JP2013095644A - Polycrystalline ceramic joined body, and method for manufacturing the same - Google Patents

Polycrystalline ceramic joined body, and method for manufacturing the same Download PDF

Info

Publication number
JP2013095644A
JP2013095644A JP2011241535A JP2011241535A JP2013095644A JP 2013095644 A JP2013095644 A JP 2013095644A JP 2011241535 A JP2011241535 A JP 2011241535A JP 2011241535 A JP2011241535 A JP 2011241535A JP 2013095644 A JP2013095644 A JP 2013095644A
Authority
JP
Japan
Prior art keywords
polycrystalline ceramic
base material
sio
joined body
zro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011241535A
Other languages
Japanese (ja)
Other versions
JP5789177B2 (en
Inventor
Masataka Murata
征隆 村田
Keisuke Watanabe
敬祐 渡邉
Mitsuhiro Fujita
光広 藤田
Yasuhiro Yasumoto
泰啓 安本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2011241535A priority Critical patent/JP5789177B2/en
Publication of JP2013095644A publication Critical patent/JP2013095644A/en
Application granted granted Critical
Publication of JP5789177B2 publication Critical patent/JP5789177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polycrystalline ceramic joined body having high strength, causing little deformation of a polycrystalline ceramic substrate, and hardly generating contamination even when being used as a member for a production apparatus of a semiconductor or a liquid crystal, and to provide a method for manufacturing the same.SOLUTION: This polycrystalline ceramic joined body is formed by joining a first polycrystalline ceramic substrate containing YOas a major phase with a second polycrystalline ceramic substrate containing AlOor YOas a major phase through a joining layer, wherein the joining layer comprises a composite oxide containing at least three kinds of oxides selected from YO, AlO, SiOand ZrO.

Description

本発明は、多結晶セラミックス接合体およびその製造方法に関し、詳しくは、半導体や液晶製造の際に使用される多結晶セラミックス接合体およびその製造方法に関するものである。   The present invention relates to a polycrystalline ceramic joined body and a method for producing the same, and more particularly to a polycrystalline ceramic joined body used in manufacturing a semiconductor or a liquid crystal and a method for producing the same.

半導体や液晶の製造工程では、一般的に、フッ素や塩素等のハロゲン系腐食性ガスのプラズマを用いたプラズマ処理が行われている。プラズマ処理は、たとえば、半導体製造のドライエッチングプロセスやプラズマコーティング等の工程で用いられる。   In the manufacturing process of semiconductors and liquid crystals, plasma processing using plasma of halogen-based corrosive gas such as fluorine or chlorine is generally performed. The plasma treatment is used, for example, in a process such as a dry etching process or plasma coating in semiconductor manufacturing.

プラズマは、通常、電子温度およびイオン衝撃エネルギーが高い。このため、プラズマ処理装置内の内壁等のプラズマに接触する部材には、プラズマによる腐食を防止するために、高い耐プラズマ性が要求される。   Plasma typically has a high electron temperature and ion bombardment energy. For this reason, high plasma resistance is required for a member in contact with plasma, such as an inner wall in the plasma processing apparatus, in order to prevent corrosion due to plasma.

従来、このような耐プラズマ性が高い材料としては、イットリアや高純度アルミナ等が用いられてきた。しかし、イットリアや高純度アルミナは高価であるため、プラズマに接触する部材の全体をイットリアや高純度アルミナで作製すると部材のコストが高くなる。   Conventionally, yttria, high-purity alumina or the like has been used as such a material having high plasma resistance. However, since yttria and high-purity alumina are expensive, the cost of the member increases if the entire member that contacts the plasma is made of yttria or high-purity alumina.

そこで、プラズマに接触する部材のうち、プラズマに曝される必要な部分のみをイットリアや高純度アルミナ等の耐プラズマ性の高い材料で作製するとともに、プラズマにさらされない部分を汎用アルミナ等の安価な材料で作製し、両者を接合して多結晶セラミックス接合体を得ることが提案されている。   Therefore, among the members that come into contact with the plasma, only the necessary parts exposed to the plasma are made of a material having high plasma resistance such as yttria and high-purity alumina, and the parts that are not exposed to the plasma are inexpensive such as general-purpose alumina. It has been proposed that a polycrystalline ceramic joined body is obtained by producing the materials and joining them together.

多結晶セラミックス接合体において、イットリアや高純度アルミナ等の耐プラズマ性の高い部材と、汎用アルミナ等の耐プラズマ性の高くない部材とは、たとえば、有機系の接着剤や、無機系のナノ粉末等を用いて焼結したり、金属ろう等を用いたりすることにより接合される。   In a polycrystalline ceramic joined body, a member having high plasma resistance such as yttria or high-purity alumina and a member having low plasma resistance such as general-purpose alumina include, for example, organic adhesives and inorganic nano-powder. Or the like by using a metal braze or the like.

また、多結晶セラミックス接合体は、異なるセラミックス材料の焼成前の成形体同士を接触させ、焼成して接合することによっても、得ることができる。   Moreover, a polycrystalline ceramic joined body can also be obtained by bringing molded bodies before firing of different ceramic materials into contact with each other, firing and joining them.

たとえば、特許文献1(特開2002−192655号公報)には、セラミック基材と、周期律表第2族や第3族元素を主成分とする耐食性焼結体とを、セラミック基材と耐食性焼結体との相互拡散層を介して接合した多結晶セラミックス接合体が記載されている。   For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2002-192655) discloses a ceramic base material and a corrosion-resistant sintered body mainly composed of Group 2 and Group 3 elements of the periodic table, and ceramic base material and corrosion resistance. A polycrystalline ceramic joined body joined via an interdiffusion layer with a sintered body is described.

この多結晶セラミックス接合体は、セラミック基材の原料となるセラミック基材成形体と、耐食性焼結体の原料となる耐食性焼結体成形体とを用いて複合成形体を形成し、焼成して相互拡散層を形成することにより、セラミック基材と耐食性焼結体とを接合したものである。   This polycrystalline ceramic joined body is formed by forming a composite formed body using a ceramic base body formed as a raw material for a ceramic base and a corrosion-resistant sintered body formed as a raw material for a corrosion-resistant sintered body, followed by firing. A ceramic base material and a corrosion-resistant sintered body are joined by forming an interdiffusion layer.

特開2002−192655号公報JP 2002-192655 A

しかし、有機系接着剤や金属ろうを用いて接合した多結晶セラミックス接合体は、半導体や液晶の製造装置中で使用したときに、接着剤に起因するダストやコンタミネーション、脱ガス等が発生して、製造装置中のウェーハ等を汚染するという課題があった。   However, when used in semiconductor and liquid crystal manufacturing equipment, polycrystalline ceramics bonded with an organic adhesive or metal brazing will generate dust, contamination, and degassing due to the adhesive. Thus, there has been a problem of contaminating wafers and the like in the manufacturing apparatus.

これに対し、ナノ粉末を用いて接合した多結晶セラミックス接合体は、半導体や液晶の製造装置中で使用しても不純物等は低レベルに抑えられる。しかし、ナノ粉末を用いて接合した多結晶セラミックス接合体は、接合強度が低いために破損しやすいという課題があった。   On the other hand, even if the polycrystalline ceramic joined body joined using nanopowder is used in a semiconductor or liquid crystal manufacturing apparatus, impurities and the like can be suppressed to a low level. However, the polycrystalline ceramic joined body joined using the nano powder has a problem that it is easily damaged because of its low joining strength.

また、異なる材質を直接接合した多結晶セラミックス接合体は、材質間の熱膨張差等により、剥がれが発生しやすいという課題があった。   In addition, there has been a problem that a polycrystalline ceramic joined body obtained by directly joining different materials is likely to be peeled off due to a difference in thermal expansion between the materials.

なお、多結晶セラミックス接合体の接合強度を高くするためには、より高温で焼成して接合する方法も考えられる。しかし、より高温で焼成すると、多結晶セラミックス基材に変形(クリープ)が発生易いという課題があった。   In order to increase the bonding strength of the polycrystalline ceramic bonded body, a method of bonding by baking at a higher temperature is also conceivable. However, when firing at higher temperatures, there is a problem that deformation (creep) is likely to occur in the polycrystalline ceramic substrate.

本発明は、上記事情に鑑みてなされたものであり、高強度で、多結晶セラミックス基材の変形が少なく、半導体や液晶の製造装置用部材として使用されてもコンタミネーションの発生が少ない多結晶セラミックス接合体およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and has high strength, little deformation of a polycrystalline ceramic base material, and low occurrence of contamination even when used as a member for a semiconductor or liquid crystal manufacturing apparatus. An object of the present invention is to provide a ceramic joined body and a method for producing the same.

本発明の多結晶セラミックス接合体およびその製造方法は、Yを主体相として含む第1の多結晶セラミックス基材と、AlまたはYを主体相として含む第2の多結晶セラミックス基材とを接合する接合層を、Y、Al、SiOおよびZrOから選ばれる3種類以上の酸化物を含む複合酸化物とすると、高強度で、多結晶セラミックス基材の変形が少なく、半導体や液晶の製造装置用部材として使用されてもコンタミネーションの発生が少ない多結晶セラミックス接合体が得られることを見出して完成されたものである。 The polycrystalline ceramic joined body and the method for producing the same according to the present invention include a first polycrystalline ceramic base material containing Y 2 O 3 as a main phase, and a second crystal containing Al 2 O 3 or Y 2 O 3 as a main phase. When the bonding layer for bonding the polycrystalline ceramic base material is a complex oxide containing three or more kinds of oxides selected from Y 2 O 3 , Al 2 O 3 , SiO 2 and ZrO 2 , high strength, It has been completed by finding that a polycrystalline ceramic joined body can be obtained in which the deformation of the crystalline ceramic base material is small and the occurrence of contamination is small even when used as a member for a semiconductor or liquid crystal manufacturing apparatus.

本発明の多結晶セラミックス接合体は、上記問題点を解決するものであり、Yを主体相として含む第1の多結晶セラミックス基材と、AlまたはYを主体相として含む第2の多結晶セラミックス基材とが、接合層を介して接合された多結晶セラミックス接合体であって、前記接合層は、Y、Al、SiOおよびZrOから選ばれる少なくとも3種類の酸化物を含む複合酸化物からなることを特徴とする。 The polycrystalline ceramic joined body of the present invention solves the above-mentioned problems, and mainly comprises a first polycrystalline ceramic base material containing Y 2 O 3 as a main phase, and Al 2 O 3 or Y 2 O 3 . The second polycrystalline ceramic base material included as a phase is a polycrystalline ceramic joined body joined via a joining layer, wherein the joining layer comprises Y 2 O 3 , Al 2 O 3 , SiO 2 and ZrO. It consists of a complex oxide containing at least three kinds of oxides selected from 2 .

また、本発明の多結晶セラミックス接合体の製造方法は、上記問題点を解決するものであり、Yを主体相として含む第1の多結晶セラミックス基材と、AlまたはYを主体相として含む第2の多結晶セラミックス基材とを、接着剤を介して接着し、熱処理して接合する多結晶セラミックス接合体の製造方法であって、前記接着剤は、Y、Al、SiOおよびZrOから選ばれる少なくとも3種類の酸化物を含む接着剤であることを特徴とする。 In addition, the method for producing a polycrystalline ceramic joined body of the present invention solves the above-described problems, and includes a first polycrystalline ceramic base material containing Y 2 O 3 as a main phase, and Al 2 O 3 or Y A method of manufacturing a polycrystalline ceramic joined body in which a second polycrystalline ceramic base material containing 2 O 3 as a main phase is bonded via an adhesive and heat-treated to join, wherein the adhesive is Y It is an adhesive containing at least three kinds of oxides selected from 2 O 3 , Al 2 O 3 , SiO 2 and ZrO 2 .

本発明の多結晶セラミックス接合体およびその製造方法によれば、高強度で、多結晶セラミックス基材の変形が少なく、半導体や液晶の製造装置用部材として使用されてもコンタミネーションの発生が少ない多結晶セラミックス接合体およびその製造方法が得られる。   According to the polycrystalline ceramic joined body and the method for producing the same of the present invention, the high strength, the deformation of the polycrystalline ceramic base material is small, and the occurrence of contamination is small even when used as a member for a semiconductor or liquid crystal production apparatus. A crystal ceramic joined body and a method for producing the same are obtained.

[多結晶セラミックス接合体]
本発明の多結晶セラミックス接合体は、第1の多結晶セラミックス基材と、第2の多結晶セラミックス基材とが、接合層を介して接合された接合体である。
[Polycrystalline ceramic bonded body]
The polycrystalline ceramic joined body of the present invention is a joined body in which a first polycrystalline ceramic base material and a second polycrystalline ceramic base material are joined via a joining layer.

(第1の多結晶セラミックス基材)
本発明で用いられる第1の多結晶セラミックス基材は、接合層を介して第2の多結晶セラミックス基材と接合される多結晶セラミックス基材である。
(First polycrystalline ceramic substrate)
The 1st polycrystalline ceramic base material used by this invention is a polycrystalline ceramic base material joined with a 2nd polycrystalline ceramic base material through a joining layer.

第1の多結晶セラミックス基材は、Yを主体相として含む多結晶セラミックス基材である。 The first polycrystalline ceramic base material is a polycrystalline ceramic base material containing Y 2 O 3 as a main phase.

ここで、第1の多結晶セラミックス基材がYを主体相として含むとは、第1の多結晶セラミックス基材中のY結晶相の質量比率が最も大きいことを意味する。 Here, the first polycrystalline ceramic base material containing Y 2 O 3 as a main phase means that the mass ratio of the Y 2 O 3 crystalline phase in the first polycrystalline ceramic base material is the largest. .

第1の多結晶セラミックス基材は、従属相として、さらに、たとえばAl、ZrOおよびSiO等の結晶相、またはY、Al、ZrおよびSiから選ばれる元素を2種以上含む酸化物からなる結晶相もしくは非晶質相を含んでいてもよい。 The first polycrystalline ceramic base material further includes, as a subordinate phase, a crystal phase such as Al 2 O 3 , ZrO 2 and SiO 2 , or an oxide containing two or more elements selected from Y, Al, Zr and Si. It may contain a crystalline phase or an amorphous phase comprising a product.

第1の多結晶セラミックス基材は、Y結晶相の質量比率が、通常70〜100質量%、好ましくは90〜100質量%、さらに好ましくは95〜100質量%である。 In the first polycrystalline ceramic substrate, the mass ratio of the Y 2 O 3 crystal phase is usually 70 to 100% by mass, preferably 90 to 100% by mass, and more preferably 95 to 100% by mass.

第1の多結晶セラミックス基材において、Y結晶相の質量比率が上記範囲内にあると、耐プラズマ性が高いため好ましい。 In the first polycrystalline ceramic substrate, it is preferable that the mass ratio of the Y 2 O 3 crystal phase is in the above range because the plasma resistance is high.

(第2の多結晶セラミックス基材)
本発明で用いられる第2の多結晶セラミックス基材は、接合層を介して第1の多結晶セラミックス基材と接合される多結晶セラミックス基材である。
(Second polycrystalline ceramic substrate)
The second polycrystalline ceramic substrate used in the present invention is a polycrystalline ceramic substrate that is bonded to the first polycrystalline ceramic substrate through a bonding layer.

第2の多結晶セラミックス基材は、AlまたはYを主体相として含む多結晶セラミックス基材である。 The second polycrystalline ceramic base material is a polycrystalline ceramic base material containing Al 2 O 3 or Y 2 O 3 as a main phase.

ここで、第2の多結晶セラミックス基材がAlまたはYを主体相として含むとは、第2の多結晶セラミックス基材中のAl結晶相またはY結晶相の質量比率が最も大きいことを意味する。 Here, the second polycrystalline ceramic base material contains Al 2 O 3 or Y 2 O 3 as a main phase means that the Al 2 O 3 crystalline phase or Y 2 O 3 in the second polycrystalline ceramic base material. It means that the mass ratio of the crystal phase is the largest.

以下、第2の多結晶セラミックス基材について、Alを主体相として含む第2の多結晶セラミックス基材と、Yを主体相として含む第2の多結晶セラミックス基材とに分けて説明する。 Hereinafter, for the second polycrystalline ceramic base material, a second polycrystalline ceramic base material containing Al 2 O 3 as a main phase and a second polycrystalline ceramic base material containing Y 2 O 3 as a main phase Separately described.

<Alを主体相として含む第2の多結晶セラミックス基材>
Alを主体相として含む第2の多結晶セラミックス基材とは、第2の多結晶セラミックス基材中のAl結晶相の質量比率が最も大きい多結晶セラミックス基材である。
< Second polycrystalline ceramic substrate containing Al 2 O 3 as a main phase>
The second polycrystalline ceramic base material containing Al 2 O 3 as a main phase is a polycrystalline ceramic base material having the largest mass ratio of the Al 2 O 3 crystalline phase in the second polycrystalline ceramic base material.

Alを主体相として含む第2の多結晶セラミックス基材は、従属相として、さらに、たとえばY、ZrOおよびSiO等の結晶相、またはY、Al、ZrおよびSiから選ばれる元素を2種以上含む酸化物からなる結晶相もしくは非晶質相を含んでいてもよい。 The second polycrystalline ceramic base material containing Al 2 O 3 as a main phase further includes, for example, a crystal phase such as Y 2 O 3 , ZrO 2 and SiO 2 , or Y, Al, Zr and Si as a subordinate phase. A crystalline phase or an amorphous phase made of an oxide containing two or more selected elements may be included.

たとえば、Alを主体相として含む第2の多結晶セラミックス基材には、従属相としてZrO結晶相を含むものと、ZrO結晶相を含まないものとがある。 For example, the second polycrystalline ceramic base material containing Al 2 O 3 as a main phase includes those containing a ZrO 2 crystal phase as a dependent phase and those containing no ZrO 2 crystal phase.

以下、Alを主体相として含む第2の多結晶セラミックス基材について、従属相としてZrO結晶相を含む第2の多結晶セラミックス基材と、ZrO結晶相を含まない第2の多結晶セラミックス基材とに分けて説明する。 Hereinafter, for the second polycrystalline ceramic base material containing Al 2 O 3 as a main phase, a second polycrystalline ceramic base material containing a ZrO 2 crystalline phase as a subordinate phase and a second polycrystalline ceramic base material containing no ZrO 2 crystalline phase The explanation will be divided into the polycrystalline ceramic substrate.

[Alを主体相として含み従属相としてZrOを含む第2の多結晶セラミックス基材]
Alを主体相として含み従属相としてZrOを含む第2の多結晶セラミックス基材とは、第2の多結晶セラミックス基材中のAl結晶相の質量比率が最も大きく、かつZrO結晶相を含む多結晶セラミックス基材である。
[ Second polycrystalline ceramic substrate containing Al 2 O 3 as a main phase and ZrO 2 as a subordinate phase]
The second polycrystalline ceramic base material containing Al 2 O 3 as a main phase and containing ZrO 2 as a subordinate phase has the largest mass ratio of the Al 2 O 3 crystalline phase in the second polycrystalline ceramic base material, And a polycrystalline ceramic substrate containing a ZrO 2 crystal phase.

Alを主体相として含み従属相としてZrOを含む第2の多結晶セラミックス基材は、Al結晶相の質量比率が、通常50〜99質量%、好ましくは70〜99質量%、さらに好ましくは85〜99質量%である。 In the second polycrystalline ceramic base material containing Al 2 O 3 as a main phase and containing ZrO 2 as a dependent phase, the mass ratio of the Al 2 O 3 crystal phase is usually 50 to 99% by mass, preferably 70 to 99% by mass. %, More preferably 85 to 99% by mass.

また、Alを主体相として含み従属相としてZrOを含む第2の多結晶セラミックス基材は、ZrO結晶相の質量比率が、通常1〜50質量%、好ましくは1〜30質量%、さらに好ましくは1〜15質量%である。 In addition, the second polycrystalline ceramic base material containing Al 2 O 3 as a main phase and containing ZrO 2 as a subordinate phase has a mass ratio of the ZrO 2 crystal phase of usually 1 to 50% by mass, preferably 1 to 30% by mass. %, More preferably 1 to 15% by mass.

Alを主体相として含み従属相としてZrO結晶相を含む第2の多結晶セラミックス基材において、Al結晶相およびZrO結晶相の質量比率が上記範囲内にあると、第1の多結晶セラミックス基材との熱膨張率の差が小さいため好ましい。 In the second polycrystalline ceramic substrate including Al 2 O 3 as a main phase and a ZrO 2 crystal phase as a subordinate phase, when the mass ratio of the Al 2 O 3 crystal phase and the ZrO 2 crystal phase is within the above range, This is preferable because the difference in coefficient of thermal expansion with the first polycrystalline ceramic substrate is small.

[Alを主体相として含みZrOを含まない第2の多結晶セラミックス基材]
Alを主体相として含みZrOを含まない第2の多結晶セラミックス基材とは、第2の多結晶セラミックス基材中のAl結晶相の質量比率が最も大きく、かつZrOを実質的に含まない多結晶セラミックス基材である。
[ Second polycrystalline ceramic base material containing Al 2 O 3 as a main phase and not containing ZrO 2 ]
The second polycrystalline ceramic base material containing Al 2 O 3 as a main phase and not containing ZrO 2 has the largest mass ratio of the Al 2 O 3 crystalline phase in the second polycrystalline ceramic base material, and ZrO 2. 2 is a polycrystalline ceramic substrate substantially free of 2 .

Alを主体相として含みZrOを含まない第2の多結晶セラミックス基材は、Al結晶相の質量比率が、通常90質量%以上、好ましくは95〜100質量%、さらに好ましくは99〜100質量%である。 In the second polycrystalline ceramic base material containing Al 2 O 3 as a main phase and not containing ZrO 2 , the mass ratio of the Al 2 O 3 crystal phase is usually 90% by mass or more, preferably 95 to 100% by mass, Preferably it is 99-100 mass%.

Alを主体相として含みZrOを含まない第2の多結晶セラミックス基材において、Al結晶相の質量比率が上記範囲内にあると、接合材との密着性(親和性)が高く、基材の強度も高いため好ましい。 In the second polycrystalline ceramic base material containing Al 2 O 3 as a main phase and not containing ZrO 2 , if the mass ratio of the Al 2 O 3 crystal phase is within the above range, adhesion to the bonding material (affinity) ) Is high and the strength of the substrate is also high, which is preferable.

<Yを主体相として含む第2の多結晶セラミックス基材>
を主体相として含む第2の多結晶セラミックス基材とは、第2の多結晶セラミックス基材中のY結晶相の質量比率が最も大きい多結晶セラミックス基材である。
< Second polycrystalline ceramic base material containing Y 2 O 3 as a main phase>
The second polycrystalline ceramic substrate containing Y 2 O 3 as a main phase is a polycrystalline ceramic substrate having the largest mass ratio of the Y 2 O 3 crystalline phase in the second polycrystalline ceramic substrate.

を主体相として含む第2の多結晶セラミックス基材は、従属相として、さらに、たとえばAl、ZrOおよびSiO等の結晶相、またはY、Al、ZrおよびSiから選ばれる元素を2種以上含む酸化物からなる結晶相もしくは非晶質相を含んでいてもよい。 The second polycrystalline ceramic base material containing Y 2 O 3 as a main phase further includes, for example, a crystal phase such as Al 2 O 3 , ZrO 2 and SiO 2 , or Y, Al, Zr and Si as a dependent phase. A crystalline phase or an amorphous phase made of an oxide containing two or more selected elements may be included.

を主体相として含む第2の多結晶セラミックス基材は、Y結晶相の質量比率が、通常90〜100質量%、好ましくは95〜100質量%、さらに好ましくは99〜100質量%である。 In the second polycrystalline ceramic substrate containing Y 2 O 3 as a main phase, the mass ratio of the Y 2 O 3 crystal phase is usually 90 to 100% by mass, preferably 95 to 100% by mass, more preferably 99 to 99%. 100% by mass.

を主体相として含む第2の多結晶セラミックス基材において、Y結晶相の質量比率が上記範囲内にあると、接合材との密着性(親和性)が高いため好ましい。 In the second polycrystalline ceramic base material containing Y 2 O 3 as a main phase, it is preferable that the mass ratio of the Y 2 O 3 crystal phase is in the above range because adhesion (affinity) with the bonding material is high. .

なお、第2の多結晶セラミックス基材がYを主体相として含む多結晶セラミックス基材である場合、この第2の多結晶セラミックス基材と第1の多結晶セラミックス基材とは、Yを主体相として含む多結晶セラミックス基材である点で一致する。 In addition, when the second polycrystalline ceramic substrate is a polycrystalline ceramic substrate containing Y 2 O 3 as a main phase, the second polycrystalline ceramic substrate and the first polycrystalline ceramic substrate are: This coincides with a polycrystalline ceramic base material containing Y 2 O 3 as a main phase.

このため、Yを主体相として含む多結晶セラミックス基材同士を接合層を介して接合した多結晶セラミックス接合体においては、いずれの多結晶セラミックス基材を、第1の多結晶セラミックス基材または第2の多結晶セラミックス基材と決定するかが問題となる。 For this reason, in the polycrystalline ceramic joined body in which the polycrystalline ceramic base materials containing Y 2 O 3 as a main phase are joined via the joining layer, any of the polycrystalline ceramic base materials is used as the first polycrystalline ceramic base. The problem is whether to determine the material or the second polycrystalline ceramic substrate.

この場合は、Yを主体相として含む多結晶セラミックス基材のいずれか一方を適宜第1の多結晶セラミックス基材と決定し、他方の多結晶セラミックス基材を第2の多結晶セラミックス基材と決定すればよい。 In this case, one of the polycrystalline ceramic substrates containing Y 2 O 3 as a main phase is appropriately determined as the first polycrystalline ceramic substrate, and the other polycrystalline ceramic substrate is used as the second polycrystalline ceramic substrate. What is necessary is just to determine with a base material.

(第1の多結晶セラミックス基材と第2の多結晶セラミックス基材との平均熱膨張率の差)
第1の多結晶セラミックス基材と第2の多結晶セラミックス基材とは、第1の多結晶セラミックス基材の20〜900℃の平均熱膨張率と、第2の多結晶セラミックス基材の20〜900℃の平均熱膨張率との差が小さいと、多結晶セラミックス接合体が接合層で破断し難いため好ましい。
(Difference in average thermal expansion coefficient between the first polycrystalline ceramic substrate and the second polycrystalline ceramic substrate)
The first polycrystalline ceramic substrate and the second polycrystalline ceramic substrate are an average coefficient of thermal expansion of 20 to 900 ° C. of the first polycrystalline ceramic substrate and 20 of the second polycrystalline ceramic substrate. When the difference from the average coefficient of thermal expansion of ˜900 ° C. is small, it is preferable because the polycrystalline ceramic joined body hardly breaks at the joining layer.

具体的には、第1の多結晶セラミックス基材の20〜900℃の平均熱膨張率と第2の多結晶セラミックス基材の20〜900℃の平均熱膨張率との差の絶対値が、第1または第2の多結晶セラミックス基材の20〜900℃の平均熱膨張率の大きい方の値に対して、通常10%以下、好ましくは5%以下、さらに好ましくは2%以下である。   Specifically, the absolute value of the difference between the average thermal expansion coefficient of 20 to 900 ° C. of the first polycrystalline ceramic substrate and the average thermal expansion coefficient of 20 to 900 ° C. of the second polycrystalline ceramic substrate is: It is usually 10% or less, preferably 5% or less, more preferably 2% or less with respect to the larger value of the average thermal expansion coefficient of 20 to 900 ° C. of the first or second polycrystalline ceramic substrate.

第1の多結晶セラミックス基材の20〜900℃の平均熱膨張率と第2の多結晶セラミックス基材の20〜900℃の平均熱膨張率との差の絶対値が上記範囲内にあると、多結晶セラミックス基材同士の熱膨張差による内部応力が小さいため、接合の際に接合層で破断し難くなる。   When the absolute value of the difference between the average thermal expansion coefficient of 20 to 900 ° C. of the first polycrystalline ceramic substrate and the average thermal expansion coefficient of 20 to 900 ° C. of the second polycrystalline ceramic substrate is within the above range. Since the internal stress due to the difference in thermal expansion between the polycrystalline ceramic substrates is small, it becomes difficult to break at the bonding layer during bonding.

一方、第1の多結晶セラミックス基材の20〜900℃の平均熱膨張率と第2の多結晶セラミックス基材の20〜900℃の平均熱膨張率との差の絶対値が10%を越えると、多結晶セラミックス基材同士の熱膨張差による内部応力が大きいため、接合の際に接合層で破断し易くなる。   On the other hand, the absolute value of the difference between the average coefficient of thermal expansion of 20 to 900 ° C. of the first polycrystalline ceramic substrate and the average coefficient of thermal expansion of 20 to 900 ° C. of the second polycrystalline ceramic substrate exceeds 10%. Since the internal stress due to the difference in thermal expansion between the polycrystalline ceramic base materials is large, the joining layer easily breaks during joining.

(接合層)
接合層は、Y、Al、SiOおよびZrOから選ばれる少なくとも3種類の酸化物を含む複合酸化物からなり、この複合酸化物により、第1の多結晶セラミックス基材と第2の多結晶セラミックス基材とを接合する。
(Bonding layer)
The bonding layer is made of a complex oxide containing at least three kinds of oxides selected from Y 2 O 3 , Al 2 O 3 , SiO 2 and ZrO 2 , and the first polycrystalline ceramic substrate is formed from the complex oxide. And the second polycrystalline ceramic substrate are joined together.

接合層を構成する複合酸化物は、Y、AlおよびSiOからなるY−Al−SiO系複合酸化物、またはY、Al、SiOおよびZrOからなるY−Al−SiO−ZrO系複合酸化物であると、耐プラズマ性が高いため好ましい。 The composite oxide constituting the bonding layer is Y 2 O 3 —Al 2 O 3 —SiO 2 based composite oxide composed of Y 2 O 3 , Al 2 O 3 and SiO 2 , or Y 2 O 3 , Al 2 O. 3 , Y 2 O 3 —Al 2 O 3 —SiO 2 —ZrO 2 -based composite oxide composed of SiO 2 and ZrO 2 is preferable because of its high plasma resistance.

なお、本発明では、プラズマ処理の際に接合層を構成する複合酸化物からY、Al、SiおよびZr等の元素単体からなるコンタミネーションが発生する可能性がある。しかし、Y、Al、SiおよびZr等のコンタミネーションは、半導体製造のドライエッチングプロセスやプラズマコーティング等のプラズマ処理をあまり妨害しないため、特に問題とならない。   In the present invention, there is a possibility that contamination composed of simple elements such as Y, Al, Si and Zr may occur from the composite oxide constituting the bonding layer during the plasma treatment. However, contamination such as Y, Al, Si and Zr is not particularly problematic because it does not interfere much with plasma processing such as dry etching process and plasma coating in semiconductor manufacturing.

<Y−Al−SiO系複合酸化物>
接合層を構成する複合酸化物がY、AlおよびSiOからなるY−Al−SiO系複合酸化物である場合、Y−Al−SiO系複合酸化物は、Y100質量部に対して、Alを、通常5〜400質量部、好ましくは50〜350質量部、さらに好ましくは50〜200質量部含む。
<Y 2 O 3 -Al 2 O 3 -SiO 2 composite oxide>
When the composite oxide constituting the bonding layer is a Y 2 O 3 —Al 2 O 3 —SiO 2 composite oxide composed of Y 2 O 3 , Al 2 O 3 and SiO 2 , Y 2 O 3 —Al 2 The O 3 —SiO 2 composite oxide is typically 5 to 400 parts by weight, preferably 50 to 350 parts by weight, and more preferably 50 to 200 parts by weight of Al 2 O 3 with respect to 100 parts by weight of Y 2 O 3. Including parts.

また、Y−Al−SiO系複合酸化物は、Y100質量部に対して、SiOを、通常40〜1000質量部、好ましくは100〜800質量部、さらに好ましくは100〜500質量部含む。 Further, Y 2 O 3 -Al 2 O 3 -SiO 2 based composite oxide, with respect to Y 2 O 3 100 parts by weight, the SiO 2, usually 40 to 1,000 parts by weight, preferably 100 to 800 parts by weight, More preferably, it contains 100 to 500 parts by mass.

接合層を構成するY−Al−SiO系複合酸化物中のAlおよびSiOの含有量が上記範囲内にあると、多結晶セラミックス接合体の耐プラズマ性および4点曲げ強度が高くなる。ここで、4点曲げ強度とは、JIS R 1601に準拠した4点曲げ強度を意味する。 When the content of Al 2 O 3 and SiO 2 in the Y 2 O 3 —Al 2 O 3 —SiO 2 composite oxide constituting the bonding layer is within the above range, the plasma resistance of the polycrystalline ceramic bonded body And 4-point bending strength becomes high. Here, the 4-point bending strength means a 4-point bending strength based on JIS R 1601.

一方、接合層を構成するY−Al−SiO系複合酸化物中のAlおよびSiOの含有量が上記範囲外にあると、複合酸化物の融点が高くなりすぎるために、接合が困難になる、接合の際に多結晶セラミックス基材の変形が生じる、接合強度が低下する等の問題が生じやすくなる。 On the other hand, when the content of Al 2 O 3 and SiO 2 in the Y 2 O 3 —Al 2 O 3 —SiO 2 composite oxide constituting the bonding layer is outside the above range, the composite oxide has a high melting point. Therefore, problems such as difficulty in joining, deformation of the polycrystalline ceramic base material during joining, and reduction in joining strength are likely to occur.

接合層を構成するY−Al−SiO系複合酸化物は、AlおよびSiOの含有量がそれぞれ上記範囲内にあると、多結晶セラミックス接合体の耐プラズマ性および4点曲げ強度がより高くなるため好ましい。 The Y 2 O 3 —Al 2 O 3 —SiO 2 based composite oxide constituting the bonding layer has plasma resistance of the polycrystalline ceramic bonded body when the contents of Al 2 O 3 and SiO 2 are within the above ranges, respectively. This is preferable because the properties and the four-point bending strength are higher.

<Y−Al−SiO−ZrO系複合酸化物>
接合層を構成する複合酸化物がY、Al、SiOおよびZrOからなるY−Al−SiO−ZrO系複合酸化物である場合、Y−Al−SiO−ZrO系複合酸化物は、Y100質量部に対して、Alを、通常5〜400質量部、好ましくは50〜350質量部、さらに好ましくは50〜200質量部含む。
<Y 2 O 3 -Al 2 O 3 -SiO 2 -ZrO 2 composite oxide>
When the composite oxide constituting the bonding layer is a Y 2 O 3 —Al 2 O 3 —SiO 2 —ZrO 2 composite oxide composed of Y 2 O 3 , Al 2 O 3 , SiO 2 and ZrO 2 , Y 2 O 3 —Al 2 O 3 —SiO 2 —ZrO 2 -based composite oxide is usually 5 to 400 parts by mass, preferably 50 to 350 parts by mass of Al 2 O 3 with respect to 100 parts by mass of Y 2 O 3. Part, more preferably 50 to 200 parts by mass.

また、Y−Al−SiO−ZrO系複合酸化物は、Y100質量部に対して、SiOを、通常40〜1000質量部、好ましくは100〜800質量部、さらに好ましくは100〜500質量部含む。 In addition, the Y 2 O 3 —Al 2 O 3 —SiO 2 —ZrO 2 -based composite oxide has a SiO 2 content of usually 40 to 1000 parts by mass, preferably 100 to 800 parts per 100 parts by mass of Y 2 O 3. Part by mass, more preferably 100 to 500 parts by mass are included.

さらに、Y−Al−SiO−ZrO系複合酸化物は、Y100質量部に対して、ZrOを、通常0.001〜1000質量部、好ましくは100〜800質量部含む、さらに好ましくは200〜600質量部含む。 Further, the Y 2 O 3 —Al 2 O 3 —SiO 2 —ZrO 2 -based composite oxide has a ZrO 2 content of usually 0.001 to 1000 parts by mass, preferably 100 to 100 parts by mass of Y 2 O 3. -800 mass parts is contained, More preferably, 200-600 mass parts is contained.

接合層を構成するY−Al−SiO−ZrO系複合酸化物中のAl、SiOおよびZrOの含有量が上記範囲内にあると、多結晶セラミックス接合体の耐プラズマ性が高くなる。 When the content of Al 2 O 3 , SiO 2 and ZrO 2 in the Y 2 O 3 —Al 2 O 3 —SiO 2 —ZrO 2 composite oxide constituting the bonding layer is within the above range, polycrystalline ceramics The plasma resistance of the joined body is increased.

一方、接合層を構成するY−Al−SiO−ZrO系複合酸化物中のAl、SiOおよびZrOの含有量が上記範囲外にあると、複合酸化物の融点が高くなりすぎるために、接合が困難になる、接合の際に多結晶セラミックス基材の変形が生じる、接合強度が低下する等の問題が生じやすくなる。 On the other hand, if the content of Al 2 O 3 , SiO 2 and ZrO 2 in the Y 2 O 3 —Al 2 O 3 —SiO 2 —ZrO 2 -based composite oxide constituting the bonding layer is outside the above range, the composite Since the melting point of the oxide becomes too high, it becomes difficult to join, problems such as deformation of the polycrystalline ceramic base material during joining, and a reduction in joining strength tend to occur.

接合層を構成するY−Al−SiO−ZrO系複合酸化物は、Al、SiOおよびZrOの含有量がそれぞれ上記範囲内にあると、多結晶セラミックス接合体の耐プラズマ性がより高くなるため好ましい。 The Y 2 O 3 —Al 2 O 3 —SiO 2 —ZrO 2 -based composite oxide constituting the bonding layer is polycrystalline when the contents of Al 2 O 3 , SiO 2 and ZrO 2 are within the above ranges, respectively. This is preferable because the plasma resistance of the ceramic joined body becomes higher.

<接合層の厚さ>
接合層は、厚さが、通常5〜500μm、好ましくは25〜400μm、さらに好ましくは30〜250μmである。
<Junction layer thickness>
The bonding layer has a thickness of usually 5 to 500 μm, preferably 25 to 400 μm, and more preferably 30 to 250 μm.

接合層の厚さが上記範囲内にあると、接合強度が高く、かつ接合層にクラックや破断が生じ難い接合層が得られる。   When the thickness of the bonding layer is within the above range, it is possible to obtain a bonding layer that has high bonding strength and is less likely to crack or break in the bonding layer.

一方、接合層の厚さが500μmを超えると、接合層にクラックや破断が生じ易くなる。また、接合層の厚さが5μm未満であると、接合強度が低くなるおそれがある。   On the other hand, if the thickness of the bonding layer exceeds 500 μm, the bonding layer is likely to be cracked or broken. Moreover, there exists a possibility that joining strength may become it low that the thickness of a joining layer is less than 5 micrometers.

本発明の多結晶セラミックス接合体は、たとえば、半導体製造装置用または液晶製造装置用の多結晶セラミックス接合体として、使用することができる。   The polycrystalline ceramic joined body of the present invention can be used as, for example, a polycrystalline ceramic joined body for a semiconductor manufacturing apparatus or a liquid crystal manufacturing apparatus.

[多結晶セラミックス接合体の製造方法]
本発明の多結晶セラミックス接合体の製造方法は、第1の多結晶セラミックス基材と、第2の多結晶セラミックス基材とを、接着剤を介して接着し、熱処理して接合する方法である。
[Production method of polycrystalline ceramic joined body]
The method for producing a polycrystalline ceramic joined body according to the present invention is a method in which a first polycrystalline ceramic base material and a second polycrystalline ceramic base material are bonded via an adhesive and heat-treated to join them. .

本発明の多結晶セラミックス接合体の製造方法に用いられる第1の多結晶セラミックス基材および第2の多結晶セラミックス基材は、本発明の多結晶セラミックス接合体で説明したものと同じであるため、説明を省略する。   The first polycrystalline ceramic base material and the second polycrystalline ceramic base material used in the method for producing a polycrystalline ceramic joined body of the present invention are the same as those explained in the polycrystalline ceramic joined body of the present invention. The description is omitted.

(接着剤)
本発明で用いられる接着剤は、Y、Al、SiOおよびZrOから選ばれる少なくとも3種類の酸化物を含む接着剤である。
(adhesive)
The adhesive used in the present invention is an adhesive containing at least three kinds of oxides selected from Y 2 O 3 , Al 2 O 3 , SiO 2 and ZrO 2 .

接着剤は、たとえば、Y、Al、SiOおよびZrOから選ばれる少なくとも3種類の酸化物と、水とを混合してペースト状にすることにより得られる。 The adhesive is obtained, for example, by mixing at least three kinds of oxides selected from Y 2 O 3 , Al 2 O 3 , SiO 2 and ZrO 2 with water to form a paste.

接着剤は、Y、Al、SiOおよび水を含むY−Al−SiO系接着剤、またはY、Al、SiO、ZrOおよび水を含むY−Al−SiO−ZrO系接着剤であると、耐プラズマ性が高い接合層が得られるため好ましい。 Adhesives, Y 2 O 3, Al 2 O 3, including SiO 2 and water Y 2 O 3 -Al 2 O 3 -SiO 2 based adhesive, or Y 2 O 3, Al 2 O 3, SiO 2, A Y 2 O 3 —Al 2 O 3 —SiO 2 —ZrO 2 -based adhesive containing ZrO 2 and water is preferable because a bonding layer having high plasma resistance can be obtained.

接着剤の原料として用いられるY、Al、SiOおよびZrOは、接着剤を第1の多結晶セラミックス基材または第2の多結晶セラミックス基材の接着面に塗布しやすいように、粉末状であることが好ましい。 Y 2 O 3 , Al 2 O 3 , SiO 2 and ZrO 2 used as raw materials for the adhesive are obtained by applying the adhesive to the bonding surface of the first polycrystalline ceramic substrate or the second polycrystalline ceramic substrate. It is preferable that it is powdery so that it may be easy.

<Y−Al−SiO系接着剤>
接着剤がY−Al−SiO系接着剤である場合、接着剤は、Y、AlおよびSiOを、接合層を構成するY−Al−SiO系複合酸化物と同じ質量比率で含む。
<Y 2 O 3 -Al 2 O 3 -SiO 2 based adhesive>
When the adhesive is a Y 2 O 3 —Al 2 O 3 —SiO 2 -based adhesive, the adhesive includes Y 2 O 3 , Al 2 O 3, and SiO 2 , and Y 2 O 3 − constituting the bonding layer. The Al 2 O 3 —SiO 2 composite oxide is included at the same mass ratio.

すなわち、Y−Al−SiO系接着剤は、Y100質量部に対して、Alを、通常5〜400質量部、好ましくは50〜350質量部、さらに好ましくは50〜200質量部含む。 That is, the Y 2 O 3 —Al 2 O 3 —SiO 2 -based adhesive is usually 5 to 400 parts by mass, preferably 50 to 350 parts by mass of Al 2 O 3 with respect to 100 parts by mass of Y 2 O 3. More preferably, it contains 50 to 200 parts by mass.

また、Y−Al−SiO系接着剤は、Y100質量部に対して、SiOを、通常40〜1000質量部、好ましくは100〜800質量部、さらに好ましくは100〜500質量部含む。 Further, Y 2 O 3 -Al 2 O 3 -SiO 2 based adhesive, to the Y 2 O 3 100 parts by weight, the SiO 2, usually 40 to 1,000 parts by weight, preferably 100 to 800 parts by weight, more Preferably it contains 100-500 mass parts.

−Al−SiO系接着剤中のAlおよびSiOの含有量が上記範囲内にあると、多結晶セラミックス接合体の耐プラズマ性および4点曲げ強度が高くなる。 When the content of Al 2 O 3 and SiO 2 in the Y 2 O 3 —Al 2 O 3 —SiO 2 adhesive is within the above range, the plasma resistance and the four-point bending strength of the polycrystalline ceramic joined body are reduced. Get higher.

一方、Y−Al−SiO系接着剤中のAlおよびSiOの含有量が上記範囲外にあると、接着剤を焼成して得られる複合酸化物の融点が高くなりすぎるために、接合が困難になる、接合の際に多結晶セラミックス基材の変形が生じる、接合強度が低下する等の問題が生じやすくなる。 On the other hand, when the content of Al 2 O 3 and SiO 2 in the Y 2 O 3 —Al 2 O 3 —SiO 2 adhesive is outside the above range, the melting point of the composite oxide obtained by firing the adhesive Therefore, the bonding becomes difficult, the polycrystalline ceramic base material is deformed during the bonding, and the bonding strength is lowered.

−Al−SiO系接着剤は、AlおよびSiOの含有量がそれぞれ上記範囲内にあると、得られる多結晶セラミックス接合体の耐プラズマ性および4点曲げ強度がより高くなるため好ましい。 The Y 2 O 3 —Al 2 O 3 —SiO 2 -based adhesive has 4 points of plasma resistance and 4 points of the resulting polycrystalline ceramic joined body when the contents of Al 2 O 3 and SiO 2 are within the above ranges, respectively. Since bending strength becomes higher, it is preferable.

<Y−Al−SiO−ZrO系接着剤>
接着剤がY−Al−SiO−ZrO系接着剤である場合、接着剤は、Y、Al、SiOおよびZrOを、接合層を構成するY−Al−SiO−ZrO系複合酸化物と同じ質量比率で含む。
<Y 2 O 3 -Al 2 O 3 -SiO 2 -ZrO 2 based adhesive>
When the adhesive is a Y 2 O 3 —Al 2 O 3 —SiO 2 —ZrO 2 adhesive, the adhesive comprises Y 2 O 3 , Al 2 O 3 , SiO 2 and ZrO 2 to form a bonding layer. Y 2 O 3 —Al 2 O 3 —SiO 2 —ZrO 2 -based composite oxide is included at the same mass ratio.

すなわち、Y−Al−SiO−ZrO系接着剤は、Y100質量部に対して、Alを、通常5〜400質量部、好ましくは50〜350質量部、さらに好ましくは50〜200質量部含む。 That is, the Y 2 O 3 —Al 2 O 3 —SiO 2 —ZrO 2 -based adhesive is usually 5 to 400 parts by mass, preferably 50 to 100 parts by mass of Al 2 O 3 with respect to 100 parts by mass of Y 2 O 3. 350 mass parts, More preferably, it contains 50-200 mass parts.

また、Y−Al−SiO−ZrO系接着剤は、Y100質量部に対して、SiOを、通常40〜1000質量部、好ましくは100〜800質量部、さらに好ましくは100〜500質量部含む。 The Y 2 O 3 —Al 2 O 3 —SiO 2 —ZrO 2 -based adhesive is usually 40 to 1000 parts by mass, preferably 100 to 800 parts by mass of SiO 2 with respect to 100 parts by mass of Y 2 O 3. Parts, more preferably 100 to 500 parts by mass.

さらに、Y−Al−SiO−ZrO系接着剤は、Y100質量部に対して、ZrOを、通常0.001〜1000質量部、好ましくは100〜800質量部含む、さらに好ましくは200〜600質量部含む。 Further, the Y 2 O 3 —Al 2 O 3 —SiO 2 —ZrO 2 -based adhesive is usually 0.001 to 1000 parts by mass, preferably 100 to 100 parts by mass of ZrO 2 with respect to 100 parts by mass of Y 2 O 3. It contains 800 parts by mass, more preferably 200-600 parts by mass.

−Al−SiO−ZrO系接着剤中のAl、SiOおよびZrOの含有量が上記範囲内にあると、多結晶セラミックス接合体の耐プラズマ性が高くなる。 When the content of Al 2 O 3 , SiO 2 and ZrO 2 in the Y 2 O 3 —Al 2 O 3 —SiO 2 —ZrO 2 adhesive is within the above range, the plasma resistance of the polycrystalline ceramic joined body Becomes higher.

一方、Y−Al−SiO−ZrO系接着剤中のAl、SiOおよびZrOの含有量が上記範囲外にあると、接着剤を焼成して得られる複合酸化物の融点が高くなりすぎるために、接合が困難になる、接合の際に多結晶セラミックス基材の変形が生じる、接合強度が低下する等の問題が生じやすくなる。 On the other hand, when the content of Al 2 O 3 , SiO 2 and ZrO 2 in the Y 2 O 3 —Al 2 O 3 —SiO 2 —ZrO 2 adhesive is outside the above range, the adhesive is fired. Since the melting point of the composite oxide is too high, it becomes difficult to join, the polycrystalline ceramic base material is deformed during the joining, and the joining strength is liable to be lowered.

−Al−SiO−ZrO系接着剤は、Al、SiOおよびZrOの含有量がそれぞれ上記範囲内にあると、得られる多結晶セラミックス接合体の耐プラズマ性がより高くなるため好ましい。 Y 2 O 3 —Al 2 O 3 —SiO 2 —ZrO 2 -based adhesive has the following contents when the contents of Al 2 O 3 , SiO 2 and ZrO 2 are within the above ranges. This is preferable because the plasma resistance becomes higher.

<接着剤層の厚さ>
接着剤は、第1の多結晶セラミックス基材または第2の多結晶セラミックス基材の接着面に塗布される。
<Thickness of adhesive layer>
The adhesive is applied to the bonding surface of the first polycrystalline ceramic substrate or the second polycrystalline ceramic substrate.

接着剤が塗布されてなる接着剤層は、厚さが、通常5〜500μm、好ましくは25〜400μm、さらに好ましくは30〜250μmである。   The adhesive layer to which the adhesive is applied has a thickness of usually 5 to 500 μm, preferably 25 to 400 μm, and more preferably 30 to 250 μm.

接着剤層は、第1の多結晶セラミックス基材および第2の多結晶セラミックス基材とともに酸化炉等で熱処理されることにより、Y、Al、SiOおよびZrOから選ばれる少なくとも3種類の酸化物を含む複合酸化物からなる接合層となる。 The adhesive layer is selected from Y 2 O 3 , Al 2 O 3 , SiO 2 and ZrO 2 by being heat-treated in an oxidation furnace or the like together with the first polycrystalline ceramic substrate and the second polycrystalline ceramic substrate. The bonding layer is made of a composite oxide containing at least three kinds of oxides.

熱処理の温度は、通常1400〜1700℃、好ましくは1400〜1600℃、さらに好ましくは1450〜1550℃である。熱処理の温度が、上記範囲内にあると、接合層の接合強度が高いため好ましい。また、熱処理の時間は、通常1〜10時間、好ましくは3〜6時間である。   The temperature of heat processing is 1400-1700 degreeC normally, Preferably it is 1400-1600 degreeC, More preferably, it is 1450-1550 degreeC. It is preferable that the temperature of the heat treatment be in the above range because the bonding strength of the bonding layer is high. Moreover, the time of heat processing is 1 to 10 hours normally, Preferably it is 3 to 6 hours.

以下に実施例を示すが、本発明はこれらに限定されて解釈されるものではない。   Examples are shown below, but the present invention is not construed as being limited thereto.

[実施例1−1]
(多結晶セラミックス接合体の作製)
<第1の多結晶セラミックス基材>
第1の多結晶セラミックス基材として、イットリア(Y)のみからなる平板状のイットリア多結晶セラミックス基材を用意した(基材A−1)。
基材A−1について、20〜900℃における平均熱膨張率を測定した。
20〜900℃における平均熱膨張率(1/K)は、JIS R 1618に準拠して測定したものである。
[Example 1-1]
(Production of polycrystalline ceramic joined body)
<First polycrystalline ceramic substrate>
As the first polycrystalline ceramic base material, a plate-like yttria polycrystalline ceramic base material made only of yttria (Y 2 O 3 ) was prepared (base material A-1).
About the base material A-1, the average thermal expansion coefficient in 20-900 degreeC was measured.
The average coefficient of thermal expansion (1 / K) at 20 to 900 ° C. is measured in accordance with JIS R 1618.

表1に、基材A−1の組成を示す。

Figure 2013095644
Table 1 shows the composition of the substrate A-1.
Figure 2013095644

<第2の多結晶セラミックス基材>
第2の多結晶セラミックス基材として、アルミナ(Al)のみからなる平板状のアルミナ多結晶セラミックス基材を用意した(基材B−1)。
また、基材B−1について、基材A−1と同様にして、20〜900℃における平均熱膨張率を測定した。
<Second polycrystalline ceramic substrate>
As the second polycrystalline ceramic base material, a plate-like alumina polycrystalline ceramic base material made only of alumina (Al 2 O 3 ) was prepared (base material B-1).
Moreover, about the base material B-1, it carried out similarly to base material A-1, and measured the average thermal expansion coefficient in 20-900 degreeC.

表2に、基材B−1の組成を示す。

Figure 2013095644
Table 2 shows the composition of the substrate B-1.
Figure 2013095644

<平均熱膨張率の差の比率>
基材A−1の20〜900℃における平均熱膨張率と、基材B−1の20〜900℃における平均熱膨張率とから差を求め、この差を絶対値として表した。
この平均熱膨張率の差の絶対値を、基材A−1の20〜900℃における平均熱膨張率と基材B−1の20〜900℃における平均熱膨張率のうちの大きい方の値で除して、平均熱膨張率の差の比率(%)を算出した。
<接着剤>
接着剤として、イットリア(Y)粉末100質量部と、アルミナ(Al)粉末200質量部と、シリカ(SiO)粉末400質量部とを、水とともに混合して、イットリア、アルミナおよびシリカを含むペーストを作製した。
<第1および第2の多結晶セラミックス基材の接合>
基材A−1の表面に接着剤であるペーストを、焼成後の接合層の厚さが200μmになるように塗布し、このペーストが塗布された表面に基材B−1を載置して、基材A−1と基材B−1とが接着剤で仮接着された仮接着体を作製した。
この仮接着体を、大気中、1500℃で5時間熱処理したところ、基材A−1と基材B−1とが接合層で接合された多結晶セラミックス接合体が得られた。
(多結晶セラミックス接合体の評価)
得られた多結晶セラミックス接合体について、JIS R 1601に準じて、4点曲げ強度を測定した。4点曲げ強度測定用のサンプルは、多結晶セラミックス接合体の接合層が破断面になるように作製した。
表3に、基材の種類と平均熱膨張率の差の比率を示す。表4に、ペースト中の酸化物の組成、接合層の厚さ、および4点曲げ強度の測定結果を示す。
なお、以下に示す実施例および比較例についても、表3に基材の種類と平均熱膨張率の差の比率を示し、表4にペースト中の酸化物の組成、接合層の厚さ、および4点曲げ強度の測定結果を示した。
<Ratio of difference in average thermal expansion coefficient>
The difference was calculated | required from the average thermal expansion coefficient in 20-900 degreeC of the base material A-1 and the average thermal expansion coefficient in 20-900 degreeC of the base material B-1, and this difference was represented as an absolute value.
The absolute value of the difference in average coefficient of thermal expansion is the larger of the average coefficient of thermal expansion of the base material A-1 at 20 to 900 ° C. and the average coefficient of thermal expansion of the base material B-1 at 20 to 900 ° C. The ratio (%) of the difference in average thermal expansion coefficient was calculated by dividing by.
<Adhesive>
As an adhesive, 100 parts by mass of yttria (Y 2 O 3 ) powder, 200 parts by mass of alumina (Al 2 O 3 ) powder, and 400 parts by mass of silica (SiO 2 ) powder are mixed with water, and yttria, A paste containing alumina and silica was prepared.
<Joining of the first and second polycrystalline ceramic substrates>
A paste as an adhesive is applied on the surface of the base material A-1 so that the thickness of the bonding layer after firing becomes 200 μm, and the base material B-1 is placed on the surface to which the paste is applied. Then, a temporary bonded body in which the base A-1 and the base B-1 were temporarily bonded with an adhesive was produced.
When this temporary adhesion body was heat-processed in air | atmosphere at 1500 degreeC for 5 hours, the polycrystalline-ceramics joined body by which the base material A-1 and the base material B-1 were joined by the joining layer was obtained.
(Evaluation of bonded polycrystalline ceramics)
The obtained polycrystalline ceramic joined body was measured for four-point bending strength according to JIS R 1601. The sample for measuring the 4-point bending strength was prepared so that the bonding layer of the polycrystalline ceramic bonded body had a fracture surface.
Table 3 shows the ratio of the difference between the type of base material and the average thermal expansion coefficient. Table 4 shows the measurement results of the oxide composition in the paste, the thickness of the bonding layer, and the 4-point bending strength.
In addition, also about the Example and comparative example which are shown below, Table 3 shows the ratio of the difference of the kind of base material and an average thermal expansion coefficient, Table 4 shows the composition of the oxide in paste, the thickness of a joining layer, and The measurement results of 4-point bending strength are shown.

Figure 2013095644
Figure 2013095644

Figure 2013095644
Figure 2013095644

[実施例1−2〜1−7]
接着剤であるペースト中の酸化物の組成、または接合層の厚さを表4に示すように変えた以外は実施例1−1と同様にして、多結晶セラミックス接合体を作製した。
得られた多結晶セラミックス接合体について、実施例1−1と同様にして4点曲げ強度を測定した。
[Examples 1-2 to 1-7]
A polycrystalline ceramic joined body was produced in the same manner as in Example 1-1 except that the composition of the oxide in the paste as the adhesive or the thickness of the joining layer was changed as shown in Table 4.
About the obtained polycrystalline ceramic joined body, the 4-point bending strength was measured in the same manner as in Example 1-1.

[実施例1−8]
<第1の多結晶セラミックス基材>
第1の多結晶セラミックス基材として、イットリア(Y)のみからなる平板状のイットリア多結晶セラミックス基材を用意した(基材A−2)。
基材A−2について、基材A−1と同様にして20〜900℃における平均熱膨張率を測定した。
表1に、基材A−2の組成を示す。
<第2の多結晶セラミックス基材>
第2の多結晶セラミックス基材として、アルミナ(Al)のみからなる平板状のアルミナ多結晶セラミックス基材を用意した(基材B−2)。
基材B−2について、基材A−1と同様にして20〜900℃における平均熱膨張率を測定した。
表2に、基材B−2の組成を示す。
<平均熱膨張率の差の比率>
基材A−2および基材B−2について、実施例1−1と同様にして、平均熱膨張率の差の比率を算出した。
<第1および第2の多結晶セラミックス基材の接合>
基材A−1に代えて基材A−2を用いるとともに基材B−1に代えて基材B−2を用いた以外は実施例1−1と同様にして、多結晶セラミックス接合体を作製した。
(多結晶セラミックス接合体の評価)
得られた多結晶セラミックス接合体について、実施例1−1と同様にして4点曲げ強度を測定した。
[Example 1-8]
<First polycrystalline ceramic substrate>
As the first polycrystalline ceramic base material, a plate-shaped yttria polycrystalline ceramic base material made only of yttria (Y 2 O 3 ) was prepared (base material A-2).
About base material A-2, it carried out similarly to base material A-1, and measured the average coefficient of thermal expansion in 20-900 degreeC.
Table 1 shows the composition of the substrate A-2.
<Second polycrystalline ceramic substrate>
As the second polycrystalline ceramic base material, a plate-like alumina polycrystalline ceramic base material made only of alumina (Al 2 O 3 ) was prepared (base material B-2).
About base material B-2, it carried out similarly to base material A-1, and measured the average coefficient of thermal expansion in 20-900 degreeC.
Table 2 shows the composition of the substrate B-2.
<Ratio of difference in average thermal expansion coefficient>
About base material A-2 and base material B-2, it carried out similarly to Example 1-1, and computed the ratio of the difference of an average thermal expansion coefficient.
<Joining of the first and second polycrystalline ceramic substrates>
In the same manner as in Example 1-1 except that the base material A-2 was used instead of the base material A-1 and the base material B-2 was used instead of the base material B-1, a polycrystalline ceramic joined body was obtained. Produced.
(Evaluation of bonded polycrystalline ceramics)
About the obtained polycrystalline ceramic joined body, the 4-point bending strength was measured in the same manner as in Example 1-1.

[実施例1−11〜1−16]
接着剤であるペースト中の酸化物の組成、または接合層の厚さを表4に示すように変えた以外は実施例1−1と同様にして、多結晶セラミックス接合体を作製した。
得られた多結晶セラミックス接合体について、実施例1−1と同様にして4点曲げ強度を測定した。
[Examples 1-11 to 1-16]
A polycrystalline ceramic joined body was produced in the same manner as in Example 1-1 except that the composition of the oxide in the paste as the adhesive or the thickness of the joining layer was changed as shown in Table 4.
About the obtained polycrystalline ceramic joined body, the 4-point bending strength was measured in the same manner as in Example 1-1.

[実施例1−17]
<第1の多結晶セラミックス基材>
第1の多結晶セラミックス基材として、イットリア(Y)のみからなる平板状のイットリア多結晶セラミックス基材を用意した(基材A−3)。
基材A−3について、基材A−1と同様にして20〜900℃における平均熱膨張率を測定した。
表1に、基材A−3の組成を示す。
<第2の多結晶セラミックス基材>
第2の多結晶セラミックス基材として、アルミナ(Al)のみからなる平板状のアルミナ多結晶セラミックス基材を用意した(基材B−3)。
基材B−3について、基材A−1と同様にして20〜900℃における平均熱膨張率を測定した。
表2に、基材B−2の組成を示す。
<平均熱膨張率の差の比率>
基材A−3および基材B−3について、実施例1−1と同様にして、平均熱膨張率の差の比率を算出した。
<第1および第2の多結晶セラミックス基材の接合>
基材A−1に代えて基材A−3を用いるとともに基材B−1に代えて基材B−3を用いた以外は実施例1−1と同様にして、多結晶セラミックス接合体を作製した。
(多結晶セラミックス接合体の評価)
得られた多結晶セラミックス接合体について、実施例1−1と同様にして4点曲げ強度を測定した。
[Example 1-17]
<First polycrystalline ceramic substrate>
As the first polycrystalline ceramic base material, a plate-like yttria polycrystalline ceramic base material made only of yttria (Y 2 O 3 ) was prepared (base material A-3).
About base material A-3, it carried out similarly to base material A-1, and measured the average coefficient of thermal expansion in 20-900 degreeC.
Table 1 shows the composition of the substrate A-3.
<Second polycrystalline ceramic substrate>
As the second polycrystalline ceramic base material, a plate-like alumina polycrystalline ceramic base material made only of alumina (Al 2 O 3 ) was prepared (base material B-3).
About base material B-3, it carried out similarly to base material A-1, and measured the average coefficient of thermal expansion in 20-900 degreeC.
Table 2 shows the composition of the substrate B-2.
<Ratio of difference in average thermal expansion coefficient>
About base material A-3 and base material B-3, it carried out similarly to Example 1-1, and computed the ratio of the difference of an average thermal expansion coefficient.
<Joining of the first and second polycrystalline ceramic substrates>
In the same manner as in Example 1-1 except that the base material A-3 was used instead of the base material A-1 and the base material B-3 was used instead of the base material B-1, a polycrystalline ceramic joined body was obtained. Produced.
(Evaluation of bonded polycrystalline ceramics)
About the obtained polycrystalline ceramic joined body, the 4-point bending strength was measured in the same manner as in Example 1-1.

[実施例2−1]
(多結晶セラミックス接合体の作製)
<第1の多結晶セラミックス基材>
第1の多結晶セラミックス基材として、基材A−1を用いた。
<第2の多結晶セラミックス基材>
第2の多結晶セラミックス基材として、基材B−1を用いた。
<接着剤>
接着剤として、イットリア(Y)粉末100質量部と、アルミナ(Al)粉末200質量部と、シリカ(SiO)粉末400質量部と、ジルコニア(ZrO)粉末300質量部とを、水とともに混合して、イットリア、アルミナ、シリカおよびジルコニアを含むペーストを作製した。
<第1および第2の多結晶セラミックス基材の接合>
上記接着剤を用いた以外は実施例1−1と同様にして、多結晶セラミックス接合体を作製した。
(多結晶セラミックス接合体の評価)
得られた多結晶セラミックス接合体について、実施例1−1と同様にして4点曲げ強度を測定した。
[Example 2-1]
(Production of polycrystalline ceramic joined body)
<First polycrystalline ceramic substrate>
Substrate A-1 was used as the first polycrystalline ceramic substrate.
<Second polycrystalline ceramic substrate>
Substrate B-1 was used as the second polycrystalline ceramic substrate.
<Adhesive>
As an adhesive, 100 parts by mass of yttria (Y 2 O 3 ) powder, 200 parts by mass of alumina (Al 2 O 3 ) powder, 400 parts by mass of silica (SiO 2 ) powder, and 300 parts by mass of zirconia (ZrO 2 ) powder Were mixed with water to prepare a paste containing yttria, alumina, silica and zirconia.
<Joining of the first and second polycrystalline ceramic substrates>
A polycrystalline ceramic joined body was produced in the same manner as in Example 1-1 except that the above adhesive was used.
(Evaluation of bonded polycrystalline ceramics)
About the obtained polycrystalline ceramic joined body, the 4-point bending strength was measured in the same manner as in Example 1-1.

[実施例2−2〜2−9]
接着剤であるペースト中の酸化物の組成、または接合層の厚さを表4に示すように変えた以外は実施例2−1と同様にして、多結晶セラミックス接合体を作製した。
得られた多結晶セラミックス接合体について、実施例2−1と同様にして4点曲げ強度を測定した。
[Examples 2-2 to 2-9]
A polycrystalline ceramic joined body was produced in the same manner as in Example 2-1, except that the composition of the oxide in the paste as the adhesive or the thickness of the joining layer was changed as shown in Table 4.
About the obtained polycrystalline ceramic joined body, the 4-point bending strength was measured in the same manner as in Example 2-1.

[実施例2−10]
<第1の多結晶セラミックス基材>
第1の多結晶セラミックス基材として、基材A−2を用いた。
<第2の多結晶セラミックス基材>
第2の多結晶セラミックス基材として、基材B−2を用いた。
<第1および第2の多結晶セラミックス基材の接合>
基材A−1に代えて基材A−2を用いるとともに基材B−1に代えて基材B−2を用いた以外は実施例2−1と同様にして、多結晶セラミックス接合体を作製した。
(多結晶セラミックス接合体の評価)
得られた多結晶セラミックス接合体について、実施例2−1と同様にして4点曲げ強度を測定した。
[Example 2-10]
<First polycrystalline ceramic substrate>
Substrate A-2 was used as the first polycrystalline ceramic substrate.
<Second polycrystalline ceramic substrate>
Substrate B-2 was used as the second polycrystalline ceramic substrate.
<Joining of the first and second polycrystalline ceramic substrates>
A polycrystalline ceramic joined body was obtained in the same manner as in Example 2-1, except that the base material A-2 was used instead of the base material A-1, and the base material B-2 was used instead of the base material B-1. Produced.
(Evaluation of bonded polycrystalline ceramics)
About the obtained polycrystalline ceramic joined body, the 4-point bending strength was measured in the same manner as in Example 2-1.

[実施例2−11〜2−17]
接着剤であるペースト中の酸化物の組成、または接合層の厚さを表4に示すように変えた以外は実施例2−1と同様にして、多結晶セラミックス接合体を作製した。
得られた多結晶セラミックス接合体について、実施例2−1と同様にして4点曲げ強度を測定した。
[Examples 2-11 to 2-17]
A polycrystalline ceramic joined body was produced in the same manner as in Example 2-1, except that the composition of the oxide in the paste as the adhesive or the thickness of the joining layer was changed as shown in Table 4.
About the obtained polycrystalline ceramic joined body, the 4-point bending strength was measured in the same manner as in Example 2-1.

[実施例2−18]
<第1の多結晶セラミックス基材>
第1の多結晶セラミックス基材として、基材A−3を用いた。
<第2の多結晶セラミックス基材>
第2の多結晶セラミックス基材として、基材B−3を用いた。
<第1および第2の多結晶セラミックス基材の接合>
基材A−1に代えて基材A−3を用いるとともに基材B−1に代えて基材B−3を用いた以外は実施例2−1と同様にして、多結晶セラミックス接合体を作製した。
(多結晶セラミックス接合体の評価)
得られた多結晶セラミックス接合体について、実施例2−1と同様にして4点曲げ強度を測定した。
[Example 2-18]
<First polycrystalline ceramic substrate>
Substrate A-3 was used as the first polycrystalline ceramic substrate.
<Second polycrystalline ceramic substrate>
Substrate B-3 was used as the second polycrystalline ceramic substrate.
<Joining of the first and second polycrystalline ceramic substrates>
In the same manner as in Example 2-1, except that the base material A-3 was used instead of the base material A-1 and the base material B-3 was used instead of the base material B-1, a polycrystalline ceramic joined body was obtained. Produced.
(Evaluation of bonded polycrystalline ceramics)
About the obtained polycrystalline ceramic joined body, the 4-point bending strength was measured in the same manner as in Example 2-1.

[比較例1および2]
接着剤であるペースト中の酸化物の組成、または接合層の厚さを表4に示すように変えた以外は実施例1−1と同様にして、多結晶セラミックス接合体の作製を試みた。
しかし、基材A−1と基材B−1とは、接合できなかった。
[Comparative Examples 1 and 2]
A polycrystalline ceramic joined body was tried in the same manner as in Example 1-1 except that the composition of the oxide in the adhesive paste or the thickness of the joining layer was changed as shown in Table 4.
However, the base material A-1 and the base material B-1 could not be joined.

本発明の多結晶セラミックス接合体およびその製造方法は、たとえば、半導体や液晶製造のためのプラズマ処理の際に使用される多結晶セラミックス接合体に用いることができる。   The polycrystalline ceramic joined body and the method for producing the same according to the present invention can be used, for example, for a polycrystalline ceramic joined body used in plasma processing for manufacturing semiconductors and liquid crystals.

Claims (8)

を主体相として含む第1の多結晶セラミックス基材と、
AlまたはYを主体相として含む第2の多結晶セラミックス基材とが、
接合層を介して接合された多結晶セラミックス接合体であって、
前記接合層は、Y、Al、SiOおよびZrOから選ばれる少なくとも3種類の酸化物を含む複合酸化物からなることを特徴とする多結晶セラミックス接合体。
A first polycrystalline ceramic substrate containing Y 2 O 3 as a main phase;
A second polycrystalline ceramic substrate containing Al 2 O 3 or Y 2 O 3 as a main phase,
A polycrystalline ceramic joined body joined via a joining layer,
The polycrystalline ceramic joined body, wherein the joining layer is made of a composite oxide containing at least three kinds of oxides selected from Y 2 O 3 , Al 2 O 3 , SiO 2 and ZrO 2 .
前記接合層を構成する複合酸化物は、Y、AlおよびSiOからなるY−Al−SiO系複合酸化物であり、
前記複合酸化物は、Y100質量部に対して、Alを5〜400質量部、SiOを40〜1000質量部含むことを特徴とする請求項1に記載の多結晶セラミックス接合体。
The composite oxide constituting the bonding layer is a Y 2 O 3 —Al 2 O 3 —SiO 2 based composite oxide composed of Y 2 O 3 , Al 2 O 3 and SiO 2 .
2. The polycrystal according to claim 1, wherein the composite oxide includes 5 to 400 parts by mass of Al 2 O 3 and 40 to 1000 parts by mass of SiO 2 with respect to 100 parts by mass of Y 2 O 3. Ceramic bonded body.
前記接合層を構成する複合酸化物は、Y、Al、SiOおよびZrOからなるY−Al−SiO−ZrO系複合酸化物であり、
前記複合酸化物は、Y100質量部に対して、Alを5〜400質量部、SiOを40〜1000質量部、ZrOを0.001〜1000質量部含むことを特徴とする請求項1に記載の多結晶セラミックス接合体。
The composite oxide constituting the bonding layer is a Y 2 O 3 —Al 2 O 3 —SiO 2 —ZrO 2 based composite oxide composed of Y 2 O 3 , Al 2 O 3 , SiO 2 and ZrO 2 .
The composite oxide contains 5 to 400 parts by mass of Al 2 O 3 , 40 to 1000 parts by mass of SiO 2 , and 0.001 to 1000 parts by mass of ZrO 2 with respect to 100 parts by mass of Y 2 O 3. The polycrystalline ceramic joined body according to claim 1, wherein
前記第2の多結晶セラミックス基材は、Alを主体相として含む多結晶セラミックス基材であることを特徴とする請求項1〜3のいずれか1項に記載の多結晶セラミックス接合体。 Said second polycrystalline ceramic substrate, a polycrystalline ceramic assembly according to claim 1, characterized in that a polycrystalline ceramic substrate containing Al 2 O 3 as a main phase . 前記第2の多結晶セラミックス基材は、従属相としてZrOを含むことを特徴とする請求項1〜4のいずれか1項に記載の多結晶セラミックス接合体。 The polycrystalline ceramic joined body according to any one of claims 1 to 4, wherein the second polycrystalline ceramic base material contains ZrO 2 as a dependent phase. 前記接合層は、厚さが5〜500μmであることを特徴とする請求項1〜5のいずれか1項に記載の多結晶セラミックス接合体。 The polycrystalline ceramic joined body according to any one of claims 1 to 5, wherein the joining layer has a thickness of 5 to 500 µm. 前記第1の多結晶セラミックス基材の20〜900℃の平均熱膨張率と、前記第2の多結晶セラミックス基材の20〜900℃の平均熱膨張率との差の絶対値が、前記第1または第2の多結晶セラミックス基材の20〜900℃の平均熱膨張率の大きい方の値に対して10%以下であることを特徴とする請求項1〜6のいずれか1項に記載の多結晶セラミックス接合体。 The absolute value of the difference between the average thermal expansion coefficient of 20 to 900 ° C. of the first polycrystalline ceramic substrate and the average thermal expansion coefficient of 20 to 900 ° C. of the second polycrystalline ceramic substrate is the first value. It is 10% or less with respect to the value with the larger average thermal expansion coefficient of 20-900 degreeC of the 1st or 2nd polycrystalline ceramic base material, The any one of Claims 1-6 characterized by the above-mentioned. Polycrystalline ceramic joined body. を主体相として含む第1の多結晶セラミックス基材と、
AlまたはYを主体相として含む第2の多結晶セラミックス基材とを、
接着剤を介して接着し、熱処理して接合する多結晶セラミックス接合体の製造方法であって、
前記接着剤は、Y、Al、SiOおよびZrOから選ばれる少なくとも3種類の酸化物を含む接着剤であることを特徴とする多結晶セラミックス接合体の製造方法。
A first polycrystalline ceramic substrate containing Y 2 O 3 as a main phase;
A second polycrystalline ceramic base material containing Al 2 O 3 or Y 2 O 3 as a main phase;
It is a method for producing a polycrystalline ceramic joined body that is bonded via an adhesive and heat-bonded for bonding,
The method for producing a polycrystalline ceramic joined body, wherein the adhesive is an adhesive containing at least three kinds of oxides selected from Y 2 O 3 , Al 2 O 3 , SiO 2, and ZrO 2 .
JP2011241535A 2011-11-02 2011-11-02 Polycrystalline ceramic joined body and method for producing the same Active JP5789177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011241535A JP5789177B2 (en) 2011-11-02 2011-11-02 Polycrystalline ceramic joined body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011241535A JP5789177B2 (en) 2011-11-02 2011-11-02 Polycrystalline ceramic joined body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013095644A true JP2013095644A (en) 2013-05-20
JP5789177B2 JP5789177B2 (en) 2015-10-07

Family

ID=48617980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011241535A Active JP5789177B2 (en) 2011-11-02 2011-11-02 Polycrystalline ceramic joined body and method for producing the same

Country Status (1)

Country Link
JP (1) JP5789177B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170067274A (en) * 2015-12-08 2017-06-16 한국세라믹기술원 Regeneration method of ceramic member for recycle
WO2019131738A1 (en) * 2017-12-27 2019-07-04 京セラ株式会社 Ceramic composite and member of semiconductor manufacturing device
WO2020116384A1 (en) * 2018-12-05 2020-06-11 京セラ株式会社 Member for plasma processing device and plasma processing device provided with same
WO2024024584A1 (en) * 2022-07-27 2024-02-01 京セラ株式会社 Corrosion-resistant member
JP7507888B2 (en) 2020-05-26 2024-06-28 ヘレーウス コナミック ノース アメリカ エルエルシー Multi-piece plasma-resistant ceramic body

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993844A (en) * 1974-12-30 1976-11-23 Gte Sylvania Incorporated Composite ceramic articles and method of making
JPS638270A (en) * 1986-06-27 1988-01-14 東芝セラミツクス株式会社 Sealing composition
JP2001114555A (en) * 1999-10-12 2001-04-24 Nitsukatoo:Kk Thermal shock-resistant alumina sintered compact and member for heat treatment composed of the same
JP2002080270A (en) * 2000-06-30 2002-03-19 Kyocera Corp Corrosion resistant member
JP2005306651A (en) * 2004-04-20 2005-11-04 Nitsukatoo:Kk Alumina sintered compact having thermal shock resistance and corrosion resistance, heat treatment member comprising the same and method of manufacturing the same
JP2007055853A (en) * 2005-08-25 2007-03-08 Toshiba Ceramics Co Ltd Method of manufacturing ceramic composite material
JP2007246325A (en) * 2006-03-15 2007-09-27 Taiheiyo Cement Corp Ceramic joined body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993844A (en) * 1974-12-30 1976-11-23 Gte Sylvania Incorporated Composite ceramic articles and method of making
JPS638270A (en) * 1986-06-27 1988-01-14 東芝セラミツクス株式会社 Sealing composition
JP2001114555A (en) * 1999-10-12 2001-04-24 Nitsukatoo:Kk Thermal shock-resistant alumina sintered compact and member for heat treatment composed of the same
JP2002080270A (en) * 2000-06-30 2002-03-19 Kyocera Corp Corrosion resistant member
JP2005306651A (en) * 2004-04-20 2005-11-04 Nitsukatoo:Kk Alumina sintered compact having thermal shock resistance and corrosion resistance, heat treatment member comprising the same and method of manufacturing the same
JP2007055853A (en) * 2005-08-25 2007-03-08 Toshiba Ceramics Co Ltd Method of manufacturing ceramic composite material
JP2007246325A (en) * 2006-03-15 2007-09-27 Taiheiyo Cement Corp Ceramic joined body

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170067274A (en) * 2015-12-08 2017-06-16 한국세라믹기술원 Regeneration method of ceramic member for recycle
KR101965223B1 (en) * 2015-12-08 2019-04-03 한국세라믹기술원 Regeneration method of ceramic member for recycle
WO2019131738A1 (en) * 2017-12-27 2019-07-04 京セラ株式会社 Ceramic composite and member of semiconductor manufacturing device
JP7053673B2 (en) 2017-12-27 2022-04-12 京セラ株式会社 Ceramic composites, their manufacturing methods, and components for semiconductor manufacturing equipment
JPWO2019131738A1 (en) * 2017-12-27 2021-01-14 京セラ株式会社 Parts for ceramic composites and semiconductor manufacturing equipment
CN113260732A (en) * 2018-12-05 2021-08-13 京瓷株式会社 Member for plasma processing apparatus and plasma processing apparatus provided with same
KR20210088624A (en) * 2018-12-05 2021-07-14 교세라 가부시키가이샤 Member for plasma processing apparatus and plasma processing apparatus provided with same
JPWO2020116384A1 (en) * 2018-12-05 2021-11-04 京セラ株式会社 A member for a plasma processing device and a plasma processing device including the member.
WO2020116384A1 (en) * 2018-12-05 2020-06-11 京セラ株式会社 Member for plasma processing device and plasma processing device provided with same
JP7165748B2 (en) 2018-12-05 2022-11-04 京セラ株式会社 Member for plasma processing apparatus and plasma processing apparatus provided with the same
KR102621279B1 (en) 2018-12-05 2024-01-05 교세라 가부시키가이샤 Members for plasma processing devices and plasma processing devices comprising the same
JP7507888B2 (en) 2020-05-26 2024-06-28 ヘレーウス コナミック ノース アメリカ エルエルシー Multi-piece plasma-resistant ceramic body
WO2024024584A1 (en) * 2022-07-27 2024-02-01 京セラ株式会社 Corrosion-resistant member

Also Published As

Publication number Publication date
JP5789177B2 (en) 2015-10-07

Similar Documents

Publication Publication Date Title
TW467875B (en) Coated article and method of making
JP5787928B2 (en) Barium and strontium-free vitreous or glass-ceramic bonding materials and their use
JP4648030B2 (en) Yttria sintered body, ceramic member, and method for producing yttria sintered body
JP5307795B2 (en) SEALING MATERIAL, DEVICE USING SUCH MATERIAL, AND METHOD FOR PRODUCING SUCH DEVICE
JP5789177B2 (en) Polycrystalline ceramic joined body and method for producing the same
EP2117765A2 (en) Metal-ceramic composite air braze with ceramic particulate
KR20020003870A (en) Ceramic with zircon coating
CN104711457B (en) High temperature solder and application thereof
JP2001031484A (en) Corrosion-resistant composite member
JP2004203706A (en) Joined product of different kinds of materials and its producing method
Deng et al. Effects of brazing technology on hermeticity of alumina ceramic-metal joint used in nuclear power plants
JPH1174336A (en) Wafer support member
JP2022538093A (en) Small sensor components for harsh environments
JP6285318B2 (en) Bonding material and its use
JP6285271B2 (en) Bonding material and its use
JP4763452B2 (en) Surface-coated ceramic sintered body
JP2012082095A (en) Method of joining two or more ceramic members mutually
US20180231495A1 (en) Sensor element for detecting at least one property of a measuring gas in a measuring gas chamber including a glass ceramic seal
JP2014067834A (en) Electrostatic chuck and manufacturing method of the same
KR20090093819A (en) Sintered body and member used in plasma treatment device
JP2008174443A (en) Ceramic bonded body and method of manufacturing the same
JP4601136B2 (en) Corrosion resistant material
JP4942963B2 (en) Corrosion-resistant member and manufacturing method thereof
CN111448174A (en) Bonded ceramic and method for producing same
KR100730526B1 (en) Joining method for high-purity ceramic parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150731

R150 Certificate of patent or registration of utility model

Ref document number: 5789177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350