dispersed particles in the sintered body is preferably 5 μm or less. If it exceeds 5 μm, the strength is lowered as compared with a sintered body produced with magnesium fluoride particles alone, and in some cases the corrosion resistance may be lowered, which is not preferable. The average particle size is more preferably 3.5 μm or less. The lower limit value of the average particle diameter of the dispersed particles in the sintered body is not particularly limited, but may be 0.4 μm or more, for example.

本発明のフッ化マグネシウム焼結体において、焼結体中のフッ化マグネシウム粒子の平均粒径は、5μm以下であることが好ましい。5μmを超えると、フッ化マグネシウム粒子単体で製造した焼結体に比べて、強度が低下してしまうことがあるため、好ましくない。この平均粒径は4.5μm以下であることがより好ましい。焼結体中のフッ化マグネシウムの平均粒径は、細かければ細かいほど強度アップの効果が高いため、下限値は特に限定するものではないが、例えば1μm以上としてもよい。   In the magnesium fluoride sintered body of the present invention, the average particle diameter of the magnesium fluoride particles in the sintered body is preferably 5 μm or less. If it exceeds 5 μm, the strength may be reduced as compared with a sintered body produced with magnesium fluoride particles alone, which is not preferable. The average particle size is more preferably 4.5 μm or less. The finer the average particle diameter of magnesium fluoride in the sintered body, the higher the effect of increasing the strength. Therefore, the lower limit is not particularly limited, but may be, for example, 1 μm or more.

本発明のフッ化マグネシウム焼結体において、開気孔率は、1%以下であることが好ましい。1%を超えると、フッ化マグネシウム粒子単体で製造した焼結体に比べて、耐食性が大きく損なわれることがあるため、好ましくない。また、開気孔の存在により材料自身が脱粒によって発塵し易くなるおそれがあることからも好ましくない。また、開気孔率は、可能な限りゼロに近いほど好ましい。このため、特に下限値は存在しない。   In the magnesium fluoride sintered body of the present invention, the open porosity is preferably 1% or less. If it exceeds 1%, corrosion resistance may be greatly impaired as compared with a sintered body produced with magnesium fluoride particles alone, which is not preferable. In addition, the presence of open pores is not preferable because the material itself may be likely to generate dust due to grain removal. The open porosity is preferably as close to zero as possible. For this reason, there is no lower limit in particular.

本発明のフッ化マグネシウム焼結体において、アルカリ金属元素は500ppm以下である。アルカリ金属元素は、例えば半導体製造装置用部材として使用する場合、プラズマ腐食により半導体製造用装置内に飛散してプラズマを不安定にしたり、半導体製品を汚染して歩留まり低下を引き起こす可能性がある。よって、焼結体のアルカリ金属含有量はできる限り少ないことが好ましい。   In the magnesium fluoride sintered body of the present invention, the alkali metal element is 500 ppm or less. When the alkali metal element is used as a member for a semiconductor manufacturing apparatus, for example, the alkali metal element may be scattered in the semiconductor manufacturing apparatus due to plasma corrosion to make the plasma unstable or contaminate the semiconductor product to cause a decrease in yield. Therefore, it is preferable that the alkali metal content of the sintered body is as small as possible.

本発明のフッ化マグネシウム焼結体において、分散粒子は、フッ化マグネシウム100体積部に対して1〜20体積部存在することが好ましい。分散粒子が1体積部未満では、強化粒子としての作用が十分ではない上、フッ化マグネシウムの粒成長が進みすぎるため強度が十分向上しないことがあり、20体積部を超えると、焼結性が不十分になり開気孔率が大きくなる場合があり、また、分散粒子自体の耐食性によってフッ化マグネシウム焼結体の耐食性がやや低下する傾向にあるため好ましくない。分散粒子は、フッ化マグネシウム100体積部に対して2〜10体積部存在することがより好ましく、5〜10体積部存在することが更に好ましい。   In the magnesium fluoride sintered body of the present invention, the dispersed particles are preferably present in an amount of 1 to 20 parts by volume with respect to 100 parts by volume of magnesium fluoride. When the dispersed particles are less than 1 part by volume, the action as reinforcing particles is not sufficient, and the grain growth of magnesium fluoride proceeds excessively, so the strength may not be sufficiently improved. Insufficient, the open porosity may increase, and the corrosion resistance of the magnesium fluoride sintered body tends to be slightly lowered due to the corrosion resistance of the dispersed particles themselves. The dispersed particles are more preferably 2 to 10 parts by volume with respect to 100 parts by volume of magnesium fluoride, and even more preferably 5 to 10 parts by volume.

本発明の半導体製造装置用部材は、上述したフッ化マグネシウム焼結体からなるものである。例えば、静電チャックやセラミックヒーター、サセプターなどのように上面にウェハーを載置してそのウェハーに対して加工を施すような半導体製造装置では、ウェハーにアルカリ金属が混入するのをできる限り回避したいという要望がある。したがって、本発明のフッ化マグネシウム焼結体は、半導体製造装置用部材に利用するのに適している。   The member for a semiconductor manufacturing apparatus of the present invention is composed of the above-mentioned magnesium fluoride sintered body. For example, in a semiconductor manufacturing apparatus in which a wafer is mounted on the upper surface such as an electrostatic chuck, a ceramic heater, or a susceptor, and the wafer is processed, it is desired to avoid the alkali metal from being mixed into the wafer as much as possible. There is a request. Therefore, the magnesium fluoride sintered body of the present invention is suitable for use as a member for a semiconductor manufacturing apparatus.

本発明のフッ化マグネシウム焼結体の製法は、平均線熱膨張係数がフッ化マグネシウムよりも低い酸化物、窒化物、炭化物、酸フッ化物粒子から選ばれる少なくとも1種の非アルカリ金属系の分散粒子とフッ化マグネシウム粒子とを、フッ化マグネシウム100体積部に対して分散粒子が1〜20重量部となるように秤量し、これらをアルカリ金属元素を加えることなく混合し、混合粉末を成形した後、900〜1100℃でホットプレス焼成するものである。   The method for producing a magnesium fluoride sintered body according to the present invention comprises at least one non-alkali metal dispersion selected from oxide, nitride, carbide, and oxyfluoride particles having an average linear thermal expansion coefficient lower than that of magnesium fluoride. Particles and magnesium fluoride particles were weighed so that dispersed particles would be 1 to 20 parts by weight with respect to 100 parts by volume of magnesium fluoride, and these were mixed without adding an alkali metal element to form a mixed powder. Then, hot press firing is performed at 900 to 1100 ° C.

この製法において、分散粒子やフッ化マグネシウム粒子は、それぞれ単独で湿式又は乾式で粉砕したあと篩分けして粒度調整したものを用いてもよい。また、分散粒子とフッ化マグネシウム粒子とを混合する方法は、特に限定するものではないが、各粒子を有機溶媒中で湿式混合することによりスラリーとし、該スラリーを乾燥造粒して混合粉末としてもよい。湿式混合を行う際は、ポットミル、トロンメル、アトリッションミルなどの混合粉砕機を使用してもよい。また、湿式混合の代わりに乾式混合してもよい。   In this production method, the dispersed particles and the magnesium fluoride particles may be individually pulverized wet or dry and then sieved to adjust the particle size. The method of mixing the dispersed particles and the magnesium fluoride particles is not particularly limited, but each particle is wet-mixed in an organic solvent to form a slurry, and the slurry is dried and granulated to form a mixed powder. Also good. When performing wet mixing, a mixing and grinding machine such as a pot mill, a trommel, an attrition mill, or the like may be used. Further, dry mixing may be performed instead of wet mixing.

この製法において、分散粒子は、フッ化マグネシウム100体積部に対して1〜20体積部混合することが好ましい。分散粒子が1体積部未満では、焼結体の強度が十分向上しないことがあり、20体積部を超えると、焼結体の耐食性がやや低下する傾向にあるため好ましくない。分散粒子は、フッ化マグネシウム100体積部に対して2〜10体積部混合することがより好ましい。   In this production method, the dispersed particles are preferably mixed in an amount of 1 to 20 parts by volume with respect to 100 parts by volume of magnesium fluoride. If the dispersed particles are less than 1 part by volume, the strength of the sintered body may not be sufficiently improved, and if it exceeds 20 parts by volume, the corrosion resistance of the sintered body tends to be slightly lowered, which is not preferable. The dispersed particles are more preferably mixed in an amount of 2 to 10 parts by volume with respect to 100 parts by volume of magnesium fluoride.

この製法において、混合粉末の成形は、特に限定するものではないが、混合粉末を一軸加圧成形により成形体を作製することが好ましい。一軸加圧成形では、混合粉末を型に充填し上下方向に圧力を加えて成形するため、高密度な成形体が得られる。   In this manufacturing method, the molding of the mixed powder is not particularly limited, but it is preferable to produce a molded body by uniaxial pressure molding of the mixed powder. In the uniaxial pressure molding, since the mixed powder is filled in a mold and molded by applying pressure in the vertical direction, a high-density molded body can be obtained.

この製法において、成形体のホットプレス焼成は、900〜1100℃で行うのが好ましい。900℃未満では、焼結が不十分となり、緻密化が進まず十分な強度や耐食性が得られないおそれがある。また、1100℃を超えると、焼結粒径が増大し、強度低下を招くおそれがある。ホットプレス焼成のプレス圧力は、5〜30MPaが好ましく、10〜25MPaが寄り好ましい。ホットプレス焼成の雰囲気は、真空又は不活性雰囲気であることが好ましい。不活性雰囲気とは、焼成に影響を与えないガス雰囲気であればよく、例えば窒素雰囲気、アルゴン雰囲気などが挙げられる。なお、焼成時間は、焼成条件に応じて適宜設定すればよいが、例えば1〜10時間の間で適宜設定すればよい。   In this production method, it is preferable to perform hot press firing of the compact at 900 to 1100 ° C. If it is less than 900 degreeC, sintering will become inadequate and densification will not progress and there exists a possibility that sufficient intensity | strength and corrosion resistance may not be obtained. Moreover, when it exceeds 1100 degreeC, a sintered particle size may increase and there exists a possibility of causing a strength fall. The press pressure for hot press firing is preferably 5 to 30 MPa, more preferably 10 to 25 MPa. The atmosphere of the hot press firing is preferably a vacuum or an inert atmosphere. The inert atmosphere may be a gas atmosphere that does not affect the firing, and examples thereof include a nitrogen atmosphere and an argon atmosphere. In addition, what is necessary is just to set baking time suitably according to baking conditions, for example, what is necessary is just to set suitably for 1 to 10 hours.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

[1]フッ化マグネシウム焼結体の作製
[1−1]フッ化マグネシウム原料の調製
フッ化マグネシウム粉末を秤量し、イソプロピルアルコールを溶媒とし、ナイロン製のポット、直径φ10mmのジルコニア玉石を用いて24時間湿式粉砕した。粉砕後スラリーを取り出し、窒素気流中110℃で乾燥した。その後、30メッシュの篩に通し、フッ化マグネシウム原料とした。フッ化マグネシウム原料の平均粒径は2μm以下であった。なお、上記フッ化マグネシウム粉末は純度99.0%以上であり、アルカリ金属含有量は100ppm以下であった。
[1] Production of a magnesium fluoride sintered body [1-1] Preparation of magnesium fluoride raw material Weighing magnesium fluoride powder, using isopropyl alcohol as a solvent, a pot made of nylon, and zirconia cobblestone having a diameter of 10 mm, 24 Wet milled for hours. After grinding, the slurry was taken out and dried at 110 ° C. in a nitrogen stream. Then, it passed through a 30-mesh sieve to obtain a magnesium fluoride raw material. The average particle size of the magnesium fluoride raw material was 2 μm or less. The magnesium fluoride powder had a purity of 99.0% or more, and the alkali metal content was 100 ppm or less.

[1−2]調合
フッ化マグネシウム原料及び各種分散粒子原料を、表2に示す体積%(外配)となるように秤量し、イソプロピルアルコールを溶媒とし、ナイロン製のポット、直径φ20mmのナイロンボールを用いて4時間湿式混合した。混合後スラリーを取り出し、ロータリーエバポレーターにて減圧乾燥で乾燥した。その後、30メッシュの篩に通し、調合粉末とした。なお、フッ化マグネシウム原料100体積部に分散粒子原料をX体積部を加えたときに、X体積%(外配)と表すものとする。なお、各種分散粒子原料は、市販のものを使用した。それらの平均粒径を表2に示す。なお、分散粒子を含む調合粉末のアルカリ金属含有量は500ppm以下であった。
[1-2] Preparation Magnesium fluoride raw material and various dispersed particle raw materials are weighed so as to have the volume% (external distribution) shown in Table 2, using isopropyl alcohol as a solvent, a nylon pot, and a nylon ball with a diameter of 20 mm. For 4 hours. After mixing, the slurry was taken out and dried under reduced pressure using a rotary evaporator. Thereafter, the mixture was passed through a 30-mesh sieve to obtain a mixed powder. In addition, when X volume part of dispersion particle raw materials is added to 100 volume parts of magnesium fluoride raw materials, it shall represent with X volume% (external arrangement). Various dispersed particle raw materials were commercially available. Their average particle size is shown in Table 2. In addition, the alkali metal content of the prepared powder containing dispersed particles was 500 ppm or less.

[1−3]成型
調合粉末を、20MPaの圧力で一軸加圧成形し、直径50mm、厚さ20mm程度の円盤状成形体を作製した。
[1-3] Molding The compounded powder was uniaxially pressed at a pressure of 20 MPa to produce a disk-shaped molded body having a diameter of about 50 mm and a thickness of about 20 mm.

[1−4]焼成
円盤状成形体を焼成用黒鉛モールドに収納し、ホットプレス焼成することによりセラミックス焼結体を得た。ホットプレス焼成では、プレス圧力を20MPaとし、表2に示す焼成温度(最高温度)で焼成し、焼成終了までAr雰囲気とした。焼成温度での保持時間は2〜4時間とした。
[1-4] Firing Ceramic discs were obtained by storing the disk-shaped compact in a graphite mold for firing and performing hot press firing. In hot press firing, the press pressure was 20 MPa, firing was performed at the firing temperature (maximum temperature) shown in Table 2, and an Ar atmosphere was maintained until the firing was completed. The holding time at the firing temperature was 2 to 4 hours.

[2]各種パラメータについて
[2−1]原料の平均粒径
JIS R 1629に準拠し、レーザー回折散乱法によって粒度分布測定した値であり、体積基準の平均粒径である。
[2] Various parameters [2-1] Average particle diameter of raw material This is a value obtained by measuring the particle size distribution by a laser diffraction scattering method in accordance with JIS R 1629, and is a volume-based average particle diameter.

[2−2]平均線熱膨張係数
各分散粒子原料の293K−1273Kの平均線熱膨張係数(ppm/K)を表2に示す。
[2-2] Average linear thermal expansion coefficient Table 2 shows the average linear thermal expansion coefficient (ppm / K) of 293K-1273K of each dispersed particle raw material.

[2−3]開気孔率
アルキメデス法(JIS R 1634準拠)によって測定した値である。
[2-3] Open porosity This is a value measured by the Archimedes method (based on JIS R 1634).

[2−4]焼結体中のフッ化マグネシウムの平均粒径
JIS R 1670(ファインセラミックのグレインサイズ測定方法)を参考に、焼結体の断面(破面)をSEMにて撮影し、1視野中に30個以上の焼結粒を含む程度の倍率のSEM写真を用いて、各フッ化マグネシウム粒子の長径を測定した。そして、測定個数30個以上の平均長径を求め、それをフッ化マグネシウムの平均粒径(焼結粒径)とした。
[2-4] Average particle size of magnesium fluoride in the sintered body Referring to JIS R 1670 (fine ceramic grain size measurement method), a cross section (fracture surface) of the sintered body was photographed with an SEM. The major axis of each magnesium fluoride particle was measured using an SEM photograph at a magnification that included 30 or more sintered grains in the visual field. Then, an average major axis having 30 or more measured numbers was obtained, and was used as an average particle diameter (sintered particle diameter) of magnesium fluoride.

[2−5]焼結体中の分散粒子の平均粒径
ここでいう分散粒子の平均粒径は、上記[2−4]と同様に、1視野内に30個以上の分散粒子を含む程度の倍率のSEM写真を用いて、各分散粒子の長径を測定した。そして、測定個数30個以上の平均長径を求め、それを分散粒子の平均粒径とした。なお、各分散粒子の長径を測定する際、1つの分散粒子を測定する場合もあるが、フッ化マグネシウム焼結体の粒界又は粒内に分散粒子が凝集している場合にはその凝集粒を1つの分散粒子とみなして測定した。
[2-5] Average Particle Size of Dispersed Particles in Sintered Body The average particle size of the dispersed particles referred to here is the extent that 30 or more dispersed particles are included in one field of view, as in [2-4] above. The major axis of each dispersed particle was measured using an SEM photograph at a magnification of. Then, an average major axis of 30 or more measured numbers was obtained and used as the average particle diameter of the dispersed particles. In addition, when measuring the major axis of each dispersed particle, one dispersed particle may be measured, but when the dispersed particles are aggregated at the grain boundaries or within the grains of the magnesium fluoride sintered body, the aggregated particles Was measured as one dispersed particle.

[2−6]曲げ強度
JIS R 1601に準拠した曲げ強度試験によって測定した値である。
[2-6] Bending strength It is a value measured by a bending strength test based on JIS R 1601.

[2−7]エッチングレート
緻密(開気孔率<1%)かつ加工可能な強度を有する焼結体であることを条件として、その焼結体の表面を鏡面に研磨し、ICPプラズマ耐食試験装置を用いて耐食試験を行った。そして、段差計により測定したマスク面と暴露面との段差を試験時間で割ることにより各材料のエッチングレートを算出した。なお、耐食試験の条件は以下のとおり。
(条件)ICP:800W、バイアス:450W、導入ガス:NF3/O2/Ar=75/35/100sccm 0.05Torr、暴露時間:10h、試料温度:室温
[2-7] Etching rate On condition that the sintered body is dense (open porosity <1%) and has a workable strength, the surface of the sintered body is polished to a mirror surface, and an ICP plasma corrosion resistance test apparatus The corrosion resistance test was conducted using Then, the etching rate of each material was calculated by dividing the step between the mask surface and the exposed surface measured by a step meter by the test time. The conditions for the corrosion resistance test are as follows.
(Conditions) ICP: 800 W, bias: 450 W, introduced gas: NF 3 / O 2 / Ar = 75/35/100 sccm 0.05 Torr, exposure time: 10 h, sample temperature: room temperature

[2−8]アルカリ金属含有量
JIS R 1649に準拠し焼結体中のカリウム及びナトリウム量を分析した。リチウム量についても同手法にて分析した。
[2-8] Alkali metal content In accordance with JIS R 1649, the amounts of potassium and sodium in the sintered body were analyzed. The amount of lithium was also analyzed by the same method.

[3]実施例及び比較例
実施例1〜24,比較例1〜7につき、上記[1]の作製方法に準じて、表2に示す調合条件、焼成条件にしたがって焼結体を作製した。得られた焼結体につき、開気孔率、フッ化マグネシウムの平均粒径(焼結粒径)、分散粒子の平均粒径、曲げ強度及びエッチングレート(対イットリア焼結体比)を上記[2−3]〜[2−7]に準じて測定し、その結果を表2に示した。
[3] Examples and Comparative Examples For Examples 1 to 24 and Comparative Examples 1 to 7, sintered bodies were produced according to the preparation conditions and firing conditions shown in Table 2 according to the production method of [1] above. With respect to the obtained sintered body, the open porosity, the average particle diameter of magnesium fluoride (sintered particle diameter), the average particle diameter of dispersed particles, the bending strength, and the etching rate (ratio to yttria sintered body) are the above [2 -3] to [2-7], and the results are shown in Table 2.

比較例1では、イットリア単相の焼結体を作製し、その特性を測定した。1600℃焼成で163MPaの曲げ強度を得た。比較例2〜4では、フッ化マグネシウム単相の焼結体を作製し、その特性を測定した。エッチングレートは、いずれもイットリア単相の焼結体より小さかった。このことは、フッ化マグネシウム焼結体がイットリア焼結体に比べて耐食性が高いことを示している。曲げ強度は、焼成温度900℃で100MPa、焼成温度1000℃で22MPa、焼成温度1100℃で焼結体崩壊により強度測定不能であった。このように、フッ化マグネシウム単相の焼結体では、焼成温度が高くなるにしたがって曲げ強度が低下したが、その原因は焼成温度が高くなるにしたがってフッ化マグネシウムの焼結粒径が大きくなったことにあると推察している。   In Comparative Example 1, a yttria single-phase sintered body was prepared and its characteristics were measured. A bending strength of 163 MPa was obtained by firing at 1600 ° C. In Comparative Examples 2 to 4, a magnesium fluoride single-phase sintered body was prepared, and its characteristics were measured. The etching rate was lower than that of the yttria single-phase sintered body. This indicates that the magnesium fluoride sintered body has higher corrosion resistance than the yttria sintered body. The bending strength was 100 MPa at a firing temperature of 900 ° C., 22 MPa at a firing temperature of 1000 ° C., and the strength could not be measured due to collapse of the sintered body at a firing temperature of 1100 ° C. As described above, in the sintered body of magnesium fluoride single phase, the bending strength decreased as the firing temperature increased. The cause is that the sintered grain size of magnesium fluoride increased as the firing temperature increased. I guess that is.

実施例1〜10は分散粒子としてジルコニア粒子を添加した例である。ジルコニア粒子としては単斜晶ジルコニア(m−ZrO2)及び、イットリア部分安定化ジルコニア(YSZ)を使用し、いずれもアルカリ金属含有量は500ppm以下であった。表2ではXmol%のイットリアが固溶したジルコニアをX%YSZと示した。ジルコニア粒子の添加により、フッ化マグネシウムの焼結粒径が5μm以下に小さくなり、比較例2のフッ化マグネシウム単相の焼結体に比べて高強度な材料が得られた。なお、焼結体中の分散粒子の平均粒径は5μm以下、開気孔率は1%未満であった。また、焼成温度1000〜1100℃において、フッ化マグネシウム単相の焼結体では、顕著な粒成長が見られたが、ジルコニア粒子を添加することにより、そのような粒成長が抑制され、その結果、曲げ強度が高く維持された。更に、ジルコニア粒子の添加量が10体積%(外配)の方が2体積%(外配)に比べてフッ化マグネシウムの焼結粒径が小さくなり、曲げ強度も高くなった。添加量が20体積%(外配)になると、緻密な焼結体を得る為に高い焼成温度が必要となるため5体積%(外配)に比べてフッ化マグネシウムの焼結粒径がやや大きくなり、曲げ強度もやや低くなったが、それでも、焼結粒径は5μm以下と小さく、曲げ強度は150MPaと高い水準を維持していた。 Examples 1 to 10 are examples in which zirconia particles are added as dispersed particles. As the zirconia particles, monoclinic zirconia (m-ZrO 2 ) and yttria partially stabilized zirconia (YSZ) were used, both of which had an alkali metal content of 500 ppm or less. In Table 2, zirconia in which Xmol% yttria is dissolved is indicated as X% YSZ. By adding the zirconia particles, the sintered particle size of magnesium fluoride was reduced to 5 μm or less, and a material having higher strength than the sintered body of the magnesium fluoride single phase of Comparative Example 2 was obtained. The average particle diameter of the dispersed particles in the sintered body was 5 μm or less, and the open porosity was less than 1%. Moreover, in the sintered temperature of 1000-1100 degreeC, in the sintered body of the magnesium fluoride single phase, although remarkable grain growth was seen, such grain growth was suppressed by adding zirconia particle, As a result The bending strength was kept high. Furthermore, when the addition amount of zirconia particles was 10% by volume (external), the sintered particle diameter of magnesium fluoride was smaller and the bending strength was higher than that of 2% by volume (external). When the addition amount is 20% by volume (external distribution), a high firing temperature is required to obtain a dense sintered body. Therefore, the sintered particle size of magnesium fluoride is slightly higher than that of 5% by volume (external distribution). Although it became larger and the bending strength was slightly lowered, the sintered grain size was still small as 5 μm or less, and the bending strength was maintained at a high level of 150 MPa.

比較例5〜7も、分散粒子として3%YSZを添加した例であるが、添加量が0.03体積%(外配)という微量だったため、フッ化マグネシウムの焼結粒径が5μmを超えて大きくなり、比較例2のフッ化マグネシウム単相の焼結体に比べて強度は同程度かそれよりも低下していた。また、焼成温度1000〜1100℃において、フッ化マグネシウム単相の焼結体では、顕著な粒成長が見られたが、比較例6,7ではそのような粒成長を抑制することはできなかった。   Comparative Examples 5 to 7 are also examples in which 3% YSZ was added as dispersed particles, but since the addition amount was a very small amount of 0.03% by volume (external), the sintered particle size of magnesium fluoride exceeded 5 μm. Compared with the magnesium fluoride single-phase sintered body of Comparative Example 2, the strength was about the same or decreased. Moreover, in the sintered temperature of 1000-1100 degreeC, in the sintered body of the magnesium fluoride single phase, remarkable grain growth was seen, but in Comparative Examples 6 and 7, such grain growth could not be suppressed. .

実施例11−15は、分散粒子としてスピネル粒子を添加した例である。スピネル粒子のアルカリ金属含有量は500ppm以下であった。スピネル粒子の添加(2体積%(外配))により、フッ化マグネシウムの焼結粒径が5μm以下に小さくなり、比較例2のフッ化マグネシウム単相の焼結体に比べて高強度な材料が得られた。なお、焼結体中の分散粒子の平均径は5μm以下、開気孔率は1%未満であった。また、焼成温度1000〜1100℃において、フッ化マグネシウム単相の焼結体では、顕著な粒成長が見られたが、スピネル粒子を添加することにより、そのような粒成長が抑制され、その結果、曲げ強度が高く維持された。   Examples 11-15 are examples in which spinel particles were added as dispersed particles. The alkali metal content of the spinel particles was 500 ppm or less. Addition of spinel particles (2% by volume (external)) reduces the sintered particle size of magnesium fluoride to 5 μm or less, and is a material having higher strength than the magnesium fluoride single-phase sintered body of Comparative Example 2. was gotten. The average diameter of the dispersed particles in the sintered body was 5 μm or less, and the open porosity was less than 1%. Further, in the sintered temperature of 1000 to 1100 ° C., in the magnesium fluoride single-phase sintered body, remarkable grain growth was observed, but by adding spinel particles, such grain growth was suppressed, and as a result The bending strength was kept high.

実施例16−24は、分散粒子として表2に示す炭化物、窒化物、酸化物を添加した例である。各分散粒子のアルカリ金属含有量は、炭化ケイ素100ppm以下、窒化アルミ100ppm以下、酸化イッテルビウム100ppm以下、マグネシア100ppm以下、アルミナ1000ppm以下、8%YSZ100ppm以下であった。分散粒子の添加量はいずれも10体積%(外配)とした。いずれの分散粒子によっても、フッ化マグネシウムの焼結粒径が5μm以下に小さくなり、比較例2のフッ化マグネシウム単相の焼結体に比べて高強度な材料が得られた。なお、焼結体中の分散粒子の平均径は5μm以下、開気孔率は1%未満であった。また、焼成温度1000〜1100℃において、フッ化マグネシウム単相の焼結体では、顕著な粒成長が見られたが、マグネシアやアルミナ、炭化ケイ素、窒化アルミを分散粒子として添加した場合には、そのような粒成長が抑制され、その結果、曲げ強度が高く維持された。   Examples 16-24 are examples in which the carbides, nitrides and oxides shown in Table 2 were added as dispersed particles. The alkali metal content of each dispersed particle was 100 ppm or less of silicon carbide, 100 ppm or less of aluminum nitride, 100 ppm or less of ytterbium oxide, 100 ppm or less of magnesia, 1000 ppm or less of alumina, and 8% YSZ 100 ppm or less. The amount of dispersed particles added was 10% by volume (external). With any of the dispersed particles, the sintered particle diameter of magnesium fluoride was reduced to 5 μm or less, and a material having a higher strength than the magnesium fluoride single-phase sintered body of Comparative Example 2 was obtained. The average diameter of the dispersed particles in the sintered body was 5 μm or less, and the open porosity was less than 1%. In addition, in the sintered temperature of 1000 to 1100 ° C., in the magnesium fluoride single-phase sintered body, remarkable grain growth was observed, but when magnesia, alumina, silicon carbide, or aluminum nitride was added as dispersed particles, Such grain growth was suppressed, and as a result, the bending strength was kept high.

比較例8,9は、分散粒子としてそれぞれ炭化ケイ素粒子、スピネル粒子を用いた例であるが、いずれも分散粒子の原料粒径が4.9μmと大きかったため、焼結体中の分散粒子の平均粒径が5μmを超えてしまい、その結果、比較例2のフッ化マグネシウム単相の焼結体に比べて曲げ強度が大きく低下した。   Comparative Examples 8 and 9 are examples in which silicon carbide particles and spinel particles were used as the dispersed particles, respectively. However, since the raw material particle size of the dispersed particles was as large as 4.9 μm, the average of the dispersed particles in the sintered body was The particle size exceeded 5 μm, and as a result, the bending strength was greatly reduced as compared with the magnesium fluoride single-phase sintered body of Comparative Example 2.

Figure 2012206913
Figure 2012206913

以上の実施例及び比較例から明らかなように、ジルコニア、スピネル、アルミナ、マグネシア、窒化ケイ素、炭化ケイ素、酸化イッテルビウムを分散粒子として所定量添加することで、フッ化マグネシウムの高い耐食性を維持しながら曲げ強度を向上させることができた。特にジルコニア粒子、アルミナ粒子、スピネル粒子は分散粒子としての効果が大きく、ジルコニア粒子、アルミナ粒子、スピネル粒子を分散させたフッ化マグネシウム焼結体では、イットリア焼結体と同等の曲げ強度を維持しながら、イットリア焼結体の耐食性を凌ぐ焼結体を得ることができた。   As is clear from the above examples and comparative examples, by adding a predetermined amount of zirconia, spinel, alumina, magnesia, silicon nitride, silicon carbide, ytterbium oxide as dispersed particles, while maintaining the high corrosion resistance of magnesium fluoride The bending strength could be improved. Zirconia particles, alumina particles, and spinel particles are particularly effective as dispersed particles. Magnesium fluoride sintered bodies in which zirconia particles, alumina particles, and spinel particles are dispersed maintain the same bending strength as yttria sintered bodies. However, a sintered body exceeding the corrosion resistance of the yttria sintered body could be obtained.

Claims (8)

フッ化マグネシウムを主相とする焼結体であって、
平均線熱膨張係数がフッ化マグネシウムよりも低い少なくとも1種の非アルカリ金属系の分散粒子を含み、
焼結体中の分散粒子の平均粒径とフッ化マグネシウム粒子の平均粒径が5μm以下でかつ開気孔率が1%以下であり、
アルカリ金属元素含有量が500ppm以下である、
フッ化マグネシウム焼結体。
A sintered body mainly composed of magnesium fluoride,
Comprising at least one non-alkali metal-based dispersed particle having an average linear thermal expansion coefficient lower than that of magnesium fluoride,
The average particle size of the dispersed particles in the sintered body and the average particle size of the magnesium fluoride particles are 5 μm or less and the open porosity is 1% or less,
The alkali metal element content is 500 ppm or less,
Magnesium fluoride sintered body.
フッ化マグネシウム100体積部に対し分散粒子が1〜20体積部存在する、
請求項1に記載のフッ化マグネシウム焼結体。
1 to 20 parts by volume of dispersed particles are present per 100 parts by volume of magnesium fluoride.
The magnesium fluoride sintered body according to claim 1.
前記分散粒子が、酸化物、窒化物、炭化物及び酸フッ化物粒子からなる群より選ばれる少なくとも1種である、請求項1又は2に記載のフッ化マグネシウム焼結体。   The magnesium fluoride sintered body according to claim 1 or 2, wherein the dispersed particles are at least one selected from the group consisting of oxide, nitride, carbide, and oxyfluoride particles. 前記分散粒子が、Al23、AlN、SiC、ZrO2、MgAl24、MgO、Yb23及びYbOFからなる群より選ばれるすくなくとも1種である、
請求項1〜3のいずれか1項に記載のフッ化マグネシウム焼結体。
The dispersed particles are at least one selected from the group consisting of Al 2 O 3 , AlN, SiC, ZrO 2 , MgAl 2 O 4 , MgO, Yb 2 O 3 and YbOF.
The magnesium fluoride sintered body according to any one of claims 1 to 3.
請求項1〜4のいずれか1項に記載のフッ化マグネシウム焼結体からなる半導体製造装置用部材。   The member for semiconductor manufacturing apparatuses which consists of a magnesium fluoride sintered compact of any one of Claims 1-4. 平均線熱膨張係数がフッ化マグネシウムよりも低い少なくとも1種の非アルカリ金属系の分散粒子とフッ化マグネシウム粒子とを、フッ化マグネシウム100体積部に対して分散粒子が1〜20体積部となるように秤量し、これらにアルカリ金属元素を加えることなく混合し、混合粉末を成形した後、900〜1100℃でホットプレス焼成する、
フッ化マグネシウム焼結体の製法。
At least one non-alkali metal-based dispersed particle and magnesium fluoride particle having an average linear thermal expansion coefficient lower than that of magnesium fluoride is 1 to 20 parts by volume with respect to 100 parts by volume of magnesium fluoride. So that they are weighed and mixed without adding an alkali metal element, and after forming a mixed powder, hot press firing is performed at 900 to 1100 ° C.
Manufacturing method of magnesium fluoride sintered body.
前記分散粒子が、酸化物、窒化物、炭化物及び酸フッ化物粒子からなる群より選ばれる少なくとも1種である、請求項6に記載のフッ化マグネシウム焼結体の製法。   The method for producing a magnesium fluoride sintered body according to claim 6, wherein the dispersed particles are at least one selected from the group consisting of oxide, nitride, carbide and oxyfluoride particles. 前記分散粒子が、Al23、AlN、SiC、ZrO2、MgAl24、MgO、Yb23及びYbOFからなる群より選ばれるすくなくとも1種である、
請求項6又は7に記載のフッ化マグネシウム焼結体の製法。
The dispersed particles are at least one selected from the group consisting of Al 2 O 3 , AlN, SiC, ZrO 2 , MgAl 2 O 4 , MgO, Yb 2 O 3 and YbOF.
The manufacturing method of the magnesium fluoride sintered compact of Claim 6 or 7.
JP2011075280A 2011-03-30 2011-03-30 Magnesium fluoride sintered body, manufacturing method thereof, and member for semiconductor manufacturing apparatus Active JP5577287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011075280A JP5577287B2 (en) 2011-03-30 2011-03-30 Magnesium fluoride sintered body, manufacturing method thereof, and member for semiconductor manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011075280A JP5577287B2 (en) 2011-03-30 2011-03-30 Magnesium fluoride sintered body, manufacturing method thereof, and member for semiconductor manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2012206913A true JP2012206913A (en) 2012-10-25
JP5577287B2 JP5577287B2 (en) 2014-08-20

Family

ID=47186998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011075280A Active JP5577287B2 (en) 2011-03-30 2011-03-30 Magnesium fluoride sintered body, manufacturing method thereof, and member for semiconductor manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP5577287B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005006A1 (en) 2013-07-08 2015-01-15 国立大学法人筑波大学 Fluoride sintered compact for neutron moderator, and method for producing said fluoride sintered compact
EP3000796A1 (en) 2014-09-24 2016-03-30 University of Tsukuba Mgf2-caf2 binary system sintered body for radiation moderator and method for producing the same
WO2016104354A1 (en) 2014-12-26 2016-06-30 国立大学法人筑波大学 MgF2-BASED FLUORIDE SINTERED COMPACT FOR RADIATION MODERATOR MATERIAL, AND METHOD FOR PRODUCING SAME
KR20160102048A (en) * 2014-01-22 2016-08-26 니폰게이긴조쿠가부시키가이샤 Method for manufacturing magnesium fluoride sintered compact, method for manufacturing neutron moderator, and neutron moderator
WO2017014230A1 (en) * 2015-07-21 2017-01-26 日本軽金属株式会社 Magnesium fluoride sintered body, method for producing magnesium fluoride sintered body, neutron moderator and method for producing neutron moderator
CN113808772A (en) * 2021-09-10 2021-12-17 中山大学 Neutron moderating material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132758A (en) * 1985-12-06 1987-06-16 株式会社日立製作所 High heat expansion ceramics
JP2000007440A (en) * 1998-06-29 2000-01-11 Kyocera Corp Silicon nitride-base corrosion resistant member and its production
JP2000086344A (en) * 1998-09-14 2000-03-28 Kyocera Corp High density fluoride sintered body, its production, and member for semiconductor-producing apparatus by using the same
JP2000302553A (en) * 1999-04-14 2000-10-31 Taiheiyo Cement Corp Corrosion resistant fluoride based combined ceramics sintered compact
JP2003073818A (en) * 2001-09-05 2003-03-12 Nikko Materials Co Ltd Fluoride sputtering target and manufacturing method therefor
JP2003137648A (en) * 2002-10-15 2003-05-14 Kyocera Corp Member for plasma process system
JP2008138250A (en) * 2006-12-01 2008-06-19 Toppan Printing Co Ltd Vacuum vapor-deposition apparatus and vacuum vapor-deposition method
JP2009007636A (en) * 2007-06-28 2009-01-15 Sony Corp Low refractive index film and method for depositing the same, and antireflection film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132758A (en) * 1985-12-06 1987-06-16 株式会社日立製作所 High heat expansion ceramics
JP2000007440A (en) * 1998-06-29 2000-01-11 Kyocera Corp Silicon nitride-base corrosion resistant member and its production
JP2000086344A (en) * 1998-09-14 2000-03-28 Kyocera Corp High density fluoride sintered body, its production, and member for semiconductor-producing apparatus by using the same
JP2000302553A (en) * 1999-04-14 2000-10-31 Taiheiyo Cement Corp Corrosion resistant fluoride based combined ceramics sintered compact
JP2003073818A (en) * 2001-09-05 2003-03-12 Nikko Materials Co Ltd Fluoride sputtering target and manufacturing method therefor
JP2003137648A (en) * 2002-10-15 2003-05-14 Kyocera Corp Member for plasma process system
JP2008138250A (en) * 2006-12-01 2008-06-19 Toppan Printing Co Ltd Vacuum vapor-deposition apparatus and vacuum vapor-deposition method
JP2009007636A (en) * 2007-06-28 2009-01-15 Sony Corp Low refractive index film and method for depositing the same, and antireflection film

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3214058B1 (en) 2013-07-08 2021-04-07 University of Tsukuba Use of magnesium fluoride sintered compact as neutron moderator
US10961160B2 (en) 2013-07-08 2021-03-30 University Of Tsukuba Fluoride sintered body for neutron moderator and method for producing the same
EP3214058A1 (en) 2013-07-08 2017-09-06 University of Tsukuba Magnesium fluoride sintered compact for neutron moderator
WO2015005006A1 (en) 2013-07-08 2015-01-15 国立大学法人筑波大学 Fluoride sintered compact for neutron moderator, and method for producing said fluoride sintered compact
KR101885011B1 (en) * 2014-01-22 2018-08-02 니폰게이긴조쿠가부시키가이샤 Method for manufacturing magnesium fluoride sintered compact, method for manufacturing neutron moderator, and neutron moderator
KR20160102048A (en) * 2014-01-22 2016-08-26 니폰게이긴조쿠가부시키가이샤 Method for manufacturing magnesium fluoride sintered compact, method for manufacturing neutron moderator, and neutron moderator
EP3000796A1 (en) 2014-09-24 2016-03-30 University of Tsukuba Mgf2-caf2 binary system sintered body for radiation moderator and method for producing the same
KR20160035962A (en) 2014-09-24 2016-04-01 고쿠리쯔 다이가쿠 호징 츠쿠바 다이가쿠 M g f _2 - c a f _2 binary system sintered body for radiation moderator and method for producing the same
US9789335B2 (en) 2014-09-24 2017-10-17 Techno Eye Corporation MgF2—CaF2 binary system sintered body for radiation moderator and method for producing the same
US10777330B2 (en) 2014-12-26 2020-09-15 Techno Eye Corporation MgF2 system fluoride sintered body for radiation moderator and method for producing the same
WO2016104354A1 (en) 2014-12-26 2016-06-30 国立大学法人筑波大学 MgF2-BASED FLUORIDE SINTERED COMPACT FOR RADIATION MODERATOR MATERIAL, AND METHOD FOR PRODUCING SAME
EP3885329A1 (en) 2014-12-26 2021-09-29 University of Tsukuba Mgf2 sintered body for radiation moderator
KR101924308B1 (en) * 2015-07-21 2018-11-30 니폰게이긴조쿠가부시키가이샤 Magnesium sintered body, method of producing magnesium sintered body, method of producing neutron moderator and neutron moderator
US10343951B2 (en) 2015-07-21 2019-07-09 Nippon Light Metal Company, Ltd. Magnesium fluoride sintered compact, method for manufacturing magnesium fluoride sintered compact, neutron moderator, and method for manufacturing neutron moderator
JPWO2017014230A1 (en) * 2015-07-21 2018-05-24 日本軽金属株式会社 Magnesium fluoride sintered body, method for producing magnesium fluoride sintered body, neutron moderator, and method for producing neutron moderator
WO2017014230A1 (en) * 2015-07-21 2017-01-26 日本軽金属株式会社 Magnesium fluoride sintered body, method for producing magnesium fluoride sintered body, neutron moderator and method for producing neutron moderator
CN113808772A (en) * 2021-09-10 2021-12-17 中山大学 Neutron moderating material

Also Published As

Publication number Publication date
JP5577287B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
TWI540635B (en) Corrosion resistant member for semiconductor manufacturing apparatus and method for making the same
JP5577287B2 (en) Magnesium fluoride sintered body, manufacturing method thereof, and member for semiconductor manufacturing apparatus
JP5466831B2 (en) Yttria sintered body and member for plasma process equipment
JP4987238B2 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and aluminum nitride sintered body manufacturing method
JP6651628B2 (en) High thermal conductivity silicon nitride sintered body and method for producing the same
JP2000001362A (en) Corrosion resistant ceramic material
JP5228293B2 (en) Yttria sintered body, corrosion-resistant member, and manufacturing method thereof
CN109923092B (en) Rare earth oxyfluoride sintered compact and method for producing same
US11059753B2 (en) Oriented ALN sintered body and method for producing the same
JP2003112963A (en) Alumina sintered compact, and production method therefor
TWI385138B (en) Ceramic components and corrosion resistance components
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP2009234877A (en) Member used for plasma processing apparatus
JP3769081B2 (en) Manufacturing method of black AlN ceramics
JP3769416B2 (en) Components for plasma processing equipment
JP4223043B2 (en) Black AlN ceramics
JP2002255634A (en) Free cutting high strength alumina sintered compact and corrosion resistant member using the sintered compact
WO2022163150A1 (en) Sintered body
JP4651145B2 (en) Corrosion resistant ceramics
JP2022152706A (en) Yag sintered compact and manufacturing method thereof
JP2009203113A (en) Ceramics for plasma treatment apparatus
JP2000313658A (en) Corrosion-resistant member
JP2023056147A (en) Yttrium oxide sintered body and components for semiconductor manufacturing apparatus
JP2021138581A (en) Ceramic sintered compact and manufacturing method thereof
JP2008195973A (en) Ceramics for plasma treatment system, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140707

R150 Certificate of patent or registration of utility model

Ref document number: 5577287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150