JP2002075798A - Solid electrolytic capacitor with anode foil having through-hole, and method for manufacturing the same - Google Patents

Solid electrolytic capacitor with anode foil having through-hole, and method for manufacturing the same

Info

Publication number
JP2002075798A
JP2002075798A JP2000251703A JP2000251703A JP2002075798A JP 2002075798 A JP2002075798 A JP 2002075798A JP 2000251703 A JP2000251703 A JP 2000251703A JP 2000251703 A JP2000251703 A JP 2000251703A JP 2002075798 A JP2002075798 A JP 2002075798A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
solid electrolytic
electrode foil
foil
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000251703A
Other languages
Japanese (ja)
Inventor
Yoichi Shida
洋一 志田
Yoji Horikawa
洋二 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2000251703A priority Critical patent/JP2002075798A/en
Publication of JP2002075798A publication Critical patent/JP2002075798A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a capacitor element of a thin, low-height, laminated type which is superior in high-frequency characteristic and large in electrostatic capacity, and to provide a method for manufacturing the capacitor element. SOLUTION: A cathode electrode foil 2 and an anode electrode foil 1 having a through-hole therein are laminated via a separator, a 3,4-ethylenedioxytiophene oxidizing agent is provided between the both electrode foils, heated and polymerized under a pressure, re-anodized under high-temperature and high-humidity conditions, subjected to water-content removal, thus forming a solid electrolytic layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、大型平板の固体電
解コンデンサおよびその製造方法に関し、特に導電性有
機固体電解質を用いた固体電解コンデンサに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large flat solid electrolytic capacitor and a method for manufacturing the same, and more particularly to a solid electrolytic capacitor using a conductive organic solid electrolyte.

【0002】[0002]

【従来の技術】電解コンデンサは、タンタル、アルミニ
ウム等の弁作用金属からなり微細孔やエッチングピット
を備えた陽極電極の表面に、誘電体となる酸化皮膜層を
形成し、この酸化皮膜層から電極を引き出した構成から
なる。
2. Description of the Related Art An electrolytic capacitor is formed by forming an oxide film layer serving as a dielectric on the surface of an anode electrode made of a valve metal such as tantalum and aluminum and having fine holes and etching pits. Is drawn out.

【0003】そして、酸化皮膜層からの電極の引出し
は、導電性を有する電解質層により行っている。したが
って、電解コンデンサにおいては電解質層が真の陰極を
担うことになる。例えば、アルミニウム電解コンデンサ
では、液状の電解質を真の電極として用い、陰極電極は
この液状電解質層と外部端子との電気的な接続を担って
いるにすぎない。
[0003] The extraction of the electrode from the oxide film layer is performed by a conductive electrolyte layer. Therefore, in the electrolytic capacitor, the electrolyte layer serves as a true cathode. For example, in an aluminum electrolytic capacitor, a liquid electrolyte is used as a true electrode, and a cathode electrode merely serves to electrically connect the liquid electrolyte layer to an external terminal.

【0004】真の陰極として機能する電解質層は、酸化
皮膜層との密着性、緻密性、均一性などが求められる。
特に、陽極電極の微細孔やエッチングピットの内部にお
ける密着性が電気的な特性に大きな影響を及ぼしてお
り、従来数々の電解質層が提案されている。
[0004] The electrolyte layer functioning as a true cathode is required to have adhesion, denseness, uniformity, etc. with the oxide film layer.
In particular, the adhesion in the fine holes of the anode electrode and the inside of the etching pits has a great effect on the electrical characteristics, and a number of electrolyte layers have been proposed.

【0005】固体電解コンデンサは、イオン伝導性を備
えているため高周波領域でのインピーダンス特性に欠け
る液状の電解質層の代わりに、導電性を有する固体の電
解質を用いるもので、なかでも二酸化マンガンや7,
7,8,8−テトラシアノキノジメタン(TCNQ)錯
体が知られている。
[0005] A solid electrolytic capacitor uses a solid electrolyte having conductivity instead of a liquid electrolyte layer lacking impedance characteristics in a high-frequency region because of its ionic conductivity. ,
7,8,8-Tetracyanoquinodimethane (TCNQ) complexes are known.

【0006】二酸化マンガンからなる固体電解質層は、
硝酸マンガン水溶液にタンタルの焼結体からなる陽極素
子を浸漬し、300℃〜400℃前後の温度で熱分解し
て生成している。このような固体電解質層を用いたコン
デンサでは、硝酸マンガンの熱分解時、酸化皮膜層が破
損し易く、そのため漏れ電流が大きくなる傾向が見られ
る。また二酸化マンガン自体の比抵抗が高いためにイン
ピーダンス特性において充分満足できる特性を得ること
も困難である。また熱処理によるリード線損傷も生じる
ため、後工程として接続用の外部端子を別途設ける必要
がある。
[0006] The solid electrolyte layer made of manganese dioxide is
An anode element made of a sintered body of tantalum is immersed in an aqueous solution of manganese nitrate, and is produced by thermal decomposition at a temperature of about 300 to 400 ° C. In a capacitor using such a solid electrolyte layer, the oxide film layer is easily damaged at the time of thermal decomposition of manganese nitrate, and therefore, a tendency for the leakage current to increase is observed. Further, since the specific resistance of manganese dioxide itself is high, it is also difficult to obtain sufficiently satisfactory characteristics in impedance characteristics. In addition, since the lead wire is damaged by the heat treatment, it is necessary to separately provide an external terminal for connection as a later process.

【0007】TCNQ錯体を用いた固体電解コンデンサ
としては、特開昭58−191414号公報に記載され
たものなどが知られており、TCNQ錯体を熱溶融して
陽極電極に浸漬、塗布して固体電解質層を形成してい
る。このTCNQ錯体は、導電性が高く、周波数特性や
温度特性において良好な結果を得ることができる。
As a solid electrolytic capacitor using a TCNQ complex, one disclosed in Japanese Patent Application Laid-Open No. 58-191414 is known. An electrolyte layer is formed. This TCNQ complex has high conductivity and can obtain good results in frequency characteristics and temperature characteristics.

【0008】しかし、TCNQ錯体は溶融後、短時間で
絶縁体に移行する性質があるため、コンデンサの製造過
程における温度管理が困難である。さらに、TCNQ錯
体自体が耐熱性に欠けるため、プリント基板に実装する
際、ハンダ熱により著しい特性変動が見られる。
However, since the TCNQ complex has a property of being transferred to an insulator in a short time after melting, it is difficult to control the temperature during the manufacturing process of the capacitor. Furthermore, since the TCNQ complex itself lacks heat resistance, when mounted on a printed circuit board, remarkable fluctuations in characteristics due to solder heat are observed.

【0009】前記二酸化マンガン及びTCNQ錯体の持
つ不都合を解決するため、ポリピロール等の導電性高分
子を固体電解質層として用いることが試みられている。
In order to solve the disadvantages of the manganese dioxide and TCNQ complex, attempts have been made to use a conductive polymer such as polypyrrole as the solid electrolyte layer.

【0010】ポリピロールに代表される導電性高分子
は、主に化学的酸化重合法(化学重合)や電解酸化重合
法(電解重合)により生成される。ところが、化学重合
では強度の強い皮膜を緻密に生成することは困難であっ
た。一方、電解重合では、皮膜を生成する対象物に電圧
を印加する必要があり、表面に絶縁体である酸化皮膜層
が形成されている電解コンデンサ用陽極電極に適用する
ことは困難である。そのため、酸化皮膜層の表面に、予
め導電性のプレコート層、例えば酸化剤を用いて化学重
合した導電性高分子膜のプレコート層を形成し、その後
このプレコート層を電極として電解重合による電解質層
を形成する方法などが提案されている(特開昭63−1
73313号公報、特開昭63−158829号公報:
二酸化マンガンをプレコート層とする)。
[0010] The conductive polymer represented by polypyrrole is mainly produced by a chemical oxidation polymerization method (chemical polymerization) or an electrolytic oxidation polymerization method (electrolytic polymerization). However, it was difficult to form a strong film densely by chemical polymerization. On the other hand, in the electrolytic polymerization, it is necessary to apply a voltage to an object to form a film, and it is difficult to apply the voltage to an anode electrode for an electrolytic capacitor having an oxide film layer as an insulator formed on the surface. Therefore, on the surface of the oxide film layer, a conductive pre-coat layer, for example, a pre-coat layer of a conductive polymer film chemically polymerized using an oxidizing agent is formed in advance, and then an electrolyte layer by electrolytic polymerization using the pre-coat layer as an electrode. There has been proposed a method of forming the film (Japanese Patent Laid-Open No. 63-1).
No. 73313, JP-A-63-158829:
Manganese dioxide is used as the precoat layer).

【0011】しかし、電解重合では、前記プレコート層
を形成する工程が予め必要となるため製造工程が煩雑と
なるほか、陽極電極の被皮膜面に配置した重合用の外部
電極の近傍部分から固体電解質層が生成されるため、広
範囲にわたって均一な厚さの導電性高分子膜を連続的に
生成することが非常に困難である。
However, in the electrolytic polymerization, the step of forming the pre-coat layer is required in advance, which complicates the manufacturing process. In addition, the solid electrolyte is placed near the external electrode for polymerization disposed on the surface of the anode electrode to be coated. Since the layer is formed, it is very difficult to continuously form a conductive polymer film having a uniform thickness over a wide range.

【0012】そこで、箔状の陽極電極及び陰極電極を、
セパレータを介して巻き取って、いわゆる巻回型のコン
デンサ素子を形成し、このコンデンサ素子にピロール等
のモノマー溶液と酸化剤を含浸し、化学重合のみにより
生成した導電性高分子膜からなる電解質層を形成するこ
とが試みられた。
Therefore, a foil-like anode electrode and a cathode electrode are
Winding through a separator to form a so-called winding type capacitor element, this capacitor element is impregnated with a monomer solution such as pyrrole and an oxidizing agent, and an electrolyte layer consisting of a conductive polymer film formed only by chemical polymerization Has been attempted.

【0013】このような巻回型のコンデンサ素子は、ア
ルミニウム電解コンデンサにおいて周知であるが、導電
性高分子層をセパレータで保持することにより電解重合
の煩雑さを回避するとともに、併せて表面積の大きい箔
状の電極により容量を拡大させることが期待された。
[0013] Such a wound type capacitor element is well known for an aluminum electrolytic capacitor. By holding a conductive polymer layer with a separator, it is possible to avoid the complication of electrolytic polymerization and also to increase the surface area. It was expected that the capacity would be expanded by the foil-like electrode.

【0014】しかし、モノマー溶液と酸化剤とを混合し
た混合溶液をコンデンサ素子に含浸したところ、コンデ
ンサ素子の内部にまで固体電解質層が形成されず、期待
された電気的特性を得ることはできないことが判明し
た。
However, when a capacitor element is impregnated with a mixed solution obtained by mixing a monomer solution and an oxidizing agent, a solid electrolyte layer is not formed inside the capacitor element, and the expected electrical characteristics cannot be obtained. There was found.

【0015】そこで、モノマー溶液と酸化剤を別々に含
浸する方法や、重合反応温度を低くする方法などが試み
られ、ある程度良好な電気的特性を備えた固体電解コン
デンサを得たが、静電容量が十分なものではなく、イン
ピーダンスも高いものになるという問題が残った。その
原因は、前記方法ではコンデンサ素子の端部付近に生成
された固体電解質層が、コンデンサ素子内部への溶液の
浸透を妨害し、結果として緻密で均一な固体電解質層を
形成するには至っていないことによると考えられた。ま
た、重合反応温度を低くした場合、厳重な温度制御が必
要となり、製造装置が複雑になるため、製品コストが高
くなってしまう問題点もあった。
Therefore, a method of separately impregnating the monomer solution and the oxidizing agent, a method of lowering the polymerization reaction temperature, and the like have been tried, and a solid electrolytic capacitor having somewhat good electrical characteristics has been obtained. However, there remains a problem that the impedance is not high enough and the impedance becomes high. The cause is that in the above method, the solid electrolyte layer generated near the end of the capacitor element hinders the penetration of the solution into the inside of the capacitor element, and as a result, it has not been possible to form a dense and uniform solid electrolyte layer It was considered possible. In addition, when the polymerization reaction temperature is lowered, strict temperature control is required, and the production apparatus becomes complicated, resulting in a problem that the product cost is increased.

【0016】本発明者等は、各種の導電性高分子につい
て検討を重ねたところ、反応速度が緩やかで、かつ陽極
電極の酸化皮膜層との密着性に優れたポリエチレンジオ
キシチオフェンに着目し(特開平2−15611号公
報)、その結果、陽極電極箔と陰極電極箔とを、セパレ
ータを介して巻回したコンデンサ素子に、3,4−エチ
レンジオキシチオフェンと酸化剤とを含浸し、その後緩
やかに進行する該モノマーと酸化剤との化学重合反応で
固体電解質であるポリエチレンジオキシチオフェンをコ
ンデンサ素子内部に生成させることを特徴とする発明を
出願した(特願平8−131374号)。この発明によ
り、ポリエチレンジオキシチオフェンの重合反応速度が
緩やかであることを利用し、巻回型のコンデンサ素子の
内部に緻密で均一な導電性高分子からなる固体電解質層
を生成することが可能となり、電気的特性に優れかつ比
較的高い容量の固体電解コンデンサを得た。
The present inventors have repeatedly studied various conductive polymers, and focused on polyethylene dioxythiophene, which has a slow reaction rate and excellent adhesion to the oxide film layer of the anode electrode ( As a result, a capacitor element in which an anode electrode foil and a cathode electrode foil are wound through a separator is impregnated with 3,4-ethylenedioxythiophene and an oxidizing agent. We have applied for an invention characterized in that polyethylene dioxythiophene, which is a solid electrolyte, is generated inside a capacitor element by a chemical polymerization reaction of the monomer and an oxidizing agent which proceeds slowly (Japanese Patent Application No. 8-131374). According to the present invention, it is possible to generate a solid electrolyte layer made of a dense and uniform conductive polymer inside a spirally wound capacitor element, utilizing the fact that the polymerization reaction rate of polyethylene dioxythiophene is slow. Thus, a solid electrolytic capacitor having excellent electric characteristics and a relatively high capacity was obtained.

【0017】[0017]

【発明が解決しようとする課題】しかしながら、上述の
構成の電解コンデンサ素子はいずれも、近年の回路の高
機能化に伴う高耐電圧、高静電容量および平板化への要
求と、さらには優れた高周波特性を有することへの要求
とに対応しきれていない。たとえば巻回型コンデンサ素
子の場合、高容量要求を満たすためには巻回数を増やす
必要があるが、その円筒形の形状のためコンパクトに格
納することが困難となる。
However, all of the electrolytic capacitor elements having the above-mentioned structure are required to have high withstand voltage, high capacitance and flattening due to the recent advancement of the functions of the circuit, and are more excellent. It has not been able to meet the demand for having high frequency characteristics. For example, in the case of a wound-type capacitor element, it is necessary to increase the number of windings in order to satisfy a high capacity requirement, but it is difficult to store it compactly because of its cylindrical shape.

【0018】しかもコンデンサ素子の形状が巻回型であ
る場合、その巻き閉めの力が両極の電極と固体電解質層
との密着性に貢献しているとの示唆はあるが、両極の電
極とセパレータを巻き閉める緊締力を均一にすることは
難しく、さらにこの緊締力を調節することは困難であ
る。このため、密着性の効率は上がらず、十分な静電容
量が得られるに至っていない。
In addition, when the shape of the capacitor element is a wound type, there is a suggestion that the closing force contributes to the adhesion between the bipolar electrode and the solid electrolyte layer. It is difficult to equalize the tightening force for winding and closing, and it is also difficult to adjust this tightening force. For this reason, the efficiency of adhesion is not improved, and sufficient capacitance has not been obtained.

【0019】現在、積層型の固体電解コンデンサにおい
て、高容量要求、高耐電圧要求、平板化の要求及び優れ
た高周波特性を有することへの要求全てを同時に満たす
ことはなされていない。その原因は、高耐電圧要求を満
たすために、陽極箔の誘電体皮膜の厚さを大きくする
と、得られる静電容量が少なくなってしまう。静電容量
を補うためには、陽極箔の誘電体皮膜の面積を広くする
必要が有る。そこで、この高容量要求を満たすために積
層型コンデンサの形状を単に大きくすると、コンデンサ
素子の端部付近に生成された固体電解質層がコンデンサ
素子内部への溶液の浸透を妨害し、積層内部まで溶液を
充分量、均一に浸透させることができない。結果として
緻密で均一な固体電解質層を形成できず、両電極箔と導
電性高分子を密着させることが困難となるため十分な静
電容量が得られないという問題が起きてしまう。
At present, in a multilayer solid electrolytic capacitor, it has not been possible to simultaneously satisfy all the demands for high capacity, high withstand voltage, flattening, and excellent high frequency characteristics. The cause is that when the thickness of the dielectric film of the anode foil is increased to satisfy the high withstand voltage requirement, the obtained capacitance is reduced. In order to compensate for the capacitance, it is necessary to increase the area of the dielectric film of the anode foil. Therefore, if the shape of the multilayer capacitor is simply enlarged to satisfy this high capacity requirement, the solid electrolyte layer generated near the end of the capacitor element will hinder the penetration of the solution into the capacitor element, Cannot be sufficiently penetrated uniformly. As a result, a dense and uniform solid electrolyte layer cannot be formed, and it becomes difficult to adhere both electrode foils to the conductive polymer, which causes a problem that a sufficient capacitance cannot be obtained.

【0020】本発明の目的は、以上のような課題を解決
し、インピーダンス特性を向上させ、高耐電圧性及び高
周波特性に優れ、さらに低周波特性にも優れ、静電容量
が大きくかつ格納が容易な大型平板の積層型固体電解コ
ンデンサおよびその製造方法を提供することである。
An object of the present invention is to solve the above-mentioned problems, improve impedance characteristics, excel in high withstand voltage and high frequency characteristics, and further excel in low frequency characteristics, have a large capacitance, and store data. An object of the present invention is to provide an easy-to-use large flat plate type solid electrolytic capacitor and a method of manufacturing the same.

【0021】[0021]

【課題を解決するための手段】上記目的は、陰極電極箔
と表面に誘電体酸化皮膜を形成しかつ貫通孔を有する陽
極電極箔とをセパレータを介して積層し、前記セパレー
タに3,4−エチレンジオキシチオフェンモノマーと酸
化剤とを含浸させ、加圧下で加熱して該モノマーを重合
し形成した、高耐電圧性、高静電容量、および優れた高
周波特性と低周波特性とを有することを特徴とする大型
平板の固体電解コンデンサによって達成される。
The object of the present invention is to laminate a cathode electrode foil and an anode electrode foil having a dielectric oxide film formed on the surface thereof and having a through-hole through a separator, with the separator having 3,4- Impregnated with an ethylenedioxythiophene monomer and an oxidizing agent, and heated under pressure to polymerize the monomer to have high withstand voltage, high capacitance, and excellent high-frequency and low-frequency characteristics. This is achieved by a large flat solid electrolytic capacitor characterized by the following.

【0022】この電解コンデンサは、陰極電極箔と表面
に誘電体酸化皮膜を形成しかつ貫通孔を有する陽極電極
箔とをセパレータを介して積層し、前記セパレータに
3,4−エチレンジオキシチオフェンモノマーと酸化剤
とを含浸させ、加圧下で加熱して該モノマーを重合する
ことによって製造し得る。
In this electrolytic capacitor, a cathode electrode foil and an anode electrode foil having a dielectric oxide film formed on the surface and having a through hole are laminated via a separator, and a 3,4-ethylenedioxythiophene monomer is formed on the separator. And an oxidizing agent, and heated under pressure to polymerize the monomer.

【0023】[0023]

【発明の実施の形態】陽極電極箔は、アルミニウム、タ
ンタル等の弁作用金属であればいずれを用いても良い
が、通常アルミニウムが使用されている。この陽極電極
箔の表面にはホウ酸アンモニウム等の水溶液中で電圧を
印加して誘電体となる酸化皮膜層を形成し、貫通孔を形
成している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The anode electrode foil may be made of any valve metal such as aluminum or tantalum, but aluminum is usually used. A voltage is applied to the surface of the anode electrode foil in an aqueous solution of ammonium borate or the like to form an oxide film layer serving as a dielectric, thereby forming through holes.

【0024】陽極箔における貫通孔の占める面積比は1
〜50%、特に10〜30%が好ましい。貫通孔の面積
比が1%未満では低周波特性が悪化する。一方、貫通孔
の面積が50%より大きな場合は、陽極箔の表面積が低
下してしまうため、静電容量が減少する。貫通孔の間隔
は1〜5mmが好ましい。貫通孔の形状は、円形、長方
形等任意であり、その大きさは通常、1〜20mm
ある。
The area ratio occupied by the through holes in the anode foil is 1
~ 50%, particularly preferably 10-30%. If the area ratio of the through holes is less than 1%, the low frequency characteristics deteriorate. On the other hand, if the area of the through hole is larger than 50%, the surface area of the anode foil is reduced, and the capacitance is reduced. The distance between the through holes is preferably 1 to 5 mm. The shape of the through-hole is arbitrary such as a circle and a rectangle, and the size is usually 1 to 20 mm 2 .

【0025】陰極電極箔は、リード線と電解質との電気
的な接続をする物質であればいずれでも良く、本発明の
一態様ではアルミニウム等を用いている。さらに、貫通
孔を形成していると、好適である。なお、陰極電極箔の
表面に窒化チタン膜を形成すると静電容量が増大するの
で好適である。
The cathode electrode foil may be any material as long as it can electrically connect the lead wire and the electrolyte. In one embodiment of the present invention, aluminum or the like is used. Further, it is preferable that a through hole is formed. It is preferable to form a titanium nitride film on the surface of the cathode electrode foil because the capacitance increases.

【0026】陽極電極箔及び陰極電極箔にはそれぞれの
電極を外部に接続するためのリード線が、ステッチ、超
音波溶接等の公知の手段により接続されている。このリ
ード線は、アルミニウム等からなり、陽極電極箔、陰極
電極箔との接続部と外部との電気的な接続を担う外部接
続部からなり、積層したコンデンサ素子の端部から導出
される。
Lead wires for connecting the respective electrodes to the outside are connected to the anode electrode foil and the cathode electrode foil by known means such as stitching and ultrasonic welding. The lead wire is made of aluminum or the like, and is composed of a connection portion with the anode electrode foil and the cathode electrode foil and an external connection portion that performs an electrical connection with the outside, and is led out from an end of the laminated capacitor element.

【0027】なお、陽極電極箔及び陰極電極箔は、前記
加工の段階で受けた皮膜損傷部分や切断面を修復するた
めに、化成液中で修復化成を行い、さらに、硼酸水溶液
に浸漬することによって、酸化皮膜を安定化させ、高耐
電圧を高めている。
The anode electrode foil and the cathode electrode foil should be repair-formed in a chemical conversion solution and then immersed in a boric acid aqueous solution in order to repair the damaged portion and the cut surface of the film received during the above-mentioned processing. This stabilizes the oxide film and increases the high withstand voltage.

【0028】セパレータとして通常、ガラスセパレータ
が用いられているが、別の実施の形態として、通常の電
解コンデンサ用として用いられる電解紙を用いることが
できる。つまり、合成繊維、これらの混抄によるもの、
また、合成繊維と電解紙用の繊維又はガラス繊維の混抄
による不織布を用いることができる。合成繊維としては
ビニロン繊維、ポリエステル繊維、ナイロン繊維、レー
ヨン繊維等が挙げられる。さらには、合成樹脂の多孔質
セパレータを用いることができる。これらの合成樹脂と
しては、ポリアミド、ポリイミド、アラミド等を挙げる
ことができる。なお、前記セパレータは、10〜300
0μm、好ましくは20〜1500μm厚のものを用い
ている。この範囲の厚さのものを用いると、安定な等価
直列抵抗が得られる。
As a separator, a glass separator is usually used, but as another embodiment, electrolytic paper used for ordinary electrolytic capacitors can be used. In other words, synthetic fibers, those made by mixing these,
Further, a nonwoven fabric obtained by mixing synthetic fibers and fibers for electrolytic paper or glass fibers can be used. Examples of the synthetic fiber include vinylon fiber, polyester fiber, nylon fiber, rayon fiber and the like. Furthermore, a synthetic resin porous separator can be used. Examples of these synthetic resins include polyamide, polyimide, and aramid. In addition, the said separator is 10-300.
The thickness is 0 μm, preferably 20 to 1500 μm. When a thickness in this range is used, a stable equivalent series resistance can be obtained.

【0029】陰極電極箔と陽極電極箔の寸法は、積層中
心部に3,4−エチレンジオキシチオフェン及び酸化剤
が浸透する大きさであればよい。さらに陰極箔で陽極箔
を挟み込むことができる大きさとしてもよく、製造する
固体電解コンデンサの仕様に応じて任意である。セパレ
ータも陰極電極箔と陽極電極箔の寸法に応じて陰極箔よ
りやや大きい幅寸法のものを用いればよい。本発明の性
能を有するコンデンサを得るには、両電極箔の縦寸法
は、通常10mm以上、好ましくは20mm以上であ
り、典型的には25〜50mmである。同様に、陽極電
極箔の横寸法は、通常10mm以上、好ましくは20m
m以上であり、典型的には25〜50mmである。陰極
電極箔の横寸法は、陽極電極箔を挟み込む場合は陽極電
極箔の2倍以上あれば良く、通常20mm以上であり、
好ましくは50mm以上であり、典型的には50〜10
0mmである。
The dimensions of the cathode electrode foil and the anode electrode foil may be such that 3,4-ethylenedioxythiophene and the oxidizing agent penetrate into the center of the lamination. Further, the size may be such that the anode foil can be sandwiched by the cathode foil, and it is optional depending on the specification of the solid electrolytic capacitor to be manufactured. The separator may have a width slightly larger than the cathode foil according to the dimensions of the cathode electrode foil and the anode electrode foil. In order to obtain a capacitor having the performance of the present invention, the vertical dimension of both electrode foils is usually 10 mm or more, preferably 20 mm or more, and typically 25 to 50 mm. Similarly, the lateral dimension of the anode electrode foil is usually 10 mm or more, preferably 20 m
m or more, and typically 25 to 50 mm. The lateral dimension of the cathode electrode foil, when sandwiching the anode electrode foil, may be at least twice the anode electrode foil, and is usually 20 mm or more,
It is preferably 50 mm or more, and typically 50 to 10 mm.
0 mm.

【0030】コンデンサ素子は、前記陰極電極箔の上に
セパレータを重ね、セパレータを介した状態で陽極電極
を挟み込むように積層することで形成するのが好まし
い。この構成により、陽極箔両面の酸化皮膜層がセパレ
ータを介して陰極箔と重なるため、陽極箔の両面の酸化
皮膜層が誘電体として作用する。この挟み込むように積
層する構成により、単に陽極箔と陰極箔をセパレータを
介して積層する場合より、同じ静電容量を得るために必
要な陽極電極箔の枚数を減らすことができ、薄型、低背
化が可能となる。
The capacitor element is preferably formed by stacking a separator on the cathode electrode foil and stacking the anode electrode with the separator interposed therebetween. With this configuration, the oxide film layers on both surfaces of the anode foil overlap with the cathode foil via the separator, so that the oxide film layers on both surfaces of the anode foil function as a dielectric. With the configuration in which the anode foil and the cathode foil are laminated so as to be sandwiched therebetween, the number of anode electrode foils required to obtain the same capacitance can be reduced as compared with a case where the anode foil and the cathode foil are simply laminated with a separator therebetween. Is possible.

【0031】そして、このコンデンサ素子に3,4−エ
チレンジオキシチオフェンと酸化剤とを含浸させること
で、コンデンサ素子の内部にまで3,4−エチレンジオ
キシチオフェンと酸化剤が浸透し、その浸透する過程及
び浸透後に適宜起こる穏やかな化学重合反応で3,4−
エチレンジオキシチオフェンの重合体、すなわち固体電
解質層がコンデンサ素子の内部においてセパレータで保
持された状態で形成される。
By impregnating the capacitor element with 3,4-ethylenedioxythiophene and an oxidizing agent, the 3,4-ethylenedioxythiophene and the oxidizing agent penetrate into the inside of the capacitor element, and Process and mild chemical polymerization reaction that occurs appropriately after infiltration
A polymer of ethylenedioxythiophene, that is, a solid electrolyte layer is formed inside a capacitor element while being held by a separator.

【0032】3,4−エチレンジオキシチオフェンは、
特開平2−15611号公報等により開示された公知の
製法により得ることができる。また、前記の3,4−エ
チレンジオキシチオフェンの重合体とは、常温で固体と
なる程度に重合したポリ3,4−エチレンジオキシチオ
フェンである。
3,4-ethylenedioxythiophene is
It can be obtained by a known production method disclosed in JP-A-2-15611 and the like. Further, the above-mentioned polymer of 3,4-ethylenedioxythiophene is poly3,4-ethylenedioxythiophene polymerized to an extent that it becomes a solid at normal temperature.

【0033】酸化剤としては、ブタノール溶媒に芳香族
スルホン酸の鉄塩であるp−トルエンスルホン酸第二鉄
を溶解したものを用いている。この酸化剤における溶媒
は、エタノール、ブタノール等のアルコール類など、通
常の有機溶媒を用いることができる。
As the oxidizing agent, a solution prepared by dissolving ferric p-toluenesulfonate, which is an iron salt of aromatic sulfonic acid, in a butanol solvent is used. As the solvent in the oxidizing agent, a normal organic solvent such as alcohols such as ethanol and butanol can be used.

【0034】3,4−エチレンジオキシチオフェンと酸
化剤をコンデンサ素子に含浸させる方法として、あらか
じめ3,4−エチレンジオキシチオフェンと酸化剤を混
合した液にコンデンサ素子を浸漬する方法だけでなく、
他の実施の形態として、3,4−エチレンジオキシチオ
フェンに浸漬したコンデンサ素子を酸化剤に浸漬する方
法、及び酸化剤に浸漬したコンデンサ素子を3,4−エ
チレンジオキシチオフェンに浸漬する方法、さらには、
前記浸漬操作をシリンジからの溶液の吐出に置き換える
方法が同様に可能である。
As a method of impregnating the capacitor element with 3,4-ethylenedioxythiophene and an oxidizing agent, not only a method of immersing the capacitor element in a liquid in which 3,4-ethylenedioxythiophene and the oxidizing agent are mixed in advance, but also a method of impregnating the capacitor element.
As another embodiment, a method of immersing a capacitor element immersed in 3,4-ethylenedioxythiophene in an oxidizing agent, and a method of immersing a capacitor element immersed in an oxidizing agent in 3,4-ethylenedioxythiophene, Moreover,
A method is also possible in which the immersion operation is replaced by ejection of a solution from a syringe.

【0035】重合時の温度条件は20〜180℃が好ま
しい。重合温度が20℃以下では、3,4−エチレンジ
オキシチオフェンの生成が良好に進行せず、静電容量が
低減し等価直列抵抗値が上昇する。また、180℃より
高い温度では3,4−エチレンジオキシチオフェンの分
解が起こり、静電容量が低減し等価直列抵抗値が上昇す
る。すなわち、優れた高周波特性が得られない。
The temperature condition during the polymerization is preferably from 20 to 180 ° C. When the polymerization temperature is 20 ° C. or lower, the formation of 3,4-ethylenedioxythiophene does not proceed well, and the capacitance decreases and the equivalent series resistance increases. At a temperature higher than 180 ° C., the decomposition of 3,4-ethylenedioxythiophene occurs, the capacitance decreases, and the equivalent series resistance increases. That is, excellent high-frequency characteristics cannot be obtained.

【0036】重合時の加圧条件は30〜1000kg/
cm、特に100〜600kg/cm が好ましい。30
kg/cm未満の加圧では生成される重合体と電極箔と
の接合が良好に進行しないため、静電容量が低減し等価
直列抵抗値が上昇する。さらに1000kg/cmより
高い加圧の場合も、電極箔間のモノマーおよび酸化剤の
量が減少するので、生成する重合体の量が減少し、等価
直列抵抗値が上昇する。すなわち、優れた高周波特性が
得られない。
The pressure during polymerization is 30 to 1000 kg /
cm2, Especially 100-600kg / cm 2Is preferred. 30
kg / cm2If the pressure is less than the produced polymer and electrode foil
Does not progress well, reducing capacitance and equivalent
The series resistance increases. 1000kg / cm2Than
Even at high pressure, the monomer and oxidizer between the electrode foils
As the amount decreases, the amount of polymer formed decreases, and
The series resistance increases. In other words, excellent high-frequency characteristics
I can't get it.

【0037】前記重合条件で、重合反応を30分以上進
めることにより固体電解質層が得られる。この重合反応
の反応時間は重合反応が完全に終了し得る30分以上が
好ましい。
Under the above polymerization conditions, a solid electrolyte layer is obtained by advancing the polymerization reaction for 30 minutes or more. The reaction time of this polymerization reaction is preferably 30 minutes or more at which the polymerization reaction can be completely completed.

【0038】重合反応による固体電解質層を形成した
後、酸化皮膜を修復するために、常温以上の高湿条件
下、少なくとも陰極に形成された貫通孔から浸透する水
分で再化成を良好に進めることが好ましい。再化成をす
るに当って、温度条件は40℃以上、特に50〜120
℃が好ましく、さらに60〜90℃が好ましい。40℃
未満では再化成電圧が上昇せず、再化成処理を行うこと
ができない。湿度条件は、20〜60%RHが好まし
い。湿度が20%RH未満では、再化成に必要な水分が不
足し、電圧が安定に上昇しない。60%RHを超えると、
水分が過剰となり、同じく電圧が安定に上昇しない。こ
の時、高電圧で化成した陽極箔を用いても高い電圧で再
化成することができるので、高耐電圧化を図ることがで
きる。
After the solid electrolyte layer is formed by the polymerization reaction, in order to repair the oxide film, the re-chemical formation is favorably promoted with at least moisture penetrating from the through-hole formed in the cathode under conditions of high humidity at normal temperature or higher. Is preferred. In performing the re-formation, the temperature condition is 40 ° C. or more, especially 50 to 120 ° C.
C. is preferable, and 60 to 90 C. is more preferable. 40 ℃
If it is less than 3, the re-formation voltage does not increase and the re-formation process cannot be performed. The humidity condition is preferably 20 to 60% RH. If the humidity is less than 20% RH, the water required for re-chemical formation will be insufficient, and the voltage will not rise stably. If it exceeds 60% RH,
Moisture becomes excessive and the voltage also does not rise stably. At this time, even if an anode foil formed at a high voltage is used, the anode foil can be re-formed at a high voltage, so that a high withstand voltage can be achieved.

【0039】再化成処理後、水分除去工程として電圧印
加することで、等価直列抵抗値、漏れ電流の上昇を防止
する。水分除去の他の実施の形態として、高温放置、低
湿度条件下での放置も可能である。水分除去を行うこと
により、残留した水分による電極箔の劣化に伴うガス発
生、コンデンサの膨れ及び高周波特性の悪化を抑制し、
高温寿命特性が向上する。
After the re-chemical conversion treatment, a voltage is applied as a water removing step to prevent an increase in the equivalent series resistance value and the leakage current. As another embodiment of the water removal, it is possible to leave at high temperature and low humidity. By removing water, gas generation due to the deterioration of the electrode foil due to residual water, swelling of the capacitor and deterioration of high frequency characteristics are suppressed,
High temperature life characteristics are improved.

【0040】上記実施の形態によれば、100V以上の
高耐電圧性、5μF以上の高静電容量、および5〜10
00KHzでの等価直列抵抗が100mΩ以下の優れた高
周波特性を有する大型平板の固体電解コンデンサが得ら
れる。
According to the above embodiment, high withstand voltage of 100 V or more, high capacitance of 5 μF or more, and 5 to 10
A large flat solid electrolytic capacitor having excellent high-frequency characteristics with an equivalent series resistance of 100 mΩ or less at 00 kHz can be obtained.

【0041】[0041]

【実施例】次に、本発明における固体電解コンデンサの
製造方法と、その方法によって得られた固体電解コンデ
ンサについて図面を用いて実施例により具体的に説明す
る。
Next, a method of manufacturing a solid electrolytic capacitor according to the present invention and a solid electrolytic capacitor obtained by the method will be specifically described with reference to the drawings.

【0042】実施例1 図1は、本発明の固体電解コンデンサで、陽極電極箔1
は、縦寸法が30mm、横寸法が40mmのアルミニウ
ム箔である。陽極電極箔1については、その表面に化成
処理を施し、表面に酸化アルミニウムからなる酸化皮膜
層4を形成し、貫通孔を3mm間隔、箔に対する面積比で
10%形成した。陰極電極箔2は、縦寸法が30mm、横
寸法が85mmのアルミニウム箔からなり、その表面に
前記陽極電極箔1と同様の化成処理を施した後、陰極ア
ークプラズマ蒸着法にて窒化チタン膜を形成した。さら
に、陰極箔面に貫通孔を3mm間隔、箔に対する面積比
で、10%形成した。前記加工の段階で受けた両極箔の
皮膜損傷部分や切断面を修復するために、リン酸アンモ
ニウム水溶液中で修復化成を行うことで、再度酸化皮膜
を形成し、酸化皮膜安定のためさらにホウ酸水溶液に浸
漬した。
[0042]Example 1  FIG. 1 shows a solid electrolytic capacitor of the present invention, in which an anode electrode foil 1
Is aluminum with a vertical dimension of 30 mm and a horizontal dimension of 40 mm
Foil. The anode electrode foil 1 has a surface
Treated, oxide film made of aluminum oxide on the surface
The layer 4 is formed, and the through holes are formed at an interval of 3 mm with respect to the area ratio to the foil.
10% formed. The cathode electrode foil 2 has a length of 30 mm and a width of 30 mm.
Made of 85mm aluminum foil
After performing the same chemical conversion treatment as that of the anode electrode foil 1, the cathode electrode
A titanium nitride film was formed by vacuum plasma deposition. Further
In addition, the through-holes are 3mm apart on the cathode foil surface, and the area ratio to the foil
And formed 10%. Of the bipolar foil received in the processing stage
Ammonium phosphate is used to repair damaged areas and cut surfaces.
The oxide film is re-formed by performing repair formation in an aqueous solution of
Is formed, and further dipped in boric acid aqueous solution to stabilize the oxide film.
Pickled.

【0043】前記陰極電極箔2の上に厚さ100μm、
縦寸法が35mm、横寸法が90mmのガラスセパレータ3
を重ね、セパレータ3を介した状態で陽極電極1を挟み
込むように積層し(図2)、コンデンサ素子10を得
た。なお、コンデンサ素子10の陽極電極箔1、陰極電
極箔2にはあらかじめそれぞれリード線6、7が電気的
に接続されており、コンデンサ素子10の端部から突出
させた。
A thickness of 100 μm on the cathode electrode foil 2,
Glass separator 3 with a vertical dimension of 35 mm and a horizontal dimension of 90 mm
Were stacked so as to sandwich the anode electrode 1 with the separator 3 interposed therebetween (FIG. 2) to obtain a capacitor element 10. Note that lead wires 6 and 7 were electrically connected to the anode electrode foil 1 and the cathode electrode foil 2 of the capacitor element 10 in advance, respectively, and protruded from the end of the capacitor element 10.

【0044】以上のような構成からなるコンデンサ素子
10に、3,4−エチレンジオキシチオフェンと酸化剤
とを含浸させた。酸化剤は、ブタノールに溶解したp−
トルエンスルホン酸第二鉄を用い、これらの混合液を作
成した。
The capacitor element 10 having the above configuration was impregnated with 3,4-ethylenedioxythiophene and an oxidizing agent. The oxidizing agent was p-
These mixed solutions were prepared using ferric toluenesulfonate.

【0045】含浸は、一定量の前記混合溶液を貯溜した
含浸槽にコンデンサ素子10を浸漬する方法で実施し
た。次いで、混合溶液を含浸したコンデンサ素子10を
含浸槽から引上げ、400kg/cmの加圧下かつ1
50℃の加熱下で2時間、重合反応による重合体、すな
わち固体電解質層5を生成させた。
The impregnation was performed by a method in which the capacitor element 10 was immersed in an impregnation tank containing a fixed amount of the mixed solution. Next, the capacitor element 10 impregnated with the mixed solution was pulled up from the impregnation tank, and was pressed under a pressure of 400 kg / cm 2 for 1 hour.
Under heating at 50 ° C., a polymer by a polymerization reaction, that is, a solid electrolyte layer 5 was formed for 2 hours.

【0046】さらに、85℃、40%RHの条件下におい
て電圧印加することで再化成を行った。この再化成処理
に続き、85℃にて電圧印加し、固体電解質中の水分を
除去する工程の後、本固体電解コンデンサを、ラミネー
トシートで形成した袋体にリード線が袋外に突出した状
態で挿入し、開口部をポリプロピレンの溶融による熱圧
着することで封口、密閉する工程を経て一連の製造工程
が終了した。
Further, re-chemical formation was performed by applying a voltage under the conditions of 85 ° C. and 40% RH. After the re-chemical treatment, a voltage is applied at 85 ° C. to remove water from the solid electrolyte. After the solid electrolytic capacitor is inserted into a bag formed of a laminate sheet, the lead wire protrudes out of the bag. Then, a series of manufacturing steps were completed through a step of sealing and sealing by thermocompression bonding of the opening by melting of polypropylene.

【0047】比較例1 実施例1と同じ構成からなるコンデンサ素子を、p-トル
エンスルホン酸第二鉄溶液に浸漬した後、ピロールから
なるモノマー溶液に浸漬し、常温放置してポリピロール
からなる固体電解質層を形成したコンデンサを形成し
た。
[0047]Comparative Example 1  A capacitor element having the same configuration as in the first embodiment is replaced with a p-torr.
After immersion in ferric ene sulfonate solution,
Polypyrrole by immersion in a monomer solution
To form a capacitor with a solid electrolyte layer consisting of
Was.

【0048】比較例2 貫通孔のない陽極箔を用いる事以外は全て実施例1と同
じ構成からなるコンデンサの製造を試みた。
[0048]Comparative Example 2  All the same as in Example 1 except that an anode foil without a through hole was used.
An attempt was made to manufacture a capacitor having the same configuration.

【0049】試験例 次に、前記実施例1の固体電解コンデンサと、比較例1
および比較例2の各固体電解コンデンサの電気的特性に
ついて比較した。それぞれ各10個の試料を準備し、各
電気的特性の初期値の平均値を決定した(初期特性)。
さらに実施例1および比較例2の試料を温度105℃の
条件で1000時間放置した後、各電気的特性の値の平
均値を決定した(寿命特性)。その結果を表1に示す。
なお、表1に示した実施例1、比較例1及び比較例2
は、それぞれ定格電圧100V、定格静電容量5μFで
ある。
[0049]Test example  Next, the solid electrolytic capacitor of Example 1 and Comparative Example 1
And electrical characteristics of each solid electrolytic capacitor of Comparative Example 2
And compared. Prepare 10 samples each,
The average of the initial values of the electrical characteristics was determined (initial characteristics).
Further, the samples of Example 1 and Comparative Example 2 were
After leaving for 1000 hours under the conditions,
The average value was determined (life characteristic). Table 1 shows the results.
In addition, Example 1, Comparative Example 1, and Comparative Example 2 shown in Table 1
Are rated voltage 100V and rated capacitance 5μF respectively.
is there.

【0050】[0050]

【表1】 [Table 1]

【0051】この結果から明らかなように、実施例1は
比較例1と比較して、静電容量において高い値を取り、
高容量化が達成された。また、ここで得られた静電容量
は箔容量の90%にも達しており、巻回型コンデンサと
比較しても高容量化が図られている。さらに、等価直列
抵抗値、tanδおよび漏れ電流等において低い値を取
り、優れた高周波特性が得られた。
As is apparent from the results, Example 1 takes a higher value in capacitance than Comparative Example 1, and
High capacity has been achieved. Further, the capacitance obtained here reaches as much as 90% of the foil capacitance, and the capacitance is higher than that of the wound capacitor. Furthermore, low values were obtained in the equivalent series resistance value, tan δ, leakage current, and the like, and excellent high-frequency characteristics were obtained.

【0052】この原因は、比較例1に使用しているピロ
ールは、酸化剤と接触した時点で急速に反応が進行し
て、電極箔の間に良好に重合体が生成されないのに対
し、実施例1に使用している3,4−エチレンジオキシ
チオフェンは重合反応が穏やかであるため、コンデンサ
素子の内部にまで十分浸透した後に重合反応が完了する
ため、緻密で均一な固体電解質層が良好に形成される。
さらに本発明では、積層面から圧力を加えた状態で重合
反応を進行させるため、酸化皮膜との接合力が加わった
状態で重合体が形成されるので、陽極電極箔上の酸化皮
膜と固体電解質層との密着性が高まり、これらの相乗作
用によってこれまでにない良好な状態の固体電解質が得
られることによる。
The reason is that the pyrrole used in Comparative Example 1 reacts rapidly when it comes into contact with the oxidizing agent, and a polymer is not formed well between the electrode foils. Since the polymerization reaction of 3,4-ethylenedioxythiophene used in Example 1 is gentle, the polymerization reaction is completed after sufficiently penetrating into the inside of the capacitor element, so that a dense and uniform solid electrolyte layer is good. Formed.
Furthermore, in the present invention, since the polymerization reaction proceeds while applying pressure from the lamination surface, the polymer is formed in a state where the bonding force with the oxide film is applied, so the oxide film on the anode electrode foil and the solid electrolyte are formed. This is because the adhesion to the layer is increased, and a solid electrolyte in an unprecedented good state is obtained by the synergistic action of these.

【0053】さらに、実施例1による固体電解コンデン
サは比較例2の固体電解コンデンサと比較して、初期特
性、寿命特性ともに、0.1〜50KHzの低周波での等
価直列抵抗が低く、低周波における特性も優れていた。
これは、実施例1における陽極箔に、貫通孔が形成され
ていることによる。
Furthermore, the solid electrolytic capacitor according to Example 1 has lower initial series and life characteristics in terms of the equivalent series resistance at low frequencies of 0.1 to 50 KHz than the solid electrolytic capacitor of Comparative Example 2, Was also excellent.
This is because the through-holes were formed in the anode foil in Example 1.

【0054】[0054]

【発明の効果】本発明で用いられた3,4−エチレンジ
オキシチオフェンモノマーは、穏やかに重合反応が進行
するため、大型平板コンデンサ素子の内部にまで十分該
モノマーと酸化剤が浸透した後、重合反応が完了する。
この結果、緻密で均一な固体電解質層が良好に形成さ
れ、陽極電極箔上の酸化皮膜と固体電解質層との密着性
が高まるため、静電容量が増大し等価直列抵抗値が低減
する。すなわち、高静電容量でありながら優れた高周波
特性を有する固体電解コンデンサが得られる。さらに耐
電圧特性においては、3,4−エチレンジオキシチオフ
ェンの重合体自身の特性により、従来の導電性高分子を
固体電解質層に用いた固体電解コンデンサとの比較で改
善が顕著である。
The polymerization of the 3,4-ethylenedioxythiophene monomer used in the present invention proceeds gently. Therefore, after the monomer and the oxidizing agent have sufficiently penetrated into the inside of the large flat capacitor element, The polymerization reaction is completed.
As a result, a dense and uniform solid electrolyte layer is satisfactorily formed, and the adhesion between the oxide film on the anode electrode foil and the solid electrolyte layer is increased, so that the capacitance increases and the equivalent series resistance value decreases. That is, a solid electrolytic capacitor having high capacitance and excellent high-frequency characteristics can be obtained. Further, in the withstand voltage characteristics, the characteristics of the polymer of 3,4-ethylenedioxythiophene itself are remarkably improved as compared with a conventional solid electrolytic capacitor using a conductive polymer for a solid electrolyte layer.

【0055】本発明は前記重合反応時、圧力を加えた状
態で重合体を生成するため、陽極電極箔上の酸化皮膜層
と固体電解質層との密着性が顕著に良好となる。なお、
前記圧力を加える方法として、本発明では積層両面から
挟み込んで圧力を加える方法をとっている。このため、
陽極電極箔と陰極電極箔とをセパレータを介して均一に
加圧することが可能となった。本方法を用いることで、
圧力の強さを最も好ましい条件に任意に設定することが
可能となった。その結果、最適の加圧条件を作り出し重
合反応を進めることができ、陽極電極箔上の酸化皮膜層
と固体電解質層との密着性を高める効率が良い。
In the present invention, the polymer is formed under pressure during the polymerization reaction, so that the adhesion between the oxide film layer on the anode electrode foil and the solid electrolyte layer is significantly improved. In addition,
In the present invention, as a method for applying the pressure, a method is employed in which the pressure is sandwiched from both sides of the laminate. For this reason,
It has become possible to uniformly press the anode electrode foil and the cathode electrode foil via the separator. By using this method,
It has become possible to arbitrarily set the strength of the pressure to the most preferable condition. As a result, optimal pressurizing conditions can be created to promote the polymerization reaction, and the efficiency of increasing the adhesion between the oxide film layer on the anode electrode foil and the solid electrolyte layer is high.

【0056】本発明ではさらに、陽極箔に貫通孔を形成
したことで、低周波における特性も優れたものとなっ
た。
Further, in the present invention, by forming a through hole in the anode foil, the characteristics at low frequencies are also excellent.

【0057】さらに本発明の構成の素子を積層するとい
う方法を取ることで、静電容量を増やすことが可能であ
り、所望の静電容量を得ることができる。本発明の固体
電解コンデンサは、電極箔およびセパレータの厚さが薄
いため、前記積層を繰り返しても薄型を維持することが
できる。
Further, by adopting a method of laminating the elements having the structure of the present invention, the capacitance can be increased, and a desired capacitance can be obtained. In the solid electrolytic capacitor of the present invention, since the thicknesses of the electrode foil and the separator are thin, the solid electrolytic capacitor can be kept thin even if the above lamination is repeated.

【0058】上記方法で得られた本発明の固体電解コン
デンサは、近年の回路の高機能化に伴う高容量要求およ
び高耐電圧要求、平板化の要求すなわち薄型、低背化の
要求、優れた高周波特性を有することへの要求に対応し
ており、車載等の用途において、優れた高周波特性であ
りながら、特に優れた高耐電圧および高静電容量化が図
られており、コンパクトに格納することが可能となっ
た。
The solid electrolytic capacitor of the present invention obtained by the above-described method has a high capacity requirement, a high withstand voltage requirement, a flatness requirement, that is, a demand for a thinner, lower profile, and an excellent performance accompanying the recent advancement of circuit functions. In response to the demand for high-frequency characteristics, it has excellent high-frequency characteristics, but particularly excellent high withstand voltage and high capacitance, and is compactly stored in automotive applications. It became possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いるコンデンサ素子の分解斜視図で
ある。
FIG. 1 is an exploded perspective view of a capacitor element used in the present invention.

【図2】本発明で用いるコンデンサ素子の積層方法を示
す斜視図である。
FIG. 2 is a perspective view showing a method of laminating capacitor elements used in the present invention.

【符号の説明】[Explanation of symbols]

1 陽極電極箔 2 陰極電極箔 3 セパレータ 5 固体電解質層 6、7 リード線 10 コンデンサ素子 DESCRIPTION OF SYMBOLS 1 Anode electrode foil 2 Cathode electrode foil 3 Separator 5 Solid electrolyte layer 6, 7 Lead wire 10 Capacitor element

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01G 9/055 H01G 9/02 331H 9/00 9/04 328 // H01B 1/12 337 9/05 G 9/24 A B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01G 9/055 H01G 9/02 331H 9/00 9/04 328 // H01B 1/12 337 9/05 G 9/24 A B

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 陰極電極箔と表面に誘電体酸化皮膜を形
成し且つ貫通孔を有する陽極電極箔とをセパレータを介
して積層し、前記セパレータに3,4−エチレンジオキ
シチオフェンモノマーと酸化剤とを含浸させ、加圧下で
加熱して該モノマーを重合して形成した、高耐電圧性、
高静電容量、および優れた高周波特性と低周波特性とを
有することを特徴とする大型平板の固体電解コンデン
サ。
1. A cathode electrode foil and an anode electrode foil having a dielectric oxide film formed on the surface and having a through hole are laminated via a separator, and a 3,4-ethylenedioxythiophene monomer and an oxidizing agent are formed on the separator. And heated under pressure to polymerize the monomer to form a high withstand voltage,
A large-sized flat solid electrolytic capacitor having high capacitance and excellent high-frequency characteristics and low-frequency characteristics.
【請求項2】 加圧時の圧力が30〜1000kg/c
であることを特徴とする請求項1記載の固体電解コ
ンデンサ。
2. The pressure at the time of pressurization is 30 to 1000 kg / c.
The solid electrolytic capacitor according to claim 1, characterized in that the m 2.
【請求項3】 50V以上の高耐電圧性、20μF以上
の高静電容量、5〜1000KHzでの等価直列抵抗が1
00mΩ以下の高周波特性、および0.1〜50KHzで
の等価直列抵抗が200mΩ以下の初期低周波特性を有
することを特徴とする請求項1または2記載の固体電解
コンデンサ。
3. A high withstand voltage of 50 V or more, a high capacitance of 20 μF or more, and an equivalent series resistance at 5 to 1000 KHz of 1
3. The solid electrolytic capacitor according to claim 1, wherein the capacitor has a high-frequency characteristic of not more than 00 m [Omega] and an initial low-frequency characteristic of an equivalent series resistance of not more than 200 m [Omega] at 0.1 to 50 KHz.
【請求項4】 陰極電極箔と表面に誘電体酸化皮膜を形
成し且つ貫通孔を有する陽極電極箔とをセパレータを介
して積層し、前記セパレータに3,4−エチレンジオキ
シチオフェンモノマーと酸化剤とを含浸させ、加圧下で
加熱して該モノマーを重合することを特徴とする、請求
項1の固体電解コンデンサの製造方法。
4. A cathode electrode foil and an anode electrode foil having a dielectric oxide film formed on its surface and having a through hole are laminated via a separator, and a 3,4-ethylenedioxythiophene monomer and an oxidizing agent are formed on the separator. 2. The method for producing a solid electrolytic capacitor according to claim 1, wherein the monomer is polymerized by heating under pressure.
【請求項5】 加圧時の圧力が30〜1000kg/c
であることを特徴とする請求項4記載の固体電解コ
ンデンサの製造方法。
5. The pressure at the time of pressurization is 30 to 1000 kg / c.
The method for producing a solid electrolytic capacitor according to claim 4, characterized in that the m 2.
JP2000251703A 2000-08-22 2000-08-22 Solid electrolytic capacitor with anode foil having through-hole, and method for manufacturing the same Pending JP2002075798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000251703A JP2002075798A (en) 2000-08-22 2000-08-22 Solid electrolytic capacitor with anode foil having through-hole, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000251703A JP2002075798A (en) 2000-08-22 2000-08-22 Solid electrolytic capacitor with anode foil having through-hole, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2002075798A true JP2002075798A (en) 2002-03-15

Family

ID=18741067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000251703A Pending JP2002075798A (en) 2000-08-22 2000-08-22 Solid electrolytic capacitor with anode foil having through-hole, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2002075798A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109852A (en) * 2001-09-28 2003-04-11 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacturing method
JP2005197314A (en) * 2003-12-26 2005-07-21 Nippon Chemicon Corp Method of manufacturing solid electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109852A (en) * 2001-09-28 2003-04-11 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacturing method
JP2005197314A (en) * 2003-12-26 2005-07-21 Nippon Chemicon Corp Method of manufacturing solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP3705306B2 (en) Solid electrolytic capacitor and manufacturing method thereof
KR100442073B1 (en) Solid Electrolyte Capacitor and its Manufacture
KR100827160B1 (en) Stacked solid electrolytic capacitor
WO1998056021A1 (en) Solid electrolytic capacitor and process for producing the same
JP3319501B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP4513043B2 (en) Solid electrolytic capacitor having through-hole in cathode foil and method for producing the same
JP2001110685A (en) Solid electrolytic capacitor
JP4513044B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3399515B2 (en) Method for manufacturing solid electrolytic capacitor
JP3252800B2 (en) Multilayer capacitor and method of manufacturing the same
JP2002075798A (en) Solid electrolytic capacitor with anode foil having through-hole, and method for manufacturing the same
JPH10340831A (en) Manufacture of solid electrolytic capacitor
JP4513042B2 (en) Cathode foil, anode foil, and laminated solid electrolytic capacitor having through holes in support plate, and method for manufacturing the same
JP3978544B2 (en) Solid electrolytic capacitor
JP3911785B2 (en) Manufacturing method of solid electrolytic capacitor
JP2002075790A (en) Solid electrolyte capacitor having through-holes in cathode foil disposing support plate having through- holes, and its manufacturing method
JP2002075789A (en) Solid electrolyte capacitor sheathed with laminated sheet and its manufacturing method
JP2003109853A (en) Solid electrolytic capacitor and its manufacturing method
JP3891304B2 (en) Manufacturing method of solid electrolytic capacitor
JP4858667B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4642257B2 (en) Solid electrolytic capacitor
JP2001110681A (en) Solid electrolytic capacitor and method for manufacturing the same
JPH11121280A (en) Solid electrolytic capacitor and manufacturing method therefor
JP2001237145A (en) Manufacturing method of solid-state electrolytic capacitor
JP3232841B2 (en) Capacitor and method of manufacturing the same