JP2002134441A - Method of manufacturing power semiconductor element - Google Patents

Method of manufacturing power semiconductor element

Info

Publication number
JP2002134441A
JP2002134441A JP2000330029A JP2000330029A JP2002134441A JP 2002134441 A JP2002134441 A JP 2002134441A JP 2000330029 A JP2000330029 A JP 2000330029A JP 2000330029 A JP2000330029 A JP 2000330029A JP 2002134441 A JP2002134441 A JP 2002134441A
Authority
JP
Japan
Prior art keywords
substrate
dicing
tape
back surface
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000330029A
Other languages
Japanese (ja)
Other versions
JP4617559B2 (en
Inventor
Masanobu Nozawa
正信 野澤
Haruo Nakazawa
治雄 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000330029A priority Critical patent/JP4617559B2/en
Publication of JP2002134441A publication Critical patent/JP2002134441A/en
Application granted granted Critical
Publication of JP4617559B2 publication Critical patent/JP4617559B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding

Abstract

PROBLEM TO BE SOLVED: To reduce stresses applied on a wafer in a backside manufacturing process of power semiconductor elements. SOLUTION: The manufacturing method comprises the steps of (1) sticking a surface protective tape 20 for protecting a processed surface of the wafer 10, after processing the surface of the wafer 10 for power semiconductor substrate elements, (2) grinding the backside, (3) dicing (first) the backside of the wafer 10 along dicing lines, (4) implanting ions into the backside, (5) heat- treating it, (6) depositing a metal film on the backside, (7) removing the tape thereafter, (8) dicing (second) along the dicing lines, thereby manufacturing chips.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電力用半導体素子の
製造方法に関し、特に裏面に加工工程を有する薄型基板
より成る電力用半導体素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a power semiconductor device, and more particularly to a method for manufacturing a power semiconductor device comprising a thin substrate having a processing step on a back surface.

【0002】[0002]

【従来の技術】従来から電力の変換や電力制御が行なわ
れる場合、電力用半導体素子であるパワー半導体デバイ
スがキーデバイスとして不可欠であり、その適用分野は
電力、交通輸送、産業、情報、通信、家電等、多岐に及
ぶ。中でもIGBT(Insulated Gate Bipolar Transis
tor )は、パワーMOS FETが苦手とする高耐圧大
電流の高速動作が要求される低損低騒音インバータ等の
用途で実用化が進んでいる。
2. Description of the Related Art When power conversion and power control are conventionally performed, a power semiconductor device, which is a power semiconductor element, is indispensable as a key device, and its application fields are power, transportation, industry, information, communication, and the like. There are a wide variety of household appliances. In particular, IGBT (Insulated Gate Bipolar Transis
tor) is being put to practical use in applications such as low-loss, low-noise inverters and the like, which are not good at power MOS FETs and require high-voltage, high-current, high-speed operation.

【0003】近年の半導体分野では、低オン電圧、かつ
低コスト化の要求が高くなっており、また、小型化・薄
型化の要求も強い。そこで、例えば、IGBTでは、従
来のコスト高の要因となっていたエピタキシャル基板を
用いずに、FZ基板を用いてチップ形成が行なわれるよ
うになってきている。チップ形成では、表面工程終了
後、バックラップ、イオン注入、裏面熱処理、金属蒸着
による電極形成等を行なう裏面製造工程が実施される。
以下、ノンパンチスルー型IGBTの例で説明する。図
5は、ノンパンチスルー型IGBTの従来の裏面製造工
程である。
In recent years, in the field of semiconductors, there is an increasing demand for low on-voltage and low cost, and there is also a strong demand for miniaturization and thinning. Therefore, for example, in the IGBT, chip formation has been performed using an FZ substrate instead of using an epitaxial substrate, which has conventionally been a factor of high cost. In the chip formation, after the front surface process is completed, a back surface manufacturing process of performing back wrap, ion implantation, back surface heat treatment, electrode formation by metal deposition, and the like is performed.
Hereinafter, an example of a non-punch-through IGBT will be described. FIG. 5 shows a conventional back surface manufacturing process of a non-punch-through IGBT.

【0004】ウェハ(以下、基板という場合もある)の
製造工程では、(1)表面プロセス処理において、成
膜、フォトリソグラフィ、不純物拡散導入のためのイオ
ン注入、拡散等の微細構造形成プロセスを用いて表面側
が製作される。基本的な裏面製造工程では、最初に表面
側を保護するため、(2)レジスト塗布が行なわれる。
続く(3)裏面バックラップにおいて、バックグランド
(BG)によりウェハ裏面を削り、ウェハ薄にする。次
に(4)裏面イオン注入を実行し、表面側に塗布したレ
ジストの(5)レジスト灰化、(6)裏面熱処理、電極
層としての(7)裏面金属膜蒸着を実施する。
In the manufacturing process of a wafer (hereinafter sometimes referred to as a substrate), (1) a fine structure forming process such as film formation, photolithography, ion implantation for impurity diffusion introduction, diffusion, etc. is used in the surface process. The front side is manufactured. In a basic backside manufacturing process, (2) resist coating is first performed to protect the front side.
In the subsequent (3) back wrap, the back surface of the wafer is shaved by the background (BG) to make the wafer thin. Next, (4) backside ion implantation is performed, and (5) ashing of the resist applied to the front side, (6) heat treatment of the backside, and (7) backside metal film deposition as an electrode layer are performed.

【0005】図6に、従来の裏面製造工程による反り量
の推移を示す。図6の横軸の工程は、図5に示した裏面
製造工程の(1)から(7)の数値に対応する。また、
縦軸の反り量は、基板表面からみた応力方向とその大き
さを示している。反り量が0の場合は、ウェハの中央部
と端部との間の水平が保たれていて、表面側及び裏面側
のどちらにも反っていない状態である。また、反り量が
プラス(+)の状態は、表面からみて引っ張り方向に応
力が働いており、ウェハ中央部に対して端部が表面側方
向に向かって反っている状態である。一方、反り量がマ
イナス(−)の状態は、表面からみて圧縮方向に応力が
働いているため、ウェハ中央部に対して端部が裏面側方
向に向かって反っている状態である。
FIG. 6 shows a change in the amount of warpage in a conventional back surface manufacturing process. 6 correspond to the numerical values (1) to (7) of the back surface manufacturing process shown in FIG. Also,
The amount of warpage on the vertical axis indicates the stress direction and its magnitude as viewed from the substrate surface. When the amount of warpage is 0, the horizontal state is maintained between the center and the end of the wafer, and the wafer is not warped on either the front side or the back side. In the state where the amount of warpage is plus (+), stress acts in the pulling direction as viewed from the surface, and the end is warped toward the surface toward the center of the wafer. On the other hand, a state in which the amount of warpage is minus (-) is a state in which an end is warped toward the back surface side with respect to the center of the wafer because stress acts in the compression direction as viewed from the front surface.

【0006】工程(1)表面プロセス処理が終了した際
の反り量を0とする。工程(2)レジスト塗布では、反
り量に変化はほとんどないが、工程(3)バックグラン
ド処理終了後には引っ張り応力が働き、ウェハの端部は
表面側方向に向かって約2mm反る。次の工程(5)レ
ジスト灰化によるレジスト剥離後には、若干の圧縮応力
が働き、工程(6)裏面熱処理によって引っ張り応力が
働く。そして、工程(7)裏面蒸着により表面側からみ
ると非常に大きい圧縮応力(裏面側からみれば、引っ張
り応力)が働き、反り量が−3.1mm(反りに生じた
ウェハ中央部と端部との差)が発生する。
Step (1) The amount of warpage when the surface processing is completed is set to zero. In the step (2) resist coating, the amount of warp hardly changes, but after the step (3) background processing, a tensile stress acts, and the end of the wafer warps by about 2 mm toward the surface side. After the resist is peeled off by the following step (5) ashing of the resist, a slight compressive stress acts, and a tensile stress acts by the step (6) heat treatment on the back surface. Then, in step (7), a very large compressive stress (tensile stress as viewed from the back side) acts on the front side due to backside deposition, and the amount of warpage is −3.1 mm (the center and the edge of the warped wafer). Difference).

【0007】なお、図6の実施例では、表面保護のため
のレジスト膜厚は3μm、パックグランドは350μm
から150μmまでFZ−N基板を削った試料である。
裏面金属膜は、Niを3μm蒸着した。その後、ウェハ
チェック、ダイシング作業により、所望のチップサイズ
とした。
In the embodiment shown in FIG. 6, the resist film thickness for protecting the surface is 3 μm, and the pack ground is 350 μm.
This is a sample obtained by shaving the FZ-N substrate from 150 μm to 150 μm.
The back metal film was formed by evaporating 3 μm of Ni. Thereafter, a desired chip size was obtained by a wafer check and dicing operation.

【0008】[0008]

【発明が解決しようとする課題】しかし、従来の裏面製
造工程では、ウェハが薄いため、応力により発生する反
りにより、多くのプロセス上の問題が生じる。
However, in the conventional backside manufacturing process, since the wafer is thin, many process problems arise due to warpage caused by stress.

【0009】例えば金属膜蒸着後、金属膜は基板側から
みて圧縮圧力の大きな膜となり、ウェハが割れてしまう
ことがある。また、割れない場合であっても、圧縮圧力
により発生する反りによって、ダイシング工程が行ない
にくくなるという問題が生じる。また、ダイシング後の
チップの形が歪み、理論通りのIGBT特性が得られな
い可能性もある。この結果、裏面製造工程を必要とする
電力用半導体素子の製造工程における生産性を向上させ
ることが難しかった。
For example, after a metal film is deposited, the metal film becomes a film having a large compression pressure when viewed from the substrate side, and the wafer may be broken. In addition, even if it does not break, there is a problem that it becomes difficult to perform the dicing step due to the warpage generated by the compression pressure. Further, the shape of the chip after dicing may be distorted, and the IGBT characteristics as theoretical may not be obtained. As a result, it has been difficult to improve the productivity in the manufacturing process of the power semiconductor element requiring the back surface manufacturing process.

【0010】本発明はこのような点に鑑みてなされたも
のであり、電力用半導体素子の裏面製造工程においてウ
ェハにかかる応力を低減させることの可能な電力用半導
体素子の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method of manufacturing a power semiconductor device capable of reducing stress applied to a wafer in a process of manufacturing a back surface of the power semiconductor device. With the goal.

【0011】[0011]

【課題を解決するための手段】本発明では上記課題を解
決するために、裏面に加工工程を有する薄型基板より成
る電力用半導体素子の製造方法において、前記基板表面
に加工を施した後、前記基板裏面への電極用の裏面金属
膜蒸着に先だって前記基板表面に表面保護用のテープを
貼り付け、前記基板裏面側よりダイシングラインに沿っ
て前記基板に切れ目を入れる第1のダイシングを施し、
前記裏面金属膜蒸着実施後、前記基板表面保護用のテー
プを取り除き、前記ダイシングラインに沿って前記基板
を切断する第2のダイシングを行なう工程を有すること
を特徴とする電力用半導体素子の製造方法、が提供され
る。
According to the present invention, there is provided a method for manufacturing a power semiconductor device comprising a thin substrate having a processing step on a back surface, the method comprising the steps of: Prior to deposition of a backside metal film for an electrode on the backside of the substrate, a tape for surface protection is attached to the surface of the substrate, and a first dicing is performed to cut the substrate along a dicing line from the backside of the substrate,
A step of removing the tape for protecting the substrate surface after performing the backside metal film deposition, and performing a second dicing for cutting the substrate along the dicing line. , Are provided.

【0012】このような工程の電力用半導体素子の製造
方法では、電力用半導体基板素子の基板表面に加工を施
した後、基板裏面への電極用の裏面金属膜蒸着を行なう
工程の前に、基板表面に施した加工を保護する表面保護
用のテープを貼り付け、基板裏面側よりダイシングライ
ンに沿って基板に切れ目を入れる第1のダイシングを施
す。その後、裏面金属膜蒸着工程を実施する。裏面金属
膜蒸着実施後、基板表面保護用テープを取り除き、ダイ
シングラインに沿って基板を切断する第2のダイシング
を行ない、チップを製造する。
In the method for manufacturing a power semiconductor device in such a process, after the substrate surface of the power semiconductor substrate device is processed, before the step of depositing a back surface metal film for an electrode on the back surface of the substrate, A tape for protecting the surface that protects the processing performed on the surface of the substrate is attached, and first dicing is performed to cut the substrate along the dicing line from the back surface of the substrate. After that, a backside metal film deposition step is performed. After performing the backside metal film deposition, the tape for protecting the substrate surface is removed, and a second dicing for cutting the substrate along the dicing line is performed to manufacture a chip.

【0013】また、上記課題を解決するために、裏面に
加工工程を有する薄型基板より成る電力用半導体素子の
製造方法において、前記基板表面に加工を施した後、前
記基板裏面への電極用の裏面金属膜蒸着に先だって前記
基板表面に表面保護用のテープを貼り付け、前記表面保
護用のテープの上に引っ張り応力膜を形成してから前記
基板裏面側よりダイシングラインに沿って前記基板に切
れ目を入れる第1のダイシングを施すか、あるいは前記
基板裏面側よりダイシングラインに沿って前記基板に切
れ目を入れる第1のダイシングを施してから前記表面保
護用のテープの上に引っ張り応力膜を形成し、前記裏面
金属膜蒸着実施後、前記基板表面保護用のテープ及び前
記引っ張り応力膜とを取り除き、前記ダイシングライン
に沿って前記基板を切断する第2のダイシングを行なう
工程を有することを特徴とする電力用半導体素子の製造
方法、が提供される。
According to another aspect of the present invention, there is provided a method of manufacturing a power semiconductor device comprising a thin substrate having a processing step on a back surface. Prior to deposition of the backside metal film, a tape for surface protection is attached to the surface of the substrate, a tensile stress film is formed on the tape for surface protection, and then a cut is formed in the substrate along the dicing line from the backside of the substrate. Or a first dicing for making a cut in the substrate along a dicing line from the back side of the substrate, and then forming a tensile stress film on the tape for surface protection. After performing the backside metal film deposition, the tape for protecting the substrate surface and the tensile stress film are removed, and the substrate is cut along the dicing line. The method of manufacturing a power semiconductor device and having a second step of performing dicing for cutting, are provided.

【0014】このような工程の電力用半導体素子の製造
方法では、電力用半導体基板素子の基板表面に加工を施
した後、基板裏面への電極用の裏面金属膜蒸着を行なう
工程の前に、基板表面に施した加工を保護する表面保護
用のテープの貼り付けが行なわれる。続いて、前記表面
保護用のテープの上に引っ張り応力膜を形成するととも
に、前記基板裏面側よりダイシングラインに沿って前記
基板に切れ目を入れる第1のダイシングを実施する。引
っ張り応力膜の形成と第1のダイシングとは、どちらを
先に実施してもよい。その後、裏面金属膜蒸着工程を実
施する。裏面金属膜蒸着実施後、基板表面保護用テープ
及び基板表面保護テープの上に形成された引っ張り応力
膜とを取り除き、ダイシングラインに沿って基板を切断
する第2のダイシングを行ない、チップを製造する。
In the method of manufacturing a power semiconductor device in such a process, after the substrate surface of the power semiconductor substrate device is processed, before the step of depositing a back surface metal film for an electrode on the back surface of the substrate, A tape for protecting the surface that protects the processing performed on the substrate surface is attached. Subsequently, a first dicing is performed in which a tensile stress film is formed on the surface protecting tape and a cut is made in the substrate along a dicing line from the back surface side of the substrate. Either of the formation of the tensile stress film and the first dicing may be performed first. After that, a backside metal film deposition step is performed. After performing the backside metal film deposition, the tape for protecting the substrate surface and the tensile stress film formed on the tape for protecting the surface of the substrate are removed, and the second dicing for cutting the substrate along the dicing line is performed to manufacture a chip. .

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。図1は、本発明の第1の実施の形
態である電力用半導体素子の製造方法による裏面製造工
程の手順である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a procedure of a back surface manufacturing process by a method for manufacturing a power semiconductor device according to a first embodiment of the present invention.

【0016】本発明の第1の実施の形態に係る電力用半
導体素子の製造方法では、表面形成プロセス処理が終了
した後、裏面製造工程として、(1)テープの貼り付
け、(2)バックグランド、(3)ダイシング(1回
目)、(4)裏面イオン注入、(5)熱処理、(6)裏
面金属膜の蒸着、(7)テープの除去、(8)ダイシン
グ(2回目)、の各工程を順次実施する。
In the method of manufacturing a power semiconductor device according to the first embodiment of the present invention, after the front surface forming process is completed, as a back surface manufacturing step, (1) tape bonding, (2) background , (3) dicing (first time), (4) backside ion implantation, (5) heat treatment, (6) backside metal film deposition, (7) tape removal, (8) dicing (second time) Are sequentially performed.

【0017】(1)テープの貼り付け工程は、表面形成
処理が終了したウェハ10の表面に基板表面保護用のテ
ープ(以下、テープとする)20の貼り付けを行なう。
テープ20は、(5)熱処理に耐え得る耐熱性の材質、
例えば耐熱性ポリイミドテープ等である。耐熱性ポリイ
ミドテープは、400℃程度までの熱に耐えることがで
きる。また、テープ20をウェハ10表面に貼り付ける
ことにより、表面保護用のレジスト塗布の工程を省略す
ることができる。さらに、レジスト塗布を行なわないた
め、レジスト灰化工程も省略することができる。
(1) In the tape attaching step, a tape (hereinafter, referred to as a tape) 20 for protecting the substrate surface is attached to the surface of the wafer 10 on which the surface forming process has been completed.
The tape 20 is made of (5) a heat-resistant material that can withstand heat treatment;
For example, it is a heat-resistant polyimide tape. The heat-resistant polyimide tape can withstand heat up to about 400 ° C. Also, by applying the tape 20 to the surface of the wafer 10, the step of applying a resist for protecting the surface can be omitted. Further, since no resist coating is performed, the resist ashing step can be omitted.

【0018】(2)バックグランド(BG)工程は、ウ
ェハ10の裏面を削り、ウェハ10のウェハ厚を薄くす
る工程である。 (3)ダイシング(1回目)の工程は、基板裏面側より
ダイシングラインに沿って切れ目を入れる第1のダイシ
ングを実施する工程である。ダイシング(1回目)で
は、裏面側よりダイシングを実施するとき、テープ20
の表面側からわずかに(例えば、数μm程度)ウェハ厚
を残すようにする。ダイシング(1回目)の工程は、従
来の工程のレジスト塗布及びバックグランド処理により
発生した引っ張り応力を、ウェハ10に切れ目を入れる
ことにより低減させることが可能である。このようにす
ることによって、ウェハ10に発生する応力がほとんど
なくなり、反り量を低減させることができる。
(2) The background (BG) step is a step of shaving the back surface of the wafer 10 to reduce the thickness of the wafer 10. (3) The dicing (first) step is a step of performing first dicing in which a cut is made along the dicing line from the back surface side of the substrate. In dicing (first time), when dicing is performed from the back side, the tape 20
Slightly (for example, about several μm) from the front side of the wafer. In the dicing process (first time), the tensile stress generated by the resist coating and the background process in the conventional process can be reduced by making a cut in the wafer 10. By doing so, the stress generated on the wafer 10 is almost eliminated, and the amount of warpage can be reduced.

【0019】続いて、従来の裏面製造工程と同様に、
(4)裏面イオン注入、(5)熱処理、(6)裏面金属
膜蒸着を実施する。 (6)裏面金属膜蒸着の工程は、ウェハ10裏面に、例
えばNiを蒸着し、裏面金属膜30を形成する。従来の
製造方法により裏面金属膜30を形成した場合には、表
面側からみて非常に大きな圧縮応力が働いていたが、本
発明に係る製造方法では、(3)ダイシング(1回目)
で形成された切れ目により、圧縮応力を低減させること
ができる。このため、(4)裏面イオン注入後の工程を
ほとんど応力の影響を受けることなく、すなわちウェハ
10の反りの影響を受けることなく、スムースに進める
ことができる。
Subsequently, similarly to the conventional back surface manufacturing process,
(4) Backside ion implantation, (5) Heat treatment, and (6) Backside metal film deposition. (6) In the step of depositing the back metal film, for example, Ni is deposited on the back surface of the wafer 10 to form the back metal film 30. When the back metal film 30 was formed by the conventional manufacturing method, a very large compressive stress was applied when viewed from the front side. However, in the manufacturing method according to the present invention, (3) dicing (first time)
The compressive stress can be reduced by the cut formed in the step (1). For this reason, (4) the process after the back surface ion implantation can proceed smoothly without being affected by the stress, that is, without being affected by the warpage of the wafer 10.

【0020】(7)テープの除去工程は、裏面金属膜3
0が形成されたウェハ10の表面に貼り付けられたテー
プ20の除去を行なう。 (8)ダイシング(2回目)の工程は、(7)テープの
除去が終了した後、(3)ダイシング(1回目)で数μ
mの残したウェハ10のダイシングラインに沿ってダイ
シングを実行し、ウェハ10をチップ状にする。うまく
チップに切断できない場合には、再びダイシングを実施
してもよい。
(7) The tape removing step includes the step of removing the back metal film 3
The tape 20 attached to the surface of the wafer 10 on which the 0 is formed is removed. (8) The dicing (second time) process is as follows: (7) After removing the tape, (3) dicing (first time) several μm
The dicing is performed along the dicing line of the wafer 10 where m is left, and the wafer 10 is formed into chips. If the chips cannot be cut properly, dicing may be performed again.

【0021】次に、本発明の第1の実施の形態の製造方
法の各工程における応力の発生について、実施例1で説
明する。図2に、本発明の第1の実施の形態に係る裏面
製造工程による反り量の推移を示す。図2の横軸の工程
は、図1に示した裏面製造工程の(1)から(8)の数
値に対応する。また、縦軸の反り量は、基板表面からみ
た応力方向とその大きさを示している。反り量がプラス
(+)の状態は、表面からみて引っ張り方向に応力が働
いており、反り量がマイナス(−)の状態は、表面から
みて圧縮方向に応力が働いている状態である。
Next, generation of stress in each step of the manufacturing method according to the first embodiment of the present invention will be described in Example 1. FIG. 2 shows a change in the amount of warpage in the back surface manufacturing process according to the first embodiment of the present invention. 2 correspond to the numerical values (1) to (8) of the back surface manufacturing process shown in FIG. Further, the amount of warping on the vertical axis indicates the stress direction and the magnitude thereof as viewed from the substrate surface. A state where the amount of warpage is plus (+) is a state where stress acts in the tensile direction as viewed from the surface, and a state where the amount of warpage is minus (−) is a state where stress is acting in the direction of compression as viewed from the surface.

【0022】工程(1)テープ貼り付けが終了した際の
反り量は、ほぼ0である。工程(2)バックグランド終
了後は、わずかに引っ張り応力が働き、ウェハの端部は
表面側方向に向かって1.5mm程度反る。この値は、
従来のバックグランドにより発生する反り量(約2m
m)と比べて少ない。次の工程(3)ダイシング(1回
目)で基板にダイシングを施すことにより、基板に働く
応力はほとんどなくなり、反り量はほぼ0に戻る。工程
(4)裏面イオン注入、工程(5)熱処理による反り量
の変化はほとんどない。そして、工程(6)裏面金属膜
蒸着により表面側からみるとわずかに圧縮応力(裏面側
からみれば、引っ張り応力)が働く。その反り量は、−
0.8mmとなり、従来例の−3.1mmに比べて2.
3mmも反り量を低減することができる。工程(7)テ
ープの除去により、さらに反り量は低減するため、工程
(8)ダイシング(2回目)における切断処理が容易に
なる。この結果、チップの生産性が向上する。
Step (1) The amount of warpage when the tape application is completed is almost zero. Step (2) After the completion of the background, a slight tensile stress acts, and the edge of the wafer is warped by about 1.5 mm toward the surface side. This value is
The amount of warpage caused by the conventional background (about 2 m
m). By performing dicing on the substrate in the next step (3) dicing (first time), the stress applied to the substrate is almost eliminated, and the amount of warpage returns to almost zero. There is almost no change in the amount of warpage due to the process (4) back surface ion implantation and the process (5) heat treatment. Then, a slight compressive stress (a tensile stress when viewed from the back side) acts on the front side due to the rear surface metal film deposition in the step (6). The amount of warpage is-
0.8 mm, compared to -3.1 mm of the conventional example.
The amount of warpage can be reduced by as much as 3 mm. Since the warpage is further reduced by removing the tape in the step (7), the cutting process in the step (8) dicing (second time) is facilitated. As a result, chip productivity is improved.

【0023】このように、本発明の第1の実施の形態に
係る製造方法では、ウェハ10表面側にテープ20を設
け、ウェハ10の裏面側からダイシング(1回目)を施
すことにより、裏面イオン注入後の工程をほとんど応力
の影響を受けることなくスムースに進めることができ
る。これにより、高い生産性でチップ素子を製造するこ
とができる。また、レジスト塗布、レジスト灰化の工程
を省略することができるので、スピンコート等による割
れ発生をなくすことができる。これもチップ素子の製造
の生産性向上に寄与する。
As described above, in the manufacturing method according to the first embodiment of the present invention, the tape 20 is provided on the front surface side of the wafer 10, and the dicing (first time) is performed from the back surface side of the wafer 10. The process after the implantation can proceed smoothly with almost no influence of stress. Thereby, a chip element can be manufactured with high productivity. In addition, since the steps of resist application and resist ashing can be omitted, the occurrence of cracks due to spin coating or the like can be eliminated. This also contributes to an improvement in the productivity of chip element manufacturing.

【0024】次に、本発明の第2の実施の形態に係る電
力用半導体素子の製造方法について説明する。図3は、
本発明の第2の実施の形態である電力用半導体素子の製
造方法による裏面製造工程の手順である。図1と同じも
のには同じ番号を付し、説明は省略する。
Next, a method of manufacturing a power semiconductor device according to a second embodiment of the present invention will be described. FIG.
9 is a procedure of a back surface manufacturing process according to the method for manufacturing a power semiconductor device according to the second embodiment of the present invention. The same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.

【0025】本発明の第2の実施の形態に係る電力用半
導体素子の製造方法では、表面形成プロセス処理が終了
した後、裏面製造工程として、(1)テープの貼り付
け、(2)バックグランド、(3)ダイシング(1回
目)、(4)表面蒸着膜成膜、(5)裏面イオン注入、
(6)熱処理、(7)裏面金属膜の蒸着、(8)テープ
と表面蒸着膜の除去、(9)ダイシング(2回目)、の
各工程を順次実施する。
In the method for manufacturing a power semiconductor device according to the second embodiment of the present invention, after the front surface forming process is completed, as a back surface manufacturing step, (1) tape bonding, (2) background (3) dicing (first time), (4) surface deposition film formation, (5) back surface ion implantation,
Steps of (6) heat treatment, (7) vapor deposition of the back metal film, (8) removal of the tape and the surface vapor-deposited film, and (9) dicing (second time) are sequentially performed.

【0026】(1)テープの貼り付け工程は、表面形成
処理が終了したウェハ10の表面にテープ20の貼り付
けを行なう。テープ20は、例えば耐熱性ポリイミドテ
ープ等である。
(1) In the tape attaching step, the tape 20 is attached to the surface of the wafer 10 on which the surface forming process has been completed. The tape 20 is, for example, a heat-resistant polyimide tape.

【0027】(2)バックグランド(BG)工程は、ウ
ェハ10の裏面を削り、ウェハ10のウェハ厚を薄くす
る工程である。 (3)ダイシング(1回目)の工程は、基板裏面側より
ダイシングラインに沿って切れ目を入れる第1のダイシ
ングを実施する工程である。ダイシング(1回目)で
は、裏面側よりダイシングを実施するとき、テープ20
の表面側からわずかに(例えば、数μm程度)ウェハ厚
を残すようにする。
(2) The background (BG) step is a step of shaving the back surface of the wafer 10 to reduce the thickness of the wafer 10. (3) The dicing (first) step is a step of performing first dicing in which a cut is made along the dicing line from the back surface side of the substrate. In dicing (first time), when dicing is performed from the back side, the tape 20
Slightly (for example, about several μm) from the front side of the wafer.

【0028】(4)表面蒸着膜成膜の工程は、テープ2
0の上に、引っ張り応力膜を形成するため、金属膜等の
表面蒸着膜40を成膜する。ここでは、例えば、表面蒸
着膜としてAl金属膜を蒸着によって成膜する。表面蒸
着膜40は、ウェハ10の表面側からみて引っ張り応力
を働かせるとともに、(3)ダイシング(1回目)工程
により保持しにくくなったチップをしっかりと保持す
る。テープ20上に蒸着した表面蒸着膜40は、引っ張
り応力を持つが、すでにウェハ10にダイシングが施さ
れていることから、その応力は低い。また、ここでは、
引っ張り応力膜として、金属膜をテープ20上に蒸着し
て表面蒸着膜40を形成するとしたが、ポリイミドをス
ピンコート法によりテープ20の上に塗布しても、同様
に引っ張り応力膜を形成することができる。
(4) The step of forming the surface deposited film is performed by using the tape 2
In order to form a tensile stress film, a surface vapor-deposited film 40 such as a metal film is formed on the substrate 0. Here, for example, an Al metal film is formed by evaporation as a surface evaporation film. The surface-deposited film 40 exerts a tensile stress as viewed from the front side of the wafer 10 and (3) firmly holds chips that have become difficult to hold in the dicing (first) step. The surface deposited film 40 deposited on the tape 20 has a tensile stress, but the stress is low because the wafer 10 has already been diced. Also, here
As the tensile stress film, a metal film is vapor-deposited on the tape 20 to form the surface-deposited film 40. However, even if polyimide is applied on the tape 20 by a spin coating method, a tensile stress film is similarly formed. Can be.

【0029】続いて、従来の裏面製造工程と同様に、
(5)裏面イオン注入、(6)熱処理、(7)裏面金属
膜蒸着を実施する。 (7)裏面金属膜蒸着は、ウェハ10裏面に、例えばN
iを蒸着し、裏面金属膜30を形成する。従来の製造方
法により裏面金属膜30を形成した場合には、表面側か
らみて非常に大きな圧縮応力が働いていたが、本発明に
係る製造方法では、(3)ダイシング(1回目)で形成
された切れ目により、圧縮応力を低減させることができ
る。このため、(5)裏面イオン注入後の工程をほとん
ど応力の影響を受けることなく、スムースに進めること
ができる。
Subsequently, similarly to the conventional back surface manufacturing process,
(5) Backside ion implantation, (6) Heat treatment, (7) Backside metal film deposition. (7) The backside metal film is deposited on the backside of the wafer 10 by, for example, N
i is deposited to form a back metal film 30. When the back metal film 30 is formed by the conventional manufacturing method, a very large compressive stress is applied when viewed from the front surface side. However, in the manufacturing method according to the present invention, (3) dicing (first time) is performed. The notch can reduce the compressive stress. For this reason, (5) the process after the back surface ion implantation can be smoothly performed with almost no influence of stress.

【0030】(8)テープと表面蒸着膜の除去は、裏面
金属膜30が形成されたウェハ10の表面に貼り付けら
れたテープ20及び表面蒸着膜40との除去を行なう。 (9)ダイシング(2回目)は、(8)テープと表面蒸
着膜の除去が終了した後、(3)ダイシング(1回目)
で数μmの残したウェハ10のダイシングラインに沿っ
てダイシングを実行し、ウェハ10をチップ状にする。
うまくチップに切断できない場合には、再びダイシング
を実施してもよい。
(8) In the removal of the tape and the surface deposited film, the tape 20 and the surface deposited film 40 attached to the surface of the wafer 10 on which the back metal film 30 is formed are removed. (9) Dicing (second time) is (8) After the removal of the tape and the surface deposited film is completed, (3) Dicing (first time)
Then, dicing is performed along the dicing line of the wafer 10 left by several μm to make the wafer 10 into a chip.
If the chips cannot be cut properly, dicing may be performed again.

【0031】上記の説明では、ダイシング(1回目)の
後に、表面蒸着膜40を形成するとしたが、ダイシング
(1回目)実施前あるいはバックグランド実施前に表面
蒸着膜40を形成することもできる。表面蒸着膜40の
成膜は、テープの貼り付けた後から、裏面金属蒸着が実
施される前の任意の段階で行なえばよい。
In the above description, the surface deposition film 40 is formed after dicing (first time). However, the surface deposition film 40 can be formed before dicing (first time) or before background. The deposition of the front surface deposition film 40 may be performed at any stage after the tape is attached and before the back surface metal deposition is performed.

【0032】次に、本発明の第2の実施の形態の製造方
法の各工程における応力の発生について、実施例2で説
明する。実施例2では、テープ20に蒸着する膜とし
て、Al金属膜3μmを蒸着した。図4は、本発明の第
2の実施の形態に係る裏面製造工程による反り量の推移
を示す。図2と同様、横軸の工程は、図3に示した裏面
製造工程の(1)から(9)に対応し、縦軸の反り量
は、基板表面からみた応力方向とその大きさを示してい
る。
Next, generation of stress in each step of the manufacturing method according to the second embodiment of the present invention will be described in Example 2. In Example 2, an Al metal film having a thickness of 3 μm was deposited as a film to be deposited on the tape 20. FIG. 4 shows a change in the amount of warpage in the back surface manufacturing process according to the second embodiment of the present invention. As in FIG. 2, the processes on the horizontal axis correspond to (1) to (9) of the back surface manufacturing process shown in FIG. 3, and the amount of warpage on the vertical axis indicates the stress direction and its magnitude as viewed from the substrate surface. ing.

【0033】工程(1)テープ貼り付けが終了した際の
反り量は、ほぼ0である。工程(2)バックグラン終了
後は、わずかに引っ張り応力が働き、ウェハの端部は表
面側方向に向かって1.5mm程度反る。この値は、従
来のバックグランドにより発生する反り量(約2mm)
と比べて、少ない。次の工程(3)ダイシング(1回
目)で基板にダイシングを施すことにより、基板に働く
応力はほとんどなくなり、反り量はほぼ0に戻る。工程
(4)表面蒸着膜成膜により、テープ20上に成膜され
た表面蒸着膜40は引っ張り応力を持つが、すでにウェ
ハがダイシングされていることから、その値は0.3m
m程度である。工程(5)裏面イオン注入、工程(6)
熱処理により、0.5mmまで反り量は増加するが、
(7)裏面金属膜蒸着すると表面側からみると非常にわ
ずかに圧縮応力(裏面側からみれば、引っ張り応力)が
働く。その反り量は、−0.1mmであり、ほとんど応
力による反りを持たない状態となる。従来例の−3.1
mmに比べて3mmも応力による反り量を低減すること
ができる。このように、応力により発生する反り量を低
減させることができるため、チップの生産性が向上す
る。
Step (1) The amount of warpage when the tape application is completed is almost zero. Step (2) After the completion of the background, a slight tensile stress acts, and the edge of the wafer is warped by about 1.5 mm toward the surface side. This value is the amount of warpage caused by the conventional background (about 2 mm)
Less than compared to. By performing dicing on the substrate in the next step (3) dicing (first time), the stress applied to the substrate is almost eliminated, and the amount of warpage returns to almost zero. Step (4) The surface deposited film 40 formed on the tape 20 by the film deposition of the surface deposited film has a tensile stress, but the value is 0.3 m since the wafer is already diced.
m. Step (5) Backside ion implantation, Step (6)
By heat treatment, the amount of warp increases to 0.5 mm,
(7) When a backside metal film is deposited, a very small compressive stress (tensile stress when viewed from the backside) acts when viewed from the front side. The amount of warpage is -0.1 mm, and there is hardly any warpage due to stress. Conventional Example -3.1
The warpage due to the stress can be reduced by 3 mm as compared with the mm. As described above, since the amount of warpage generated by the stress can be reduced, chip productivity is improved.

【0034】このように、本発明の第2の実施の形態に
係る製造方法では、ウェハ10表面側にテープ20を設
け、ウェハ10の裏面側からダイシング(1回目)を施
した後、テープ20上に表面蒸着膜40を形成すること
により、裏面イオン注入後の工程をほとんど応力の影響
を受けることなくスムースに進めることができる。これ
により、高い生産性でチップ素子を製造することができ
る。また、テープ20の上に引っ張り応力膜である表面
蒸着膜40を成膜することにより、チップをしっかりと
保持することができ、作業にかかる労力をさらに低減さ
せることができる。これらに加えて、第1の実施の形態
と同様に、レジスト塗布、レジスト灰化の工程を省略す
ることができるので、スピンコート等による割れ発生を
なくすことができる。これもチップ素子の製造の生産性
向上に寄与する。
As described above, in the manufacturing method according to the second embodiment of the present invention, the tape 20 is provided on the front surface side of the wafer 10, dicing (first time) is performed from the back surface side of the wafer 10, By forming the top surface deposited film 40 on the upper surface, the process after back surface ion implantation can be smoothly performed with almost no influence of stress. Thereby, a chip element can be manufactured with high productivity. Further, by forming the surface deposited film 40, which is a tensile stress film, on the tape 20, the chip can be held firmly, and the labor required for the operation can be further reduced. In addition to these, similarly to the first embodiment, the steps of resist coating and resist ashing can be omitted, so that the occurrence of cracks due to spin coating or the like can be eliminated. This also contributes to an improvement in the productivity of chip element manufacturing.

【0035】[0035]

【発明の効果】以上説明したように本発明では、基板表
面に加工を施した後、基板裏面への電極用の裏面金属膜
蒸着を行なう工程の前に、基板表面保護用のテープを貼
り付け、基板裏面側よりダイシングラインに沿ってダイ
シングを施す。裏面金属膜蒸着実施後、基板表面保護用
のテープを取り除き、ダイシングラインに沿って再びダ
イシングを行ない、チップを製造する。
As described above, according to the present invention, a tape for protecting the surface of the substrate is attached after the surface of the substrate is processed and before the step of depositing the back surface metal film for the electrode on the back surface of the substrate. Then, dicing is performed along the dicing line from the back side of the substrate. After performing the backside metal film deposition, the tape for protecting the substrate surface is removed, and dicing is performed again along the dicing line to manufacture a chip.

【0036】このように、表面保護用のテープを貼り付
け、基板裏面側よりダイシングラインに沿ってダイシン
グを施すことにより、電力用半導体素子の裏面製造工程
においてウェハにかかる応力を低減させることができ
る。この結果、裏面製造工程を必要とする電力用半導体
素子を高い生産性で製造することができる。
As described above, by applying the tape for protecting the front surface and performing dicing along the dicing line from the back surface of the substrate, the stress applied to the wafer in the process of manufacturing the back surface of the power semiconductor element can be reduced. . As a result, a power semiconductor element requiring a back surface manufacturing step can be manufactured with high productivity.

【0037】また、本発明では、基板表面に加工を施し
た後、基板裏面への電極用の裏面金属膜蒸着を行なう工
程の前に、表面保護用のテープの貼り付けが行なわれ
る。続いて、表面保護用のテープの上に引っ張り応力膜
を形成するとともに、基板裏面側よりダイシングライン
に沿ってダイシングを実施する。引っ張り応力膜の形成
とダイシングとは、どちらを先に実施してもよい。裏面
金属膜蒸着実施後、基板表面保護用テープと引っ張り応
力膜とを取り除き、ダイシングラインに沿って再びダイ
シングを行ない、チップを製造する。
In the present invention, after processing the substrate surface, a tape for protecting the surface is applied before the step of depositing the back surface metal film for the electrode on the back surface of the substrate. Subsequently, a tensile stress film is formed on the tape for protecting the surface, and dicing is performed along the dicing line from the back surface of the substrate. Either the formation of the tensile stress film or the dicing may be performed first. After the backside metal film is deposited, the tape for protecting the surface of the substrate and the tensile stress film are removed, and dicing is performed again along the dicing line to manufacture a chip.

【0038】このように、表面保護用のテープを貼り付
け、テープの上に引っ張り応力膜を形成するとともに基
板裏面側よりダイシングラインに沿ってダイシングを施
すことにより、電力用半導体素子の裏面製造工程におい
てウェハにかかる応力をさらに低減させることができ
る。この結果、裏面製造工程を必要とする電力用半導体
素子を高い生産性で製造することができる。
As described above, the surface protection tape is attached, the tensile stress film is formed on the tape, and the dicing is performed along the dicing line from the back surface of the substrate. In this case, the stress applied to the wafer can be further reduced. As a result, a power semiconductor element requiring a back surface manufacturing step can be manufactured with high productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態である電力用半導体
素子の製造方法による裏面製造工程の手順である。
FIG. 1 shows a procedure of a back surface manufacturing step by a method of manufacturing a power semiconductor device according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態に係る裏面製造工程
による反り量の推移を示す。
FIG. 2 shows a change in the amount of warpage in the back surface manufacturing process according to the first embodiment of the present invention.

【図3】本発明の第2の実施の形態である電力用半導体
素子の製造方法による裏面製造工程の手順である。
FIG. 3 shows a procedure of a back surface manufacturing step by a method for manufacturing a power semiconductor device according to a second embodiment of the present invention.

【図4】本発明の第2の実施の形態に係る裏面製造工程
による反り量の推移を示す。
FIG. 4 shows a change in the amount of warpage due to a back surface manufacturing process according to a second embodiment of the present invention.

【図5】ノンパンチスルー型IGBTの従来の裏面製造
工程である。
FIG. 5 shows a conventional backside manufacturing process of a non-punch-through IGBT.

【図6】従来の裏面製造工程による反り量の推移を示
す。
FIG. 6 shows a change in the amount of warpage due to a conventional back surface manufacturing process.

【符号の説明】[Explanation of symbols]

10 ウェハ 20 テープ 30 裏面金属膜 40 表面蒸着膜 DESCRIPTION OF SYMBOLS 10 Wafer 20 Tape 30 Backside metal film 40 Surface evaporation film

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 裏面に加工工程を有する薄型基板より成
る電力用半導体素子の製造方法において、 前記基板表面に加工を施した後、前記基板裏面への電極
用の裏面金属膜蒸着に先だって前記基板表面に表面保護
用のテープを貼り付け、前記基板裏面側よりダイシング
ラインに沿って前記基板に切れ目を入れる第1のダイシ
ングを施し、 前記裏面金属膜蒸着実施後、前記基板表面保護用のテー
プを取り除き、前記ダイシングラインに沿って前記基板
を切断する第2のダイシングを行なう工程を有すること
を特徴とする電力用半導体素子の製造方法。
1. A method of manufacturing a power semiconductor device comprising a thin substrate having a processing step on a back surface, wherein after processing the surface of the substrate, the substrate is subjected to deposition of a back surface metal film for an electrode on the back surface of the substrate. A tape for surface protection is attached to the front surface, a first dicing is performed to cut the substrate along a dicing line from the back surface side of the substrate, and after performing the back surface metal film deposition, the tape for substrate surface protection is applied. Removing the substrate along the dicing line and performing a second dicing process for the power semiconductor device.
【請求項2】 前記表面保護用のテープは、耐熱性ポリ
イミドテープであることを特徴とする請求項1記載の電
力用半導体素子の製造方法。
2. The method according to claim 1, wherein the surface protection tape is a heat-resistant polyimide tape.
【請求項3】 裏面に加工工程を有する薄型基板より成
る電力用半導体素子の製造方法において、 前記基板表面に加工を施した後、前記基板裏面への電極
用の裏面金属膜蒸着に先だって前記基板表面に表面保護
用のテープを貼り付け、 前記表面保護用のテープの上に引っ張り応力膜を形成し
てから前記基板裏面側よりダイシングラインに沿って前
記基板に切れ目を入れる第1のダイシングを施すか、あ
るいは、前記基板裏面側よりダイシングラインに沿って
前記基板に切れ目を入れる第1のダイシングを施してか
ら前記表面保護用のテープの上に引っ張り応力膜を形成
し、 前記裏面金属膜蒸着実施後、前記基板表面保護用のテー
プ及び前記引っ張り応力膜とを取り除き、前記ダイシン
グラインに沿って前記基板を切断する第2のダイシング
を行なう工程を有することを特徴とする電力用半導体素
子の製造方法。
3. A method for manufacturing a power semiconductor device comprising a thin substrate having a processing step on a back surface, wherein after processing the surface of the substrate, the substrate is processed prior to deposition of a back surface metal film for an electrode on the back surface of the substrate. A tape for protecting the surface is attached to the front surface, a tensile stress film is formed on the tape for protecting the surface, and then a first dicing is performed to cut the substrate along a dicing line from the back side of the substrate. Or a first dicing process in which the substrate is cut along the dicing line from the back side of the substrate, and then a tensile stress film is formed on the tape for protecting the front surface; After that, the tape for protecting the substrate surface and the tensile stress film are removed, and a second dicing for cutting the substrate along the dicing line is performed. A method for manufacturing a power semiconductor device, comprising the steps of:
【請求項4】 前記表面保護用のテープは、耐熱性ポリ
イミドテープであることを特徴とする請求項3記載の電
力用半導体素子の製造方法。
4. The method according to claim 3, wherein the surface protection tape is a heat-resistant polyimide tape.
【請求項5】 前記引っ張り応力膜は、金属膜であるこ
とを特徴とする請求項3記載の電力用半導体素子の製造
方法。
5. The method according to claim 3, wherein the tensile stress film is a metal film.
【請求項6】 前記引っ張り応力膜は、ポリイミド膜で
あることを特徴とする請求項3記載の電力用半導体素子
の製造方法。
6. The method according to claim 3, wherein the tensile stress film is a polyimide film.
JP2000330029A 2000-10-30 2000-10-30 Method for manufacturing power semiconductor device Expired - Fee Related JP4617559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000330029A JP4617559B2 (en) 2000-10-30 2000-10-30 Method for manufacturing power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000330029A JP4617559B2 (en) 2000-10-30 2000-10-30 Method for manufacturing power semiconductor device

Publications (2)

Publication Number Publication Date
JP2002134441A true JP2002134441A (en) 2002-05-10
JP4617559B2 JP4617559B2 (en) 2011-01-26

Family

ID=18806612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000330029A Expired - Fee Related JP4617559B2 (en) 2000-10-30 2000-10-30 Method for manufacturing power semiconductor device

Country Status (1)

Country Link
JP (1) JP4617559B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7335574B2 (en) 2004-04-16 2008-02-26 Renesas Technology Corp. Semiconductor device and manufacturing method of the same
CN100416767C (en) * 2003-08-12 2008-09-03 株式会社迪斯科 Wafer processing method
JP2013005241A (en) * 2011-06-16 2013-01-07 Toyo Vending Kk Television device with theft monitoring system
US10088703B2 (en) 2015-01-15 2018-10-02 Samsung Display Co., Ltd. Method of manufacturing display device
WO2019017226A1 (en) * 2017-07-20 2019-01-24 三井化学東セロ株式会社 Method for manufacturing electronic device
US10601389B2 (en) 2014-12-04 2020-03-24 Murata Manufacturing Co., Ltd. Elastic wave device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171112A (en) * 1986-01-23 1987-07-28 Oki Electric Ind Co Ltd Manufacture of semiconductor substrate material
JPH04335551A (en) * 1991-05-13 1992-11-24 Sumitomo Electric Ind Ltd Manufacture of semiconductor device
JPH05335292A (en) * 1992-05-28 1993-12-17 Nec Corp Fabrication of semiconductor device
JPH08162429A (en) * 1994-12-01 1996-06-21 Hitachi Ltd Pattern area protecting method for wiring board
JPH08222535A (en) * 1995-02-16 1996-08-30 Mitsui Toatsu Chem Inc Method of using adhesive tape for protection of surface of semiconductor wafer
JPH09102473A (en) * 1995-10-04 1997-04-15 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPH1022236A (en) * 1996-06-28 1998-01-23 Mitsubishi Electric Corp Semiconductor device and its manufacture
JPH1093078A (en) * 1996-09-11 1998-04-10 Denso Corp Insulated-gate type bipolar transistor and manufacturing method thereof
JPH1092778A (en) * 1996-09-11 1998-04-10 Nec Corp Semiconductor device and its manufacture
JPH10209164A (en) * 1997-01-23 1998-08-07 Toyota Motor Corp Manufacture of semiconductor device
JP2000124168A (en) * 1998-10-21 2000-04-28 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JP2002100589A (en) * 2000-09-21 2002-04-05 Hitachi Ltd Production method for semiconductor device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171112A (en) * 1986-01-23 1987-07-28 Oki Electric Ind Co Ltd Manufacture of semiconductor substrate material
JPH04335551A (en) * 1991-05-13 1992-11-24 Sumitomo Electric Ind Ltd Manufacture of semiconductor device
JPH05335292A (en) * 1992-05-28 1993-12-17 Nec Corp Fabrication of semiconductor device
JPH08162429A (en) * 1994-12-01 1996-06-21 Hitachi Ltd Pattern area protecting method for wiring board
JPH08222535A (en) * 1995-02-16 1996-08-30 Mitsui Toatsu Chem Inc Method of using adhesive tape for protection of surface of semiconductor wafer
JPH09102473A (en) * 1995-10-04 1997-04-15 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPH1022236A (en) * 1996-06-28 1998-01-23 Mitsubishi Electric Corp Semiconductor device and its manufacture
JPH1093078A (en) * 1996-09-11 1998-04-10 Denso Corp Insulated-gate type bipolar transistor and manufacturing method thereof
JPH1092778A (en) * 1996-09-11 1998-04-10 Nec Corp Semiconductor device and its manufacture
JPH10209164A (en) * 1997-01-23 1998-08-07 Toyota Motor Corp Manufacture of semiconductor device
JP2000124168A (en) * 1998-10-21 2000-04-28 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JP2002100589A (en) * 2000-09-21 2002-04-05 Hitachi Ltd Production method for semiconductor device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100416767C (en) * 2003-08-12 2008-09-03 株式会社迪斯科 Wafer processing method
US7335574B2 (en) 2004-04-16 2008-02-26 Renesas Technology Corp. Semiconductor device and manufacturing method of the same
US7687907B2 (en) 2004-04-16 2010-03-30 Renesas Technology Corp. Semiconductor device and manufacturing method of the same
US7977165B2 (en) 2004-04-16 2011-07-12 Renesas Electronics Corporation Method of manufacturing a semiconductor device
JP2013005241A (en) * 2011-06-16 2013-01-07 Toyo Vending Kk Television device with theft monitoring system
US10601389B2 (en) 2014-12-04 2020-03-24 Murata Manufacturing Co., Ltd. Elastic wave device
US10088703B2 (en) 2015-01-15 2018-10-02 Samsung Display Co., Ltd. Method of manufacturing display device
WO2019017226A1 (en) * 2017-07-20 2019-01-24 三井化学東セロ株式会社 Method for manufacturing electronic device
JPWO2019017226A1 (en) * 2017-07-20 2020-03-26 三井化学東セロ株式会社 Electronic device manufacturing method
JP7069168B2 (en) 2017-07-20 2022-05-17 三井化学東セロ株式会社 Manufacturing method of electronic device
US11398389B2 (en) 2017-07-20 2022-07-26 Mitsui Chemicals Tohcello, Inc. Method of producing electronic device

Also Published As

Publication number Publication date
JP4617559B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
JP4617559B2 (en) Method for manufacturing power semiconductor device
US6780703B2 (en) Method for forming a semiconductor device
US5654576A (en) Post-titanium nitride mask ROM programming method and device manufactured thereby
JP5466370B2 (en) Manufacturing method of semiconductor chip
JP4581348B2 (en) Method for manufacturing bonded wafer and SOI wafer
JPH04132220A (en) Plasma taper etching method
JPS6226839A (en) Semiconductor substrate
JP2879841B2 (en) Manufacturing method of planar diode
JPS6257255A (en) Manufacture of compound semiconductor device
JP4887559B2 (en) Manufacturing method of semiconductor device
US6475915B1 (en) Ono etch using CL2/HE chemistry
JPH05275394A (en) Method of manufacturing semiconductor device, and semiconductor device manufactured by the method
JPH08195483A (en) Soi substrate, and its manufacture
JP2002134451A (en) Manufacturing method of semiconductor device
US20070077772A1 (en) Apparatus and method for manufacturing semiconductor device using plasma
JPH01241867A (en) Heterojunction bipolar transistor and manufacture thereof
JP2667840B2 (en) Method for manufacturing compound semiconductor device
JPS63313859A (en) Mesa semiconductor device and manufacture thereof
KR20040059730A (en) Method for fabricating of semiconductor device
CN113764434A (en) Semiconductor substrate and method for forming the same
JP3095928B2 (en) Method for manufacturing compound semiconductor
CN117497407A (en) IGBT device forming method and IGBT device
CN113764433A (en) Semiconductor substrate and method for forming the same
CN117524870A (en) Wafer processing method and wafer
JPS6352480A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091022

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4617559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees