JPH08213287A - Impregnating method with electrolyte to capacitor element in aluminum electrolytic capacitor - Google Patents

Impregnating method with electrolyte to capacitor element in aluminum electrolytic capacitor

Info

Publication number
JPH08213287A
JPH08213287A JP1935995A JP1935995A JPH08213287A JP H08213287 A JPH08213287 A JP H08213287A JP 1935995 A JP1935995 A JP 1935995A JP 1935995 A JP1935995 A JP 1935995A JP H08213287 A JPH08213287 A JP H08213287A
Authority
JP
Japan
Prior art keywords
electrolytic solution
capacitor element
pressure
impregnation
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1935995A
Other languages
Japanese (ja)
Other versions
JP3391594B2 (en
Inventor
Saneharu Minami
眞春 南
Keiji Mori
啓治 森
Toshiya Kuroshima
俊哉 黒島
Kunihito Inagaki
国人 稲垣
Minoru Tsunesaki
実 恒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1935995A priority Critical patent/JP3391594B2/en
Publication of JPH08213287A publication Critical patent/JPH08213287A/en
Application granted granted Critical
Publication of JP3391594B2 publication Critical patent/JP3391594B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide an impregnating method with an electrolyte to a capacitor element in an alumunum electrolytic capacitor capable of sufficiently impregnating into the inside of the capacitor element with the electrolyte in a short time. CONSTITUTION: Capacitor elements 21 are dipped into an electrolyte 24 in an impregnating tank 22, the electrolyte 24 is further force-fed into the impregnating tank 22 under the dipped state, and pressure is applied to electrolyte 24 itself in the impregnating tank 22, thus applying the hydraulic pressure of the electrolyte 24 to the capacitor elements 21, then conducting pressure impregnation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種電子機器に利用さ
れるアルミ電解コンデンサにおけるコンデンサ素子への
電解液の含浸方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for impregnating a capacitor element in an aluminum electrolytic capacitor used in various electronic devices with an electrolytic solution.

【0002】[0002]

【従来の技術】従来においては、この種のアルミ電解コ
ンデンサにおいてコンデンサ素子へ電解液を含浸させる
場合、その設備構造を図4(a)(b)にプロセス順に
示すような方法により行っていた。すなわち、図4
(a)に示すように、まず、陽極箔と陰極箔とをその間
にセパレータを介在させて巻回することにより構成され
たコンデンサ素子1を含浸槽2内に入れ、そして真空ポ
ンプ3により前記含浸槽2内を5300Pa(約40mm
Hg)以下に減圧する。次いで図4(b)に示すよう
に、電解液槽4から電解液5を前記含浸槽2内に注入
し、その後、前記含浸槽2内を大気圧に開放するという
真空含浸工法により、コンデンサ素子1への電解液5の
含浸を行っていた。なお、この図4(a)(b)におい
て、6は開閉バルブである。
2. Description of the Related Art Conventionally, when an electrolytic solution is impregnated into a capacitor element in this type of aluminum electrolytic capacitor, the equipment structure thereof is performed by the method shown in the order of processes in FIGS. 4 (a) and 4 (b). That is, FIG.
As shown in (a), first, a capacitor element 1 constituted by winding an anode foil and a cathode foil with a separator interposed therebetween is placed in an impregnation tank 2, and the impregnation is performed by a vacuum pump 3. 5300 Pa (about 40 mm) in the tank 2
Hg) Depressurize below. Next, as shown in FIG. 4 (b), the electrolytic solution 5 is injected into the impregnation tank 2 from the electrolytic solution tank 4, and then the inside of the impregnation tank 2 is opened to the atmospheric pressure by a vacuum impregnation method. 1 was impregnated with the electrolytic solution 5. In FIGS. 4 (a) and 4 (b), 6 is an opening / closing valve.

【0003】しかしながら、この真空含浸工法は、コン
デンサ素子1の内部に十分に電解液5を含浸させようと
した場合、真空含浸を行った後、電解液5中にコンデン
サ素子1を浸漬したまま長時間放置する必要があるた
め、電解コンデンサの生産性を著しく低下させるもので
あった。また、コンデンサ素子1の寸法が大きい場合に
は、含浸不足となって静電容量やtanδ(誘電損失)
等の電気特性に悪影響を及ぼすという問題点も有してい
た。
However, in this vacuum impregnation method, when it is attempted to sufficiently impregnate the inside of the capacitor element 1 with the electrolytic solution 5, the capacitor element 1 is immersed in the electrolytic solution 5 for a long time after being vacuum impregnated. Since it is necessary to leave it for a time, the productivity of the electrolytic capacitor is significantly reduced. Further, when the size of the capacitor element 1 is large, impregnation becomes insufficient, and the capacitance and tan δ (dielectric loss)
There is also a problem that the electric characteristics such as the above are adversely affected.

【0004】そして従来においては、これらの問題点を
改善するために、図5(a)(b)(c)に順に示すよ
うな別の方法により、コンデンサ素子への電解液の含浸
を行っていた。すなわち、図5(a)に示すように、ま
ず、陽極箔と陰極箔とをその間にセパレータを介在させ
て巻回することにより構成されたコンデンサ素子7を含
浸槽8内に入れ、そして真空ポンプ9により前記含浸槽
8内を5300Pa(約40mmHg)以下に減圧する。
次いで図5(b)に示すように、電解液槽10より電解
液11を前記含浸槽8内に注入し、その後、前記含浸槽
8内を大気圧に開放するという真空含浸を行う。そして
この真空含浸の後、図5(c)に示すように、電解液1
1中にコンデンサ素子7を浸漬した状態で含浸槽8内の
空隙部12にコンプレッサー13により空気を注入し、
前記電解液11に1.5×105〜5×105Pa(約
1.5〜5kgf/cm2)程度の空気による加圧を行うこ
とにより、コンデンサ素子7の内部に電解液11を含浸
させるという加圧含浸工法により、コンデンサ素子7へ
の電解液11の含浸を行っていた。なお、この図5
(a)(b)(c)において、14は開閉バルブであ
る。
In the past, in order to improve these problems, the capacitor element is impregnated with the electrolytic solution by another method as shown in FIG. 5 (a) (b) (c) in order. It was That is, as shown in FIG. 5 (a), first, a capacitor element 7 constituted by winding an anode foil and a cathode foil with a separator interposed therebetween is placed in an impregnation tank 8, and then a vacuum pump is used. The inside of the impregnation tank 8 is decompressed by 9 to 5300 Pa (about 40 mmHg) or less.
Next, as shown in FIG. 5B, vacuum impregnation is performed in which the electrolytic solution 11 is injected from the electrolytic solution tank 10 into the impregnation tank 8 and then the impregnation tank 8 is opened to the atmospheric pressure. After this vacuum impregnation, as shown in FIG.
In the state where the capacitor element 7 is immersed in 1, the air is injected into the space 12 in the impregnation tank 8 by the compressor 13.
The electrolytic solution 11 is impregnated with the electrolytic solution 11 by pressurizing the electrolytic solution 11 with air of about 1.5 × 10 5 to 5 × 10 5 Pa (about 1.5 to 5 kgf / cm 2 ). The electrolytic solution 11 was impregnated into the capacitor element 7 by the pressure impregnation method. In addition, this FIG.
In (a), (b) and (c), 14 is an opening / closing valve.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、図5
(a)(b)(c)に示すような真空含浸工法と加圧含
浸工法とを組み合わせたものにおいても、コンデンサ素
子7の内部に十分に電解液11を含浸させようとした場
合、真空含浸工法のみで行っているものと比較して短時
間ではあるが、電解液11中にコンデンサ素子7を浸漬
したまま放置するという放置時間が必要であり、この場
合も、図4(a)(b)に示す真空含浸工法のみで行っ
ているものと同じように電解コンデンサの生産性を低下
させるという問題点を有していた。また、コンデンサ素
子7の寸法が大きい場合には、図4(a)(b)に示す
真空含浸工法のみで行っているものと比較して良化はし
ているが、まだ含浸不足となることがあり、これが静電
容量やtanδ等の電気特性に悪影響を及ぼすという問
題点となっていた。
However, as shown in FIG.
Even in the combination of the vacuum impregnation method and the pressure impregnation method as shown in (a), (b) and (c), when the electrolytic solution 11 is sufficiently impregnated inside the capacitor element 7, the vacuum impregnation is performed. Although it is a short time as compared with the case where only the construction method is used, a leaving time is required in which the capacitor element 7 is left in the electrolytic solution 11 while being immersed therein. In this case as well, in FIG. 4 (a) (b) ), There is a problem that the productivity of the electrolytic capacitor is reduced as in the case where only the vacuum impregnation method shown in FIG. Further, when the size of the capacitor element 7 is large, the impregnation is still insufficient, although it is improved as compared with the case where only the vacuum impregnation method shown in FIGS. 4 (a) and 4 (b) is performed. However, this has a problem that it adversely affects the electric characteristics such as capacitance and tan δ.

【0006】これらの問題点を解決しようとした場合、
前記空気による加圧力を数十倍から数百倍の超高気圧ま
で上昇させる必要があるが、この空気を用いる加圧は、
空気の収縮率が非常に大きいため、コンプレッサー13
自体も大きなものが必要となり、またその収縮に伴う含
浸槽8の壁への圧迫に耐え得る含浸槽8が必要となるた
め、設備的に複雑となるだけでなく、コスト的にも非常
に不利となるものであった。
When trying to solve these problems,
It is necessary to increase the pressure applied by the air from several tens of times to several hundreds of times of super-high pressure, and pressurization using this air,
Since the contraction rate of air is very large, the compressor 13
A large size itself is required, and an impregnation tank 8 that can withstand pressure on the wall of the impregnation tank 8 due to the contraction is required, which not only complicates the equipment but is also extremely disadvantageous in terms of cost. It was something that

【0007】本発明は上記従来の問題点を解決するもの
で、設備的に複雑になることなく、短時間でコンデンサ
素子の内部まで電解液を十分に含浸させることができる
アルミ電解コンデンサにおけるコンデンサ素子への電解
液の含浸方法を提供することを目的とするものである。
The present invention solves the above-mentioned problems of the prior art, and is a capacitor element in an aluminum electrolytic capacitor in which the electrolytic solution can be sufficiently impregnated into the inside of the capacitor element in a short time without complicating the equipment. It is an object of the present invention to provide a method for impregnating an electrolyte solution with a solution.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明のアルミ電解コンデンサにおけるコンデンサ素
子への電解液の含浸方法は、陽極箔と陰極箔とをその間
にセパレータを介在させて巻回することにより構成され
たコンデンサ素子を含浸槽内の電解液中に浸漬し、この
浸漬状態でさらに前記含浸槽内に電解液を圧送して含浸
槽内の電解液自体に圧力をかけることにより、電解液の
液圧をコンデンサ素子にかけてコンデンサ素子への加圧
含浸を行うようにしたものである。
In order to achieve the above object, a method of impregnating an electrolytic solution into a capacitor element in an aluminum electrolytic capacitor of the present invention comprises winding an anode foil and a cathode foil with a separator interposed therebetween. By immersing the capacitor element constituted by the above in the electrolytic solution in the impregnation tank, by further pressing the electrolytic solution in the impregnation tank by applying pressure to the electrolytic solution itself in the impregnation tank in this immersion state, The electrolytic pressure of the electrolytic solution is applied to the capacitor element to impregnate the capacitor element under pressure.

【0009】[0009]

【作用】上記含浸方法によれば、コンデンサ素子を含浸
槽内の電解液中に浸漬した状態でさらに含浸槽内に電解
液を圧送して含浸槽内の電解液自体に圧力をかけること
により電解液の液圧をコンデンサ素子にかけてコンデン
サ素子への加圧含浸を行うようにしているもので、この
電解液の液圧は、従来の空気圧による加圧〔1.5×1
5〜5×105Pa(約1.5〜5kgf/cm2)〕と比
較して、気体より収縮率が桁違いに小さい液体を加圧す
るため、従来の空気圧による加圧のように設備的に複雑
になることはなく、コスト的にも非常に有利となり、し
かも前記電解液の液圧は、従来の空気圧による加圧の数
倍から数百倍の圧力〔10×105〜500×105Pa
(約10〜500kgf/cm2)〕をかけることができる
ため、短時間でコンデンサ素子の内部にまで十分に電解
液を含浸させることができ、これにより、含浸不足によ
る静電容量やtanδ等の電気特性への悪影響というこ
ともなくなるものである。
According to the above-mentioned impregnation method, the electrolytic solution is further pumped into the impregnation tank by immersing the capacitor element in the electrolytic solution inside the impregnation tank to apply pressure to the electrolytic solution itself in the impregnation tank. The liquid pressure of the liquid is applied to the capacitor element to impregnate the capacitor element under pressure, and the liquid pressure of this electrolytic solution is the same as the conventional air pressure [1.5 × 1].
0 5 ~5 × 10 5 Pa (about 1.5~5kgf / cm 2)] compared to, for pressurizing than shrinkage incomparably small liquid gas, equipment as pressurization by a conventional pneumatic It does not become complicated and is very advantageous in terms of cost, and the liquid pressure of the electrolytic solution is several times to several hundreds times higher than the conventional pressure applied by air pressure [10 × 10 5 to 500 ×]. 10 5 Pa
(About 10 to 500 kgf / cm 2 )], it is possible to sufficiently impregnate the inside of the capacitor element with the electrolytic solution in a short time, which results in insufficient capacitance and tan δ due to insufficient impregnation. There is no adverse effect on the electrical characteristics.

【0010】[0010]

【実施例】以下、本発明の実施例を添付図面にもとづい
て説明する。図1(a)(b)は本発明の一実施例をプ
ロセス順に示したものである。この一実施例は、図1
(a)に示すように、まず、陽極箔と陰極箔とをその間
にセパレータを介在させて巻回することにより構成され
たコンデンサ素子21を含浸槽22内に入れ、次いで図
1(b)に示すように、電解液槽23より電解液24を
前記含浸槽22内に圧送ポンプ25により注入して含浸
槽22内を満たすことにより、コンデンサ素子21を電
解液24中に浸漬する。この浸漬状態でさらに圧送ポン
プ25により前記含浸槽22内に電解液槽23内の電解
液24を圧送して含浸槽22内の電解液24自体に、
〔10×105〜500×105Pa(約10〜500kg
f/cm2)〕の圧力をかけることにより、コンデンサ素
子21には、この電解液24の液圧、すなわち〔10×
105〜500×105Pa(約10〜500kgf/c
m2)〕の液圧がかかるもので、この液圧がかかることに
より、コンデンサ素子21内の空気がその液圧力により
放出されると同時に、前記電解液24がコンデンサ素子
21の内部に含浸されるものである。なお、この図1
(a)(b)において、26は開閉バルブである。
Embodiments of the present invention will be described below with reference to the accompanying drawings. 1A and 1B show an embodiment of the present invention in process order. One example of this is shown in FIG.
As shown in (a), first, a capacitor element 21 constituted by winding an anode foil and a cathode foil with a separator interposed therebetween is placed in an impregnation tank 22, and then, as shown in FIG. As shown, the electrolytic solution 24 is injected from the electrolytic solution tank 23 into the impregnating tank 22 by a pressure pump 25 to fill the impregnating tank 22 so that the capacitor element 21 is immersed in the electrolytic solution 24. In this immersion state, the electrolytic pump 24 further pressurizes the electrolytic solution 24 in the electrolytic solution tank 23 into the impregnating tank 22 to the electrolytic solution 24 itself in the impregnating tank 22.
[10 × 10 5 to 500 × 10 5 Pa (about 10 to 500 kg
f / cm 2 )], the liquid pressure of the electrolytic solution 24 is applied to the capacitor element 21, that is, [10 ×
10 5 to 500 × 10 5 Pa (about 10 to 500 kgf / c
m 2 )], the air in the capacitor element 21 is released by the liquid pressure, and at the same time, the electrolytic solution 24 is impregnated into the capacitor element 21. It is something. In addition, this Figure 1
In (a) and (b), 26 is an opening / closing valve.

【0011】このように本発明の一実施例によれば、コ
ンデンサ素子21を含浸槽22内の電解液24中に浸漬
した状態でさらに含浸槽22内に圧送ポンプ25により
電解液槽23内の電解液24を圧送して含浸槽22内の
電解液24自体に圧力をかけることにより電解液24の
液圧をコンデンサ素子21にかけてコンデンサ素子21
への加圧含浸を行うようにしているもので、前記電解液
24の液圧は、従来の空気圧による加圧と比較して、気
体より収縮率が桁違いに小さい液体を加圧するため、従
来の空気圧による加圧のように設備的に複雑になること
はなく、コスト的にも非常に有利となるものである。ま
た前記電解液24の液圧は、従来の空気圧による加圧の
数倍から数百倍の圧力〔10×105〜500×105
a(約10〜500kgf/cm2)〕をかけることができ
るため、短時間でコンデンサ素子21の内部にまで十分
に電解液24を含浸させることができ、これにより、含
浸不足による静電容量やtanδ等の電気特性への悪影
響も防止することができるものである。
As described above, according to the embodiment of the present invention, the capacitor element 21 is dipped in the electrolytic solution 24 in the impregnation tank 22, and is further stored in the electrolytic solution tank 23 by the pressure pump 25 in the impregnation tank 22. The electrolytic solution 24 is pressure-fed and pressure is applied to the electrolytic solution 24 itself in the impregnation tank 22 to apply the liquid pressure of the electrolytic solution 24 to the capacitor element 21.
Since the liquid pressure of the electrolytic solution 24 pressurizes a liquid whose contraction rate is orders of magnitude smaller than that of gas as compared with the conventional pressurization by air pressure, It does not become complicated in terms of equipment like pressurization by air pressure, and is very advantageous in terms of cost. The liquid pressure of the electrolytic solution 24 is several times to several hundreds times higher than the pressure applied by conventional air pressure [10 × 10 5 to 500 × 10 5 P
a (about 10 to 500 kgf / cm 2 )], it is possible to sufficiently impregnate the inside of the capacitor element 21 with the electrolytic solution 24 in a short time. It is also possible to prevent adverse effects on the electrical characteristics such as tan δ.

【0012】図2(a)(b)(c)は本発明の他の実
施例を工程順に示したもので、前述した本発明の一実施
例と同一部品については同一番号を付して説明する。こ
の他の実施例は、図2(a)に示すように、まず、陽極
箔と陰極箔とをその間にセパレータを介在させて巻回す
ることにより構成されたコンデンサ素子21を含浸槽2
2内に入れ、その後、含浸槽22内を真空ポンプ27に
より5300Pa(約40mmHg)以下に減圧すること
によりコンデンサ素子21内の空気を抜く。次いで図2
(b)に示すように電解液槽23より電解液24を前記
含浸槽22内に圧送ポンプ25により注入し、前記コン
デンサ素子21に電解液24を保持させる。その後、一
旦前記含浸槽22内を大気圧に開放し、そして含浸槽2
2内の上部に位置する空隙部28に圧送ポンプ25によ
り電解液槽23内の電解液24を注入して含浸槽22内
を電解液24で満たし、その後、この状態から図2
(c)に示すようにさらに圧送ポンプ25により前記含
浸槽22内に電解液槽23内の電解液24を圧送して含
浸槽22内の電解液24自体に、〔10×105〜50
0×105Pa(約10〜500kgf/cm2)〕の圧力を
かけることにより、コンデンサ素子21には、この電解
液24の液圧、すなわち〔10×105〜500×105
Pa(約10〜500kgf/cm2)〕の液圧がかかるこ
とにより、コンデンサ素子21に保持させた電解液24
がコンデンサ素子21の内部まで瞬時に含浸されるもの
である。
2 (a), (b) and (c) show another embodiment of the present invention in the order of steps, and the same parts as those of the above-mentioned one embodiment of the present invention are designated by the same reference numerals. To do. In another embodiment, as shown in FIG. 2 (a), first, an impregnation tank 2 is provided with a capacitor element 21 formed by winding an anode foil and a cathode foil with a separator interposed therebetween.
2 and then the impregnation tank 22 is depressurized to 5300 Pa (about 40 mmHg) or less by the vacuum pump 27 to remove the air in the capacitor element 21. Then Fig. 2
As shown in (b), the electrolytic solution 24 is injected from the electrolytic solution tank 23 into the impregnation tank 22 by the pressure pump 25, and the electrolytic solution 24 is held in the capacitor element 21. After that, the inside of the impregnation tank 22 is once opened to the atmospheric pressure, and the impregnation tank 2
2 is filled with the electrolytic solution 24 in the electrolytic solution tank 23 by the pressure pump 25 into the void portion 28 located in the upper part of the inside of the electrolytic solution tank 24, and then the state shown in FIG.
As shown in (c), the electrolytic solution 24 in the electrolytic solution tank 23 is further pressure-fed into the impregnating tank 22 by the pressure pump 25 to supply the electrolytic solution 24 in the impregnating tank 22 to [10 × 10 5 to 50 × 50.
0 × 10 5 Pa (approx. 10 to 500 kgf / cm 2 )], the liquid pressure of the electrolytic solution 24 is applied to the capacitor element 21, that is, [10 × 10 5 to 500 × 10 5].
Pa (about 10 to 500 kgf / cm 2 )], the electrolytic solution 24 held by the capacitor element 21 is applied.
Is instantly impregnated into the inside of the capacitor element 21.

【0013】このように本発明の他の実施例によれば、
含浸槽22内に圧送ポンプ25により電解液槽23内の
電解液24を圧送して含浸槽22内の電解液24自体に
圧力をかけることにより電解液24の液圧をコンデンサ
素子21にかけてコンデンサ素子21への加圧含浸を行
う前に、コンデンサ素子21を入れた含浸槽22内を真
空ポンプ27により5300Pa(約40mmHg)以下
に減圧することによりコンデンサ素子21内の空気を抜
くようにしているため、前述した電解液24の液圧をコ
ンデンサ素子21にかけてコンデンサ素子21への加圧
含浸を行う場合、より短時間でコンデンサ素子21に保
持させた電解液24をコンデンサ素子21の内部にまで
含浸させることができるという優れた効果を有するもの
である。
As described above, according to another embodiment of the present invention,
The electrolytic solution 24 in the electrolytic solution tank 23 is pressure-fed into the impregnating tank 22 by the pressure pump 25 to apply pressure to the electrolytic solution 24 itself in the impregnating tank 22 to apply the liquid pressure of the electrolytic solution 24 to the capacitor element 21. Before the pressure impregnation into 21, the pressure inside the impregnation tank 22 containing the capacitor element 21 is reduced to 5300 Pa (about 40 mmHg) or less by the vacuum pump 27 so that the air inside the capacitor element 21 is removed. When the above-mentioned liquid pressure of the electrolytic solution 24 is applied to the capacitor element 21 for pressure impregnation, the electrolytic solution 24 held in the capacitor element 21 is impregnated into the inside of the capacitor element 21 in a shorter time. It has an excellent effect of being able to.

【0014】図3は図2(a)(b)(c)で示した本
発明の他の実施例の含浸方法と、図5(a)(b)
(c)で示した従来例の含浸方法を用いて、定格160
V27000μF,寸法φ90×L150のコンデンサ
素子に電解液を含浸させた場合における、これらのコン
デンサの、その後の放置工程における放置時間に対する
静電容量とtanδの変化について示したものである。
FIG. 3 shows an impregnation method according to another embodiment of the present invention shown in FIGS. 2 (a) (b) (c) and FIGS. 5 (a) (b).
Using the impregnation method of the conventional example shown in (c), a rating of 160
9 shows changes in electrostatic capacity and tan δ of these capacitors with respect to a standing time in a subsequent standing step when a capacitor element having V27,000 μF and size φ90 × L150 is impregnated with the electrolytic solution.

【0015】この図3から明らかなように、本発明の他
の実施例の場合は、電解液の液圧による加圧含浸を行っ
ているため、従来例の空気圧による加圧含浸に比べて、
含浸後の放置時間も著しく少なくでき、かつ静電容量も
若干高く、さらにtanδも小さいもので、この事は、
電解液がコンデンサ素子の内部にまで十分に含浸されて
いることを示すものである。
As is apparent from FIG. 3, in the case of another embodiment of the present invention, since pressure impregnation is performed by the liquid pressure of the electrolytic solution, compared with the pressure impregnation by air pressure of the conventional example,
The time left after impregnation can be significantly reduced, the electrostatic capacity is slightly higher, and tan δ is also smaller.
This shows that the electrolytic solution is sufficiently impregnated into the inside of the capacitor element.

【0016】[0016]

【発明の効果】以上のように本発明のアルミ電解コンデ
ンサにおけるコンデンサ素子への電解液の含浸方法は、
コンデンサ素子を含浸槽内の電解液中に浸漬した状態で
さらに含浸槽内に電解液を圧送して含浸槽内の電解液自
体に圧力をかけることにより電解液の液圧をコンデンサ
素子にかけてコンデンサ素子への加圧含浸を行うように
しているもので、この電解液の液圧は、従来の空気圧に
よる加圧〔1.5×10 5〜5×105Pa(約1.5〜
5kgf/cm2)〕と比較して、液体の収縮率がもともと
小さいため、従来の空気圧による加圧のように設備的に
複雑になることはなく、コスト的にも非常に有利とな
り、しかも前記電解液の液圧は、従来の空気圧による加
圧の数倍から数百倍の圧力〔10×105〜500×1
5Pa(約10〜500kgf/cm2)〕をかけることが
できるため、短時間でコンデンサ素子の内部にまで十分
に電解液を含浸させることができ、これにより、含浸不
足による静電容量やtanδ等の電気特性への悪影響と
いうこともなくなるものである。
As described above, the aluminum electrolytic capacitor of the present invention is used.
The method of impregnating the capacitor element with the electrolyte is
With the capacitor element immersed in the electrolytic solution in the impregnation tank
Further, the electrolytic solution is pumped into the impregnation tank so that
By applying pressure to the body, the liquid pressure of the electrolyte is
Perform pressure impregnation on the capacitor element over the element
The liquid pressure of this electrolyte is the same as the conventional air pressure.
Pressurization by [1.5 × 10 Five~ 5 × 10FivePa (about 1.5 ~
5 kgf / cm2)] Compared to
Because it is small, it can be installed in equipment like conventional pressurization by air pressure.
It will not be complicated and will be very advantageous in terms of cost.
In addition, the liquid pressure of the electrolyte is increased by conventional air pressure.
Pressure several times to several hundred times pressure [10 × 10Five~ 500x1
0FivePa (about 10 to 500 kgf / cm2)]
Since it can be done, it is possible to get inside the capacitor element in a short time.
Can be impregnated with electrolyte, which allows
The negative effect on the electrical characteristics such as capacitance and tan δ due to the foot
There is nothing to say.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のアルミ電解コンデンサにおけるコンデ
ンサ素子への電解液の含浸方法の一実施例を順に示す工
程図
FIG. 1 is a process diagram sequentially showing an embodiment of a method of impregnating a capacitor element with an electrolytic solution in an aluminum electrolytic capacitor of the present invention.

【図2】本発明の電解液の含浸方法の他の実施例を順に
示す工程図
FIG. 2 is a process chart showing another embodiment of the electrolytic solution impregnation method of the present invention in order.

【図3】本発明の他の実施例の含浸方法と、従来例の含
浸方法を用いて、電解液を含浸させた場合の放置時間に
対する静電容量とtanδの変化の特性図
FIG. 3 is a characteristic diagram of changes in capacitance and tan δ with respect to standing time when an electrolytic solution is impregnated using the impregnation method of another example of the present invention and the impregnation method of the conventional example.

【図4】従来のアルミ電解コンデンサにおけるコンデン
サ素子への電解液の含浸方法の一例を順に示す工程図
FIG. 4 is a process diagram sequentially showing an example of a method of impregnating a capacitor element in a conventional aluminum electrolytic capacitor with an electrolytic solution.

【図5】従来の電解液の含浸方法の他の例を順に示す工
程図
FIG. 5 is a process chart showing another example of a conventional electrolytic solution impregnation method in order.

【符号の説明】[Explanation of symbols]

21 コンデンサ素子 22 含浸槽 23 電解液槽 24 電解液 25 圧送ポンプ 27 真空ポンプ 21 capacitor element 22 impregnation tank 23 electrolytic solution tank 24 electrolytic solution 25 pressure feed pump 27 vacuum pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲垣 国人 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 恒崎 実 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kunihito Inagaki 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Minor Tsunesaki 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 陽極箔と陰極箔とをその間にセパレータ
を介在させて巻回することにより構成されたコンデンサ
素子を含浸槽内の電解液中に浸漬し、この浸漬状態でさ
らに前記含浸槽内に電解液を圧送して含浸槽内の電解液
自体に圧力をかけることにより、電解液の液圧をコンデ
ンサ素子にかけてコンデンサ素子への加圧含浸を行うよ
うにしたアルミ電解コンデンサにおけるコンデンサ素子
への電解液の含浸方法。
1. A capacitor element formed by winding an anode foil and a cathode foil with a separator interposed therebetween and immersing the capacitor element in an electrolytic solution in an impregnation tank, and in this immersion state, further in the impregnation tank. To the capacitor element in the aluminum electrolytic capacitor, in which the electrolytic solution is pressure-impregnated by applying the liquid pressure of the electrolytic solution to the capacitor element by applying pressure to the electrolytic solution itself in the impregnation tank. Electrolyte impregnation method.
【請求項2】 陽極箔と陰極箔とをその間にセパレータ
を介在させて巻回することにより構成されたコンデンサ
素子を含浸槽内に入れ、その後、含浸槽内を真空ポンプ
により減圧することによりコンデンサ素子内の空気を抜
き、さらにその後、前記含浸槽内に電解液を注入するこ
とによりコンデンサ素子に電解液を浸入させ、その後、
さらに前記含浸槽内に電解液を圧送して含浸槽内の電解
液自体に圧力をかけることにより電解液の液圧をコンデ
ンサ素子にかけてコンデンサ素子への加圧含浸を行うよ
うにしたアルミ電解コンデンサにおけるコンデンサ素子
への電解液の含浸方法。
2. A capacitor is constructed by winding a positive electrode foil and a negative electrode foil with a separator interposed therebetween and winding the capacitor element in an impregnation tank, and then depressurizing the impregnation tank with a vacuum pump. The air in the element is evacuated, and then the electrolytic solution is injected into the impregnation tank to infiltrate the electrolytic solution into the capacitor element, and thereafter,
Further, in an aluminum electrolytic capacitor in which the electrolytic solution is pressure-fed into the impregnation tank to apply pressure to the electrolytic solution itself in the impregnation tank to apply the liquid pressure of the electrolytic solution to the capacitor element to perform pressure impregnation on the capacitor element. Method for impregnating capacitor element with electrolyte.
JP1935995A 1995-02-07 1995-02-07 Method of impregnating electrolytic solution into capacitor element in aluminum electrolytic capacitor Expired - Fee Related JP3391594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1935995A JP3391594B2 (en) 1995-02-07 1995-02-07 Method of impregnating electrolytic solution into capacitor element in aluminum electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1935995A JP3391594B2 (en) 1995-02-07 1995-02-07 Method of impregnating electrolytic solution into capacitor element in aluminum electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH08213287A true JPH08213287A (en) 1996-08-20
JP3391594B2 JP3391594B2 (en) 2003-03-31

Family

ID=11997182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1935995A Expired - Fee Related JP3391594B2 (en) 1995-02-07 1995-02-07 Method of impregnating electrolytic solution into capacitor element in aluminum electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3391594B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110681A (en) * 1999-10-12 2001-04-20 Fujitsu Media Device Kk Solid electrolytic capacitor and method for manufacturing the same
JP2001123285A (en) * 1999-10-28 2001-05-08 Hisaka Works Ltd Method for cleaning non-through hole, and its device
CN101916665A (en) * 2010-08-18 2010-12-15 湖南金福达电子有限公司 Impregnation method of aluminium electrolytic capacitor slugs
CN102693848A (en) * 2012-06-25 2012-09-26 南通新三能电子有限公司 Full-automatic electrolyte pressurizing impregnation device and method for aluminum electrolytic capacitor
CN102723199A (en) * 2012-06-13 2012-10-10 李玉祥 Fast impregnation method for capacitor core package and device thereof
JP2018504785A (en) * 2015-02-06 2018-02-15 肇慶緑宝石電子科技股▲フン▼有限公司 Method for producing high-voltage solid aluminum electrolytic capacitor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101923956B (en) * 2010-07-30 2012-07-04 南通江海电容器股份有限公司 Method for impregnating low-viscosity electrolyte used for electrolytic capacitor
CN101916666B (en) * 2010-08-18 2012-05-23 湖南金福达电子有限公司 Method for impregnating elements of aluminum electrolytic capacitor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110681A (en) * 1999-10-12 2001-04-20 Fujitsu Media Device Kk Solid electrolytic capacitor and method for manufacturing the same
JP2001123285A (en) * 1999-10-28 2001-05-08 Hisaka Works Ltd Method for cleaning non-through hole, and its device
CN101916665A (en) * 2010-08-18 2010-12-15 湖南金福达电子有限公司 Impregnation method of aluminium electrolytic capacitor slugs
CN102723199A (en) * 2012-06-13 2012-10-10 李玉祥 Fast impregnation method for capacitor core package and device thereof
CN102693848A (en) * 2012-06-25 2012-09-26 南通新三能电子有限公司 Full-automatic electrolyte pressurizing impregnation device and method for aluminum electrolytic capacitor
JP2018504785A (en) * 2015-02-06 2018-02-15 肇慶緑宝石電子科技股▲フン▼有限公司 Method for producing high-voltage solid aluminum electrolytic capacitor

Also Published As

Publication number Publication date
JP3391594B2 (en) 2003-03-31

Similar Documents

Publication Publication Date Title
US7113390B2 (en) Surface-mount thin-profile capacitor and method of producing the same
EP1096519A1 (en) Solid electrolytic capacitor and method for manufacturing the same
JP3391594B2 (en) Method of impregnating electrolytic solution into capacitor element in aluminum electrolytic capacitor
JP3459547B2 (en) Electrolytic capacitor and method for manufacturing the same
JP3982497B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3339511B2 (en) Method for manufacturing solid electrolytic capacitor
JP3416637B2 (en) Solid electrolytic capacitor and method of manufacturing the same
US3137058A (en) Capacitor aging
JP2001284189A (en) Solid electrolytic capacitor and its manufacturing method
JP4566156B2 (en) Electrolytic solution impregnation method and impregnation apparatus in electrolytic capacitor production
JP2003197478A (en) Solid electrolytic capacitor and manufacturing method therefor
JP2006080106A (en) Method and device for injecting electrolyte of electric double layer capacitor
JP2003059754A (en) Manufacturing method of metallizing film capacitor and insulating agent impregnation apparatus for metallizing film capacitor
JP2003109853A (en) Solid electrolytic capacitor and its manufacturing method
JP3500068B2 (en) Electrolytic capacitor and method of manufacturing the same
JP3307136B2 (en) Manufacturing method of electrolytic capacitor
JPS5860528A (en) Method of producing oil-immersed condenser
KR970004277B1 (en) Method of manufacturing solid electrolytic capacitor
JPH0491417A (en) Aluminum electrolytic capacitor
JPH10163076A (en) Solid electrolytic capacitor
JPH10214748A (en) Cased film capacitor
JP3307135B2 (en) Manufacturing method of electrolytic capacitor
JPH05135985A (en) Ultrahigh pressure impregnating method for resin of transformers
JPH06196369A (en) Manufacture of aluminum electrolytic capacitor
JP5377115B2 (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees