JP2001110681A - Solid electrolytic capacitor and method for manufacturing the same - Google Patents

Solid electrolytic capacitor and method for manufacturing the same

Info

Publication number
JP2001110681A
JP2001110681A JP28895499A JP28895499A JP2001110681A JP 2001110681 A JP2001110681 A JP 2001110681A JP 28895499 A JP28895499 A JP 28895499A JP 28895499 A JP28895499 A JP 28895499A JP 2001110681 A JP2001110681 A JP 2001110681A
Authority
JP
Japan
Prior art keywords
capacitor element
capacitor
solid electrolytic
electrolytic capacitor
oxidizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28895499A
Other languages
Japanese (ja)
Inventor
Yasuo Sakai
康雄 酒井
Yoshiaki Aihara
義昭 相原
Kazuo Yoshihara
和生 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Media Devices Ltd
Original Assignee
Fujitsu Media Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Media Devices Ltd filed Critical Fujitsu Media Devices Ltd
Priority to JP28895499A priority Critical patent/JP2001110681A/en
Publication of JP2001110681A publication Critical patent/JP2001110681A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor which has superior electrical characteristics, such as a capacitance appearance rate, etc., and enables making a large capacity, and a method of manufacturing it. SOLUTION: A capacitor element 6 is impregnated with mixed solution of monomer which is to be conductive polymer and oxidizing agent. After air in the fine holes of the capacitor element is eliminated through depressurization, the mixed solution is pushed into the capacitor element by pressurization to fill the capacitor element with the solution, then the monomer and the oxidizing agent are heated and the conductive polymer is produced by chemical polymerization reaction, and the conductive polymer is used as an electrolyte.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解コンデン
サおよびその製造方法に関し、更に詳しくは、導電性高
分子を電解質とした固体電解コンデンサに関するもので
ある。
The present invention relates to a solid electrolytic capacitor and a method of manufacturing the same, and more particularly, to a solid electrolytic capacitor using a conductive polymer as an electrolyte.

【0002】[0002]

【従来の技術】周知のように、巻回型電解コンデンサ
は、図1に例示されているように、それぞれ電気的な引
出しリード1、2を設けた陽極電極箔3と陰極電極箔4
をセパレータ紙5を介して巻回してコンデンサ素子6を
形成し、実質上陰極となる電解液をセパレータ紙にしみ
込ませ、アルミケースに入れ、ゴム等で封止して作られ
ている。
2. Description of the Related Art As is well known, a wound electrolytic capacitor has an anode electrode foil 3 and a cathode electrode foil 4 provided with electrical lead-out leads 1 and 2, respectively, as shown in FIG.
Is wound around a separator paper 5 to form a capacitor element 6, and an electrolytic solution substantially serving as a cathode is impregnated into the separator paper, placed in an aluminum case, and sealed with rubber or the like.

【0003】ところで、陽極箔は、弁金属の代表である
アルミニウムが使用され、これの箔状のものを電気化学
的手法で粗面化し、陽極酸化の手法で誘電体となる酸化
膜を形成して作られる。一方、陰極箔は、陽極箔と同様
の方法で作られるが、陽極箔以上の実効面積を持つ様粗
面化した状態もしくは陽極酸化を施したものが使用され
る。
As the anode foil, aluminum, which is a representative of valve metal, is used. The foil is roughened by an electrochemical method, and an oxide film serving as a dielectric is formed by an anodic oxidation method. Made On the other hand, the cathode foil is made in the same manner as the anode foil, but is used in a roughened state or anodized so as to have an effective area larger than the anode foil.

【0004】電解液を用いるコンデンサでは、有機溶媒
に無機酸もしくは有機酸、例えばカルボン酸、ジカルボ
ン酸およびこれらのアンモニウム、第一アミン、第三ア
ミン、第四アンモニウム、アルカリ金属および有機アル
カリ物質の塩もしくはそれぞれの組合わせで用いられ
る。また、高周波で低インピーダンスな性能を電解コン
デンサに保持させるために低抵抗な電解液を要求されて
いるが、電解液はイオン伝導のため限界があり、また、
液状であるためと封止の不完全さから電解液が外部に飛
散するため有限寿命部品とされている。
In a capacitor using an electrolytic solution, an inorganic or organic acid such as carboxylic acid, dicarboxylic acid and their ammonium, primary amine, tertiary amine, quaternary ammonium, salts of alkali metals and organic alkali substances are used in an organic solvent. Alternatively, each combination is used. In addition, low-resistance electrolytic solutions are required to maintain high-frequency, low-impedance performance in electrolytic capacitors, but electrolytic solutions have limitations due to ionic conduction.
Since the electrolyte is liquefied and the electrolyte is scattered to the outside due to imperfect sealing, the component is considered to have a finite life.

【0005】[0005]

【発明が解決しようとする課題】そこで、この問題を解
決するために最近、電解質を固体化した固体電解コンデ
ンサが提案されている。
In order to solve this problem, a solid electrolytic capacitor having a solid electrolyte has been recently proposed.

【0006】一例として、固体電解質に二酸化マンガン
を用いた巻回型コンデンサでは、硝酸マンガンから熱処
理で二酸化マンガンを形成するため、高温にさらされた
セパレータ紙が焼失してしまうため、一般のセパレータ
紙からガラスペーパーに変更して用い、コンデンサ化し
ている。このガラスペーパーは、セパレータ紙より厚さ
が厚く、コンデンサに収容する電極面積に制限を受け、
小型化しにくいという欠点がある。
As an example, in a wound capacitor using manganese dioxide as a solid electrolyte, manganese dioxide is formed by heat treatment from manganese nitrate, so that the separator paper exposed to high temperatures is burned off. Changed to glass paper and used as a capacitor. This glass paper is thicker than the separator paper and is limited by the electrode area accommodated in the capacitor.
There is a disadvantage that it is difficult to reduce the size.

【0007】また、7、7、8、8−テトラシアノキノ
ジメタン(TCNQ)錯塩を用いたコンデンサでは、T
CNQ錯塩の耐熱温度が低く、基板搭載時のプレヒート
で漏れ電流(LC)が増大するといった欠点を有してい
る。
In a capacitor using a 7,7,8,8-tetracyanoquinodimethane (TCNQ) complex salt, T
The CNQ complex has a drawback that the heat-resistant temperature is low and the leakage current (LC) is increased by preheating when the substrate is mounted.

【0008】更に、ピロールを酸化剤で電解重合して得
られるポリピロールを電解質として用いるコンデンサで
は、前述のように、陽極箔が酸化剤で覆われているた
め、電解重合のためには新たに電極を設ける必要があ
り、巻回型のコンデンサでは作られておらず、また、大
型のコンデンサの製造は困難である。また、化学重合で
電解質を得るには低温で長時間を要することから、小型
のコンデンサのみが製造されている。
Further, in a capacitor using polypyrrole obtained by electrolytic polymerization of pyrrole with an oxidizing agent as an electrolyte, the anode foil is covered with the oxidizing agent as described above. And it is not made with a wound-type capacitor, and it is difficult to manufacture a large-sized capacitor. Further, since it takes a long time at low temperature to obtain an electrolyte by chemical polymerization, only a small capacitor is manufactured.

【0009】バイエル社から出された3、4エチレンジ
オキシチオフェンをパラトルエンスルホン酸第二鉄で化
学重合して得られるポリエチレンジオキシチオフェンを
電解質とするコンデンサが提案されているが(特開平2
−15611号、特開平9−293639号公報参
照)、これらはモノマーと酸化剤を予め混合した液にコ
ンデンサ素子を含浸している。ところが、この方法では
酸化剤の濃度が高い場合は重合液の粘度が高く、コンデ
ンサ素子の細孔の中まで混合液を送り込むことが難し
く、容量出現率が低く、等価直列抵抗(ESR)も高く
なる。また、酸化剤の濃度が低い場合は重合液の粘度が
低くなり、コンデンサ素子の細孔の奥まで混合液が入る
ようになるが、1回の重合では必要な量の電解質を得る
ことができなく、繰り返しの重合が必要となる。また、
得られる電解質も多層になるため、層間での剥離および
接触抵抗の増大という問題が発生し、コンデンサの等価
直列抵抗(ESR)は7、7、8、8−テトラシアノキ
ノジメタン(TCNQ)錯塩により作成されるコンデン
サの値が得られない。
There has been proposed a capacitor using polyethylene dioxythiophene as an electrolyte obtained by chemically polymerizing 3,4 ethylenedioxythiophene produced by Bayer AG with ferric paratoluenesulfonate (Japanese Unexamined Patent Publication No. Hei.
No. 15611 and JP-A-9-293639), in which a capacitor element is impregnated with a liquid obtained by previously mixing a monomer and an oxidizing agent. However, in this method, when the concentration of the oxidizing agent is high, the viscosity of the polymerization solution is high, it is difficult to feed the mixed solution into the pores of the capacitor element, the capacity appearance rate is low, and the equivalent series resistance (ESR) is high. Become. In addition, when the concentration of the oxidizing agent is low, the viscosity of the polymerization liquid becomes low, and the mixed liquid enters into the pores of the capacitor element, but a single polymerization can obtain a necessary amount of electrolyte. And require repeated polymerization. Also,
Since the obtained electrolyte is also multilayered, problems such as separation between layers and increase in contact resistance occur, and the equivalent series resistance (ESR) of the capacitor is 7,7,8,8-tetracyanoquinodimethane (TCNQ) complex salt. Cannot obtain the value of the capacitor created by

【0010】本発明は、このような従来技術における性
能上および製造上の問題点を解決した固体電解コンデン
サおよびその製造方法を提供することにある。
An object of the present invention is to provide a solid electrolytic capacitor and a method of manufacturing the same, which have solved the problems in performance and manufacturing in the prior art.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するた
め、請求項1に係る発明は、有機高分子モノマーと酸化
剤との混合液をコンデンサ素子に含浸し、減圧により該
コンデンサ素子の細孔中の空気を除去した後、加圧によ
り前記混合液を前記コンデンサ素子の内部に押し込むこ
とによって充填し、加温により前記有機高分子モノマー
と酸化剤を化学重合反応させて生成した導電性高分子を
電解質とした構成を特徴とするものである。
In order to solve the above-mentioned problems, the invention according to claim 1 is to impregnate a capacitor element with a mixed solution of an organic polymer monomer and an oxidizing agent, and reduce the pressure of the capacitor element by reducing the pressure. After removing the air therein, the mixture is filled by pressing the mixed solution into the inside of the capacitor element by pressurization, and the conductive polymer produced by chemically polymerizing the organic polymer monomer and the oxidizing agent by heating. Is characterized by having an electrolyte as an electrolyte.

【0012】請求項2に係る発明は、導電性高分子を電
解質とした固体電解コンデンサの製造方法において、有
機高分子モノマーと酸化剤との混合液をコンデンサ素子
に含浸し、減圧により該コンデンサ素子の細孔中の空気
を除去した後、加圧により前記混合液を前記コンデンサ
素子の内部に押し込むことによって充填し、加温により
前記有機高分子モノマーと酸化剤を化学重合反応させて
導電性高分子を生成することを特徴とするものである。
According to a second aspect of the present invention, there is provided a method of manufacturing a solid electrolytic capacitor using a conductive polymer as an electrolyte, wherein a mixed solution of an organic polymer monomer and an oxidizing agent is impregnated in the capacitor element, and the capacitor element is depressurized. After the air in the pores is removed, the mixture is filled by pressing the mixed solution into the inside of the capacitor element under pressure, and the organic polymer monomer and the oxidant are chemically polymerized by heating to increase the conductivity. It is characterized by generating molecules.

【0013】[0013]

【発明の実施の形態】本発明の実施の形態について説明
すると、本発明に係る固体電解コンデンサおよびその製
造方法は、図1に例示された固体電解コンデンサにおい
て、有機高分子モノマー(ピロール、チオフェン、アニ
リンおよびその誘導体等)と酸化剤(パラトルエンスル
ホン酸第二鉄、ドデシルベンゼンスルホン酸第二鉄等)
を重合反応に最適なモル比にて混合し、当該混合液をコ
ンデンサ素子(タンタル焼結体でもよい)に含浸し、減
圧によりコンデンサ素子の細孔中の空気を抜き、続いて
加圧により細孔の奥深くまで混合液を送り込むことによ
り充填し、加温により有機高分子モノマーと酸化剤を化
学重合反応させて細孔の奥深くまで導電性高分子の電解
質を形成する。これにより、粘度が高く、混合液が細孔
の奥まで入り難い場合でも確実に混合液を細孔内部に送
り込むことが可能となり、容量出現率の高く、等価直列
抵抗(ESR)の低い固体電解コンデンサが得られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described. The solid electrolytic capacitor and the method of manufacturing the same according to the present invention are different from the solid electrolytic capacitor shown in FIG. 1 in that the organic polymer monomer (pyrrole, thiophene, Aniline and its derivatives) and oxidizing agents (ferric paratoluenesulfonate, ferric dodecylbenzenesulfonate)
Is mixed at the optimum molar ratio for the polymerization reaction, the mixed solution is impregnated into a capacitor element (which may be a tantalum sintered body), air in the pores of the capacitor element is evacuated by pressure reduction, and then fineness is applied by pressure. The mixture is filled by feeding the mixture deep into the pores, and the organic polymer monomer and the oxidant are chemically polymerized by heating to form a conductive polymer electrolyte deep into the pores. This makes it possible to reliably feed the mixture into the pores even when the viscosity is high and the mixture is difficult to penetrate into the pores, and the solid electrolytic solution with a high capacity appearance rate and a low equivalent series resistance (ESR) is obtained. A capacitor is obtained.

【0014】[0014]

【実施例】以下に具体的実施例について説明する。 実施例1 6.3V680μF用(Ф10×10.5mm)の巻き上
げ済コンデンサ素子6をアジピン酸アンモン、リン酸系
の化成液で化成し、純水洗浄して高温熱処理し、これを
2回実施した。その後、再び化成、純水洗浄して、12
5℃で60分間乾燥した。次いで、コンデンサ素子6
を、3、4エチレンジオキシチオフェンモノマーとパラ
トルエンスルホン酸第二鉄/1−ブタノール(50wt
%)を混合した液に到達真空度10〜20mmHgで5分
間減圧浸漬し、常圧復帰後直ちに49Paに加圧して5分
間浸漬した。常圧復帰後40〜80℃で3〜12時間化
学重合反応を実施した。よって得られたコンデンサ素子
をアルミケースに挿入し、エポキシ樹脂を入れ、加温硬
化させて封止し、スリーブを嵌着して固体電解コンデン
サを完成させた。
EXAMPLES Specific examples will be described below. Example 1 A rolled-up capacitor element 6 for 6.3 V, 680 μF (110 × 10.5 mm) was formed with an ammonium adipate / phosphoric acid-based chemical solution, washed with pure water, and subjected to a high-temperature heat treatment, and this was performed twice. . After that, it was again formed and washed with pure water.
Dry at 5 ° C. for 60 minutes. Next, the capacitor element 6
Was prepared by adding 3,4 ethylenedioxythiophene monomer and ferric paratoluenesulfonate / 1-butanol (50 wt.
%) Under reduced pressure of 10 to 20 mmHg for 5 minutes, and immediately after returning to normal pressure, pressurized to 49 Pa and immersed for 5 minutes. After returning to normal pressure, a chemical polymerization reaction was carried out at 40 to 80 ° C. for 3 to 12 hours. Thus, the obtained capacitor element was inserted into an aluminum case, filled with epoxy resin, heated and cured, sealed, and fitted with a sleeve to complete a solid electrolytic capacitor.

【0015】次に、参考例1として 6.3V680μF用(Ф10×10.5mm)の巻き上
げ済コンデンサ素子6をアジピン酸アンモン、リン酸系
の化成液で化成し、純水洗浄して高温熱処理し、これを
2回実施した。その後、再び化成、純水洗浄して、12
5℃で60分間乾燥した。次いで、コンデンサ素子6
を、3、4エチレンジオキシチオフェンモノマーとパラ
トルエンスルホン酸第二鉄/1−ブタノール(50wt
%)を混合した液に到達真空度10〜20mmHgで5分
間減圧浸漬し、常圧復帰後40〜80℃で3〜12時間
化学重合反応を実施した。よって得られたコンデンサ素
子をアルミケースに挿入し、エポキシ樹脂を入れ、加温
硬化させて封止し、スリーブを嵌着して固体電解コンデ
ンサを完成させた。
Next, as Reference Example 1, a rolled-up capacitor element 6 for 6.3 V and 680 μF (Ф10 × 10.5 mm) was formed with an ammonium adipate / phosphoric acid-based chemical solution, washed with pure water, and subjected to a high-temperature heat treatment. This was performed twice. After that, it was again formed and washed with pure water.
Dry at 5 ° C. for 60 minutes. Next, the capacitor element 6
Was prepared by adding 3,4 ethylenedioxythiophene monomer and ferric paratoluenesulfonate / 1-butanol (50 wt.
%) Was immersed in a reduced pressure of 10 to 20 mmHg for 5 minutes under reduced pressure, and after returning to normal pressure, a chemical polymerization reaction was carried out at 40 to 80 ° C. for 3 to 12 hours. Thus, the obtained capacitor element was inserted into an aluminum case, filled with epoxy resin, heated and cured, sealed, and fitted with a sleeve to complete a solid electrolytic capacitor.

【0016】参考例2として 参考例1において、パラトルエンスルホン酸第二鉄/1
−ブタノール濃度が40wt%であること以外は参考例
1と同様の手順で固体電解コンデンサを完成させた。
Reference Example 2 In Reference Example 1, ferric paratoluenesulfonate / 1
-A solid electrolytic capacitor was completed in the same procedure as in Reference Example 1 except that the butanol concentration was 40 wt%.

【0017】実施例と参考例1、2の各固体電解コンデ
ンサにつき、その静電容量、誘電損失(tanδ)、漏
れ電流、等価直列抵抗(ESR)の初期特性の平均値の
測定結果を表1に示す。
Table 1 shows the measurement results of the average values of the initial values of the capacitance, dielectric loss (tan δ), leakage current, and equivalent series resistance (ESR) of each of the solid electrolytic capacitors of the embodiment and Reference Examples 1 and 2. Shown in

【0018】[0018]

【表1】 [Table 1]

【0019】表1から明らかなように、本発明に係る実
施例の固体電解コンデンサは、容量出現率、誘電損失
(tanδ)、等価直列抵抗(ESR)特性に優れた固
体電解コンデンサが得られたことが判る。一方、参考例
1のものは、容量出現率が低く、等価直列抵抗(ES
R)も劣る。また、参考例2のものは、誘電損失(ta
nδ)、等価直列抵抗(ESR)が悪く、製品としては
供し得ないことが判る。
As is clear from Table 1, the solid electrolytic capacitor of the embodiment according to the present invention has a solid electrolytic capacitor excellent in capacitance appearance ratio, dielectric loss (tan δ), and equivalent series resistance (ESR) characteristics. You can see that. On the other hand, the reference example 1 has a low capacitance appearance rate and an equivalent series resistance (ES
R) is also inferior. In the case of Reference Example 2, the dielectric loss (ta
nδ), the equivalent series resistance (ESR) is poor, and the product cannot be provided.

【0020】[0020]

【発明の効果】しかして、請求項1の発明によれば、従
来の導電性高分子を電解質に用いた固体電解コンデンサ
に比し、容量出現率、誘電損失(tanδ)、等価直列
抵抗(ESR)等の電気的諸特性が向上し、かつ静電容
量が増大し、その改善効果が顕著である。
According to the first aspect of the present invention, the capacitance appearance ratio, dielectric loss (tan δ), and equivalent series resistance (ESR) are higher than those of a conventional solid electrolytic capacitor using a conductive polymer as an electrolyte. ) Are improved, and the capacitance is increased, and the improvement effect is remarkable.

【0021】また、請求項2の発明によれば、コンデン
サ素子の含浸時に減圧、加圧の工程を数分間行うだけで
あり、重合を繰り返す従来の方法に比し、その工程が短
く、極めて実用的な製造方法である。なお、本発明方法
は、巻回型コンデンサに限定されるものではなく、焼結
体、箔等を素子とするコンデンサにも利用できる。
According to the second aspect of the present invention, the steps of decompression and pressurization are only performed for a few minutes during the impregnation of the capacitor element. Production method. The method of the present invention is not limited to a wound capacitor, but can be applied to a capacitor having a sintered body, a foil or the like as an element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る固体電解コンデンサの一例での斜
視図的説明図である。
FIG. 1 is an explanatory perspective view of an example of a solid electrolytic capacitor according to the present invention.

【符号の説明】[Explanation of symbols]

1、2 引出しリード 3 陽極電極箔 4 陰極電極箔 5 セパレータ 6 コンデンサ素子 1, 2 Leader lead 3 Anode electrode foil 4 Cathode electrode foil 5 Separator 6 Capacitor element

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年12月11日(2000.12.
11)
[Submission date] December 11, 2000 (200.12.
11)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0011】[0011]

【課題を解決するための手段】上記課題を解決するた
め、請求項1に係る発明は、導電性高分子となるモノマ
ーと酸化剤との混合液をコンデンサ素子に含浸し、減圧
により該コンデンサ素子の細孔中の空気を除去した後、
加圧により前記混合液を前記コンデンサ素子の内部に押
し込むことによって充填し、加温により前記モノマーと
酸化剤を化学重合反応させて生成した導電性高分子を電
解質とした構成を特徴とするものである。
According to a first aspect of the present invention, a capacitor element is impregnated with a mixed solution of a monomer to be a conductive polymer and an oxidizing agent, and the capacitor element is depressurized. After removing the air in the pores of
The mixture is filled by pressing the mixed solution into the inside of the capacitor element by applying pressure, and a conductive polymer produced by chemically polymerizing the monomer and the oxidizing agent by heating is used as an electrolyte. is there.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0012】請求項2に係る発明は、導電性高分子を電
解質とした固体電解コンデンサの製造方法において、導
電性高分子となるモノマーと酸化剤との混合液をコンデ
ンサ素子に含浸し、減圧により該コンデンサ素子の細孔
中の空気を除去した後、加圧により前記混合液を前記コ
ンデンサ素子の内部に押し込むことによって充填し、加
温により前記モノマーと酸化剤を化学重合反応させて導
電性高分子を生成することを特徴とするものである。
According to a second aspect of the present invention, there is provided a method for manufacturing a solid electrolytic capacitor using a conductive polymer as an electrolyte, wherein a mixed solution of a monomer to be a conductive polymer and an oxidizing agent is impregnated in the capacitor element, After the air in the pores of the capacitor element is removed, the mixture is filled by pressing the mixture into the interior of the capacitor element by pressurization, and the monomer and the oxidant are chemically polymerized by heating to increase the conductivity. It is characterized by generating molecules.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0013】[0013]

【発明の実施の形態】本発明の実施の形態について説明
すると、本発明に係る固体電解コンデンサおよびその製
造方法は、図1に例示された固体電解コンデンサにおい
て、導電性高分子となるモノマー(ピロール、チオフェ
ン、アニリンおよびその誘導体等)と酸化剤(パラトル
エンスルホン酸第二鉄、ドデシルベンゼンスルホン酸第
二鉄等)を重合反応に最適なモル比にて混合し、当該混
合液をコンデンサ素子(タンタル焼結体でもよい)に含
浸し、減圧によりコンデンサ素子の細孔中の空気を抜
き、続いて加圧により細孔の奥深くまで混合液を送り込
むことにより充填し、加温によりモノマーと酸化剤を化
学重合反応させて細孔の奥深くまで導電性高分子の電解
質を形成する。これにより、粘度が高く、混合液が細孔
の奥まで入り難い場合でも確実に混合液を細孔内部に送
り込むことが可能となり、容量出現率の高く、等価直列
抵抗(ESR)の低い固体電解コンデンサが得られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The preferred embodiments of the present invention will be described. The solid electrolytic capacitor and the method of manufacturing the same according to the present invention are different from the solid electrolytic capacitor shown in FIG. , Thiophene, aniline and derivatives thereof) and an oxidizing agent (ferric paratoluenesulfonate, ferric dodecylbenzenesulfonate, etc.) in a molar ratio optimal for the polymerization reaction, and the mixed solution is mixed with a capacitor element ( Tantalum sintered body may be impregnated), air is removed from the pores of the capacitor element by depressurization, and then the mixture is filled by sending the mixture deep into the pores by pressurization. Is subjected to a chemical polymerization reaction to form a conductive polymer electrolyte deep into the pores. This makes it possible to reliably feed the mixture into the pores even when the viscosity is high and the mixture is difficult to penetrate into the pores, and the solid electrolytic solution with a high capacity appearance rate and a low equivalent series resistance (ESR) is obtained. A capacitor is obtained.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0014】[0014]

【実施例】以下に具体的実施例について説明する。 実施例1 6.3V680μF用(Ф10×10.5mm)の巻き上
げ済コンデンサ素子6をアジピン酸アンモニウム、リン
酸系の化成液で化成し、純水洗浄して高温熱処理し、こ
れを2回実施した。その後、再び化成、純水洗浄して、
125℃で60分間乾燥した。次いで、コンデンサ素子
6を、3、4エチレンジオキシチオフェンモノマーとパ
ラトルエンスルホン酸第二鉄/1−ブタノール(50w
t%)を混合した液に到達真空度13〜30hPaで5
分間減圧浸漬し、常圧復帰後直ちに2000〜3000
hPaに加圧して5分間浸漬した。常圧復帰後40〜80
℃で3〜12時間化学重合反応を実施した。よって得ら
れたコンデンサ素子をアルミケースに挿入し、エポキシ
樹脂を入れ、加温硬化させて封止し、スリーブを嵌着し
て固体電解コンデンサを完成させた。
EXAMPLES Specific examples will be described below. Example 1 A rolled-up capacitor element 6 for 6.3 V, 680 μF (110 × 10.5 mm) was formed with an ammonium adipate / phosphoric acid-based chemical solution, washed with pure water, heat-treated at a high temperature, and carried out twice. . After that, chemical formation, washing with pure water again,
Dry at 125 ° C. for 60 minutes. Next, the capacitor element 6 was replaced with a 3,4 ethylenedioxythiophene monomer and ferric paratoluenesulfonate / 1-butanol (50 w
5% at an ultimate vacuum of 13 to 30 hPa.
Immersion under reduced pressure for 20 minutes, and immediately after returning to normal pressure, 2000 to 3000
It was immersed in a pressurized hPa for 5 minutes. 40-80 after normal pressure return
The chemical polymerization reaction was performed at a temperature of 3 to 12 hours. Thus, the obtained capacitor element was inserted into an aluminum case, filled with epoxy resin, heated and cured, sealed, and fitted with a sleeve to complete a solid electrolytic capacitor.

【手続補正6】[Procedure amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0015】次に、参考例1として 6.3V680μF用(Ф10×10.5mm)の巻き上
げ済コンデンサ素子6をアジピン酸アンモニウム、リン
酸系の化成液で化成し、純水洗浄して高温熱処理し、こ
れを2回実施した。その後、再び化成、純水洗浄して、
125℃で60分間乾燥した。次いで、コンデンサ素子
6を、3、4エチレンジオキシチオフェンモノマーとパ
ラトルエンスルホン酸第二鉄/1−ブタノール(50w
t%)を混合した液に到達真空度13〜30hPaで5
分間減圧浸漬し、常圧復帰後40〜80℃で3〜12時
間化学重合反応を実施した。よって得られたコンデンサ
素子をアルミケースに挿入し、エポキシ樹脂を入れ、加
温硬化させて封止し、スリーブを嵌着して固体電解コン
デンサを完成させた。
Next, as Reference Example 1, a rolled-up capacitor element 6 for 6.3 V, 680 μF (Ф10 × 10.5 mm) is formed with an ammonium adipate / phosphoric acid-based chemical solution, washed with pure water, and subjected to a high-temperature heat treatment. This was performed twice. After that, chemical formation, washing with pure water again,
Dry at 125 ° C. for 60 minutes. Next, the capacitor element 6 was replaced with a 3,4 ethylenedioxythiophene monomer and ferric paratoluenesulfonate / 1-butanol (50 w
5% at an ultimate vacuum of 13 to 30 hPa.
After immersion under reduced pressure for a minute, the chemical polymerization reaction was carried out at 40 to 80 ° C. for 3 to 12 hours after returning to normal pressure. Thus, the obtained capacitor element was inserted into an aluminum case, filled with epoxy resin, heated and cured, sealed, and fitted with a sleeve to complete a solid electrolytic capacitor.

【手続補正7】[Procedure amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0018】[0018]

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉原 和生 長野県須坂市大字小山460番地 富士通メ ディアデバイス株式会社内 Fターム(参考) 5G301 CA30 CD01 CD02 CE01 5H014 AA06 BB00 BB01 BB03 BB05 BB08 CC01 EE02  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Kazuo Yoshihara 460 Oyama Oyama, Suzaka City, Nagano Prefecture F-term in Fujitsu Media Devices Co., Ltd. 5G301 CA30 CD01 CD02 CE01 5H014 AA06 BB00 BB01 BB03 BB05 BB08 CC01 EE02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 有機高分子モノマーと酸化剤との混合液
をコンデンサ素子に含浸し、減圧により該コンデンサ素
子の細孔中の空気を除去した後、加圧により前記混合液
を前記コンデンサ素子の内部に押し込むことによって充
填し、加温により前記有機高分子モノマーと酸化剤を化
学重合反応させて生成した導電性高分子を電解質とした
固体電解コンデンサ。
1. A capacitor element is impregnated with a mixture of an organic polymer monomer and an oxidizing agent, air in pores of the capacitor element is removed by depressurization, and then the mixture is applied to the capacitor element by pressurization. A solid electrolytic capacitor which is filled by being pushed into the inside thereof, and is made of a conductive polymer produced by a chemical polymerization reaction of the organic polymer monomer and an oxidant by heating.
【請求項2】 導電性高分子を電解質とした固体電解コ
ンデンサの製造方法において、 有機高分子モノマーと酸化剤との混合液をコンデンサ素
子に含浸し、減圧により該コンデンサ素子の細孔中の空
気を除去した後、加圧により前記混合液を前記コンデン
サ素子の内部に押し込むことによって充填し、加温によ
り前記有機高分子モノマーと酸化剤を化学重合反応させ
て導電性高分子を生成することを特徴とする固体電解コ
ンデンサの製造方法。
2. A method for manufacturing a solid electrolytic capacitor using a conductive polymer as an electrolyte, comprising: impregnating a capacitor element with a mixed solution of an organic polymer monomer and an oxidizing agent; After the removal, the mixed solution is filled by being pressed into the inside of the capacitor element by applying pressure, and the organic polymer monomer and the oxidizing agent are chemically polymerized by heating to produce a conductive polymer. A method for manufacturing a solid electrolytic capacitor.
JP28895499A 1999-10-12 1999-10-12 Solid electrolytic capacitor and method for manufacturing the same Pending JP2001110681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28895499A JP2001110681A (en) 1999-10-12 1999-10-12 Solid electrolytic capacitor and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28895499A JP2001110681A (en) 1999-10-12 1999-10-12 Solid electrolytic capacitor and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2001110681A true JP2001110681A (en) 2001-04-20

Family

ID=17736962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28895499A Pending JP2001110681A (en) 1999-10-12 1999-10-12 Solid electrolytic capacitor and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2001110681A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109853A (en) * 2001-09-28 2003-04-11 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacturing method
JPWO2004068517A1 (en) * 2003-01-31 2006-05-25 昭和電工株式会社 Manufacturing method of solid electrolytic capacitor
US8696767B2 (en) 2007-05-21 2014-04-15 Showa Denko K.K. Dipping method of forming cathode of solid electrolytic capacitor
JP2018504785A (en) * 2015-02-06 2018-02-15 肇慶緑宝石電子科技股▲フン▼有限公司 Method for producing high-voltage solid aluminum electrolytic capacitor
CN113327772A (en) * 2016-12-27 2021-08-31 Tdk电子股份有限公司 Mixed polymer aluminum electrolytic capacitor and method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314822A (en) * 1987-06-17 1988-12-22 Nippon Chemicon Corp Manufacture of solid electrolytic capacitor
JPH05304055A (en) * 1992-04-25 1993-11-16 Nichicon Corp Manufacture of solid-state electrolytic capacitor
JPH08213287A (en) * 1995-02-07 1996-08-20 Matsushita Electric Ind Co Ltd Impregnating method with electrolyte to capacitor element in aluminum electrolytic capacitor
JPH09293639A (en) * 1996-04-26 1997-11-11 Nippon Chemicon Corp Solid electrolytic capacitor and manufacture thereof
JP2001155966A (en) * 1999-09-14 2001-06-08 Matsushita Electric Ind Co Ltd Method of manufacturing capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314822A (en) * 1987-06-17 1988-12-22 Nippon Chemicon Corp Manufacture of solid electrolytic capacitor
JPH05304055A (en) * 1992-04-25 1993-11-16 Nichicon Corp Manufacture of solid-state electrolytic capacitor
JPH08213287A (en) * 1995-02-07 1996-08-20 Matsushita Electric Ind Co Ltd Impregnating method with electrolyte to capacitor element in aluminum electrolytic capacitor
JPH09293639A (en) * 1996-04-26 1997-11-11 Nippon Chemicon Corp Solid electrolytic capacitor and manufacture thereof
JP2001155966A (en) * 1999-09-14 2001-06-08 Matsushita Electric Ind Co Ltd Method of manufacturing capacitor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109853A (en) * 2001-09-28 2003-04-11 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacturing method
JPWO2004068517A1 (en) * 2003-01-31 2006-05-25 昭和電工株式会社 Manufacturing method of solid electrolytic capacitor
JP4596543B2 (en) * 2003-01-31 2010-12-08 昭和電工株式会社 Manufacturing method of solid electrolytic capacitor
US8696767B2 (en) 2007-05-21 2014-04-15 Showa Denko K.K. Dipping method of forming cathode of solid electrolytic capacitor
JP2018504785A (en) * 2015-02-06 2018-02-15 肇慶緑宝石電子科技股▲フン▼有限公司 Method for producing high-voltage solid aluminum electrolytic capacitor
CN113327772A (en) * 2016-12-27 2021-08-31 Tdk电子股份有限公司 Mixed polymer aluminum electrolytic capacitor and method of manufacturing the same
US11823847B2 (en) 2016-12-27 2023-11-21 Tdk Electronics Ag Hybrid polymer aluminum electrolytic capacitor and method of manufacturing a capacitor
US11935707B2 (en) 2016-12-27 2024-03-19 Tdk Electronics Ag Hybrid polymer aluminum electrolytic capacitor and method of manufacturing a capacitor
US11942280B2 (en) 2016-12-27 2024-03-26 Tdk Electronics Ag Hybrid polymer aluminum electrolytic capacitor and method of manufacturing a capacitor

Similar Documents

Publication Publication Date Title
JP3705306B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4845699B2 (en) Solid electrolytic capacitor and method for producing solid electrolytic capacitor
WO1997041577A1 (en) Solid electrolyte capacitor and its manufacture
KR100279098B1 (en) Manufacturing method of solid electrolytic capacitor
US20010030848A1 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2001217159A (en) Solid electrolytic capacitor and its manufacturing method
JP2001110681A (en) Solid electrolytic capacitor and method for manufacturing the same
JP3459573B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001110685A (en) Solid electrolytic capacitor
JPH10340831A (en) Manufacture of solid electrolytic capacitor
JP3974706B2 (en) Manufacturing method of solid electrolytic capacitor
JP2004193402A (en) Solid electrolytic capacitor
JP4773031B2 (en) Manufacturing method of solid electrolytic capacitor
JPH05159979A (en) Manufacture of solid electrolytic capacitor
JPH10284351A (en) Solid-state electrolytic capacitor and manufacture of the same
JP5030324B2 (en) Manufacturing method of solid electrolytic capacitor
JP3891304B2 (en) Manufacturing method of solid electrolytic capacitor
JP3750476B2 (en) Manufacturing method of solid electrolytic capacitor
JPH1174155A (en) Manufacture of solid electrolytic capacitor
JPH1187178A (en) Manufacture of solid electrolytic capacitor
JPH06120086A (en) Manufacture of solid-state electrolytic capacitor
JPH10321474A (en) Solid electrolytic capacitor and its manufacture
JP2001358039A (en) Solid electrolytic capacitor and its manufacturing method
JPH0883735A (en) Manufacture of capacitor
JP4642257B2 (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070227