JPS60220910A - Anisotropic compression molding resin bonded magnet - Google Patents

Anisotropic compression molding resin bonded magnet

Info

Publication number
JPS60220910A
JPS60220910A JP7785384A JP7785384A JPS60220910A JP S60220910 A JPS60220910 A JP S60220910A JP 7785384 A JP7785384 A JP 7785384A JP 7785384 A JP7785384 A JP 7785384A JP S60220910 A JPS60220910 A JP S60220910A
Authority
JP
Japan
Prior art keywords
resin
magnetic
magnetic field
powder
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7785384A
Other languages
Japanese (ja)
Inventor
Itaru Okonogi
格 小此木
Seiji Miyazawa
宮沢 清治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP7785384A priority Critical patent/JPS60220910A/en
Publication of JPS60220910A publication Critical patent/JPS60220910A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/0533Alloys characterised by their composition containing rare earth metals in a bonding agent

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To enhance heat-resisting propery as well as to block the slipping off of powder grains by a method wherein, when a compound permanent magnet is formed using yttrium, lanthanides rare-earth intermetallic compound powder, resin is impregnated into the cavity generated when a compression molding and a hardening by heat are performed in a magnetic field. CONSTITUTION:A solution treatment and an aging treatment are performed on the magnetic powder consisting of yttrium and lanthaides rare-earth metal element in a non-oxidizing atmosphere for the purpose of maintaining magnetic property, 0.5-8wt% of one-pack type or two-pack type epoxy resin binder is added to the above, and they are mixed and kneaded. Then, after the above- mentioned material has been compression-molded in a mold using a magnetic field of 8kOe or above, the above is heated up at 100-180 deg.C, and the resin binder is cured. Subsequently, the above-mentioned is placed in a vacuum vessel wherein one-pack type epoxy resin is filled, the degree of vacuum of 10<-1>-10<-6> Torr is obtained, and resin is impregnated into the cavities which were generated when the previous process is performed. These cavities may be filled by applying hydrostatic pressure instead of performing a vacuum treatment.

Description

【発明の詳細な説明】 〔技術分野〕 本発明希土類系圧縮成形樹脂ポンド磁石の改良に関する
ものである。詳述すれば、異方性圧縮成形樹脂ボンド磁
石の熱減磁特性を改良することにある。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to improvements in rare earth compression molded resin pound magnets. Specifically, the objective is to improve the thermal demagnetization characteristics of anisotropic compression molded resin bonded magnets.

〔従来技術〕[Prior art]

実用的な希土類コバルト系永久磁石の製造方法げ大別す
れば、■焼結法、■樹脂ポンド法、で工業的規模に製造
されている。■の焼結法が今日主流であわ、磁気性能が
高いことを最大の利点としている。しかしながら、金属
間化合物であるため焼結成形体は、硬質且つ脆いため加
工1組立などの際は、注意しないと不良率が大となる。
Practical methods for producing rare earth cobalt-based permanent magnets can be roughly divided into: (1) sintering method, (2) resin pound method, and are manufactured on an industrial scale. The sintering method (2) is the mainstream today, and its greatest advantage is high magnetic performance. However, since it is an intermetallic compound, the sintered compact is hard and brittle, so if care is not taken during processing and assembly, the defective rate will be high.

一方、欠は割れ防止、コスト、生産性にすぐれるなどの
特徴をいかした■の樹脂ポンド法も急速に市場に浸透し
てきた。例えば小型スピーカー、ヘッドホーン、マイク
ロモータ一時計用ステップモーターなどの分野では大い
に使用されている。しかしながらこれら民生用電気産業
用、時計用などけ、最大使用温度は60℃〜80℃と低
い。このため希土類系異方性樹脂ポンド磁石でも十分実
用に耐え使用温度限界も100℃程度では問題なかった
。しかし用途の拡大に伴い、例えば複写機マグロール、
自動車用小型モーター、ディヌトリビューター、プリン
ター用印字ヘッド、ステップモーターメーターなどその
他多くのものがある。これらはいずれも耐熱性、耐項憶
性など磁気的、機械的に高い信頼性を要求されてきた。
On the other hand, the resin pound method (2), which takes advantage of the characteristics of crack prevention, cost, and productivity, has rapidly penetrated the market. For example, they are widely used in fields such as small speakers, headphones, and micromotor step motors. However, the maximum operating temperature for these products, such as those for the consumer electronics industry and watches, is as low as 60°C to 80°C. For this reason, rare earth anisotropic resin pound magnets can be used satisfactorily for practical use, and the operating temperature limit is about 100° C. without any problems. However, with the expansion of applications, for example, copy machine mag roll,
There are many other items such as small motors for automobiles, dinutributors, print heads for printers, step motor meters, etc. All of these have been required to have high magnetic and mechanical reliability such as heat resistance and memory resistance.

これらはいずれも、保証温度は製品で一40℃〜+80
℃、高いものでは、120℃まで要求される。このため
パーツの耐熱性は低くて100℃、通常150℃までの
安定性を要求され、こ′hを充足しないと実用できない
。今までの圧縮成形異方性希土類磁石、例えば特開昭5
0−83797などでは、全く対応できなかった。不可
逆減磁率 △Φ/φo×100係 (△Φ=Φを一Φ。)け第3図
に示すような変化を示し+100°Cを越えると減磁率
は太きくな゛る。初期減磁を除いて、約−4%以下(T
oCX 1000 H後で)が実用のための確保すべき
目標値である。こうしてみると従来の圧縮成形樹脂ボン
ド磁石の熱的実用限界は、100°Cである。従って前
記したような耐熱性を要求でれるような用途には実用で
きない不具合があった。
For all of these products, the guaranteed temperature is -40°C to +80°C.
℃, high temperatures up to 120℃ are required. For this reason, the heat resistance of the parts is required to be as low as 100°C, and usually to be stable up to 150°C, and unless this requirement is met, it cannot be put to practical use. Conventional compression molded anisotropic rare earth magnets, such as JP-A-5
0-83797 etc. could not be supported at all. The irreversible demagnetization rate ΔΦ/φo×100 (ΔΦ=Φ equals Φ) changes as shown in FIG. 3, and the demagnetization rate becomes larger when the temperature exceeds +100°C. Excluding initial demagnetization, approximately -4% or less (T
(after oCX 1000 H) is the target value to be secured for practical use. In this way, the thermal practical limit of conventional compression molded resin bonded magnets is 100°C. Therefore, there was a problem that it could not be put to practical use in applications requiring heat resistance as described above.

〔目的〕〔the purpose〕

本発明は、このような従来法の欠点を解消するべく、鋭
意実験・研究を重ねてきた結果、ここで新しく提案する
ものである。その目的とすることけ第1に、磁気的、機
械的に実用性を充足できる耐熱性を150℃まで高める
ととKある。第2iCは実用の場面で磁石粉末粒子の脱
落を防止し、機能信頼性を大巾に高めることである。
The present invention is newly proposed here as a result of extensive experiments and research in order to eliminate the drawbacks of such conventional methods. The first objective is to increase the heat resistance to 150° C., which satisfies practical needs magnetically and mechanically. The second iC is to prevent magnetic powder particles from falling off in practical situations and to greatly improve functional reliability.

〔概要〕〔overview〕

以上の目的を達成するために、本発明は以下の構成に従
って異方性圧縮成形樹脂ポンド磁石を製造することを特
徴とする。具体的構成を以下に記す。
In order to achieve the above object, the present invention is characterized in that an anisotropic compression molded resin pound magnet is manufactured according to the following configuration. The specific configuration is described below.

■ 強磁性粉末は、イツトリウムおよびラントナイド系
希土類金属元素、周期律表でいわれる遷移金属からなる
金属間化合物である。
(2) Ferromagnetic powder is an intermetallic compound consisting of yttrium, rare earth metal elements of the lantonide series, and transition metals listed in the periodic table.

■ 例えば具体的合金組成としては以下のものが挙げら
れる。smco5 、 EJWLOO4,6,BmOo
、、、、57n(C0a1L)、 、ce(ao au
)、 、 MM(1!0.などのいわゆる1−5系結晶
構造を有する合金組成物で、粉末粒度け3μm〜6μm
の単磁区粒子径付近を主に用いる。
(2) For example, specific alloy compositions include the following. smco5, EJWLOO4,6,BmOo
, , , 57n(C0a1L), ,ce(ao au
), , MM (an alloy composition having a so-called 1-5 crystal structure such as 1!0., with a powder particle size of 3 μm to 6 μm
Mainly uses the single magnetic domain particle diameter of .

E3m(Co bal c%1.o8Fgo、22Zr
0,628)g、3 、Sm(Co bal Ou、、
、(,6”o、32 ”rttolm )7.6 T 
論(Co b(Ll 04.12”go + )7.2
. FmCOomL 凱r16BFeO,12Zr6.
cH)7,4 、57710,9 YO,I (00b
(LI C1to4 Fg(+、22 )7,4 、 
S?7ZO,7?r。、3(CObcLl。、。。、F
eo、22zro、C24)6.。、Smo、7Ceo
、3(CObcLl(:ヒ乙’0.07zro、ora
)7.aoSm(OObalO210,12Feo、1
yT);3.01)?、4’Bm Nd CCobal
Ou Fe Zr ) 、などをけじ0.80.20.
0?0.3fi0.00+17,0めとする2−17系
結晶からなる合金組成で、析出硬化による保磁力発生機
構から、その粉末粒度け3μm〜500μm程度のもの
まで任意である。
E3m(Co bal c%1.o8Fgo, 22Zr
0,628) g, 3, Sm(Co bal Ou,,
, (,6”o, 32”rttolm)7.6T
Theory (Co b(Ll 04.12”go + )7.2
.. FmCOomL Gai r16BFeO, 12Zr6.
cH)7,4,57710,9 YO,I (00b
(LI C1to4 Fg(+,22)7,4,
S? 7ZO, 7? r. ,3(CObcLl.,...,F
eo, 22zro, C24)6. . , Smo, 7Ceo
, 3(CObcLl(:hiot'0.07zro, ora
)7. aoSm(OObalO210,12Feo,1
yT);3.01)? , 4'Bm Nd CCobal
Ou Fe Zr), etc. 0.80.20.
It is an alloy composition consisting of 2-17 crystals with a ratio of 0 to 0.3fi0.00+17.0, and the coercive force generation mechanism is caused by precipitation hardening, and the powder particle size is arbitrary from about 3 μm to 500 μm.

■ 磁気性能を確保するための熱処理、例えば溶体化処
理、時効処理を非酸化雰囲気中で行う。
■ Heat treatment to ensure magnetic performance, such as solution treatment and aging treatment, is performed in a non-oxidizing atmosphere.

■ 磁石粉末と樹脂バインダーを混合、混練する工程。■ Process of mixing and kneading magnet powder and resin binder.

樹脂バインダーは、熱硬化性樹脂組成物を用いる。−液
性または二液性エポキシ樹脂を用いることが最も好まし
い。磁石との混合比率は、樹脂量は0.5wt%〜8w
t係 より好ましくけ1 wt%〜6?nt係である。
A thermosetting resin composition is used as the resin binder. - It is most preferred to use liquid or two-part epoxy resins. The mixing ratio with the magnet is 0.5wt% to 8w of resin.
T section is more preferable 1 wt%~6? I am in charge of nt.

■ 金型中で磁場強度BKOe以上で、磁場中配向し圧
縮成形する。ここで素度性を考先た好ましい磁場は、少
くとも10Koe以上、より好ましくけ12Xog以上
25 Koeまでが、p、c(ilr流)磁場としては
、限界である。パルス的には50 Koe程度の磁場を
印加することもできる。圧縮圧力は、型構造、材料強度
などからして、751’47mm 2まで加えるが、通
常量産性を考えると25 hAyl ’−60に−gg
である。
■ Orient in a magnetic field and compression mold in a mold with a magnetic field strength of BKOe or higher. Here, a preferable magnetic field in consideration of basicity is at least 10 Koe, more preferably 12Xog or more and up to 25 Koe, which is the limit for a p, c (ilr flow) magnetic field. A magnetic field of about 50 Koe can also be applied in a pulsed manner. The compression pressure is applied up to 751'47mm2 considering the mold structure, material strength, etc., but usually it is 25hAyl'-60-gg considering mass production.
It is.

■ 磁場中配向しながら圧縮成形した成形体は反対方向
磁場をIHc(固有惺磁力)付近まで加え脱磁し型より
抜き出す。
(2) The molded product, which is compression molded while being oriented in a magnetic field, is demagnetized by applying a magnetic field in the opposite direction to around IHc (intrinsic magnetic force) and extracted from the mold.

■ 前記成形体は、100〜180℃に加熱、樹脂バイ
ンダーをキュアーさせる。
(2) The molded body is heated to 100 to 180°C to cure the resin binder.

■ 次に成形体は、液状樹脂中に浸漬し真空槽中で含浸
する。この時真空度は101〜−’ TQrrであれば
問題なく、少くとも05時間は含浸する(第2図−八)
(2) Next, the molded body is immersed in liquid resin and impregnated in a vacuum chamber. At this time, if the degree of vacuum is 101~-'TQrr, there will be no problem, and the impregnation will last for at least 05 hours (Figure 2-8)
.

あるいけ、静水圧プレスを用いて常温で最大3000 
Kg/cm 2の圧力を加えた液状樹脂を成形体の空孔
部に浸透させることもできる(第2図−B)。
Up to 3,000 yen at room temperature using a hydrostatic press
It is also possible to infiltrate the pores of the molded body with liquid resin under a pressure of Kg/cm 2 (Figure 2-B).

■ 成形体は、洗浄後再度含浸層のキーアーを行って、
空孔率2Vo1’ly以下の異方性圧縮成形樹脂ポンド
磁石を製造することを特徴とする。
■ After cleaning the molded body, the impregnated layer is keyed again.
The present invention is characterized by producing an anisotropic compression molded resin pound magnet having a porosity of 2Vo1'ly or less.

以下実施例に従って具体的に詳述する。The following will be described in detail according to examples.

〔実施例−1〕 次の合金組成なる2−17系希土類金属間化合物を低周
波アルゴンガス雰囲気中で溶解し、合金インゴットI 
Kgを得た。
[Example-1] A 2-17 rare earth intermetallic compound having the following alloy composition was melted in a low-frequency argon gas atmosphere to form an alloy ingot I.
I got Kg.

5tyt (OOb(LL On O,08Fe O,
22ZγQ、028 )8+3’本合金け2−17系で
あるので、次の熱処理を行い磁気的に硬化させた。
5tyt (OOb(LL On O, 08Fe O,
22ZγQ, 028)8+3' Since this alloy is a 2-17 series, it was magnetically hardened by the following heat treatment.

0溶体化処理:11702℃×4時間加熱保持後25°
O扮で300℃になるまで急冷 した。
0 solution treatment: 11702°C x 25° after heating and holding for 4 hours
The mixture was rapidly cooled to 300°C using an oven.

○時効処理: 805 ”CX4時間加熱惺持後26〜
8″C層で300°Cまで情動した。
○Aging treatment: 805"CX 26~ after 4 hours heating
The temperature reached 300°C in the 8″C layer.

次に磁気硬化熱処理を終えた合金インゴットはショーク
ラッシャーで粗粉砕し、アトライターミルで粒度3μm
〜80μmの磁石粉末にした。粒度調整された粉末は、
−液性エボキシ樹脂2.1’ wt %を加えニーダ−
で混練した。混練した混合粉末は第1図に示す構造の磁
場中圧縮成形金型にて、磁石成形体をつくった。この時
の製造条件は以下に記す。
Next, the alloy ingot that has undergone magnetic hardening heat treatment is coarsely crushed with a show crusher and then crushed with an attritor mill to a particle size of 3 μm.
It was made into magnet powder of ~80 μm. The particle size controlled powder is
-Add 2.1'wt% of liquid epoxy resin and kneader
It was kneaded with The kneaded mixed powder was molded into a magnetic compact using a compression molding mold in a magnetic field having the structure shown in FIG. The manufacturing conditions at this time are described below.

0圧縮圧力・・・・・・5t0′n7cm2(50陸−
2)0磁場強さ・・・・・・約12KO11O成形体の
形状 ・山・・φ10XiOX軸方向易方性 o−?ニアー条件・・・・・・i50”cX1時間加熱
する。
0 compression pressure...5t0'n7cm2 (50 land-
2) 0 magnetic field strength...Approximately 12KO11O Shape of compact ・Mountain...φ10XiOX axial ease o-? Near condition: Heating for i50”c×1 hour.

なお比較例サンプルはここまでで、永久磁石成形物は完
成した。次に本発明方法は第2図−Aに示す真空含浸槽
及び第2図−Bに示す、静水圧含浸装置Cc、 x、 
p、 )でそれぞれ、−液性エポキシ樹脂を含浸させた
。第1表に製造条件を例示する。
Note that this is the end of the comparison sample, and the permanent magnet molded product has been completed. Next, the method of the present invention includes a vacuum impregnation tank shown in FIG. 2-A and a hydrostatic pressure impregnation device Cc, x, shown in FIG. 2-B.
p, ) were respectively impregnated with -liquid epoxy resin. Table 1 shows examples of manufacturing conditions.

第1表 このような条件でつくられた磁石成形体の緒特性を第2
表に示す。成形体内部の空孔率は大きく減少しているこ
とが密度測定、及び機械的性質などの変化に表われてお
り、大変効果のあることが判明した。
Table 1 shows the characteristics of the magnet molded body made under these conditions in Table 2.
Shown in the table. It was found that the porosity inside the molded body was greatly reduced, as evidenced by changes in density measurements and mechanical properties, and it was found to be very effective.

第2表 抗折力けφ10x10t¥、試料より削り出した丸棒サ
ンプルφ2.5X10t¥n を用い支点間距離6%に
て行った。圧縮成形してそのまますぐに千−7−処理し
た比較例試料は、空孔率5vO6Ll)含む。
Table 2 Transverse rupture stress φ10 x 10 t ¥ The test was carried out using a round bar sample φ 2.5 x 10 t ¥ n cut from the sample with a distance between fulcrums of 6%. The comparative sample, which was compression molded and immediately processed, had a porosity of 5vO6Ll).

その理由はやはり、圧縮成形時の空気(工γ−)抜けの
問題(金型のパンチ56をダイ7とのギャップ)成形速
度、型から抜き出す時のヌプリングバック現象などから
発生し易いことがわかった。
The reason for this is that air (gamma) escapes during compression molding (the gap between the punch 56 of the mold and the die 7), the molding speed, and the nulling back phenomenon during extraction from the mold. Understood.

本発明方法はこの空孔部に、再度外部に出してから樹脂
を含浸ζせて成形体の性能をこのように高められた。
The method of the present invention improves the performance of the molded article by impregnating the resin into the voids after the resin is exposed to the outside again.

〔実施例2〕 実施例1で得られたと全く同一サンプル(φ1゜×10
t%、 L/D = 1 )を用いて、次の条件で不可
逆減磁率試験を行った。
[Example 2] Exactly the same sample as obtained in Example 1 (φ1゜×10
t%, L/D = 1), an irreversible demagnetization rate test was conducted under the following conditions.

(比較例サンプル) 0加熱源度:24−2°C950℃、 70”C,80
℃、 90”C100℃、 12’0’C,150”C
O加熱時間:〜1000時間 O加熱装置二人気中で恒温槽に投入する(本発明サンプ
ル) 0加熱源度:20℃、50℃、 70”C,80’C,
90’C。
(Comparative example sample) 0 heating source degree: 24-2°C950°C, 70"C, 80
℃, 90"C100℃, 12'0'C, 150"C
O heating time: ~1000 hours Pour into a constant temperature oven in two O heating devices (sample of the present invention)
90'C.

100℃、120℃、140℃、150℃。100℃, 120℃, 140℃, 150℃.

160℃、180℃、190℃ 0加熱時間二〜1000時間 0加熱装置:大気中で恒温槽に投入する。160℃, 180℃, 190℃ 0 heating time 2-1000 hours 0 heating device: Place in a constant temperature bath in the atmosphere.

着磁け、50 Kog印加する(オイルコンデンサ一式
パルス着磁)。
Magnetize and apply 50Kog (pulse magnetization of oil capacitor set).

測定方法は、各温度サンプルとも、フル着磁後80℃×
1時間熱枯しを行ってから、常温に戻しフシックスメー
ターにで、全フジックスを計り、この時に得たデータを
小。とじ、1000時間経過後再び常温にて測定した試
料の全フラックスΦl との差をとった。
The measurement method is 80℃× after full magnetization for each temperature sample.
After heat drying for 1 hour, return to room temperature and measure all fujix using a fusix meter, and record the data obtained at this time. After 1000 hours had elapsed, the difference from the total flux Φl of the sample was measured again at room temperature.

不可逆減磁率=小i−Φ0×100 Φ0 フラックスメーターは、デンタルフラックスメーターを
用い、測定時はNMRで更正して精度を蒋認しながら行
った。
Irreversible demagnetization rate=small i-Φ0×100 Φ0 A dental flux meter was used as the flux meter, and the measurement was performed while correcting with NMR and checking the accuracy.

第3図は比較例試料の加熱温度と減磁率を示t90℃あ
たりから減磁率カーブは急になり、100°Cでは一3
%、120℃で1−t−5係にも達する。従って、最高
使用温度1−t80℃〜100℃付近が限界である。−
力木発明方法サンプルは第4図に比較例と同じ、減磁デ
ーターを示した。図中(b)は本発明方法第2図−AK
示した真空含浸装置によりつくられた試料、同様(a、
)は、第2図1−Bの静水圧含浸でつくられた試料のデ
ータを示す。第4図に示した図かられかるように本発明
方法によれば、150°Cまで不可逆減磁率は一1チ〜
−2チオーダーと実用的に問題のないことがわかった。
Figure 3 shows the heating temperature and demagnetization rate of the comparative sample.The demagnetization rate curve becomes steep from around t90℃, and at 100℃, it becomes -3.
%, reaching a coefficient of 1-t-5 at 120°C. Therefore, the maximum operating temperature is around 1-t80°C to 100°C. −
Figure 4 shows the same demagnetization data as the comparative example for the strength wood invention method sample. (b) in the figure shows the method of the present invention in Figure 2-AK
Samples made by the vacuum impregnation apparatus shown, similar to (a,
) shows the data for the sample prepared by hydrostatic impregnation in FIG. 1-B. As can be seen from the diagram shown in Fig. 4, according to the method of the present invention, the irreversible demagnetization rate is from 11 inches up to 150°C.
It was found that there was no problem in practical use as it was on the order of -2.

このように本発明方法によれば、耐熱性は150℃まで
高められた。
As described above, according to the method of the present invention, heat resistance was increased to 150°C.

耐熱性を高められた最大の理由は、永久磁石成形物内部
に存在する空孔に、樹脂を含浸することによる効果であ
る。すなわち成形体内部の突気、特忙酸素(02)の影
響σ犬である。磁石粒子界面の酸化を防止することが耐
熱性をあげる上に極めて重要であることが本発明方法に
よって明らかとなった0 〔効果〕 本発明によれば、以下に述べるよう圧縮成形によってつ
くられる異方性樹脂ボンド磁石の高性能化を達成できた
The biggest reason for the improved heat resistance is the effect of impregnating the pores inside the molded permanent magnet with resin. That is, the influence of the sudden air inside the molded body and the special oxygen (02) is σ. The method of the present invention has revealed that preventing oxidation at the magnet particle interface is extremely important for improving heat resistance. We were able to improve the performance of an orthogonal resin bonded magnet.

■磁気性能、特に磁気安定性を高めた。■Improved magnetic performance, especially magnetic stability.

特に熱に対する磁束の安定性を高め、150℃付近まで
その実用範囲を拡大できた。このことによって、今まで
実用化できなかった自動車用、モーター、メーター、セ
ンサー、マグロールディヌトリビューターなどに採用で
きるようになった。
In particular, the stability of magnetic flux against heat has been improved, and the practical range has been expanded to around 150°C. As a result, it has become possible to use it in automobiles, motors, meters, sensors, magrol dinutributors, etc., which had not been practical until now.

■磁石成形体の機械的性質を向上できた。■The mechanical properties of the magnet molded body were improved.

磁石成形体の強度を高めたことによって、加工組立時の
成形体表面欠tM、 k極めて少なくすることができ、
生産効率を大巾に向上ζせた。ま次着磁の時従来は磁石
粉末が付着しているため、除去工程が必要であったが、
本発明方法によれば全く粉末の付着ということはなかっ
た。粉末と樹脂の結合力を高める効果もある。このよう
に本発明法は圧縮成形樹脂ボンド磁石の信頼性を大巾に
アンプできた。
By increasing the strength of the magnetic molded body, it is possible to extremely reduce the surface defects tM and k of the molded body during processing and assembly.
Production efficiency has been greatly improved. Conventionally, during secondary magnetization, magnet powder was attached, so a removal process was necessary.
According to the method of the present invention, there was no powder adhesion at all. It also has the effect of increasing the bonding strength between powder and resin. As described above, the method of the present invention has greatly increased the reliability of compression molded resin bonded magnets.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は圧縮成形異方性樹脂ボンド磁石の磁場成形装置
。 1・・・・・・油圧プレスラム 2・・・・・・ポールピース(純鉄) 6・・・・・・ヨーク兼コイル枠 4・・・・・・磁場コイル 5・・・・・・上パンチ(強磁性材) 6・・・・・・下パンチ(強磁性材) 7・・・・・・グイ(非磁性材ステライト)8・・・・
・・磁石+バインダー混合粉末9・山・・支持台(SU
S304) 第2図−Ad本発明方法の真空含浸装置であゆ第2図−
Bは、本発明方法の静水圧含浸装置を示す。 10・・・・・・磁石成形体 11・・・・・含浸容器(ガラス) 12・・・・・・−液性エポキシ樹脂 13・・・・・・真空槽 14・・・・・・真空シールパラ千ン 15・・・・・・ロータリーポンプ 16・・・・・・荒技パルプ 17・・・・・・リークパルプ 20・・・・・・磁石成形体 21・・・・・・保護容器(ゴム) 22・・・・・・−液性エポキシ樹脂 23・・・・・・加圧のための水 24・・・・・・加圧容器 25・・・・・・加圧ポンプ 第3図は従来法でつくられた、異方性樹脂ボンド磁石の
磁束減磁率を示す図。 第4図は、本発明方法でつくられた異方性樹脂ボンド磁
石の磁束減磁率を示す図。 (a)・・・・・・静水圧含浸した成形体磁石。 (b)・・・・・・真空含浸した成形体磁石具 上 出願人 株式会社 諏訪精工舎 代理人 弁理士 最上 務 第1図 八 ¥2図 、1 第2図 第3図 第4図
Figure 1 shows a magnetic field forming device for compression molded anisotropic resin bonded magnets. 1...Hydraulic press ram 2...Pole piece (pure iron) 6...Yoke/coil frame 4...Magnetic field coil 5...Top Punch (ferromagnetic material) 6... Lower punch (ferromagnetic material) 7... Gui (non-magnetic material Stellite) 8...
・・Magnet + binder mixed powder 9・mountain・・support stand (SU
S304) Fig. 2 - Ad Fig. 2 -
B shows a hydrostatic impregnation device for the method of the invention. 10...Magnet molded body 11...Impregnation container (glass) 12...-Liquid epoxy resin 13...Vacuum chamber 14...Vacuum Seal parasenn 15...Rotary pump 16...Aragi pulp 17...Leak pulp 20...Magnet molded body 21...Protective container (Rubber) 22...-Liquid epoxy resin 23...Water for pressurization 24...Pressure container 25...Pressure pump 3rd The figure shows the magnetic flux demagnetization rate of an anisotropic resin bonded magnet made using a conventional method. FIG. 4 is a diagram showing the magnetic flux demagnetization rate of an anisotropic resin bonded magnet produced by the method of the present invention. (a)...A molded magnet impregnated with hydrostatic pressure. (b)... Vacuum-impregnated molded body magnet tool Applicant: Suwa Seikosha Co., Ltd. Representative Patent Attorney: Tsutomu Mogami Figure 1 Figure 8 ¥2, 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] イツトリウム及びラントナイド系希土類金属間化合物磁
石粉末と樹脂結合材からなる複合永久磁石において、磁
場中圧縮成形し加熱キュアーでれた成形体の空孔部に樹
脂を含浸させたことを特徴とする異方性圧縮成形樹脂ポ
ンド磁石。
An anisotropic composite permanent magnet consisting of yttrium and lantnide rare earth intermetallic compound magnet powder and a resin binder, which is compression molded in a magnetic field and heat cured, and the pores of the molded body are impregnated with resin. Compression molded resin pound magnet.
JP7785384A 1984-04-18 1984-04-18 Anisotropic compression molding resin bonded magnet Pending JPS60220910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7785384A JPS60220910A (en) 1984-04-18 1984-04-18 Anisotropic compression molding resin bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7785384A JPS60220910A (en) 1984-04-18 1984-04-18 Anisotropic compression molding resin bonded magnet

Publications (1)

Publication Number Publication Date
JPS60220910A true JPS60220910A (en) 1985-11-05

Family

ID=13645616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7785384A Pending JPS60220910A (en) 1984-04-18 1984-04-18 Anisotropic compression molding resin bonded magnet

Country Status (1)

Country Link
JP (1) JPS60220910A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0471343A (en) * 1990-07-11 1992-03-05 Sankyo Seiki Mfg Co Ltd Small-sized motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0471343A (en) * 1990-07-11 1992-03-05 Sankyo Seiki Mfg Co Ltd Small-sized motor

Similar Documents

Publication Publication Date Title
US7847555B2 (en) MRI apparatus with high-resistance magnet
CN108899150B (en) Nd-Fe-B/Sm-Co composite bonded magnet and preparation method thereof
JP2001355006A (en) Composite structural body, manufacturing method thereof, and motor
Hamada et al. Development of anisotropic bonded magnet applied to 150/spl deg/C use
JPS6217149A (en) Manufacture of sintered permanent magnet material
JPS60220910A (en) Anisotropic compression molding resin bonded magnet
Li et al. Simple hot deformation process for fabrication of anisotropic NdFeB magnet
JPH01171215A (en) Manufacture of rare earth-fe-b magnet lamination member
JPH0696926A (en) Resin-bonded rare-earth-cobalt magnet
Doser et al. Bonded anisotropic Nd‐Fe‐B magnets from rapidly solidified powders
JP3515339B2 (en) Angle sensor
JPH0559572B2 (en)
JP2018152526A (en) Method for manufacturing rare earth-iron-boron based sintered magnet
JPH10199717A (en) Anisotropic magnet and its manufacturing method
JPH05308030A (en) Method of controlling residual magnetic induction of sintered magnet and product made the method
JPH0318329B2 (en)
JPH0552654B2 (en)
JPS6033287B2 (en) Magnetic field forming method for powdered permanent magnets
JP3182979B2 (en) Anisotropic magnet, manufacturing method and manufacturing apparatus
JPH11233323A (en) Manufacture of anisotropic magnet material and manufacture of bond magnet using the same
JP2012079822A (en) Production method of rare earth anisotropic magnet
JPS5852013B2 (en) Manufacturing method of rare earth cobalt magnet
JP2022068602A (en) Manufacturing method of bond magnet
JPH02153507A (en) Manufacture of resin-bonded type permanent magnet
JP2001107105A (en) Method for evaluating crystal orientation, and method for manufacture of magnet