JP2002080270A - Corrosion resistant member - Google Patents

Corrosion resistant member

Info

Publication number
JP2002080270A
JP2002080270A JP2000250110A JP2000250110A JP2002080270A JP 2002080270 A JP2002080270 A JP 2002080270A JP 2000250110 A JP2000250110 A JP 2000250110A JP 2000250110 A JP2000250110 A JP 2000250110A JP 2002080270 A JP2002080270 A JP 2002080270A
Authority
JP
Japan
Prior art keywords
corrosion
intermediate layer
resistant material
resistant
ceramic base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000250110A
Other languages
Japanese (ja)
Other versions
JP4651166B2 (en
Inventor
Toshiyuki Hamada
敏幸 濱田
Masahiro Nakahara
正博 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000250110A priority Critical patent/JP4651166B2/en
Publication of JP2002080270A publication Critical patent/JP2002080270A/en
Application granted granted Critical
Publication of JP4651166B2 publication Critical patent/JP4651166B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the problem that a corrosion resistant material jointed on a surface of a ceramic base material is likely to come off and poor in corrosion resistance. SOLUTION: The corrosion resistant member 1 is made by joining the corrosion resistant material 3 made of a sintered compact, the main ingredient of which is at least one kind between 2a group or 3a group of the periodic system, on a surface of the ceramic base material 2 made of an aluminum oxide sintered compact. The middle layer 4 made of a sintered compact containing the ingredient of the ceramic base material 2 and the ingredient of the corrosion resistant material 3 is provided between the ceramic base material 2 and the corrosion resistant material 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フッ素系、塩素系
等の腐食性ガスまたはそのプラズマに対して高い耐食性
が要求される例えば、半導体素子を製造するのに用いら
れるプラズマ処理装置、成膜装置内の内壁材、Si基板
を支持する支持部材等の冶具に適した耐食性部材に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus used for manufacturing a semiconductor device which requires high corrosion resistance to a corrosive gas such as a fluorine-based gas or a chlorine-based gas or its plasma. The present invention relates to a corrosion-resistant member suitable for a jig such as an inner wall material in a device and a support member for supporting a Si substrate.

【0002】[0002]

【従来の技術】半導体製造のドライエッチングプロセス
やプラズマコーティング等、プラズマの利用は近年急速
に進んでいる。例えば、半導体製造プロセスでは、プラ
ズマプロセスにおいて、特にデポジション、エッチング
用やクリーニング用として、フッ素系、塩素系等のハロ
ゲン系腐食性ガスがその反応性の高さから多用されてい
る。
2. Description of the Related Art The use of plasma, such as a dry etching process for semiconductor manufacturing and plasma coating, has been rapidly advancing in recent years. For example, in a semiconductor manufacturing process, a halogen-based corrosive gas such as a fluorine-based gas and a chlorine-based gas is frequently used in a plasma process, particularly for deposition, etching and cleaning, due to its high reactivity.

【0003】また、装置内の内壁等の前記ガスやプラズ
マに接触する部分では、ガスやプラズマによる腐食を防
止するために、従来から酸化アルミニウム質焼結体から
成るセラミック基材の表面に周期律表第2a族もしくは
第3a族元素化合物からなる耐食材を接合させた耐食性
部材が使用されている。
Further, in order to prevent corrosion due to gas or plasma, a portion of the inner wall of the apparatus, such as the inner wall, which is in contact with the gas or plasma, is conventionally provided with a periodic pattern on the surface of a ceramic substrate made of an aluminum oxide sintered body. A corrosion-resistant member in which a corrosion-resistant material comprising a Group 2a or 3a element compound is joined is used.

【0004】なお、前記耐食性部材は一般に酸化アルミ
ニウム質焼結体から成るセラミック基材の表面に第2a
族もしくは第3a族元素化合物を溶射やCVDの方法に
より20〜100μmの厚みに被着させることによって
形成されている。
[0004] The corrosion-resistant member is generally made of a 2a-based material on the surface of a ceramic substrate made of an aluminum oxide sintered body.
It is formed by depositing a Group IIIa or Group 3a element compound by a thermal spraying or CVD method to a thickness of 20 to 100 μm.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来よ
り使用されている耐食性部材は、酸化アルミニウム質焼
結体から成るセラミック基材の表面に溶射やCVDによ
って周期律表第2a族もしくは第3a族元素化合物から
成る耐食材を被着させて形成した場合、耐食材の相対密
度が90%程度、最大でも95%程度であり、多数の開
気孔を有することから耐食性が不十分であるという問題
を有していた。
However, a conventionally used corrosion-resistant member is a 2a or 3a element of the periodic table of the periodic table by thermal spraying or CVD on the surface of a ceramic substrate made of an aluminum oxide sintered body. When formed by applying a corrosion-resistant material made of a compound, the relative density of the corrosion-resistant material is about 90%, and at most about 95%, and there is a problem that the corrosion resistance is insufficient due to the large number of open pores. Was.

【0006】また、セラミック基材表面に溶射やCVD
等の方法により被着される耐食材は、その厚みが20〜
100μm程度と薄いことから短時間で消耗してしま
い、その結果長期間の使用に供さないという問題も有し
ていた。
In addition, thermal spraying or CVD is applied to the surface of a ceramic substrate.
Corrosion-resistant materials to be deposited by the method described above have a thickness of 20 to
Since it is as thin as about 100 μm, it is consumed in a short time, and as a result, there is also a problem that it is not used for a long time.

【0007】更に、セラミック基材表面に溶射やCVD
等の方法により耐食材を被着させた場合、セラミック基
材と耐食材との密着性が低いこと、セラミック基材と耐
食材との間に熱膨張係数差があること等から、使用時に
セラミック基材と耐食材に熱が印加されると、セラミッ
ク基材と耐食材間に両者の熱膨張係数差に起因して熱応
力が発生するとともに、該熱応力によって耐食材がセラ
ミック基材表面より容易に剥離してしまって耐食性部材
としての機能が喪失してしまうという問題も有してい
る。
Further, thermal spraying or CVD is performed on the surface of the ceramic substrate.
When a corrosion-resistant material is applied by such methods as above, the ceramic substrate and the corrosion-resistant material have low adhesion due to low adhesion between the ceramic substrate and the corrosion-resistant material. When heat is applied to the base material and the corrosion-resistant material, a thermal stress is generated between the ceramic base material and the corrosion-resistant material due to a difference in thermal expansion coefficient between the ceramic material and the corrosion-resistant material. There is also a problem that the film easily peels off and loses its function as a corrosion-resistant member.

【0008】本発明は上述の問題点に鑑み案出されたも
ので、その目的はセラミック基材表面に相対密度が高
い、厚みのある耐食材を強固に接合させ、長時間の使用
に供することができる耐食性部材を提供することにあ
る。
[0008] The present invention has been devised in view of the above-mentioned problems, and an object of the present invention is to provide a ceramic material having a relatively high-density, thick, corrosion-resistant material firmly bonded to the surface of a ceramic base material for long-term use. It is an object of the present invention to provide a corrosion-resistant member that can be manufactured.

【0009】[0009]

【課題を解決するための手段】本発明は、酸化アルミニ
ウム質焼結体から成るセラミック基材表面に、周期律表
第2a族あるいは第3a族元素の少なくとも1種を主成
分とする焼結体から成る耐食材を接合させた耐食性部材
であって、前記セラミック基材と耐食材との間に前記セ
ラミック基材成分と耐食材成分とを含有する焼結体から
成る中間層を配したことを特徴とするものである。
According to the present invention, there is provided a sintered body mainly containing at least one element of Group 2a or 3a of the Periodic Table on the surface of a ceramic substrate made of an aluminum oxide sintered body. A corrosion-resistant member obtained by bonding a corrosion-resistant material consisting of a ceramic base material and a corrosion-resistant material, wherein an intermediate layer made of a sintered body containing the ceramic base material component and the corrosion-resistant material component is disposed between the ceramic base material and the corrosion-resistant material. It is a feature.

【0010】また、前記セラミック基材と中間層、前記
耐食材と中間層の熱膨張係数差がそれぞれ1ppm/℃
以下とすることを特徴とするものである。
The difference in thermal expansion coefficient between the ceramic base material and the intermediate layer, and between the corrosion-resistant material and the intermediate layer, is 1 ppm / ° C.
It is characterized by the following.

【0011】更に、前記中間層はセラミック基材に接す
る第1の中間層と耐食材に接する第2の中間層の少なく
とも2層構造を有しており、前記第1の中間層はセラミ
ック基材成分を55〜95体積%、第2の中間層は耐食
材成分を55〜95体積%含有していることを特徴とす
るものである。
Further, the intermediate layer has at least a two-layer structure of a first intermediate layer in contact with the ceramic base material and a second intermediate layer in contact with the corrosion-resistant material, and the first intermediate layer has a ceramic base material. The second intermediate layer contains 55 to 95% by volume of the corrosion-resistant material component.

【0012】また更に、前記耐食材は相対密度が98%
以上であることを特徴とするものである。
Still further, the corrosion-resistant material has a relative density of 98%.
The above is the feature.

【0013】更にまた、前記耐食材は厚みが200μm
以上であることを特徴とするものである。
Furthermore, the corrosion-resistant material has a thickness of 200 μm.
The above is the feature.

【0014】本発明の耐食性部材によれば、酸化アルミ
ニウム質焼結体から成るセラミック基材と、周期律表第
2a族あるいは第3a族元素の少なくとも1種を主成分
とする焼結体からなる耐食材とを、前記セラミック基材
成分と耐食材成分とを含有した焼結体から成り、セラミ
ック基材と耐食材の両者に対して接合性が良く、熱膨張
係数が両者の間にある中間層を介して接合したことか
ら、セラミック基材への耐食材の接合が極めて強い。従
って、耐食性部材に使用時の熱が印加されたとしても耐
食材がセラミック基材より剥離することはなく、耐食性
部材を常に安定して使用することができる。
According to the corrosion-resistant member of the present invention, the ceramic base is made of an aluminum oxide-based sintered body and the sintered body mainly contains at least one element of Group 2a or 3a of the periodic table. The corrosion-resistant material is composed of a sintered body containing the ceramic base component and the corrosion-resistant material component, has good bonding properties to both the ceramic base material and the corrosion-resistant material, and has a thermal expansion coefficient between the two. Since the bonding is performed via the layer, the bonding of the corrosion-resistant material to the ceramic substrate is extremely strong. Therefore, even when heat is applied to the corrosion-resistant member during use, the corrosion-resistant material does not peel off from the ceramic substrate, and the corrosion-resistant member can always be used stably.

【0015】特に、セラミック基材と中間層、耐食材と
中間層の熱膨張係数差をそれぞれ1ppm/℃以下とし
ておくと、熱の印加時における耐食性部材のセラミック
基材と耐食材との接合性をより一層良好なものとなすこ
とができ、耐食性部材をより一層安定に使用することが
可能となる。
In particular, if the difference in thermal expansion coefficient between the ceramic substrate and the intermediate layer and between the corrosion-resistant material and the intermediate layer is set to 1 ppm / ° C. or less, the bondability between the ceramic substrate and the corrosion-resistant material of the corrosion-resistant member when heat is applied. Can be further improved, and the corrosion-resistant member can be used more stably.

【0016】また前記中間層をセラミック基材に接する
第1の中間層と耐食材に接する第2の中間層の少なくと
も2層構造とし、前記第1の中間層にはセラミック基材
成分を55〜95体積%、第2の中間層には耐食材成分
を55〜95体積%含有させておくと、セラミック基材
と第1の中間層間、耐食材と第2の中間層間、第1と第
2の中間層間の接合強度を強くすることができ、これに
よってセラミック基材に対する耐食材の接合を極めて強
固なものとして、耐食性部材をより一層安定に使用する
ことが可能となる。
The intermediate layer has at least a two-layer structure of a first intermediate layer in contact with the ceramic base material and a second intermediate layer in contact with the corrosion-resistant material, and the first intermediate layer contains 55 to 55 ceramic base components. If 95% by volume and 55 to 95% by volume of the corrosion-resistant material component are contained in the second intermediate layer, the ceramic base and the first intermediate layer, the corrosion-resistant material and the second intermediate layer, and the first and second intermediate layers are formed. The bonding strength of the corrosion-resistant material to the ceramic substrate can be made extremely strong, and the corrosion-resistant member can be used more stably.

【0017】更に、前記耐食材は周期律表第2a族ある
いは第3a族元素の少なくとも1種を主成分とする焼結
体で形成されていることから、耐食材の相対密度を98
%以上とすることができ、耐食材の相対密度を98%以
上とすると開気孔の存在がほとんどなくなって耐食性が
極めて優れたものとなる。
Further, since the corrosion-resistant material is formed of a sintered body mainly containing at least one element of Group 2a or Group 3a of the periodic table, the relative density of the corrosion-resistant material is 98%.
% Or more, and when the relative density of the corrosion resistant material is 98% or more, the existence of open pores is almost eliminated and the corrosion resistance is extremely excellent.

【0018】また更に、前記耐食材は周期律表第2a族
あるいは第3a族元素の少なくとも1種を主成分とする
焼結体で形成されていることから、耐食材の厚みを20
0μm以上の厚いものに形成することができ、耐食材の
厚みを200μm以上とすると、耐食材の消耗に時間を
要することから長期間の使用に供することが可能とな
る。
Further, since the corrosion-resistant material is formed of a sintered body containing at least one element of Group 2a or Group 3a of the periodic table as a main component, the thickness of the corrosion-resistant material is reduced to 20%.
When the thickness of the corrosion-resistant material is 200 μm or more, it takes a long time to consume the corrosion-resistant material, so that it can be used for a long time.

【0019】[0019]

【発明の実施の形態】以下に本発明の実施の形態を詳し
く説明する。
Embodiments of the present invention will be described below in detail.

【0020】図1は、本発明の耐食性部材の一実施形態
を示す斜視図であり、前記耐食性部材1は、酸化アルミ
ニウム質焼結体からなるセラミック基材2と、周期律表
第2a族あるいは第3a族元素の少なくとも1種を主成
分とする焼結体から成る耐食材3と、前記セラミック基
材2と耐食材3との間に挟まれた中間層4とから構成さ
れている。
FIG. 1 is a perspective view showing one embodiment of the corrosion-resistant member of the present invention. The corrosion-resistant member 1 is composed of a ceramic base 2 made of an aluminum oxide sintered body, a 2a group or a 2a group of the periodic table. It is composed of a corrosion-resistant material 3 made of a sintered body containing at least one element of Group 3a as a main component, and an intermediate layer 4 sandwiched between the ceramic base material 2 and the corrosion-resistant material 3.

【0021】前記セラミック基材2は、酸化アルミニウ
ム質焼結体から成り、耐食性部材1に強度、靱性をもた
せるための基材として作用し、半導体製造装置等への取
付け時もしくは洗浄時に欠けや割れが生じるのを防止す
る。
The ceramic substrate 2 is made of an aluminum oxide sintered body, acts as a substrate for imparting strength and toughness to the corrosion-resistant member 1, and is chipped or cracked when attached to a semiconductor manufacturing apparatus or when washed. Is prevented from occurring.

【0022】前記セラミック基材2は、その3点曲げ強
度が150MPa以上、破壊靭性が2MPa・√m以上
としておくと、耐食性部材1の機械的強度を強いものと
し、半導体製造装置等への取り付け時に欠けや割れ等が
発生するのを有効に防止することができる。従って、前
記セラミック基材2はその3点曲げ強度を150MPa
以上、破壊靭性が2MPa・√m以上としておくことが
好ましい。
When the three-point bending strength of the ceramic base material 2 is 150 MPa or more and the fracture toughness is 2 MPa · √m or more, the mechanical strength of the corrosion-resistant member 1 is increased and the ceramic base material 2 is attached to a semiconductor manufacturing apparatus or the like. Occurrence of chipping, cracking and the like at times can be effectively prevented. Therefore, the ceramic substrate 2 has a three-point bending strength of 150 MPa.
As described above, the fracture toughness is preferably set to 2 MPa · √m or more.

【0023】また、前記酸化アルミニウム質焼結体から
成るセラミック基材2は、アルミナの純度が95重量%
以上としておくと、耐食性部材1として半導体製造装置
等に用いる際、半導体素子に不純物が混入して半導体素
子の特性に悪影響を与えるのを有効に防止できる。従っ
て、前記酸化アルミニウム質焼結体から成るセラミック
基材2は、アルミナの純度が95重量%以上としておく
ことが好ましい。
The ceramic substrate 2 made of the aluminum oxide sintered body has an alumina purity of 95% by weight.
As described above, when the corrosion resistant member 1 is used in a semiconductor manufacturing apparatus or the like, it is possible to effectively prevent impurities from being mixed into the semiconductor element and adversely affecting the characteristics of the semiconductor element. Therefore, it is preferable that the ceramic substrate 2 made of the aluminum oxide sintered body has an alumina purity of 95% by weight or more.

【0024】更に、前記セラミック基材2は、その表面
に中間層4を介して耐食材3が接合されている。
Further, the ceramic substrate 2 has an anticorrosion material 3 joined to the surface thereof via an intermediate layer 4.

【0025】前記耐食材3は、周期律表第2a族あるい
は第3a族元素の少なくとも1種を主成分とする焼結体
から成り、具体的にはYAG(イットリウム・アルミニ
ウム・ガーネット)、イットリア、マグネシア、スピネ
ル等の焼結体が好適に使用し得る。
The corrosion-resistant material 3 is made of a sintered body containing at least one element of Group 2a or Group 3a of the periodic table as a main component, specifically, YAG (yttrium aluminum garnet), yttria, Sintered bodies such as magnesia and spinel can be suitably used.

【0026】前記YAG、イットリア、マグネシア、ス
ピネル等の焼結体から成る耐食材3は、SF6、CF
4、CHF3、ClF3、NF3、C4F8、HF等の
フッ素系ガス、Cl2、HCl、BCl3、CCl4等
の塩素系ガス、あるいはBr2、HBr、BBr3等の
臭素系ガス等のハロゲン系腐食性ガスやこれらハロゲン
系腐食性ガスのプラズマに対して優れた耐食性を具備
し、半導体製造装置等に使用することによって、半導体
製造装置の壁材等が腐食を受けるのを有効に防止するこ
とができる。
The corrosion-resistant material 3 made of a sintered body such as YAG, yttria, magnesia, and spinel is made of SF6, CF
4. Fluorine-based gases such as CHF3, ClF3, NF3, C4F8, and HF; chlorine-based gases such as Cl2, HCl, BCl3, and CCl4; and halogen-based corrosive gases such as bromine-based gases such as Br2, HBr, and BBr3; It has excellent corrosion resistance to plasma of a halogen-based corrosive gas, and can be effectively prevented from being corroded by a wall material or the like of a semiconductor manufacturing device by being used in a semiconductor manufacturing device or the like.

【0027】前記耐食材3は周期律表第2a族あるいは
第3a族元素の少なくとも1種を主成分とする焼結体で
形成されていることから、耐食材3の相対密度を98%
以上とすることができ、該耐食材3の相対密度を98%
以上とすると開気孔の存在がほとんどなくなって耐食性
が極めて優れたものとなる。従って、前記耐食材3の相
対密度を98%以上としておくことが好ましい。
Since the corrosion-resistant material 3 is formed of a sintered body mainly containing at least one element of Group 2a or Group 3a of the periodic table, the relative density of the corrosion-resistant material 3 is 98%.
And the relative density of the corrosion-resistant material 3 is 98%
By doing so, the existence of open pores is almost eliminated, and the corrosion resistance becomes extremely excellent. Therefore, it is preferable to set the relative density of the corrosion-resistant material 3 to 98% or more.

【0028】また、前記耐食材3は周期律表第2a族あ
るいは第3a族元素の少なくとも1種を主成分とする焼
結体で形成されていることから、耐食材3の厚みを20
0μm以上の厚いものに形成することができ、耐食材3
の厚みを200μm以上とすると、耐食材3の消耗に時
間を要することから長期間の使用に供することが可能と
なる。
Further, since the corrosion-resistant material 3 is formed of a sintered body containing at least one element of Group 2a or Group 3a of the periodic table as a main component, the thickness of the corrosion-resistant material 3 is reduced to 20%.
It can be formed to a thickness as thick as 0 μm or more.
When the thickness is 200 μm or more, it takes a long time for the corrosion-resistant material 3 to be consumed, so that it can be used for a long time.

【0029】更に、前記耐食材3は中間層4を介してセ
ラミック基材2の表面に接合されている。
Further, the corrosion-resistant material 3 is bonded to the surface of the ceramic substrate 2 via the intermediate layer 4.

【0030】前記中間層4はセラミック基材2成分と耐
食材3成分とを含有した焼結体から成り、セラミック基
材2及び耐食材3の両者に対して接合性が良いことか
ら、耐食材3をセラミック基材2に極めて強固に接合す
ることが可能となる。
The intermediate layer 4 is made of a sintered body containing two components of the ceramic base material and three components of the corrosion-resistant material, and has good bonding properties to both the ceramic base material 2 and the corrosion-resistant material 3. 3 can be bonded very firmly to the ceramic substrate 2.

【0031】また、前記セラミック基材2成分と耐食材
3成分とを含有した焼結体から成る中間層4は、その熱
膨張係数がセラミック基材2の熱膨張係数と耐食材3の
熱膨張係数の間となるようにすることにより、セラミッ
ク基材2及び耐食材3と中間層4の間には大きな熱膨張
係数差はない。従って、耐食性部材1の使用時に熱が印
加されたとしてもセラミック基材2及び耐食材3と中間
層4の間に大きな熱応力が発生することはなく、耐食材
3をセラミック基材2に強固に接合させておくことが可
能となり、その結果、耐食性部材1を常に安定して使用
することができる。
The intermediate layer 4 made of a sintered body containing the two components of the ceramic base material and the three components of the corrosion-resistant material has a coefficient of thermal expansion that is equal to the coefficient of thermal expansion of the ceramic substrate 2 and the coefficient of thermal expansion of the corrosion-resistant material 3. When the coefficient is between the coefficients, there is no large difference in thermal expansion coefficient between the ceramic substrate 2 and the corrosion-resistant material 3 and the intermediate layer 4. Therefore, even if heat is applied when the corrosion resistant member 1 is used, no large thermal stress is generated between the ceramic substrate 2 and the corrosion resistant material 3 and the intermediate layer 4, and the corrosion resistant material 3 is firmly attached to the ceramic substrate 2. The corrosion resistant member 1 can always be used stably.

【0032】特に、前記セラミック基材2と中間層4、
耐食材3と中間層4の熱膨張係数差をそれぞれ1ppm
/℃以下としておくと、熱の印加時における耐食性部材
1のセラミック基材2と耐食材3との接合性をより一層
良好なものとなすことができ、耐食性部材1をより一層
安定に使用することが可能となる。従って、前記セラミ
ック基材2と中間層4、耐食材3と中間層4の熱膨張係
数差をそれぞれ1ppm/℃以下としておくことが好ま
しい。
In particular, the ceramic substrate 2 and the intermediate layer 4,
The difference in thermal expansion coefficient between the corrosion resistant material 3 and the intermediate layer 4 is 1 ppm, respectively.
If the temperature is set to / ° C. or less, the bonding property between the ceramic base material 2 and the corrosion-resistant material 3 of the corrosion-resistant member 1 during application of heat can be further improved, and the corrosion-resistant member 1 can be used more stably. It becomes possible. Therefore, it is preferable that the thermal expansion coefficient difference between the ceramic substrate 2 and the intermediate layer 4 and between the corrosion-resistant material 3 and the intermediate layer 4 be 1 ppm / ° C. or less.

【0033】更に、前記中間層4は図2に示す如く、セ
ラミック基材2に接する第1の中間層4aと耐食材3に
接する第2の中間層4bの少なくとも2層構造とし、且
つ該第1の中間層4aにはセラミック基材成分を55〜
95体積%含有させておくとともに、第2の中間層4b
には耐食材成分を55〜95体積%含有させておくこと
が好ましい。
Further, as shown in FIG. 2, the intermediate layer 4 has at least a two-layer structure of a first intermediate layer 4a in contact with the ceramic substrate 2 and a second intermediate layer 4b in contact with the corrosion-resistant material 3. One intermediate layer 4a contains 55 to 55 ceramic base components.
95% by volume and the second intermediate layer 4b
Preferably contains 55 to 95% by volume of a corrosion-resistant material component.

【0034】前記中間層4をセラミック基材2に接する
第1の中間層4aと耐食材3に接する第2の中間層4b
の少なくとも2層構造とし、且つ該第1の中間層4aに
はセラミック基材成分を55〜95体積%、第2の中間
層4bに耐食材成分を55〜95体積%含有させておく
と、第1の中間層4aにはセラミック基材成分が多量に
含有されているため、第1の中間層4aとセラミック基
材2とは強固に接合し、第2の中間層4bには耐食材成
分が多量に含有されているため、第2の中間層4bと耐
食材3とは強固に接合し、更に第1の中間層4aと第2
の中間層4bとは同一成分で形成されているため強固に
接合し、その結果、セラミック基材2に第1の中間層4
aと第2の中間層4bとから成る中間層4を介して、耐
食材3を極めて強固に接合させることが可能となり、耐
食材3がセラミック基材2より剥離するのが有効に防止
されて、耐食性部材1を長期間にわたり安定に使用する
ことができる。
A first intermediate layer 4a in contact with the ceramic substrate 2 and a second intermediate layer 4b in contact with the corrosion-resistant material 3
When the first intermediate layer 4a contains 55 to 95% by volume of the ceramic base material component and the second intermediate layer 4b contains 55 to 95% by volume of the corrosion-resistant material component, Since the first intermediate layer 4a contains a large amount of a ceramic base component, the first intermediate layer 4a and the ceramic base 2 are firmly joined together, and the second intermediate layer 4b has a corrosion-resistant material component. , The second intermediate layer 4b and the corrosion-resistant material 3 are firmly joined to each other, and the first intermediate layer 4a is
Since the first intermediate layer 4b is formed of the same components as the first intermediate layer 4b,
The corrosion-resistant material 3 can be bonded very firmly through the intermediate layer 4 composed of the second intermediate layer 4a and the second intermediate layer 4b, and the corrosion-resistant material 3 is effectively prevented from peeling off from the ceramic substrate 2. Thus, the corrosion-resistant member 1 can be used stably for a long period of time.

【0035】また、前記中間層4を第1の中間層4aと
第2の中間層4bの2つの層で形成したが、このような
2層構造に限定されるものではなく、第1の中間層4a
と第2の中間層4bとの間に複数の層の中間層を介在さ
せても良い。この場合、介在させる層のセラミック基材
成分と耐食材成分との含有量は、セラミック基材2に近
い層ではセラミック基材成分を、耐食材に近い層では耐
食材成分を多く含有させるように配慮しておくと、セラ
ミック基材2と第1の中間層4a、耐食材3と第2の中
間層4b及び中間層4を形成する各層間を強固に接合す
ることが可能となる。例えば、第1の中間層4aにセラ
ミック基材成分を95体積%、第2の中間層4bに耐食
材成分を95体積%含有させて形成した場合、該第1の
中間層4aと第2の中間層4bの間に第1の中間層4a
と接する側にセラミック基材成分を65体積%、耐食材
成分を35体積%含有させた中間層を、また第2の中間
層4bと接する側にセラミック基材成分を35体積%、
耐食材成分を65体積%含有させた中間層を配すること
により、各中間層間をより一層強固に接合することが可
能となる。
Although the intermediate layer 4 is formed of two layers, the first intermediate layer 4a and the second intermediate layer 4b, the present invention is not limited to such a two-layer structure. Layer 4a
A plurality of intermediate layers may be interposed between the second intermediate layer 4b and the second intermediate layer 4b. In this case, the content of the ceramic base component and the corrosion-resistant material component of the intervening layer is set such that the layer close to the ceramic base material 2 contains a large amount of the ceramic base component and the layer close to the corrosion-resistant material contains a large amount of the corrosion-resistant material component. With consideration, it is possible to firmly join the ceramic substrate 2 and the first intermediate layer 4a, and the corrosion-resistant material 3 and the respective layers forming the second intermediate layer 4b and the intermediate layer 4. For example, when the first intermediate layer 4a is formed by containing 95% by volume of the ceramic base material component and the second intermediate layer 4b is formed by containing 95% by volume of the corrosion-resistant material component, the first intermediate layer 4a and the second intermediate layer 4b are formed. A first intermediate layer 4a between the intermediate layers 4b;
The intermediate layer containing 65% by volume of the ceramic base material component and 35% by volume of the corrosion-resistant material component is on the side in contact with the second intermediate layer 4b, and the ceramic base component is 35% by volume on the side in contact with the second intermediate layer 4b.
By arranging the intermediate layer containing the corrosion-resistant material component at 65% by volume, it is possible to more firmly join the intermediate layers.

【0036】次に前述の耐食性部材1の具体的な製法に
ついて説明する。
Next, a specific method for producing the above-described corrosion-resistant member 1 will be described.

【0037】先ず、セラミック基材2、耐食材3及び中
間層4となる原料粉末を調整する。
First, raw material powders to be used as the ceramic base material 2, the corrosion resistant material 3, and the intermediate layer 4 are prepared.

【0038】(セラミック基材用原料の調整)主成分と
しての酸化アルミニウムに焼結助剤としての酸化珪素、
酸化マグネシウム、酸化カルシウム等を0.1〜10重
量%含有させた原料粉末にパラフィンワックス、ワック
スエマルジョン(ワックス+乳化剤)、PVA(ポリビ
ニルアルコール)、PEG(ポリエチレングリコール)
等の所望の有機バインダーを添加混合しスプレードライ
にて造粒して原料を調整する。
(Adjustment of Raw Material for Ceramic Substrate) Silicon oxide as a sintering aid was added to aluminum oxide as a main component,
Paraffin wax, wax emulsion (wax + emulsifier), PVA (polyvinyl alcohol), PEG (polyethylene glycol) in raw material powder containing 0.1 to 10% by weight of magnesium oxide, calcium oxide, etc.
The desired raw material is adjusted by adding and mixing a desired organic binder such as described above and granulating by spray drying.

【0039】(耐食材用原料の調整)酸化アルミニウム
粉末とイットリア粉末とを下式の割合で混合して100
0〜1600℃で仮焼した後、これらを粉砕して平均粒
子径0.6〜1.2μm、BET比表面積2〜5m2
gのYAG粉末を製作する。
(Preparation of Corrosion-Resistant Raw Materials) Aluminum oxide powder and yttria powder were mixed at a ratio of
After calcination at 0 to 1600 ° C., these are pulverized to an average particle diameter of 0.6 to 1.2 μm and a BET specific surface area of 2 to 5 m 2 /
g of YAG powder is produced.

【0040】A+B=1 0.365≦A≦0.385 0.615≦B≦0.635 A:イットリアのモル量 B:酸化アルミニウムのモル量 次に、前記YAG粉末にパラフィンワックス、PVA
(ポリビニルアルコール)、ワックスエマルジョン(ワ
ックス+乳化剤)、PEG(ポリエチレングリコール)
等の所望の有機バインダーを添加混合しスプレードライ
にて造粒して原料を調整する。
A + B = 1 0.365 ≦ A ≦ 0.385 0.615 ≦ B ≦ 0.635 A: molar amount of yttria B: molar amount of aluminum oxide Next, paraffin wax and PVA were added to the YAG powder.
(Polyvinyl alcohol), wax emulsion (wax + emulsifier), PEG (polyethylene glycol)
The desired raw material is adjusted by adding and mixing a desired organic binder such as described above and granulating by spray drying.

【0041】(中間層用原料の調整)上述のセラミック
基材用原料と耐食材用原料を所望の体積%づつ添加混合
して中間層用原料を調整する。
(Adjustment of Raw Material for Intermediate Layer) The raw material for the intermediate layer is prepared by adding and mixing the above-mentioned raw material for the ceramic base material and the raw material for the corrosion-resistant material by a desired volume%.

【0042】なお、中間層4を一層で形成する場合に
は、セラミック基材用原料と耐食材用原料とを50体積
%づつ添加混合して中間層用原料を調整し、また、第1
の中間層4aと第2の中間層4bの2層で形成する場合
には、第1の中間層4a用としてセラミック基材用原料
を55〜95体積%、耐食材用原料を5〜45体積%混
合した中間層用原料を、第2の中間層4b用として耐食
材用原料を55〜95体積%、セラミック基材用原料を
5〜45体積%混合した中間層用原料を調整する。
When the intermediate layer 4 is formed as a single layer, the raw material for the ceramic substrate and the raw material for the corrosion-resistant material are added and mixed by 50% by volume to adjust the raw material for the intermediate layer.
When it is formed of two layers of the intermediate layer 4a and the second intermediate layer 4b, the raw material for the ceramic base material is 55 to 95% by volume and the raw material for the corrosion resistant material is 5 to 45% for the first intermediate layer 4a. The mixture for the intermediate layer is prepared for the second intermediate layer 4b by mixing 55 to 95% by volume of the corrosion-resistant material and 5 to 45% by volume of the ceramic base material.

【0043】次に、上述の各原料を例えば、金型プレス
成形により所定の形状に成形する。前記金型プレスによ
る成形は、金型プレス成形機内に先ずセラミック基材用
原料を充填するとともにこれを一定の圧力で押圧して、
セラミック基材成形体を形成し、次に前記セラミック基
材成形体上に中間層用原料を充填するとともにこれを一
定の圧力で押圧してセラミック基材成形体上に中間層成
形体を形成し、次に前記中間層成形体上に耐食材用原料
を充填するとともにこれを一定の圧力で押圧して中間層
成形体上に耐食材成形体を形成し、これによってセラミ
ック基材成形体、中間層成形体及び耐食材成形体から成
る複合成形体を得る。
Next, each of the above-mentioned raw materials is formed into a predetermined shape by, for example, die press molding. The molding by the mold press is performed by first filling the raw material for the ceramic base material in the mold press molding machine and pressing it with a constant pressure,
Forming a ceramic substrate molded body, then filling the intermediate layer raw material on the ceramic substrate molded body and pressing it at a certain pressure to form an intermediate layer molded body on the ceramic substrate molded body Next, the corrosion resistant material is filled on the intermediate layer molded body and pressed at a constant pressure to form a corrosion resistant material molded body on the intermediate layer molded body. A composite molded article comprising a layer molded article and a corrosion resistant molded article is obtained.

【0044】そして最後に前記複合成形体を必要に応じ
て300〜600℃で脱脂し、しかる後、大気雰囲気中
で約1500〜1750℃で焼成すればセラミック基材
2上に中間層4を介して耐食材3を接合させた製品とし
ての耐食性部材1が完成する。
Finally, the composite molded body is degreased at 300 to 600 ° C., if necessary, and then calcined at about 1500 to 1750 ° C. in the air atmosphere. Thus, the corrosion-resistant member 1 as a product to which the corrosion-resistant material 3 is joined is completed.

【0045】この場合、前記耐食材3の厚みは耐食材3
用原料の充填量を調整することによって200μm以上
の厚いものとすることができ、該耐食材3の厚みを20
0μm以上とすると、耐食材の消耗に時間を要すること
から長期間の使用に供することが可能となる。
In this case, the thickness of the corrosion-resistant material 3 is
The thickness of the corrosion-resistant material 3 can be increased to 200 μm or more by adjusting the filling amount of the raw material.
When the thickness is 0 μm or more, it takes a long time to consume the corrosion-resistant material, so that it can be used for a long time.

【0046】なお、前記耐食材3はその厚みが200μ
m未満となると、中間層4上に耐食材3を均一厚みに、
且つ中間層4の表面を完全に覆うように形成することが
困難となり、耐食性部材1の耐食性が劣化してしまう危
険性がある。また耐食材3の厚みが30mmを超える
と、耐食材用原料を焼成して焼結体から成る耐食材3を
形成する際、耐食材用原料に含まれている有機バインダ
ーを完全に脱脂するのが困難となって耐食材3の機械的
強度を弱くしてしまう危険性がある。従って、前記耐食
材3はその厚みを200μm以上としておくことが好ま
しく、より好適には200μm〜30mmの範囲として
おくのが良い。
The corrosion-resistant material 3 has a thickness of 200 μm.
m, the corrosion-resistant material 3 is formed on the intermediate layer 4 to a uniform thickness.
Moreover, it is difficult to form the intermediate layer 4 so as to completely cover the surface, and there is a risk that the corrosion resistance of the corrosion-resistant member 1 is deteriorated. If the thickness of the corrosion-resistant material 3 exceeds 30 mm, the organic binder contained in the material for the corrosion-resistant material is completely degreased when the material for the corrosion-resistant material 3 is fired to form the corrosion-resistant material 3 made of a sintered body. And the mechanical strength of the corrosion-resistant material 3 may be reduced. Therefore, the thickness of the corrosion-resistant material 3 is preferably set to 200 μm or more, and more preferably in the range of 200 μm to 30 mm.

【0047】また、前記中間層4はその厚みを200μ
m以上としておくと、セラミック基材2と耐食材3との
間の全域に均一厚みの中間層4を形成することが可能と
なり、これによってセラミック基材2と耐食材3とを中
間層4を介して極めて強固に接合することができる。従
って、前記中間層4は、その厚みを200μm以上とし
ておくことが好ましい。
The intermediate layer 4 has a thickness of 200 μm.
m or more, it is possible to form an intermediate layer 4 having a uniform thickness over the entire area between the ceramic base material 2 and the corrosion-resistant material 3. It is possible to join very firmly. Therefore, the thickness of the intermediate layer 4 is preferably set to 200 μm or more.

【0048】更に、上述の方法では金型プレスによる成
形方法を採用することによって耐食性部材1を製作した
が、これに限定されるものでなく鋳込み成形、射出成形
等の成形方法を採用しても良い。
Further, in the above-described method, the corrosion-resistant member 1 was manufactured by adopting a molding method using a mold press. However, the present invention is not limited to this, and molding methods such as cast molding and injection molding may be employed. good.

【0049】かかる耐食性部材1は、半導体製造装置等
の内壁材(チャンバー)、マイクロ波導入窓、フォーカ
スリング等に好適に使用され、例えば図3に示すような
エッチング装置に利用され、チャンバー5の中にハロゲ
ン系腐食性ガスを注入し、周りに巻かれている誘導コイ
ル9にRF電力を印可してガスをプラズマ化し、下部電
極7にも同様にRF電力を与えバイアスを発生させ、フ
ォーカスリング6にてプラズマをウェハー8近傍に集め
て所望のエッチング加工を行う。本装置にて発生したプ
ラズマはチャンバー5や、フォーカスリング6に接触す
るため、これらの部品は特に腐食を受けやすい。そこで
チャンバー5やフォーカスリング6を前記耐食性部材1
で形成することによって優れた耐食性を具備し、取り付
け時や洗浄時に欠けや割れ等が生じるのを防止すること
ができる。
The corrosion-resistant member 1 is suitably used for an inner wall material (chamber) of a semiconductor manufacturing apparatus, a microwave introduction window, a focus ring, and the like. For example, it is used for an etching apparatus as shown in FIG. A halogen-based corrosive gas is injected thereinto, RF power is applied to an induction coil 9 wound therearound to convert the gas into plasma, and RF power is similarly applied to the lower electrode 7 to generate a bias, thereby generating a focus ring. In step 6, the plasma is collected near the wafer 8 and a desired etching process is performed. Since the plasma generated by this apparatus comes into contact with the chamber 5 and the focus ring 6, these components are particularly susceptible to corrosion. Therefore, the chamber 5 and the focus ring 6 are connected to the corrosion-resistant member 1.
By forming it with, excellent corrosion resistance is provided, and it is possible to prevent chipping, cracking, and the like from occurring at the time of mounting and cleaning.

【0050】[0050]

【実施例】次に、本発明の実施例を説明する。 (実施例1) (セラミック基材用原料)主成分として平均粒径が1〜1
5μm、純度が95〜99重量%の酸化アルミニウム
に、焼結助剤として酸化珪素(SiO2)、酸化マグネ
シウム(MgO)及び酸化カルシウム(CaO)を含有
し、有機バインダーとしてポリビニルアルコール(PV
A)、ポリエチレングリコール(PEG)及びワックス
エマルジョン(ワックス+乳化剤)をそれぞれ添加混合
しスプレードライにて造粒して原料を調整する。
Next, embodiments of the present invention will be described. (Example 1) (Raw material for ceramic substrate) The average particle size is 1 to 1 as a main component.
Silicon oxide (SiO 2 ), magnesium oxide (MgO), and calcium oxide (CaO) are contained as sintering aids in aluminum oxide having a purity of 5 μm and a purity of 95 to 99% by weight, and polyvinyl alcohol (PV) is used as an organic binder.
A), polyethylene glycol (PEG) and wax emulsion (wax + emulsifier) are added and mixed, and granulated by spray drying to prepare a raw material.

【0051】(耐食材用原料)YAG、イットリア(Y2
O3)、マグネシア(MgO)、スピネル(MgOAl
23)の一種に焼結助剤として酸化セリウム(CeO)
を添加し、有機バインダーとしてPVA、PEG及びワ
ックスエマルジョンを添加混合しスプレードライにて造
粒して各原料を調整する。
(Corrosion-resistant material) YAG, Yttria (Y2
O3), magnesia (MgO), spinel (MgOAl)
2 O 3) type cerium oxide as a sintering aid (CeO)
Is added, and PVA, PEG and wax emulsion are added and mixed as an organic binder, and granulated by spray drying to prepare each raw material.

【0052】(中間層用原料)前記セラミック基材用原
料と耐食材用原料をそれぞれ50体積%づつ添加混合し
て原料を調整する。
(Raw Material for Intermediate Layer) The raw material for the ceramic substrate and the raw material for the corrosion-resistant material are added and mixed by 50% by volume, respectively, to prepare the raw material.

【0053】次に、金型プレス成形にてセラミック基材
用原料、中間層用原料及び耐食材用原料を順次成形し、
各々が直径30mm、厚さ5mmのセラミック基材成形
体、中間層成形体及び耐食材成形体から成る複合成形体
を得る。
Next, the raw material for the ceramic base material, the raw material for the intermediate layer, and the raw material for the corrosion-resistant material are sequentially formed by die press molding.
A composite molded body composed of a ceramic substrate molded body, an intermediate layer molded body, and a corrosion resistant molded body each having a diameter of 30 mm and a thickness of 5 mm is obtained.

【0054】次に、前記複合成形体を350℃で2時間
脱脂した後、1500〜1750℃で5時間焼成してセ
ラミック基材、中間層及び耐食材が表1に示す成分から
成る各耐食性部材試料を製作した。
Next, the composite molded body was degreased at 350 ° C. for 2 hours, and then baked at 1500 to 1750 ° C. for 5 hours, and each of the ceramic base material, the intermediate layer and the corrosion-resistant material were composed of the components shown in Table 1. Samples were made.

【0055】また、従来例として酸化アルミニウム質焼
結体から成るセラミック基材(直径30mm、厚さ5m
m)上に、YAG、イットリアをそれぞれ主成分とする
耐食材を直径30mm、厚さ1mmに溶射、CVDによ
って形成した試料(試料No.9〜12)を製作した。
Further, as a conventional example, a ceramic substrate (diameter 30 mm, thickness 5 m) made of an aluminum oxide sintered body is used.
m), samples (corresponding to samples Nos. 9 to 12) were formed by spraying a corrosion-resistant material mainly composed of YAG and yttria to a diameter of 30 mm and a thickness of 1 mm, and by CVD.

【0056】なお、各試料の耐食材の相対密度は次式で
求めた。
The relative density of the corrosion-resistant material of each sample was determined by the following equation.

【0057】 (焼結密度/理論密度)×100=相対密度(%) 更に、各試料のセラミック基材、中間層及び耐食材の熱
膨張係数は、JISR1618に準拠して測定した(測
定範囲は、室温〜1500℃)。
(Sintered Density / Theoretical Density) × 100 = Relative Density (%) Further, the thermal expansion coefficients of the ceramic base material, the intermediate layer, and the corrosion-resistant material of each sample were measured in accordance with JISR1618 (the measurement range was: , Room temperature to 1500 ° C).

【0058】そして、各試料の接合状態を評価するた
め、各試料に対し熱サイクル(室温〜1400℃)を繰
り返し印加し、熱サイクルの印加が20回未満において
耐食材がセラミック基材より剥離したものは××、20
〜30回未満で剥離したものを×、60回でも剥離しな
かったものを◎とした。
Then, in order to evaluate the bonding state of each sample, a heat cycle (room temperature to 1400 ° C.) was repeatedly applied to each sample, and the corrosion-resistant material was separated from the ceramic base material when the number of heat cycles was less than 20 times. Things are XX, 20
The sample that was peeled off after less than 30 times was evaluated as x, and the sample that was not peeled even after 60 times was evaluated as ◎.

【0059】次いで、各試料の耐食性を評価をするた
め、各試料の耐食材をラップ加工により鏡面にするとと
もにRIE(Reactive Ion Etchin
g)装置にセットしてCl2ガス雰囲気下でプラズマ中
に3時間曝し、その前後の耐食材の重量の減少量から1
分間当たりのエッチングレートを算出して評価した。
Next, in order to evaluate the corrosion resistance of each sample, the corrosion-resistant material of each sample was mirror-finished by lapping and RIE (Reactive Ion Etchin).
g) Set in an apparatus and exposed to plasma in a Cl 2 gas atmosphere for 3 hours.
The etching rate per minute was calculated and evaluated.

【0060】前記エッチングレートの数値は、純度9
9.9重量%の酸化アルミニウム質焼結体を基準試料と
し、そのエッチングレートを1としたときの相対比較で
評価を行った。そしてその評価の基準は、エッチングレ
ートが0.8以上を×、0.5以下を○、0.3以下を
◎とした。
The numerical value of the etching rate is a purity of 9
An aluminum oxide sintered body of 9.9% by weight was used as a reference sample, and evaluation was made by relative comparison when the etching rate was set to 1. The evaluation criteria were x for an etching rate of 0.8 or more, ○ for an etching rate of 0.5 or less, and ◎ for an etching rate of 0.3 or less.

【0061】評価結果を表1に示す。Table 1 shows the evaluation results.

【0062】[0062]

【表1】 [Table 1]

【0063】表1から明らかなように、セラミック基材
と耐食材との間に中間層を設けた本発明品(試料No.
1〜8)の場合、セラミック基材、耐食材との接合が極
めて強いことから熱サイクルが繰り返し印加されたとし
ても耐食材がセラミック基材より剥離することはなく、
長期間の使用に供することができる。
As is clear from Table 1, the product of the present invention (Sample No. 1) provided with an intermediate layer between the ceramic substrate and the corrosion-resistant material.
In the case of 1 to 8), since the bonding with the ceramic substrate and the corrosion-resistant material is extremely strong, even if the heat cycle is repeatedly applied, the corrosion-resistant material does not peel off from the ceramic substrate,
It can be used for a long time.

【0064】これに対し、セラミック基材に耐食材を溶
射やCVDで被着させた従来例(試料No.9〜12)
は、熱サイクルの印加が30回未満で耐食材がセラミッ
ク基材より剥離してしまい長期間の使用に供することが
できないことがわかる。
On the other hand, a conventional example in which a corrosion-resistant material is applied to a ceramic substrate by thermal spraying or CVD (samples Nos. 9 to 12)
It can be seen that when the number of application of the heat cycle is less than 30 times, the corrosion resistant material peels off from the ceramic substrate and cannot be used for a long time.

【0065】また、本発明品(試料No.1〜8)は、
耐食材の相対密度が98%以上で、且つエッチングレー
トが0.5(Å/min)以下であり極めて耐食性に優
れていることから、耐食材の消耗が少なく長期間の使用
に供することができる。
The products of the present invention (Sample Nos. 1 to 8)
Since the relative density of the corrosion-resistant material is 98% or more and the etching rate is 0.5 (Å / min) or less, which is extremely excellent in corrosion resistance, the corrosion-resistant material is less consumed and can be used for a long time. .

【0066】これに対し、従来品(試料No.9〜1
2)はエッチングレートが0.81(Å/min)以上
で耐食性に劣り短期間に消耗してしまう。
On the other hand, the conventional product (sample Nos. 9 to 1)
In the case of 2), when the etching rate is 0.81 (以上 / min) or more, the corrosion resistance is poor and is consumed in a short time.

【0067】(実施例2) (セラミック基材用原料)主成分として平均粒径が1〜1
5μm、純度が95〜99重量%の酸化アルミニウム
に、焼結助剤として酸化珪素(SiO2)、酸化マグネ
シウム(MgO)及び酸化カルシウム(CaO)を含有
し、有機バインダーとしてポリビニルアルコール(PV
A)、ポリエチレングリコール(PEG)及びワックス
エマルジョンをそれぞれ添加混合しスプレードライにて
造粒して原料を調整する。
Example 2 (Raw material for ceramic base material)
Silicon oxide (SiO 2 ), magnesium oxide (MgO), and calcium oxide (CaO) are contained as sintering aids in aluminum oxide having a purity of 5 μm and a purity of 95 to 99% by weight, and polyvinyl alcohol (PV) is used as an organic binder.
A), polyethylene glycol (PEG) and a wax emulsion are added and mixed, and granulated by spray drying to prepare raw materials.

【0068】(耐食材用原料)YAG(イットリウム・ア
ルミニウム・ガーネット)、イットリア(Y2O3)、
スピネル(MgOAl23)の一種に焼結助剤として酸
化セリウム(CeO)を添加し、有機バインダーとして
PVA、PEG及びワックスエマルジョンを添加混合し
スプレードライにて造粒して各原料を調整する。
(Raw material for corrosion resistant material) YAG (yttrium aluminum garnet), yttria (Y2O3),
Cerium oxide (CeO) is added as a sintering aid to one kind of spinel (MgOAl 2 O 3 ), PVA, PEG and wax emulsion are added and mixed as an organic binder, and granulated by spray drying to prepare each raw material. .

【0069】(中間層用原料)前記セラミック基材用原
料と耐食材用原料を表2に示す割合で添加混合して、第
1の中間層、第2の中間層を形成する中間層用原料を調
整する。
(Raw Material for Intermediate Layer) The raw material for the intermediate layer for forming the first and second intermediate layers by adding and mixing the above-mentioned raw material for the ceramic substrate and the raw material for the corrosion-resistant material in the ratio shown in Table 2. To adjust.

【0070】次に、金型プレス成形にてセラミック基材
用原料、中間層用原料及び耐食材用原料を順次成形し、
各々が直径30mm、厚さ2mmのセラミック基材成形
体、中間層成形体及び耐食材成形体から成る複合成形体
を得る。
Next, a raw material for a ceramic base material, a raw material for an intermediate layer, and a raw material for a corrosion-resistant material are sequentially formed by die press molding.
A composite molded body composed of a ceramic substrate molded body, an intermediate layer molded body, and a corrosion resistant molded body each having a diameter of 30 mm and a thickness of 2 mm is obtained.

【0071】次に、前記複合成形体を350℃で2時間
脱脂した後、1500〜1750℃で5時間焼成してセ
ラミック基材、中間層及び耐食材が表2に示す成分から
成る各耐食性部材試料を製作した。
Next, the composite molded body was degreased at 350 ° C. for 2 hours, and then baked at 1500 to 1750 ° C. for 5 hours, and each of the ceramic base material, the intermediate layer, and the corrosion-resistant material was composed of the components shown in Table 2 Samples were made.

【0072】なお、各試料の耐食材の相対密度は次式で
求めた。
The relative density of the corrosion-resistant material of each sample was determined by the following equation.

【0073】 (焼結密度/理論密度)×100=相対密度(%) 更に、各試料のセラミック基材、中間層及び耐食材の熱
膨張係数は、JISR1618に準拠して測定した(測
定範囲は、室温〜1500℃)。
(Sintered Density / Theoretical Density) × 100 = Relative Density (%) Further, the thermal expansion coefficients of the ceramic base material, the intermediate layer, and the corrosion-resistant material of each sample were measured in accordance with JISR1618 (the measurement range was: , Room temperature to 1500 ° C).

【0074】そして、各試料の接合状態を評価するた
め、各試料に対し熱サイクル(室温〜1400℃)を繰
り返し印加し、熱サイクルの印加が20回未満において
耐食材がセラミック基材より剥離したものは××、20
〜30回未満で剥離したものを×、60回〜90回未満
で剥離したものを○、90回でも剥離しなかったものを
◎とした。
Then, in order to evaluate the bonding state of each sample, a heat cycle (room temperature to 1400 ° C.) was repeatedly applied to each sample, and the corrosion-resistant material was separated from the ceramic base material when the number of heat cycles was less than 20 times. Things are XX, 20
The sample that was peeled off after less than 30 times was rated as X, the one that was peeled off after less than 60 to 90 times was rated as ○, and the one that was not peeled even after 90 times was rated as ◎.

【0075】次いで、各試料の耐食性を評価をするた
め、各試料の耐食材をラップ加工により鏡面にするとと
もにRIE(Reactive Ion Etchin
g)装置にセットしてCl2ガス雰囲気下でプラズマ中
に3時間曝し、その前後の耐食材の重量の減少量から1
分間当たりのエッチングレートを算出した。
Next, in order to evaluate the corrosion resistance of each sample, the corrosion-resistant material of each sample was mirror-finished by lapping, and RIE (Reactive Ion Etchin).
g) Set in an apparatus and exposed to plasma in a Cl 2 gas atmosphere for 3 hours.
The etching rate per minute was calculated.

【0076】前記エッチングレートの数値は、純度9
9.9重量%の酸化アルミニウム質焼結体を基準試料と
し、そのエッチングレートを1としたときの相対比較し
た値を示した。
The numerical value of the etching rate is 9
A value obtained by relative comparison when an etching rate of 1 was set to 9.9% by weight of an aluminum oxide sintered body as a reference sample.

【0077】評価結果を表2に示す。Table 2 shows the evaluation results.

【0078】[0078]

【表2】 [Table 2]

【0079】表2から明らかなように、セラミック基材
と耐食材との間にセラミック基材成分を55〜95体積
%含有する第1の中間層と、耐食材成分を55〜95体
積%含有する第2の中間層を配した(試料No.24,
25,27,30〜36,39,40)のものは、セラ
ミック基材と耐食材とが極めて強固に接合しており、熱
サイクルが繰り返し印加されたとしても耐食材がセラミ
ック基材より剥離することはなく長期間の使用に供する
ことができる。
As is clear from Table 2, the first intermediate layer containing 55 to 95% by volume of the ceramic base component between the ceramic base and the corrosion-resistant material, and the first intermediate layer containing 55 to 95% by volume of the corrosion-resistant material component A second intermediate layer (Sample No. 24,
25, 27, 30 to 36, 39, and 40), the ceramic substrate and the corrosion-resistant material are bonded extremely firmly, and the corrosion-resistant material peels off from the ceramic substrate even when a heat cycle is repeatedly applied. It can be used for a long time without any problem.

【0080】[0080]

【発明の効果】本発明の耐食性部材によれば、酸化アル
ミニウム質焼結体から成るセラミック基材と、周期律表
第2a族あるいは第3a族元素の少なくとも1種を主成
分とする焼結体からなる耐食材とを、前記セラミック基
材成分と耐食材成分とを含有した焼結体から成り、セラ
ミック基材と耐食材の両者に対して接合性が良く、熱膨
張係数が両者の間にある中間層を介して接合したことか
ら、セラミック基材への耐食材の接合が極めて強い。従
って、耐食性部材に使用時の熱が印加されたとしても耐
食材がセラミック基材より剥離することはなく、耐食性
部材を常に安定して使用することができる。
According to the corrosion-resistant member of the present invention, a ceramic base made of an aluminum oxide-based sintered body and a sintered body mainly containing at least one element of Group 2a or 3a of the periodic table are provided. A corrosion-resistant material consisting of a sintered body containing the ceramic base material component and the corrosion-resistant material component, has good bonding properties to both the ceramic base material and the corrosion-resistant material, and has a coefficient of thermal expansion between the two. Since the bonding is performed via a certain intermediate layer, the bonding of the corrosion-resistant material to the ceramic substrate is extremely strong. Therefore, even when heat is applied to the corrosion-resistant member during use, the corrosion-resistant material does not peel off from the ceramic substrate, and the corrosion-resistant member can always be used stably.

【0081】特に、セラミック基材と中間層、耐食材と
中間層の熱膨張係数差をそれぞれ1ppm/℃以下とし
ておくと、熱の印加時における耐食性部材のセラミック
基材と耐食材との接合性をより一層良好なものとなすこ
とができ、耐食性部材をより一層安定に使用することが
可能となる。
In particular, if the difference in thermal expansion coefficient between the ceramic substrate and the intermediate layer and between the corrosion-resistant material and the intermediate layer is set to 1 ppm / ° C. or less, the bonding property between the ceramic substrate and the corrosion-resistant material of the corrosion-resistant member when heat is applied. Can be further improved, and the corrosion-resistant member can be used more stably.

【0082】また、前記中間層をセラミック基材に接す
る第1の中間層と耐食材に接する第2の中間層の少なく
とも2層構造とし、前記第1の中間層にはセラミック基
材成分を55〜95体積%、第2の中間層には耐食材成
分を55〜95体積%含有させておくと、セラミック基
材と第1の中間層間、耐食材と第2の中間層間、第1と
第2の中間層間の接合強度を強くすることができ、これ
によってセラミック基材に対する耐食材の接合を極めて
強固なものとして、耐食性部材をより一層安定に使用す
ることが可能となる。
Further, the intermediate layer has at least a two-layer structure of a first intermediate layer in contact with the ceramic base and a second intermediate layer in contact with the corrosion-resistant material. If the second intermediate layer contains 55 to 95% by volume of the corrosion-resistant material component, the ceramic base material and the first intermediate layer, the corrosion-resistant material and the second intermediate layer, and the first and second The bonding strength between the two intermediate layers can be increased, and thereby the bonding of the corrosion-resistant material to the ceramic base material can be made extremely strong, so that the corrosion-resistant member can be used more stably.

【0083】更に、前記耐食材は周期律表第2a族ある
いは第3a族元素の少なくとも1種を主成分とする焼結
体で形成されていることから、耐食材の相対密度を98
%以上とすることができ、耐食材の相対密度を98%以
上とすると開気孔の存在がほとんどなくなって耐食性が
極めて優れたものとなる。
Further, since the corrosion-resistant material is formed of a sintered body mainly containing at least one element of Group 2a or 3a of the periodic table, the relative density of the corrosion-resistant material is 98%.
% Or more, and when the relative density of the corrosion resistant material is 98% or more, the existence of open pores is almost eliminated and the corrosion resistance is extremely excellent.

【0084】また更に、前記耐食材は周期律表第2a族
あるいは第3a族元素の少なくとも1種を主成分とする
焼結体で形成されていることから、耐食材の厚みを20
0μm以上の厚いものに形成することができ、耐食材の
厚みを200μm以上とすると、耐食材の消耗に時間を
要することから長期間の使用に供することが可能とな
る。
Furthermore, since the corrosion-resistant material is formed of a sintered body containing at least one element of Group 2a or Group 3a of the periodic table as a main component, the thickness of the corrosion-resistant material is reduced to 20%.
When the thickness of the corrosion-resistant material is 200 μm or more, it takes a long time to consume the corrosion-resistant material, so that it can be used for a long time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の耐食性部材の一実施形態を示す斜視図
である。
FIG. 1 is a perspective view showing one embodiment of a corrosion resistant member of the present invention.

【図2】本発明の耐食性部材の他の実施形態を示す斜視
図である。
FIG. 2 is a perspective view showing another embodiment of the corrosion-resistant member of the present invention.

【図3】本発明の耐食性部材を備えたエッチング装置内
部の概略図である。
FIG. 3 is a schematic view of the inside of an etching apparatus provided with the corrosion-resistant member of the present invention.

【符号の説明】[Explanation of symbols]

1:耐食性部材 2:セラミック基材 3:耐食材 4:中間層 4a:第1の中間層 4b:第2の中間層 5:チャンバー 6:フォーカスリング 7:下部電極 8:ウエハー 9:誘導コイル 1: Corrosion resistant member 2: Ceramic base 3: Corrosion resistant material 4: Intermediate layer 4a: First intermediate layer 4b: Second intermediate layer 5: Chamber 6: Focus ring 7: Lower electrode 8: Wafer 9: Induction coil

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05H 1/46 C04B 35/10 Z // C23C 16/44 H01L 21/302 B Fターム(参考) 4G026 BA02 BA03 BA06 BB02 BB03 BF04 BG05 BG30 BH06 4G030 AA07 AA12 AA36 BA33 GA35 4K030 AA02 FA01 KA46 LA15 5F004 AA16 BA20 BB20 DA04 5F045 BB17 EC05 EM09 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H05H 1/46 C04B 35 / 10Z // C23C 16/44 H01L 21/302 B F-term (Reference) 4G026 BA02 BA03 BA06 BB02 BB03 BF04 BG05 BG30 BH06 4G030 AA07 AA12 AA36 BA33 GA35 4K030 AA02 FA01 KA46 LA15 5F004 AA16 BA20 BB20 DA04 5F045 BB17 EC05 EM09

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】酸化アルミニウム質焼結体から成るセラミ
ック基材表面に、周期律表第2a族あるいは第3a族元
素の少なくとも1種を主成分とする焼結体から成る耐食
材を接合させた耐食性部材であって、前記セラミック基
材と耐食材との間に前記セラミック基材成分と耐食材成
分とを含有する焼結体から成る中間層を配したことを特
徴とする耐食性部材。
An anti-corrosion material comprising a sintered body containing at least one element of Group 2a or 3a of the Periodic Table as a main component is bonded to a surface of a ceramic substrate made of an aluminum oxide sintered body. A corrosion resistant member, wherein an intermediate layer made of a sintered body containing the ceramic base component and the corrosion resistant component is disposed between the ceramic base and the corrosion resistant material.
【請求項2】前記セラミック基材と中間層、前記耐食材
と中間層の熱膨張係数差がそれぞれ1ppm/℃以下で
あることを特徴とする請求項1に記載の耐食性部材。
2. The corrosion-resistant member according to claim 1, wherein the difference in thermal expansion coefficient between the ceramic base material and the intermediate layer, and between the corrosion-resistant material and the intermediate layer, is 1 ppm / ° C. or less.
【請求項3】前記中間層はセラミック基材に接する第1
の中間層と耐食材に接する第2の中間層の少なくとも2
層構造を有しており、前記第1の中間層はセラミック基
材成分を55〜95体積%、第2の中間層は耐食材成分
を55〜95体積%含有していることを特徴とする請求
項1に記載の耐食性部材。
3. An intermediate layer according to claim 1, wherein said intermediate layer is in contact with a first ceramic substrate.
And at least two of the second intermediate layer in contact with the corrosion-resistant material
The first intermediate layer has a ceramic substrate component of 55 to 95% by volume, and the second intermediate layer has a corrosion resistant component of 55 to 95% by volume. The corrosion-resistant member according to claim 1.
【請求項4】前記耐食材は相対密度が98%以上である
ことを特徴とする請求項1に記載の耐食性部材。
4. The corrosion resistant member according to claim 1, wherein said corrosion resistant material has a relative density of 98% or more.
【請求項5】前記耐食材は厚みが200μm以上である
ことを特徴とする請求項1乃至4の何れかに記載の耐食
性部材。
5. The corrosion resistant member according to claim 1, wherein said corrosion resistant material has a thickness of 200 μm or more.
JP2000250110A 2000-06-30 2000-08-21 Corrosion resistant material Expired - Fee Related JP4651166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000250110A JP4651166B2 (en) 2000-06-30 2000-08-21 Corrosion resistant material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000198452 2000-06-30
JP2000-198452 2000-06-30
JP2000250110A JP4651166B2 (en) 2000-06-30 2000-08-21 Corrosion resistant material

Publications (2)

Publication Number Publication Date
JP2002080270A true JP2002080270A (en) 2002-03-19
JP4651166B2 JP4651166B2 (en) 2011-03-16

Family

ID=26595109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000250110A Expired - Fee Related JP4651166B2 (en) 2000-06-30 2000-08-21 Corrosion resistant material

Country Status (1)

Country Link
JP (1) JP4651166B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297906A (en) * 2002-03-28 2003-10-17 Kyocera Corp Member for semiconductor manufacturing device and manufacturing method thereof
JP2005531157A (en) * 2002-06-27 2005-10-13 ラム リサーチ コーポレーション Thermally sprayed yttria-containing coating for plasma reactors to improve productivity
JP2006522482A (en) * 2003-03-31 2006-09-28 東京エレクトロン株式会社 A method of bonding adjacent coatings on a processing member.
JP2007524993A (en) * 2003-03-31 2007-08-30 東京エレクトロン株式会社 A barrier layer for a processing member and a method of forming the same.
JP2007246325A (en) * 2006-03-15 2007-09-27 Taiheiyo Cement Corp Ceramic joined body
JP2008214110A (en) * 2007-02-28 2008-09-18 Taiheiyo Cement Corp Ceramic member
JP2009035469A (en) * 2007-08-02 2009-02-19 Applied Materials Inc Plasma-proof ceramics equipped with controlled electric resistivity
JP2010077017A (en) * 2008-08-28 2010-04-08 Toto Ltd Corrosion-resistant member and method for production thereof
JP2013095644A (en) * 2011-11-02 2013-05-20 Covalent Materials Corp Polycrystalline ceramic joined body, and method for manufacturing the same
US8623527B2 (en) 2007-04-27 2014-01-07 Applied Materials, Inc. Semiconductor processing apparatus comprising a coating formed from a solid solution of yttrium oxide and zirconium oxide
JP2016528380A (en) * 2013-06-20 2016-09-15 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Plasma corrosion resistant rare earth oxide thin film coating
US9982868B2 (en) 2016-09-21 2018-05-29 Nichia Corporation Phosphor-containing member and light emitting device containing thereof
US10242888B2 (en) 2007-04-27 2019-03-26 Applied Materials, Inc. Semiconductor processing apparatus with a ceramic-comprising surface which exhibits fracture toughness and halogen plasma resistance
US10622194B2 (en) 2007-04-27 2020-04-14 Applied Materials, Inc. Bulk sintered solid solution ceramic which exhibits fracture toughness and halogen plasma resistance
JP2020512691A (en) * 2017-03-21 2020-04-23 コンポーネント リ−エンジニアリング カンパニー インコーポレイテッド Ceramic material assembly for use in highly corrosive or erosive semiconductor processing applications

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177380A (en) * 1989-12-05 1991-08-01 Mitsubishi Materials Corp Ceramic-coated member and its production
JPH05270957A (en) * 1992-03-24 1993-10-19 Toshiba Corp Ceramic sintered product
JPH05319937A (en) * 1992-05-21 1993-12-03 Toshiba Corp Functionally gradient material
JP2000103689A (en) * 1998-09-28 2000-04-11 Kyocera Corp Alumina sintered compact, its production and plasma- resistant member
JP2002001865A (en) * 2000-04-21 2002-01-08 Ngk Insulators Ltd Laminate, corrosion resistant member and halogen gas plasma resistant member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177380A (en) * 1989-12-05 1991-08-01 Mitsubishi Materials Corp Ceramic-coated member and its production
JPH05270957A (en) * 1992-03-24 1993-10-19 Toshiba Corp Ceramic sintered product
JPH05319937A (en) * 1992-05-21 1993-12-03 Toshiba Corp Functionally gradient material
JP2000103689A (en) * 1998-09-28 2000-04-11 Kyocera Corp Alumina sintered compact, its production and plasma- resistant member
JP2002001865A (en) * 2000-04-21 2002-01-08 Ngk Insulators Ltd Laminate, corrosion resistant member and halogen gas plasma resistant member

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297906A (en) * 2002-03-28 2003-10-17 Kyocera Corp Member for semiconductor manufacturing device and manufacturing method thereof
JP2005531157A (en) * 2002-06-27 2005-10-13 ラム リサーチ コーポレーション Thermally sprayed yttria-containing coating for plasma reactors to improve productivity
JP2010283361A (en) * 2002-06-27 2010-12-16 Lam Res Corp Coating film containing thermal sprayed yttria for plasma reactor capable of enhancing productivity
JP2007524993A (en) * 2003-03-31 2007-08-30 東京エレクトロン株式会社 A barrier layer for a processing member and a method of forming the same.
JP2006522482A (en) * 2003-03-31 2006-09-28 東京エレクトロン株式会社 A method of bonding adjacent coatings on a processing member.
JP2007246325A (en) * 2006-03-15 2007-09-27 Taiheiyo Cement Corp Ceramic joined body
JP2008214110A (en) * 2007-02-28 2008-09-18 Taiheiyo Cement Corp Ceramic member
US10242888B2 (en) 2007-04-27 2019-03-26 Applied Materials, Inc. Semiconductor processing apparatus with a ceramic-comprising surface which exhibits fracture toughness and halogen plasma resistance
US11373882B2 (en) 2007-04-27 2022-06-28 Applied Materials, Inc. Coated article and semiconductor chamber apparatus formed from yttrium oxide and zirconium oxide
US10847386B2 (en) 2007-04-27 2020-11-24 Applied Materials, Inc. Method of forming a bulk article and semiconductor chamber apparatus from yttrium oxide and zirconium oxide
US10840112B2 (en) 2007-04-27 2020-11-17 Applied Materials, Inc. Coated article and semiconductor chamber apparatus formed from yttrium oxide and zirconium oxide
US8623527B2 (en) 2007-04-27 2014-01-07 Applied Materials, Inc. Semiconductor processing apparatus comprising a coating formed from a solid solution of yttrium oxide and zirconium oxide
US10840113B2 (en) 2007-04-27 2020-11-17 Applied Materials, Inc. Method of forming a coated article and semiconductor chamber apparatus from yttrium oxide and zirconium oxide
US9051219B2 (en) 2007-04-27 2015-06-09 Applied Materials, Inc. Semiconductor processing apparatus comprising a solid solution ceramic formed from yttrium oxide, zirconium oxide, and aluminum oxide
US10622194B2 (en) 2007-04-27 2020-04-14 Applied Materials, Inc. Bulk sintered solid solution ceramic which exhibits fracture toughness and halogen plasma resistance
JP2009035469A (en) * 2007-08-02 2009-02-19 Applied Materials Inc Plasma-proof ceramics equipped with controlled electric resistivity
US8871312B2 (en) 2007-08-02 2014-10-28 Applied Materials, Inc. Method of reducing plasma arcing on surfaces of semiconductor processing apparatus components in a plasma processing chamber
US8367227B2 (en) 2007-08-02 2013-02-05 Applied Materials, Inc. Plasma-resistant ceramics with controlled electrical resistivity
JP2010077017A (en) * 2008-08-28 2010-04-08 Toto Ltd Corrosion-resistant member and method for production thereof
JP2013095644A (en) * 2011-11-02 2013-05-20 Covalent Materials Corp Polycrystalline ceramic joined body, and method for manufacturing the same
JP2019108612A (en) * 2013-06-20 2019-07-04 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Plasma erosion resistant rare-earth oxide based thin film coatings
JP2016528380A (en) * 2013-06-20 2016-09-15 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Plasma corrosion resistant rare earth oxide thin film coating
US11680308B2 (en) 2013-06-20 2023-06-20 Applied Materials, Inc. Plasma erosion resistant rare-earth oxide based thin film coatings
US9982868B2 (en) 2016-09-21 2018-05-29 Nichia Corporation Phosphor-containing member and light emitting device containing thereof
JP2020512691A (en) * 2017-03-21 2020-04-23 コンポーネント リ−エンジニアリング カンパニー インコーポレイテッド Ceramic material assembly for use in highly corrosive or erosive semiconductor processing applications

Also Published As

Publication number Publication date
JP4651166B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
US6783875B2 (en) Halogen gas plasma-resistive members and method for producing the same, laminates, and corrosion-resistant members
JP2002080270A (en) Corrosion resistant member
US8623527B2 (en) Semiconductor processing apparatus comprising a coating formed from a solid solution of yttrium oxide and zirconium oxide
US6858332B2 (en) Yttria-alumina composite oxide films, laminated bodies having the same, a method for producing the same, and corrosion resistant members and films
US6933254B2 (en) Plasma-resistant articles and production method thereof
EP1277850A2 (en) Sprayed film of yttria-alumina complex oxide and method of production of said film
US20080264565A1 (en) Method and apparatus which reduce the erosion rate of surfaces exposed to halogen-containing plasmas
EP1988187A2 (en) Apparatus and method which reduce the erosion rate of surfaces exposed to halogen-containing plasmas
US20170110293A1 (en) Bulk sintered solid solution ceramic which exhibits fracture toughness and halogen plasma resistance
US10242888B2 (en) Semiconductor processing apparatus with a ceramic-comprising surface which exhibits fracture toughness and halogen plasma resistance
JP4540221B2 (en) Laminate, corrosion resistant member and halogen gas plasma member
KR20020077163A (en) Plasma resistant member
JPH10236871A (en) Plasma resistant member
JP4601160B2 (en) Corrosion resistant material
JP2000103689A (en) Alumina sintered compact, its production and plasma- resistant member
JP2002052651A (en) Corrosion-resistant member
WO2011100527A1 (en) Method for texturing ceramic components
JP2004136647A (en) Manufacturing method of composite sintered body, manufacturing method of composite molded body, and composite sintered body and composite molded body
JP3784180B2 (en) Corrosion resistant material
JP2004107718A (en) Stacked body, thermal spray coating and production method for stacked body
JP2003048783A (en) Alumina ceramics joined body and method for manufacturing the same
JP2003119087A (en) Composite coating material, laminated body, corrosion resistant member, halogen gas plasma resistant member and method for manufacturing composite coating material
JP2004059397A (en) Plasma resistant member
JP2002037660A (en) Plasma-resistant alumina ceramic and method for producing the same
JP2002068831A (en) Corrosion-resistant ceramics and corrosion-resistant member using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees