JPH09233776A - Manufacturing method for lengthy radial anisotropic ring magnet - Google Patents

Manufacturing method for lengthy radial anisotropic ring magnet

Info

Publication number
JPH09233776A
JPH09233776A JP3188496A JP3188496A JPH09233776A JP H09233776 A JPH09233776 A JP H09233776A JP 3188496 A JP3188496 A JP 3188496A JP 3188496 A JP3188496 A JP 3188496A JP H09233776 A JPH09233776 A JP H09233776A
Authority
JP
Japan
Prior art keywords
magnet
ring magnet
molded
radial anisotropic
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3188496A
Other languages
Japanese (ja)
Other versions
JP3651098B2 (en
Inventor
Norio Yoshikawa
紀夫 吉川
Hiyoshi Yamada
日吉 山田
Yasumasa Kasai
靖正 葛西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP03188496A priority Critical patent/JP3651098B2/en
Publication of JPH09233776A publication Critical patent/JPH09233776A/en
Application granted granted Critical
Publication of JP3651098B2 publication Critical patent/JP3651098B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for a lengthy radial anisotropic ring magnet with high maximum energy product. SOLUTION: At the time of magnetically-forming rare earth magnetic alloy powder with a magnetic forming device consisting of non-magnetic dies 11, 13, a ferromagnetic die 12, punches 21, 22, magnetic coil 41, 42 and so on, the first layer 2 divided in the axial direction is formed, on which magnetic powder 3 is charged for forming, and subsequent stacking is conducted for forming. It is thus possible to generate them for production of a lengthy radial anisotropic ring magnet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、サーボモータのロ
ータ等に用いるリング状の永久磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ring-shaped permanent magnet used for a rotor of a servomotor or the like.

【0002】[0002]

【従来の技術】サーボモータのロータ等のリング磁石を
用いる回転機器においては、磁石表面の磁束密度を高く
とることができる磁石として、磁化の異方性が放射状を
なす、いわゆるラジアル異方性のリング状の永久磁石が
多用されている。さらに、希土類元素−Fe−B系磁石
を用いたラジアル異方性リング磁石は、最大エネルギー
積の大きい磁石として前記用途における需要が多い。
2. Description of the Related Art In a rotating machine using a ring magnet such as a rotor of a servo motor, a magnet having a high magnetic flux density on the surface of the magnet has a so-called radial anisotropy in which the anisotropy of magnetization is radial. Ring-shaped permanent magnets are often used. Further, a radial anisotropic ring magnet using a rare earth element-Fe-B based magnet is in great demand in the above-mentioned applications as a magnet having a large maximum energy product.

【0003】ところで、ラジアル異方性リング磁石の成
形は、磁場中において、プレス等により磁石粉末を圧縮
することによって行われている。このとき、成形するリ
ング磁石の長さが長いと、磁場中成形する際に成形体に
十分な強さの磁界を与えることができないため、長尺で
最大エネルギー積が高い磁石を製造することができなか
った。そこで、短尺の磁石を接着剤などで接合して必要
な磁石長さとして用いていた。
By the way, the formation of the radial anisotropic ring magnet is performed by compressing the magnet powder with a press or the like in a magnetic field. At this time, if the length of the ring magnet to be molded is long, it is not possible to apply a magnetic field of sufficient strength to the molded body when molding in a magnetic field, so it is possible to manufacture a long magnet having a high maximum energy product. could not. Therefore, a short magnet is joined with an adhesive or the like and used as a required magnet length.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記の現状
に鑑みてなされたもので、その目的とするところは、長
尺で、かつ最大エネルギー積が高いラジアル異方性リン
グ磁石を製造する方法を提供することによって、磁石の
性能の向上、および磁石の組みつけ作業工数の低減に資
することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to manufacture a radial anisotropic ring magnet having a long length and a high maximum energy product. By providing the method, it is possible to contribute to the improvement of the performance of the magnet and the reduction of the man-hours for assembling the magnet.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の長尺ラジアル異方性リング磁石の製造方法
は、 (1)希土類系磁石合金よりなるラジアル異方性リング
磁石の製造において、前記磁石合金の粉末を磁場中成形
する際、軸方向に分割して順次積層して成形することに
よって一体化し、長尺のリング磁石成形体を形成するこ
とを特徴とする。 (2)希土類元素系磁石合金および熱硬化性樹脂よりな
るラジアル異方性リング磁石の製造において、前記磁石
合金の粉末を磁場中成形する際、軸方向に分割して順次
積層して成形することによって一体化し、長尺のリング
磁石成形体を形成することを特徴とする。 (3)前記(1)および(2)記載の長尺ラジアル異方
性リング磁石の製造方法において、軸方向に分割して成
形する際の1層の高さを、成形する磁石の外径の2分の
1以下とすることを特徴とする。
In order to achieve the above object, the method for producing a long radial anisotropic ring magnet of the present invention is as follows: (1) Production of a radial anisotropic ring magnet made of a rare earth magnet alloy. In the above, when the magnet alloy powder is molded in a magnetic field, the magnet alloy powder is divided in the axial direction and sequentially laminated and molded to form a long ring magnet molded body. (2) In manufacturing a radial anisotropic ring magnet composed of a rare earth element-based magnet alloy and a thermosetting resin, when the powder of the magnet alloy is molded in a magnetic field, the powder is divided in the axial direction and sequentially laminated and molded. It is characterized in that a long ring magnet molded body is formed by the integration. (3) In the method for producing a long radial anisotropic ring magnet described in (1) and (2) above, the height of one layer when axially divided and molded is determined by the outer diameter of the magnet to be molded. It is characterized in that it is one-half or less.

【0006】[0006]

【発明の実施の形態】本発明のラジアル異方性リング磁
石の第1の実施形態としては、希土類元素系磁石合金と
して希土類元素−Fe−B系磁石合金を用いる。希土類
元素としては、Ndを主とし、質量%で90%以下にお
いてその他の希土類元素を含んでもよい。前記希土類元
素系磁石合金の粉末を磁場中において圧縮加工によって
リング状に成形する。このとき、1回の圧縮で成形する
成形体の長さ(軸方向長さ)は最終目標長さよりも短く
し、これにさらに磁石合金粉末を追加し、この追加部分
に対して磁場中成形する。前記工程を繰返して行うこと
により、積層して一体化し、最終目標長さを有し、かつ
ラジアル方向に配向したリング成形体を得る。
BEST MODE FOR CARRYING OUT THE INVENTION In the first embodiment of the radial anisotropic ring magnet of the present invention, a rare earth element-Fe-B based magnet alloy is used as the rare earth element based magnet alloy. As the rare earth element, Nd is mainly contained, and other rare earth elements may be contained in 90% or less by mass%. The rare earth element-based magnet alloy powder is compressed into a ring shape in a magnetic field. At this time, the length (axial length) of the molded body molded by one compression is made shorter than the final target length, magnet alloy powder is further added to this, and this additional portion is molded in a magnetic field. . By repeating the above steps, a ring molded body having a final target length and being oriented in the radial direction is obtained by laminating and integrating.

【0007】本発明のラジアル異方性リング磁石の第2
の実施形態としては、希土類元素系磁石合金としてNd
−Fe−B系磁石合金またはSm−Co系磁石合金を用
いる。該磁石合金の粉末に熱硬化性樹脂を加えた磁石粉
−樹脂混合物を磁場中において圧縮加工によってリング
状に成形する。このとき、前記同様に、1回の圧縮で成
形する成形体の長さ(軸方向長さ)は最終目標長さより
も短くし、これにさらに磁石粉−樹脂混合物を追加し、
この追加部分に対して磁場中成形する。前記工程を繰返
して行うことにより、積層して一体化し、最終目標長さ
を有し、かつラジアル方向に配向したリング成形体を得
る。
Second aspect of the radial anisotropic ring magnet of the present invention
In one embodiment, the rare earth element-based magnet alloy is Nd.
A -Fe-B system magnet alloy or a Sm-Co system magnet alloy is used. A magnet powder-resin mixture obtained by adding a thermosetting resin to the magnet alloy powder is molded into a ring shape by compression processing in a magnetic field. At this time, similarly to the above, the length (axial length) of the molded body to be molded by one compression is shorter than the final target length, and a magnet powder-resin mixture is further added thereto,
The additional portion is molded in a magnetic field. By repeating the above steps, a ring molded body having a final target length and being oriented in the radial direction is obtained by laminating and integrating.

【0008】前記第1および第2の実施形態において、
1回の圧縮で成形する成形体の長さが小さいほど磁場中
成形におけるラジアル配向の効果が顕著となるので、1
回の圧縮で成形する成形体の長さは小さいことが好まし
い。1回の圧縮で成形する成形体の長さは、該成形体の
外径の2分の1以下とするのが好ましい。
In the first and second embodiments,
Since the effect of radial orientation in the magnetic field molding becomes more remarkable as the length of the molded body molded by one compression becomes smaller, 1
It is preferable that the length of the molded body that is molded by one compression is small. The length of the molded body molded by one compression is preferably ½ or less of the outer diameter of the molded body.

【0009】[0009]

【実施例】【Example】

(実験1)Nd:32質量%、Dy:1質量%、B:
1.1質量%、残部Feからなる磁石合金塊をアルゴン
雰囲気下で粉砕して平均粒径3μmの粉末とした。この
磁石合金粉末を以下の方法によって磁場中成形した。
(Experiment 1) Nd: 32% by mass, Dy: 1% by mass, B:
A magnet alloy ingot consisting of 1.1 mass% and the balance Fe was pulverized in an argon atmosphere to obtain a powder having an average particle size of 3 μm. This magnet alloy powder was molded in a magnetic field by the following method.

【0010】磁場中成形は、非磁性材料で作った上非磁
性ダイ11、下非磁性ダイ13および強磁性材料で作
り、かつ上非磁性ダイ11と下非磁性ダイ13との間に
配置した強磁性ダイ12とからなるダイ10を用いて行
った。ダイ10には上非磁性ダイ11、強磁性ダイ1
2、下非磁性ダイ13を貫通する貫通孔14を備える。
上パンチ21および下パンチ22は、それぞれ中心部に
コア孔23を有する円筒で、貫通孔14に滑動可能に嵌
合する。コア30はコア孔23に滑動可能に嵌合する強
磁性材料からなる棒状体である。ダイ10を挟んで、上
非磁性ダイ11に隣接して上磁場コイル41を、下非磁
性ダイ13に隣接して下磁場コイル42をそれぞれ配置
する。
The magnetic field molding is performed using an upper non-magnetic die 11, a lower non-magnetic die 13 and a ferromagnetic material made of a non-magnetic material, and arranged between the upper non-magnetic die 11 and the lower non-magnetic die 13. It was performed using the die 10 including the ferromagnetic die 12. The die 10 includes an upper non-magnetic die 11 and a ferromagnetic die 1.
2. Provided with a through hole 14 penetrating the lower non-magnetic die 13.
Each of the upper punch 21 and the lower punch 22 is a cylinder having a core hole 23 in the center thereof, and is slidably fitted in the through hole 14. The core 30 is a rod-shaped body made of a ferromagnetic material that is slidably fitted in the core hole 23. An upper magnetic field coil 41 is arranged adjacent to the upper non-magnetic die 11 and a lower magnetic field coil 42 is arranged adjacent to the lower non-magnetic die 13 with the die 10 interposed therebetween.

【0011】まず、下パンチ22を、貫通孔14に挿入
して強磁性ダイ12の下縁に位置せしめる。コア30
を、コア孔23に挿入してその上端を非磁性ダイ11の
上縁に位置せしめる。このようにして強磁性ダイ12、
コア30および下パンチ22によって形成したキャビテ
ィに磁石合金粉末1を充填する。ついで、上磁場コイル
41と下磁場コイル42に逆方向の電流を流して対向す
る面が同極となるように磁場を形成しつつ、貫通孔14
とコア30に嵌合して上パンチ21を挿入し、上パンチ
21によって前記キャビティ内に充填した磁石合金粉末
1を加圧・固化して第1層成形体2を形成する。
First, the lower punch 22 is inserted into the through hole 14 and positioned at the lower edge of the ferromagnetic die 12. Core 30
Is inserted into the core hole 23 and its upper end is positioned at the upper edge of the non-magnetic die 11. In this way the ferromagnetic die 12,
The magnet alloy powder 1 is filled in the cavity formed by the core 30 and the lower punch 22. Then, currents in opposite directions are applied to the upper magnetic field coil 41 and the lower magnetic field coil 42 to form a magnetic field so that the surfaces facing each other have the same pole, and the through hole 14
Then, the upper punch 21 is fitted into the core 30 and the upper punch 21 is inserted. The upper punch 21 presses and solidifies the magnet alloy powder 1 filled in the cavity to form the first layer compact 2.

【0012】次に、下パンチ22を引下げるとともに上
パンチ21を押込むことにより、第1層成形体2の上縁
を下非磁性ダイ13の上縁に位置せしめる。この状態で
上パンチ21を貫通孔14の外まで引上げ、強磁性ダイ
12、コア30および第1層成形体2の上面によって形
成されるキャビティに第2層成形体を形成するための磁
石合金粉末3を充填し、前記同様に上パンチ21を下降
して磁石合金粉末3を加圧・固化し、第2層成形体を形
成する。この加圧によって第2層成形体は第1層成形体
2に圧接されて、第1層成形体2と第2層成形体とは一
体化する。以下同様にして積層・成形することにより所
定の長さのリング磁石成形体とした。
Next, the lower punch 22 is pulled down and the upper punch 21 is pushed in, so that the upper edge of the first layer compact 2 is positioned at the upper edge of the lower non-magnetic die 13. In this state, the upper punch 21 is pulled up to the outside of the through hole 14, and the magnet alloy powder for forming the second layer molded body in the cavity formed by the ferromagnetic die 12, the core 30 and the upper surface of the first layer molded body 2. 3 is filled and the upper punch 21 is descended in the same manner as described above to pressurize and solidify the magnet alloy powder 3 to form a second layer compact. By this pressure, the second layer molded body is pressed against the first layer molded body 2 and the first layer molded body 2 and the second layer molded body are integrated. Thereafter, by laminating and molding in the same manner, a ring magnet molded body having a predetermined length was obtained.

【0013】前記リング磁石成形体をアルゴン雰囲気中
1100℃で焼結し、さらに600℃で熱処理を行っ
て、外径26mm×内径20mm×長さ39mmのラジ
アル異方性リング磁石を作った。その磁気特性の測定結
果を表1に示す。
The ring magnet compact was sintered at 1100 ° C. in an argon atmosphere and further heat-treated at 600 ° C. to produce a radial anisotropic ring magnet having an outer diameter of 26 mm × an inner diameter of 20 mm × a length of 39 mm. Table 1 shows the measurement results of the magnetic properties.

【0014】[0014]

【表1】 [Table 1]

【0015】(実験2)Sm:24質量%、Ce:1.
5質量%、Fe:15質量%、Cu:4.5質量%、Z
r:2.5質量%、残Coからなる磁石合金塊に115
0℃×2Hrの溶体化処理を行った後、800℃×2H
r−750℃×5Hr−550℃×10Hrの熱処理を
行った。これを粉砕して平均粒径10μmの磁石合金粉
末とした。該磁石合金粉末に熱硬化型エポキシ樹脂を2
質量%加えて混合した。かくして得た磁石合金粉末−熱
硬化型エポキシ樹脂混合物を、実験1と同様な方法で磁
場中成形して外径24mm×内径18mm×長さ24m
mの成形体とし、さらに、150℃×1Hrの硬化処理
を行ってボンド磁石よりなるラジアル異方性リング磁石
とした。その磁気特性測定結果を表2に示す。
(Experiment 2) Sm: 24% by mass, Ce: 1.
5% by mass, Fe: 15% by mass, Cu: 4.5% by mass, Z
r: 2.5% by mass, 115 in the magnetic alloy ingot consisting of residual Co
After solution heat treatment at 0 ° C x 2Hr, 800 ° C x 2H
A heat treatment of r-750 ° C. × 5 Hr-550 ° C. × 10 Hr was performed. This was pulverized to obtain a magnet alloy powder having an average particle size of 10 μm. Thermosetting epoxy resin is added to the magnet alloy powder 2
Mass% was added and mixed. The magnet alloy powder-thermosetting epoxy resin mixture thus obtained was molded in a magnetic field in the same manner as in Experiment 1, and the outer diameter was 24 mm, the inner diameter was 18 mm, and the length was 24 m.
The molded body of m was further cured at 150 ° C. for 1 hour to obtain a radial anisotropic ring magnet made of a bonded magnet. Table 2 shows the magnetic property measurement results.

【0016】[0016]

【表2】 [Table 2]

【0017】表1、表2から、1回当りの成形高さを磁
石外径の2分の1以下に小さくすることにより、長尺で
あっても最大エネルギー積の値が大きい磁石が得られる
ことが判る。
From Tables 1 and 2, a magnet having a large maximum energy product can be obtained even if it is long, by reducing the molding height per operation to less than half the outer diameter of the magnet. I understand.

【0018】[0018]

【発明の効果】以上に説明したように本発明によれば、
長尺で、かつ最大エネルギー積が高いラジアル異方性リ
ング磁石を製造する方法を提供することができる。これ
によって、磁石の性能の向上、および磁石の組みつけ作
業工数の低減が図れる。
According to the present invention as described above,
It is possible to provide a method of manufacturing a radial anisotropic ring magnet that is long and has a high maximum energy product. As a result, the performance of the magnet can be improved and the man-hours for assembling the magnet can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す説明図である。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【図2】本発明の実施例において、第1層を形成する状
態を示す説明図である。
FIG. 2 is an explanatory diagram showing a state in which a first layer is formed in the example of the present invention.

【符号の説明】[Explanation of symbols]

1 磁石合金粉末 2 第1層成形体 3 磁石合金粉末 10 ダイ 11 上非磁性ダイ 12 強磁性ダイ 13 下非磁性ダイ 14 貫通孔 21 上パンチ 22 下パンチ 23 コア孔 30 コア 41 上磁場コイル 42 下磁場コイル 1 magnet alloy powder 2 1st layer compact 3 magnet alloy powder 10 die 11 upper non-magnetic die 12 ferromagnetic die 13 lower non-magnetic die 14 through hole 21 upper punch 22 lower punch 23 core hole 30 core 41 upper magnetic field coil 42 lower Magnetic field coil

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 希土類系磁石合金よりなるラジアル異方
性リング磁石の製造において、前記磁石合金の粉末を磁
場中成形する際、軸方向に分割して順次積層して成形す
ることによって一体化し、長尺のリング磁石成形体を形
成することを特徴とする長尺ラジアル異方性リング磁石
の製造方法。
1. In the manufacture of a radial anisotropic ring magnet made of a rare earth magnet alloy, when the powder of the magnet alloy is molded in a magnetic field, it is integrally formed by axially dividing and sequentially laminating and molding. A method for producing a long radial anisotropic ring magnet, which comprises forming a long ring magnet molded body.
【請求項2】 希土類元素系磁石合金および熱硬化性樹
脂よりなるラジアル異方性リング磁石の製造において、
前記磁石合金の粉末を磁場中成形する際、軸方向に分割
して順次積層して成形することによって一体化し、長尺
のリング磁石成形体を形成することを特徴とする長尺ラ
ジアル異方性リング磁石の製造方法。
2. In the manufacture of a radial anisotropic ring magnet made of a rare earth element magnet alloy and a thermosetting resin,
When the powder of the magnet alloy is molded in a magnetic field, it is divided in the axial direction and sequentially laminated and molded to be integrated to form a long ring magnet compact, which is a long radial anisotropy. Ring magnet manufacturing method.
【請求項3】 請求項1および請求項2記載の長尺ラジ
アル異方性リング磁石の製造方法において、軸方向に分
割して成形する際の1層の高さを、成形する磁石の外径
の2分の1以下とすることを特徴とする長尺ラジアル異
方性リング磁石の製造方法。
3. The method for manufacturing a long radial anisotropic ring magnet according to claim 1, wherein the height of one layer when axially divided and molded is the outer diameter of the magnet to be molded. ½ or less of the above method for producing a long radial anisotropic ring magnet.
JP03188496A 1996-02-20 1996-02-20 Manufacturing method of long radial anisotropic ring magnet Expired - Fee Related JP3651098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03188496A JP3651098B2 (en) 1996-02-20 1996-02-20 Manufacturing method of long radial anisotropic ring magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03188496A JP3651098B2 (en) 1996-02-20 1996-02-20 Manufacturing method of long radial anisotropic ring magnet

Publications (2)

Publication Number Publication Date
JPH09233776A true JPH09233776A (en) 1997-09-05
JP3651098B2 JP3651098B2 (en) 2005-05-25

Family

ID=12343472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03188496A Expired - Fee Related JP3651098B2 (en) 1996-02-20 1996-02-20 Manufacturing method of long radial anisotropic ring magnet

Country Status (1)

Country Link
JP (1) JP3651098B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432158B1 (en) 1999-10-25 2002-08-13 Sumitomo Special Metals Co., Ltd. Method and apparatus for producing compact of rare earth alloy powder and rare earth magnet
JP2003347143A (en) * 1999-10-25 2003-12-05 Sumitomo Special Metals Co Ltd Rare-earth magnet
US7551051B2 (en) 2003-02-27 2009-06-23 Mitsubishi Denki Kabushiki Kaisha Ring magnet and method of manufacturing the magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432158B1 (en) 1999-10-25 2002-08-13 Sumitomo Special Metals Co., Ltd. Method and apparatus for producing compact of rare earth alloy powder and rare earth magnet
JP2003347143A (en) * 1999-10-25 2003-12-05 Sumitomo Special Metals Co Ltd Rare-earth magnet
US6756010B2 (en) 1999-10-25 2004-06-29 Sumitomo Special Metals Co., Ltd. Method and apparatus for producing compact of rare earth alloy powder and rare earth magnet
US7551051B2 (en) 2003-02-27 2009-06-23 Mitsubishi Denki Kabushiki Kaisha Ring magnet and method of manufacturing the magnet

Also Published As

Publication number Publication date
JP3651098B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
JP4650643B2 (en) Manufacturing method of radial anisotropic ring magnet
EP1830451A1 (en) Rotor for motor and method for producing the same
JP4438967B2 (en) Manufacturing method of radial anisotropic magnet
JP4900775B2 (en) Rotor for motor and manufacturing method thereof
JP2007180368A (en) Method for manufacturing magnetic circuit part
US7524453B2 (en) Apparatus for manufacturing ring-shaped powder compact and method of manufacturing sintered ring magnet
JP4816146B2 (en) Sheet-like rare earth bonded magnet, method of manufacturing the same, and motor using the same
JP2756471B2 (en) Method for manufacturing radially oriented magnet and radially oriented magnet
JP3060104B2 (en) Radially-oriented magnetic anisotropic resin-bonded magnet and method for producing the same
JP4133686B2 (en) Radial anisotropic ring magnet and manufacturing method thereof
JP2911017B2 (en) Manufacturing method of radial anisotropic rare earth sintered magnet
JP3651098B2 (en) Manufacturing method of long radial anisotropic ring magnet
JP2004296873A (en) Anisotropic rare earth bonded magnet, compression molding equipment in magnetic field, and motor
JP4300525B2 (en) Magnetic pole face spherical bonded magnet and manufacturing method thereof
JP2015104243A (en) Manufacturing method for permanent magnet built-in type rotor
JP3538762B2 (en) Method for producing anisotropic bonded magnet and anisotropic bonded magnet
JPS63110605A (en) Method and apparatus for manufacturing magnet
JPH0559572B2 (en)
JPH0628215B2 (en) Manufacturing method of radial oriented magnet
JP2001185412A (en) Anisotropic bonded magnet
JP2000012359A (en) Magnet and its manufacture
JP3151604B2 (en) Method for producing radial anisotropic bonded magnet and bonded magnet
JP3051906B2 (en) Rare earth magnet
JP2763259B2 (en) Manufacturing method of radial anisotropic rare earth magnet
JPH03235311A (en) Manufacture of anisotropic plastic magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041122

A131 Notification of reasons for refusal

Effective date: 20041125

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050201

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20050214

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090304

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees