JP2001355006A - Composite structural body, manufacturing method thereof, and motor - Google Patents

Composite structural body, manufacturing method thereof, and motor

Info

Publication number
JP2001355006A
JP2001355006A JP2000174039A JP2000174039A JP2001355006A JP 2001355006 A JP2001355006 A JP 2001355006A JP 2000174039 A JP2000174039 A JP 2000174039A JP 2000174039 A JP2000174039 A JP 2000174039A JP 2001355006 A JP2001355006 A JP 2001355006A
Authority
JP
Japan
Prior art keywords
powder
metal container
pressure
composite structure
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000174039A
Other languages
Japanese (ja)
Inventor
Hiroyuki Okuda
裕之 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP2000174039A priority Critical patent/JP2001355006A/en
Priority to US10/297,739 priority patent/US20040052671A1/en
Priority to PCT/JP2001/004829 priority patent/WO2001094058A1/en
Publication of JP2001355006A publication Critical patent/JP2001355006A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/1208Containers or coating used therefor
    • B22F3/1258Container manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite structural body formed of a magnetic material such as a rotor, a stator and a magnet-embedded die in which the strength and the heat resistance are excellent, and a metal container is not deformed during the hot isostatic pressing. SOLUTION: A high strength part is formed by using a material and the thickness difficult to deform against the pressure during the hot isostatic pressing, and a low strength part is formed by using a material and the thickness easy to deform against the pressure. The powder is filled in the metal container and the container is sealed, and placed in the atmosphere of the hot temperature and the high pressure. Since a weak portion is deformed by the pressure, the deformation of a strong portion against the pressure, i.e., the part of the preset high strength requiring the accuracy and the shape is reduced. The metal container is integrated with the powder filled inside with excellent adhesion, and the magnet structural body more excellent in strength, heat resistance and complicated shape than a conventional one can be provided. In addition, the metal container is not deformed, and easily machined after the pressing, and the productivity thereof becomes considerably improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えばヨークや
支持部材と磁石が一体になった構造体など、特に磁性材
料を用いた複合構造体とその製造方法並びモーターに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite structure using a magnetic material, such as a structure in which a yoke, a support member and a magnet are integrated, a method of manufacturing the same, and a motor.

【0002】[0002]

【従来の技術】磁石を使用したモーターでは、磁石とヨ
ークあるいは磁石とそれを固定する部品がローターある
いはステーターとして組み込まれている。
2. Description of the Related Art In a motor using a magnet, a magnet and a yoke or a magnet and a part for fixing the magnet are incorporated as a rotor or a stator.

【0003】また、モーターに磁石とヨークを使用するの
は、磁気をより有効に使用するためであり、最近ではモ
ーターのエネルギー効率をより高めるため、磁石埋設型
磁石回転子などの複雑形状のヨークが考案されている。
[0003] The use of a magnet and a yoke in a motor is for more effective use of magnetism. Recently, in order to further increase the energy efficiency of the motor, a yoke having a complicated shape such as a magnet-embedded magnet rotor has been used. Has been devised.

【0004】磁石埋設型の磁石回転子では、ヨークに磁石が
入る隙間を空け、同部に磁石を挿入して接着固定する方
法や、より複雑な形状に対応するため、磁石磁粉と樹脂
を混ぜた流動性のあるものを挿入し、その後硬化させる
方法(特開平11-215746)などが検討されている。
[0004] In a magnet buried type magnet rotor, a gap is provided for the magnet to enter the yoke, and the magnet is inserted into the yoke and fixed by adhesion. In order to cope with a more complicated shape, magnet magnetic powder and resin are mixed. For example, a method of inserting a material having fluidity and then curing the material (JP-A-11-215746) has been studied.

【0005】また、かかる構造体自体の強度を得る方法とし
て、金属容器に焼結磁石などを入れ、熱間静水圧成形す
ることにより、一体接合構造物を得る方法が提案(WO98/
31497)されている。
As a method of obtaining the strength of such a structure itself, a method of obtaining an integrally joined structure by putting a sintered magnet or the like in a metal container and performing hot isostatic pressing has been proposed (WO98 / 2005).
31497).

【0006】[0006]

【発明が解決しようとする課題】一般にかかる複合構造
体の組立には、磁石とヨークなどとの固定は接着剤が使
われることが多く、強度および耐熱性など信頼性に問題
があった。また、磁石埋設型においても、接着剤および
樹脂を用いるため、高い強度および耐熱性を得ることが
できない。
Generally, in assembling such a composite structure, an adhesive is often used for fixing the magnet and the yoke, and there is a problem in reliability such as strength and heat resistance. Also, in the magnet embedded type, high strength and heat resistance cannot be obtained because an adhesive and a resin are used.

【0007】また、前記の熱間静水圧成形では、金属容器に
焼結磁石を入れるため、複雑な形状が得られない、ある
いは金属容器に磁石を挿入すると、隙間が生じるので、
熱間静水圧成形によりその隙間がなくなる際、金属容器
が変形する可能性がある等の問題を生じる。
In the above-mentioned hot isostatic pressing, since a sintered magnet is put in a metal container, a complicated shape cannot be obtained, or when a magnet is inserted into the metal container, a gap is formed.
When the gap is eliminated by hot isostatic pressing, there arises a problem that the metal container may be deformed.

【0008】この発明は、上記のローターやステーター、磁
石埋設型などの磁性材料を用いた複合構造体を得ること
を目的とし、すぐれた強度、耐熱性が得られ、熱間静水
圧成形に際して金属容器が変形しない構成からなる複合
構造体とその製造方法並びにモーターを提供することを
目的としている。
An object of the present invention is to obtain a composite structure using a magnetic material such as the above-described rotor, stator, and magnet embedded type, which has excellent strength and heat resistance, and is capable of forming a metal when hot isostatic pressing. It is an object of the present invention to provide a composite structure having a configuration in which a container is not deformed, a method of manufacturing the same, and a motor.

【0009】[0009]

【課題を解決するための手段】発明者らは、熱間静水圧
成形に際して金属容器が変形しない構成を目的に容器の
構造や処理条件などについて種々検討した結果、金属容
器を構成する際に、所要部を熱間静水圧成形時の圧力に
対して変形し難い材料や厚みとして高強度部となし、ま
た該圧力に対して変形しやすい材料や厚みとして低強度
部を設定し、この金属容器に粉末を入れて密封し、所定
の高温・高圧雰囲気に置き、前記圧力に弱い部分が変形
することにより、圧力に強い部分、すなわち精度や形状
性を必要とする、予め設定した高強度部の変形を少なく
することにより、当該金属容器と内部に装填した粉末が
密着性よく一体成形され、目的が達成できることを知見
し、この発明を完成した。
Means for Solving the Problems The inventors of the present invention have conducted various studies on the structure and processing conditions of the container for the purpose of not deforming the metal container during hot isostatic pressing. The required portion is made of a high-strength portion as a material or thickness that is not easily deformed by pressure during hot isostatic pressing, and a low-strength portion is set as a material or thickness that is easily deformed by the pressure. And sealed in a powder, placed in a predetermined high-temperature and high-pressure atmosphere, the pressure-sensitive portion is deformed, the pressure-resistant portion, that is, the high strength portion of the preset high accuracy and shape is required. The inventors have found that by reducing the deformation, the metal container and the powder loaded therein can be integrally molded with good adhesion, and the object can be achieved, and the present invention has been completed.

【0010】すなわち、この発明は、所要圧力に対して変形
し難い高強度部と変形可能な低強度部とを有する金属容
器と、該容器内に粉末で装填封入されて熱間静水圧成形
により該容器と一体化された粉末成形体とを有すること
を特徴とする複合構造体である。
[0010] That is, the present invention provides a metal container having a high-strength portion that is hardly deformed by a required pressure and a low-strength portion that can be deformed; A composite structure comprising the container and an integrated powder compact.

【0011】また、この発明は、上記の構成の複合構造体に
おいて、金属容器の高強度部と低強度部が異材質、ある
いは同材質で厚みが異なる材料で構成される複合構造
体、成形前の粉末は、磁性粉末又は非磁性粉末を添加含
有する磁性粉末である複合構造体、成形前の粉末は、融
点の異なる粉末を添加含有する複合構造体、磁性粉末
が、Nd‐Fe‐B系磁石粉末、Sm‐Co系磁石粉末、Pr‐Fe
‐B系磁石粉末、交換スプリング磁石粉末、アルニコ磁
石粉末、フェライト磁石粉末の少なくとも1つである複
合構造体、を併せて提案する。
[0011] Further, according to the present invention, there is provided a composite structure having the above structure, wherein the high-strength portion and the low-strength portion of the metal container are made of different materials, or made of the same material but different in thickness. The powder of the composite structure is a magnetic powder or a magnetic powder containing a non-magnetic powder is added, the powder before molding is a composite structure containing a powder having a different melting point, the magnetic powder is a Nd-Fe-B system Magnet powder, Sm-Co magnet powder, Pr-Fe
-A composite structure that is at least one of B-based magnet powder, exchange spring magnet powder, alnico magnet powder, and ferrite magnet powder is also proposed.

【0012】また、この発明は、熱間静水圧成形の所要圧力
に対して変形し難い高強度部と変形可能な低強度部とを
有する金属容器内に、粉末を装填封入する工程、熱間静
水圧成形にて金属容器と粉末を一体成形する工程、ある
いはさらに一体成形品より所要部をスライスなどの機械
加工にて取り出す等の加工工程を含む複合構造体の製造
方法である。
Also, the present invention provides a step of loading and enclosing a powder in a metal container having a high-strength portion that is hardly deformed by a required pressure of hot isostatic pressing and a deformable low-strength portion. This is a method for manufacturing a composite structure including a step of integrally molding a metal container and a powder by hydrostatic molding, or a processing step of taking out a required portion from the integrally molded article by machining such as slicing.

【0013】さらに、この発明は、上記の構成の複合構造体
製造方法において、金属容器の高強度部と低強度部が異
材質あるいは同材質で厚みが異なる材料で構成される製
造方法、熱間静水圧成形条件が、600℃以上1000℃以下
の温度及び1MPa〜200MPaの圧力である製造方法、を併せ
て提案する。
[0013] Further, the present invention provides a method of manufacturing a composite structure having the above structure, wherein the high-strength portion and the low-strength portion of the metal container are made of different materials or the same material having different thicknesses. The present invention also proposes a manufacturing method in which hydrostatic molding conditions are a temperature of 600 ° C. or more and 1000 ° C. or less and a pressure of 1 MPa to 200 MPa.

【0014】[0014]

【発明の実施の形態】この発明は、金属容器に熱間静水
圧成形圧力に強い部分と弱い部分を設け、所定の高温・
高圧雰囲気において圧力に弱い部分が変形することによ
り、圧力に強い部分の変形を少なくし、金属容器と粉末
が密着性よく一体成形されることを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention provides a metal container with a portion which is strong against hot isostatic pressing pressure and a portion which is weak with respect to hot isostatic pressing.
In a high-pressure atmosphere, a portion that is weak to pressure is deformed, so that a portion that is strong to pressure is less deformed, and the metal container and the powder are integrally formed with good adhesion.

【0015】図1は、この発明による工程を示す金属容器の
断面説明であり、図1Aに示す金属容器1は、円筒の容器
本体2の上下端に円板蓋3,4を設けて本体2内に装填する
粉末を密封する構成である。ここで、円板蓋3,4は熱間
静水圧成形における所要圧力に対して変形し得るよう構
成され、容器本体2は該圧力に耐えるように構成してあ
る。
FIG. 1 is a cross-sectional view of a metal container showing a process according to the present invention. A metal container 1 shown in FIG. This is a configuration in which the powder loaded inside is sealed. Here, the disk lids 3 and 4 are configured to be deformable with respect to a required pressure in hot isostatic pressing, and the container body 2 is configured to withstand the pressure.

【0016】例えば下側の円板蓋3を当接させた容器本体2内
に粉末5を装填して、上側の円板蓋4を載せて図1Aに示す
ごとく金属容器1内を真空引きした後密封する。
[0016] For example, the powder 5 is loaded into the container main body 2 in contact with the lower disk lid 3, and the upper disk lid 4 is placed thereon, and the inside of the metal container 1 is evacuated as shown in FIG. 1A. After sealing.

【0017】次にこの金属容器1を熱間静水圧装置に入れ、
ガスを圧力媒体として、温度および圧力を上げると、金
属容器1の圧力に弱い部分、すなわち円板蓋3,4がガス圧
により変形(潰れる)し、それにより金属容器1の圧力に
強い部分、すなわち容器本体2内で粉末が圧縮され、さ
らに温度を上げることにより試料粉末の焼結が進むと同
時に金属容器1と試料粉末が一体成形され、図1Bに示す
ような状態となる。
Next, the metal container 1 is placed in a hot isostatic device,
When gas is used as a pressure medium and the temperature and pressure are increased, the portion weak to the pressure of the metal container 1, that is, the disk lids 3 and 4 are deformed (crushed) by the gas pressure, thereby the portion strong to the pressure of the metal container 1, That is, the powder is compressed in the container body 2 and the temperature is further increased, so that the sintering of the sample powder proceeds, and at the same time, the metal container 1 and the sample powder are integrally formed to be in a state as shown in FIG. 1B.

【0018】さらに、図1Bに示す一体成形された金属容器1
の上下部をスライス加工することにより、図1Cに示す円
筒金属材料とその内部の粉末が一体に成形された複合構
造体6が形成される。
Further, an integrally molded metal container 1 shown in FIG. 1B
By slicing the upper and lower parts, a composite structure 6 in which the cylindrical metal material shown in FIG. 1C and the powder inside are integrally formed is formed.

【0019】例えば容器本体2に鉄を採用した場合、所要圧
力で変形し得る部分を形成するために円板蓋3,4に異材
料のアルミニウムや銅などの金属を用いることができ
る。また、同じ金属材料を使用する場合、容器本体2の
厚みより円板蓋3,4の厚みを薄くすることにより、当該
圧力に対して所要部分だけを変形させることが可能であ
る。
For example, when iron is used for the container body 2, different materials such as aluminum and copper can be used for the disk lids 3 and 4 in order to form a portion that can be deformed at a required pressure. Further, when the same metal material is used, it is possible to deform only a required portion with respect to the pressure by making the thickness of the disk lids 3 and 4 smaller than the thickness of the container body 2.

【0020】この発明は、熱間静水圧成形時の上述の機構に
より、種々の複雑形状の磁石とヨークとを一体成形で
き、例えば実施例の図2に示すごとき磁石埋設型回転子
などを製造することが可能である。
According to the present invention, the magnet and the yoke having various complicated shapes can be integrally formed by the above-described mechanism at the time of hot isostatic pressing. For example, a magnet embedded type rotor as shown in FIG. 2 of the embodiment is manufactured. It is possible to

【0021】この発明において、金属容器には、例えばヨー
クとして使用する鉄、パーマロイなどの高透磁率材料な
どが利用できる。
In the present invention, for the metal container, for example, a material having high magnetic permeability such as iron or permalloy used as a yoke can be used.

【0022】モーターなどに使用する磁性部品を作る場合
は、金属容器内に装填する粉末として、Nd‐Fe‐B系磁
石粉末、Sm‐Co系磁石粉末、Pr‐Fe‐B系磁石粉末、交
換スプリング磁石粉末、アルニコ磁石粉末、フェライト
磁石粉末などの各粉末を用いることができる。
When magnetic parts used for motors and the like are made, Nd-Fe-B magnet powder, Sm-Co magnet powder, Pr-Fe-B magnet powder, and Each powder such as a spring magnet powder, an alnico magnet powder, and a ferrite magnet powder can be used.

【0023】磁性粉末以外でも強度と熱伝導、耐食性と機能
性などの組み合わせを両立させるため、各種金属合金(T
i、Co、Cu、パーマロイ)、各種セラミックス(PZT、チタ
ン酸バリウム)などを容器およびそれに挿入する粉末と
して使用することができる。
In addition to magnetic powders, various metal alloys (T) are used to achieve a combination of strength and heat conduction, corrosion resistance and functionality.
i, Co, Cu, permalloy), various ceramics (PZT, barium titanate) and the like can be used as a container and powder to be inserted into the container.

【0024】また、装填する前記粉末内に、SiO2、Al2O3
どの非磁性で電気抵抗の高い粉末を入れることは、渦電
流による発熱を避けることができる。これらの粉末は平
均粒径が小さい方が分散でき、電気抵抗を上げるのに有
利である。好ましくは100μm以下で、さらに好ましくは
1μm以下である。
In addition, when non-magnetic and high electric resistance powders such as SiO 2 and Al 2 O 3 are put in the powder to be charged, heat generation due to eddy current can be avoided. These powders can be dispersed when the average particle size is small, which is advantageous for increasing electric resistance. Preferably not more than 100 μm, more preferably
It is 1 μm or less.

【0025】さらに、粉末を固めるおよび容器との密着性を
高めるため、粉末と融点の異なる材料、例えば硼珪酸ガ
ラスなどの低融点ガラスおよびZn、Pb、Snなどの低融点
金属を添加することにより、熱間静水圧成形の温度およ
び圧力を低下できるので、金属容器の変形、挿入粉末の
変質を抑えることができる。
Further, in order to solidify the powder and enhance the adhesion to the container, a material having a different melting point from the powder, for example, a low-melting glass such as borosilicate glass and a low-melting metal such as Zn, Pb, and Sn are added. Since the temperature and pressure of hot isostatic pressing can be reduced, deformation of the metal container and deterioration of the inserted powder can be suppressed.

【0026】この発明において、熱間静水圧成形方法並びに
装置には、公知のいずれの構成も採用でき、選定採用す
る容器と粉末や製品の形状、用途に応じ適宜選定すると
良い。また、処理条件は、製品の形状や用途などに応じ
適宜選定するが、温度・圧力を必要以上に上げすぎるこ
とは、生産性を考えると好ましくなく、温度は600℃〜9
00℃、圧力は10MPa〜100MPaが好ましい。さらに、磁気
特性の向上を優先する場合、温度は500℃〜900℃、圧力
は10MPa〜100MPaが好ましい。
In the present invention, any known configuration can be adopted for the hot isostatic pressing method and apparatus, and it may be appropriately selected according to the container to be selected and the shape and application of the powder or product. In addition, the processing conditions are appropriately selected according to the shape and use of the product, but it is not preferable to raise the temperature and pressure more than necessary from the viewpoint of productivity.
00 ° C. and the pressure are preferably 10 MPa to 100 MPa. Further, when priority is given to improvement of magnetic properties, the temperature is preferably 500 ° C. to 900 ° C., and the pressure is preferably 10 MPa to 100 MPa.

【0027】[0027]

【実施例】実施例1 金属容器として、管状のSUS304と円板状の銅とを接合し
た円筒状容器を用い、装填粉末としてNe‐Fe‐B系磁石
粉末(平均粒径200μm以下)を用い、金属容器内に前記粉
末を真空度8Paで真空封入した。熱間静水圧成形装置
は、アルゴンガスを圧力媒体とし、300℃〜1000℃の温
度および1MPa〜200MPaの圧力の各種条件で、熱間静水圧
成形した。
Example 1 As a metal container, a cylindrical container in which a tubular SUS304 and a disc-shaped copper were joined was used, and a Ne-Fe-B-based magnet powder (average particle size of 200 μm or less) was used as a loading powder. The powder was vacuum-sealed in a metal container at a degree of vacuum of 8 Pa. The hot isostatic pressing apparatus performed hot isostatic pressing under various conditions at a temperature of 300 ° C. to 1000 ° C. and a pressure of 1 MPa to 200 MPa using argon gas as a pressure medium.

【0028】圧力を50MPaで一定にして、300℃〜1000℃まで
温度を変えて熱間静水圧成形した。この時の処理温度と
得られた粉末成形体の密度との関係を図3Aに示す。図3A
より明らかなように、処理温度の上昇に従って密度は上
がるが、700℃以上では差が少ない。
The pressure was kept constant at 50 MPa, and the temperature was changed from 300 ° C. to 1000 ° C. to perform hot isostatic pressing. FIG. 3A shows the relationship between the processing temperature and the density of the obtained powder compact at this time. FIG.
As is clear, the density increases as the processing temperature increases, but the difference is small above 700 ° C.

【0029】同様に、圧力を50MPaで一定にして、300℃〜10
00℃まで温度を変えて熱間静水圧成形した際の処理温度
と得られた粉末成形体の磁気特性(残留磁束密度、保磁
力)との関係を図3Bに示す。図3Bより明らかなように、
処理温度の上昇に従って残留磁束密度は増加するが、70
0℃以上では差が少ない。また、保磁力は温度の上昇に
従って低下するが、700℃までは低下が少ない。
Similarly, the pressure is kept constant at 50 MPa,
FIG. 3B shows the relationship between the processing temperature when hot isostatic pressing is performed at a temperature changed to 00 ° C. and the magnetic properties (residual magnetic flux density, coercive force) of the obtained powder compact. As is clear from FIG. 3B,
The residual magnetic flux density increases with increasing processing temperature,
Above 0 ° C, the difference is small. Further, the coercive force decreases as the temperature increases, but does not decrease much up to 700 ° C.

【0030】次に、温度を700℃で一定にして、1MPa〜200MP
aまで圧力を変化させて熱間静水圧成形した。この時の
処理圧力と得られた粉末成形体の密度との関係を図4Aに
示す。図4Aより明らかなように、処理圧力の上昇に従っ
て密度は上がるが、50MPa以上では差が少ない。生産性
を考えると、温度・圧力を必要以上に上げすぎることは
好ましくない。
Next, the temperature was kept constant at 700 ° C., and 1 MPa to 200 MPa
Hot isostatic pressing was performed while changing the pressure until a. FIG. 4A shows the relationship between the processing pressure and the density of the obtained powder compact at this time. As is clear from FIG. 4A, the density increases as the processing pressure increases, but the difference is small at 50 MPa or more. Considering the productivity, it is not preferable to raise the temperature and pressure more than necessary.

【0031】同様に、温度を700℃で一定にして、1MPa〜200
MPaまで圧力を変化させて熱間静水圧成形した際の、処
理圧力と得られた粉末成形体の磁気特性(残留磁束密
度、保磁力)との関係を図4Bに示す。図4Bより明らかな
ように、処理圧力の上昇に従って残留磁束密度は上がる
が、50MPa以上では差が少ない。また、保磁力は圧力に
対して殆ど変化しない。よって、磁気特性を優先する場
合、温度は500℃〜900℃が好ましく、圧力は10MPa〜100
MPaが好ましいことがわかる。
Similarly, the temperature is kept constant at 700 ° C., and 1 MPa to 200 MPa
FIG. 4B shows the relationship between the processing pressure and the magnetic properties (residual magnetic flux density, coercive force) of the obtained powder compact when hot isostatic pressing is performed with the pressure changed to MPa. As is clear from FIG. 4B, the residual magnetic flux density increases as the processing pressure increases, but the difference is small at 50 MPa or more. The coercive force hardly changes with pressure. Therefore, when giving priority to magnetic properties, the temperature is preferably 500 ° C. to 900 ° C., and the pressure is 10 MPa to 100 MPa.
It turns out that MPa is preferable.

【0032】なお、上記の熱間静水圧成形条件で得られた複
合構造体の円周部を測定し、変形の有無を確認した。し
かし、いずれの複合構造体も円周部に変形は認められな
かった。
The circumference of the composite structure obtained under the above-mentioned hot isostatic pressing conditions was measured to confirm the presence or absence of deformation. However, no deformation was observed in the circumference of any of the composite structures.

【0033】実施例2 金属容器として、円柱状の鉄材を用いて、図2に示すご
とく回転子を得るべく、軸方向に平行に矩形孔を貫通配
置し、この矩形孔にNe‐Fe‐B系磁石粉末(平均粒径200
μm以下)を真空封入し、両端の蓋材として銅板を用いて
形成した。熱間静水圧成形装置は、アルゴンガスを圧力
媒体とし、800℃の温度及び100MPaの圧力の条件で熱間
静水圧成形した。
Example 2 Using a cylindrical iron material as a metal container, a rectangular hole was penetrated in parallel to the axial direction to obtain a rotor as shown in FIG. 2, and Ne-Fe-B System magnet powder (average particle size 200
μm or less) was vacuum-sealed and formed using a copper plate as a lid material at both ends. The hot isostatic pressing apparatus was subjected to hot isostatic pressing at a temperature of 800 ° C. and a pressure of 100 MPa using argon gas as a pressure medium.

【0034】得られた回転子は300℃の温度においても、変
形などが生じないことがわかった。さらに、これをモー
ターに使用したところ、耐熱性、強度において優れてい
ることがわかった。
It was found that the obtained rotor did not deform even at a temperature of 300 ° C. Furthermore, when this was used for a motor, it was found that it was excellent in heat resistance and strength.

【0035】[0035]

【発明の効果】この発明によると、金属容器に熱間静水
圧成形時の圧力に対して変形し難い材料や厚みとして高
強度部と、これに比べて変形しやすい低強度部を設定す
るため、当該処理時に圧力に弱い部分が変形することに
より、高強度部分の変形を少なくでき、金属容器と粉末
が密着性よく一体成形できる。
According to the present invention, a high strength portion and a low strength portion which are more easily deformed than a material and thickness which are hardly deformed by the pressure during hot isostatic pressing are set in a metal container. The deformation of the high-strength portion can be reduced by deforming the portion weak to pressure during the treatment, and the metal container and the powder can be integrally formed with good adhesion.

【0036】従って、この発明は、従来の複合構造体に比べ
て、耐強度、耐熱、複雑形状を持つ磁石素子を提供する
ことが可能になる。さらに、金属容器が変形しないこと
から、成形後の加工が簡単になり、生産性が飛躍的に良
くなる利点がある。
Therefore, the present invention can provide a magnet element having strength, heat resistance and a complicated shape as compared with the conventional composite structure. Furthermore, since the metal container does not deform, there is an advantage that processing after molding is simplified, and productivity is dramatically improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の工程を示す金属容器の説明図であ
り、Aは熱間静水圧成形前の縦断説明図、Bは熱間静水圧
成形後の縦断説明図、Cはスライス加工した製品を示す
斜視説明図である。
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory view of a metal container showing a process of the present invention, wherein A is a longitudinal sectional view before hot isostatic pressing, B is a longitudinal sectional view after hot isostatic pressing, and C is a sliced product. FIG.

【図2】この発明による回転子の横断面説明図である。FIG. 2 is an explanatory cross-sectional view of a rotor according to the present invention.

【図3】Aはこの発明の一実施例における処理温度と粉末
密度との関係を示すグラフ、Bは処理圧力と粉末密度と
の関係を示すグラフである。
FIG. 3A is a graph showing a relationship between a processing temperature and a powder density in one embodiment of the present invention, and B is a graph showing a relationship between a processing pressure and a powder density.

【図4】Aはこの発明の一実施例における処理温度と粉末
密度との関係を示すグラフ、Bは処理圧力と粉末密度と
の関係を示すグラフである。
FIG. 4A is a graph showing a relationship between a processing temperature and a powder density in one embodiment of the present invention, and B is a graph showing a relationship between a processing pressure and a powder density.

【符号の説明】[Explanation of symbols]

1 金属容器 2 容器本体 3,4 円板蓋 5 粉末 6 複合構造体 1 Metal container 2 Container body 3, 4 Disk lid 5 Powder 6 Composite structure

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 所要圧力に対して変形し難い高強度部と
変形可能な低強度部とを有する金属容器と、該容器内に
粉末で装填封入されて熱間静水圧成形により該容器と一
体化された粉末成形体とを有する複合構造体。
1. A metal container having a high-strength portion that is not easily deformed by a required pressure and a low-strength portion that can be deformed, and a container that is loaded and sealed with powder in the container and is integrated with the container by hot isostatic pressing. A composite structure having a compacted powder compact.
【請求項2】 金属容器の高強度部と低強度部が異材
質、あるいは同材質で厚みが異なる材料で構成される請
求項1に記載の複合構造体。
2. The composite structure according to claim 1, wherein the high-strength portion and the low-strength portion of the metal container are made of different materials or materials of the same material but different thicknesses.
【請求項3】 粉末は、磁性粉末又は非磁性粉末を添加
含有する磁性粉末である請求項1に記載の複合構造体。
3. The composite structure according to claim 1, wherein the powder is a magnetic powder containing a magnetic powder or a non-magnetic powder.
【請求項4】 粉末は、融点の異なる粉末を添加含有す
る請求項1に記載複合構造体。
4. The composite structure according to claim 1, wherein the powder further contains powders having different melting points.
【請求項5】 磁性粉末が、Nd‐Fe‐B系磁石粉末、Sm‐
Co系磁石粉末、Pr‐Fe‐B系磁石粉末、交換スプリング
磁石粉末、アルニコ磁石粉末、フェライト磁石粉末の少
なくとも1つである請求項3に記載の複合構造体。
5. The magnetic powder, wherein the Nd-Fe-B magnet powder, Sm-
4. The composite structure according to claim 3, which is at least one of Co-based magnet powder, Pr-Fe-B-based magnet powder, exchange spring magnet powder, alnico magnet powder, and ferrite magnet powder.
【請求項6】 熱間静水圧成形の所要圧力に対して変形
し難い高強度部と変形可能な低強度部とを有する金属容
器内に、粉末を装填封入する工程、熱間静水圧成形にて
金属容器と粉末とを一体成形する工程を含む複合構造体
の製造方法。
6. A step of loading and encapsulating powder in a metal container having a high-strength part that is hardly deformed under the required pressure of hot isostatic pressing and a deformable low-strength part. A method for producing a composite structure, comprising a step of integrally molding a metal container and a powder by heating.
【請求項7】 熱間静水圧成形の所要圧力に対して変形
し難い高強度部と変形可能な低強度部とを有する金属容
器内に、粉末を装填封入する工程、熱間静水圧成形にて
金属容器と粉末を一体成形する工程、一体成形品を加工
する工程を含む複合構造体の製造方法。
7. A step of loading and encapsulating powder in a metal container having a high-strength part that is hardly deformed under the required pressure of hot isostatic pressing and a deformable low-strength part. A method for producing a composite structure, comprising: a step of integrally molding a metal container and a powder by a step; and a step of processing the integrally molded article.
【請求項8】 金属容器の高強度部と低強度部が異材質
あるいは同材質で厚みが異なる材料で構成される請求項
6又は請求項7に記載の複合構造体の製造方法。
8. The high-strength portion and the low-strength portion of the metal container are made of different materials or materials having the same thickness but different thicknesses.
8. The method for producing a composite structure according to claim 6 or 7.
【請求項9】 熱間静水圧成形条件が、600℃以上1000℃
以下の温度及び1MPa〜200MPaの圧力である請求項6又は
請求項7に記載の複合構造体の製造方法。
9. The hot isostatic pressing condition is 600 ° C. or more and 1000 ° C.
8. The method for producing a composite structure according to claim 6, wherein the temperature is as follows and the pressure is 1 MPa to 200 MPa.
【請求項10】 請求項5に記載された複合構造体を有す
るモーター。
10. A motor having the composite structure according to claim 5.
JP2000174039A 2000-06-09 2000-06-09 Composite structural body, manufacturing method thereof, and motor Pending JP2001355006A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000174039A JP2001355006A (en) 2000-06-09 2000-06-09 Composite structural body, manufacturing method thereof, and motor
US10/297,739 US20040052671A1 (en) 2000-06-09 2001-06-07 Composite structural body, method of manufacturing the structural body, and motor
PCT/JP2001/004829 WO2001094058A1 (en) 2000-06-09 2001-06-07 Composite structural body, method of manufacturing the structural body, and motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000174039A JP2001355006A (en) 2000-06-09 2000-06-09 Composite structural body, manufacturing method thereof, and motor

Publications (1)

Publication Number Publication Date
JP2001355006A true JP2001355006A (en) 2001-12-25

Family

ID=18676157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000174039A Pending JP2001355006A (en) 2000-06-09 2000-06-09 Composite structural body, manufacturing method thereof, and motor

Country Status (3)

Country Link
US (1) US20040052671A1 (en)
JP (1) JP2001355006A (en)
WO (1) WO2001094058A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007030572A2 (en) * 2005-09-06 2007-03-15 Borealis Technical Limited Method for building a motor
JP2012511815A (en) * 2008-12-12 2012-05-24 グルンドフォス マネージメント アー/エス Permanent magnet and method for manufacturing permanent magnet
JP2016032027A (en) * 2014-07-29 2016-03-07 日東電工株式会社 Permanent magnet, method of manufacturing permanent magnet, dynamo-electric machine and method of manufacturing dynamo-electric machine
JP2016032026A (en) * 2014-07-29 2016-03-07 日東電工株式会社 Permanent magnet, method of manufacturing permanent magnet, dynamo-electric machine and method of manufacturing dynamo-electric machine
WO2018110075A1 (en) * 2016-12-15 2018-06-21 株式会社日立製作所 Method for manufacturing heat and corrosion resistant magnet

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101777809A (en) * 2004-04-06 2010-07-14 日立金属株式会社 Rotor and manufacture method thereof
JP4608967B2 (en) * 2004-06-29 2011-01-12 日産自動車株式会社 Rotor structure and rotor manufacturing method for disk-type rotating electrical machine
US8303289B2 (en) * 2009-08-24 2012-11-06 General Electric Company Device and method for hot isostatic pressing container
WO2011139977A1 (en) * 2010-05-02 2011-11-10 Mbs Engineering Llc Magnet and holder assembly having improved rotational and axial stability
JP5900528B2 (en) * 2014-04-02 2016-04-06 愛知製鋼株式会社 Internal magnet type inner rotor manufacturing equipment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954186A (en) * 1986-05-30 1990-09-04 Union Oil Company Of California Rear earth-iron-boron permanent magnets containing aluminum
JPS6417808A (en) * 1987-07-14 1989-01-20 Kubota Ltd Production of complex member
US5242508A (en) * 1990-10-09 1993-09-07 Iowa State University Research Foundation, Inc. Method of making permanent magnets
US5386797A (en) * 1992-03-27 1995-02-07 Kabushiki Kaisha Toshiba Single crystal of compound, laser rod, laser oscillator, scintillator, CT scanner, color display and process for preparing the same
JPH0813002A (en) * 1994-06-24 1996-01-16 Kuroki Kogyosho:Kk Can for hip
JP3779404B2 (en) * 1996-12-05 2006-05-31 株式会社東芝 Permanent magnet materials, bonded magnets and motors
US6038461A (en) * 1997-05-19 2000-03-14 Sakai; Yoshifumi Plastically deformable high temperature superconductive material and method of manufacturing formed body thereof
US6099796A (en) * 1998-01-06 2000-08-08 Crucible Materials Corp. Method for compacting high alloy steel particles
JPH11323409A (en) * 1998-05-18 1999-11-26 Daido Steel Co Ltd Composite member and its production
US6210633B1 (en) * 1999-03-01 2001-04-03 Laboratory Of New Technologies Method of manufacturing articles of complex shape using powder materials, and apparatus for implementing this method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007030572A2 (en) * 2005-09-06 2007-03-15 Borealis Technical Limited Method for building a motor
WO2007030572A3 (en) * 2005-09-06 2007-05-10 Borealis Tech Ltd Method for building a motor
JP2012511815A (en) * 2008-12-12 2012-05-24 グルンドフォス マネージメント アー/エス Permanent magnet and method for manufacturing permanent magnet
JP2016032027A (en) * 2014-07-29 2016-03-07 日東電工株式会社 Permanent magnet, method of manufacturing permanent magnet, dynamo-electric machine and method of manufacturing dynamo-electric machine
JP2016032026A (en) * 2014-07-29 2016-03-07 日東電工株式会社 Permanent magnet, method of manufacturing permanent magnet, dynamo-electric machine and method of manufacturing dynamo-electric machine
WO2018110075A1 (en) * 2016-12-15 2018-06-21 株式会社日立製作所 Method for manufacturing heat and corrosion resistant magnet

Also Published As

Publication number Publication date
US20040052671A1 (en) 2004-03-18
WO2001094058A1 (en) 2001-12-13

Similar Documents

Publication Publication Date Title
US4151435A (en) Stator structure using forming curved wafer thin magnets from rare earth-cobalt alloy powders
EP0418304B1 (en) Method of forming a permanent magnet rotor
JP2007180368A (en) Method for manufacturing magnetic circuit part
US20240006100A1 (en) Method of manufacturing permanent magnets
JP2006303197A (en) Method for manufacturing r-t-b system sintered magnet
US4325757A (en) Method of forming thin curved rare earth-transition metal magnets from lightly compacted powder preforms
JPWO2006001304A1 (en) Yoke integrated rare earth bonded magnet manufacturing method and yoke integrated rare earth bonded magnet
JP2001355006A (en) Composite structural body, manufacturing method thereof, and motor
JP6780707B2 (en) Rare earth magnet manufacturing method
JP6484994B2 (en) Sm-Fe-N magnet molded body and method for producing the same
EP2631918A2 (en) Method of manufacturing magnet and magnet
JP2002540595A (en) Composite part and method of manufacturing the same
JP3060104B2 (en) Radially-oriented magnetic anisotropic resin-bonded magnet and method for producing the same
JP2571244B2 (en) Method for producing rare earth-Fe-B based magnet laminate
JP6647628B2 (en) Shaping method and manufacturing method of shaft-integrated bonded magnet
JP2003151809A (en) Method of manufacturing rare-earth magnet
JP2000012359A (en) Magnet and its manufacture
JP2018078191A (en) Method for manufacturing rare earth magnet
JPH08130143A (en) Anisotropic bonded magnet and manufacturing method
WO2019188303A1 (en) Method for manufacturing industrial article comprising sintered compact
JP2024016680A (en) neodymium laminated sintered magnet
JPH05258947A (en) Ring magnet and manufacture of ring magnet
JPH09233776A (en) Manufacturing method for lengthy radial anisotropic ring magnet
JPS60220910A (en) Anisotropic compression molding resin bonded magnet
JPH11233323A (en) Manufacture of anisotropic magnet material and manufacture of bond magnet using the same