JP2005197314A - Method of manufacturing solid electrolytic capacitor - Google Patents

Method of manufacturing solid electrolytic capacitor Download PDF

Info

Publication number
JP2005197314A
JP2005197314A JP2003435833A JP2003435833A JP2005197314A JP 2005197314 A JP2005197314 A JP 2005197314A JP 2003435833 A JP2003435833 A JP 2003435833A JP 2003435833 A JP2003435833 A JP 2003435833A JP 2005197314 A JP2005197314 A JP 2005197314A
Authority
JP
Japan
Prior art keywords
capacitor element
solid electrolytic
electrode foil
electrolytic capacitor
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003435833A
Other languages
Japanese (ja)
Inventor
Kiyoshi Sakamoto
清志 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2003435833A priority Critical patent/JP2005197314A/en
Publication of JP2005197314A publication Critical patent/JP2005197314A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor having good leakage current characteristics. <P>SOLUTION: A method of manufacturing the solid electrolytic capacitor includes steps of: performing restoration and formation of a capacitor element in which an anode electrode foil and a cathode electrode foil are wound through a separator; impregnating with a 3, 4-ethylenedioxythiophene and an oxidizing agent solution; generating a polyethylenedioxythiophene in the capacitor element by a chemical polymerization; and then housing the capacitor element in a sheathing case. In the method, after the capacitor element performs the restoration and the formation, the capacitor element is immersed in a boric acid compound solution, heated and again subjected to the restoration and the formation. Accordingly, the leakage current characteristics are improved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、固体電解コンデンサの製造方法にかかり、特に導電性ポリマーを電解質に用いた固体電解コンデンサの製造方法に関する。   The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly to a method for manufacturing a solid electrolytic capacitor using a conductive polymer as an electrolyte.

電解コンデンサは、タンタル、アルミニウム等の弁作用金属からなるとともに微細孔やエッチングピットを備える陽極電極の表面に、誘電体となる酸化皮膜層を形成し、この酸化皮膜層から電極を引き出した構成からなる。そして、酸化皮膜層からの電極の引出しは、導電性を有する電解質層により行っている。したがって、電解コンデンサにおいては電解質層が真の陰極を担うことになる。このような真の陰極として機能する電解質層は、酸化皮膜層との密着性、緻密性、均一性などが求められる。特に、陽極電極の微細孔やエッチングピットの内部における密着性が電気的な特性に大きな影響を及ぼしており、従来数々の電解質層が提案されている。   An electrolytic capacitor is made of a valve action metal such as tantalum or aluminum, and has a structure in which an oxide film layer serving as a dielectric is formed on the surface of an anode electrode having fine holes and etching pits, and an electrode is drawn from the oxide film layer. Become. And extraction of the electrode from an oxide film layer is performed by the electrolyte layer which has electroconductivity. Therefore, in the electrolytic capacitor, the electrolyte layer serves as a true cathode. Such an electrolyte layer functioning as a true cathode is required to have adhesion, denseness, and uniformity with the oxide film layer. In particular, the adhesion within the fine holes of the anode electrode and the etching pits has a great influence on the electrical characteristics, and a number of electrolyte layers have been proposed in the past.

ところで、近年、電子機器のデジタル化、高周波化に伴い、小型大容量で高周波領域でのインピーダンスの低いコンデンサが要求されている。   By the way, in recent years, with the digitization and high frequency of electronic equipment, a capacitor having a small size and a large capacity and a low impedance in a high frequency region is required.

これらの要求に対して、陰極箔と陽極箔をセパレータを介して巻回したコンデンサ素子を金属ケースに収納し、封口ゴムによって封止する巻回型の電解コンデンサによって、小型大容量を実現することができる。そして、低インピーダンスに対しては、電解質として固体電解質を用いることで対応することができる。このような固体電解質としては、7、7、8、8−テトラシアノキノジメタン(TCNQ)錯体、ポリピロール、ポリチオフエン等の高導電性を有する導電性ポリマーが知られている。そして、現在では反応速度が緩やかで、かつ陽極電極の酸化皮膜層との密着性に優れたポリエチレンジオキシチオフェン(PEDT)に着目し(特許文献1参照)、その結果、陽極電極箔と陰極電極箔とを、セパレータを介して巻回したコンデンサ素子に、モノマーと酸化剤とを含浸し、その後緩やかに起きるモノマーと酸化剤との化学重合反応で固体電解質であるポリエチレンジオキシチオフェンをコンデンサ素子内部で生成させる固体電解コンデンサが実現されている(特許文献2参照)。
特開平2−15611号公報 特開平10−340829号公報
In response to these requirements, a capacitor element in which a cathode foil and an anode foil are wound through a separator is housed in a metal case, and a small and large capacity is realized by a wound type electrolytic capacitor that is sealed with a sealing rubber. Can do. And it can respond to low impedance by using a solid electrolyte as an electrolyte. As such a solid electrolyte, conductive polymers having high conductivity such as 7,7,8,8-tetracyanoquinodimethane (TCNQ) complex, polypyrrole, polythiophene and the like are known. Attention is now focused on polyethylenedioxythiophene (PEDT), which has a slow reaction rate and excellent adhesion to the oxide film layer of the anode electrode (see Patent Document 1), and as a result, the anode electrode foil and the cathode electrode Capacitor element wound with foil through a separator is impregnated with monomer and oxidant, and then polyethylenedioxythiophene, which is a solid electrolyte, is generated by a chemical polymerization reaction between the monomer and oxidant that occurs slowly. (See Patent Document 2).
JP-A-2-15611 Japanese Patent Laid-Open No. 10-340829

ところで、近年、電子情報機器はデジタル化され、さらにこれらの電子情報機器の心臓部であるマイクロプロセッサの駆動周波数の高速化が進んでいる。これに伴って、消費電力の増大化が進み、発熱による信頼性の問題が顕在化してきたため、その対策として駆動電圧の低減化が図られてきた。 By the way, in recent years, electronic information devices have been digitized, and the driving frequency of the microprocessor which is the heart of these electronic information devices has been increased. Along with this, the power consumption has been increasing and the problem of reliability due to heat generation has become obvious. Therefore, the drive voltage has been reduced as a countermeasure.

上記駆動電圧の低減化を図るため、マイクロプロセッサに高精度な電力を供給する電源の出力側コンデンサには、ESRの低いコンデンサが多数用いられている。このような低ESR特性を有するコンデンサとして、上述したような固体電解コンデンサが用いられている。 In order to reduce the drive voltage, a large number of capacitors having low ESR are used as output-side capacitors of a power supply that supplies highly accurate power to the microprocessor. As the capacitor having such a low ESR characteristic, the solid electrolytic capacitor as described above is used.

しかしながら、このような低ESR特性を有する固体電解コンデンサにおいて、漏れ電流特性が高くなることがあり、良品率が低下するという問題点があった。 However, in such a solid electrolytic capacitor having low ESR characteristics, there is a problem that the leakage current characteristics may be increased and the yield rate is reduced.

そこで、本発明は、前述のような問題点を解決するために、漏れ電流特性を改善し、良品率を向上させる固体電解コンデンサの製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor that improves the leakage current characteristics and improves the yield rate in order to solve the above-described problems.

本発明の固体電解コンデンサの製造方法は、陽極電極箔と陰極電極箔とをセパレータを介して巻回したコンデンサ素子に修復化成を行い、3,4−エチレンジオキシチオフェンと酸化剤溶液を含浸し、化学重合でコンデンサ素子内にポリエチレンジオキシチオフェンを生成した後、コンデンサ素子を外装ケースに収納する固体電解コンデンサの製造方法において、コンデンサ素子を修復化成した後、ホウ酸化合物溶液に浸漬し、引き上げて加熱し、再び修復化成を行うことを特徴としている。
そして、修復化成がリン酸二水素アンモニウムA溶液中で行われることを特徴としている。
The method for producing a solid electrolytic capacitor according to the present invention comprises restoring and forming a capacitor element in which an anode electrode foil and a cathode electrode foil are wound through a separator, and impregnating 3,4-ethylenedioxythiophene and an oxidizing agent solution. In the method of manufacturing a solid electrolytic capacitor in which polyethylene dioxythiophene is produced in the capacitor element by chemical polymerization and then the capacitor element is housed in the outer case, the capacitor element is repaired and then immersed in a boric acid compound solution and pulled up It is characterized in that it is heated and then repaired again.
And it is characterized in that the repair conversion is performed in an ammonium dihydrogen phosphate A solution.

本発明の固体電解コンデンサについて説明する。アルミニウム等の弁作用金属からなり表面に酸化皮膜層が形成された陽極電極箔と、陰極電極箔とを、セパレータを介して巻回してコンデンサ素子を形成する。そして、このコンデンサ素子のセパレータに導電性ポリマーを保持している。   The solid electrolytic capacitor of the present invention will be described. An anode electrode foil made of a valve action metal such as aluminum and having an oxide film layer formed on the surface thereof and a cathode electrode foil are wound through a separator to form a capacitor element. The conductive polymer is held in the separator of the capacitor element.

陽極電極箔は、アルミニウム等の弁作用金属からなり、陽極電極箔の表面には、アジピン酸アンモニウム等の水溶液中で電圧を印加して誘電体となる酸化皮膜層を形成している。陰極電極箔は、陽極電極箔と同様にアルミニウム等からなり、表面にエッチング処理が施されているものを用いる。   The anode electrode foil is made of a valve action metal such as aluminum, and an oxide film layer serving as a dielectric is formed on the surface of the anode electrode foil by applying a voltage in an aqueous solution of ammonium adipate or the like. The cathode electrode foil is made of aluminum or the like like the anode electrode foil, and the surface is subjected to etching treatment.

陽極電極箔及び陰極電極箔にはそれぞれの電極を外部に接続するための陽極引出し手段、陰極引出し手段が、ステッチ、超音波溶接等の公知の手段により接続されている。これらの電極引出し手段は、巻回したコンデンサ素子の端面から導出される。   Anode extraction means and cathode extraction means for connecting the respective electrodes to the outside are connected to the anode electrode foil and the cathode electrode foil by known means such as stitching and ultrasonic welding. These electrode lead-out means are led out from the end face of the wound capacitor element.

コンデンサ素子は、上記の陽極電極箔と陰極電極箔とを、セパレータを間に挟むようにして巻き取って形成している。両極電極箔の寸法は、製造する固体電解コンデンサの仕様に応じて任意であり、セパレータも両極電極箔の寸法に応じてこれよりやや大きい幅寸法のものを用いればよい。   The capacitor element is formed by winding the anode electrode foil and the cathode electrode foil with a separator interposed therebetween. The dimensions of the bipolar electrode foil are arbitrary depending on the specifications of the solid electrolytic capacitor to be manufactured, and the separator having a slightly larger width may be used depending on the dimensions of the bipolar electrode foil.

このコンデンサ素子内にポリエチレンジオキシチオフェン(PEDT)を形成する。このPEDTは、モノマーである3,4−エチレンジオキシチオフェン(EDT)を酸化剤であるp−トルエンスルホン酸第二鉄で重合させて得ることができる。重合はコンデンサ素子にEDT溶液を含浸した後、酸化剤溶液を含浸し、その後に加熱して行う。   Polyethylenedioxythiophene (PEDT) is formed in the capacitor element. This PEDT can be obtained by polymerizing 3,4-ethylenedioxythiophene (EDT) as a monomer with ferric p-toluenesulfonate as an oxidizing agent. Polymerization is performed by impregnating the capacitor element with an EDT solution, then impregnating with an oxidant solution, and then heating.

そして、この導電性ポリマーを形成したコンデンサ素子を有底筒状の金属ケースに収納し、封口ゴムで加締め封止して固体電解コンデンサが形成される。   Then, the capacitor element in which the conductive polymer is formed is housed in a bottomed cylindrical metal case, and is swaged and sealed with a sealing rubber to form a solid electrolytic capacitor.

ここで、本発明においては、コンデンサ素子を修復化成した後、ホウ酸化合物溶液に浸漬、加熱し、再び修復化成を行う。修復化成の化成液としては、リン酸二水素アンモニウム、リン酸水素二アンモニウム等のリン酸系の化成液、ホウ酸 アンモニウム等のホウ酸 系の化成液、アジピン酸アンモニウム等のアジピン酸系の化成液を用いることができるが、なかでも、リン酸二水素アンモニウムまたはアジピン酸アンモニウムを用いることが望ましい。ホウ酸 化合物としては、ホウ酸 、ホウ砂、ホウ酸 のアンモニウム塩、金属塩等のホウ酸 塩、ホウ酸 トリエチル等のホウ酸 エステル等を用いることができるが、なかでも、ホウ酸 を用いることが望ましい。また、これらホウ酸 化合物の溶媒としては、これらの化合物が溶解するものであれば良く、主として水、グリセリン等を用いることができる。また、加熱温度は150〜200℃が好ましい。   Here, in the present invention, after the capacitor element is repaired and formed, it is immersed in a boric acid compound solution and heated, and then repaired and formed again. As the chemical solution for restoration chemical conversion, phosphoric acid-based chemicals such as ammonium dihydrogen phosphate and diammonium hydrogen phosphate; boric acid-based chemicals such as ammonium borate; and adipic acid-based chemicals such as ammonium adipate. Although a liquid can be used, it is preferable to use ammonium dihydrogen phosphate or ammonium adipate. As the boric acid compound, boric acid, borax, ammonium salts of boric acid, boric acid salts such as metal salts, boric acid esters such as triethyl boric acid, etc. can be used, among which boric acid is used. Is desirable. Moreover, as a solvent of these boric acid compounds, what is necessary is just to melt | dissolve these compounds, and water, glycerol, etc. can be mainly used. The heating temperature is preferably 150 to 200 ° C.

以上のような本発明の固体電解コンデンサの製造方法によれば、修復化成を行った後、ホウ酸化合物に浸漬し、引き上げて加熱すると、酸化皮膜にホウ酸化合物が付着して皮膜特性が向上し、再び修復化成を行うことによってさらに皮膜特性が向上して、漏れ電流特性が向上するものと思われる。また、修復化成液としてリン酸二水素アンモニウム溶液を用いると、修復化成が良好におこなわれ、漏れ電流特性がさらに向上する。 According to the method for producing a solid electrolytic capacitor of the present invention as described above, after performing repair conversion, when immersed in a boric acid compound, pulled up and heated, the boric acid compound adheres to the oxide film and the film characteristics are improved. However, it is considered that the film characteristics are further improved and the leakage current characteristics are improved by performing the restoration conversion again. Further, when an ammonium dihydrogen phosphate solution is used as the repairing chemical, the repairing is performed satisfactorily and the leakage current characteristics are further improved.

本発明の固体電解コンデンサの製造方法は、陽極電極箔と陰極電極箔とをセパレータを介して巻回したコンデンサ素子に修復化成を行い、3,4−エチレンジオキシチオフェンと酸化剤溶液を含浸し、化学重合でコンデンサ素子内にポリエチレンジオキシチオフェンを生成した後、コンデンサ素子を外装ケースに収納する固体電解コンデンサの製造方法において、コンデンサ素子を修復化成した後、ホウ酸化合物溶液に浸漬し、引き上げて加熱し、再び修復化成を行うので、漏れ電流特性が向上する。     The method for producing a solid electrolytic capacitor according to the present invention involves restoration-forming a capacitor element in which an anode electrode foil and a cathode electrode foil are wound via a separator, and impregnating 3,4-ethylenedioxythiophene and an oxidizing agent solution. In a method for producing a solid electrolytic capacitor in which polyethylene dioxythiophene is produced in a capacitor element by chemical polymerization, and then the capacitor element is housed in an outer case, the capacitor element is repaired and formed, then immersed in a boric acid compound solution and pulled up Heating is then performed again, and the repair formation is performed again, so that the leakage current characteristics are improved.

次に本発明の固体電解コンデンサの製造方法について具体的に説明する。
陽極電極箔及び陰極電極箔は、弁作用金属、例えばアルミニウム、タンタルからなり、その表面には予めエッチング処理が施されて表面積が拡大されている。陽極電極箔については、更に化成処理が施され、表面に酸化アルミニウムからなる酸化皮膜層が形成されている。これらの電極箔にはリード線が取り付けられたアルミニウム製タブ端子が接続されている。この陽極電極箔及び陰極電極箔を、セパレータを介して巻回し、コンデンサ素子を得る。
Next, the manufacturing method of the solid electrolytic capacitor of this invention is demonstrated concretely.
The anode electrode foil and the cathode electrode foil are made of a valve metal, such as aluminum or tantalum, and the surface thereof is preliminarily etched to increase the surface area. The anode electrode foil is further subjected to chemical conversion treatment, and an oxide film layer made of aluminum oxide is formed on the surface. These electrode foils are connected to aluminum tab terminals to which lead wires are attached. The anode electrode foil and the cathode electrode foil are wound through a separator to obtain a capacitor element.

この後、リン酸二水素アンモニウム溶液中で、コンデンサ素子の修復化成を行った。   Thereafter, the capacitor element was repaired and formed in an ammonium dihydrogen phosphate solution.

次いで、コンデンサ素子に、EDTと酸化剤とを含浸する。酸化剤は、p−トルエンスルホン酸第二鉄のブタノール溶液を用い、150℃、1時間加熱重合して、導電性ポリマーであるPEDTを生成する。   Next, the capacitor element is impregnated with EDT and an oxidizing agent. As the oxidizing agent, a butanol solution of ferric p-toluenesulfonate is used and polymerized by heating at 150 ° C. for 1 hour to produce PEDT which is a conductive polymer.

このようにして陽極電極箔と陰極電極箔の間に介在したセパレータに導電性ポリマー層が形成されたコンデンサ素子は、有底筒状のケースに収納され、ブチルゴムからなる封口ゴムで封止して固体電解コンデンサを形成する。定格は25WV−68μFである。   Thus, the capacitor element in which the conductive polymer layer is formed on the separator interposed between the anode electrode foil and the cathode electrode foil is housed in a bottomed cylindrical case and sealed with a sealing rubber made of butyl rubber. A solid electrolytic capacitor is formed. The rating is 25 WV-68 μF.

以上の固体電解コンデンサを比較例とし、実施例として修復化成を行った後、ホウ酸溶液に浸漬、160℃で加熱した後、再び修復化成を行った。   The above-mentioned solid electrolytic capacitor was used as a comparative example, and after repair formation as an example, after being immersed in a boric acid solution and heated at 160 ° C., repair conversion was performed again.

次に、これらの固体電解コンデンサの初期特性を(表1)に示す。   Next, initial characteristics of these solid electrolytic capacitors are shown in (Table 1).

(表1)

┌───────┬──────────────────┐
│ │ 漏れ電流の不良率(%) │
├───────┼──────────────────┤
│ 実施例 │ 5 │
├───────┼──────────────────┤
│ 比較例 │ 15 │
└───────┴──────────────────┘
(Table 1)

┌───────┬──────────────────┐
│ │ Leakage current failure rate (%) │
├───────┼──────────────────┤
│ Examples │ 5 │
├───────┼──────────────────┤
│ Comparative example │ 15 │
└───────┴──────────────────┘

以上のように、実施例は従来例に比べて、漏れ電流の不良率は低減し、本発明の効果がわかる。

As described above, the defect rate of the leakage current is reduced in the example compared with the conventional example, and the effect of the present invention can be understood.

Claims (2)

陽極電極箔と陰極電極箔とをセパレータを介して巻回したコンデンサ素子に修復化成を行い、3,4−エチレンジオキシチオフェンと酸化剤溶液を含浸し、化学重合でコンデンサ素子内にポリエチレンジオキシチオフェンを生成した後、コンデンサ素子を外装ケースに収納する固体電解コンデンサの製造方法において、コンデンサ素子を修復化成した後、ホウ酸化合物溶液に浸漬し、引き上げて加熱し、再び修復化成を行う固体電解コンデンサの製造方法。   A capacitor element in which an anode electrode foil and a cathode electrode foil are wound via a separator is subjected to restoration conversion, impregnated with 3,4-ethylenedioxythiophene and an oxidizing agent solution, and polyethylenedioxy in the capacitor element by chemical polymerization. In the method of manufacturing a solid electrolytic capacitor in which a capacitor element is housed in an outer case after producing thiophene, the capacitor element is repaired and formed, then immersed in a boric acid compound solution, heated up, and then subjected to repairing and forming again. Capacitor manufacturing method. 修復化成がリン酸二水素アンモニウム溶液中で行われる請求項1記載の固体電解コンデンサの製造方法。

The method for producing a solid electrolytic capacitor according to claim 1, wherein the repair conversion is performed in an ammonium dihydrogen phosphate solution.

JP2003435833A 2003-12-26 2003-12-26 Method of manufacturing solid electrolytic capacitor Pending JP2005197314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003435833A JP2005197314A (en) 2003-12-26 2003-12-26 Method of manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003435833A JP2005197314A (en) 2003-12-26 2003-12-26 Method of manufacturing solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2005197314A true JP2005197314A (en) 2005-07-21

Family

ID=34815783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003435833A Pending JP2005197314A (en) 2003-12-26 2003-12-26 Method of manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2005197314A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075798A (en) * 2000-08-22 2002-03-15 Nippon Chemicon Corp Solid electrolytic capacitor with anode foil having through-hole, and method for manufacturing the same
JP2002313681A (en) * 2001-04-10 2002-10-25 Fujitsu Media Device Kk Method for manufacturing solid electrolytic capacitor
JP2003197482A (en) * 2001-12-28 2003-07-11 Nippon Chemicon Corp Method of manufacturing solid electrolytic capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075798A (en) * 2000-08-22 2002-03-15 Nippon Chemicon Corp Solid electrolytic capacitor with anode foil having through-hole, and method for manufacturing the same
JP2002313681A (en) * 2001-04-10 2002-10-25 Fujitsu Media Device Kk Method for manufacturing solid electrolytic capacitor
JP2003197482A (en) * 2001-12-28 2003-07-11 Nippon Chemicon Corp Method of manufacturing solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
JPWO2004070750A1 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2001284174A (en) Solid electrolytic capacitor and its manufacturing method
WO2004030004A1 (en) Solid electrolytic capacitor
JP2005197314A (en) Method of manufacturing solid electrolytic capacitor
JP4821818B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4381136B2 (en) Solid electrolytic capacitor
JP2007103406A (en) Manufacturing method of solid electrolytic capacitor
JP2005197313A (en) Method of manufacturing solid electrolytic capacitor
JP2007305684A (en) Solid electrolytic capacitor and method for manufacturing the same
JP2005197315A (en) Method of manufacturing solid electrolytic capacitor
JP4780894B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2005109276A (en) Solid electrolytic capacitor
JP4442361B2 (en) Manufacturing method of solid electrolytic capacitor
JP2005109277A (en) Solid electrolytic capacitor
JP3978822B2 (en) Manufacturing method of solid electrolytic capacitor
JP2007019542A (en) Cathode electrode foil for solid electrolytic capacitor
JP2765440B2 (en) Method for manufacturing solid electrolytic capacitor
JP2004128048A (en) Solid electrolytic capacitor
JP2005109053A (en) Solid electrolytic capacitor
JP2005109272A (en) Solid electrolytic capacitor
JP2001257131A (en) Manufacturing method of solid electrolytic capacitor
JP2005109278A (en) Solid electrolytic capacitor
JP4720076B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2005197310A (en) Solid electrolytic capacitor
JP4608865B2 (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100414