JPH08130143A - Anisotropic bonded magnet and manufacturing method - Google Patents

Anisotropic bonded magnet and manufacturing method

Info

Publication number
JPH08130143A
JPH08130143A JP6290500A JP29050094A JPH08130143A JP H08130143 A JPH08130143 A JP H08130143A JP 6290500 A JP6290500 A JP 6290500A JP 29050094 A JP29050094 A JP 29050094A JP H08130143 A JPH08130143 A JP H08130143A
Authority
JP
Japan
Prior art keywords
compression molding
die
bonded magnet
temporary
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6290500A
Other languages
Japanese (ja)
Other versions
JP3538762B2 (en
Inventor
Naomi Inoue
尚実 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP29050094A priority Critical patent/JP3538762B2/en
Publication of JPH08130143A publication Critical patent/JPH08130143A/en
Application granted granted Critical
Publication of JP3538762B2 publication Critical patent/JP3538762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together

Abstract

PURPOSE: To make it possible to manufacture an anisotropic rear-earth bonded magnet using a method of anisotropic orientation of polarity. CONSTITUTION: A die 2 is made up of a temporary compression molding unit 2A with an electromagnetic coil 6 and a main compression molding unit 2B. In the temporary compression molding unit 2A, a molding space among upper and lower punches 3 and 4, a core 5 and the die 2 is filled with rear-earth magnetic powder mixed with a binder. Then, pulse current is applied continuously to the electromagnet 6 to from an orientated magnetic field in the molding space. The temporary compression molding is carried out in the orientated magnetic field with a surface pressure of 0.5 to 1ton/cm<2> . The temporary molded body is moved to the main compression molding unit 2B to mold under surface pressure of 5 to 10ton/cm<2> .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、異方性ボンド磁石の製
造方法および該製造方法により得た異方性ボンド磁石に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an anisotropic bonded magnet and an anisotropic bonded magnet obtained by the manufacturing method.

【0002】[0002]

【従来の技術】近年、電子デバイスの小型化にともな
い、希土類ボンド磁石の利用が拡大しつゝある。希土類
ボンド磁石は、希土類合金粉末に合成樹脂等のバインダ
ーを混練して成形したもので、優れた磁気特性を有する
他、軽量で破壊に対する抵抗性も強いという特長を有し
ている。現在最も広く用いられている希土類ボンド磁石
は、等方性ネオジウム−鉄−ホウ素系ボンド磁石であ
る。この磁石は、ネオジウム−鉄−ホウ素系の組成を有
するゼネラルモータース社製の磁性粉末(MQパウダ
ー)に、エポキシ樹脂等の熱硬化性樹脂を混練して圧縮
成形し、最終的に熱硬化処理を行って製造され、面圧5
トン/cm2 程度の圧縮成形で磁性粉体積率70%以上と
なり、磁気特性も最大エネルギー積BHmax 8〜12M
GOe の高値を示すものとなる。また、成形に際して磁
場配向の必要がないことから、製造が簡単で、コスト的
にも安価なものとなっている。
2. Description of the Related Art In recent years, the use of rare earth bonded magnets has been expanding with the miniaturization of electronic devices. The rare-earth bonded magnet is formed by kneading a rare-earth alloy powder with a binder such as a synthetic resin, and has excellent magnetic properties, and is also lightweight and has a strong resistance to breakage. The most widely used rare earth bond magnet at present is an isotropic neodymium-iron-boron bond magnet. In this magnet, a magnetic powder (MQ powder) manufactured by General Motors having a neodymium-iron-boron-based composition is kneaded with a thermosetting resin such as an epoxy resin, compression molded, and finally subjected to a thermosetting treatment. Manufactured by manufacturing, surface pressure 5
The volume ratio of the magnetic powder becomes 70% or more by the compression molding of about ton / cm 2 , and the magnetic characteristics also have the maximum energy product BHmax 8 to 12M.
It shows the high value of GOe. Further, since there is no need for magnetic field orientation during molding, the manufacturing is simple and the cost is low.

【0003】しかしながら、最近、電子デバイスのさら
なる小型化が進み、上記等方性ネオジウム−鉄−ホウ素
系ボンド磁石よりも優れた磁気特性を有する希土類ボン
ド磁石が要求されるようになってきている。磁石の磁気
特性を高めるには、磁性粉末を配向して磁気的に異方化
することが有効であり、例えば異方性のサマリウム−コ
バルト系ボンド磁石は、15kOe の横磁場中で圧縮成
形することにより、最大エネルギー積BHmax 15MG
Oe を有する優れた磁石となることが確認されている。
However, with the recent further miniaturization of electronic devices, there has been a demand for rare earth bond magnets having magnetic characteristics superior to those of the above isotropic neodymium-iron-boron bond magnets. In order to enhance the magnetic properties of the magnet, it is effective to orient the magnetic powder to make it magnetically anisotropic. For example, an anisotropic samarium-cobalt bond magnet is compression molded in a transverse magnetic field of 15 kOe. The maximum energy product BHmax 15MG
It has been confirmed to be an excellent magnet having Oe.

【0004】磁性粉末を磁気的に異方化する1つの方法
として、極異方配向法があり、従来より焼結フェライト
磁石の分野で多用されている。この方法は、成形型に電
磁コイル等の磁界発生手段を埋設し、該磁界発生手段に
より成形領域に配向磁界を発生させて圧縮成形するもの
である。この方法によれば、配向磁界が局部的に作用す
るため、該磁界発生手段を内蔵する成形型をプレスラム
上に複数個用意することにより多数個取りが可能にな
り、生産性に優れたものとなっている。また、リング形
状の磁石に適用した場合は、配向方向と着磁方向とが一
致しているため、高い磁気特性が得られるという利点も
ある。
As one method of magnetically anisotropically transforming magnetic powder, there is a polar anisotropic orientation method, which has been widely used in the field of sintered ferrite magnets. In this method, a magnetic field generating means such as an electromagnetic coil is embedded in a molding die, and the magnetic field generating means generates an orientation magnetic field in a molding region for compression molding. According to this method, since the orienting magnetic field acts locally, it is possible to take a large number of molds by preparing a plurality of molding dies incorporating the magnetic field generating means on the press ram, which is excellent in productivity. Has become. Further, when applied to a ring-shaped magnet, there is also an advantage that high magnetic characteristics can be obtained because the orientation direction and the magnetization direction coincide with each other.

【0005】ところで、上記極異方配向法によれば、配
向の効率を上げるには電磁コイルを磁性粉末にできるだ
け接近させる必要があり、その分、成形型として耐え得
る面圧が低下することになる。この場合、焼結フェライ
ト磁石の成形に要する面圧はせいぜい1トン/cm2 程度
であり、それほど問題になることはないが、希土類ボン
ド磁石の製造においては、成形圧力として面圧5〜10
トン/cm2 程度が必要となり、この極異方配向法の利用
は、実質不可能となっていた。
By the way, according to the above-mentioned polar anisotropic orientation method, it is necessary to bring the electromagnetic coil as close as possible to the magnetic powder in order to improve the efficiency of orientation, and the surface pressure that can be endured by the forming die is reduced accordingly. Become. In this case, the surface pressure required for forming the sintered ferrite magnet is about 1 ton / cm 2 at most, which is not a serious problem, but in the production of the rare earth bonded magnet, the surface pressure is 5 to 10 as the forming pressure.
Ton / cm 2 is required, and it is practically impossible to use this ultra-anisotropic orientation method.

【0006】そのため従来、リング形状の異方性希土類
ボンド磁石の圧縮成形を行う場合、プレスの上・下ラム
に電磁石を取付け、対向する磁力線の反発により放射状
の磁場を形成し、この磁界中で磁性粉末を配向して圧縮
成形する、いわゆるラジアル配向法のみが用いられてい
た。
Therefore, conventionally, when compression-molding a ring-shaped anisotropic rare earth bonded magnet, an electromagnet is attached to the upper and lower rams of the press, and a radial magnetic field is formed by the repulsion of opposing magnetic force lines. Only the so-called radial orientation method in which magnetic powder is oriented and compression-molded has been used.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記ラ
ジアル配向法による異方性ボンド磁石の製造によれば、
放射状の磁場中心に磁性粉末を置かなければならないた
め、多数個取りは困難であり、生産性の悪化はもとより
製造コストの上昇が避けられない、という問題があっ
た。
However, according to the production of the anisotropic bonded magnet by the above radial orientation method,
Since the magnetic powder must be placed in the center of the radial magnetic field, it is difficult to obtain a large number of powders, and there is a problem that productivity is deteriorated and manufacturing cost is inevitably increased.

【0008】本発明は、上記従来の問題点に鑑みてなさ
れたもので、極異方配向法の利用による異方性の希土類
ボンド磁石の製造を可能にし、もって生産性の向上と製
造コストの低減とに大きく寄与する製造方法を提供し、
併せてこの製造方法により得た高性能異方性ボンド磁石
を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and enables the production of anisotropic rare earth bonded magnets by utilizing the polar anisotropic orientation method, thereby improving the productivity and reducing the production cost. Providing a manufacturing method that greatly contributes to reduction,
Another object is to provide a high-performance anisotropic bonded magnet obtained by this manufacturing method.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明にかゝる異方性ボンド磁石の製造方法は、磁
性粉末を磁場配向して仮圧縮成形した後、所定の面圧で
本圧縮成形するようにしたことを特徴とする。
In order to achieve the above object, a method for producing an anisotropic bonded magnet according to the present invention is one in which a magnetic powder is magnetically oriented and temporarily compression molded, and then a predetermined surface pressure is applied. It is characterized in that the main compression molding is performed.

【0010】本発明にておいて、上記仮圧縮成形と本圧
縮成形とは、工程を移して異なる成形型を用いて行うこ
とができるが、同じ工程内で同じ成形型内の異なる部位
で行うようにするのが望ましい。
In the present invention, the temporary compression molding and the main compression molding can be carried out by using different molding dies in different steps, but they are carried out in the same process at different parts in the same molding dies. It is desirable to do so.

【0011】本発明の特徴をさらに図に基いて説明す
る。図1は、リング形状の異方性ボンド磁石の製造方法
を概念的に示したもので、符号1で示す成形型は、従来
一般の成形型と同様にダイス2、上パンチ3、下パンチ
4およびコア5からなっている。しかして、本発明で用
いるダイス2は、その上側の半分が仮圧縮成形部2A、
その下側の半分が本圧縮成形部2Bとして区画されてお
り、上側の仮圧圧縮成形部2Aには、成形領域に配向磁
界を発生させる電磁コイル6が埋設されている。
The features of the present invention will be further described with reference to the drawings. FIG. 1 conceptually shows a method for manufacturing a ring-shaped anisotropic bonded magnet. A forming die indicated by reference numeral 1 is a die 2, an upper punch 3, and a lower punch 4 as in a conventional ordinary forming die. And a core 5. Then, the die 2 used in the present invention has the upper half thereof as the temporary compression molding portion 2A,
A lower half thereof is partitioned as a main compression molding portion 2B, and an electromagnetic coil 6 for generating an orientation magnetic field in a molding region is embedded in the upper temporary compression molding portion 2A.

【0012】圧縮成形に際しては、先ずダイス2の仮圧
縮成形部2Aの内側の成形領域にバインダーを混合した
磁性粉末7を充填し、次いで電磁コイル6にパルス電流
または定常電流を流して成形領域に配向磁界を発生さ
せ、この磁界中で、上パンチ3を下動させて面圧0.5
〜1トン/cm2 で仮圧縮成形する()。次に、ダイス
2と上パンチ3および下パンチ4とを相対移動させ、仮
成形体をダイス2の本圧縮成形部2Bに移し、面圧5〜
10トン/cm2 で本圧縮成形を行い、リング形状の成形
体8を得る()。このようにして得られた成形体(リ
ング)8は、磁性粉体積率が70%以上で、4極以上の
磁極を外周に有する異方性ボンド磁石となる。
At the time of compression molding, first, a magnetic powder 7 mixed with a binder is filled in a molding region inside the temporary compression molding portion 2A of the die 2, and then a pulse current or a steady current is passed through the electromagnetic coil 6 to form a molding region. An orienting magnetic field is generated, and in this magnetic field, the upper punch 3 is moved downward so that the surface pressure becomes 0.5.
Temporarily compression molded at ~ 1 ton / cm 2 (). Next, the die 2 and the upper punch 3 and the lower punch 4 are moved relative to each other, and the temporary molded body is transferred to the main compression molding section 2B of the die 2, and the surface pressure 5
Main compression molding is carried out at 10 ton / cm 2 to obtain a ring-shaped molded body 8 (). The molded body (ring) 8 thus obtained is an anisotropic bonded magnet having a magnetic powder volume ratio of 70% or more and four or more magnetic poles on the outer periphery.

【0013】一方、内周を磁極とするリング形状の磁石
を得るには、図2に示すように、コア5を、下側の仮圧
縮成形部5Aと上側の本圧縮成形部5Bとに区画し、そ
の仮圧縮成形部5Aに電磁コイル6を埋設する。圧縮成
形は、上記図1について説明したと同様の手順で、先ず
コア5の仮圧縮成形部5Aの外側の成形領域に磁気粉末
7を充填して電磁コイル6による配向磁界中で仮圧縮成
形を行い()、次に仮成形体をコア5の本圧縮成形部
5Bに移して本圧縮成形を行い、リング形状の成形体8
を得る()。このようにして得られた成形体(リン
グ)8は、磁性粉体積率が70%以上で、4極以上の磁
極を内周に有する異方性ボンド磁石となる。
On the other hand, in order to obtain a ring-shaped magnet whose inner circumference is a magnetic pole, as shown in FIG. 2, the core 5 is divided into a lower temporary compression molding portion 5A and an upper main compression molding portion 5B. Then, the electromagnetic coil 6 is embedded in the temporary compression molding portion 5A. The compression molding is performed in the same procedure as described with reference to FIG. 1 above. First, the magnetic powder 7 is filled in the molding region outside the temporary compression molding portion 5A of the core 5, and the temporary compression molding is performed in the orientation magnetic field by the electromagnetic coil 6. Then, the temporary molded body is transferred to the main compression molded portion 5B of the core 5 to perform the main compression molding, and the ring-shaped molded body 8 is formed.
Get (). The molded body (ring) 8 thus obtained is an anisotropic bonded magnet having a magnetic powder volume ratio of 70% or more and four or more magnetic poles on the inner circumference.

【0014】本発明において、用いる磁性粉末として
は、磁気的に異方性を有する種々の希土類合金粉末、例
えばネオジウム−鉄−ホウ素系合金粉末、サマリウム−
コバルト系合金粉末、サマリウム−鉄−窒素系合金粉末
を用いることができる。また、バインダーとしては、亜
鉛や錫等の純金属を始め、それらの合金、あるいはエポ
キシ樹脂やフェノール樹脂などの熱硬化性樹脂、ポリア
ミド樹脂(ナイロン)、ポリフェニレンサルファイド
(PPS)、ポリブチレンテレフタレート(PBT)な
どの熱可塑性樹脂を用いることができる。
As the magnetic powder used in the present invention, various rare earth alloy powders having magnetic anisotropy, for example, neodymium-iron-boron alloy powder, samarium-
Cobalt-based alloy powder and samarium-iron-nitrogen-based alloy powder can be used. In addition, examples of the binder include pure metals such as zinc and tin, alloys thereof, thermosetting resins such as epoxy resins and phenol resins, polyamide resins (nylon), polyphenylene sulfide (PPS), polybutylene terephthalate (PBT). ) And other thermoplastic resins can be used.

【0015】本発明において、成形領域に配向磁界を発
生させるには、上記した電磁コイル6に代えて、永久磁
石を用いることができる。本発明において、成形型内に
設定する仮圧縮成形部2A,5Aと本圧縮成形部2B,
5Bとの上下関係は任意であり、成形の能率を考慮して
何れかを選択する。また、本発明は、仮圧縮成形後に電
磁コイル6に逆向きの電流を流して脱磁(減磁)を行っ
てもよい。
In the present invention, a permanent magnet can be used in place of the above-mentioned electromagnetic coil 6 in order to generate an orientation magnetic field in the molding region. In the present invention, the temporary compression molding portions 2A, 5A and the main compression molding portion 2B, which are set in the molding die,
The vertical relationship with 5B is arbitrary, and any one is selected in consideration of molding efficiency. Further, in the present invention, after the temporary compression molding, a reverse current may be applied to the electromagnetic coil 6 to perform demagnetization (demagnetization).

【0016】[0016]

【作用】上記のように構成した異方性ボンド磁石の製造
においては、磁性粉末を磁場配向する際は、小さな面圧
で仮圧縮成形するので、極異方配向法を用いて効率的に
磁性粉末を異方化することができる。また、仮圧縮成形
後に大きな面圧で本圧縮成形を行うことにより、磁粉体
積率を70%以上と十分に大きくすることが可能にな
る。また、この仮圧縮成形と本圧縮成形とを、同じ成形
型内の異なる部位で行う場合は、連続して圧縮成形を行
うことができる。
In the production of the anisotropic bonded magnet configured as described above, when the magnetic powder is magnetically oriented, the magnetic powder is pre-compressed with a small surface pressure. The powder can be anisotropic. Further, by performing the main compression molding with a large surface pressure after the temporary compression molding, it becomes possible to sufficiently increase the magnetic powder volume ratio to 70% or more. Further, when the temporary compression molding and the main compression molding are performed at different parts in the same molding die, the compression molding can be continuously performed.

【0017】[0017]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0018】実施例1 水素処理法(HDDR法)により製造されたネオジウム
−鉄−ホウ素系磁性粉末を、ピンミルを用いて平均粒子
径150ミクロン(μm)以下に粉砕し、これにエポキ
シ樹脂2.5wt%を添加して混練し、この混合物を図3
および4に示す成形型10Aに入れて油圧プレスにより
圧縮成形を行った。成形型10Aは、リング状のダイス
11と、プレス上ラム(図示略)に支持された筒状の上
パンチ12と、前記上パンチ12に対向してプレス下ラ
ム(図示略)に支持された筒状の下パンチ13と、ダイ
ス11内に挿入されたコア14とから概略構成されてい
る。
Example 1 A neodymium-iron-boron magnetic powder produced by a hydrogen treatment method (HDDR method) was pulverized with a pin mill to an average particle size of 150 μm (μm) or less, and an epoxy resin 2. 5 wt% was added and kneaded.
It was put in the molding die 10A shown in 4 and 4 and compression molded by a hydraulic press. The molding die 10A is supported by a ring-shaped die 11, a cylindrical upper punch 12 supported by a press upper ram (not shown), and a press lower ram (not shown) facing the upper punch 12. The cylindrical lower punch 13 and the core 14 inserted into the die 11 are roughly configured.

【0019】上記ダイス11は、上側の仮圧縮成形部1
5と下側の本圧縮成形部16とを備えている。上側の仮
圧縮成形部15は、内側の薄肉のスリーブ17と外側の
厚肉筒状のヨーク18とからなり、そのヨーク18には
12極の電磁コイル19が埋設されている。一方、本圧
縮成形部16は、内側の筒状のダイス本体20と外側の
筒状のダイスホルダ21とからなっている。なお、ダイ
ス11を構成するスリーブ17およびダイス本体20
と、上・下パンチ12、13と、コア14とは非磁性の
超硬から、ダイスホルダ21はステンレス鋼(例えばSU
S 304 )から、ヨーク18は純鉄からそれぞれ形成され
ている。また、ダイス本体20としては肉厚8mm程度の
ものが用いられている。
The die 11 is a temporary compression molding portion 1 on the upper side.
5 and the main compression molding portion 16 on the lower side. The upper temporary compression molding portion 15 is composed of an inner thin sleeve 17 and an outer thick cylindrical yoke 18, and a 12-pole electromagnetic coil 19 is embedded in the yoke 18. On the other hand, the main compression molding portion 16 is composed of an inner cylindrical die body 20 and an outer cylindrical die holder 21. It should be noted that the sleeve 17 and the die body 20 constituting the die 11 are
The upper and lower punches 12 and 13 and the core 14 are made of non-magnetic carbide, and the die holder 21 is made of stainless steel (for example, SU.
S 304), the yokes 18 are each made of pure iron. The die body 20 has a wall thickness of about 8 mm.

【0020】本実施例においては、電磁コイル19にコ
ンデンサ方式のパルス電源(図示略)を接続する。そし
て圧縮成形に際しては、先ずダイス11の仮圧縮成形部
15の内側の成形領域に上記混合物(磁性粉末)22を
充填し、次いで電磁コイル19に20KA、10msec の
パルス電流を断続して流して成形領域に配向磁界を発生
させる。そして、この磁界中で、上パンチ12を下動さ
せて面圧0.5トン/cm2 で仮圧縮成形し、引続いて脱
磁を行った。次に、上パンチ12および下パンチ13を
そのまゝ下動させて、仮成形体をダイス11の本圧縮成
形部16に移し、面圧5トン/cm2 で本圧縮成形を行
い、リング形状の成形体を得た。その後、この成形体を
成形型10Aから取出し、150℃で1時間の加熱硬化
処理を行った後、着磁をして、図5(1),(2)に示
すようなリング形状の異方性ボンド磁石試料1を得、こ
れを、磁性粉体積率および磁気特性の測定試験に供し
た。なお、このボンド磁石試料(以下、単に磁石試料と
いう)1は、外径22mm,内径20mm,高さ8mmで、外
周12極配向となっている。また、比較のため、前記M
Qパウダー(ネオジウム−鉄−ホウ素系合金)にエポキ
シ樹脂を上記と同量配合し、圧縮成形により同寸法の等
方性磁石試料2を製作し、これも同様の磁性粉体積率お
よび磁気特性の測定試験に供した。
In this embodiment, a capacitor type pulse power source (not shown) is connected to the electromagnetic coil 19. At the time of compression molding, first, the mixture (magnetic powder) 22 is filled in the molding region inside the temporary compression molding portion 15 of the die 11, and then the electromagnetic coil 19 is intermittently supplied with a pulse current of 20 KA for 10 msec. An orientation magnetic field is generated in the area. Then, in this magnetic field, the upper punch 12 was moved downward to perform temporary compression molding at a surface pressure of 0.5 ton / cm 2 , and subsequently demagnetized. Next, the upper punch 12 and the lower punch 13 are moved downwards as they are, and the temporary compact is transferred to the main compression molding part 16 of the die 11, and the main compression molding is performed at a surface pressure of 5 tons / cm 2 to form a ring shape. A molded body of was obtained. After that, the molded body is taken out from the molding die 10A, subjected to heat curing treatment at 150 ° C. for 1 hour, and then magnetized to have an anisotropic ring shape as shown in FIGS. 5 (1) and 5 (2). Curable bonded magnet sample 1 was obtained, and this was subjected to a measurement test of magnetic powder volume ratio and magnetic characteristics. The bonded magnet sample (hereinafter, simply referred to as a magnet sample) 1 has an outer diameter of 22 mm, an inner diameter of 20 mm, a height of 8 mm, and an outer circumference of 12 poles. For comparison, the above M
An isotropic magnet sample 2 having the same dimensions was manufactured by mixing Q powder (neodymium-iron-boron-based alloy) with an epoxy resin in the same amount as described above and performing compression molding. It was subjected to a measurement test.

【0021】表1は、上記のようにして得た磁石試料
1、2についての磁性粉体積率および磁気特性の測定試
験を示したものである。なお、磁気特性の測定は振動試
料型磁力計(VSM)を用いて行った。表に示す結果よ
り、本発明にかゝる磁石試料1は汎用の等方性磁石試料
2と同様に磁性粉体積率が70%以上となり、十分なる
磁性粉体積率を有することが確認できた。また、磁気特
性に関しては、残留磁束密度Br 、保磁力iHc、最大
エネルギー積BHmax 共に、本発明にかゝる磁石試料1
の方が汎用の磁石試料2より高値となり、特に最大エネ
ルギー積BHmaxについては2倍の高値となって、磁気
特性に著しく優れていることが確認できた。
Table 1 shows the measurement test of the magnetic powder volume ratio and magnetic characteristics of the magnet samples 1 and 2 obtained as described above. The magnetic characteristics were measured using a vibrating sample magnetometer (VSM). From the results shown in the table, it was confirmed that the magnetic powder volume ratio of the magnet sample 1 according to the present invention was 70% or more, similarly to the general-purpose isotropic magnet sample 2, and had a sufficient magnetic powder volume ratio. . As for the magnetic characteristics, the residual magnetic flux density Br, the coercive force iHc, and the maximum energy product BHmax are all the magnet sample 1 according to the present invention.
It was confirmed that the magnetic property was higher than that of the general-purpose magnet sample 2, and the maximum energy product BHmax was twice as high, and the magnetic properties were remarkably excellent.

【0022】[0022]

【表1】 [Table 1]

【0023】図6は、磁石試料1、2についての表面磁
束の測定結果を示したものである。なお、表面磁束の測
定はフラックスメータを用いて行った。同図中、実線は
本発明にかゝる磁石試料1についての結果を、点線は汎
用の等方性磁石試料2についての結果をそれぞれ表して
おり、これより、本発明にかゝる磁石試料1は、全周に
おいて磁石試料2よりも約25%程高い表面磁束を有す
ることが明らかになった。
FIG. 6 shows the measurement results of the surface magnetic flux of the magnet samples 1 and 2. The surface magnetic flux was measured using a flux meter. In the figure, the solid line shows the result for the magnet sample 1 according to the present invention, and the dotted line shows the result for the general-purpose isotropic magnet sample 2, respectively. From this, the magnet sample according to the present invention is shown. 1 has a surface magnetic flux that is about 25% higher than that of the magnet sample 2 over the entire circumference.

【0024】実施例2 HDDR法により製造されたネオジウム−鉄−ホウ素系
磁性粉末を、ピンミルを用いて平均粒子径150μm以
下に粉砕し、これにエポキシ樹脂2.5wt%を添加して
混練し、この混合物を図7および8に示す成形型10B
に入れて油圧プレスにより圧縮成形を行った。成形型1
0Bは、基本的には実施例1で用いたもの(図3および
4)と同じであるが、こゝでは、ダイス11の仮圧縮成
形部15を構成するヨーク18を非磁性材料(SUS304)
製とし、上記電磁コイル19に代えて12個の永久磁石
25を埋設している。この永久磁石25は、ネオジウム
焼結磁石からなり、最大エネルギー積BHmax は30M
GOe となっている。
Example 2 A neodymium-iron-boron magnetic powder produced by the HDDR method was crushed with a pin mill to an average particle size of 150 μm or less, and 2.5 wt% of an epoxy resin was added and kneaded. This mixture is shown in FIGS. 7 and 8 in a mold 10B.
And was compression-molded by a hydraulic press. Mold 1
0B is basically the same as that used in Example 1 (FIGS. 3 and 4), but here, the yoke 18 constituting the temporary compression molding portion 15 of the die 11 is made of a non-magnetic material (SUS304).
12 permanent magnets 25 are embedded in place of the electromagnetic coil 19. The permanent magnet 25 is made of a neodymium sintered magnet and has a maximum energy product BHmax of 30M.
It is GOe.

【0025】圧縮成形に際しては、先ずダイス11の仮
圧縮成形部15の内側の成形領域に上記混合物(磁性粉
末)22を充填し、永久磁石25による配向磁界のもと
で、面圧0.5トン/cm2 で仮圧縮成形し、引続いて脱
磁を行い、次いで、仮成形体をダイス11の本圧縮成形
部16に移して、面圧5トン/cm2 で本圧縮成形を行
い、リング形状の成形体を得た。その後、この成形体を
成形型から取出し、150℃で1時間の加熱硬化処理を
行い、さらに着磁をし、実施例1と同極数、同寸法の磁
石試料3を得、これをフラックスメータによる表面磁束
の測定試験に供した。
In compression molding, first, the molding region inside the temporary compression molding portion 15 of the die 11 is filled with the above mixture (magnetic powder) 22, and a surface pressure of 0.5 is applied under the orientation magnetic field of the permanent magnet 25. Temporary compression molding at ton / cm 2 is performed, followed by demagnetization, then the temporary compact is transferred to the main compression molding section 16 of the die 11 and subjected to main compression molding at a surface pressure of 5 tons / cm 2 . A ring-shaped molded body was obtained. Then, the molded body was taken out of the molding die, subjected to a heat curing treatment at 150 ° C. for 1 hour, and further magnetized to obtain a magnet sample 3 having the same number of poles and the same size as in Example 1, which was measured by a flux meter. The surface magnetic flux was subjected to a measurement test.

【0026】図9は、磁石試料3についての表面磁束の
測定結果を上記字じれ1で得た磁石試料1の結果と対比
して示したものである。同図中、実線は本発明にかゝる
磁石試料3についての結果を、点線は実施例1で得た磁
石試料1についての結果をそれぞれ表しており、これよ
り、本発明にかゝる磁石試料3は、全周において磁石試
料1とほどんと変わりない表面磁束を有するものとな
り、磁場配向に永久磁石を用いても優れた磁気特性が得
られることが明らかとなった。
FIG. 9 shows the measurement result of the surface magnetic flux of the magnet sample 3 in comparison with the result of the magnet sample 1 obtained in the above-mentioned bending 1. In the figure, the solid line shows the results for the magnet sample 3 according to the present invention, and the dotted line shows the results for the magnet sample 1 obtained in Example 1, respectively. Sample 3 has a surface magnetic flux that is not substantially different from that of magnet sample 1 over the entire circumference, and it has been clarified that excellent magnetic characteristics can be obtained even when a permanent magnet is used for magnetic field orientation.

【0027】実施例3 HDDR法により製造されたネオジウム−鉄−ホウ素系
磁性粉末を、ピンミルを用いて平均粒子径100μm以
下に粉砕し、これにエポキシ樹脂2.8wt%を添加して
混練し、この混合物を図10および11に示す成形型1
0Cに入れて油圧プレスにより圧縮成形を行った。成形
型10Cは、リング状のダイス31と、プレス上ラム
(図示略)に支持された筒状の上パンチ32と、前記上
パンチ32に対向してプレス下ラム(図示略)に支持さ
れた筒状の下パンチ33と、ダイス31内に挿入された
コア34とから概略構成されている。
Example 3 A neodymium-iron-boron type magnetic powder produced by the HDDR method was crushed with a pin mill to an average particle size of 100 μm or less, and 2.8 wt% of an epoxy resin was added and kneaded. This mixture was molded into a mold 1 shown in FIGS.
It was put in 0 C and compression molded by a hydraulic press. The molding die 10C is supported by a ring-shaped die 31, a cylindrical upper punch 32 supported by a press upper ram (not shown), and a press lower ram (not shown) facing the upper punch 32. The cylindrical lower punch 33 and the core 34 inserted in the die 31 are roughly configured.

【0028】上記ダイス31は、内側の筒状のダイス本
体35と外側の筒状のダイスホルダ36とからなってい
る。一方、コア34は、下側の仮圧縮成形部37と上側
の本圧縮成形部38とを備えており、その仮圧縮成形部
37は、外側の薄肉のスリーブ39と内側の柱状ヨーク
40とから、その本圧縮成形部38は柱状のコアブロッ
ク41からそれぞれなっている。しかして、このコア3
4のヨーク40には、32極の電磁コイル42が埋設さ
れている。なお、ダイス本体35と、コア34を構成す
るスリーブ39およびコアブロック41と、上・下パン
チ32、33とは非磁性超硬から、ダイスホルダ36は
ステンレス鋼(例えばSUS 303 )からそれぞれ形成され
ている。
The die 31 comprises an inner cylindrical die body 35 and an outer cylindrical die holder 36. On the other hand, the core 34 includes a lower temporary compression molding portion 37 and an upper main compression molding portion 38. The temporary compression molding portion 37 includes a thin sleeve 39 on the outer side and a columnar yoke 40 on the inner side. The main compression molding portion 38 is composed of a columnar core block 41. Then, this core 3
An electromagnetic coil 42 having 32 poles is embedded in the fourth yoke 40. The die body 35, the sleeve 39 and the core block 41 forming the core 34, the upper and lower punches 32 and 33 are made of non-magnetic cemented carbide, and the die holder 36 is made of stainless steel (for example, SUS 303). There is.

【0029】本実施例においては、電磁コイル42にコ
ンデンサ方式のパルス電源(図示略)を接続する。そし
て圧縮成形に際しては、先ずコア34の仮圧縮成形部3
7の外側の成形領域に上記混合物(磁性粉末)43を充
填し、次いで電磁コイル42に12KA、10msec のパ
ルス電流を断続して流して成形領域に配向磁界を発生さ
せた。そして、この磁界中で、上パンチ32を下動させ
て面圧0.5トン/cm2 で仮圧縮成形し、引続いて脱磁
を行った。次に、上パンチ32および下パンチ33をそ
のまゝ上動させて、仮成形体をコア34の本圧縮成形部
38に移し、面圧8トン/cm2 で本圧縮成形を行い、リ
ング形状の成形体を得た。その後、この成形体を成形型
10Cから取出し、150℃で1時間の加熱硬化処理を
行った後、着磁をして、図12(a),(b)に示すよ
うなリング形状の異方性ボンド磁石試料4を得、これ
を、フラックスメータによる表面磁束の測定試験に供し
た。なお、この磁石試料4は、外径33mm,内径30m
m,高さ5mmで、内周32極配向となっている。また、
比較のため、前記MQパウダー(ネオジウム−鉄−ホウ
素合金)にエポキシ樹脂を同量混合し、圧縮成形により
同寸法の等方性磁石試料5を製作し、これも同様の表面
磁束の測定試験に供した。
In this embodiment, a capacitor type pulse power source (not shown) is connected to the electromagnetic coil 42. When performing compression molding, first, the temporary compression molding portion 3 of the core 34 is
The mixture (magnetic powder) 43 was filled in the outer molding region of No. 7, and a pulse current of 12 KA for 10 msec was intermittently passed through the electromagnetic coil 42 to generate an orientation magnetic field in the molding region. Then, in this magnetic field, the upper punch 32 was moved downward to perform temporary compression molding at a surface pressure of 0.5 ton / cm 2 , followed by demagnetization. Next, the upper punch 32 and the lower punch 33 are moved up as they are, and the temporary molded body is transferred to the main compression molding portion 38 of the core 34, and the main compression molding is performed at a surface pressure of 8 tons / cm 2 to form a ring shape. A molded body of was obtained. Then, the molded body is taken out from the molding die 10C, subjected to heat curing treatment at 150 ° C. for 1 hour, and then magnetized to have an anisotropic ring shape as shown in FIGS. 12 (a) and 12 (b). Bonded magnet sample 4 was obtained, and this was subjected to a surface magnetic flux measurement test using a flux meter. The magnet sample 4 has an outer diameter of 33 mm and an inner diameter of 30 m.
It has m and height of 5 mm, and has an inner circumference of 32 poles. Also,
For comparison, an equal amount of epoxy resin was mixed with the MQ powder (neodymium-iron-boron alloy), and an isotropic magnet sample 5 of the same size was manufactured by compression molding, which was also used for the same surface magnetic flux measurement test. I served.

【0030】図13は、表面磁束の測定結果を示したも
のである。同図中、実線は本発明にかゝる磁石試料4に
ついての結果を、点線は汎用の等方性磁石試料5につい
ての結果をそれぞれ表しており、これより、本発明にか
ゝる磁石試料4は、全周において汎用の磁石試料5より
高い表面磁束を有し、優れた磁気特性が得られることが
明らかとなった。
FIG. 13 shows the measurement results of the surface magnetic flux. In the figure, the solid line shows the result for the magnet sample 4 according to the present invention, and the dotted line shows the result for the general-purpose isotropic magnet sample 5, respectively. From this, the magnet sample according to the present invention is shown. No. 4 has a higher surface magnetic flux than the general-purpose magnet sample 5 over the entire circumference, and it is clear that excellent magnetic characteristics are obtained.

【0031】[0031]

【発明の効果】以上、詳細に説明したように、本発明に
かかる異方性ボンド磁石の製造方法によれば、仮圧縮成
形と本圧縮成形との2段階成形を行うことにより、極異
方配向法を用いて磁性粉末を異方化することができ、磁
気特性に優れた異方性磁石を高能率に製造することがで
き、生産性の向上と製造コストの低減とに大きく寄与す
るものとなる。また、仮圧縮成形と本圧縮成形とを、同
じ成形型内の異なる部位で行う場合は、連続して圧縮成
形を行うことができて、より一層の生産性の向上を達成
できる。
As described above in detail, according to the method for manufacturing an anisotropic bonded magnet of the present invention, a two-step molding process including temporary compression molding and main compression molding is performed to achieve an extremely anisotropic shape. Magnetic powder can be anisotropy by using the orientation method, anisotropic magnets with excellent magnetic properties can be manufactured with high efficiency, which greatly contributes to improvement of productivity and reduction of manufacturing cost. Becomes Further, when the temporary compression molding and the main compression molding are performed at different portions in the same molding die, the compression molding can be continuously performed, and the productivity can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかゝる異方性ボンド磁石の製造方法を
概念的に示す模式図である。
FIG. 1 is a schematic view conceptually showing a method for manufacturing an anisotropic bonded magnet according to the present invention.

【図2】本異方性ボンド磁石の製造方法の他の概念を示
す模式図である。
FIG. 2 is a schematic view showing another concept of the method for manufacturing the anisotropic bonded magnet.

【図3】実施例1で用いる成形型の構造を一部断面とし
て示す斜視図である。
FIG. 3 is a perspective view showing the structure of a molding die used in Example 1 as a partial cross section.

【図4】図3に示した成形型の一部を示す横断面図であ
る。
4 is a cross-sectional view showing a part of the molding die shown in FIG.

【図5】実施例1で得た異方性ボンド磁石の形状および
磁性を示す模式図である。
5 is a schematic diagram showing the shape and magnetism of the anisotropic bonded magnet obtained in Example 1. FIG.

【図6】実施例1で得た異方性ボンド磁石の表面磁束の
測定結果を示すグラフである。
6 is a graph showing the measurement results of surface magnetic flux of the anisotropic bonded magnet obtained in Example 1. FIG.

【図7】実施例2で用いる成形型の構造を一部断面とし
て示す斜視図である。
FIG. 7 is a perspective view showing the structure of a molding die used in Example 2 as a partial cross section.

【図8】図7に示した成形型の一部を示す横断面図であ
る。
8 is a cross-sectional view showing a part of the molding die shown in FIG.

【図9】実施例2で得た異方性ボンド磁石の表面磁束の
測定結果を示すグラフである。
9 is a graph showing measurement results of surface magnetic flux of the anisotropic bonded magnet obtained in Example 2. FIG.

【図10】実施例3で用いる成形型の構造を一部断面と
して示す斜視図である。
FIG. 10 is a perspective view showing the structure of a molding die used in Example 3 as a partial cross section.

【図11】図10に示した成形型の一部を示す横断面図
である。
11 is a cross-sectional view showing a part of the molding die shown in FIG.

【図12】実施例3で得た異方性ボンド磁石の形状およ
び磁性を示す模式図である。
12 is a schematic diagram showing the shape and magnetism of the anisotropic bonded magnet obtained in Example 3. FIG.

【図13】実施例3で得た異方性ボンド磁石の表面磁束
の測定結果を示すグラフである。
13 is a graph showing the measurement results of surface magnetic flux of the anisotropic bonded magnet obtained in Example 3. FIG.

【符号の説明】[Explanation of symbols]

1 成形型 2 ダイス 3 上パンチ 4 下パンチ 5 コア 6 電磁コイル 7 磁性粉末 8 成形体 2A 仮圧縮成形部 2B 本圧縮成形部 5A 仮圧縮成形部 5B 本圧縮成形部 1 Mold 2 Die 3 Upper Punch 4 Lower Punch 5 Core 6 Electromagnetic Coil 7 Magnetic Powder 8 Molded Body 2A Temporary Compression Molding Section 2B Main Compression Molding Section 5A Temporary Compression Molding Section 5B Main Compression Molding Section

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 磁性粉末を磁場配向して仮圧縮成形した
後、所定の面圧で本圧縮成形することを特徴とする異方
性ボンド磁石の製造方法。
1. A method for producing an anisotropic bonded magnet, which comprises magnetically orienting magnetic powder for temporary compression molding, and then main compression molding at a predetermined surface pressure.
【請求項2】 仮圧縮成形と本圧縮成形とを、同じ成形
型内の異なる部位で行うことを特徴とする請求項1に記
載の異方性ボンド磁石の製造方法。
2. The method for producing an anisotropic bonded magnet according to claim 1, wherein the temporary compression molding and the main compression molding are performed at different portions in the same molding die.
【請求項3】 電磁コイルにパルス電流または定常電流
を流すことにより仮圧縮成形領域に配向磁界を発生させ
ることを特徴とする請求項1または2に記載の異方性ボ
ンド磁石の製造方法。
3. The method for producing an anisotropic bonded magnet according to claim 1, wherein an oriented magnetic field is generated in the temporary compression molding region by passing a pulse current or a steady current through the electromagnetic coil.
【請求項4】 永久磁石により仮圧縮成形領域に配向磁
界を発生させることを特徴とする請求項1または2に記
載の異方性ボンド磁石の製造方法。
4. The method for producing an anisotropic bonded magnet according to claim 1, wherein an orientation magnetic field is generated in the temporary compression molding region with a permanent magnet.
【請求項5】 磁性粉体積率が70%以上で、4極以上
の極数を持ちかつリング形状をなすことを特徴とする、
請求項1乃至4のいずれか1項の方法により製造された
異方性ボンド磁石。
5. A magnetic powder volume ratio of 70% or more, having a number of poles of 4 or more and having a ring shape,
An anisotropic bonded magnet manufactured by the method according to claim 1.
JP29050094A 1994-10-31 1994-10-31 Method for producing anisotropic bonded magnet and anisotropic bonded magnet Expired - Fee Related JP3538762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29050094A JP3538762B2 (en) 1994-10-31 1994-10-31 Method for producing anisotropic bonded magnet and anisotropic bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29050094A JP3538762B2 (en) 1994-10-31 1994-10-31 Method for producing anisotropic bonded magnet and anisotropic bonded magnet

Publications (2)

Publication Number Publication Date
JPH08130143A true JPH08130143A (en) 1996-05-21
JP3538762B2 JP3538762B2 (en) 2004-06-14

Family

ID=17756834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29050094A Expired - Fee Related JP3538762B2 (en) 1994-10-31 1994-10-31 Method for producing anisotropic bonded magnet and anisotropic bonded magnet

Country Status (1)

Country Link
JP (1) JP3538762B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022153A (en) * 1996-07-04 1998-01-23 Aichi Steel Works Ltd Manufacture of magnetically anisotropic resin bond magnet
US7367791B2 (en) 2004-11-19 2008-05-06 Aichi Steel Corporation Device for producing annular or arcuate magnet
JP2013221435A (en) * 2012-04-16 2013-10-28 Panasonic Corp Ceiling fan

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022153A (en) * 1996-07-04 1998-01-23 Aichi Steel Works Ltd Manufacture of magnetically anisotropic resin bond magnet
US7367791B2 (en) 2004-11-19 2008-05-06 Aichi Steel Corporation Device for producing annular or arcuate magnet
JP2013221435A (en) * 2012-04-16 2013-10-28 Panasonic Corp Ceiling fan

Also Published As

Publication number Publication date
JP3538762B2 (en) 2004-06-14

Similar Documents

Publication Publication Date Title
US5886070A (en) Production method for anisotropic resin-bonded magnets
EP1830451A1 (en) Rotor for motor and method for producing the same
WO2007119393A1 (en) Radial anisotropic magnet manufacturing method, permanent magnet motor using radial anisotropic magnet, iron core-equipped permanent magnet motor
TW200407919A (en) Radial anisotropic ring magnet and its manufacturing method
CN101485065B (en) Permanent magnet rotor and motor using the same
JP2003257762A (en) Ring magnet, manufacturing method therefor, rotor, rotating machine, magnetic field generating apparatus therefor, and ring magnet manufacturing apparatus
JP3060104B2 (en) Radially-oriented magnetic anisotropic resin-bonded magnet and method for producing the same
JP2911017B2 (en) Manufacturing method of radial anisotropic rare earth sintered magnet
JP3538762B2 (en) Method for producing anisotropic bonded magnet and anisotropic bonded magnet
JP4605317B2 (en) Rare earth anisotropic bonded magnet manufacturing method, magnet molded body orientation processing method, and magnetic field molding apparatus
EP0265016A2 (en) Process of making a permanent magnet
JP3883138B2 (en) Manufacturing method of resin bonded magnet
JPH0559572B2 (en)
JP3151604B2 (en) Method for producing radial anisotropic bonded magnet and bonded magnet
JP3357421B2 (en) Method for forming magnetic field of magnet powder and method for manufacturing magnet
JP2000182867A (en) Anisotropically bonded magnet, manufacture thereof, and press apparatus
JPH08111337A (en) Method and apparatus for forming field of permanent magnet
JP2006041138A (en) Pole face spherical bond magnet, and manufacturing method thereof
JPH04112504A (en) Manufacture of pare-earth magnet
JPH09148165A (en) Manufacture of radially anisotropic bonded magnet and bonded magnet
JP2001185412A (en) Anisotropic bonded magnet
JPH0786070A (en) Manufacture of bond magnet
JPH09233776A (en) Manufacturing method for lengthy radial anisotropic ring magnet
JPH06330103A (en) Die for compacting magnetic powder
JPH1174143A (en) Method of molding magnetic powder

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees