JPH05319937A - Functionally gradient material - Google Patents

Functionally gradient material

Info

Publication number
JPH05319937A
JPH05319937A JP4128968A JP12896892A JPH05319937A JP H05319937 A JPH05319937 A JP H05319937A JP 4128968 A JP4128968 A JP 4128968A JP 12896892 A JP12896892 A JP 12896892A JP H05319937 A JPH05319937 A JP H05319937A
Authority
JP
Japan
Prior art keywords
layer
sialon
surface layer
high temperature
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4128968A
Other languages
Japanese (ja)
Inventor
Shusuke Inada
周介 稲田
Masahiro Asayama
雅弘 浅山
Tsuneji Kameda
常治 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4128968A priority Critical patent/JPH05319937A/en
Publication of JPH05319937A publication Critical patent/JPH05319937A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a functionally gradient material resistant to warpage and bending and having improved oxidation resistance and strength at high temperature by using a surface layer having excellent oxidation resistance at high temperature and an inside layer having excellent strength at high temperature and interposing an intermediate layer having compositions continuously varying from that of the surface layer to the inside layer. CONSTITUTION:The functionally gradient material is composed of a composite material having plural compositions. The surface layer 1 is made of MgO or Al2O3 and the inside layer 2 is made of a sialon ceramic material. The intermediate layer 3 between the surface layer 1 and the inside layer 2 has stepwise or continuously varying composition. The composition of the intermediate layer 3 gradually varies from that of the surface layer 1 (Al2O3 or MgO) to the inside layer 2 (sialon ceramic).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高温材料に適した傾斜機
能材料に関する。
FIELD OF THE INVENTION The present invention relates to a functionally graded material suitable for high temperature materials.

【0002】[0002]

【従来の技術】現在、セラミックスの分野では、材料に
対する要求が厳しくなるに従い、各種の特性を有する複
合機能材料の開発が進められている。複合機能材料は単
一的に優れたセラミックス材料を層状に重ねて複合化さ
せ、夫々の材料の長所を組合せて全体としての特性を向
上させた材料である。
2. Description of the Related Art At present, in the field of ceramics, as functional requirements for materials become stricter, development of composite functional materials having various properties is under way. The composite functional material is a material in which excellent ceramic materials are singly stacked in layers to form a composite, and the advantages of each material are combined to improve the characteristics as a whole.

【0003】この複合機能材料を作製するためには、経
済性の点からプレス法が主として採用されている。この
方法は、ダイスの内部に異なるセラミックス粉末を順次
供給し、各粉末をパンチで加圧して層状の成形体を成形
する方法である。
In order to produce this composite functional material, the pressing method is mainly adopted from the economical point of view. This method is a method in which different ceramic powders are sequentially supplied into the die and each powder is pressed by a punch to form a layered compact.

【0004】ところで、この複合機能材料のセラミック
スのひとつとして高温条件下で使用するものがあり、高
温材料にはSiC、Si3 4 などの非酸化物系セラミ
ックスが用いられている。そして、この高温用の複合機
能材料を作製する場合にもプレス法が採用されている。
By the way, one of the ceramics of the composite functional material is one used under high temperature conditions, and non-oxide ceramics such as SiC and Si 3 N 4 are used as the high temperature material. The pressing method is also used when producing the composite functional material for high temperatures.

【0005】[0005]

【発明が解決しようとする課題】しかし、高温材料とし
て用いられるSiC、Si3 4 などの非酸化物系セラ
ミックスを用いた複合機能材料は、1500℃程度の温
度から酸化するという問題があり、このため1500℃
以上の温度で使用することは困難であった。
However, the composite functional material using non-oxide ceramics such as SiC and Si 3 N 4 used as a high temperature material has a problem that it is oxidized at a temperature of about 1500 ° C. Therefore 1500 ° C
It was difficult to use at the above temperature.

【0006】また、プレス法を採用して作製された高温
材料用の複合機能材料は、高温下で使用すると、組み合
された各材料層の相互の熱膨張係数の相違に基づく熱応
力の発生によって、各層間でそりや曲りなどの不具合が
発生することがある。なお、高温材料として酸化物系セ
ラミックスを用いることが考えられるが、この材料は高
温での強度が低く高温材料には適さないという問題があ
る。
Further, when the composite functional material for high temperature material manufactured by using the pressing method is used at high temperature, thermal stress is generated due to the difference in thermal expansion coefficient between the combined material layers. Depending on the situation, problems such as warping and bending may occur between the layers. It is possible to use oxide-based ceramics as the high temperature material, but this material has a problem in that it has low strength at high temperatures and is not suitable for high temperature materials.

【0007】本発明は前記事情に基づいてなされたもの
で、高温下での耐酸化性に優れ、また高温下でのそり、
曲りなどの不具合の発生を抑制できて高温材料に適した
傾斜機能材料を提供することを目的とする。
The present invention has been made based on the above circumstances, and has excellent oxidation resistance at high temperatures, and warpage at high temperatures,
An object of the present invention is to provide a functionally graded material that can suppress the occurrence of defects such as bending and is suitable for high temperature materials.

【0008】[0008]

【課題を解決するための手段と作用】本願の第一の発明
の傾斜機能材料は、2種類以上の組成からなる複合材料
で、その表面層がMgO、内部がサイアロン系セラミッ
クスであり、これらMgO層とサイアロン系セラミック
ス層との間の組成が順次変化することを特徴とする。
The functionally graded material of the first invention of the present application is a composite material composed of two or more kinds of compositions, the surface layer of which is MgO and the inside of which is sialon-based ceramics. It is characterized in that the composition between the layer and the sialon-based ceramic layer sequentially changes.

【0009】本願の第二の発明の傾斜機能材料は、2種
類以上の組成からなる複合材料で、その表面層がAl2
3 、内部がサイアロン系セラミックスであり、これら
Al2 3 層とサイアロン系セラミックス層との間の組
成が順次変化することを特徴とする。
The functionally gradient material of the second invention of the present application is a composite material composed of two or more kinds of compositions, the surface layer of which is Al 2
O 3 and the inside are sialon-based ceramics, and the composition between the Al 2 O 3 layer and the sialon-based ceramics layer is sequentially changed.

【0010】第一の発明および第二の発明の傾斜機能材
料において採用しているサイアロン系セラミックスは、
Si3 4 ーAl2 3 ーAlNーSiO2 系のもの
で、耐熱性および耐食性に優れている。
The sialon ceramics used in the functionally graded materials of the first and second inventions are:
Si 3 N 4 —Al 2 O 3 —AlN—SiO 2 system, which has excellent heat resistance and corrosion resistance.

【0011】第一の発明および第二の発明の傾斜機能材
料における内部層のサイアロン系セラミックスは、構成
相がサイアロン組成を満足するものであれば良く、必ず
しも全相がサイアロンである必要がない。すなわち、材
料の内部層にはガラス相などの粒界相を含んでいても良
い。
The sialon-based ceramics of the inner layer in the functionally graded materials of the first and second inventions need only have a constituent phase satisfying the sialon composition, and it is not necessary that all the phases are sialon. That is, the inner layer of the material may include a grain boundary phase such as a glass phase.

【0012】第一の発明および第二の発明の傾斜機能材
料におけるMgOおよびAl2 3の濃度は、図1およ
び図2に示すように表面層1では100%で、内部層2
のサイアロン系セラミックス層では0%であり、表面層
1と内部層2との間の中間層3で段階的または連続的に
順次変化する。ただし、内部層のサイアロン系セラミッ
クスがAl2 3 を助剤として含む場合には、内部層の
サイアロン系セラミックスのAl2 3 の濃度は0%に
はならない。
The concentrations of MgO and Al 2 O 3 in the functionally graded materials of the first and second inventions are 100% in the surface layer 1 and 2 in the inner layer 2 as shown in FIGS. 1 and 2.
Is 0% in the sialon-based ceramics layer, and changes in steps or continuously in the intermediate layer 3 between the surface layer 1 and the inner layer 2. However, when the sialon-based ceramic in the inner layer contains Al 2 O 3 as an auxiliary agent, the concentration of Al 2 O 3 in the sialon-based ceramic in the inner layer does not become 0%.

【0013】第一の発明および第二の発明の傾斜機能材
料において表面層として採用されたMgOおよびAl2
3 は、酸化物系セラミックスであるために高温での耐
酸化性に優れている。また、内部層として採用されたサ
イアロン系セラミックスは高温での強度に優れる材料で
ある。従って、この傾斜機能材料は、従来困難であった
1500℃以上の高温での酸化を抑制できて、1500
℃以上の温度条件下での使用が可能である。
MgO and Al 2 employed as the surface layer in the functionally graded materials of the first and second inventions
O 3 is an oxide-based ceramic and therefore has excellent resistance to oxidation at high temperatures. Moreover, the sialon-based ceramics adopted as the inner layer is a material having excellent strength at high temperatures. Therefore, this functionally graded material can suppress the oxidation at a high temperature of 1500 ° C. or higher, which has been difficult to achieve in the past, and the
It can be used under temperature conditions above ℃.

【0014】さらに、この傾斜機能材料は、表面層と内
部層との間の間に、中間層として酸化物系セラミックス
であるサイアロン系セラミックスの組成が連続的または
段階的に順次変化する層が生成されている。このため、
この材料を高温で使用した時に表面層と内部層との間の
熱膨脹係数の相違に基づく熱応力の発生が緩和され、材
料におけるそり、曲りなどの不具合が発生することを抑
制できる。このため、高温下での障害を取り除いて経済
的なプレス法を採用して成形体を成形することが可能で
ある。
Further, in this functionally graded material, a layer in which the composition of sialon-based ceramics, which is an oxide-based ceramics, is continuously or stepwise changed is formed as an intermediate layer between the surface layer and the inner layer. Has been done. For this reason,
When this material is used at a high temperature, the generation of thermal stress due to the difference in the coefficient of thermal expansion between the surface layer and the inner layer is mitigated, and the defects such as warpage and bending in the material can be suppressed. Therefore, it is possible to remove the obstacle at high temperature and adopt an economical pressing method to form the molded body.

【0015】[0015]

【実施例】以下本発明の実施例について説明する。 実施例 1 窒化けい素粉末に、Al2 3 、AlNを焼成後サイア
ロンが生成するように添加し内部層用粉末を調整した。
EXAMPLES Examples of the present invention will be described below. Example 1 Al 2 O 3 and AlN were added to silicon nitride powder so as to form sialon after firing, to prepare a powder for the inner layer.

【0016】次に、この内部層用粉末にMgO粉末を夫
々10重量部、20重量部、40重量部、60重量部、
80重量部となるように添加し、5種類の中間粉末を調
整した。各粉末にバインダーを5重量部添加した後、縦
50mm×横50mmの金型に、まずMgO粉末を2gを投
入し、続いてMgO80重量部粉末を2g、MgO60
重量部粉末を2g、残り40重量部粉末、20重量部粉
末、10重量部粉末もそれぞれ2gづつ投入した。最後
に内部層用にSi3 4 調合粉末を13gを投入した。
Next, 10 parts by weight, 20 parts by weight, 40 parts by weight, 60 parts by weight of MgO powder are added to the powder for the inner layer, respectively.
It was added so as to be 80 parts by weight to prepare 5 kinds of intermediate powders. After adding 5 parts by weight of binder to each powder, first, 2 g of MgO powder was put into a mold of 50 mm length × 50 mm width, and subsequently, 2 g of MgO 80 parts by weight powder and MgO 60 were added.
2 parts by weight of powder, and 2 parts each of the remaining 40 parts by weight powder, 20 parts by weight powder, and 10 parts by weight powder were also added. Finally, 13 g of Si 3 N 4 compounded powder was added for the inner layer.

【0017】このようにして得られた粉末に対してプレ
ス法を採用して1000Kgの成形圧で縦50mm×横5
0mm×厚さ5mm、重量25gの板状の成形体を成形し
た。この成形体を窒素ガス雰囲気中で脱脂した後、5気
圧の窒素ガス中で1775℃×4時間の条件で焼結して
焼結体を得た。
A pressing method is applied to the powder thus obtained and a molding pressure of 1000 kg is applied to the powder, which is 50 mm in length and 5 in width.
A plate-shaped molded body having a thickness of 0 mm × 5 mm and a weight of 25 g was formed. This molded body was degreased in a nitrogen gas atmosphere and then sintered in a nitrogen gas at 5 atm under conditions of 1775 ° C. for 4 hours to obtain a sintered body.

【0018】このように得られた焼結体の断面の成分分
析を行ったところ、表面層ではMgOが100%有り、
表面層から中間層ではMgOがほぼ連続的に減少し、内
部層ではサイアロンが生成していることがわかった。
The composition of the cross section of the thus obtained sintered body was analyzed, and it was found that MgO was 100% in the surface layer.
It was found that MgO decreased almost continuously from the surface layer to the intermediate layer, and sialon was generated in the inner layer.

【0019】この焼結体について、温度1300℃にお
ける3点曲げ強度、1700℃における耐酸化性につい
て夫々調べた。その結果、1300℃における3点曲げ
強度は42Kgf/mm2 であり、1700℃における酸
化試験による組織は変化なし、という良好な結果が得ら
れた。 実施例 2
Three-point bending strength at a temperature of 1300 ° C. and oxidation resistance at a temperature of 1700 ° C. were examined for each of the sintered bodies. As a result, the three-point bending strength at 1300 ° C was 42 Kgf / mm 2 That is, the good result that the structure by the oxidation test at 1700 ° C. did not change was obtained. Example 2

【0020】実施例1におけるMgOの代りにAl2
3 を添加し、得られた焼結体に対して1300℃におけ
る3点曲げ強度および1600℃における耐酸化性につ
いて夫々調べた。その結果、1300℃における3点曲
げ強度は42Kgf/mm2 であり、1700℃における
酸化試験後の組織は変化なし、という良好な結果が得ら
れた。 比較例
In place of MgO in Example 1, Al 2 O
3 was added, and the obtained sintered body was examined for three-point bending strength at 1300 ° C. and oxidation resistance at 1600 ° C., respectively. As a result, the three-point bending strength at 1300 ° C was 42 Kgf / mm 2 That is, the good result that the structure after the oxidation test at 1700 ° C. did not change was obtained. Comparative example

【0021】実施例1および実施例2で内部層用に用い
た粉末のみを使用し、得られた焼結体に対して実施例1
と同様に成形、焼結および試験を行った。その結果、1
300℃での3点曲げ強度は42Kgf/mm2 であった
が、1700℃での酸化試験では組織がかなり侵蝕され
た。
Only the powder used for the inner layer in Examples 1 and 2 was used, and Example 1 was applied to the obtained sintered body.
Molding, sintering and testing were performed in the same manner as in. As a result, 1
3-point bending strength at 300 ° C is 42 Kgf / mm 2 However, in the oxidation test at 1700 ° C., the tissue was considerably eroded.

【0022】[0022]

【発明の効果】以上説明したように第一および第二の発
明の傾斜機能材料は、高温での耐酸化性および強度に優
れ、また内部層である酸化物の濃度が傾斜しているため
に熱膨脹係数の差によるそり、曲りのなどの不具合の発
生を抑制できて高温材料用のセラミックスとして最適で
あり、しかも経済的なプレス法を採用して作製すること
ができる。
As described above, the functionally graded materials of the first and second inventions are excellent in oxidation resistance and strength at high temperature, and the concentration of the oxide as the inner layer is graded. It is possible to suppress the occurrence of defects such as warpage and bending due to the difference in thermal expansion coefficient, and it is suitable as a ceramic for high-temperature materials, and it can be manufactured by adopting an economical pressing method.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は第一および第二の発明にかかわる傾斜
機能材料の構成を示す図。(b)は同傾斜機能材料にお
ける酸化物の濃度分布を示す線図。
FIG. 1A is a diagram showing a configuration of a functionally gradient material according to the first and second inventions. FIG. 6B is a diagram showing the concentration distribution of oxide in the functionally gradient material.

【図2】(a)は第一および第二の発明の傾斜機能材料
の構成を示す図。(b)は同傾斜機能材料における酸化
物の濃度分布を示す線図。
FIG. 2A is a diagram showing a configuration of a functionally gradient material of the first and second inventions. FIG. 6B is a diagram showing the concentration distribution of oxide in the functionally gradient material.

【符号の説明】[Explanation of symbols]

1…表面層、2…内部層、3…中間層。 1 ... surface layer, 2 ... internal layer, 3 ... intermediate layer.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/04 Z 8924−4G 35/10 Z 8924−4G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical indication C04B 35/04 Z 8924-4G 35/10 Z 8924-4G

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 2種類以上の組成からなる複合材料で、
その表面層がMgO、内部がサイアロン系セラミックス
であり、これらMgO層とサイアロン系セラミックス層
との間の組成が順次変化することを特徴とする傾斜機能
材料。
1. A composite material composed of two or more compositions,
A functionally graded material characterized in that its surface layer is MgO and its inside is sialon-based ceramic, and the composition between these MgO layer and sialon-based ceramic layer changes sequentially.
【請求項2】 2種類以上の組成からなる複合材料で、
その表面層がAl23 、内部がサイアロン系セラミッ
クスであり、これらAl2 3 層とサイアロン系セラミ
ックス層との間の組成が順次変化することを特徴とする
傾斜機能材料。
2. A composite material composed of two or more compositions,
A functionally graded material characterized in that its surface layer is Al 2 O 3 and its inside is sialon-based ceramics, and the composition between these Al 2 O 3 layer and sialon-based ceramics layer changes sequentially.
JP4128968A 1992-05-21 1992-05-21 Functionally gradient material Pending JPH05319937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4128968A JPH05319937A (en) 1992-05-21 1992-05-21 Functionally gradient material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4128968A JPH05319937A (en) 1992-05-21 1992-05-21 Functionally gradient material

Publications (1)

Publication Number Publication Date
JPH05319937A true JPH05319937A (en) 1993-12-03

Family

ID=14997866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4128968A Pending JPH05319937A (en) 1992-05-21 1992-05-21 Functionally gradient material

Country Status (1)

Country Link
JP (1) JPH05319937A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080270A (en) * 2000-06-30 2002-03-19 Kyocera Corp Corrosion resistant member
JP2010153085A (en) * 2008-12-24 2010-07-08 Tokyo Electron Ltd Organic electronic device and manufacturing method of organic electronic device, and manufacturing apparatus of organic electronic device
WO2012056876A1 (en) * 2010-10-25 2012-05-03 日本碍子株式会社 Ceramic material, member for semiconductor manufacturing apparatus, sputtering target member and method for producing ceramic material
WO2012056875A1 (en) * 2010-10-25 2012-05-03 日本碍子株式会社 Ceramic material, laminate, member for semiconductor manufacturing apparatus, and sputtering target member
JP2013193932A (en) * 2012-03-21 2013-09-30 Ngk Insulators Ltd Method for producing ceramic material, ceramic material, and sputtering target member

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080270A (en) * 2000-06-30 2002-03-19 Kyocera Corp Corrosion resistant member
JP2010153085A (en) * 2008-12-24 2010-07-08 Tokyo Electron Ltd Organic electronic device and manufacturing method of organic electronic device, and manufacturing apparatus of organic electronic device
JP5680665B2 (en) * 2010-10-25 2015-03-04 日本碍子株式会社 Heating device
WO2012056917A1 (en) * 2010-10-25 2012-05-03 日本碍子株式会社 Heating device
US8597776B2 (en) 2010-10-25 2013-12-03 Ngk Insulators, Ltd. Ceramic material, laminate, member for use in semiconductor manufacturing equipment, and sputtering target member
JPWO2012056914A1 (en) * 2010-10-25 2014-03-20 日本碍子株式会社 Heating device
WO2012056915A1 (en) * 2010-10-25 2012-05-03 日本碍子株式会社 Electrostatic chuck
WO2012056916A1 (en) * 2010-10-25 2012-05-03 日本碍子株式会社 Heating device
WO2012056807A1 (en) * 2010-10-25 2012-05-03 日本碍子株式会社 Ceramic material, laminated body, member for semiconductor manufacturing device, and sputtering target member
WO2012056808A1 (en) * 2010-10-25 2012-05-03 日本碍子株式会社 Ceramic material, member for semiconductor manufacturing device, sputtering target member, and manufacturing method for ceramic material
WO2012056914A1 (en) * 2010-10-25 2012-05-03 日本碍子株式会社 Heating device
CN102639464A (en) * 2010-10-25 2012-08-15 日本碍子株式会社 Ceramic material, laminated body, member for semiconductor manufacturing device, and sputtering target member
CN103201236A (en) * 2010-10-25 2013-07-10 日本碍子株式会社 Heating device
US8541328B2 (en) 2010-10-25 2013-09-24 Ngk Insulators, Ltd. Ceramic material, member for semiconductor manufacturing equipment, sputtering target member and method for producing ceramic material
US9437463B2 (en) 2010-10-25 2016-09-06 Ngk Insulators, Ltd. Heating device
WO2012056875A1 (en) * 2010-10-25 2012-05-03 日本碍子株式会社 Ceramic material, laminate, member for semiconductor manufacturing apparatus, and sputtering target member
WO2012056918A1 (en) * 2010-10-25 2012-05-03 日本碍子株式会社 Electrostatic chuck
JPWO2012056875A1 (en) * 2010-10-25 2014-03-20 日本碍子株式会社 Ceramic material, laminate, member for semiconductor manufacturing apparatus, and sputtering target member
JPWO2012056917A1 (en) * 2010-10-25 2014-03-20 日本碍子株式会社 Heating device
JP5680645B2 (en) * 2010-10-25 2015-03-04 日本碍子株式会社 Ceramic material, laminate, member for semiconductor manufacturing apparatus, and sputtering target member
JP5680663B2 (en) * 2010-10-25 2015-03-04 日本碍子株式会社 Heating device
WO2012056876A1 (en) * 2010-10-25 2012-05-03 日本碍子株式会社 Ceramic material, member for semiconductor manufacturing apparatus, sputtering target member and method for producing ceramic material
US9184081B2 (en) 2010-10-25 2015-11-10 Ngk Insulators, Ltd. Electrostatic chuck
US9202718B2 (en) 2010-10-25 2015-12-01 Ngk Insulators, Ltd. Electrostatic chuck
US9245775B2 (en) 2010-10-25 2016-01-26 Ngk Insulators, Ltd. Heating device
US9287144B2 (en) 2010-10-25 2016-03-15 Ngk Insulators, Ltd. Heating device
CN105679663A (en) * 2010-10-25 2016-06-15 日本碍子株式会社 Ceramic material, laminated body, member for semiconductor manufacturing device, and sputtering target member
JP2013193932A (en) * 2012-03-21 2013-09-30 Ngk Insulators Ltd Method for producing ceramic material, ceramic material, and sputtering target member

Similar Documents

Publication Publication Date Title
JPS638071B2 (en)
JP2730245B2 (en) Method for producing silicon carbide / silicon nitride composite sintered body
JPH05319937A (en) Functionally gradient material
JP3091085B2 (en) Rare earth silicate based sintered body and method for producing the same
JPS6050750B2 (en) Silicon nitride composite sintered body
JP3231944B2 (en) Method for manufacturing silicon nitride heat-resistant member
JP2736386B2 (en) Silicon nitride sintered body
JPH0244784B2 (en)
JP2675187B2 (en) Gradient silicon nitride composite material and method of manufacturing the same
JPH0196067A (en) Production of aluminum nitride sintered body
JPH025711B2 (en)
JPH0648849A (en) Ceramic composite material
US20060014624A1 (en) High dielectric strength monolithic Si3N4
JPH0632658A (en) Silicon nitride-based sintered compact
JP2828583B2 (en) Surface-coated silicon nitride heat-resistant member
JP2614061B2 (en) Nitride composite ceramics
JPH05117065A (en) Composite sintered product and its production
JP2581128B2 (en) Alumina-sialon composite sintered body
JP3677360B2 (en) Method for producing silicon nitride sintered body
JP3216973B2 (en) Silicon nitride sintered body and method for producing the same
JP2001130983A (en) Silicon nitride sintered compact
JPH04311610A (en) Tappet shim made of inclining function ceramic
JPS62148370A (en) Manufacture of high oxidation-resistance silicon nitride base ceramics
JPS6319473B2 (en)
JPH02175665A (en) Production of sintered silicon nitride-based compact