US20040052671A1 - Composite structural body, method of manufacturing the structural body, and motor - Google Patents

Composite structural body, method of manufacturing the structural body, and motor Download PDF

Info

Publication number
US20040052671A1
US20040052671A1 US10/297,739 US29773903A US2004052671A1 US 20040052671 A1 US20040052671 A1 US 20040052671A1 US 29773903 A US29773903 A US 29773903A US 2004052671 A1 US2004052671 A1 US 2004052671A1
Authority
US
United States
Prior art keywords
powder
metal container
pressure
container
composite structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/297,739
Inventor
Hiroyuki Okuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Assigned to SUMITOMO SPECIAL METALS CO., LTD. reassignment SUMITOMO SPECIAL METALS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OKUDA, HIROYUKI
Publication of US20040052671A1 publication Critical patent/US20040052671A1/en
Assigned to NEOMAX CO., LTD. reassignment NEOMAX CO., LTD. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SUMITOMO SPECIAL METALS CO., LTD.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/1208Containers or coating used therefor
    • B22F3/1258Container manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component

Definitions

  • the present invention relates to a structure in which, for example, a yoke or a support member and a magnet are integrated, and more particularly to a composite structure using a magnetic material, to a method for the manufacture thereof, and to a motor.
  • a magnet and a yoke or a magnet and a part fixing such are assembled as a rotor or a stator.
  • Fixing a magnet and a yoke in an assembly with such a complex structure has mainly been conducted by using an adhesive, which created problems in terms of reliability, for example, strength and heat resistance. Because IPM structures also use an adhesive and a resin, high strength and heat resistance cannot be obtained.
  • a magnetic material for example, the above-mentioned rotor, stator, IPM structure, and the like
  • the inventors have conducted a comprehensive study of treatment conditions and structures of containers with the object of finding a configuration such that a metal container is not deformed during hot isostatic pressing.
  • Deformation of the part with a low resistance to pressure reduces deformation of the part with a high resistance to pressure, that is, a preset high-strength part which requires precision and shape characteristic, thereby making it possible to form integrally, with good tightness, the metal container and the powder placed inside thereof.
  • the present invention provides a composite structure comprising a metal container having a high-strength part with a high resistance to deformation under a required pressure and a low-strength part which can be deformed and a powder formed body integrated with the container by filling the container with the powder, sealing the container, and conducting hot isostatic pressing.
  • the present invention also provides the following composite structures of the above-described configuration:
  • a composite structure in which the magnetic powder is at least one from among a Nd—Fe—B magnet powder, a Sm—Co magnet powder, a Pr—Fe—B magnet powder, an exchange-spring magnet powder, an Alnico magnet powder, and a ferrite magnet powder.
  • the present invention also relates to a method for the manufacture of a composite structure, comprising the steps of:
  • the present invention also provides the following methods for the manufacture of a composite structure, these methods having the above-described configuration:
  • FIG. 1 is an explanatory view of a metal container illustrating the process in accordance with the present invention, in which FIG. 1A is a longitudinal sectional view prior to hot isostatic pressing, FIG. 1B is a longitudinal sectional view after hot isostatic pressing, and FIG. 1C is a perspective view illustrating the product subjected to slicing;
  • FIG. 2 is a lateral sectional view of the rotor in accordance with the present invention.
  • FIG. 3A is a graph illustrating the relationship between the treatment temperature and powder density in the embodiment of the present invention
  • FIG. 3B is a graph illustrating the relationship between the treatment temperature and magnetic properties
  • FIG. 4A is a graph illustrating the relationship between the treatment pressure and powder density in the embodiment of the present invention
  • FIG. 4B is a graph illustrating the relationship between the treatment pressure and magnetic properties.
  • a specific feature of the present invention is that a metal container is provided with a part having a high resistance and a part having a low resistance to pressure of hot isostatic pressing. Deformation of the part with a low resistance to pressure in the prescribed high-temperature and high-pressure atmosphere reduces deformation of the part with a high resistance to pressure, thereby making it possible to form integrally, with good tightness, the metal container and the powder.
  • FIG. 1 is a cross-sectional explanatory view of a metal container illustrating the process in accordance with the present invention.
  • a metal container 1 shown in FIG. 1A has a configuration in which disk-like lids 3 , 4 are provided on the upper and lower ends of a cylindrical container body 2 , thereby sealing the powder placed inside the body 2 .
  • the disk-like lids 3 , 4 are constructed so that they can be deformed by the required pressure during hot isostatic pressing, and the container body 2 is constructed so as to withstand the pressure.
  • the container body 2 brought in contact with the lower disk-like lid 3 is filled with the powder 5 , then the upper disk-like lid 4 is placed, and the inside of metal container 1 is evacuated, followed by sealing, as shown in FIG. 1A.
  • the metal container 1 is then placed in a hot isostatic pressing apparatus and the temperature and pressure are raised by using a gas as a pressure medium, then the parts of metal container 1 , which has a low resistance to pressure, that is, disk-like lids 3 , 4 , will be deformed squashed by the gas pressure. As a result, the powder will be compressed inside the part of metal container 1 , which has a high resistance to pressure, that is, the container body 2 , and if the temperature is further raised, sintering of the sample powder will proceed and, at the same time, the metal container 1 and sample powder will be formed integrally and will assume a state shown in FIG. 1B.
  • FIG. 1C a composite structure 6 shown in FIG. 1C in which the cylindrical metal material is integrally formed with the powder located inside thereof is formed by slicing the upper and lower portions of the integrally formed metal container 1 shown in FIG. 1B.
  • a different metal such as aluminum or copper can be used for the disk-like lids 3 , 4 to form a part that can be deformed under the required pressure.
  • the same metal material it is possible to cause the deformation only of the required part by the pressure if the thickness of disk-like lids 3 , 4 is made less than that of container body 2 .
  • yokes and magnets of a variety of complex shapes can be formed integrally by the above-described mechanism which is realized during hot isostatic pressing and, for example, a IPM rotor shown in FIG. 2 relating to the embodiment can be manufactured.
  • materials with a high magnetic permeability such as iron and permalloy, which are used, for example, for yokes, can be employed for the metal container.
  • a variety of powders for example, a Nd—Fe—B magnet powder, a Sm—Co magnet powder, a Pr—Fe—B magnet powder, an exchange-spring magnet powder, an Alnico magnet powder, and a ferrite magnet powder can be used as the powder placed in the metal container.
  • heat generation due to eddy current can be avoided by introducing a nonmagnetic powder with a high electric resistance, such as SiO2, A 1 2O3, and the like, in the above-described filling powder.
  • a nonmagnetic powder with a high electric resistance such as SiO2, A 1 2O3, and the like
  • those powders have a small average particle size.
  • the particle size is preferably no more than 100 m, more preferably no more than 1 m.
  • a material with a melting point different from that of the powder for example, a low-melting glass such as borosilicate glass and the like and a low-melting metal such as Zn, Pb, Sn, and the like can be added, thereby making it possible to decrease temperature and pressure of hot isostatic pressing. As a result, deformation of the metal container and modification of the inserted powder can be prevented.
  • any method and apparatus for hot isostatic pressing which have the conventional configuration can be used in accordance with the present invention, and specific method and apparatus can be appropriately selected according to the selected type of container and powder or shape and application of the product.
  • the treatment conditions can be appropriately selected according to shape or application of the product, but raising the temperature and pressure in excess is undesirable from the standpoint of productivity, and it is preferred that the temperature be 600 ⁇ 900° C. and the pressure be 10 ⁇ 100 MPa. Further, when improvement of magnetic properties is given top priority, the temperature is preferably 500 ⁇ 900° C. and the pressure is preferably 10 ⁇ 100 MPa.
  • a cylindrical container obtained by joining a SUS304 tube and a copper disk was used as a metal container, a Ne—Fe—B magnet powder (average particle size no more than 200 m) was used as a filling powder, and the powder was vacuum sealed in the metal container under 8 Pa.
  • Hot isostatic pressing was conducted in a hot isostatic pressing apparatus with argon gas as a pressure medium under a variety of conditions with a temperature of 300 ⁇ 1000° C. and a pressure of 1 ⁇ 200 MPa.
  • Hot isostatic pressing was conducted by changing the temperature from 300° C. to 1000° C. at a constant pressure of 50 MPa.
  • the relationship between the treatment temperature during forming and the density of the obtained powder compact is shown in FIG. 3A.
  • FIG. 3A clearly demonstrates that the density increases as the treatment temperature rises, but the difference is small at a temperature of 700° C. or higher.
  • FIG. 3B The relationship between the treatment temperature and magnetic properties (residual magnetic flux density, coercive force) of the obtained powder compact during hot isostatic pressing similarly conducted by changing the temperature from 300° C. to 1000° C. at a constant pressure of 50 MPa is shown in FIG. 3B.
  • FIG. 3B clearly demonstrates that the residual magnetic flux density increases as the treatment temperature rises, but the difference is small at a temperature of no less than 700° C. Further, the coercive force decreases as the temperature rises, but the decrease is small at a temperature below 700° C.
  • Hot isostatic pressing was then conducted by changing the pressure from 1 MPa to 200 MPa at a constant temperature of 700° C.
  • the relationship between the treatment pressure during forming and the density of the obtained powder compact is shown in FIG. 4A.
  • FIG. 4A clearly demonstrates that the density increases as the treatment pressure rises, but the difference is small at a pressure of no less than 50 MPa. From the standpoint of productivity, the unnecessary increase of temperature and pressure is undesirable.
  • FIG. 4B The relationship between the treatment pressure and magnetic properties (residual magnetic flux density, coercive force) of the obtained powder compact during hot isostatic pressing similarly conducted by changing the pressure from 1 MPa to 200 MPa at a constant temperature of 700° C. is shown in FIG. 4B.
  • FIG. 4B clearly demonstrates that the residual magnetic flux density increases as the treatment pressure rises, but the difference is small at a pressure of 50 MPa or greater. Further, the coercive force practically does not change as the pressure changes. Therefore, when magnetic properties are given top priority, the temperature is preferably 500 ⁇ 900° C. and the pressure is preferably 10 ⁇ 100 MPa.
  • a metal container was formed by using a cylindrical iron material, arranging rectangular through holes in the axial direction to obtain a rotor, as shown in FIG. 2, vacuum filling the rectangular holes with a Ne—Fe—B magnet powder (average particle size no more than 200 m), and using copper plates as lids on both ends.
  • Hot isostatic pressing was conducted in a hot isostatic pressing apparatus with argon gas as a pressure medium under conditions of a temperature of 800° C. and a pressure of 100 MPa.
  • the rotor obtained was found to demonstrate no deformations even at a temperature of 300° C. When used in a motor, the rotor was found to demonstrate excellent heat resistance and strength.
  • a high-strength part made of a material or having a thickness such that it is difficult to deform under a pressure during hot isostatic pressing and a low-strength part which is easier to deform than the hard-strength part are set in a metal container. Therefore, a portion with a low resistance to pressure is deformed during the aforesaid treatment, thereby making it possible to reduce the deformation of the high-strength portion and to form integrally, with good tightness, the metal container and the powder.
  • the present invention can provide a magnet element with a strength, heat resistance, and complex structure superior to those of the conventional composite structures. Another advantage is that because the metal container is not deformed, processing after forming is facilitated and productivity is greatly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

A composite structural body, comprising a rotor, a stator, and magnetic materials such as of magnet-buried type capable of providing excellent strength and thermal resistance and preventing a metal container from being deformed by a hot hydrostatic forming, wherein a specified part is formed of a material and formed with a thickness difficult to be deformed by a pressure at the time of hot hydrostatic forming so as to form a highly strong part and formed of a material and formed with a thickness easy to be deformed by the pressure so as to set a low strength part, and powder is put in the metal container, and the container is sealed and put in a high temperature and high pressure atmosphere, whereby, because the part weak against the pressure is deformed, the deformation of the part strong against the pressure, i.e., the preset highly strong part requiring a specified accuracy and shape is reduced, the metal container and the powder filled therein are fitted to each other and formed integrally with each other, and a magnetic structural body durable, heat resistant, and complicated more than a conventional structure can be provided and, because the metal container is not deformed, the working after forming is facilitated and the productivity is improved tremendously.

Description

    TECHNICAL FIELD
  • The present invention relates to a structure in which, for example, a yoke or a support member and a magnet are integrated, and more particularly to a composite structure using a magnetic material, to a method for the manufacture thereof, and to a motor. [0001]
  • BACKGROUND ART
  • In motors using magnets, a magnet and a yoke or a magnet and a part fixing such are assembled as a rotor or a stator. [0002]
  • Further, using a magnet and a yoke in a motor allows for more effective utilization of magnetism, and yokes of complex shape, such as IPM (Interior Parmanent Magnet) rotors have recently been suggested to increase further the energy efficiency of motors. [0003]
  • In IPM rotors, a method for opening a gap for placing a magnet into a yoke and inserting and adhesively securing the magnet therein, and a method for inserting a flowable mixture of a magnet powder and a resin and curing it thereafter (Japanese patent Application Laid-open H11-215746) have been studied, the latter method being adapted for more complex shapes. [0004]
  • Further, a method for obtaining an integrated joint structure by inserting a sintered magnet or the like into a metal container and conducting hot isostatic pressing has been suggested (WO98/31497) as a method for obtaining a high strength of the structure itself. [0005]
  • Fixing a magnet and a yoke in an assembly with such a complex structure has mainly been conducted by using an adhesive, which created problems in terms of reliability, for example, strength and heat resistance. Because IPM structures also use an adhesive and a resin, high strength and heat resistance cannot be obtained. [0006]
  • Further, the following problems are associated with the above-mentioned hot isostatic pressing. Because a sintered magnet is inserted into a metal container, a complex shape cannot be obtained, or if a magnet is inserted into a metal container, a gap is formed. As a result, when the gap is eliminated by hot isostatic pressing, the metal container can be deformed. [0007]
  • DISCLOSURE OF THE INVENTION
  • It is an object of the present invention to obtain a composite structure using a magnetic material, for example, the above-mentioned rotor, stator, IPM structure, and the like, and to provide a composite structure making it possible to obtain excellent strength and heat resistance and having a configuration such that a metal container is not deformed during hot isostatic pressing, a method for the manufacture of such a structure, and a motor. [0008]
  • The inventors have conducted a comprehensive study of treatment conditions and structures of containers with the object of finding a configuration such that a metal container is not deformed during hot isostatic pressing. The results obtained demonstrated that this object can be attained by employing a high-strength part made of a material or having a thickness such that it is difficult to deform under a pressure during hot isostatic pressing as a required part and setting a low-strength part made of a material or having a thickness such that it is easy to deform under the pressure when the metal container is constructed, introducing and sealing a powder in the metal container, and placing the container in the prescribed high-temperature and high-pressure atmosphere. Deformation of the part with a low resistance to pressure reduces deformation of the part with a high resistance to pressure, that is, a preset high-strength part which requires precision and shape characteristic, thereby making it possible to form integrally, with good tightness, the metal container and the powder placed inside thereof. This finding laid the foundation for the present invention. [0009]
  • Thus, the present invention provides a composite structure comprising a metal container having a high-strength part with a high resistance to deformation under a required pressure and a low-strength part which can be deformed and a powder formed body integrated with the container by filling the container with the powder, sealing the container, and conducting hot isostatic pressing. [0010]
  • Further, the present invention also provides the following composite structures of the above-described configuration: [0011]
  • a composite structure in which the high-strength part and low-strength part of the metal container are composed of different materials or of the same material, but with different thickness; [0012]
  • a composite structure in which the powder is a magnetic powder or a magnetic powder containing a non-magnetic powder added thereto; [0013]
  • a composite structure in which the powder comprises a powder with a different melting point added thereto; and [0014]
  • a composite structure in which the magnetic powder is at least one from among a Nd—Fe—B magnet powder, a Sm—Co magnet powder, a Pr—Fe—B magnet powder, an exchange-spring magnet powder, an Alnico magnet powder, and a ferrite magnet powder. [0015]
  • The present invention also relates to a method for the manufacture of a composite structure, comprising the steps of: [0016]
  • filling a metal container having a high-strength part with a high resistance to deformation under a required pressure and a low-strength part which can be deformed with a powder and sealing the container, integrally forming the metal container and the powder by hot isostatic pressing, and optionally further processing, for example, removing a required part from the integrally formed product by mechanical processing such as slicing. [0017]
  • Further, the present invention also provides the following methods for the manufacture of a composite structure, these methods having the above-described configuration: [0018]
  • a manufacturing method in which the high-strength part and low-strength part of the metal container are composed of different materials or of the same material, but with different thickness; and [0019]
  • a manufacturing method in which the hot isostatic pressing is conducted under the conditions of temperature of no lower than 600° C. and no higher than 1000° C. and pressure of 1˜200 MPa. [0020]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an explanatory view of a metal container illustrating the process in accordance with the present invention, in which FIG. 1A is a longitudinal sectional view prior to hot isostatic pressing, FIG. 1B is a longitudinal sectional view after hot isostatic pressing, and FIG. 1C is a perspective view illustrating the product subjected to slicing; [0021]
  • FIG. 2 is a lateral sectional view of the rotor in accordance with the present invention; [0022]
  • FIG. 3A is a graph illustrating the relationship between the treatment temperature and powder density in the embodiment of the present invention, and FIG. 3B is a graph illustrating the relationship between the treatment temperature and magnetic properties; and [0023]
  • FIG. 4A is a graph illustrating the relationship between the treatment pressure and powder density in the embodiment of the present invention, and FIG. 4B is a graph illustrating the relationship between the treatment pressure and magnetic properties. [0024]
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • A specific feature of the present invention is that a metal container is provided with a part having a high resistance and a part having a low resistance to pressure of hot isostatic pressing. Deformation of the part with a low resistance to pressure in the prescribed high-temperature and high-pressure atmosphere reduces deformation of the part with a high resistance to pressure, thereby making it possible to form integrally, with good tightness, the metal container and the powder. [0025]
  • FIG. 1 is a cross-sectional explanatory view of a metal container illustrating the process in accordance with the present invention. A [0026] metal container 1 shown in FIG. 1A has a configuration in which disk- like lids 3, 4 are provided on the upper and lower ends of a cylindrical container body 2, thereby sealing the powder placed inside the body 2. The disk- like lids 3, 4 are constructed so that they can be deformed by the required pressure during hot isostatic pressing, and the container body 2 is constructed so as to withstand the pressure.
  • For example, the [0027] container body 2 brought in contact with the lower disk-like lid 3 is filled with the powder 5, then the upper disk-like lid 4 is placed, and the inside of metal container 1 is evacuated, followed by sealing, as shown in FIG. 1A.
  • If the [0028] metal container 1 is then placed in a hot isostatic pressing apparatus and the temperature and pressure are raised by using a gas as a pressure medium, then the parts of metal container 1, which has a low resistance to pressure, that is, disk- like lids 3, 4, will be deformed squashed by the gas pressure. As a result, the powder will be compressed inside the part of metal container 1, which has a high resistance to pressure, that is, the container body 2, and if the temperature is further raised, sintering of the sample powder will proceed and, at the same time, the metal container 1 and sample powder will be formed integrally and will assume a state shown in FIG. 1B.
  • Then, a composite structure [0029] 6 shown in FIG. 1C in which the cylindrical metal material is integrally formed with the powder located inside thereof is formed by slicing the upper and lower portions of the integrally formed metal container 1 shown in FIG. 1B.
  • For example, when iron is employed for the [0030] container body 2, a different metal such as aluminum or copper can be used for the disk- like lids 3, 4 to form a part that can be deformed under the required pressure. Furthermore, when the same metal material is used, it is possible to cause the deformation only of the required part by the pressure if the thickness of disk- like lids 3, 4 is made less than that of container body 2.
  • In accordance with the present invention, yokes and magnets of a variety of complex shapes can be formed integrally by the above-described mechanism which is realized during hot isostatic pressing and, for example, a IPM rotor shown in FIG. 2 relating to the embodiment can be manufactured. [0031]
  • In accordance with the present invention, materials with a high magnetic permeability such as iron and permalloy, which are used, for example, for yokes, can be employed for the metal container. [0032]
  • When magnetic parts used in a motor or the like are fabricated, a variety of powders, for example, a Nd—Fe—B magnet powder, a Sm—Co magnet powder, a Pr—Fe—B magnet powder, an exchange-spring magnet powder, an Alnico magnet powder, and a ferrite magnet powder can be used as the powder placed in the metal container. [0033]
  • In addition to magnetic powders, a variety of metal alloys (Ti, Co, Cu, permalloy), ceramics (PZT, barium titanate), and the like can be used as the container and the powder inserted therein in order to obtain a combination of strength, thermal conductivity, corrosion resistance, and functionality. [0034]
  • Furthermore, heat generation due to eddy current can be avoided by introducing a nonmagnetic powder with a high electric resistance, such as SiO2, A[0035] 12O3, and the like, in the above-described filling powder. In order to improve dispersivity and increase electric resistance, it is preferred that those powders have a small average particle size. The particle size is preferably no more than 100 m, more preferably no more than 1 m.
  • Furthermore, in order to fix the powder and increase bonding strength with the container, a material with a melting point different from that of the powder, for example, a low-melting glass such as borosilicate glass and the like and a low-melting metal such as Zn, Pb, Sn, and the like can be added, thereby making it possible to decrease temperature and pressure of hot isostatic pressing. As a result, deformation of the metal container and modification of the inserted powder can be prevented. [0036]
  • Any method and apparatus for hot isostatic pressing which have the conventional configuration can be used in accordance with the present invention, and specific method and apparatus can be appropriately selected according to the selected type of container and powder or shape and application of the product. Furthermore, the treatment conditions can be appropriately selected according to shape or application of the product, but raising the temperature and pressure in excess is undesirable from the standpoint of productivity, and it is preferred that the temperature be 600˜900° C. and the pressure be 10˜100 MPa. Further, when improvement of magnetic properties is given top priority, the temperature is preferably 500˜900° C. and the pressure is preferably 10˜100 MPa. [0037]
  • Embodiments [0038]
  • [0039] Embodiment 1
  • A cylindrical container obtained by joining a SUS304 tube and a copper disk was used as a metal container, a Ne—Fe—B magnet powder (average particle size no more than 200 m) was used as a filling powder, and the powder was vacuum sealed in the metal container under 8 Pa. Hot isostatic pressing was conducted in a hot isostatic pressing apparatus with argon gas as a pressure medium under a variety of conditions with a temperature of 300˜1000° C. and a pressure of 1˜200 MPa. [0040]
  • Hot isostatic pressing was conducted by changing the temperature from 300° C. to 1000° C. at a constant pressure of 50 MPa. The relationship between the treatment temperature during forming and the density of the obtained powder compact is shown in FIG. 3A. FIG. 3A clearly demonstrates that the density increases as the treatment temperature rises, but the difference is small at a temperature of 700° C. or higher. [0041]
  • The relationship between the treatment temperature and magnetic properties (residual magnetic flux density, coercive force) of the obtained powder compact during hot isostatic pressing similarly conducted by changing the temperature from 300° C. to 1000° C. at a constant pressure of 50 MPa is shown in FIG. 3B. FIG. 3B clearly demonstrates that the residual magnetic flux density increases as the treatment temperature rises, but the difference is small at a temperature of no less than 700° C. Further, the coercive force decreases as the temperature rises, but the decrease is small at a temperature below 700° C. [0042]
  • Hot isostatic pressing was then conducted by changing the pressure from 1 MPa to 200 MPa at a constant temperature of 700° C. The relationship between the treatment pressure during forming and the density of the obtained powder compact is shown in FIG. 4A. FIG. 4A clearly demonstrates that the density increases as the treatment pressure rises, but the difference is small at a pressure of no less than 50 MPa. From the standpoint of productivity, the unnecessary increase of temperature and pressure is undesirable. [0043]
  • The relationship between the treatment pressure and magnetic properties (residual magnetic flux density, coercive force) of the obtained powder compact during hot isostatic pressing similarly conducted by changing the pressure from 1 MPa to 200 MPa at a constant temperature of 700° C. is shown in FIG. 4B. FIG. 4B clearly demonstrates that the residual magnetic flux density increases as the treatment pressure rises, but the difference is small at a pressure of 50 MPa or greater. Further, the coercive force practically does not change as the pressure changes. Therefore, when magnetic properties are given top priority, the temperature is preferably 500˜900° C. and the pressure is preferably 10˜100 MPa. [0044]
  • The circumference of the composite structure obtained under the above-described hot isostatic pressing conditions was measured and the presence of deformations was checked. Deformations of the circumference were found in none of the composite structures. [0045]
  • [0046] Embodiment 2
  • A metal container was formed by using a cylindrical iron material, arranging rectangular through holes in the axial direction to obtain a rotor, as shown in FIG. 2, vacuum filling the rectangular holes with a Ne—Fe—B magnet powder (average particle size no more than 200 m), and using copper plates as lids on both ends. Hot isostatic pressing was conducted in a hot isostatic pressing apparatus with argon gas as a pressure medium under conditions of a temperature of 800° C. and a pressure of 100 MPa. [0047]
  • The rotor obtained was found to demonstrate no deformations even at a temperature of 300° C. When used in a motor, the rotor was found to demonstrate excellent heat resistance and strength. [0048]
  • INDUSTRIAL APPLICABILITY
  • In accordance with the present invention, a high-strength part made of a material or having a thickness such that it is difficult to deform under a pressure during hot isostatic pressing and a low-strength part which is easier to deform than the hard-strength part are set in a metal container. Therefore, a portion with a low resistance to pressure is deformed during the aforesaid treatment, thereby making it possible to reduce the deformation of the high-strength portion and to form integrally, with good tightness, the metal container and the powder. [0049]
  • Therefore, the present invention can provide a magnet element with a strength, heat resistance, and complex structure superior to those of the conventional composite structures. Another advantage is that because the metal container is not deformed, processing after forming is facilitated and productivity is greatly improved. [0050]

Claims (10)

1. A composite structure comprising a metal container having a high-strength part with a high resistance to deformation and a low-strength part which can be deformed under a required pressure and a powder formed body integrated with said container by filling said container with the powder, sealing the container, and conducting hot isostatic pressing.
2. The composite structure according to claim 1, wherein the high-strength part and low-strength part of the metal container are composed of different materials or of the same material, but with different thickness.
3. The composite structure according to claim 1, wherein the powder is a magnetic powder or a magnetic powder containing a non-magnetic powder added thereto.
4. The composite structure according to claim 1, wherein the powder contains a powder with a different melting point added thereto.
5. The composite structure according to claim 3, wherein the magnetic powder is at least one from among a Nd—Fe—B magnet powder, a Sm—Co magnet powder, a Pr—Fe—B magnet powder, an exchange-spring magnet powder, an Alnico magnet powder, and a ferrite magnet powder.
6. A method for the manufacture of a composite structure, comprising the steps of:
filling a metal container having a high-strength part with a high resistance to deformation under a required pressure and a low-strength part which can be deformed with a powder and sealing the container;
and integrally forming the metal container and the powder by hot isostatic pressing.
7. A method for the manufacture of a composite structure, comprising the steps of:
filling a metal container having a high-strength part with a high resistance to deformation under a required pressure and a low-strength part which can be deformed with a powder and sealing the container;
integrally forming the metal container and the powder by hot isostatic pressing; and
processing the integrally formed product.
8. The method for the manufacture of a composite structure according to claim 6 or claim 7, wherein the high-strength part and low-strength part of the metal container are composed of different materials or of the same material, but with different thickness.
9. The method for the manufacture of a composite structure according to claim 6 or claim 7, wherein the hot isostatic pressing is conducted under the conditions of temperature of no lower than 600° C. and no higher than 1000° C. and pressure of 1˜200 MPa.
10. A motor comprising a composite structure according to claim 5.
US10/297,739 2000-06-09 2001-06-07 Composite structural body, method of manufacturing the structural body, and motor Abandoned US20040052671A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-174039 2000-06-09
JP2000174039A JP2001355006A (en) 2000-06-09 2000-06-09 Composite structural body, manufacturing method thereof, and motor
PCT/JP2001/004829 WO2001094058A1 (en) 2000-06-09 2001-06-07 Composite structural body, method of manufacturing the structural body, and motor

Publications (1)

Publication Number Publication Date
US20040052671A1 true US20040052671A1 (en) 2004-03-18

Family

ID=18676157

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/297,739 Abandoned US20040052671A1 (en) 2000-06-09 2001-06-07 Composite structural body, method of manufacturing the structural body, and motor

Country Status (3)

Country Link
US (1) US20040052671A1 (en)
JP (1) JP2001355006A (en)
WO (1) WO2001094058A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050285467A1 (en) * 2004-06-29 2005-12-29 Nissan Motor Co., Ltd. Rotor of axial gap motor and method of producing same
US20060170301A1 (en) * 2004-04-06 2006-08-03 Masahiro Masuzawa Rotor and process for manufacturing the same
US20110044840A1 (en) * 2009-08-24 2011-02-24 General Electric Company Device and method for hot isostatic pressing container
US20110267039A1 (en) * 2010-05-02 2011-11-03 Stanley Byron Musselman Magnet and holder assembly having improved rotational and axial stability

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007030572A2 (en) * 2005-09-06 2007-03-15 Borealis Technical Limited Method for building a motor
WO2010066251A1 (en) * 2008-12-12 2010-06-17 Sintex A/S A permanent magnet rotor for a machine, a method for manufacturing a permanent magnet rotor and a manufacturing system
JP5900528B2 (en) * 2014-04-02 2016-04-06 愛知製鋼株式会社 Internal magnet type inner rotor manufacturing equipment
JP6556983B2 (en) * 2014-07-29 2019-08-07 日東電工株式会社 Method for manufacturing permanent magnet and method for manufacturing rotating electrical machine
JP6556984B2 (en) * 2014-07-29 2019-08-07 日東電工株式会社 Method for manufacturing permanent magnet and method for manufacturing rotating electrical machine
JP2018095934A (en) * 2016-12-15 2018-06-21 株式会社日立製作所 Production method of heat resistant and corrosion resistant magnet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954186A (en) * 1986-05-30 1990-09-04 Union Oil Company Of California Rear earth-iron-boron permanent magnets containing aluminum
US5242508A (en) * 1990-10-09 1993-09-07 Iowa State University Research Foundation, Inc. Method of making permanent magnets
US5558815A (en) * 1992-03-27 1996-09-24 Kabushiki Kaisha Toshiba Single crystal of compound, laser rod, laser oscillator, scintillator, CT scanner, color display and process for preparing the same
US5968289A (en) * 1996-12-05 1999-10-19 Kabushiki Kaisha Toshiba Permanent magnetic material and bond magnet
US6038461A (en) * 1997-05-19 2000-03-14 Sakai; Yoshifumi Plastically deformable high temperature superconductive material and method of manufacturing formed body thereof
US6099796A (en) * 1998-01-06 2000-08-08 Crucible Materials Corp. Method for compacting high alloy steel particles
US6210633B1 (en) * 1999-03-01 2001-04-03 Laboratory Of New Technologies Method of manufacturing articles of complex shape using powder materials, and apparatus for implementing this method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417808A (en) * 1987-07-14 1989-01-20 Kubota Ltd Production of complex member
JPH0813002A (en) * 1994-06-24 1996-01-16 Kuroki Kogyosho:Kk Can for hip
JPH11323409A (en) * 1998-05-18 1999-11-26 Daido Steel Co Ltd Composite member and its production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954186A (en) * 1986-05-30 1990-09-04 Union Oil Company Of California Rear earth-iron-boron permanent magnets containing aluminum
US5242508A (en) * 1990-10-09 1993-09-07 Iowa State University Research Foundation, Inc. Method of making permanent magnets
US5558815A (en) * 1992-03-27 1996-09-24 Kabushiki Kaisha Toshiba Single crystal of compound, laser rod, laser oscillator, scintillator, CT scanner, color display and process for preparing the same
US5968289A (en) * 1996-12-05 1999-10-19 Kabushiki Kaisha Toshiba Permanent magnetic material and bond magnet
US6038461A (en) * 1997-05-19 2000-03-14 Sakai; Yoshifumi Plastically deformable high temperature superconductive material and method of manufacturing formed body thereof
US6099796A (en) * 1998-01-06 2000-08-08 Crucible Materials Corp. Method for compacting high alloy steel particles
US6210633B1 (en) * 1999-03-01 2001-04-03 Laboratory Of New Technologies Method of manufacturing articles of complex shape using powder materials, and apparatus for implementing this method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060170301A1 (en) * 2004-04-06 2006-08-03 Masahiro Masuzawa Rotor and process for manufacturing the same
US7981359B2 (en) * 2004-04-06 2011-07-19 Hitachi Metals, Ltd. Rotor and process for manufacturing the same
US20050285467A1 (en) * 2004-06-29 2005-12-29 Nissan Motor Co., Ltd. Rotor of axial gap motor and method of producing same
EP1612913A3 (en) * 2004-06-29 2006-03-29 Nissan Motor Company, Limited Permanent magnet rotor of an axial gap motor and manufacturing method
US7355311B2 (en) 2004-06-29 2008-04-08 Nissan Motor Co., Ltd. Rotor of axial gap motor and method of producing same
CN100442637C (en) * 2004-06-29 2008-12-10 日产自动车株式会社 Rotor of axial gap motor and method of producing same
US20110044840A1 (en) * 2009-08-24 2011-02-24 General Electric Company Device and method for hot isostatic pressing container
EP2338623A1 (en) * 2009-08-24 2011-06-29 General Electric Company Device and method for hot isostatic pressing container
US8303289B2 (en) 2009-08-24 2012-11-06 General Electric Company Device and method for hot isostatic pressing container
US20110267039A1 (en) * 2010-05-02 2011-11-03 Stanley Byron Musselman Magnet and holder assembly having improved rotational and axial stability
US8957669B2 (en) * 2010-05-02 2015-02-17 Stanley Byron Musselman Magnet and holder assembly having improved rotational and axial stability

Also Published As

Publication number Publication date
WO2001094058A1 (en) 2001-12-13
JP2001355006A (en) 2001-12-25

Similar Documents

Publication Publication Date Title
US4151435A (en) Stator structure using forming curved wafer thin magnets from rare earth-cobalt alloy powders
EP0418304B1 (en) Method of forming a permanent magnet rotor
JP4900775B2 (en) Rotor for motor and manufacturing method thereof
KR20070086385A (en) Rotor for motor and method for producing the same
US20040052671A1 (en) Composite structural body, method of manufacturing the structural body, and motor
EP1356479B1 (en) Coil component and method of manufacturing the same
US4325757A (en) Method of forming thin curved rare earth-transition metal magnets from lightly compacted powder preforms
US11842832B2 (en) Method of manufacturing permanent magnets
US6509667B1 (en) Rotor for a reluctance motor
WO2006064589A1 (en) Rotor for motor and manufacturing method of the same
JP2007180368A (en) Method for manufacturing magnetic circuit part
WO2010066455A1 (en) A permanent magnet and a method for manufacturing a permanent magnet
US4076561A (en) Method of making a laminated rare earth metal-cobalt permanent magnet body
JP2003257762A (en) Ring magnet, manufacturing method therefor, rotor, rotating machine, magnetic field generating apparatus therefor, and ring magnet manufacturing apparatus
US6599465B1 (en) Composite part and method for producing the same
KR20160024799A (en) Manufacturing method of rare-earth magnet
US7166171B2 (en) Longitudinal magnetic field compacting method and device for manufacturing rare earth magnets
JPH01171215A (en) Manufacture of rare earth-fe-b magnet lamination member
JPH01248503A (en) Manufacture of r-fe-b family anisotropy magnet
US20190311827A1 (en) Sintered magnet, electrical machine, use of the sintered magnet for an electrical machine and manufacturing method of a sintered magnet
US5047205A (en) Method and assembly for producing extruded permanent magnet articles
CA1301602C (en) Method and assembly for producing extruded permanent magnet articles
JPH06507676A (en) Magnetostrictive powder composite material and its manufacturing method
JPH0983037A (en) Self bias magnetostrictive material
JP2003151809A (en) Method of manufacturing rare-earth magnet

Legal Events

Date Code Title Description
AS Assignment

Owner name: SUMITOMO SPECIAL METALS CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OKUDA, HIROYUKI;REEL/FRAME:014205/0514

Effective date: 20030416

AS Assignment

Owner name: NEOMAX CO., LTD., JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:SUMITOMO SPECIAL METALS CO., LTD.;REEL/FRAME:014862/0571

Effective date: 20040401

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION