JP4858667B2 - Solid electrolytic capacitor and manufacturing method thereof - Google Patents

Solid electrolytic capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP4858667B2
JP4858667B2 JP2001302084A JP2001302084A JP4858667B2 JP 4858667 B2 JP4858667 B2 JP 4858667B2 JP 2001302084 A JP2001302084 A JP 2001302084A JP 2001302084 A JP2001302084 A JP 2001302084A JP 4858667 B2 JP4858667 B2 JP 4858667B2
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
solid electrolytic
ethylenedioxythiophene
electrode foil
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001302084A
Other languages
Japanese (ja)
Other versions
JP2003109852A (en
Inventor
洋二 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2001302084A priority Critical patent/JP4858667B2/en
Publication of JP2003109852A publication Critical patent/JP2003109852A/en
Application granted granted Critical
Publication of JP4858667B2 publication Critical patent/JP4858667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、固体電解コンデンサおよびその製造方法に関し、特に、誘電体酸化皮膜層の欠損部の修復性の向上を図るべく改良を施した固体電解コンデンサ及びその製造方法に関するものである。
【0002】
【従来の技術】
電解コンデンサは、タンタル、アルミニウム等の弁作用金属からなる微細孔やエッチングピットを備えた陽極電極の表面に、誘電体となる酸化皮膜層を形成し、この酸化皮膜層から電極を引き出した構成からなる。
【0003】
そして、酸化皮膜層からの電極の引出しは、導電性を有する電解質層により行っている。従って、電解コンデンサにおいては電解質層が真の陰極を担うことになる。例えば、アルミニウム電解コンデンサでは、液状の電解質を真の電極として用い、陰極電極はこの液状電解質層と外部端子との電気的な接続を担っているにすぎない。
【0004】
真の陰極として機能する電解質層は、酸化皮膜層との密着性、緻密性、均一性などが求められる。特に、陽極電極の微細孔やエッチングピットの内部における密着性が電気的な特性に大きな影響を及ぼしており、従来数々の電解質層が提案されている。
【0005】
固体電解コンデンサは、液状の電解質層の代わりに導電性を有する固体の電解質を用いるもので、なかでも二酸化マンガンや7,7,8,8−テトラシアノキノジメタン(TCNQ)錯体が知られているが、製品の電気的特性や耐熱性に不都合があった。
【0006】
前記二酸化マンガン及びTCNQ錯体の持つ不都合を解決するため、ポリピロールに代表される導電性高分子を固体電解質層として用いることが試みられた。しかしながら、これらの導電性高分子は、化学重合法により生成されると強度の強い皮膜層を緻密に生成することが困難であり、電解重合法により生成されると製造工程が煩雑となるほか、均一な厚さの導電性高分子膜を連続的に生成することが非常に困難な場合が多かった。
【0007】
そこで、本発明者等は、反応速度が緩やかでかつ陽極電極の酸化皮膜層との密着性に優れたポリエチレンジオキシチオフェンに着目し(特開平2−15611号公報)、陽極電極箔と陰極電極箔とを、セパレータを介して巻回したコンデンサ素子に、3,4‐エチレンジオキシチオフェンと酸化剤とを含浸し、その後緩やかに進行する化学重合反応で固体電解質であるポリ3,4‐エチレンジオキシチオフェンをコンデンサ素子内部に生成させることを特徴とする発明を出願した(特願平8−131374号)。
【0008】
更に、本出願人等は、平板積層型のコンデンサ素子内部にポリ3,4‐エチレンジオキシチオフェンを生成させさせることを特徴とする、高周波特性、高耐電圧性に優れ、かつ高容量な固体電解コンデンサの発明を出願した(特願2000-251702号)。
【0009】
【発明が解決しようとする課題】
しかしながら、電解液を用いた電解コンデンサと比較して、一般的に固体電解コンデンサは誘電体酸化皮膜層の欠損部の修復性、すなわち再化成性が劣っており、上述の構成の固体電解コンデンサに関しても再化成性において検討の余地があった。
【0010】
本発明の目的は、再化成性の優れた固体電解コンデンサおよびその製造方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく、再化成性の優れた固体電解コンデンサ及びその製造方法について鋭意検討を重ねた結果、本発明を完成させるに至ったものである。
【0012】
すなわち、本発明者らは、陰極電極箔と、表面に誘電体酸化皮膜層を形成した陽極電極箔と、固体電解質を保持したセパレータとからなる固体電解コンデンサにおいて、3,4-エチレンジオキシチオフェと酸化剤とをセパレータに含浸の後加熱重合により形成されたポリ3,4-エチレンジオキシチオフェンと反応残留物との総量が0.25〜0.7mg/mmである固体電解コンデンサによって上記目的を達成した。
【0013】
この固体電解コンデンサは、陰極電極箔と、表面に誘電体酸化皮膜層を形成した陽極電極箔と、固体電解質を保持するためのセパレータとからなるコンデンサ素子に、3,4−エチレンジオキシチオフェンと酸化剤とを含浸の後、加熱重合を行い製造する固体電解コンデンサの製造方法において、加熱重合により形成したポリ3,4-エチレンジオキシチオフェンと反応残留物との総量を0.25〜0.7mg/mmとすることを特徴とする固体電解コンデンサの製造方法によって製造し得る。
【0014】
なお、上記固体電解コンデンサの製造方法において、加熱重合時に緊締することにより、加熱重合により形成したポリ3,4-エチレンジオキシチオフェンと反応残留物との総量を0.25〜0.7mg/mmとしても良い。
【0015】
【発明の実施の形態】
次に、本発明の実施の形態を具体的に説明する。本発明の固体電解コンデンサは、両極箔表面の粗面化→陽極電極箔の化成処理→コンデンサ素子形成→3,4−エチレンジオキシチオフェン及び酸化剤の含浸→重合→再化成→乾燥という工程により製造され、外装ケースへの挿入後封止することにより製品とする。
【0016】
ここで、陽極電極箔は、アルミニウム、タンタル等の弁作用金属であればいずれを用いても良いが、通常アルミニウムを使用する。この陽極電極箔の表面には、例えば塩化物水溶液中での電気化学的なエッチング処理(粗面化)により、多数のエッチングピットを形成した後、ホウ酸アンモニウム等の水溶液中で電圧を印加して誘電体となる酸化皮膜層を形成しておく(化成処理)。
【0017】
陰極電極箔は、リード線と電解質層との電気的な接続をする物質であればいずれでも良く、本発明の一態様ではアルミニウムを用いている。なお、その陰極電極箔の表面にもエッチング処理及び化成処理を施しておく。さらに、静電容量を増大させるため、陰極電極箔の表面に窒化チタン膜を形成しておいてもよい。
【0018】
なお、陽極電極箔及び陰極電極箔にはそれぞれの電極を外部に接続するためのリード線を、ステッチ、超音波溶接等の公知の手段により接続しておく。このリード線は、アルミニウム等からなり、陽極電極箔又は陰極電極箔との接続部と、外部との電気的な接続を担う外部接続部とからなり、コンデンサ素子の端部から導出される。
【0019】
なお、陽極電極箔及び陰極電極箔は、前記加工の段階で受けた皮膜損傷部分や切断面を修復するために、前記加工の後、化成液中で修復化成を行う。
【0020】
セパレータとしては、通常、ガラスセパレータを用いるが、別の実施の形態として、通常の電解コンデンサ用として用いられるその他の電解紙を用いることができる。つまり、合成繊維、これらの混抄によるもの、また、合成繊維と電解紙用の繊維又はガラス繊維の混抄による不織布を用いることができる。合成繊維としてはビニロン繊維、ポリエステル繊維、ナイロン繊維、レーヨン繊維等が挙げられる。さらには、合成樹脂の多孔質セパレータを用いることができる。これらの合成樹脂としては、ポリアミド、ポリイミド、アラミド等を挙げることができる。なお、前記セパレータは、10〜3000μm、好ましくは20〜1500μm厚のものを用いている。ポリ3,4-エチレンジオキシチオフェンと反応残留物との総量を最適な量に調整するとき、この範囲の厚さのものを用いるとよい。
【0021】
陰極電極箔と陽極電極箔の寸法は、コンデンサ素子の中心部に3,4−エチレンジオキシチオフェン及び酸化剤が浸透する大きさであればよい。さらに陰極電極箔で陽極電極箔を挟み込むことができる大きさ、あるいは、巻き込める大きさとしてもよく、製造する固体電解コンデンサの仕様に応じて任意である。セパレータも陰極電極箔と陽極電極箔の寸法に応じて陰極電極箔よりやや大きい幅寸法のものを用いればよい。
【0022】
次に、上記処理を施した陽極電極箔と陰極電極箔とを、図1に示すようにセパレータを介して積層して、コンデンサ素子を形成する。なお、本発明の固体電解コンデンサ素子の形状は、図1のような平板型に限るものではなく、図2のような巻回型であっても良い。この場合、陽極電極箔と陰極電極箔とを、図2に示すようにセパレータを介して巻回して、コンデンサ素子を形成する。
【0023】
そして、これらコンデンサ素子に3,4−エチレンジオキシチオフェンと酸化剤とを含浸させることで、コンデンサ素子の内部にまで3,4−エチレンジオキシチオフェンと酸化剤が浸透し、その後の化学重合反応によりポリ3,4−エチレンジオキシチオフェンがコンデンサ素子の内部においてセパレータで保持された状態で生成される。
【0024】
3,4−エチレンジオキシチオフェンは、特開平2−15611号公報等により開示された公知の製法により得ることができる。
【0025】
酸化剤としては、ブタノール溶媒に芳香族スルホン酸の鉄塩であるp−トルエンスルホン酸第二鉄を溶解したものを用いる。この酸化剤の溶媒としては、エタノール、ブタノール等のアルコール類など、通常の有機溶媒を用いることができる。
【0026】
3,4−エチレンジオキシチオフェンと酸化剤とをコンデンサ素子に含浸させる方法として、あらかじめ3,4−エチレンジオキシチオフェンと酸化剤とを混合した液にコンデンサ素子を浸漬する方法だけでなく、他の実施の形態として、3,4−エチレンジオキシチオフェンに浸漬したコンデンサ素子を酸化剤に浸漬する方法、あるいは、酸化剤に浸漬したコンデンサ素子を3,4−エチレンジオキシチオフェンに浸漬する方法、さらには、前記浸漬操作をシリンジからの溶液の吐出に置き換える方法が同様に可能である。
【0027】
重合反応時の加熱条件は20〜180℃が好ましい。重合温度が20℃未満では、ポリ3,4−エチレンジオキシチオフェンの生成が良好に進行しない。また、180℃より高い温度では3,4−エチレンジオキシチオフェンの分解が起こり、好ましくない。
【0028】
なお、ポリ3,4-エチレンジオキシチオフェンと反応残留物との総量を最適な量に調整する方法として、含浸時に減圧含浸や、定量吐出含浸等によって、酸化剤と3,4−エチレンジオキシチオフェンの含浸量を調節したり、重合反応時に、平板型の場合は挟み込みによる加圧(緊締)や、巻回型コンデンサの場合は巻締めによる加圧等、圧力を加えることにより量を調整することができる。
【0029】
前記重合条件において、重合反応を30分以上進めることにより固体電解質層が得られる。この重合反応の反応時間は重合反応が完全に終了し得る30分以上が好ましい。
【0030】
重合反応による固体電解質層を形成した後、誘電体酸化皮膜層を修復するために、常温以上の高湿条件下、再化成を行なう。再化成をするに当って、温度条件は40℃以上、特に50〜120℃が好ましく、さらに好ましくは60〜90℃である。40℃未満では再化成電圧が上昇せず、再化成処理を行うことができない。湿度条件は、20〜60%RHが好ましい。湿度が20%RH未満では再化成に必要な水分が不足し、電圧が安定に上昇しない。60%RHを超えると水分が過剰となり、同じく電圧が安定に上昇しない。
【0031】
この再化成処理時、形成されたポリ3,4-エチレンジオキシチオフェンと反応残留物との総量は0.25〜0.7mg/mmが良く、更に好ましくは0.3〜0.6mg/mmである。すなわち、固体電解コンデンサにおけるポリ3,4-エチレンジオキシチオフェンと反応残留物との総量が上記に記した適切な量であるとき、再化成電圧の急激且つ安定した上昇が起こり、その結果、再化成処理が短時間且つ良好に進行する。
【0032】
再化成処理後、水分除去工程として電圧印加する。これにより、残留した水分による電極箔の劣化に伴うガス発生、コンデンサの膨れが抑制される。水分除去の他の実施の形態として、高温放置、低湿度条件下での放置も可能である。
【0033】
上記実施の形態によれば、誘電体酸化皮膜層の欠損部の修復性すなわち再化成性において優れた固体電解コンデンサが得られる。
【0034】
【実施例】
次に、本発明における固体電解コンデンサの製造方法と、その方法によって得られた固体電解コンデンサについて実施例により図面を用いて具体的に説明するが、本発明は、これら実施例に限定されるものではない。
【0035】
[実施例1]
図1は、本発明の平板型固体電解コンデンサの素子の分解斜視図である。陽極電極箔1は、縦寸法が30mm、横寸法が40mmのアルミニウム箔からなり、エッチング処理及び化成処理を施し、酸化アルミニウムからなる酸化皮膜層をその表面に形成する。次に、陰極電極箔2は、縦寸法が30mm、横寸法が85mmのアルミニウム箔からなり、エッチング処理及び化成処理を施した後、陰極アークプラズマ蒸着法にて窒化チタン膜をその表面に形成する。前記加工の段階で受けた電極箔の皮膜損傷部分や切断面を修復するために、リン酸アンモニウム水溶液中で修復化成を行うことで、再度酸化皮膜を形成し、酸化皮膜安定のためさらにホウ酸水溶液に浸漬した後乾燥させた。前記陰極電極箔2の上に厚さ300μm、縦寸法が35mm、横寸法が90mmのガラスセパレータ3を重ね、セパレータ3を介した状態で陽極電極1を挟み込むように積層しコンデンサ素子6を得た。なお、コンデンサ素子6の陽極電極箔1、陰極電極箔2にはあらかじめそれぞれリード線4,5が電気的に接続されており、コンデンサ素子6の端部から突出させた。
【0036】
以上のような構成からなるコンデンサ素子6に、3,4−エチレンジオキシチオフェンと酸化剤とを含浸させた。酸化剤は、ブタノールに溶解したp−トルエンスルホン酸第二鉄を用い、これらの混合液を作成した。含浸は、一定量の前記混合溶液を貯溜した含浸槽にコンデンサ素子6を浸漬する方法で実施した。次いで、混合溶液の含浸されたコンデンサ素子6を含浸槽から引上げ、加圧(緊締)状態で、初めに60℃の加熱下で2時間、150℃の加熱下で更に2時間重合反応を進め重合体を生成させ、固体電解コンデンサにおけるポリ3,4-エチレンジオキシチオフェンと反応残留物との総量を0.84g、電極面積で換算すると、0.47mg/mmとした。
【0037】
さらに、90℃、20%RHの条件下において400μAの電流条件で電圧印加することで再化成を行った。この再化成処理に続き、電圧を印加し、固体電解質中の水分を除去する工程の後、該固体電解コンデンサを、ラミネートシートで形成した袋体にリード線が袋外に突出した状態で挿入し、開口部をポリプロピレンの溶融により熱圧着することで封口、密閉する工程を経て一連の製造工程を終了した。上記の製造工程から本発明の固体電解コンデンサが作成され、このコンデンサを実施例1とした。
【0038】
[実施例2]
前記実施例1に記載した固体電解コンデンサにおいて、固体電解コンデンサにおけるポリ3,4-エチレンジオキシチオフェンと反応残留物との総量を0.69mg/mmとする電解コンデンサを作成し、実施例2とした。
【0039】
[実施例3]
前記実施例1に記載した固体電解コンデンサにおいて、固体電解コンデンサにおけるポリ3,4-エチレンジオキシチオフェンと反応残留物との総量を0.38mg/mmとする電解コンデンサを作成し、実施例3とした。
【0040】
[実施例4]
前記実施例1に記載した固体電解コンデンサにおいて、固体電解コンデンサにおけるポリ3,4-エチレンジオキシチオフェンと反応残留物との総量を0.28mg/mmとする電解コンデンサを作成し、実施例4とした。
【0041】
[比較例1]
前記実施例1に記載した固体電解コンデンサにおいて、固体電解コンデンサにおけるポリ3,4-エチレンジオキシチオフェンと反応残留物との総量を0.75mg/mmとする電解コンデンサを作成し、比較例1とした。
【0042】
[比較例2]
前記実施例1に記載した固体電解コンデンサにおいて、固体電解コンデンサにおけるポリ3,4-エチレンジオキシチオフェンと反応残留物との総量を0.23mg/mmとする電解コンデンサを作成し、比較例2とした。
【0043】
[試験例1]
前記実施例1、実施例2、実施例3、実施例4、比較例1及び比較例2にて作成した固体電解コンデンサにおけるポリ3,4-エチレンジオキシチオフェンと反応残留物との総量と、400μA電流による再化成所要時間、すなわち電圧が33Vに到達するまでの時間との関連を確認した。その結果を表1に示す。
【0044】
実施例1は電圧の急激且つ安定した上昇が起こり、約30秒で電圧が33Vに到達した。実施例2、実施例3、実施例4もまた、電圧の安定した上昇が起こり、それぞれ30分、15分及び25分で電圧が33Vに到達したことが確認された。一方、比較例1および2は、電圧上昇中にショートが発生し、製品化ができなかった。
【0045】
【表1】

Figure 0004858667
【発明の効果】
以上説明したように、本発明によれば、固体電解コンデンサにおけるポリ3,4-エチレンジオキシチオフェンと反応残留物との総量を、ある特定の量、すなわち0.25〜0.7mg/mmとすることにより、誘電体酸化皮膜層の再化成性が顕著に向上した固体電解コンデンサを製造することが可能となった。
【図面の簡単な説明】
【図1】本発明で用いる平板型コンデンサ素子の分解斜視図である。
【図2】本発明で用いる巻回型コンデンサ素子の分解斜視図である。
【符号の説明】
1 陽極電極箔
2 陰極電極箔
3 セパレータ
4,5 リード線
6 コンデンサ素子[0001]
[Industrial application fields]
The present invention relates to a solid electrolytic capacitor and a method for manufacturing the same, and more particularly to a solid electrolytic capacitor that has been improved to improve the repairability of a defective portion of a dielectric oxide film layer and a method for manufacturing the same.
[0002]
[Prior art]
An electrolytic capacitor has a structure in which an oxide film layer serving as a dielectric is formed on the surface of an anode electrode having fine holes and etching pits made of a valve metal such as tantalum and aluminum, and the electrode is drawn from the oxide film layer. Become.
[0003]
And extraction of the electrode from an oxide film layer is performed by the electrolyte layer which has electroconductivity. Therefore, in the electrolytic capacitor, the electrolyte layer serves as a true cathode. For example, in an aluminum electrolytic capacitor, a liquid electrolyte is used as a true electrode, and a cathode electrode is merely responsible for electrical connection between the liquid electrolyte layer and an external terminal.
[0004]
The electrolyte layer that functions as a true cathode is required to have adhesiveness, denseness, and uniformity with the oxide film layer. In particular, the adhesion within the fine holes of the anode electrode and the etching pits has a great influence on the electrical characteristics, and a number of electrolyte layers have been proposed in the past.
[0005]
Solid electrolytic capacitors use conductive solid electrolytes instead of liquid electrolyte layers. Among them, manganese dioxide and 7,7,8,8-tetracyanoquinodimethane (TCNQ) complexes are known. However, there were problems with the electrical characteristics and heat resistance of the product.
[0006]
In order to solve the disadvantages of the manganese dioxide and the TCNQ complex, it has been attempted to use a conductive polymer typified by polypyrrole as a solid electrolyte layer. However, when these conductive polymers are produced by a chemical polymerization method, it is difficult to densely produce a strong coating layer, and when produced by an electrolytic polymerization method, the production process becomes complicated. In many cases, it was very difficult to continuously produce a conductive polymer film having a uniform thickness.
[0007]
Accordingly, the present inventors focused on polyethylene dioxythiophene having a slow reaction rate and excellent adhesion to the oxide film layer of the anode electrode (Japanese Patent Laid-Open No. 2-15611), and the anode electrode foil and the cathode electrode A capacitor element in which a foil is wound through a separator is impregnated with 3,4-ethylenedioxythiophene and an oxidizing agent, and then poly 3,4-ethylene which is a solid electrolyte by a chemical polymerization reaction that proceeds slowly thereafter. An application was filed for an invention characterized in that dioxythiophene was produced inside a capacitor element (Japanese Patent Application No. 8-131374).
[0008]
Further, the applicants of the present invention are characterized in that poly 3,4-ethylenedioxythiophene is generated inside a flat-plate type capacitor element, and is a solid having excellent high-frequency characteristics, high withstand voltage, and high capacity. An invention for an electrolytic capacitor was filed (Japanese Patent Application No. 2000-251702).
[0009]
[Problems to be solved by the invention]
However, compared with electrolytic capacitors using an electrolytic solution, solid electrolytic capacitors are generally inferior in repairability of defects in the dielectric oxide film layer, that is, re-formability. There was room for further study on re-chemical conversion.
[0010]
An object of the present invention is to provide a solid electrolytic capacitor excellent in re-formability and a method for producing the same.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have intensively studied a solid electrolytic capacitor excellent in re-formability and a manufacturing method thereof, and as a result, completed the present invention.
[0012]
That is, the present inventors have disclosed a 3,4-ethylenedioxythio in a solid electrolytic capacitor comprising a cathode electrode foil, an anode electrode foil having a dielectric oxide film layer formed on the surface thereof, and a separator holding a solid electrolyte. the solid electrolytic capacitor total and Fe ting oxidant poly 3,4-ethylenedioxythiophene formed by thermal polymerization followed impregnated in the separator and the reaction residue is 0.25~0.7mg / mm 2 The above object was achieved.
[0013]
This solid electrolytic capacitor has a capacitor element composed of a cathode electrode foil, an anode electrode foil having a dielectric oxide film layer formed on the surface thereof, and a separator for holding a solid electrolyte, and 3,4-ethylenedioxythiophene and In a method for producing a solid electrolytic capacitor in which an oxidant is impregnated and then heat polymerization is performed, the total amount of poly 3,4-ethylenedioxythiophene formed by heat polymerization and the reaction residue is 0.25 to 0. It can be produced by a method for producing a solid electrolytic capacitor, characterized in that the amount is 7 mg / mm 2 .
[0014]
In the above method for producing a solid electrolytic capacitor, the total amount of poly 3,4-ethylenedioxythiophene formed by heat polymerization and the reaction residue is 0.25 to 0.7 mg / mm by tightening at the time of heat polymerization. 2 is also acceptable.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be specifically described. The solid electrolytic capacitor of the present invention is obtained by the steps of roughening the surface of the bipolar foil → chemical conversion treatment of the anode electrode foil → capacitor element formation → impregnation with 3,4-ethylenedioxythiophene and an oxidant → polymerization → reformation → drying. The product is manufactured and sealed after insertion into the outer case.
[0016]
Here, the anode electrode foil may be any valve metal such as aluminum or tantalum, but usually aluminum is used. A large number of etching pits are formed on the surface of the anode electrode foil by, for example, electrochemical etching treatment (roughening) in an aqueous chloride solution, and then a voltage is applied in an aqueous solution such as ammonium borate. Then, an oxide film layer serving as a dielectric is formed (chemical conversion treatment).
[0017]
The cathode electrode foil may be any material that electrically connects the lead wire and the electrolyte layer, and aluminum is used in one embodiment of the present invention. Note that the surface of the cathode electrode foil is also subjected to etching treatment and chemical conversion treatment. Furthermore, in order to increase the capacitance, a titanium nitride film may be formed on the surface of the cathode electrode foil.
[0018]
Note that lead wires for connecting the respective electrodes to the outside are connected to the anode electrode foil and the cathode electrode foil by known means such as stitching or ultrasonic welding. The lead wire is made of aluminum or the like, and includes a connection portion with the anode electrode foil or the cathode electrode foil and an external connection portion that is responsible for electrical connection with the outside, and is led out from the end portion of the capacitor element.
[0019]
Note that the anode electrode foil and the cathode electrode foil are subjected to repair formation in the chemical liquid after the processing in order to repair the damaged portion of the film and the cut surface received in the processing stage.
[0020]
As the separator, a glass separator is usually used, but as another embodiment, other electrolytic paper used for a normal electrolytic capacitor can be used. That is, synthetic fibers, those obtained by mixing these, and nonwoven fabrics obtained by mixing synthetic fibers and fibers for electrolytic paper or glass fibers can be used. Examples of the synthetic fiber include vinylon fiber, polyester fiber, nylon fiber, and rayon fiber. Furthermore, a porous separator made of synthetic resin can be used. Examples of these synthetic resins include polyamide, polyimide, and aramid. The separator is 10 to 3000 [mu] m, preferably 20 to 1500 [mu] m thick. When the total amount of poly3,4-ethylenedioxythiophene and reaction residue is adjusted to an optimum amount, a thickness within this range may be used.
[0021]
The dimensions of the cathode electrode foil and the anode electrode foil may be such that 3,4-ethylenedioxythiophene and the oxidizing agent penetrate into the center of the capacitor element. Further, the anode electrode foil may be sandwiched between the cathode electrode foils, or may be rolled up, and is arbitrarily selected according to the specifications of the solid electrolytic capacitor to be manufactured. A separator having a slightly larger width than the cathode electrode foil may be used depending on the dimensions of the cathode electrode foil and the anode electrode foil.
[0022]
Next, the anode electrode foil and the cathode electrode foil that have been subjected to the above treatment are laminated via a separator as shown in FIG. 1 to form a capacitor element. The shape of the solid electrolytic capacitor element of the present invention is not limited to the flat plate type as shown in FIG. 1, but may be a winding type as shown in FIG. In this case, the anode electrode foil and the cathode electrode foil are wound through a separator as shown in FIG. 2 to form a capacitor element.
[0023]
Then, by impregnating these capacitor elements with 3,4-ethylenedioxythiophene and an oxidizing agent, 3,4-ethylenedioxythiophene and the oxidizing agent penetrate into the capacitor elements, and the subsequent chemical polymerization reaction Thus, poly 3,4-ethylenedioxythiophene is produced while being held by the separator inside the capacitor element.
[0024]
3,4-ethylenedioxythiophene can be obtained by a known production method disclosed in JP-A-2-15611.
[0025]
As the oxidizing agent, a solution obtained by dissolving ferric p-toluenesulfonate, which is an iron salt of aromatic sulfonic acid, in a butanol solvent is used. As the oxidant solvent, a common organic solvent such as alcohols such as ethanol and butanol can be used.
[0026]
As a method of impregnating the capacitor element with 3,4-ethylenedioxythiophene and an oxidizing agent, not only a method of immersing the capacitor element in a liquid in which 3,4-ethylenedioxythiophene and an oxidizing agent are mixed in advance, but also other methods. As an embodiment, a method of immersing a capacitor element immersed in 3,4-ethylenedioxythiophene in an oxidizing agent, or a method of immersing a capacitor element immersed in an oxidizing agent in 3,4-ethylenedioxythiophene, Furthermore, a method of replacing the dipping operation with the discharge of the solution from the syringe is also possible.
[0027]
The heating condition during the polymerization reaction is preferably 20 to 180 ° C. When the polymerization temperature is less than 20 ° C., the production of poly3,4-ethylenedioxythiophene does not proceed well. On the other hand, a temperature higher than 180 ° C. is not preferable because decomposition of 3,4-ethylenedioxythiophene occurs.
[0028]
In addition, as a method for adjusting the total amount of poly 3,4-ethylenedioxythiophene and reaction residue to an optimum amount, an oxidizing agent and 3,4-ethylenedioxy can be used by impregnation under reduced pressure or impregnation by quantitative discharge during impregnation Adjust the amount of thiophene by adjusting the amount of thiophene impregnation or applying pressure, such as pressurization (clamping) for flat plate type or pressure for winding type for winding type capacitors during polymerization reaction. be able to.
[0029]
Under the above polymerization conditions, a solid electrolyte layer is obtained by allowing the polymerization reaction to proceed for 30 minutes or more. The reaction time of this polymerization reaction is preferably 30 minutes or longer so that the polymerization reaction can be completed completely.
[0030]
After the formation of the solid electrolyte layer by the polymerization reaction, re-chemical conversion is performed under high-humidity conditions at room temperature or higher in order to repair the dielectric oxide film layer. In re-forming, the temperature condition is 40 ° C. or higher, particularly 50 to 120 ° C., more preferably 60 to 90 ° C. If it is less than 40 ° C., the re-forming voltage does not increase, and the re-forming process cannot be performed. The humidity condition is preferably 20 to 60% RH. If the humidity is less than 20% RH, the water necessary for re-forming is insufficient and the voltage does not rise stably. If it exceeds 60% RH, the water will be excessive and the voltage will not rise stably.
[0031]
The total amount of poly 3,4-ethylenedioxythiophene formed and the reaction residue during the re-chemical conversion treatment is preferably 0.25 to 0.7 mg / mm 2 , more preferably 0.3 to 0.6 mg / mm 2. a mm 2. That is, when the total amount of poly 3,4-ethylenedioxythiophene and reaction residue in the solid electrolytic capacitor is the appropriate amount described above, a rapid and stable increase in the re-forming voltage occurs, and as a result, The chemical conversion treatment proceeds well in a short time.
[0032]
After the re-chemical conversion treatment, a voltage is applied as a water removal step. This suppresses gas generation and swelling of the capacitor due to deterioration of the electrode foil due to residual moisture. As another embodiment of removing moisture, it is possible to leave it under high temperature and low humidity conditions.
[0033]
According to the above-described embodiment, a solid electrolytic capacitor excellent in repairability of a defective portion of the dielectric oxide film layer, that is, re-formability can be obtained.
[0034]
【Example】
Next, although the manufacturing method of the solid electrolytic capacitor in this invention and the solid electrolytic capacitor obtained by the method are concretely demonstrated using drawing based on an Example, this invention is limited to these Examples. is not.
[0035]
[Example 1]
FIG. 1 is an exploded perspective view of an element of a flat plate type solid electrolytic capacitor of the present invention. The anode electrode foil 1 is made of an aluminum foil having a vertical dimension of 30 mm and a horizontal dimension of 40 mm, and is subjected to etching treatment and chemical conversion treatment to form an oxide film layer made of aluminum oxide on the surface thereof. Next, the cathode electrode foil 2 is made of an aluminum foil having a vertical dimension of 30 mm and a horizontal dimension of 85 mm, and after performing etching treatment and chemical conversion treatment, a titanium nitride film is formed on the surface by a cathode arc plasma deposition method. . In order to repair the damaged part of the electrode foil and the cut surface of the electrode foil received in the processing stage, by performing restoration conversion in an aqueous ammonium phosphate solution, an oxide film is formed again, and further boric acid is added to stabilize the oxide film. It was dried after being immersed in an aqueous solution. A glass separator 3 having a thickness of 300 μm, a vertical dimension of 35 mm, and a horizontal dimension of 90 mm is stacked on the cathode electrode foil 2 and laminated so as to sandwich the anode electrode 1 with the separator 3 interposed therebetween to obtain a capacitor element 6. . Lead wires 4 and 5 are electrically connected in advance to the anode electrode foil 1 and the cathode electrode foil 2 of the capacitor element 6, respectively, and protrude from the end of the capacitor element 6.
[0036]
The capacitor element 6 having the above configuration was impregnated with 3,4-ethylenedioxythiophene and an oxidizing agent. As the oxidizing agent, ferric p-toluenesulfonate dissolved in butanol was used to prepare a mixed solution thereof. The impregnation was performed by a method in which the capacitor element 6 was immersed in an impregnation tank in which a certain amount of the mixed solution was stored. Next, the capacitor element 6 impregnated with the mixed solution is pulled up from the impregnation tank, and in a pressurized (tightened) state, the polymerization reaction is proceeded for 2 hours under heating at 60 ° C. and for another 2 hours under heating at 150 ° C. A combined body was produced, and the total amount of poly 3,4-ethylenedioxythiophene and reaction residue in the solid electrolytic capacitor was 0.84 g, converted to electrode area, and was 0.47 mg / mm 2 .
[0037]
Furthermore, re-chemical conversion was performed by applying a voltage under a current condition of 400 μA under the conditions of 90 ° C. and 20% RH. Following this re-chemical conversion treatment, after applying the voltage and removing the moisture in the solid electrolyte, the solid electrolytic capacitor is inserted into a bag formed of a laminate sheet with the lead wires protruding out of the bag. A series of manufacturing steps was completed through a process of sealing and sealing the opening by thermocompression bonding by melting polypropylene. The solid electrolytic capacitor of the present invention was prepared from the above manufacturing process, and this capacitor was referred to as Example 1.
[0038]
[Example 2]
In the solid electrolytic capacitor as described in Example 1, the total amount of the reaction residues and poly 3,4-ethylenedioxythiophene in the solid electrolytic capacitor to create an electrolytic capacitor to be 0.69 mg / mm 2, Example 2 It was.
[0039]
[Example 3]
In the solid electrolytic capacitor described in Example 1, an electrolytic capacitor in which the total amount of poly3,4-ethylenedioxythiophene and reaction residue in the solid electrolytic capacitor was 0.38 mg / mm 2 was prepared, and Example 3 It was.
[0040]
[Example 4]
In the solid electrolytic capacitor described in Example 1, an electrolytic capacitor was prepared in which the total amount of poly3,4-ethylenedioxythiophene and reaction residue in the solid electrolytic capacitor was 0.28 mg / mm 2. It was.
[0041]
[Comparative Example 1]
In the solid electrolytic capacitor described in Example 1, an electrolytic capacitor was prepared in which the total amount of poly 3,4-ethylenedioxythiophene and reaction residue in the solid electrolytic capacitor was 0.75 mg / mm 2. It was.
[0042]
[Comparative Example 2]
In the solid electrolytic capacitor as described in Example 1, the total amount of the reaction residues and poly 3,4-ethylenedioxythiophene in the solid electrolytic capacitor to create an electrolytic capacitor to be 0.23 mg / mm 2, Comparative Example 2 It was.
[0043]
[Test Example 1]
The total amount of poly 3,4-ethylenedioxythiophene and reaction residue in the solid electrolytic capacitors prepared in Example 1, Example 2, Example 3, Example 4, Comparative Example 1 and Comparative Example 2, The relationship between the time required for re-formation with a current of 400 μA, that is, the time until the voltage reaches 33 V was confirmed. The results are shown in Table 1.
[0044]
In Example 1, the voltage suddenly and stably increased, and the voltage reached 33 V in about 30 seconds. In Example 2, Example 3, and Example 4, it was also confirmed that the voltage increased stably, and the voltage reached 33 V in 30 minutes, 15 minutes, and 25 minutes, respectively. On the other hand, in Comparative Examples 1 and 2, a short circuit occurred during the voltage increase, and the product could not be produced.
[0045]
[Table 1]
Figure 0004858667
【Effect of the invention】
As described above, according to the present invention, the total amount of poly 3,4-ethylenedioxythiophene and reaction residue in the solid electrolytic capacitor is set to a specific amount, that is, 0.25 to 0.7 mg / mm 2. By doing so, it became possible to manufacture a solid electrolytic capacitor in which the re-formability of the dielectric oxide film layer was remarkably improved.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of a flat capacitor element used in the present invention.
FIG. 2 is an exploded perspective view of a wound capacitor element used in the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Anode electrode foil 2 Cathode electrode foil 3 Separator 4,5 Lead wire 6 Capacitor element

Claims (3)

陰極電極箔と、表面に誘電体酸化皮膜層を形成した陽極電極箔と、固体電解質を保持したセパレータとからなる固体電解コンデンサにおいて、3,4−エチレンジオキシチオフェと酸化剤とをセパレータに含浸の後加熱重合により形成されたポリ3,4−エチレンジオキシチオフェンと反応残留物との総量を0.25〜0.7mg/mm として再化成した固体電解コンデンサ。Separator and cathode foil, and the anode foil having a dielectric oxide layer on the surface, in the solid electrolytic capacitor comprising a separator which holds the solid electrolyte, and a 3,4-ethylenedioxy thiophenium ting oxidant A solid electrolytic capacitor obtained by reforming the total amount of poly 3,4-ethylenedioxythiophene and reaction residue formed by heat polymerization after impregnation into 0.25 to 0.7 mg / mm 2 . 陰極電極箔と、表面に誘電体酸化皮膜層を形成した陽極電極箔と、固体電解質を保持するためのセパレータとからなるコンデンサ素子に、3,4−エチレンジオキシチオフェンと酸化剤とを含浸の後、加熱重合を行い、重合反応による固体電解質層を形成した後、再化成を行って製造する固体電解コンデンサの製造方法において、加熱重合により形成したポリ3,4−エチレンジオキシチオフェンと反応残留物との総量を0.25〜0.7mg/mmとすることを特徴とする固体電解コンデンサの製造方法。A capacitor element composed of a cathode electrode foil, an anode electrode foil having a dielectric oxide film layer formed on the surface, and a separator for holding a solid electrolyte is impregnated with 3,4-ethylenedioxythiophene and an oxidizing agent. Then, after carrying out heat polymerization and forming a solid electrolyte layer by polymerization reaction , poly 3,4-ethylenedioxythiophene formed by heat polymerization and reaction residue in a method for producing a solid electrolytic capacitor produced by re- forming The manufacturing method of the solid electrolytic capacitor characterized by making a total amount with a thing into 0.25-0.7 mg / mm < 2 >. 加熱重合時に緊締することにより、加熱重合により形成したポリ3,4−エチレンジオキシチオフェンと反応残留物との総量を0.25〜0.7mg/mmとすることを特徴とする請求項2に記載の固体電解コンデンサの製造方法。3. The total amount of poly 3,4-ethylenedioxythiophene formed by heat polymerization and the reaction residue is set to 0.25 to 0.7 mg / mm 2 by tightening at the time of heat polymerization. The manufacturing method of the solid electrolytic capacitor of description.
JP2001302084A 2001-09-28 2001-09-28 Solid electrolytic capacitor and manufacturing method thereof Expired - Fee Related JP4858667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001302084A JP4858667B2 (en) 2001-09-28 2001-09-28 Solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001302084A JP4858667B2 (en) 2001-09-28 2001-09-28 Solid electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003109852A JP2003109852A (en) 2003-04-11
JP4858667B2 true JP4858667B2 (en) 2012-01-18

Family

ID=19122394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001302084A Expired - Fee Related JP4858667B2 (en) 2001-09-28 2001-09-28 Solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4858667B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0423419A (en) * 1990-05-18 1992-01-27 Elna Co Ltd Solid electrolytic capacitor
JPH10340831A (en) * 1997-06-06 1998-12-22 Nippon Chemicon Corp Manufacture of solid electrolytic capacitor
JP3255091B2 (en) * 1997-08-28 2002-02-12 松下電器産業株式会社 Method for manufacturing solid electrolytic capacitor
JPH1187176A (en) * 1997-09-09 1999-03-30 Hitachi Ltd Solid electrolytic capacitor and its manufacture
JP2000195758A (en) * 1998-12-25 2000-07-14 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacture
JP2002075798A (en) * 2000-08-22 2002-03-15 Nippon Chemicon Corp Solid electrolytic capacitor with anode foil having through-hole, and method for manufacturing the same

Also Published As

Publication number Publication date
JP2003109852A (en) 2003-04-11

Similar Documents

Publication Publication Date Title
JP3705306B2 (en) Solid electrolytic capacitor and manufacturing method thereof
KR100442073B1 (en) Solid Electrolyte Capacitor and its Manufacture
JP5073947B2 (en) Winding capacitor and method of manufacturing the same
JP3319501B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2001110685A (en) Solid electrolytic capacitor
JPH10340831A (en) Manufacture of solid electrolytic capacitor
JP4858667B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4513043B2 (en) Solid electrolytic capacitor having through-hole in cathode foil and method for producing the same
JP2001284174A (en) Solid electrolytic capacitor and its manufacturing method
JP3978544B2 (en) Solid electrolytic capacitor
JP4513044B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2000082638A (en) Solid electrolytic capacitor and its manufacture
JP4513042B2 (en) Cathode foil, anode foil, and laminated solid electrolytic capacitor having through holes in support plate, and method for manufacturing the same
JP2003109853A (en) Solid electrolytic capacitor and its manufacturing method
JP4269351B2 (en) Manufacturing method of solid electrolytic capacitor
JP3800829B2 (en) Capacitor manufacturing method
JP3891304B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0536575A (en) Solid electrolytic capacitor and its manufacture
JP2001284181A (en) Solid electrolytic capacitor
JP4241495B2 (en) Method and apparatus for producing conductive polymer
JP4642257B2 (en) Solid electrolytic capacitor
JP2002075798A (en) Solid electrolytic capacitor with anode foil having through-hole, and method for manufacturing the same
JP2001237145A (en) Manufacturing method of solid-state electrolytic capacitor
JP4678094B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2002075789A (en) Solid electrolyte capacitor sheathed with laminated sheet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111018

R150 Certificate of patent or registration of utility model

Ref document number: 4858667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees