JP4223043B2 - Black AlN ceramics - Google Patents
Black AlN ceramics Download PDFInfo
- Publication number
- JP4223043B2 JP4223043B2 JP2006000499A JP2006000499A JP4223043B2 JP 4223043 B2 JP4223043 B2 JP 4223043B2 JP 2006000499 A JP2006000499 A JP 2006000499A JP 2006000499 A JP2006000499 A JP 2006000499A JP 4223043 B2 JP4223043 B2 JP 4223043B2
- Authority
- JP
- Japan
- Prior art keywords
- aln
- alon
- sintered body
- black
- ceramics
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Ceramic Products (AREA)
Description
本発明は、半導体製造装置用部材、産業機械用部材、耐熱耐食性部材、等に用いられる高純度でかつ黒色を呈するAlN系セラミックスに関するものである。 The present invention relates to a high-purity and black-colored AlN-based ceramic used for a member for a semiconductor manufacturing apparatus, a member for an industrial machine, a heat-resistant and corrosion-resistant member, and the like.
AlN系セラミックスはその優れた熱伝導特性、適度な機械的特性のため、LSIの放熱基板、各種耐摩耗・機械構造部材として用いられ、近年、LSI製造装置用部材への適用が検討されている。
AlNは難焼結性のため、その焼結時においては通常、焼結助剤としてY2O3に代表されるイットリウム化合物かあるいはCaO、Ca2Cに代表されるカルシウム化合物を1〜5重量%添加して製造するのが普通である。
AlN ceramics are used as LSI heat dissipation substrates and various wear-resistant / mechanical structural members because of their excellent thermal conductivity and moderate mechanical properties. In recent years, their application to LSI manufacturing equipment members has been studied. .
Since AlN is difficult to sinter, 1 to 5 weights of yttrium compound typified by Y 2 O 3 or calcium compound typified by CaO and Ca 2 C is usually used as a sintering aid during sintering. It is usual to produce by adding%.
焼結後のAlN系セラミックスの色調は、使用する原料粉末中の不純物、添加する焼結助剤の種類・量によって変化するが、特に遷移金属不純物が少ない高純度AlN原料を使用した場合、白色あるいはアイボリー色(灰色)を呈し、かつ透光性を有することが多い。
また、AlN系セラミックスの製造時にはイットリウム化合物、カルシウム化合物、等を用いるが、これらの化合物は焼結中にAlNと反応し、生成物が第2相として焼結後のAlNセラミックスの粒界や三重点に残存する。例えば、イットリウム化合物を使用した場合、YAG(Al5Y3O12)等がAlNセラミックスの粒界や三重点に生成することが知られている。
The color tone of the sintered AlN ceramics varies depending on the impurities in the raw material powder used and the type and amount of the sintering aid to be added. Especially when a high-purity AlN raw material with few transition metal impurities is used, it is white. Alternatively, it often exhibits an ivory color (gray) and has translucency.
In addition, yttrium compounds, calcium compounds, and the like are used during the production of AlN ceramics. These compounds react with AlN during sintering, and the product forms a second phase in the grain boundary of the AlN ceramics after sintering. Remain in focus. For example, when an yttrium compound is used, it is known that YAG (Al 5 Y 3 O 12 ) or the like is generated at grain boundaries or triple points of AlN ceramics.
これらの第2相は焼結体中で必ずしも均一・微細に分散しているわけではなく、また、AlNが白色、透光性なため、特にセラミックスの形状が大きい場合、色ムラ、斑点、等の欠陥として検出される。
色ムラ、斑点、等の欠陥発生を抑制する一つの手法として、イットリウム化合物あるいはカルシウム化合物、等の焼結助剤を使用しない方法が考えられるが、焼結助剤を添加せずにAlNの高密度の焼結体を得るのは困難である。そこで、AlN系セラミックスを黒色に発色させ、色ムラ、斑点、等の欠陥発生を抑制することが望まれている。また、AlN系セラミックスを赤外線加熱、等による受光発熱媒体として用いる場合も、赤外線吸収効率の点より、黒色化が望まれるものである。
These second phases are not necessarily uniformly and finely dispersed in the sintered body, and since AlN is white and translucent, especially when the shape of the ceramic is large, color unevenness, spots, etc. Detected as a defect.
As one method for suppressing the occurrence of defects such as color unevenness, spots, etc., a method that does not use a sintering aid such as an yttrium compound or a calcium compound can be considered. It is difficult to obtain a sintered body having a density. Therefore, it is desired to cause AlN ceramics to develop a black color and suppress the occurrence of defects such as color unevenness and spots. In addition, when AlN ceramics are used as a light-receiving and heating medium by infrared heating or the like, blackening is desired from the viewpoint of infrared absorption efficiency.
AlNを含め、一般にセラミックスの着色方法としては、チタニウム、コバルト、亜鉛、鉄、ニッケル、等の遷移金属あるいはこれらの化合物を添加する方法が知られており、遷移金属元素を100ppm程度以上添加することによって、AlNセラミックスは黒色化する。しかしながら、遷移金属元素はLSI製造プロセス上、最もデバイスに悪影響を与えるものであり、遷移金属元素添加による黒色化は、AlNセラミックスの半導体製造装置用部材への適用を阻害するものである。 In general, as a method of coloring ceramics including AlN, a method of adding transition metals such as titanium, cobalt, zinc, iron, nickel, etc. or a compound thereof is known, and a transition metal element of about 100 ppm or more is added. As a result, the AlN ceramic is blackened. However, the transition metal element has the most adverse effect on the device in the LSI manufacturing process, and blackening due to the addition of the transition metal element hinders application of AlN ceramics to members for semiconductor manufacturing apparatuses.
特許文献1では、窒化アルミニウムに対してEr(エルビウム)を金属換算で5重量%以上添加し、シミや色ムラの発生を抑制したAlNセラミックス焼結体について開示しているが、Er(エルビウム)等のランタノイド元素、あるいはアクチノイド元素、その他、周期律表シリコン元素(原子番号14)より上の重金属及びアルカリ金属、アルカリ土類金属は基本的に遷移金属元素と同様にLSIデバイスにとって有害であり、AlNセラミックスの半導体製造装置用部材への適用を阻害するものである。 Patent Document 1 discloses an AlN ceramic sintered body in which Er (erbium) is added to aluminum nitride in an amount of 5% by weight or more in terms of metal to suppress generation of spots and color unevenness, but Er (erbium) is disclosed. Lanthanoid elements such as lanthanoid elements, actinoid elements, and other heavy metals, alkali metals, and alkaline earth metals above the periodic table silicon element (atomic number 14) are basically harmful to LSI devices as well as transition metal elements. This obstructs application of AlN ceramics to a member for a semiconductor manufacturing apparatus.
一方、Al2O3、AlN、AlON等のアルミニウム化合物系のセラミックスは、塩素ガス、フッ素ガス、等のハロゲンガスに対して、表面に安定なハロゲン化アルミニウムを形成することによって耐食性に優れることが知られている。しかしながら、通常の、イットリウム化合物あるいはカルシウム化合物を含有するAlN系セラミックスでは、AlNが耐食性に優れても第2相として存在する反応生成物が耐食性に劣るため、セラミックスとしては良好な耐食性を維持できない問題がある。 On the other hand, aluminum compound ceramics such as Al 2 O 3 , AlN, and AlON have excellent corrosion resistance by forming stable aluminum halide on the surface against halogen gas such as chlorine gas and fluorine gas. Are known. However, in a normal AlN-based ceramic containing an yttrium compound or a calcium compound, even if AlN is excellent in corrosion resistance, the reaction product present as the second phase is inferior in corrosion resistance, so that the ceramic cannot maintain good corrosion resistance. There is.
また、AlNセラミックスは、セラミックスの中でも炭化ケイ素(SiC)並に破壊靭性値が低く、極めて脆い。このため、AlNセラミックス焼結体の研削加工時には、チッピング等の欠損が入りやすく加工条件に注意が必要であり、さらに、AlNセラミックスを部材として使用するときにも機械的衝撃、熱的衝撃を低減するよう注意を払わねばならない。AlNセラミックスの信頼性の向上、製造効率の改善のためには、AlNの機械的特性、特に破壊靭性の向上が強く望まれている。 In addition, AlN ceramics are extremely brittle among ceramics, as low in fracture toughness as silicon carbide (SiC). For this reason, when grinding AlN ceramic sintered body, chipping and other defects are likely to occur, and it is necessary to pay attention to the processing conditions. Furthermore, when using AlN ceramics as a member, mechanical impact and thermal impact are reduced. Care must be taken to do so. In order to improve the reliability and production efficiency of AlN ceramics, it is strongly desired to improve the mechanical properties of AlN, particularly the fracture toughness.
また、特許文献2では、平均粒径が8μm以下のAlNを80〜98重量%、平均粒径が5μm以下のAlONを2〜20重量%含有してなる耐摩耗材料について開示しているが、本公開明細書ではAlN原料粉に対して平均粒径0.5〜1μmのAlON原料粉を添加し、1650〜2000℃で焼結することによって耐摩耗材料を製造している。しかしながら、AlON原料粉は極めて高価でありかつ不純物の少ない高純度原料を入手するのが困難であるばかりか、AlONそれ自体も難焼結性であるため、焼結助剤を添加しない本公報の場合、緻密な焼結体を得るのは困難で、従ってAlNセラミックスの機械的特性、特に破壊靭性を改善するのは困難である。また、本公報には焼結体の色調に関する記載はないが、AlNに白色のAlONを添加しても焼結体が黒色に発色することはなく、従って、色ムラ、等の欠陥発生を抑制することはできない。
以上述べたように、従来のAlN系セラミックスは焼結助剤としてイットリウム化合物あるいはカルシウム化合物を用いるため、アルミニウム以外の元素を含有し純度が低下するばかりでなく、白色あるいは灰色透光性で色ムラ等の欠陥が発生しやすく、耐食性も低下しやすい。また機械的特性、特に破壊靭性に劣るという問題点があった。
本発明は、これらの課題を解決し、高純度でかつ耐食性、機械的特性に優れた黒色のAlN系セラミックスを提供することを目的とするものである。
As described above, since conventional AlN ceramics use an yttrium compound or a calcium compound as a sintering aid, they contain elements other than aluminum, resulting in a decrease in purity as well as white or gray translucency and uneven color. Defects such as these are likely to occur, and corrosion resistance is also likely to deteriorate. There is also a problem that the mechanical properties, particularly the fracture toughness, are poor.
An object of the present invention is to solve these problems and to provide a black AlN ceramic having high purity and excellent corrosion resistance and mechanical properties.
本発明者らは、難焼結性のAlNに酸化アルミニウムを添加することにより緻密な焼結体が得られ、その焼結時に格子欠陥を有するAlON相が生成することによって、焼結体が黒色に発色しAlNの色ムラの問題が解決され、かつ、AlN粒子とAlON粒子との分散強化によって焼結体の機械的特性が向上することを新たに発見したものである。
本発明の要件は、1〜30重量%の酸化アルミニウムを添加し、残部が実質的に窒化アルミニウムより成る混合粉体を成形・焼結し、焼結中に酸化アルミニウムと窒化アルミニウムとの反応により生じる格子欠陥を有するAlON相を含有することを特徴とする密度が理論値の90%以上であり、実質AlNとAlONの2相とからなる黒色AlN系セラミックスである。
The present inventors have obtained a dense sintered body by adding aluminum oxide to hardly sinterable AlN, and the sintered body is black by generating an AlON phase having lattice defects during the sintering. It was newly discovered that the problem of color unevenness of AlN was solved and the mechanical properties of the sintered body were improved by dispersion strengthening of AlN particles and AlON particles.
The requirement of the present invention is that 1 to 30% by weight of aluminum oxide is added, a mixed powder consisting essentially of aluminum nitride is formed and sintered, and the reaction between aluminum oxide and aluminum nitride is performed during sintering. The density characterized by containing an AlON phase having a lattice defect that occurs is 90% or more of the theoretical value, and is a black AlN-based ceramics substantially composed of two phases of AlN and AlON.
本発明の黒色AlN系セラミックスは、アルカリ金属、アルカリ土類金属、元素周期律表第19番以降の金属元素、及びこれら金属元素の化合物の含有量が全て30ppm以下で、実質AlNとAlONの2相とからなる高純度な焼結体である。周期律表シリコン元素(原子番号14)より上の重金属元素及びアルカリ金属元素、アルカリ土類金属元素はLSIデバイスにとって有害でありAlNセラミックスの半導体製造装置用部材の適用を阻害するものであるため、その含有量は可能な限り低レベルでなければならない。また、これら不純物としての非アルミニウム元素は、塩素ガス、フッ素ガス等のハロゲン含有ガスに対する耐食性に劣るため、AlNセラミックスの耐食性の観点からもその含有量は可能な限り低レベルでなければならない。これら不純物金属元素の含有量としては、各々が30ppm以下であり、かつ、総量として100ppm以下であることが望ましい。本発明のAlN系セラミックスは、これら不純物金属元素の含有量が全て30ppm以下で総量も100ppm以下と高純度なため、半導体製造装置用部材への適用性に優れ、また、耐食性にも優れるものである。 The black AlN ceramics of the present invention have an alkali metal, alkaline earth metal, metal element number 19 and subsequent elements of the periodic table, and compounds of these metal elements, all of 30 ppm or less, and substantially 2 of AlN and AlON. It is a high-purity sintered body consisting of phases. Since heavy metal elements, alkali metal elements, and alkaline earth metal elements above the silicon element (atomic number 14) of the periodic table are harmful to LSI devices and hinder the application of AlN ceramics semiconductor manufacturing equipment members, Its content should be as low as possible. Moreover, since these non-aluminum elements as impurities are inferior in corrosion resistance to halogen-containing gases such as chlorine gas and fluorine gas, their content must be as low as possible from the viewpoint of the corrosion resistance of AlN ceramics. The contents of these impurity metal elements are each preferably 30 ppm or less and the total amount is preferably 100 ppm or less. The AlN ceramics according to the present invention have high purity such that the content of these impurity metal elements is 30 ppm or less and the total amount is 100 ppm or less, so that they are excellent in applicability to members for semiconductor manufacturing equipment and have excellent corrosion resistance. is there.
また、本発明の黒色AlN系セラミックスでは、従来AlNセラミックスの製造時に焼結助剤として用いられているイットリウム化合物、カルシウム化合物、等を添加しない。これらイットリウム化合物、カルシウム化合物は、焼結中にAlNと反応し生成物が第2相として焼結後のAlNセラミックスに残存し、色ムラ、斑点、等の欠陥の原因となるばかりでなく、アルカリ土類金属、元素周期律表第19番以降の重金属元素であるため、半導体製造装置用部材への適用性を阻害し、また耐食性を劣化させるものである。 In addition, in the black AlN ceramics of the present invention, yttrium compounds, calcium compounds, and the like that have been conventionally used as sintering aids during the production of AlN ceramics are not added. These yttrium compounds and calcium compounds react with AlN during sintering and the product remains as a second phase in the sintered AlN ceramics, causing defects such as color unevenness, spots and the like. Since it is an earth metal and a heavy metal element from the element periodic table No. 19 or later, applicability to members for semiconductor manufacturing equipment is hindered and corrosion resistance is deteriorated.
本発明の黒色AlN系セラミックスでは、従来のイットリウム化合物、カルシウム化合物に替わって、添加する酸化アルミニウム(アルミナ)が焼結助剤の働きをする。AlNは非酸化物系セラミックスで難焼結性を示すものの、アルミナは易焼結性なため、AlNに酸化アルミニウムを添加することによって容易に高密度の焼結体が得られるものである。
また、AlNに酸化アルミニウムを添加することによって、焼結中に酸化アルミニウムとAlNとの反応によりAlON(酸窒化アルミニウム)が生成するが、AlONは非定比化合物なためその結晶中に格子欠陥を生成し易い。AlON結晶中に生成した格子欠陥は色中心となり、セラミックスを黒色に発色させ、かつ、この格子欠陥は高温まで比較的安定である。一方、AlNに直接AlONを添加した場合は、このような格子欠陥が生成することはなく、従って、AlNセラミックスが黒色に発色する事もない。このようにして本発明のAlN系セラミックスは黒色を呈するが、イットリウム化合物、カルシウム化合物、等の焼結助剤を含有しないので、色ムラ、斑点、等の欠陥発生は完全に抑制され、かつアルミニウウム元素以外の不純物金属元素が極めて低レベルなため、半導体製造装置用部材への適用性に優れ、かつ極めて良好な耐食性を示すものである。さらに、AlNセラミックスを赤外線加熱、等による受光発熱媒体として用いる場合も、本発明の黒色AlN系セラミックスは、赤外線吸収率が高く、優れた特性を示すものである。
In the black AlN ceramic of the present invention, aluminum oxide (alumina) to be added functions as a sintering aid instead of the conventional yttrium compound and calcium compound. Although AlN is a non-oxide ceramic and hardly sinters, alumina is easily sinterable. Therefore, a high-density sintered body can be easily obtained by adding aluminum oxide to AlN.
In addition, by adding aluminum oxide to AlN, AlON (aluminum oxynitride) is generated by the reaction between aluminum oxide and AlN during sintering, but since AlON is a non-stoichiometric compound, lattice defects are present in the crystal. Easy to generate. The lattice defect generated in the AlON crystal becomes the color center, causes the ceramic to develop a black color, and the lattice defect is relatively stable up to a high temperature. On the other hand, when AlON is directly added to AlN, such lattice defects are not generated, and therefore, the AlN ceramic does not develop black color. Thus, although the AlN ceramic of the present invention exhibits a black color, since it does not contain a sintering aid such as an yttrium compound or a calcium compound, the occurrence of defects such as color unevenness, spots, etc. is completely suppressed, and aluminum Since the impurity metal elements other than the element are extremely low, they are excellent in applicability to members for semiconductor manufacturing equipment and exhibit extremely good corrosion resistance. Furthermore, even when AlN ceramics are used as a light-receiving and heating medium by infrared heating or the like, the black AlN ceramics of the present invention have a high infrared absorptivity and exhibit excellent characteristics.
本発明において、焼結体の黒色度を定量的に表現するのは困難であるが、例えば、JIS Z8729にて規定されるL*a*b*表示(CIELAB表示系)において、明度指数:L*値が0〜50の範囲であり、かつ彩度:C*(=(a*)2+(b*)2)1/2)が0〜10の範囲であること、さらに望ましくは、明度指数:L*値が0〜40の範囲であることが好ましい。あるいは、可視光領域である400〜800nmの波長領域における焼結体表面の光の反射率が20%以下、さらに望ましくは、15%以下であることが好ましい。 In the present invention, it is difficult to quantitatively express the blackness of the sintered body. For example, in the L * a * b * display (CIELAB display system) defined by JIS Z8729, the lightness index: L * The value is in the range of 0 to 50, and the saturation: C * (= (a * ) 2 + (b * ) 2 ) 1/2 ) is in the range of 0 to 10, more preferably lightness Index: L * value is preferably in the range of 0-40. Alternatively, the reflectance of light on the surface of the sintered body in the visible light wavelength region of 400 to 800 nm is preferably 20% or less, and more preferably 15% or less.
本発明の黒色AlN系セラミックス焼結体は、酸化アルミニウムとAlNとの反応により生じるAlON相と、残部がAlNの2相から成る組織を呈し、各々の粒子は互いに分散した微構造となっており、このため、いわゆる粒子分散効果により破壊源からのクラック進展が偏向し、機械的特性、特に、破壊靭性及び破壊強度が向上している。 The black AlN ceramic sintered body of the present invention has a microstructure consisting of an AlON phase generated by a reaction between aluminum oxide and AlN and a balance of two phases of AlN, and each particle has a fine structure dispersed with each other. For this reason, the crack propagation from the fracture source is deflected by the so-called particle dispersion effect, and the mechanical properties, particularly fracture toughness and fracture strength are improved.
本発明のように、1〜30重量%の酸化アルミニウムを添加し、残部が実質的に窒化アルミニウムより成る混合粉体を成形・焼結し、焼結中に酸化アルミニウムと窒化アルミニウムとの反応により生じる格子欠陥を有するAlON相を含有させることにより、高純度で黒色を呈するAlN系セラミックスが得られる。本高純度黒色AlN系セラミックスは、従来のAlN系セラミックスが有していた、色ムラ、低耐食性、低機械的特性、等の課題を解決するものである。 As in the present invention, 1 to 30% by weight of aluminum oxide is added, and a mixed powder consisting essentially of aluminum nitride is formed and sintered, and the reaction between aluminum oxide and aluminum nitride occurs during sintering. By containing an AlON phase having a lattice defect that occurs, an AlN-based ceramic exhibiting high purity and black color can be obtained. This high-purity black AlN-based ceramic solves the problems such as color unevenness, low corrosion resistance, low mechanical properties, etc. that conventional AlN-based ceramics have.
以下、本発明の内容について詳細に説明する。
使用するAlN粉体としては、平均粒径10μm以下、望ましくは平均粒径1μm以下(サブミクロン)の微粒子であり、アルカリ金属、アルカリ土類金属、元素周期律表第19番以降の金属元素、及びこれら金属元素の化合物の含有量が全て30ppm以下で、アルミニウム以外の不純物金属元素の総量が100ppm以下の化学的に高純度なものである。
Hereinafter, the contents of the present invention will be described in detail.
As the AlN powder to be used, fine particles having an average particle size of 10 μm or less, preferably an average particle size of 1 μm or less (submicron), an alkali metal, an alkaline earth metal, a metal element of element periodic table No. 19 or later, In addition, the content of the compounds of these metal elements is 30 ppm or less, and the total amount of impurity metal elements other than aluminum is 100 ppm or less, which is chemically high purity.
AlN粉体に添加する酸化アルミニウム粉体は、通常はα型アルミナ(Al2O3)であるが、その他β型、γ型、θ型、κ型等の結晶でも構わず、あるいは加熱中にα型アルミナを生成する水酸化アルミニウム(Al(OH)3)、AlOOH等でも良い。酸化アルミニウム粉体の粒径として、通常は焼結性の優れる10μm以下のものが好ましく、1μm以下(サブミクロン)の微細なものはさらに望ましい。また、酸化アルミニウム粉体は、アルカリ金属、アルカリ土類金属、元素周期律表第19番以降の金属元素、及びこれら金属元素の化合物の含有量が全て30ppm以下で、アルミニウム以外の不純物金属元素の総量が100ppm以下の高純度なものである。 The aluminum oxide powder added to the AlN powder is usually α-type alumina (Al 2 O 3 ), but other types of crystals such as β-type, γ-type, θ-type, and κ-type may be used, or during heating. Aluminum hydroxide (Al (OH) 3 ), AlOOH, or the like that generates α-type alumina may be used. The particle diameter of the aluminum oxide powder is preferably 10 μm or less, which is usually excellent in sinterability, and more preferably 1 μm or less (submicron). In addition, the aluminum oxide powder has an alkali metal, alkaline earth metal, metal element No. 19 or later in the periodic table, and compounds of these metal elements, all of which are 30 ppm or less, and contains impurity metal elements other than aluminum. The total amount is 100 ppm or less and high purity.
AlNに添加する酸化アルミニウムの量は、1〜30重量%である。AlN原料はその粉体表層部に通常、0.2重量%程度の酸化層を有するが、この酸化層は不均一に存在するため、焼結体を均質に黒色化させるためには酸化アルミニウムの添加が必要である。添加する酸化アルミニウムの量が1重量%未満では、粉体混合時にAlNと酸化アルミニウムとがあまり均一には分散せず、格子欠陥生成による黒色化がやや不十分で、部分的に色ムラが発生しやすくなる場合があり、かつ、AlNとAlONとの粒子分散の効果が見られにくく、破壊靭性の向上はあまり期待できない。酸化アルミニウムの量が30重量%超では、生成するAlON相が過剰となり、焼結阻害が発生し不都合である。 The amount of aluminum oxide added to AlN is 1 to 30% by weight. The AlN raw material usually has an oxide layer of about 0.2% by weight on the surface layer of the powder, but since this oxide layer exists non-uniformly, in order to uniformly blacken the sintered body, aluminum oxide Addition is necessary. If the amount of aluminum oxide to be added is less than 1% by weight, AlN and aluminum oxide are not evenly dispersed during powder mixing, and blackening due to the generation of lattice defects is somewhat insufficient, resulting in partial color unevenness. In some cases, the effect of particle dispersion of AlN and AlON is hardly seen, and the improvement in fracture toughness cannot be expected so much. If the amount of aluminum oxide exceeds 30% by weight, the produced AlON phase becomes excessive, which is disadvantageous in that sintering inhibition occurs.
AlNに酸化アルミニウムを添加し、焼結中に両者の反応で生じる格子欠陥を有するAlON相を含有することにより、黒色を呈し、機械的特性に優れるAlN系セラミックスが作製可能となる。焼結体中の格子欠陥の定量的測定は、通常極めて困難であるが、例えば、ESR(Electron Spin Resonance)を用いた解析により格子欠陥発生の有無、大小が確認される。 By adding aluminum oxide to AlN and containing an AlON phase having lattice defects generated by the reaction of both during sintering, AlN ceramics exhibiting black color and excellent mechanical properties can be produced. Quantitative measurement of lattice defects in a sintered body is usually extremely difficult. For example, the presence or absence of lattice defects is confirmed by analysis using ESR (Electron Spin Resonance).
本発明の黒色AlN系セラミックスの焼結方法としては常圧焼結法、ホットプレス焼結法、ガス圧焼結法、熱間静水圧加圧(HIP)焼結法等、公知の焼結法のいずれも用いることができるが、機械的特性に優れた緻密質の焼結体を得るには、加圧焼結法を用いるのが有利である。加圧焼結の温度としては、1600〜1900℃が好ましい。1600℃未満では黒色AlN系セラミックスは十分には緻密化せず、従って得られる焼結体の特性も劣ってしまう。1900℃超の焼成温度では、AlNあるいはAlON粒子の粒成長が顕著になり、やはり特性が劣化するため、1900℃を上限とするのが望ましい。また、焼成中の雰囲気としては、不活性ガス雰囲気、特に窒化物の焼成に有利な窒素ガス含有不活性雰囲気が望ましい。また、加圧焼結の圧力としては、通常、10MPa以上、望ましくは20MPa以上が好ましく、焼成時間としては、焼結が充分完了するように、1時間以上が望ましい。 As the sintering method of the black AlN ceramic of the present invention, known sintering methods such as atmospheric pressure sintering method, hot press sintering method, gas pressure sintering method, hot isostatic pressing (HIP) sintering method, etc. Any of these can be used, but in order to obtain a dense sintered body having excellent mechanical properties, it is advantageous to use a pressure sintering method. The pressure sintering temperature is preferably 1600 to 1900 ° C. If the temperature is lower than 1600 ° C., the black AlN ceramics are not sufficiently densified, and the characteristics of the obtained sintered body are also inferior. When the firing temperature is higher than 1900 ° C., the growth of AlN or AlON particles becomes remarkable and the characteristics are deteriorated. Therefore, the upper limit is preferably 1900 ° C. The atmosphere during firing is preferably an inert gas atmosphere, particularly an inert atmosphere containing nitrogen gas that is advantageous for firing nitrides. The pressure for pressure sintering is usually 10 MPa or higher, preferably 20 MPa or higher, and the firing time is preferably 1 hour or longer so that the sintering is sufficiently completed.
AlNと酸化アルミニウムとの反応により生成するAlONは不定比化合物であるため本発明の様な複合セラミックスの理論密度を正確に求めることは容易ではないが、例えば、Al2O3・AlN(比重:3.837)結晶相が主たる生成物の場合、複合則により理論値を算出可能である。焼結体の相対密度としては、少なくとも理論値の90%以上でなければ前述の好ましい特性は損なわれ、望ましいものではない。
以下、実施例を用いてより具体的に説明するが、本発明は実施例の範囲に限定されるものではない。
Since AlON produced by the reaction between AlN and aluminum oxide is a non-stoichiometric compound, it is not easy to accurately determine the theoretical density of the composite ceramic as in the present invention. For example, Al 2 O 3 .AlN (specific gravity: 3.837) When the crystal phase is the main product, the theoretical value can be calculated according to the composite rule. If the relative density of the sintered body is not at least 90% of the theoretical value, the above-mentioned preferable characteristics are impaired, which is not desirable.
Hereinafter, although it demonstrates more concretely using an Example, this invention is not limited to the range of an Example.
(実施例1〜6)
平均粒径0.2μm、アルカリ金属、アルカリ土類金属、元素周期律表第19番以降の金属元素、及びこれら金属元素の化合物の含有量が全て20ppm以下で、かつこれら不純物の総量が50ppm以下の高純度AlN粉末に、表1中実施例1〜7に示す重量比で平均粒径0.2μm、アルカリ金属、アルカリ土類金属、元素周期律表第19番以降の金属元素、及びこれら金属元素の化合物の含有量が全て20ppm以下で、かつこれら不純物の総量が100ppm以下の高純度アルミナ粉末を添加し、ボールミルを用いて充分混合した後、混合粉体をφ100mmのグラファイト製ダイスに充填し、1750℃の温度で2時間、窒素ガス気流中で40MPaの圧力でホットプレス焼結を行った。
(Examples 1-6)
The average particle size is 0.2 μm, the content of alkali metals, alkaline earth metals, metal elements on and after the 19th element of the periodic table, and compounds of these metal elements are all 20 ppm or less, and the total amount of these impurities is 50 ppm or less. In the high-purity AlN powder of Table 1, in the weight ratios shown in Examples 1 to 7 in Table 1, the average particle diameter is 0.2 μm, the alkali metal, the alkaline earth metal, the metal elements from the element periodic table No. 19 and the metal After adding high-purity alumina powder in which the content of elemental compounds is all 20 ppm or less and the total amount of these impurities is 100 ppm or less and mixing well using a ball mill, the mixed powder is filled into a φ100 mm graphite die. Hot press sintering was performed at a pressure of 40 MPa in a nitrogen gas stream for 2 hours at a temperature of 1750 ° C.
焼結体は#140、#400、#1000のダイヤモンド砥石にて順次平面研削した後、片面をラップ仕上げして、焼結体の色調及び色ムラ・斑点の有無を検査した。尚、色調については、色差色度計を用いて、L*a*b*表示(CIELAB表示系)にて定量的測定も行った。また、焼結体をJIS R1601に準拠し、3×4×38mmの試験片に加工し、アルキメデス法により密度を測定した後、常温にて3点曲げ試験を行った。尚、焼結体の相対密度は、生成したAlONをAl2O3・AlN(比重:3.837)として算出した。また、焼結体の靭性についてはJIS R1608に準拠しSEPB法にて破壊磁性値KICを測定した。 The sintered body was sequentially ground with a # 140, # 400, and # 1000 diamond grindstone, and then one side was lapped, and the sintered body was inspected for color tone and color unevenness / spots. The color tone was also quantitatively measured with a L * a * b * display (CIELAB display system) using a color difference colorimeter. The sintered body was processed into a 3 × 4 × 38 mm test piece in accordance with JIS R1601, the density was measured by the Archimedes method, and then a three-point bending test was performed at room temperature. The relative density of the sintered body, the generated AlON Al 2 O 3 · AlN (specific gravity: 3.837) was calculated as. Moreover, about the toughness of the sintered compact, the fracture magnetic value KIC was measured by SEPB method based on JISR1608.
X線回析による分析の結果、実施例1〜6の全てのサンプルからはAlNとAlON(Al2O3・AlN)のピークのみが検出され、焼結体は実質、AlNとAlONの2相から構成されることが判明した。表1に実施例1〜6の各々の組成に対する焼結体の相対密度(理論値に対して百分率で示す)、3点曲げ強さ、破壊靭性値、色調(色及びL*a*b*値)、色ムラ・斑点の有無、及びX線回折でのAlNの(100)ピークとAlONの(400)ピークとから算出したAlON相の含有量を示す。
また、表1中には比較例1、2として、アルミナを添加しないAlN単体の焼結体、及びアルミナを40重量%と過剰に添加した焼結体について、実施例1〜6と同様に特性を比較している。
As a result of analysis by X-ray diffraction, only the peaks of AlN and AlON (Al 2 O 3 · AlN) were detected from all the samples of Examples 1 to 6, and the sintered body was substantially two phases of AlN and AlON. It was found to consist of Table 1 shows the relative density (shown as a percentage of the theoretical value) of the sintered body for each composition of Examples 1 to 6, three-point bending strength, fracture toughness value, and color tone (color and L * a * b *). Value), presence / absence of color unevenness / spots, and content of AlON phase calculated from (100) peak of AlN and (400) peak of AlON in X-ray diffraction.
Also, in Table 1, as Comparative Examples 1 and 2, the characteristics of the sintered body of simple AlN not added with alumina and the sintered body added excessively with 40% by weight of alumina are the same as in Examples 1 to 6. Are comparing.
実施例1〜6と比較例1より、AlNにアルミナを添加しAlON相を生成させることにより、焼結体は黒色化し、かつ色ムラ・斑点の発生を抑制できることが明らかである。また、AlN中にAlON相を分散させることにより、破壊靭性、曲げ強さ、等の機械的特性を向上させることが可能である。
また、実施例1〜6と比較例2より、アルミナを過剰に添加すると焼結体の密度が低下し、従って機械的特性が劣化することが明らかである。
From Examples 1 to 6 and Comparative Example 1, it is clear that by adding alumina to AlN to produce an AlON phase, the sintered body becomes black and the occurrence of color unevenness and spots can be suppressed. Further, by dispersing the AlON phase in AlN, it is possible to improve mechanical properties such as fracture toughness and bending strength.
Further, from Examples 1 to 6 and Comparative Example 2, it is clear that when alumina is added excessively, the density of the sintered body is lowered, and therefore the mechanical properties are deteriorated.
(実施例7〜11)
実施例1〜6で用いたと同様の高純度AlN粉体と高純度アルミナ粉体を、AlN−1重量%アルミナ組成に秤量し、ボールミルを用いて充分混合した後、混合粉体をφ100mmのグラファイト製ダイスに充填し、1600〜1900℃の温度で2時間、窒素ガス気流中で40MPaの圧力でホットプレス焼結を行った。得られた焼結体について、実施例1〜6と同様に各種特性を評価した。表2に実施例7〜11の各々の焼結体の相対密度、3点曲げ強さ、破壊靭性値を示す。
実施例7〜11から、1600〜1900℃が適正焼成温度であることが明白である。
(Examples 7 to 11)
The same high-purity AlN powder and high-purity alumina powder as used in Examples 1 to 6 were weighed into an AlN-1 wt% alumina composition and mixed thoroughly using a ball mill. The die was filled, and hot press sintering was performed at a temperature of 1600 to 1900 ° C. for 2 hours in a nitrogen gas stream at a pressure of 40 MPa. About the obtained sintered compact, various characteristics were evaluated similarly to Examples 1-6. Table 2 shows the relative density, three-point bending strength, and fracture toughness value of each of the sintered bodies of Examples 7 to 11.
From Examples 7-11 it is clear that 1600-1900 ° C. is the proper firing temperature.
(実施例12)
実施例2の焼結体(AlN−2重量%アルミナ組成、1750℃焼成)と、比較としてアルミナの代わりに焼結助剤として2重量%のイットリアを添加し1750℃でホットプレス焼成した焼結体(比較例3)との耐食性評価を行った。
ESR(Electron Spin Resonance)を用いた解析により、実施例2の焼結体からは格子欠陥発生に対応するピークが極めて強く検出されたのに対し、比較例3の焼結体からは極めて弱いピークのみが観察され、本発明の焼結体中には多数の格子欠陥が存在することが確認された。
(Example 12)
The sintered body of Example 2 (AlN-2 wt% alumina composition, fired at 1750 ° C.) and, as a comparison, added 2 wt% yttria as a sintering aid instead of alumina and sintered by hot press firing at 1750 ° C. The corrosion resistance of the body (Comparative Example 3) was evaluated.
According to the analysis using ESR (Electron Spin Resonance), the peak corresponding to the occurrence of lattice defects was detected very strongly from the sintered body of Example 2, whereas the very weak peak was detected from the sintered body of Comparative Example 3. As a result, only a large number of lattice defects were confirmed in the sintered body of the present invention.
次に、実施例2と比較例3の焼結体を30×30×10mmに切断し片面をラップ仕上げしたものをサンプルとし、10%HF水溶液に50時間浸漬する実験と、5%フッ素を含むアルゴンガス中で500℃に加熱し50時間放置する実験とを行った。
実施例2の焼結体では、耐食性評価実験後、重量減少もなく、サンプル表面にも変化がなかったのに対し、比較例3の焼結体では、どちらの腐食条件においても2〜3%の重量減少が測定され、サンプル表面は白色の粉を吹いていた。
Next, an experiment in which the sintered bodies of Example 2 and Comparative Example 3 were cut to 30 × 30 × 10 mm and lapped on one side was used as a sample and immersed in a 10% HF aqueous solution for 50 hours, and 5% fluorine was included. An experiment was conducted in which argon was heated to 500 ° C. in an argon gas and allowed to stand for 50 hours.
In the sintered body of Example 2, there was no weight reduction and no change in the sample surface after the corrosion resistance evaluation experiment, whereas the sintered body of Comparative Example 3 was 2 to 3% in both corrosion conditions. The weight loss was measured and the sample surface was blowing white powder.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006000499A JP4223043B2 (en) | 2006-01-05 | 2006-01-05 | Black AlN ceramics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006000499A JP4223043B2 (en) | 2006-01-05 | 2006-01-05 | Black AlN ceramics |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25139296A Division JP3769081B2 (en) | 1996-09-24 | 1996-09-24 | Manufacturing method of black AlN ceramics |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006104060A JP2006104060A (en) | 2006-04-20 |
JP4223043B2 true JP4223043B2 (en) | 2009-02-12 |
Family
ID=36374200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006000499A Expired - Fee Related JP4223043B2 (en) | 2006-01-05 | 2006-01-05 | Black AlN ceramics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4223043B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108975949B (en) * | 2018-08-31 | 2021-01-15 | 武汉科技大学 | AlON-AlN porous material based on in-situ foaming and preparation method thereof |
CN114538931B (en) * | 2022-03-11 | 2022-11-29 | 北京理工大学 | High-performance AlON transparent ceramic and low-temperature rapid preparation method thereof |
-
2006
- 2006-01-05 JP JP2006000499A patent/JP4223043B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006104060A (en) | 2006-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4995920B2 (en) | Method for producing transparent polycrystalline aluminum oxynitride | |
Jones et al. | Highly Transparent Lu‐α‐SiAlON | |
JP6649959B2 (en) | Manufacturing method of transparent alumina sintered body | |
WO2009096384A1 (en) | POLYCRYSTALLINE MgO SINTERED COMPACT, PROCESS FOR PRODUCING THE POLYCRYSTALLINE MgO SINTERED COMPACT, AND MgO TARGET FOR SPUTTERING | |
JP7062229B2 (en) | Plate-shaped silicon nitride sintered body and its manufacturing method | |
WO1995021139A1 (en) | Aluminum nitride sinter and production method therefor | |
JP2007197226A (en) | High-thermal conductive silicon nitride ceramic having high reliability and method of manufacturing the same | |
Jones et al. | Optical and mechanical properties of α/β composite sialons | |
JP5577287B2 (en) | Magnesium fluoride sintered body, manufacturing method thereof, and member for semiconductor manufacturing apparatus | |
JPWO2012115136A1 (en) | Cordierite sintered body and member for semiconductor manufacturing equipment comprising this cordierite sintered body | |
EP2366675B1 (en) | Sintered colored alumina of high toughness and high translucency, and manufacturing method and uses therefor | |
KR101540751B1 (en) | Silicon nitride-based composite ceramics and process for producing the same | |
JP3769081B2 (en) | Manufacturing method of black AlN ceramics | |
KR101575561B1 (en) | Manufacturing Method of Polycrystalline Aluminum Oxynitride with Improved Transparency | |
WO2007105728A1 (en) | Process for producing sintered aluminum nitride | |
JP4223043B2 (en) | Black AlN ceramics | |
WO2018117161A1 (en) | Oriented aln sintered body, and production method therefor | |
JP2010126430A (en) | Translucent yag polycrystal body and method of manufacturing the same | |
JP2021104928A (en) | Ceramic component and method of forming the same | |
US11014855B2 (en) | Transparent AlN sintered body and method for producing the same | |
KR100970155B1 (en) | Aluminum nitride sintered body | |
JP6160986B1 (en) | Ceramic sintered body | |
JP5687090B2 (en) | Silicon nitride sintered body | |
JP3550420B2 (en) | Wear-resistant silicon nitride sintered body, method for producing the same, and cutting tool | |
JP2020059618A (en) | Base for ceramic and method for producing sintered ceramic using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060113 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20061208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081118 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081118 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111128 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |