JP2024016680A - neodymium laminated sintered magnet - Google Patents

neodymium laminated sintered magnet Download PDF

Info

Publication number
JP2024016680A
JP2024016680A JP2022118976A JP2022118976A JP2024016680A JP 2024016680 A JP2024016680 A JP 2024016680A JP 2022118976 A JP2022118976 A JP 2022118976A JP 2022118976 A JP2022118976 A JP 2022118976A JP 2024016680 A JP2024016680 A JP 2024016680A
Authority
JP
Japan
Prior art keywords
neodymium
sintered magnet
laminated
bonding layer
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022118976A
Other languages
Japanese (ja)
Inventor
眞人 佐川
徹彦 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDFEB CORPORATION
Original Assignee
NDFEB CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDFEB CORPORATION filed Critical NDFEB CORPORATION
Priority to JP2022118976A priority Critical patent/JP2024016680A/en
Publication of JP2024016680A publication Critical patent/JP2024016680A/en
Pending legal-status Critical Current

Links

Images

Abstract

【課題】高い磁気特性と優れた高電気抵抗性を有するネオジム積層焼結磁石の提供。【解決手段】単位ネオジム焼結磁石が複数枚積層され、各単位ネオジム焼結磁石同士が接合層を介して接合されて一体化したものであって、前記接合層が、希土類リッチな領域を含んでおり、かつ、該希土類リッチな領域は電気的絶縁性を有する。この接合層の厚さは1.0μm以上200μm以下であることが好ましい。【選択図】なし[Problem] To provide a neodymium laminated sintered magnet having high magnetic properties and excellent high electrical resistance. [Solution] A plurality of unit neodymium sintered magnets are laminated, and each unit neodymium sintered magnet is bonded and integrated via a bonding layer, and the bonding layer includes a rare earth-rich region. In addition, the rare earth-rich region has electrical insulating properties. The thickness of this bonding layer is preferably 1.0 μm or more and 200 μm or less. [Selection diagram] None

Description

本発明はネオジム積層焼結磁石に関する。特に、電気自動車の主機モータなど大型モータや発電機に使用されるネオジム積層焼結磁石に関する。 The present invention relates to a neodymium laminated sintered magnet. In particular, it relates to neodymium laminated sintered magnets used in large motors and generators, such as main motors of electric vehicles.

ネオジム焼結磁石は、1982年に本願発明者らによって発明され(特公昭61-34242)、それまでの高特性永久磁石材料の代表格であったサマリウムコバルト系磁石の磁気特性をはるかに凌駕するばかりでなく、ネオジム(Nd:希土類元素の一種)、鉄及びボロンなど資源的に豊富な原料を主成分とするため廉価であり、理想的な永久磁石材料として着実に市場を拡大してきた。その用途はコンピュータ用HDD(ハード・ディスク・ドライブ)、 磁気ヘッド駆動用モータ(VCM:ボイスコイルモーター) 、高級スピーカ、ヘッドホン、電動補助型自転車、ゴルフカート、永久磁石式磁気共鳴診断装置(MRI)など多岐にわたる。さらに近年ではハイブリッド自動車(HEV)や電気自動車(EV)の主機モータ、省エネルギー・低騒音型大型家電製品(クーラーや冷蔵庫)・エレベーターやその他の産業用モータにおいても急速に実用化が進められている。 Neodymium sintered magnets were invented by the present inventors in 1982 (Japanese Patent Publication No. 61-34242), and have magnetic properties that far exceed those of samarium-cobalt magnets, which were the representative high-performance permanent magnet materials up until then. In addition, it is inexpensive because its main ingredients are neodymium (Nd: a type of rare earth element), iron, and boron, which are abundant in resources, and its market has steadily expanded as an ideal permanent magnet material. Its uses include computer HDDs (hard disk drives), magnetic head drive motors (VCM: voice coil motors), high-end speakers, headphones, electrically assisted bicycles, golf carts, and permanent magnet magnetic resonance diagnostic equipment (MRI). A wide variety of things. Furthermore, in recent years, it has been rapidly put into practical use in the main motors of hybrid vehicles (HEVs) and electric vehicles (EVs), energy-saving and low-noise large home appliances (coolers and refrigerators), elevators, and other industrial motors. .

一般にネオジム焼結磁石は高い磁気特性を有するが、温度特性が良くないという欠点を有する。特に保磁力の温度特性は重要である。家電や産業用モータに使用される場合、コイル電流に起因する温度上昇を避けることはできない。また、モータ電機子から逆磁界が作用するため、温度が上昇して保磁力が小さくなると永久磁石に不可逆減磁が生じる。不可逆減磁を防ぐためには予め保磁力を高くしておくしかない。 Generally, neodymium sintered magnets have high magnetic properties, but have the disadvantage of poor temperature characteristics. In particular, the temperature characteristics of coercive force are important. When used in home appliances or industrial motors, temperature increases due to coil current cannot be avoided. Further, since a reverse magnetic field acts from the motor armature, irreversible demagnetization occurs in the permanent magnet when the temperature rises and the coercive force decreases. The only way to prevent irreversible demagnetization is to increase the coercive force in advance.

ネオジム焼結磁石が見出された後、保磁力などの特性改善のため、添加元素(特許第1606420号等)・熱処理(特許第1818977号等)・結晶粒径コントロール(特許第1662257号等)などの効果が明らかにされてきたが、保磁力の向上に最も効果的なのは重希土類元素(Dy,Tb)の添加であった(特許第1802487号)。重希土類元素を多量に用いれば保磁力は確実に増加するが、飽和磁化が低下して最大エネルギー積が低下する。また、Dy,Tbは資源が希少で高価であり、今後とも大きな需要が見込まれているHEV、EVや産業用・家庭用モータをまかなうことは難しい。 After the discovery of neodymium sintered magnets, additive elements (Patent No. 1606420, etc.), heat treatment (Patent No. 1818977, etc.), and crystal grain size control (Patent No. 1662257, etc.) were developed to improve properties such as coercive force. Although the following effects have been revealed, the most effective method for improving coercive force is the addition of heavy rare earth elements (Dy, Tb) (Patent No. 1802487). If a large amount of heavy rare earth elements is used, the coercive force will surely increase, but the saturation magnetization will decrease and the maximum energy product will decrease. In addition, Dy and Tb are rare and expensive resources, and it is difficult to supply them for HEVs, EVs, and industrial/home motors, which are expected to have a large demand in the future.

その後、下記特許文献1等にて、合金組成の中にDy/Tb等を添加するのではなく、焼結体を作製して外部にDy/Tb等の金属や化合物を塗布し、Dy/Tbの重希土類元素を熱処理によって焼結体内部の結晶粒界に拡散させる、粒界拡散法により飽和磁化や最大エネルギー積の低下をほとんど招来することなしに保磁力だけを高める方法が見いだされた。 Later, in Patent Document 1 listed below, instead of adding Dy/Tb etc. to the alloy composition, a sintered body was prepared and a metal or compound such as Dy/Tb was coated on the outside, and Dy/Tb A method of increasing the coercive force without causing almost any decrease in saturation magnetization or maximum energy product has been discovered using the grain boundary diffusion method, in which heavy rare earth elements are diffused into the grain boundaries inside the sintered body through heat treatment.

一方、HEV、EV用磁石として、運転中の渦電流発生による損失を低減して、磁石中の発熱を抑えて磁石の温度上昇を低減するため、磁石を分割して積層したネオジム焼結磁石の提案がなされている。この提案の一例では、例えば下記特許文献2において、厚さ5mmのネオジム焼結磁石にDyのフッ化物粉末を塗布して、Ar中、900℃で1時間加熱して粒界拡散処理(GBD処理)を施し、その後、この分割磁石を18個重ねてモータ回転子の磁石挿入孔に挿入してエポキシ樹脂で固めた。このようにして作製した回転子を装着したIPMモータが提案された。 On the other hand, neodymium sintered magnets are used as magnets for HEVs and EVs, in order to reduce losses due to eddy current generation during operation, suppress heat generation in the magnet, and reduce temperature rise of the magnet. Suggestions have been made. An example of this proposal is, for example, in Patent Document 2 listed below, Dy fluoride powder is coated on a neodymium sintered magnet with a thickness of 5 mm, and grain boundary diffusion treatment (GBD treatment) is performed by heating at 900°C for 1 hour in Ar. ), and then 18 of these divided magnets were stacked, inserted into the magnet insertion hole of the motor rotor, and hardened with epoxy resin. An IPM motor equipped with a rotor manufactured in this manner has been proposed.

今後、自動車の電動化がますます進んでいく中で、主機モータに使うネオジム焼結磁石には、最高の磁気特性を維持したままコストを極限まで下げること、磁石に含まれるDyとTbを資源的に許される極限までその使用量を低減することが望まれている。しかし現状では、EVおよびHEVで使われているネオジム磁石にはDyやTbが一定量含まれており、製造コストの低減も十分ではない。その一つの理由は上述したEVおよびHEV用ネオジム焼結磁石の省Dyおよび省Tbが十分でないからである。 In the future, as the electrification of automobiles continues to progress, the neodymium sintered magnets used in main engine motors will need to be manufactured at the lowest possible cost while maintaining the best magnetic properties. It is desirable to reduce its usage to the limit that is permissible. However, at present, neodymium magnets used in EVs and HEVs contain a certain amount of Dy and Tb, and manufacturing costs cannot be reduced sufficiently. One reason for this is that the above-mentioned neodymium sintered magnets for EVs and HEVs do not have sufficient Dy and Tb savings.

さらに、モータ中に使われる鉄心材料であるケイ素鋼板は、モータ運転中に発生する過電流損低減のため、厚さ0.5mm以下で所定形状に打ち抜き積層して使われる。同じモータの中で使われるNd-Fe-B焼結磁石も、薄く打ち抜いて使えれば渦電流損が極限まで低減できて望ましいがそれは不可能である。そこで電気自動車の主機モータに使われるネオジム焼結磁石は上述の公知例(特許文献2)のように、厚さ5mm程度の分割磁石として使用に供される。厚さ5mmの磁石は大きな塊の磁石(ブロック磁石という)から機械加工により切り出すので加工コストと材料歩留り低下によるコストがかかってくる。その上、厚さ5mm程度の積層体では渦電流損低減効果は不十分である。単位ネオジム焼結磁石の厚さを5mmにすると積層しない塊の磁石よりも渦電流損が低減するが、まだ十分に低減されない。単位ネオジム焼結磁石の厚さを5mmの半分以下、すなわち2.5mm以下に薄く加工して積層化した磁石を使えば、モータに発生する渦電流損は大きく低減されることが期待される。 Furthermore, silicon steel plates, which are the iron core material used in motors, are punched and laminated into a predetermined shape with a thickness of 0.5 mm or less in order to reduce overcurrent loss that occurs during motor operation. It would be desirable if the Nd-Fe-B sintered magnet used in the same motor could be punched out into thin pieces and used, as this would reduce eddy current loss to the utmost, but this is not possible. Therefore, the neodymium sintered magnet used in the main motor of an electric vehicle is used as a divided magnet with a thickness of about 5 mm, as in the above-mentioned known example (Patent Document 2). A magnet with a thickness of 5 mm is cut out by machining from a large block of magnet (called a block magnet), which incurs costs due to processing costs and reduced material yield. Moreover, the effect of reducing eddy current loss is insufficient in a laminate having a thickness of about 5 mm. When the thickness of the unit neodymium sintered magnet is set to 5 mm, the eddy current loss is reduced more than that of a block magnet that is not laminated, but the reduction is still not sufficient. It is expected that the eddy current loss generated in the motor can be greatly reduced by using a stacked unit neodymium sintered magnet that is processed to be thinner than half of 5 mm, that is, 2.5 mm or less.

特許第4450239号公報Patent No. 4450239 特開2011-78268号公報Japanese Patent Application Publication No. 2011-78268

本発明は、上記事情に鑑みてなされたものであり、高い磁気特性と優れた高電気抵抗性を有するネオジム積層焼結磁石を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a neodymium laminated sintered magnet having high magnetic properties and excellent high electrical resistance.

本発明のネオジム積層焼結磁石は、単位ネオジム焼結磁石が複数枚積層され、各単位ネオジム焼結磁石同士が接合層を介して接合されて一体化したものであって、
前記ネオジム積層焼結磁石の接合層が、希土類リッチな領域を含んでおり、かつ、該希土類リッチな領域が電気的絶縁性を有することを特徴とするものである。
尚、本明細書においては、積層磁石を形成する1枚ずつの薄板状磁石を単位ネオジム焼結磁石と呼ぶことにする。また、接合とは接着剤等を使用して1枚ずつの単位ネオジム磁石を一体化するいわゆる接着するものではなく、ホットプレス法などにより冶金学的に接合一体化することを意味する。したがって、本発明による接合では接合層には接着剤のような有機物は存在しない。
又、本明細書において「希土類リッチな領域」とは、Nd、Pr、Dy、Tb等の希土類元素の含有量が多く(50重量%以上)存在する領域をいい、酸化物、フッ化物、酸フッ化物、炭化物等の化合物からなる電気的絶縁性を有する接合領域をいう。ここで電気的絶縁性とは、ネオジム焼結磁石の比電気抵抗である1.4x10-6Ω・mよりも少なくとも二桁以上大きい数値とした。比抵抗が二桁以上異なるとそこを流れる電流値は二桁以上小さくなり、渦電流損失を大きく低減できるからである。
なお、本発明のネオジム積層磁石の接合層中に占める「希土類リッチな領域」の割合(体積割合)は20%以上あれば絶縁効果が出てくるが、この希土類リッチな領域が占める割合は好ましくは50%以上、より好ましくは70%以上、さらに好ましくは80%以上、できれば90%以上が好ましい。なお、この割合は接合層断面のEDS(エネルギー分散型X線分光法)による元素分析により確認することができる。
The neodymium laminated sintered magnet of the present invention is one in which a plurality of unit neodymium sintered magnets are stacked, and each unit neodymium sintered magnet is bonded to each other via a bonding layer to form an integrated structure,
The bonding layer of the neodymium laminated sintered magnet includes a rare earth-rich region, and the rare-earth rich region has electrical insulation properties.
In this specification, each thin plate magnet forming a laminated magnet will be referred to as a unit neodymium sintered magnet. Furthermore, bonding does not mean so-called gluing of unit neodymium magnets one by one using an adhesive or the like, but means metallurgically bonding and integrating them by hot pressing or the like. Therefore, in the bonding according to the present invention, no organic substance such as an adhesive is present in the bonding layer.
In addition, in this specification, the term "rare earth rich region" refers to a region in which there is a large content (50% by weight or more) of rare earth elements such as Nd, Pr, Dy, Tb, etc. A bonding region that has electrical insulation properties and is made of compounds such as fluorides and carbides. Here, electrical insulation is defined as a value that is at least two orders of magnitude larger than the specific electrical resistance of the neodymium sintered magnet, which is 1.4×10 −6 Ω·m. This is because if the specific resistance differs by two or more orders of magnitude, the value of the current flowing there becomes smaller by two or more orders of magnitude, and eddy current loss can be greatly reduced.
Note that an insulating effect will be obtained if the proportion (volume proportion) of the "rare earth rich region" in the bonding layer of the neodymium laminated magnet of the present invention is 20% or more, but the proportion occupied by this rare earth rich region is preferable. is preferably 50% or more, more preferably 70% or more, even more preferably 80% or more, and preferably 90% or more. Note that this ratio can be confirmed by elemental analysis of a cross section of the bonding layer using EDS (energy dispersive X-ray spectroscopy).

又、本発明は、上記の特徴を有したネオジム積層焼結磁石において、前記の接合層の厚さが1.0μm以上200μm以下であることを特徴とするものであり、接合層の厚さは1.0μm以上100μm以下が好ましく、1.0μm以上50μm以下がより好ましく、2.0μm以上30μm以下の平均厚みが特に好ましい。接合層厚さの上限を200μmとしたのは、これを超えると焼結磁石部分の実質的体積比率が低下し、残留磁束密度Brがはなはだしく低下するからである。 Further, the present invention is a neodymium laminated sintered magnet having the above-mentioned characteristics, characterized in that the thickness of the bonding layer is 1.0 μm or more and 200 μm or less, and the thickness of the bonding layer is The average thickness is preferably 1.0 μm or more and 100 μm or less, more preferably 1.0 μm or more and 50 μm or less, and particularly preferably 2.0 μm or more and 30 μm or less. The reason why the upper limit of the bonding layer thickness is set to 200 μm is that if it exceeds this, the substantial volume ratio of the sintered magnet portion decreases, and the residual magnetic flux density Br decreases significantly.

又、本発明は、上記の特徴を有したネオジム積層焼結磁石において、前記の希土類リッチな領域が、前記接合層中に連続的および/または断続的に存在していることを特徴とするものである。即ち、本発明のネオジム積層焼結磁石の接合層は、連続的および/または断続的な希土類リッチな領域を含む相である。 Further, the present invention provides a neodymium laminated sintered magnet having the above characteristics, wherein the rare earth-rich region exists continuously and/or intermittently in the bonding layer. It is. That is, the bonding layer of the neodymium laminated sintered magnet of the present invention is a phase containing continuous and/or intermittent rare earth-rich regions.

又、本発明は、上記の特徴を有したネオジム積層焼結磁石において、前記接合層中に、50重量%以上のFeを含むFeリッチメタル領域が存在しており、当該Feリッチメタル領域が、前記接合層を介して隣接する単位ネオジム焼結磁石の間を連結していることを特徴とするものである。
本明細書において「Feリッチメタル領域」とは、Feが多く(50重量%以上)存在し、Nd、Pr、Dy、Tb等の希土類元素の化合物が実質的に存在していない相をいう。
Further, the present invention provides a neodymium laminated sintered magnet having the above characteristics, in which an Fe-rich metal region containing 50% by weight or more of Fe is present in the bonding layer, and the Fe-rich metal region is The present invention is characterized in that adjacent unit neodymium sintered magnets are connected via the bonding layer.
As used herein, the term "Fe-rich metal region" refers to a phase in which a large amount of Fe (50% by weight or more) is present and compounds of rare earth elements such as Nd, Pr, Dy, and Tb are substantially absent.

又、本発明は、上記の特徴を有したネオジム積層焼結磁石において、当該ネオジム積層焼結磁石の表面から50μm未満の表層領域の希土類元素の総量(合計量)の重量%と、表面から50μm以上離れた内部領域の希土類元素の総量(合計量)の重量%との差が、1重量%未満であることを特徴とするものである。この重量%の差は、0.8重量%以下が好ましく、0.5重量%以下がより好ましく、0.3重量%以下が特に好ましい。 In addition, the present invention provides a neodymium laminated sintered magnet having the above-mentioned characteristics, and the weight percent of the total amount (total amount) of rare earth elements in a surface layer region less than 50 μm from the surface of the neodymium laminated sintered magnet, and It is characterized in that the difference from the total amount (total amount) of the rare earth elements in the inner region separated by the above distance is less than 1% by weight. This difference in weight % is preferably 0.8 weight % or less, more preferably 0.5 weight % or less, and particularly preferably 0.3 weight % or less.

又、本発明は、上記の特徴を有したネオジム積層焼結磁石において、前記接合層に存在する希土類リッチな領域中に、重希土類元素としてDy元素、Tb元素の少なくともいずれか一方が存在しており、該重希土類元素が、各単位ネオジム焼結磁石のNdFe14B結晶の粒界相に沿って、各接合層から、隣の接合層側に向かって拡散(GBD拡散)していることを特徴とするものでもある。 Further, the present invention provides a neodymium laminated sintered magnet having the above characteristics, in which at least one of Dy element and Tb element is present as a heavy rare earth element in the rare earth rich region present in the bonding layer. The heavy rare earth elements diffuse from each bonding layer toward the adjacent bonding layer (GBD diffusion) along the grain boundary phase of the Nd 2 Fe 14 B crystal of each unit neodymium sintered magnet. It is also characterized by

又、本発明は、上記の特徴を有したネオジム積層焼結磁石において、CGS単位系で表された最大磁気エネルギー積(BH)max(MGOe)と保磁力iHc(kOe)の和(以下、これをマジックナンバー「MN」と表記することがある)が70以上である磁気特性を有することを特徴とするものでもある。 In addition, the present invention provides a neodymium laminated sintered magnet having the above-mentioned characteristics, the sum of the maximum magnetic energy product (BH) max (MGOe) expressed in the CGS unit system and the coercive force iHc (kOe) (hereinafter, this It is also characterized by having magnetic properties with a magic number (sometimes referred to as "MN") of 70 or more.

更に、本発明は、上記の特徴を有したネオジム積層焼結磁石であって、前記接合層と直交するネオジム積層焼結磁石の外側面が、対向する少なくとも一対の外側面もしくは全ての外側面において0.1mm以下の平坦度を有することを特徴とするものでもある。 Furthermore, the present invention provides a neodymium laminated sintered magnet having the above characteristics, wherein the outer surface of the neodymium laminated sintered magnet orthogonal to the bonding layer is at least one pair of opposing outer surfaces or all outer surfaces. It is also characterized by having a flatness of 0.1 mm or less.

本発明にかかるネオジム積層焼結磁石は、高い磁気特性と優れた高電気抵抗性を有しており、従来と同程度のコストで製造することができ、世界最高の磁気特性と自動車用途としての十分な電気的絶縁性を有しており、今後爆発的な伸長が期待されるEVやHEV用磁石に適用されるものである。 The neodymium laminated sintered magnet according to the present invention has high magnetic properties and excellent high electrical resistance, can be manufactured at the same cost as conventional ones, and has the world's best magnetic properties and is suitable for automotive applications. It has sufficient electrical insulation properties and can be applied to magnets for EVs and HEVs, which are expected to grow explosively in the future.

本発明にかかるネオジム積層焼結磁石の製造方法を示す図である。FIG. 3 is a diagram showing a method for manufacturing a neodymium laminated sintered magnet according to the present invention. 単位ネオジム焼結磁石の積層体を型及びパンチと共に装置内部にセットした際の状態を示す図である。FIG. 2 is a diagram showing a state in which a stack of unit neodymium sintered magnets is set inside the device together with a mold and a punch. 円柱状サンプルのデフォーム試験後の外観を示す写真である。It is a photograph showing the appearance of a cylindrical sample after a deformation test. 接合試験に用いたホットプレス装置の外観を示す写真である。This is a photograph showing the appearance of the hot press device used in the bonding test. 接合試験に使用した装置の断面図である。FIG. 3 is a cross-sectional view of the device used in the bonding test. 接合試験の前後における単位ネオジム焼結磁石の状況を示す写真である。It is a photograph showing the state of a unit neodymium sintered magnet before and after a bonding test. 実施例1にかかるネオジム積層焼結磁石の接合面のSEM写真である。2 is a SEM photograph of the bonded surface of the neodymium laminated sintered magnet according to Example 1. 実施例1にかかるネオジム積層焼結磁石の接合面において希土類化合物等が連続的に分布している部分(希土類リッチな領域)のEDS写真である。1 is an EDS photograph of a portion (rare earth rich region) where rare earth compounds etc. are continuously distributed on the bonding surface of the neodymium laminated sintered magnet according to Example 1. 実施例1にかかるネオジム積層焼結磁石の接合面においてFeリッチメタル領域が接合面を跨ぐ形で分布している部位のEDS写真である。2 is an EDS photograph of a portion of the bonded surface of the neodymium laminated sintered magnet according to Example 1, where the Fe-rich metal region is distributed across the bonded surface. GBDペーストを単位ネオジム焼結磁石表面に塗布するための治具(図10a)、GBDペースト塗布時の様子(図10b)、GBDペースト塗布後の単位ネオジム焼結磁石を積層したカセット(図10c)の写真である。A jig for applying GBD paste to the surface of unit neodymium sintered magnets (Figure 10a), a state during application of GBD paste (Figure 10b), and a cassette with stacked unit neodymium sintered magnets after applying GBD paste (Figure 10c) This is a photo. 実施例1および実施例2にかかるネオジム積層焼結磁石の写真である。1 is a photograph of neodymium laminated sintered magnets according to Examples 1 and 2. 比較例1にかかる破損したネオジム積層焼結磁石の写真である。3 is a photograph of a damaged neodymium laminated sintered magnet according to Comparative Example 1. 渦電流損失評価用C型ヨークおよび測定システムの概要を示す図である。FIG. 2 is a diagram showing an outline of a C-type yoke for evaluating eddy current loss and a measurement system. 渦電流評価に供するために表面を絶縁テープで覆い磁界発生方向に直交する面にサーチコイルを巻いてある渦電流評価用サンプルの写真である。This is a photograph of a sample for eddy current evaluation, the surface of which is covered with insulating tape and a search coil is wound around the surface perpendicular to the direction of magnetic field generation. C型コイルに評価用サンプルをセットした状態の写真である。This is a photograph of an evaluation sample set in a C-shaped coil. 5Arms電流で励磁した時の周波数200Hzまでの渦電流評価結果を示すグラフである。It is a graph showing the eddy current evaluation results up to a frequency of 200 Hz when excited with a 5 Arms current. 2Arms電流で励磁した時の周波数500Hzまでの渦電流評価結果を示すグラフである。It is a graph showing the eddy current evaluation results up to a frequency of 500 Hz when excited with a 2 Arms current. 実施例3にかかるNPLP法(新プレスレスプロセス:New-PressLess Process)で作製した単位ネオジム焼結磁石を使用して作製したネオジム積層焼結磁石の外観を示す写真である。3 is a photograph showing the appearance of a neodymium laminated sintered magnet produced using a unit neodymium sintered magnet produced by the NPLP method (New-PressLess Process) according to Example 3. 実施例7にて作製した凸レンズ形状のネオジム積層焼結磁石の外観を示す写真である。3 is a photograph showing the appearance of a convex lens-shaped neodymium laminated sintered magnet produced in Example 7.

本発明者らはまず、高い磁気特性と優れた高電気抵抗性を有するネオジム積層焼結磁石を得るために、ネオジム積層焼結磁石の製造方法についてあるべき姿を考察した。その検討モデルを図1に示す。
最初にネオジム焼結体からなる単位ネオジム焼結磁石の積層体を準備する。ここで単位ネオジム焼結磁石の製造方法としては、より大きな焼結体から切り出す方法や焼結後の姿そのものが単位ネオジム焼結磁石形状になるように製造する方法がある。この積層体を体積が限定された空間、具体的には製品形状に合わせた空間を有する型内部に配置し、高温に加熱しつつ圧力を印加することにより、単位ネオジム焼結磁石間の接合と同時に積層体を加圧方向およびその方向と直交する2方向に型内壁までデフォーム(変形)させる。これにより、製品形状に限定された空間にネオジム積層焼結磁石体を実質100%の割合で占めさせることができるので、残空間が無くこのネオジム積層焼結磁石の磁気特性は通常の同一形状を有する一体型磁石と同じ高い残留磁束密度を実現できる。デフォームできるか否か、接合できるか否か、低融点Ndリッチ相が溶出して型と溶着を起こすか否か等がこの検討モデルの実現可否を決定するが、本発明者らはこの製造方法を確立し、その性能評価でも最高の磁気特性を有するとともに完全ネットシェイプの加工レス・低コスト製品を世に送り出すことを可能にした。
In order to obtain a neodymium layered sintered magnet having high magnetic properties and excellent electrical resistance, the present inventors first considered the ideal method for manufacturing a neodymium layered sintered magnet. The study model is shown in Figure 1.
First, a stack of unit neodymium sintered magnets made of neodymium sintered bodies is prepared. Here, methods for producing unit neodymium sintered magnets include a method of cutting out a larger sintered body and a method of producing the unit neodymium sintered magnet so that the appearance itself after sintering is in the shape of a unit neodymium sintered magnet. This laminate is placed inside a mold that has a space with a limited volume, specifically a space that matches the shape of the product, and is heated to a high temperature while applying pressure to bond the unit neodymium sintered magnets together. At the same time, the laminate is deformed (deformed) in the pressing direction and in two directions orthogonal to the pressing direction up to the inner wall of the mold. This allows the neodymium laminated sintered magnet to occupy virtually 100% of the space limited by the product shape, so there is no remaining space and the magnetic properties of this neodymium laminated sintered magnet are the same as those of the normal shape. The same high residual magnetic flux density as an integrated magnet can be achieved. The feasibility of this study model is determined by whether or not it can be deformed, whether it can be joined, and whether the low melting point Nd-rich phase elutes and welds with the mold. We have established a new method and have made it possible to bring to the world a completely net-shaped, no-processing, low-cost product that has the best magnetic properties according to performance evaluations.

第1の見極めポイントは単位ネオジム焼結磁石を高温高圧力下でデフォームできるかどうかである。その理由は、単位ネオジム焼結磁石を構成する主相結晶粒のサイズは一般的には10μm以下で平均5μm前後、その磁石組織中の存在比率は90%以上であり、かつその主相結晶は正方晶NdFe14B型金属間化合物なので、主相自体はほとんど塑性変形を期待できないからである。ただし、第2相たる低融点Ndリッチ相を介した主相の結晶滑りの可能性は存在するが結晶粒径が1μm以上における塑性変形が可能であるとの報告はまだない。これを見極めるために行った実験の模様を図2に示す。また使用した単位ネオジム焼結磁石の成分を表1に示す。 The first point to consider is whether the unit neodymium sintered magnet can be deformed under high temperature and pressure. The reason for this is that the size of the main phase crystal grains constituting a unit neodymium sintered magnet is generally less than 10 μm, with an average of around 5 μm, and their abundance ratio in the magnet structure is 90% or more. This is because since it is a tetragonal Nd 2 Fe 14 B type intermetallic compound, the main phase itself is hardly expected to undergo plastic deformation. However, although there is a possibility of crystal sliding of the main phase via the low melting point Nd-rich phase that is the second phase, there is no report yet that plastic deformation is possible when the crystal grain size is 1 μm or more. Figure 2 shows the details of an experiment conducted to determine this. Table 1 shows the components of the unit neodymium sintered magnets used.

Figure 2024016680000001
Figure 2024016680000001

ここで、単位ネオジム焼結磁石の準備は以下の通り行った。まず表1の成分を有するSC合金を用意し、水素解砕後、0.6MPaの高圧窒素ガス雰囲気中でジェットミル粉砕を行った。ジェットミル粉砕装置への原料供給速度を調整し、かつ粉砕後の微粉末の分級条件を変更することにより、平均粒径(D50)の調整は可能であり本実験においては平均粒径3μmの原料粉末を使用した。この粉末をカーボン製モールド中に充填密度3.6g/ccで充填し、4Tのパルス磁界を印加することにより粉末結晶粒のc軸方向を1方向に揃えた後、焼結炉中にセットして10-4Pa以下の真空雰囲気下、985℃の温度で4時間焼結を行って、サイズが約50mmx約70mmx厚み20mm(配向方向)のブロック状磁石を得た。このようにして得られた焼結体を7mmx7mmx7mm(配向方向)の立方体形状に加工し、磁気特性を評価した。 Here, the unit neodymium sintered magnet was prepared as follows. First, an SC alloy having the components shown in Table 1 was prepared, and after hydrogen cracking, jet mill pulverization was performed in a high-pressure nitrogen gas atmosphere of 0.6 MPa. It is possible to adjust the average particle size (D50) by adjusting the raw material supply rate to the jet mill pulverizer and changing the classification conditions of the fine powder after crushing, and in this experiment, the raw material with an average particle size of 3 μm was used. Powder was used. This powder was filled into a carbon mold at a packing density of 3.6 g/cc, and after aligning the c-axis direction of the powder crystal grains in one direction by applying a 4T pulsed magnetic field, the powder was placed in a sintering furnace. Sintering was performed at a temperature of 985° C. for 4 hours in a vacuum atmosphere of 10 −4 Pa or less to obtain a block-shaped magnet with a size of about 50 mm x about 70 mm x thickness 20 mm (direction of orientation). The sintered body thus obtained was processed into a cubic shape of 7 mm x 7 mm x 7 mm (orientation direction), and its magnetic properties were evaluated.

その結果、Br=14.1kG、iHc=16.1kOe、(BH)max=47.7MGOe、磁気的配向度Br/4πMs=0.965であった。このブロック磁石からφ15mm、厚さ6mm(配向方向)の円柱形ネオジム焼結磁石を加工により準備した。これを内径φ20mmのカーボン製円筒形型の内部に配置し、上下に型内寸法よりやや小さめのカーボン製パンチを取りつけ、全体を株式会社シンターランド製Spark Plasma Sintering(以下、SPS)装置LABOX-325R(最大加圧力30kN、最大パルス電流出力2.5kA)内に装填した。型の内壁およびパンチとサンプルとの接触面には厚さ0.2mm程度のカーボンシートを挟んだ。ここでSPS処理中の雰囲気はロータリーポンプで到達できる20Pa程度の真空中とした。SPS装置では上下のパンチを通じて型、ワークに大電流を流し、発生するジュール熱により加熱しつつ上下パンチを通じて圧力を印加することにより加工する。本実験では上パンチに開けた穴に熱電対を挿入し、サンプル上部の温度を測定しつつ温度制御を行った。 As a result, Br=14.1 kG, iHc=16.1 kOe, (BH)max=47.7 MGOe, and degree of magnetic orientation Br/4πMs=0.965. From this block magnet, a cylindrical neodymium sintered magnet with a diameter of 15 mm and a thickness of 6 mm (in the orientation direction) was prepared by processing. This was placed inside a carbon cylindrical mold with an inner diameter of φ20 mm, carbon punches slightly smaller than the inside size of the mold were attached to the top and bottom, and the whole was placed in a Spark Plasma Sintering (hereinafter referred to as SPS) device LABOX-325R manufactured by Sinterland Co., Ltd. (maximum pressing force 30 kN, maximum pulse current output 2.5 kA). A carbon sheet approximately 0.2 mm thick was sandwiched between the inner wall of the mold and the contact surface between the punch and the sample. Here, the atmosphere during the SPS treatment was a vacuum of about 20 Pa that could be reached by a rotary pump. In an SPS machine, a large current is passed through the mold and workpiece through the upper and lower punches, and the mold and workpiece are heated by the generated Joule heat while processing is performed by applying pressure through the upper and lower punches. In this experiment, a thermocouple was inserted into the hole made in the upper punch to measure the temperature at the top of the sample and control the temperature.

表2に実験条件と得られた結果を、また図3に実験後のサンプル写真を示す。本実験では室温からSPS加工温度までの昇温速度を25℃/分に固定し、加圧力は実験開始の初期加圧力を最大加圧力と同じ10MPaから40MPaまで変化させたときのサンプル厚み方向(圧力印加方向)の変位量を測定した。合わせて、実験終了後におけるサンプル側面からの低融点Ndリッチ相の溶出有無も示した。なお、図3からわかるように本実験のいずれのケースでも焼結体自体にワレやヒビなどの欠陥は見られなかった。 Table 2 shows the experimental conditions and the results obtained, and FIG. 3 shows a photograph of the sample after the experiment. In this experiment, the temperature increase rate from room temperature to the SPS processing temperature was fixed at 25°C/min, and the pressurizing force was changed in the sample thickness direction ( The amount of displacement in the pressure application direction) was measured. In addition, the presence or absence of elution of the low melting point Nd-rich phase from the side surface of the sample after the end of the experiment was also shown. As can be seen from FIG. 3, no defects such as cracks or cracks were observed in the sintered body itself in any of the cases in this experiment.

Figure 2024016680000002
Figure 2024016680000002

この実験から次のことを明らかにした。まず、ネオジム焼結体はワレ欠けを生じさせることなくデフォーム可能である。そして最高温度が800℃の場合には10MPaの圧力でも7%を超える変位量を達成できる。一方で100℃低い700℃では20MPaの圧力を加えても3.81%の変位しか得られず、さらに30MPa、40MPaと圧力を上げるとともに変位量は4.54%、5.13%と上昇するものの、800℃、10MPaにおける7%超の変位量までは届かない。すなわち、変位量の大きさは圧力よりも温度因子が強く影響することが分かった。また、低融点Ndリッチ相のサンプル側面からの溶出状況については実験No.1とNo.2では液相が溶出したが(図3参照)、温度が700℃と同一である加圧力30MPa以上のNo.3、No.4では溶出は見られなかった。すなわち、低融点Ndリッチ相溶出の有無は温度だけではなく圧力条件も重要な役割を担っており、圧力が高いほど液相の溶出は起こらないという現象を見出すことができた。一般的に、圧力が高いほど液相成分が外に出やすいと考えられるため本結果は想定外であり、現在そのメカニズム解明を行っているところである。いずれにせよ焼結体のデフォーム時に低融点Ndリッチ相の溶出が発生しないということは、デフォームにより焼結体が型の内壁に到達した際に溶出した低融点Ndリッチ液相と型とが反応してサンプルおよび型を破損するリスクを低減できることを意味している。以上より温度と圧力の条件を適切に選択することにより焼結体から低融点Ndリッチ相の溶出を起こさせずにネオジム焼結体をデフォームできる可能性を見出した。 This experiment revealed the following: First, neodymium sintered bodies can be deformed without causing cracks or chips. When the maximum temperature is 800° C., a displacement of more than 7% can be achieved even at a pressure of 10 MPa. On the other hand, at 700°C, which is 100°C lower, only 3.81% displacement is obtained even if a pressure of 20 MPa is applied, and as the pressure is further increased to 30 MPa and 40 MPa, the displacement increases to 4.54% and 5.13%. However, it cannot reach a displacement of more than 7% at 800° C. and 10 MPa. In other words, it was found that the magnitude of displacement was more strongly influenced by the temperature factor than by the pressure. Also, regarding the elution status of the low melting point Nd-rich phase from the side of the sample, Experiment No. 1 and no. In No. 2, the liquid phase was eluted (see Fig. 3), but in No. 2, the temperature was the same as 700°C and the pressure was 30 MPa or more. 3.No. 4, no elution was observed. That is, the presence or absence of elution of the low melting point Nd-rich phase is determined not only by temperature but also by pressure conditions, and it was found that the higher the pressure, the less elution of the liquid phase occurs. Generally, it is thought that the higher the pressure, the easier the liquid phase components are to escape, so this result was unexpected, and we are currently working to elucidate the mechanism. In any case, the fact that the elution of the low melting point Nd-rich phase does not occur during deformation of the sintered body means that when the sintered body reaches the inner wall of the mold due to deforming, the eluted low melting point Nd rich liquid phase and the mold This means that the risk of reacting and damaging the sample and mold can be reduced. From the above, we have discovered the possibility of deforming a neodymium sintered body without causing the elution of the low melting point Nd-rich phase from the sintered body by appropriately selecting the temperature and pressure conditions.

次に第2の見極めポイントであるユニット焼結磁石積層体の接合の可否を調査した。図4は、使用したホットプレス実験装置の外観を示す写真であり、また図5は、装置の構成断面図を示す図である。尚、図5の装置の中央に設けられた試料空間はφ15mmx長さ10mmである。
本実験に使用した単位ネオジム焼結磁石は先の実験に使用した焼結体と同一の焼結体ブロックから加工によりφ15mmx厚さ1.5mm(配向方向)のサイズに切り出したものであり、これを8枚積層してその接合可否を調べた。雰囲気はAr雰囲気中、圧力を印加する前に850℃の温度まで加熱し、油圧プレスで40MPaまで印加する実験を行った(図6)。本実験の結果、8枚の単位ネオジム焼結磁石の積層体は強固に接合され一体化した。その接合強度を評価したところ、ブロック状のネオジム焼結磁石と同程度であった。
Next, we investigated whether or not the unit sintered magnet stack could be joined, which is the second point to check. FIG. 4 is a photograph showing the appearance of the hot press experimental apparatus used, and FIG. 5 is a diagram showing a cross-sectional view of the structure of the apparatus. The sample space provided in the center of the apparatus shown in FIG. 5 has a diameter of 15 mm and a length of 10 mm.
The unit neodymium sintered magnet used in this experiment was cut into a size of φ15 mm x thickness 1.5 mm (in the orientation direction) from the same sintered block as the sintered body used in the previous experiment. Eight sheets were laminated and whether or not they could be bonded was examined. An experiment was conducted in an Ar atmosphere, heated to a temperature of 850° C. before applying pressure, and applied up to 40 MPa using a hydraulic press (FIG. 6). As a result of this experiment, a stack of eight unit neodymium sintered magnets was firmly joined and integrated. When the bonding strength was evaluated, it was found to be comparable to that of block-shaped neodymium sintered magnets.

これらの実験結果から上記第1及び第2の見極めポイントを共にクリアすることができ、当初想定した加工レスネオジム積層焼結磁石の実現に目途がたった。
本発明者らは以上の実験により得られた知見を基に本発明を完成させ、本発明のネオジム積層焼結磁石を製造することができた。
From these experimental results, we were able to clear both the first and second points, and we are now on track to realize the originally envisioned non-processing neodymium laminated sintered magnet.
The present inventors completed the present invention based on the knowledge obtained from the above experiments, and were able to manufacture the neodymium laminated sintered magnet of the present invention.

以下、複数枚の単位ネオジム焼結磁石が積層され、高温下(例えば700~950℃)で接合一体化かつデフォームされた本発明のネオジム積層焼結磁石について説明する。
まず初めに単位ネオジム焼結磁石を準備する。常法に従い、所定の成分となるように作製されたSC合金を粗粉砕、微粉砕、成形、配向、焼結することにより作製するが、本発明においては、単位ネオジム焼結磁石形状よりも大きな形状のネオジム焼結磁石体から切断等の加工により所定の形状サイズにする方法、またより好ましくは本願発明者等によりなされたNPLP法(特許第6280137号)によりその形状サイズの単位ネオジム焼結磁石を焼結上がりの状態で得る方法、の両者を採用することができる。単位ネオジム焼結磁石の厚みは種々選ぶことが可能であり薄ければ薄いほど渦電流損失の低減には有効であるが、生産性、コストの観点からは、加工する場合は材料ロス、加工コストとの関係で、NPLP法の場合は粉末充填性および生産性の観点から、単位ネオジム焼結磁石の厚みは0.5mm以上3mm以下が適切であり、より好ましくは1mm以上2.5mm以下を選択することが望ましい。厚さ0.5mm未満だと製造性が困難となり、厚さ3mm超だと絶縁性が不足するからである。又、ブロック状のネオジム焼結磁石体から切断等の加工を行って単位ネオジム焼結磁石を得る場合も、上記と同様の厚みとすることが好ましい。
Hereinafter, a neodymium laminated sintered magnet of the present invention in which a plurality of unit neodymium sintered magnets are laminated, joined together and deformed at a high temperature (for example, 700 to 950° C.) will be described.
First, a unit neodymium sintered magnet is prepared. It is produced by coarsely pulverizing, finely pulverizing, forming, orienting, and sintering an SC alloy prepared to have a predetermined composition according to a conventional method. A method of forming a neodymium sintered magnet body into a predetermined shape and size by processing such as cutting, or more preferably a unit neodymium sintered magnet of the shape and size by the NPLP method (Patent No. 6280137) made by the inventors of the present application. It is possible to adopt both methods of obtaining the sintered material in an as-sintered state. Various thicknesses can be selected for the unit neodymium sintered magnet, and the thinner it is, the more effective it is in reducing eddy current loss, but from the viewpoint of productivity and cost, material loss and processing cost are required when processing. In relation to this, in the case of the NPLP method, from the viewpoint of powder filling performance and productivity, the thickness of the unit neodymium sintered magnet is preferably 0.5 mm or more and 3 mm or less, and more preferably 1 mm or more and 2.5 mm or less. It is desirable to do so. This is because if the thickness is less than 0.5 mm, it will be difficult to manufacture, and if the thickness exceeds 3 mm, the insulation will be insufficient. Also, when a unit neodymium sintered magnet is obtained by cutting or other processing from a block-shaped neodymium sintered magnet, it is preferable to have the same thickness as above.

微粉末の平均粒径(D50)としては保磁力特性の観点から10μm以下、また粉砕性の観点からは1μm以上が好ましいが、より好ましくは5μm以下、2μm以上が適切である。粉末成型後の磁界印加により正方晶系NdFe14B型結晶を主とする微粉末のc軸方位をそろえ焼結体の磁気特性を向上させるが、そのc軸結晶配向度は90%以上でなければならない。90%未満だと磁気特性特に残留磁束密度Brが低下しEV用モータ等に適用する場合に十分な磁力を供給することができないからである。また、この結晶配向された方向は単位ネオジム焼結磁石の主面、すなわちネオジム積層焼結磁石の積層方向と直交する面に平行かつ一方向でなければならない。これにより、ネオジム積層焼結磁石の積層面を跨ぐ方向に発生する渦電流は積層面に形成された電気絶縁性化合物(酸化物、フッ化物、炭化物等)からなる高電気抵抗層により寸断され、渦電流損失を大幅に低減できるからである。 The average particle diameter (D50) of the fine powder is preferably 10 μm or less from the viewpoint of coercive force characteristics, and 1 μm or more from the viewpoint of crushability, but more preferably 5 μm or less and 2 μm or more. By applying a magnetic field after powder compaction, the c-axis orientation of the fine powder, which is mainly composed of tetragonal Nd 2 Fe 14 B type crystals, is aligned and the magnetic properties of the sintered body are improved, but the degree of c-axis crystal orientation is 90% or more. Must. This is because if it is less than 90%, the magnetic properties, particularly the residual magnetic flux density Br, will decrease, making it impossible to supply sufficient magnetic force when applied to an EV motor or the like. Further, the crystal orientation direction must be parallel to the main surface of the unit neodymium sintered magnet, that is, the plane perpendicular to the lamination direction of the neodymium laminated sintered magnet and in one direction. As a result, the eddy current generated in the direction across the laminated surfaces of the neodymium laminated sintered magnet is shredded by the high electrical resistance layer made of electrically insulating compounds (oxides, fluorides, carbides, etc.) formed on the laminated surfaces. This is because eddy current loss can be significantly reduced.

次にこのように準備された単位ネオジム焼結磁石を複数枚積層した積層体を構成する。積層体の積層数は単位ネオジム焼結磁石の厚みと最終的な製品寸法との兼ね合いで決定する。例えば、単位ネオジム焼結磁石の厚みが2mm、最終製品の積層方向サイズが30mmの場合には、単純計算により少なくとも15枚の単位ネオジム焼結磁石を積層する必要があるが、加圧方向と直交する2方向への変形を考慮すると16枚あるいは17枚もしくはそれ以上の積層数が必要となる。積層数の決定は、最終製品形状から計算された製品体積を単位ネオジム焼結磁石の体積で割ることにより見出すことができる。 Next, a laminate is constructed by stacking a plurality of unit neodymium sintered magnets prepared in this way. The number of layers in the laminate is determined based on the thickness of the unit neodymium sintered magnet and the final product dimensions. For example, if the thickness of the unit neodymium sintered magnet is 2 mm and the size of the final product in the stacking direction is 30 mm, it is necessary to stack at least 15 unit neodymium sintered magnets by simple calculation, but it is perpendicular to the pressing direction. Considering the deformation in two directions, 16 or 17 or more layers are required. Determination of the number of laminated layers can be found by dividing the product volume calculated from the final product shape by the volume of a unit neodymium sintered magnet.

単位ネオジム焼結磁石を所定枚数積層する場合に、その積層間に必要に応じてシリコーングリスなどの粘着剤、DyやTb等重希土類元素を含むフッ化物、酸化物や炭化物、LiFやCaFなどのフッ化物、SiOやAl等の酸化物、CaCO等の炭酸塩、Ca(OH)等の水酸化物、BaTiOの磁器粉末等を挿入することは、生産効率の向上や電気絶縁性の向上に有効である。特にDyやTb等の重希土類を含む化合物を挿入することはネオジム積層焼結磁石の磁気特性、特に保磁力の向上にとって極めて有効である。 When stacking a predetermined number of unit neodymium sintered magnets, adhesives such as silicone grease, fluorides, oxides and carbides containing heavy rare earth elements such as Dy and Tb, LiF and CaF may be applied between the stacks as necessary. Inserting fluorides, oxides such as SiO 2 and Al 2 O 3 , carbonates such as CaCO 3 , hydroxides such as Ca(OH) 2 , porcelain powder such as BaTiO 3 , etc. can improve production efficiency and Effective in improving electrical insulation. In particular, the insertion of a compound containing heavy rare earth elements such as Dy and Tb is extremely effective for improving the magnetic properties of the neodymium laminated sintered magnet, especially the coercive force.

こうして準備した単位ネオジム焼結磁石積層体を、内部が製品の形状サイズに設計された型にセットする。型の材質はカーボン、耐熱合金などが選択可能であり、その表面にはBN等の溶着防止用材料等をコーティングすることも型の寿命向上に有効である。この積層体、型および積層体に上下から圧力を加えるパンチをホットプレス(HP)装置あるいはSpark Plasma Sintering (SPS)装置といった雰囲気制御が可能で、1000℃程度までの高温に加熱しつつ高い圧力を印加することができる装置内にセットする。本発明では主としてSPS装置を使用して検討を行ったが、得られた結果の本質はHP装置でも同様であることは言うまでもない。最適な接合デフォーム条件は原料合金組成によって調整する必要があるが、加熱温度としては700℃以上かつ焼結体の焼結温度以下、加圧力は25MPa以上100MPa未満が好ましい。700℃未満の温度では焼結体のデフォーム速度が遅く接合体にひび割れが発生する等、生産性が伴わない。また焼結温度以上では低融点Ndリッチ相の溶出が顕著で積層体と型との溶着がはなはだしく積層体および型の損耗が激しい上に磁石成分の変化が大きく磁気特性が劣化するからである。加圧力25MPa未満では上記可能性検証段階で明らかになった低融点Ndリッチ相の溶出が発生し型との溶着が発生する、また100MPa以上の場合にはそのような大きな加圧力を印加できる装置が巨大となって量産に不向きだからである。 The unit neodymium sintered magnet laminate thus prepared is set in a mold whose interior is designed to match the shape and size of the product. The material of the mold can be selected from carbon, heat-resistant alloy, etc., and coating the surface with a material for preventing welding such as BN is also effective in improving the life of the mold. The atmosphere of the laminate, mold, and punch that applies pressure to the laminate from above and below can be controlled using a hot press (HP) device or Spark Plasma Sintering (SPS) device, which applies high pressure while heating to a high temperature of about 1000°C. Set it in a device that can apply voltage. Although the present invention was mainly studied using an SPS device, it goes without saying that the essence of the obtained results is the same for an HP device. The optimal bonding and deforming conditions need to be adjusted depending on the raw material alloy composition, but the heating temperature is preferably 700° C. or higher and the sintering temperature of the sintered body or lower, and the pressing force is preferably 25 MPa or more and less than 100 MPa. If the temperature is lower than 700° C., the deformation rate of the sintered body is slow and cracks occur in the joined body, resulting in poor productivity. Moreover, above the sintering temperature, the low melting point Nd-rich phase is noticeably eluted, the laminate and the mold are significantly welded together, the laminate and the mold are severely worn out, and the magnet components change significantly, deteriorating the magnetic properties. If the pressure is less than 25 MPa, the low melting point Nd-rich phase that was revealed in the above feasibility verification stage will elute and weld with the mold, and if it is 100 MPa or more, a device that can apply such a large pressure will be required. This is because they are so large that they are not suitable for mass production.

こうして作製したネオジム積層焼結磁石は、接合面に酸化膜やフッ化物膜等が形成され接合層を跨ぐ電流の流れを遮断する。DyあるいはTb等の重希土類元素からなるフッ化物、酸化物を挟んだ場合には接合デフォーム工程後に追加熱処理を施すことで粒界拡散(Grain Boundary Diffusion、以下GBD)を生じさせ、保磁力特性を大幅に向上させることができる。通常の焼結体表面からその内部にGBDさせるのと同様、一般的に良く知られているようにGBD処理温度は800℃以上、950℃未満、またGBD処理時間は5時間から20時間が必要である。GBD処理時の雰囲気は真空中で良い。ここでGBD処理温度が800℃未満の場合には保磁力の向上が十分ではなく、950℃以上の場合にはBr低下を引き起こす。また、熱処理時間が5時間未満の場合には保磁力向上が不十分であり、20時間を超える場合には生産性が悪くなる。 In the neodymium laminated sintered magnet produced in this way, an oxide film, a fluoride film, etc. are formed on the bonding surface to block the flow of current across the bonding layer. When fluorides or oxides made of heavy rare earth elements such as Dy or Tb are sandwiched, additional heat treatment is performed after the bonding and deforming process to cause grain boundary diffusion (hereinafter referred to as GBD) and improve coercive force characteristics. can be significantly improved. Similar to the process of performing GBD from the surface of a normal sintered body to its interior, as is generally well known, the GBD processing temperature is 800°C or higher and lower than 950°C, and the GBD processing time is 5 to 20 hours. It is. The atmosphere during GBD processing may be a vacuum. Here, when the GBD treatment temperature is less than 800°C, the coercive force is not sufficiently improved, and when it is 950°C or more, Br decreases. Furthermore, if the heat treatment time is less than 5 hours, the improvement in coercive force will be insufficient, and if it exceeds 20 hours, productivity will deteriorate.

本発明にかかるネオジム積層焼結磁石にはその特殊な工程に起因する特徴的な構造が生成している。ここでは以下に示す試験を実施しその組織的特徴を明らかにした。まず、表1に記載の成分を有する焼結体を作製し、そこからφ14.5mm、厚さ1.3mm(配向方向)の円形焼結体を準備し、これらを3枚積み重ねたトータル厚さ3.9mmの積層体を4組構成した。積層体の2つの層間に表3に示す酸化物、フッ化物の混合ペーストを2等分して各層間に塗布した。その際これら粉末を層間に塗布しやすくするよう流動パラフィンを適量混ぜ合せスラリー状にして塗布した。この塗布量は焼結体重量に対してTb量が0.5wt%になるように設定した。試験3においては、Tb:Nd=1:1の元素比となるようにし、又、試験4においてはTbFとTbからのTb量が等量かつその合計が0.5wt%となるように秤量した。 The neodymium laminated sintered magnet according to the present invention has a characteristic structure resulting from its special process. Here, we conducted the following tests to clarify its organizational characteristics. First, a sintered body having the components listed in Table 1 was prepared, and from it a circular sintered body with a diameter of 14.5 mm and a thickness of 1.3 mm (in the orientation direction) was prepared. Four sets of 3.9 mm laminates were constructed. A mixed paste of oxides and fluorides shown in Table 3 was divided into two equal parts and applied between the two layers of the laminate. At that time, an appropriate amount of liquid paraffin was mixed with these powders to make it easier to apply between the layers, and the powder was applied in the form of a slurry. The coating amount was set so that the amount of Tb was 0.5 wt% relative to the sintered weight. In Test 3, the element ratio was set to Tb:Nd=1:1, and in Test 4, the amount of Tb from TbF 3 and Tb 4 O 7 was equal and the total amount was 0.5 wt%. It was weighed as follows.

Figure 2024016680000003
Figure 2024016680000003

この3層積層体を図2に示した円柱形の型に装填し、上記と同じSPS装置LABOX-325Rを使用して最高温度700℃、加圧力50MPa条件で接合デフォームさせた。3枚の積層体は完全に接合されており、周囲からのNdリッチ相の溶出は観測されず、厚み方向寸法は3.9mmから3.6mmないし3.7mmにまで縮小し変形率6%程度のデフォーム加工であった。この積層一体化焼結体を真空中で890℃、20時間のGBD熱処理を行った後、サンプル厚み方向に垂直に切断し接合面(接合層の断面)を含む断面組織観察を行った。使用した測定装置はHITACHI製SU3500走査型電子顕微鏡(SEM)およびHORIBA製EMAX ENERGY EX-250エネルギー分散型X線分析装置(EDS)である。 This three-layer laminate was loaded into a cylindrical mold shown in FIG. 2, and bonded and deformed using the same SPS device LABOX-325R as above at a maximum temperature of 700° C. and a pressure of 50 MPa. The three laminates were completely bonded, no elution of the Nd-rich phase from the surroundings was observed, and the thickness direction dimension was reduced from 3.9 mm to 3.6 mm or 3.7 mm, with a deformation rate of about 6%. It was a deforming process. This laminated integrated sintered body was subjected to GBD heat treatment at 890° C. for 20 hours in a vacuum, and then cut perpendicularly to the sample thickness direction to observe the cross-sectional structure including the bonding surface (cross section of the bonding layer). The measurement devices used were a HITACHI SU3500 scanning electron microscope (SEM) and a HORIBA EMAX ENERGY EX-250 energy dispersive X-ray spectrometer (EDS).

図7には倍率100倍、500倍、1000倍、2000倍で撮影したSEM組成像を示す。ここでは原子番号が重い元素が多く存在する領域は白く、逆に軽い元素が多い領域は黒くなるので、白っぽい領域は希土類元素を多く含む領域、黒っぽい領域はこれが比較的少ない領域であることがわかる。図7では接合面に沿って白っぽい領域が形成されていることが視認でき、ここには希土類元素が多く存在することがわかる。その厚みの5視野、各視野3点の合計15点で計測した厚みの平均値が、前記の表3に示されている。表3に示されるように、接合面(接合層)厚さの平均値は、DyFやTbF等のフッ化物塗布材が最も薄い4μm弱、TbとNdの酸化物混合材が最も厚い18.5μmであった。 FIG. 7 shows SEM composition images taken at magnifications of 100x, 500x, 1000x, and 2000x. Here, regions where there are many elements with heavy atomic numbers are white, and regions where there are many light elements are black, so it can be seen that whitish regions are regions that contain many rare earth elements, and dark regions are regions that contain relatively few rare earth elements. . In FIG. 7, it can be seen that a whitish region is formed along the bonding surface, and it can be seen that many rare earth elements are present in this region. Table 3 above shows the average value of the thickness measured at 5 visual fields and 3 points in each visual field, for a total of 15 points. As shown in Table 3, the average value of the bonding surface (bonding layer) thickness is the thinnest for fluoride coating materials such as DyF 3 and TbF 3 , just under 4 μm, and for the oxides of Tb 4 O 7 and Nd 2 O 3 The thickness of the mixed material was 18.5 μm.

次に、試験4で作製したネオジム積層焼結磁石の切断面において倍率1000倍でEDS測定を行って得た元素マッピング結果を図8と図9に示す。接合面の大部分の領域(希土類リッチな領域)では図8に示すようにNd、Pr、O、Fが接合面に沿って連続的に存在しており、ここではFeは存在していない。一方、図9が示す領域(接合面の一部に存在するFeリッチメタル領域)ではFeが多く存在し、Nd、Pr、O、Fはほとんど存在しない。すなわち、接合面は形態的には厚みが8.60μmの連続した構造を有しているように見えるが、実は希土類酸化物、希土類フッ化物からなる領域(希土類リッチな領域)とFeリッチな領域から構成されていることが判明した。
以上の観察結果は試験4だけではなく試験1から3においても同様に観測されており、ネオジム積層焼結磁石特有の構造である。すなわち、希土類酸化物やフッ化物は電気抵抗が高いため接合面トータルの電気抵抗率を向上させると同時に、Feリッチな領域が、接合層を介して隣接する単位ネオジム焼結磁石の間を跨ぐようにしてブリッジ状に強固に連結し、ネオジム積層焼結磁石の高強度を担保する役目を担っているとみなすことができる。
Next, FIGS. 8 and 9 show the elemental mapping results obtained by performing EDS measurement at a magnification of 1000 times on the cut surface of the neodymium laminated sintered magnet produced in Test 4. As shown in FIG. 8, in most regions of the joint surface (rare earth rich region), Nd, Pr, O, and F exist continuously along the joint surface, and Fe is not present here. On the other hand, in the region shown in FIG. 9 (Fe-rich metal region existing in a part of the bonding surface), a large amount of Fe exists, and almost no Nd, Pr, O, and F exist. In other words, although the bonding surface appears to have a continuous structure with a thickness of 8.60 μm, it actually consists of a region made of rare earth oxides and rare earth fluorides (rare earth rich region) and an Fe rich region. It was found that it consists of.
The above observation results were similarly observed not only in Test 4 but also in Tests 1 to 3, and are a structure unique to neodymium laminated sintered magnets. In other words, rare earth oxides and fluorides have high electrical resistance, so they improve the total electrical resistivity of the bonding surface, and at the same time, they are used so that the Fe-rich region straddles between adjacent unit neodymium sintered magnets via the bonding layer. It can be considered that the neodymium sintered magnets are strongly connected in a bridge shape and play a role in ensuring the high strength of the neodymium laminated sintered magnet.

以下、本発明のネオジム積層焼結磁石の具体的態様について実施例および比較例をもって詳述するが、本発明の内容はこれに限定されるものではない。
[実施例1および実施例2]
Hereinafter, specific embodiments of the neodymium laminated sintered magnet of the present invention will be described in detail with reference to Examples and Comparative Examples, but the content of the present invention is not limited thereto.
[Example 1 and Example 2]

以下の表4に示す組成のSC合金を作製した。これを水素解砕後、カプリル酸メチルを0.05wt%混合して撹拌機Piccoloを使用し混錬および粗粉砕を行った。粗粉砕後の原料をホソカワミクロン株式会社製ジェットミル装置MJT-LABにて窒素雰囲気下ジェットミル粉砕を行った。粉砕圧力は0.6MPa、分級ローターの回転数を調整することにより平均粒径D50を3μm前後に定めた。こうして得た微粉末原料にラウリン酸メチル0.07wt%を混合して撹拌機Piccoloで混錬し焼結前原料とした。これをカーボン容器に充填密度3.6g/ccで充填後、最大4Tのパルス磁界を複数回印加して粉末粒子を配向させた。この配向体をカーボンモールドごと焼結炉に投入し、真空中で1030℃、4時間の焼結を行いブロック状の焼結体を得た。これから切り出した7mm立方体形状の評価用サンプルを用いて日本電磁測器株式会社製パルスBHトレーサーPBH―1000にて評価した結果、残留磁束密度Br=13.8kG、保磁力iHc=19.9kOeであった。 SC alloys having the compositions shown in Table 4 below were produced. After crushing with hydrogen, 0.05 wt % of methyl caprylate was mixed therein, and the mixture was kneaded and coarsely pulverized using a Piccolo stirrer. The raw material after coarse pulverization was jet milled in a nitrogen atmosphere using a jet mill device MJT-LAB manufactured by Hosokawa Micron Corporation. The crushing pressure was 0.6 MPa, and the average particle diameter D50 was set at around 3 μm by adjusting the rotation speed of the classification rotor. The thus obtained fine powder raw material was mixed with 0.07 wt % of methyl laurate and kneaded using a Piccolo stirrer to obtain a pre-sintering raw material. After filling this into a carbon container at a packing density of 3.6 g/cc, a pulsed magnetic field of a maximum of 4 T was applied multiple times to orient the powder particles. This oriented body was put into a sintering furnace together with the carbon mold, and sintered in vacuum at 1030° C. for 4 hours to obtain a block-shaped sintered body. Using a 7 mm cube-shaped evaluation sample cut out from this sample, evaluation was performed using a pulse BH tracer PBH-1000 manufactured by Nippon Denji Sokki Co., Ltd. As a result, the residual magnetic flux density Br = 13.8 kG and the coercive force iHc = 19.9 kOe. Ta.

Figure 2024016680000004
Figure 2024016680000004

又、上記ブロック状の焼結体から、目標サイズ15.24mmx4.24mm(配向方向)x1.8mmの単位ネオジム焼結磁石を加工により所定枚数準備した。これとは別に、積層間に塗布する材料を準備した。その成分は表3に示した試験1および試験4である。今回は単位ネオジム積層焼結磁石の積層数を24とした。またこの積層体を装填する型の内形は目標製品サイズ、具体的には、15.5(±0.1)mmx5.0(±0.05)mm(配向方向)に設定し、加圧方向サイズは上下パンチをセットできるように目標製品サイズ以上の長さを確保した。 Further, a predetermined number of unit neodymium sintered magnets with a target size of 15.24 mm x 4.24 mm (orientation direction) x 1.8 mm were prepared from the block-shaped sintered body by processing. Separately, materials to be applied between the layers were prepared. The components are Test 1 and Test 4 shown in Table 3. This time, the number of laminated layers of the unit neodymium laminated sintered magnet was set to 24. The inner shape of the mold into which this laminate is loaded is set to the target product size, specifically, 15.5 (±0.1) mm x 5.0 (±0.05) mm (orientation direction), and pressure is applied. The direction size was ensured to be longer than the target product size so that the upper and lower punches could be set.

その後、試験1及び試験4用の塗布物質を層間に塗布して2種類の24枚積層体を作製した。それぞれを実施例1および実施例2とする。その作製方法の概要を図10に示す。まず、10a)に示す塗布用の治具を準備する。この治具には単位ネオジム焼結磁石寸法よりも少し小さ目の貫通孔が開いている。この貫通孔の厚みは均一にその穴に塗布材料を充填すれば所定の塗布量になるように設計されている。10b)に示すようにして、貫通孔に沿って塗布材料を充填してヘラで上面をこすり取り計算値の塗布量になるように調整する。その後この治具を取り去り、塗布材料が塗布された単位ネオジム焼結磁石を取り出して重ねていくが、その際に10c)に示されるような積層体保持治具を準備すれば積層体の運搬などに便利である。もちろん、塗布用治具はこれに限られない。要は所定量の塗布材料が塗れてそれを簡単に取り出せて積層出来るようなものであればよい。 Thereafter, the coating materials for Test 1 and Test 4 were applied between the layers to produce two types of 24-sheet laminates. These are referred to as Example 1 and Example 2, respectively. An outline of the manufacturing method is shown in FIG. First, a coating jig shown in 10a) is prepared. This jig has a through hole that is slightly smaller than the size of the unit neodymium sintered magnet. The thickness of this through-hole is designed so that a predetermined amount of coating can be achieved if the hole is evenly filled with the coating material. As shown in 10b), the coating material is filled along the through hole and the upper surface is scraped off with a spatula to adjust the coating amount to the calculated value. After that, this jig is removed, and the unit neodymium sintered magnets coated with the coating material are taken out and stacked. At that time, if a laminate holding jig as shown in 10c) is prepared, the laminate can be transported. It is convenient for Of course, the application jig is not limited to this. In short, any material that can be coated with a predetermined amount of coating material and that can be easily taken out and laminated will suffice.

次にこのようにして準備した実施例1および実施例2それぞれの24枚1組の積層体を上記製品寸法に合わせて作製したSPS用のカーボン製型にセットした。型は、SPS処理後のサンプル取出しを容易にするために割り型構造とした。この割り型に上下パンチを合わせつつ積層体をセットした。割り型を使用するので割り型を保持するためのいわゆるダイも必要である。このようにして組み上げた単位ネオジム焼結磁石積層体、上下パンチ、割り型、ダイを株式会社シンターランド製SPS装置(LABOX-325R)内にセットし、上パンチには温度測定用のK熱電対を取りつけた。SPS装置内をロータリーポンプで真空に引きながら20Pa程度の真空度まで排気した後、上下パンチを介して数百Aの大電流を通電しながら熱電対表示が850℃になるまで加熱した。温度が850℃に到達した後、上下パンチにより単位ネオジム焼結磁石積層体に65MPaの圧力を印加し、接合デフォーム処理を行った。この実験では塗布材料が実施例1と実施例2とで異なる積層体をSPS処理したがSPS加熱加圧条件は同一とした。その結果を図11に、また最終寸法を表5に示す。 Next, a set of 24 laminates of each of Example 1 and Example 2 prepared in this way was set in a carbon mold for SPS manufactured according to the above product dimensions. The mold had a split structure to facilitate sample removal after SPS treatment. The laminate was set in this split mold while aligning the upper and lower punches. Since a split mold is used, a so-called die is also required to hold the split mold. The unit neodymium sintered magnet laminate, upper and lower punches, split molds, and die assembled in this way were set in an SPS device (LABOX-325R) manufactured by Sinterland Co., Ltd., and the upper punch was equipped with a K thermocouple for temperature measurement. I installed it. After evacuating the inside of the SPS device to a degree of vacuum of about 20 Pa using a rotary pump, the device was heated until the thermocouple reading reached 850° C. while passing a large current of several hundred A through upper and lower punches. After the temperature reached 850° C., a pressure of 65 MPa was applied to the unit neodymium sintered magnet laminate using upper and lower punches to perform a bonding and deforming process. In this experiment, laminates were subjected to SPS treatment using different coating materials in Example 1 and Example 2, but the SPS heating and pressing conditions were the same. The results are shown in FIG. 11, and the final dimensions are shown in Table 5.

Figure 2024016680000005
Figure 2024016680000005

このようにこれら二つのネオジム積層焼結磁石の寸法形状はほぼ同じで外見上も全く区別がつかない。加圧方向と平行に存在する対向する2対の外側面(すなわち、積層状態が視認できる2対の外側面)の平坦度を、センサーヘッド径が0.05mmの表面粗さ計で評価したところ、センター値を中心にしてプラスマイナス0.05mmの範囲に入っていることを確認した。これは、積層段階で不可避的に生じる積層ずれがSPS過程により各単位ネオジム焼結磁石が変形により型内面に押し付けられこの積層ずれが修復されたことによるものである。よって、本発明では、外側面に研磨や研削等の機械加工を施さなくても、外側面は平坦である。これにより、ネオジム積層焼結磁石のサイズは型内面で規定される寸法と同寸法となり、その密度はほぼ100%と見積もることができる。このことにより、上記の高いBr特性が得られるわけである。 As described above, these two neodymium laminated sintered magnets have almost the same size and shape, and are completely indistinguishable from each other in appearance. The flatness of two pairs of opposing outer surfaces parallel to the pressurizing direction (i.e., two pairs of outer surfaces where the laminated state can be visually recognized) was evaluated using a surface roughness meter with a sensor head diameter of 0.05 mm. It was confirmed that the value was within a range of plus or minus 0.05 mm around the center value. This is because the lamination misalignment that inevitably occurs during the lamination stage is corrected by the SPS process in which each unit neodymium sintered magnet is deformed and pressed against the inner surface of the mold. Therefore, in the present invention, the outer surface is flat even without mechanical processing such as polishing or grinding. As a result, the size of the neodymium laminated sintered magnet becomes the same as the dimension defined by the inner surface of the mold, and its density can be estimated to be approximately 100%. This allows the above-mentioned high Br characteristics to be obtained.

このSPS工程後のネオジム積層焼結磁石には後工程として真空中で890℃、20時間のGBD処理を施した。その結果得られた実施例1および実施例2にかかるネオジム積層焼結磁石の磁気特性を加工レスでそのままのサイズで評価した結果を表6に示す。
この際使用した測定装置は株式会社玉川製作所製の高感度振動試料型磁力計TM-VSM70100-SMS装置であり、超電導磁石コイルにより最大8Tの磁界を印加して特性を評価した。
The neodymium laminated sintered magnet after this SPS process was subjected to GBD treatment at 890° C. for 20 hours in a vacuum as a post-process. Table 6 shows the results of evaluating the magnetic properties of the resulting neodymium laminated sintered magnets according to Examples 1 and 2 without processing and using the same size.
The measuring device used at this time was a highly sensitive vibrating sample magnetometer TM-VSM70100-SMS device manufactured by Tamagawa Seisakusho Co., Ltd., and the characteristics were evaluated by applying a maximum magnetic field of 8 T using a superconducting magnet coil.

Figure 2024016680000006
Figure 2024016680000006

以上の結果より、本実施例にかかるネオジム積層焼結磁石は非常に高い磁気特性を有すること、実施例1と実施例2とは層間に積層するTb化合物の種類が異なるが、Tb含有量を同一に調整すれば、同等の保磁力が得られることも判明した。 From the above results, the neodymium laminated sintered magnet according to this example has very high magnetic properties.Although the type of Tb compound laminated between the layers is different between Example 1 and Example 2, the Tb content is It was also found that the same coercive force can be obtained if the same adjustment is made.

[比較例1]
温度条件を945℃、加圧力30MPaに変更した以外は実施例1と同じ条件でSPS処理を行った結果を図12に示す。液相が溶出し割り型との反応が見られるとともに、サンプルの上面および中央部に接合面を跨ぐワレが発生した。これは適切な温度範囲を超えかつ加圧力が低かったために低融点Ndリッチ相が溶出して割り型と接触、反応し、冷却途上でワレが生じた結果である。
[Comparative example 1]
FIG. 12 shows the results of SPS treatment performed under the same conditions as in Example 1, except that the temperature conditions were changed to 945° C. and the pressure was changed to 30 MPa. The liquid phase was eluted and a reaction with the split mold was observed, and cracks spanning the joint surface were generated on the top and center of the sample. This is because the low melting point Nd-rich phase was eluted and came into contact with the split mold, reacting with it, and cracking occurred during cooling because the temperature exceeded the appropriate temperature range and the applied pressure was low.

比較例1は加熱温度、加圧力条件が適切でなく、低融点Ndリッチ粒界相の溶出が顕著であったため、磁石成分が変化している可能性がある。この溶出はネオジム積層焼結磁石内部から型内壁に向かって起こっていることから、ネオジム積層焼結磁石の部位による成分の違いが生じている可能性がある。そこで内壁に近い磁石表面から50μm未満の表層部位と磁石中心部(表面から50μm以上離れた領域)とで成分の違いがあるか否かについて、SEM-EDXの倍率を50倍程度の低倍率で調査した。表7に、実施例1の場合と比較して、主な元素に関する結果を掲載する。 In Comparative Example 1, the heating temperature and pressurizing pressure conditions were not appropriate, and the elution of the low melting point Nd-rich grain boundary phase was significant, so the magnet components may have changed. Since this elution occurs from the inside of the neodymium laminated sintered magnet toward the inner wall of the mold, there is a possibility that the components differ depending on the part of the neodymium laminated sintered magnet. Therefore, to determine whether there is a difference in composition between the surface layer region less than 50 μm from the magnet surface near the inner wall and the magnet center (region more than 50 μm from the surface), the magnification of SEM-EDX was set at a low magnification of about 50 times. investigated. Table 7 lists the results regarding the main elements in comparison with the case of Example 1.

Figure 2024016680000007
Figure 2024016680000007

この結果から、比較例1の場合には、表層近くの成分は希土類元素の総量が34wt%程度であるのに対して内部は約30wt%と少なくなっており、その差は約4wt%あることがわかる。念のため実施例1でも同様の分析を行ったが、表層部と内部での、比較例1のような大きな希土類元素の総量の差異は認められなかった(差は0.11wt%)。これはNdリッチ粒界相の溶出を制御した本願発明にかかるネオジム積層焼結磁石の特徴と言える。 From this result, in the case of Comparative Example 1, the total amount of rare earth elements near the surface layer is about 34 wt%, while the inside is about 30 wt%, a difference of about 4 wt%. I understand. As a precaution, a similar analysis was conducted for Example 1, but no large difference in the total amount of rare earth elements was observed between the surface layer and the interior as in Comparative Example 1 (the difference was 0.11 wt%). This can be said to be a feature of the neodymium laminated sintered magnet according to the present invention in which the elution of the Nd-rich grain boundary phase is controlled.

比較例1にかかるネオジム積層焼結磁石についても取り出し可能な最大サイズ(15.5mmx5.0mmx20.0mm)のサンプルについて真空中で890℃、20時間の追加熱処理を行い磁気特性を取得した。その結果を表8に示す。 Regarding the neodymium laminated sintered magnet according to Comparative Example 1, a sample of the maximum removable size (15.5 mm x 5.0 mm x 20.0 mm) was subjected to additional heat treatment in vacuum at 890° C. for 20 hours to obtain magnetic properties. The results are shown in Table 8.

Figure 2024016680000008
Figure 2024016680000008

表6より実施例にかかるネオジム積層焼結磁石においては非常に高い磁気特性が得られており、保磁力iHcと最大磁気エネルギー積(BH)maxとの総和Magic Number(以下、MNと表記する)は77以上と世界最高の性能が得られた。一方で、低融点Ndリッチ相が溶出して破損された比較例1の試料では、Br特性は高いものの、希土類元素含有量が低下したことに起因すると考えられるiHc特性および角型性が劣化するためにMNは69弱となり(表8)、普通の手法で得られる平凡な磁気特性にとどまった。 From Table 6, very high magnetic properties are obtained in the neodymium laminated sintered magnet according to the example, and the sum of the coercive force iHc and the maximum magnetic energy product (BH) max is Magic Number (hereinafter referred to as MN). The world's highest performance was achieved with a score of 77 or higher. On the other hand, in the sample of Comparative Example 1, which was damaged due to the elution of the low melting point Nd-rich phase, although the Br properties were high, the iHc properties and squareness deteriorated, which is thought to be due to the decrease in the rare earth element content. Therefore, the MN was a little less than 69 (Table 8), and the magnetic properties remained mediocre that could be obtained by ordinary methods.

[実施例3および実施例4]
表1に示す組成AのSC原料を使用し、表3の試験1および試験4の塗布材料を使用して0.5wt%のTb量となるように単位ネオジム焼結磁石の積層体を準備して、SPS条件として加熱温度700℃、SPS加圧力を65MPaとしたこと以外は実施例1および実施例3と同様の条件でネオジム積層焼結磁石を作製した。その磁気特性を表9に示す。
[Example 3 and Example 4]
A laminate of unit neodymium sintered magnets was prepared using the SC raw material with composition A shown in Table 1 and the coating materials of Test 1 and Test 4 in Table 3 so that the Tb amount was 0.5 wt%. A neodymium laminated sintered magnet was produced under the same conditions as in Example 1 and Example 3, except that the SPS conditions were a heating temperature of 700° C. and an SPS pressure of 65 MPa. Its magnetic properties are shown in Table 9.

Figure 2024016680000009
Figure 2024016680000009

実施例1および実施例2同様、非常に高い磁気特性を示した。その接合面断面観察の結果、それぞれは図8および図9で示した接合面の特徴、すなわち実施例3においては接合層の平均厚みは3.71μm、実施例4では8.60μmであり、かつ、両実施例とも図9で示すFeリッチメタル相領域および、図8及び図9で示す希土類酸化物および希土類フッ化物相が見られた。接合層断面のEDSによる元素分析の結果、実施例3のネオジム積層焼結磁石における接合層中に占める希土類リッチな領域の体積割合は約20%であり、実施例4のネオジム積層焼結磁石における接合層中に占める希土類リッチな領域の体積割合は約80%であった。
この異なる希土類化合物層を有する実施例3および実施例4にかかるネオジム積層焼結磁石について、渦電流損失の測定を行った。その際には表10に示すようにブロック磁石から加工によりほぼ同形状に作製した連続体ネオジム焼結磁石と、単位ネオジム焼結磁石を樹脂接着により積層し、ほぼ同形状に作製した樹脂接着磁石も同時に測定した。これにより、本発明にかかるネオジム積層焼結磁石の渦電流損失の程度を積層していない場合と完全絶縁された樹脂接着の場合とを比較した。
Similar to Examples 1 and 2, very high magnetic properties were exhibited. As a result of cross-sectional observation of the bonding surfaces, the characteristics of the bonding surfaces shown in FIGS. 8 and 9, namely, the average thickness of the bonding layer in Example 3 was 3.71 μm, and in Example 4 was 8.60 μm, and In both Examples, the Fe-rich metal phase region shown in FIG. 9 and the rare earth oxide and rare earth fluoride phases shown in FIGS. 8 and 9 were observed. As a result of elemental analysis by EDS of the cross section of the bonding layer, the volume ratio of the rare earth-rich region in the bonding layer in the neodymium laminated sintered magnet of Example 3 was approximately 20%, and that of the neodymium laminated sintered magnet of Example 4. The volume ratio of the rare earth-rich region in the bonding layer was approximately 80%.
Eddy current loss was measured for the neodymium laminated sintered magnets of Examples 3 and 4 having these different rare earth compound layers. In this case, as shown in Table 10, a continuum neodymium sintered magnet fabricated from a block magnet to have almost the same shape and a unit neodymium sintered magnet are laminated by resin bonding to create a resin-bonded magnet fabricated in substantially the same shape. were also measured at the same time. As a result, the degree of eddy current loss of the neodymium laminated sintered magnet according to the present invention was compared between the case where the neodymium layer was not laminated and the case where the magnet was completely insulated and bonded with resin.

Figure 2024016680000010
Figure 2024016680000010

本測定に用いた測定システムを図13に示す。まず、円形断面を有する積層鉄心からなるC型ヨークを準備し、これに積層サンプルをセットする9mmギャップを設けた。このC型ヨークを励磁するコイルをギャップと反対側のヨーク周囲に取付け、測定対象サンプルには図14で示すようにターン数50のサーチコイルをC型ヨークが発生する磁界方向、すなわち配向方向と直交するように設けた。C型ヨークには交流大電流を流すため、図15のように固定して測定を行った。測定結果を図16および図17に示す。
図16には電流値5Aの場合の周波数200Hzまでの渦電流損失の周波数依存性を示す。ここから、まず樹脂接着サンプルの渦電流損失が最も小さく、連続体サンプルが最も大きいという当然の結果が得られた。その上で、接合層の高電気抵抗膜の平均厚みが3.71μmの渦電流損失は連続体の渦電流損失とほぼ同等であること、一方で平均厚みが8.60μmの場合では損失レベルは樹脂接着サンプルと同等であることが判明した。
一方で、図17には、より小さい電流値2Aで、より高い周波数500Hzの場合の結果を示すが、ここでは全体的傾向は図16と同じであるが、平均厚み3.71μmでも連続体サンプルに対して損失の低下が見られることが分かる。一般的に周波数が高くなると磁界が入り込む距離、いわゆるスキンデプスが小さくなるので、高抵抗膜厚みが小さくても磁界分断効果が高まり渦電流損失の低下が顕在化してくると予想される。すなわち、励磁周波数が高くなると高電気抵抗膜厚3.71μmでも渦電流損失低減に効果が出てくると考えられる。
The measurement system used in this measurement is shown in FIG. First, a C-shaped yoke made of a laminated iron core having a circular cross section was prepared, and a 9 mm gap was provided in the yoke to set the laminated sample. A coil that excites this C-shaped yoke is attached around the yoke on the opposite side to the gap, and a search coil with 50 turns is attached to the sample to be measured, as shown in Figure 14, in the direction of the magnetic field generated by the C-shaped yoke, that is, in the orientation direction. They were set so that they were perpendicular to each other. In order to pass a large alternating current through the C-type yoke, it was fixed as shown in FIG. 15 and measurements were taken. The measurement results are shown in FIGS. 16 and 17.
FIG. 16 shows the frequency dependence of eddy current loss up to a frequency of 200 Hz when the current value is 5 A. From this, the obvious result was that the resin-bonded sample had the smallest eddy current loss, and the continuum sample had the largest. On top of that, the eddy current loss when the average thickness of the high electrical resistance film of the bonding layer is 3.71 μm is almost equivalent to the eddy current loss of the continuum, while when the average thickness is 8.60 μm, the loss level is It was found to be equivalent to the resin bonded sample.
On the other hand, Figure 17 shows the results for a lower current value of 2 A and a higher frequency of 500 Hz, where the overall trend is the same as in Figure 16, but even with an average thickness of 3.71 μm, the continuum sample It can be seen that there is a decrease in loss compared to the above. Generally, as the frequency increases, the distance into which the magnetic field penetrates, the so-called skin depth, decreases, so even if the high-resistance film thickness is small, it is expected that the magnetic field separation effect will increase and the reduction in eddy current loss will become apparent. That is, it is considered that as the excitation frequency becomes higher, even a high electrical resistance film thickness of 3.71 μm becomes effective in reducing eddy current loss.

[実施例5および実施例6]
本実施例では本発明者らが以前に考案したNPLP法(New-PressLess Process、特許第6280137号、WO2016/047593)により、以下の表11の組成Cを有する単位ネオジム焼結磁石10個を作製し、SPS装置を使用した接合・デフォーム処理試験を実施した。NPLP法により作製した単位ネオジム焼結磁石の重量、サイズ等を表12に示す。
[Example 5 and Example 6]
In this example, 10 unit neodymium sintered magnets having the composition C shown in Table 11 below were manufactured using the NPLP method (New-PressLess Process, Patent No. 6280137, WO2016/047593) previously devised by the present inventors. Then, a bonding/deforming test was conducted using an SPS device. Table 12 shows the weight, size, etc. of unit neodymium sintered magnets produced by the NPLP method.

Figure 2024016680000011
Figure 2024016680000011

Figure 2024016680000012
Figure 2024016680000012

1個1個の単位ネオジム焼結磁石の重量、サイズは同一ではなく、重量のバラツキもあればサイズも異なっている。しかし、これに表3試験2の塗布材料を層間に塗布しつつ積層し、加熱温度850℃、加圧力60MPaのSPS処理を施すことにより、幅15.91mm、配向方向7.61mm、加圧方向厚さ17.05mmの直方体形状ネオジム積層焼結磁石を作製し、さらにこれに真空中で875℃、16時間のGBD処理を行い磁気特性を評価した(実施例5)。図18に実施例5にかかるネオジム積層焼結磁石の写真を、表13に得られた磁気特性を示す。また、表12と同程度の重量、寸法バラツキを有する10枚の単位ユニット焼結磁石を積層する際に表3の試験5の塗布材料を使用した場合の磁気特性を同じく表13に示す(実施例6)。各実施例における型に押し付けられた対抗面の平坦度は上記と同様の計測方法で評価したところ、最大で0.1mmであり、切断により単位ネオジム積層磁石を準備した場合とほぼ同じであった。 The weight and size of each unit neodymium sintered magnet are not the same, and there are variations in weight and size. However, by laminating the coating material of Table 3 Test 2 between the layers and applying SPS treatment at a heating temperature of 850°C and a pressing force of 60 MPa, the width was 15.91 mm, the orientation direction was 7.61 mm, and the pressing direction was 15.91 mm. A rectangular parallelepiped neodymium laminated sintered magnet with a thickness of 17.05 mm was prepared, and then subjected to GBD treatment in vacuum at 875° C. for 16 hours to evaluate its magnetic properties (Example 5). FIG. 18 shows a photograph of the neodymium laminated sintered magnet according to Example 5, and Table 13 shows the magnetic properties obtained. Table 13 also shows the magnetic properties when the coating material of Test 5 in Table 3 was used to stack 10 unit sintered magnets with the same weight and size variations as in Table 12. Example 6). The flatness of the opposing surface pressed against the mold in each example was evaluated using the same measurement method as above, and was found to be at most 0.1 mm, which is almost the same as when a unit neodymium laminated magnet was prepared by cutting. .

Figure 2024016680000013
Figure 2024016680000013

このように、塗布材料としてTb化合物を使用してもDy化合物を使用しても高いBrを有しつつ、保磁力も約20kOe以上、MNも77.8および74.0という世界最高の磁気特性を有するネオジム積層焼結磁石を得た。これにより、単位ネオジム焼結磁石の作製方法は、NPLP法であれ加工であれ、コスト的に優位な方法で準備すれば足り、磁気特性そのものは層間に挟むGBD塗布材料を適切に選択すればよいことがわかる。 In this way, regardless of whether a Tb compound or a Dy compound is used as the coating material, it has high Br, coercive force of about 20 kOe or more, and MN of 77.8 and 74.0, which are the world's best magnetic properties. A neodymium laminated sintered magnet having the following properties was obtained. As a result, unit neodymium sintered magnets can be manufactured using any cost-effective method, whether it is the NPLP method or processing, and the magnetic properties themselves can be determined by appropriately selecting the GBD coating material sandwiched between the layers. I understand that.

これまでの実施例で、SPS加工後にGBD処理を実施することで高い保磁力が得られることを示したが、その理由は次の通りである。すなわち、単位ネオジム焼結磁石の積層時の層間にGBD塗布材料を挟むが、その後のSPS処理によるGBD処理工程へのデメリットは観察されていない。むしろ、GBD処理に伴うDyやTbといった重希土類元素の拡散距離が最大で2.5mm程度、すなわち単位ネオジム焼結磁石の厚み程度と短く、製品形状がどのようなサイズでも均一な磁気特性が得られるからである。 In the examples so far, it has been shown that a high coercive force can be obtained by performing GBD processing after SPS processing, and the reason is as follows. That is, although the GBD coating material is sandwiched between layers when stacking unit neodymium sintered magnets, no disadvantages to the GBD treatment process due to the subsequent SPS treatment have been observed. On the contrary, the diffusion distance of heavy rare earth elements such as Dy and Tb due to GBD treatment is short at maximum, about 2.5 mm, that is, about the thickness of a unit neodymium sintered magnet, and uniform magnetic properties can be obtained regardless of the product shape. This is because it will be done.

[実施例7]
前記の組成Bを有する厚さ2mmのレンズ形状単位ネオジム焼結体を準備し、これを22枚積層して試験3の塗布材料を積層間に塗布してSPS試験により得たネオジム積層焼結磁石の写真を図19に示す。
このようにして作製したネオジム積層焼結磁石の、レンズ形状の上下凸長面における平坦度はプラスマイナス0.34mm、レンズ左右短面側の平坦度はプラスマイナス0.09mmであった。すなわち左右短面側(レンズの厚みが薄くなった端部)が先に変形して型内部に突き当たり、そこで変形が止まったと考えられる。このネオジム積層焼結磁石の特性を測定したところ、レンズ形状という複雑な形状の製品でも、磁気特性含めてその他の寸法も問題ないネオジム積層磁石を得ることができることが確認された。
[Example 7]
A neodymium laminated sintered magnet obtained by preparing a lens-shaped unit neodymium sintered body having a thickness of 2 mm and having the above-mentioned composition B, laminating 22 sheets, applying the coating material of Test 3 between the laminated layers, and performing an SPS test. A photograph is shown in Figure 19.
The neodymium laminated sintered magnet produced in this way had a flatness of plus or minus 0.34 mm on the upper and lower convex long surfaces of the lens shape, and a flatness of plus or minus 0.09 mm on the left and right short surfaces of the lens. In other words, it is thought that the left and right short surfaces (thinner end portions of the lens) deformed first and hit the inside of the mold, and the deformation stopped there. When we measured the characteristics of this neodymium laminated sintered magnet, we confirmed that even with a product with a complicated lens shape, we could obtain a neodymium laminated magnet with no problems in other dimensions, including magnetic properties.

尚、本発明では、単位ネオジム焼結磁石の積層体(加圧を行う前の積層物)を型内部の空間に配置した時に当該積層体の周囲にできる隙間、即ち、積層体と型内壁との間の間隙を、加圧によって積層体が変形する際に積層体の全表面が同時に型内壁と接するように各方向の変形率を考慮して単位ネオジム焼結磁石を製造することにより、製品サイズと同等形状の内部空間を有する型を用いてネオジム積層焼結磁石を製造することが有効である。 In addition, in the present invention, when a laminate of unit neodymium sintered magnets (a laminate before being pressurized) is placed in a space inside a mold, a gap is formed around the laminate, that is, a gap between the laminate and the inner wall of the mold. By manufacturing unit neodymium sintered magnets by considering the deformation rate in each direction so that when the laminate is deformed by pressure, the entire surface of the laminate comes into contact with the inner wall of the mold at the same time. It is effective to manufacture neodymium laminated sintered magnets using a mold having an internal space of the same size and shape.

本発明のネオジム積層焼結磁石は、高い磁気特性と優れた高電気抵抗性を有しており、各種の家電製品用モータ、産業用モータの他、特にEV(電気自動車)やHEV(ハイブリッド自動車)用磁石として利用できる。 The neodymium laminated sintered magnet of the present invention has high magnetic properties and excellent electrical resistance, and can be used in motors for various home appliances, industrial motors, and especially EVs (electric vehicles) and HEVs (hybrid vehicles). ) can be used as a magnet.

Claims (8)

単位ネオジム焼結磁石が複数枚積層され、各単位ネオジム焼結磁石同士が接合層を介して接合されて一体化したネオジム積層焼結磁石であって、
前記ネオジム積層焼結磁石の接合層が、希土類リッチな領域を含んでおり、かつ、該希土類リッチな領域が電気的絶縁性を有することを特徴とするネオジム積層焼結磁石。
A neodymium laminated sintered magnet in which a plurality of unit neodymium sintered magnets are stacked, and the unit neodymium sintered magnets are joined together via a bonding layer to be integrated,
A neodymium laminated sintered magnet, wherein the bonding layer of the neodymium laminated sintered magnet includes a rare earth-rich region, and the rare earth-rich region has electrical insulation properties.
前記の接合層の厚さが1.0μm以上200μm以下であることを特徴とする請求項1に記載のネオジム積層焼結磁石。 The neodymium laminated sintered magnet according to claim 1, wherein the thickness of the bonding layer is 1.0 μm or more and 200 μm or less. 前記の希土類リッチな領域が、前記接合層中に連続的および/または断続的に存在していることを特徴とする請求項1又は2に記載のネオジム積層焼結磁石。 The neodymium laminated sintered magnet according to claim 1 or 2, wherein the rare earth-rich region exists continuously and/or intermittently in the bonding layer. 前記接合層中に、50重量%以上のFeを含むFeリッチメタル領域が存在しており、当該Feリッチメタル領域が、前記接合層を介して隣接する単位ネオジム焼結磁石の間を連結していることを特徴とする請求項1又は2に記載のネオジム積層焼結磁石。 An Fe-rich metal region containing 50% by weight or more of Fe is present in the bonding layer, and the Fe-rich metal region connects adjacent unit neodymium sintered magnets via the bonding layer. The neodymium laminated sintered magnet according to claim 1 or 2, characterized in that: 前記ネオジム積層焼結磁石の表面から50μm未満の表層領域の希土類元素の総量の重量%と、表面から50μm以上離れた内部領域の希土類元素の総量の重量%との差が、1重量%未満であることを特徴とする請求項1又は2に記載のネオジム積層焼結磁石。 The difference between the weight percent of the total amount of rare earth elements in the surface layer region less than 50 μm from the surface of the neodymium laminated sintered magnet and the weight percent of the total amount of rare earth elements in the inner region 50 μm or more away from the surface is less than 1 weight percent. The neodymium laminated sintered magnet according to claim 1 or 2, characterized in that: 前記接合層に存在する希土類リッチな領域中に、重希土類元素としてDy元素、Tb元素の少なくともいずれか一方が存在しており、該重希土類元素が、各単位ネオジム焼結磁石のNdFe14B結晶の粒界相に沿って、各接合層から、隣の接合層側に向かって拡散していることを特徴とする請求項1又は2に記載のネオジム積層焼結磁石。 In the rare earth rich region existing in the bonding layer, at least one of Dy element and Tb element is present as a heavy rare earth element, and the heavy rare earth element is Nd 2 Fe 14 of each unit neodymium sintered magnet. The neodymium laminated sintered magnet according to claim 1 or 2, wherein the neodymium layered sintered magnet diffuses from each bonding layer toward the adjacent bonding layer along the grain boundary phase of the B crystal. CGS単位系で表された最大磁気エネルギー積(BH)max(MGOe)と保磁力iHc(kOe)の和が70以上である磁気特性を有することを特徴とする請求項1又は2に記載のネオジム積層焼結磁石。 The neodymium according to claim 1 or 2, characterized in that the neodymium has magnetic properties in which the sum of the maximum magnetic energy product (BH) max (MGOe) expressed in the CGS unit system and the coercive force iHc (kOe) is 70 or more. Laminated sintered magnet. 前記接合層と直交するネオジム積層焼結磁石の外側面が、対向する少なくとも一対の外側面もしくは全ての外側面において0.1mm以下の平坦度を有することを特徴とする請求項1又は2に記載のネオジム積層焼結磁石。 According to claim 1 or 2, the outer surfaces of the neodymium laminated sintered magnet orthogonal to the bonding layer have a flatness of 0.1 mm or less on at least one pair of opposing outer surfaces or all outer surfaces. neodymium laminated sintered magnet.
JP2022118976A 2022-07-26 2022-07-26 neodymium laminated sintered magnet Pending JP2024016680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022118976A JP2024016680A (en) 2022-07-26 2022-07-26 neodymium laminated sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022118976A JP2024016680A (en) 2022-07-26 2022-07-26 neodymium laminated sintered magnet

Publications (1)

Publication Number Publication Date
JP2024016680A true JP2024016680A (en) 2024-02-07

Family

ID=89806454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022118976A Pending JP2024016680A (en) 2022-07-26 2022-07-26 neodymium laminated sintered magnet

Country Status (1)

Country Link
JP (1) JP2024016680A (en)

Similar Documents

Publication Publication Date Title
JP6005768B2 (en) NdFeB sintered magnet and manufacturing method thereof
TWI413137B (en) Functionally graded rare earth permanent magnet
JP4618553B2 (en) Method for producing RTB-based sintered magnet
US10943717B2 (en) R-T-B based permanent magnet
JP5273039B2 (en) R-T-B system sintered magnet and manufacturing method thereof
EP1744328A2 (en) Rare earth magnet having high strength and high electrical resistance
JP2013520029A (en) Rare earth stratified composite magnet with increased electrical resistance
US9818513B2 (en) RFeB-based magnet and method for producing RFeB-based magnet
WO2002089153A1 (en) Solid material for magnet
EP3118971B1 (en) Rotary electrical machine and vehicle
JP7020051B2 (en) Magnet joint
JP6500387B2 (en) Method of manufacturing high coercivity magnet
US10848023B2 (en) Motor containing a permanent magnet having high and low temperature side permanent magnet parts
US6312494B1 (en) Arc segment magnet, ring magnet and method for producing such magnets
JP6484994B2 (en) Sm-Fe-N magnet molded body and method for producing the same
JP2010098080A (en) Method of manufacturing r-t-b system sintered magnet
JP2015008230A (en) Material for rare earth magnet, laminate magnet, bond magnet, compressed magnet, sintered magnet, method for manufacturing material for rare earth magnet, method for manufacturing bond magnet, and method for manufacturing compressed magnet
US20240079179A1 (en) Nd-fe-b multilayer sintered magnet and method for producing same
JP2024016680A (en) neodymium laminated sintered magnet
JP6759649B2 (en) Rare earth magnets and motors
EP3276640B1 (en) Permanent magnet, motor and dynamo
EP3276644A1 (en) Permanent magnet, motor, and generator
US11817241B2 (en) Magnet structure
JP4150983B2 (en) Permanent magnet having gradient function of electrical resistivity and manufacturing method thereof
EP4246538A1 (en) Permanent magnet, rotary electric machine, vehicle, and aircraft

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220908