JP2001296093A - Heat pipe - Google Patents
Heat pipeInfo
- Publication number
- JP2001296093A JP2001296093A JP2000112240A JP2000112240A JP2001296093A JP 2001296093 A JP2001296093 A JP 2001296093A JP 2000112240 A JP2000112240 A JP 2000112240A JP 2000112240 A JP2000112240 A JP 2000112240A JP 2001296093 A JP2001296093 A JP 2001296093A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- heat
- heat pipe
- groove
- fine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、特に電子機器の冷
却に適したヒートパイプに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pipe particularly suitable for cooling electronic equipment.
【0002】[0002]
【従来の技術】最近、電子機器は、高性能化および高密
度化が進み、発熱量が増大している。このような電子機
器を高性能かつ高寿命に使用するためには、前記発熱を
ファンまたはヒートパイプを用いて放散させる必要があ
る。2. Description of the Related Art In recent years, electronic devices have been improved in performance and density, and the amount of heat generated has increased. In order to use such an electronic device with high performance and long life, it is necessary to dissipate the heat using a fan or a heat pipe.
【0003】前記ヒートパイプはパイプ内に作動液を減
圧封入したもので、その一端を発熱部に接触させると作
動液が発熱部の熱を吸収して蒸気となり、この蒸気は他
端で冷却され凝縮して発熱部側に移動する。この作動液
の蒸発と凝縮の繰り返しにより発熱部が冷却される。こ
のようなヒートパイプでは、凝縮した作動液を毛管現象
を利用して速やかにヒートパイプの発熱部側へ戻すた
め、パイプ内面にメッシュ状の銅板を張り付けたり、微
細な螺旋溝を設けたりしている。The heat pipe is a pipe in which a working fluid is sealed under reduced pressure in a pipe. When one end of the pipe is brought into contact with a heating section, the working fluid absorbs heat from the heating section and becomes steam, and the steam is cooled at the other end. It condenses and moves to the heating part side. The heating section is cooled by repeating the evaporation and condensation of the working fluid. In such a heat pipe, in order to quickly return the condensed working fluid to the heat generating portion side of the heat pipe by utilizing the capillary phenomenon, a mesh-like copper plate is attached to the inner surface of the pipe, or a fine spiral groove is provided. I have.
【0004】[0004]
【発明が解決しようとする課題】しかし、前記メッシュ
状銅板を張り付けたヒートパイプは、ヒートパイプを狭
い電子機器内に折り曲げて取り付ける場合、メッシュ状
の銅板が剥がれるという欠点がある。一方、前記螺旋溝
を設けたヒートパイプは、折り曲げによる損傷は小さい
が、ヒートパイプを水平または水平に近い状態に設置す
ると十分な伝熱特性が得られないという問題がある。本
発明者等は、前記問題の改善策を検討し、ヒートパイプ
を水平または水平に近い状態に設置した場合、従来の螺
旋溝を設けたヒートパイプでは十分な伝熱特性が得られ
ない理由を解明した。However, the heat pipe to which the mesh copper plate is attached has a drawback that when the heat pipe is bent and mounted in a narrow electronic device, the mesh copper plate is peeled off. On the other hand, the heat pipe provided with the spiral groove has little damage due to bending, but has a problem that sufficient heat transfer characteristics cannot be obtained when the heat pipe is installed in a horizontal or nearly horizontal state. The present inventors have studied a remedy for the above problem, and when the heat pipe is installed in a horizontal or nearly horizontal state, the reason why a conventional heat pipe provided with a spiral groove cannot provide sufficient heat transfer characteristics. Clarified.
【0005】即ち、従来のヒートパイプは、図5(イ)
にその透視図を示すように、パイプ2の内面に微細な螺
旋溝9を設けたものであり、C面(図5イ参照)上では
図5(ロ)に示すように、螺旋溝9は、螺旋溝9上の凝
縮作動液が発熱部側に向けて下降する方向に傾斜してい
て凝縮作動液は重力の作用を受けて発熱部側へ円滑に移
動するが、D面(図5イ参照)上では、図5(ハ)に示
すように、螺旋溝9は、螺旋溝9上の凝縮作動液が発熱
部側に向けて登る方向つまり重力に逆らう方向に傾斜し
ていて凝縮作動液は発熱部側へ移動し難くなるためであ
ることを知見した。またパイプの下面Bに落ちた作動液
はD面では螺旋溝9が発熱部側を向いているので螺旋溝
9が抵抗となることはないが、C面では螺旋溝9が発熱
部側と反対の方向を向いているため、螺旋溝9が流れに
対して抵抗となり、作動液の流れを阻害する原因になる
ことを知見した。そしてこれらの知見を基に、さらに検
討を重ねて本発明を完成させるに至った。本発明は、水
平または水平に近い状態で設置しても良好な伝熱特性が
安定して得られるヒートパイプの提供を目的とする。That is, the conventional heat pipe is shown in FIG.
As shown in the perspective view of FIG. 5, a fine spiral groove 9 is provided on the inner surface of the pipe 2. On the C surface (see FIG. 5A), as shown in FIG. The condensed hydraulic fluid on the spiral groove 9 is inclined in the direction of descending toward the heat generating portion, and the condensed hydraulic fluid smoothly moves to the heat generating portion under the action of gravity. As shown in FIG. 5 (c), the spiral groove 9 is inclined in a direction in which the condensing hydraulic fluid on the spiral groove 9 climbs toward the heat-generating portion, that is, in a direction against gravity, and Was found to be difficult to move to the heating part side. The hydraulic fluid dropped on the lower surface B of the pipe has no resistance in the spiral groove 9 on the surface D because the spiral groove 9 faces the heat generating portion, but the spiral groove 9 is opposite to the heat generating portion on the surface C. It has been found that the spiral groove 9 becomes a resistance to the flow because it is directed in the direction of, and becomes a cause of obstructing the flow of the hydraulic fluid. Based on these findings, the present inventors have further studied and completed the present invention. An object of the present invention is to provide a heat pipe capable of stably obtaining good heat transfer characteristics even when installed in a horizontal or nearly horizontal state.
【0006】[0006]
【課題を解決するための手段】請求項1記載の発明は、
パイプ内面に微細溝が設けられ、内部に作動液が封入さ
れたヒートパイプにおいて、前記微細溝が、パイプの長
さ方向の一方方向に傾斜した1乃至複数の螺旋状微細溝
または複数のループ状微細溝であることを特徴とするヒ
ートパイプである。According to the first aspect of the present invention,
In a heat pipe in which a fine groove is provided on an inner surface of a pipe and a working fluid is sealed therein, the fine groove is formed in one or a plurality of spiral fine grooves or a plurality of loops inclined in one direction in a length direction of the pipe. A heat pipe characterized by being a fine groove.
【0007】請求項2記載の発明は、前記パイプの長さ
方向に所定幅の溝なし部を設けた請求項1記載のヒート
パイプである。The invention according to claim 2 is the heat pipe according to claim 1, wherein a grooveless portion having a predetermined width is provided in a length direction of the pipe.
【0008】請求項3記載の発明は、前記微細溝のパイ
プの長さ方向に対する傾斜角が5〜50度であることを
特徴とする請求項1または2記載のヒートパイプであ
る。The invention according to claim 3 is the heat pipe according to claim 1 or 2, wherein an inclination angle of the fine groove with respect to a length direction of the pipe is 5 to 50 degrees.
【0009】[0009]
【発明の実施の形態】以下に本発明を図を参照して具体
的に説明する。図1は本発明のヒートパイプの第1の実
施形態を示す(イ)透視図、(ロ)手前からみたC面上
のループ状微細溝の説明図、(ハ)同D面上のループ状
微細溝の説明図である。このヒートパイプ1aは、パイ
プ内面の微細溝が、パイプの長さ方向の一方方向に傾斜
した複数のループ状微細溝3であり、パイプ2内部に作
動液が封入されたものである。このヒートパイプ1を、
水平または水平に近い状態に設置し、長さ方向の一方方
向の側(ループ状微細溝が傾斜している方向の側)を放
熱部に、他方方向の側の底部(B)を発熱部に配して用
いると、放熱部のループ状微細溝3上に凝縮した作動液
は、発熱部側(他方方向の側)へ移動する際にヒートパ
イプ内面のC面とD面の両面において重力の作用を受
け、凝縮作動液は発熱部側へ円滑に移動し、またヒート
パイプ1の下面Bに落ちた作動液はC、Dの両面でルー
プ状微細溝3が発熱部側に向いているので作動液の発熱
部側への流れが阻害されるようなことがない。従って、
良好な熱伝導性が安定して得られる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings. FIGS. 1A and 1B show a first embodiment of a heat pipe of the present invention. FIG. 1A is a perspective view, FIG. 1B is an explanatory view of a loop-shaped fine groove on a C plane viewed from the front, and FIG. It is explanatory drawing of a fine groove. In the heat pipe 1a, the fine grooves on the inner surface of the pipe are a plurality of loop-shaped fine grooves 3 inclined in one direction in the length direction of the pipe, and the working fluid is sealed inside the pipe 2. This heat pipe 1
Installed in a horizontal or nearly horizontal state, one side in the length direction (the side in the direction in which the loop-shaped fine groove is inclined) is used as a heat radiator, and the bottom (B) in the other direction is used as a heat generator. When arranged and used, the hydraulic fluid condensed on the loop-shaped fine grooves 3 of the heat radiating portion is subjected to gravity on both the C surface and the D surface of the inner surface of the heat pipe when moving to the heat generating portion side (the side in the other direction). Under the action, the condensed working fluid smoothly moves to the heat generating portion side, and the working fluid dropped on the lower surface B of the heat pipe 1 has the loop-shaped fine grooves 3 on both surfaces C and D facing the heat generating portion side. The flow of the hydraulic fluid to the heat generating portion is not obstructed. Therefore,
Good thermal conductivity is stably obtained.
【0010】図2は本発明のヒートパイプの第2の実施
形態を示す(イ)透視図、(ロ)手前からみたC面上の
螺旋状微細溝の説明図、(C)同D面上の螺旋状微細溝
の説明図である。このヒートパイプ1bは、パイプ内面
の微細溝が、パイプの長さ方向の一方方向に傾斜した複
数の複数の螺旋状微細溝4であり、パイプ2内部に作動
液が封入されたものである。このヒートパイプ1bを水
平または水平に近い状態に設置して用いた場合も、図1
に示したヒートパイプの場合と同様に良好な伝熱特性が
安定して得られる。FIG. 2 shows a heat pipe according to a second embodiment of the present invention. FIG. 2A is a perspective view, FIG. 2B is an explanatory view of a spiral fine groove on the C plane viewed from the front, and FIG. It is explanatory drawing of the spiral fine groove | channel. In the heat pipe 1b, the fine grooves on the inner surface of the pipe are a plurality of spiral fine grooves 4 inclined in one direction in the length direction of the pipe, and the working fluid is sealed inside the pipe 2. When the heat pipe 1b is installed in a horizontal or nearly horizontal state and used,
As in the case of the heat pipe shown in (1), good heat transfer characteristics can be stably obtained.
【0011】図3は本発明のヒートパイプの第3の実施
形態を示す内面底部展開図である。このヒートパイプ1
cは、図1に示したパイプの底部に溝なし部5をパイプ
1cの長さ方向に所定幅設けたものである。このヒート
パイプ1cでは、凝縮作動液は溝なし部5を通って発熱
部へより円滑に移動する。図2に示したヒートパイプ1
bにおいても、パイプ内面底部に溝なし部を設けること
により同様の効果が得られる。溝なし部の表面は平滑な
ほど作動液がスムーズに移動し望ましい。FIG. 3 is a developed view of an inner bottom surface showing a third embodiment of the heat pipe of the present invention. This heat pipe 1
c shows a grooved portion 5 provided at the bottom of the pipe shown in FIG. 1 with a predetermined width in the length direction of the pipe 1c. In the heat pipe 1c, the condensed working fluid moves more smoothly through the grooveless portion 5 to the heat generating portion. Heat pipe 1 shown in FIG.
Also in b, the same effect can be obtained by providing a grooveless portion at the bottom of the pipe inner surface. It is desirable that the smoother the surface of the grooveless portion, the more the hydraulic fluid moves.
【0012】前記溝なし部4の幅は、パイプ内周長さの
5〜10%程度が良く、5%未満ではその効果が十分に
得られず、10%を超えると微細溝による毛管現象の効
果が十分に得られなくなる。溝なし部4を掘削して直線
溝を形成しておくと作動液は一層移動し易くなる。前記
直線溝に発熱部側へ向けて深くなるテーパーを付けてお
くとその効果がより増大する。The width of the grooveless portion 4 is preferably about 5 to 10% of the inner circumferential length of the pipe. If the width is less than 5%, the effect cannot be sufficiently obtained. The effect cannot be obtained sufficiently. If the straight groove is formed by excavating the grooveless portion 4, the hydraulic fluid can move more easily. If the straight groove is provided with a taper that becomes deeper toward the heat generating portion, the effect is further increased.
【0013】本発明において、微細溝の傾斜角θは5〜
50度が望ましい。パイプには銅やアルミニウムなどの
導電性に優れる任意の材料が使用できる。パイプの断面
形状は円形、楕円形、四角形など任意である。本発明の
ヒートパイプは、中子を用いた押出加工、または板条材
に所定の微細溝を形成し、これを電縫加工により筒状に
加工するなどの方法により容易に製造できる。前記溝な
し部は、微細溝形成後所定箇所の微細溝を除去して設け
ても良いが、パイプ内面底部の微細溝を予め形成しない
でおく方法が工数が少なく望ましい。In the present invention, the inclination angle .theta.
50 degrees is desirable. Any material having excellent conductivity, such as copper or aluminum, can be used for the pipe. The cross-sectional shape of the pipe is arbitrary such as a circle, an ellipse, and a square. The heat pipe of the present invention can be easily manufactured by a method such as extrusion using a core or a method in which predetermined fine grooves are formed in a plate material and then processed into a cylindrical shape by electric sewing. The non-groove portion may be formed by removing a fine groove at a predetermined position after the formation of the fine groove. However, a method in which the fine groove at the bottom of the inner surface of the pipe is not formed in advance is preferable because the number of steps is small.
【0014】[0014]
【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1)厚さ0.5mmの銅条に所定形状の微細溝
を圧延加工法により形成し、次いで前記銅条を、微細溝
形成面を内側にして円筒状に丸め、縁端部を電縫加工し
て外径10mmの丸パイプとし、このパイプ内に水(作
動液)を注入したのち、内部を減圧しつつ両端を溶接し
た。次いで前記パイプを上下方向に押圧して、内面にル
ープ状微細溝がパイプの一方方向に傾斜して設けられ
た、高さ6mm、幅9mm、長さ300mmの断面偏平
のヒートパイプを製造した。前記微細溝の傾斜角は3〜
60度の範囲で種々に変化させた。The present invention will be described below in detail with reference to examples. (Example 1) A fine groove having a predetermined shape is formed in a copper strip having a thickness of 0.5 mm by a rolling method, and then the copper strip is rounded into a cylindrical shape with the fine groove forming surface inside, and an edge portion is formed. A round pipe having an outer diameter of 10 mm was formed by electric resistance welding. After water (hydraulic fluid) was injected into the pipe, both ends were welded while reducing the pressure inside. Next, the pipe was pressed in the vertical direction to produce a heat pipe having a flat cross section with a height of 6 mm, a width of 9 mm, and a length of 300 mm, in which a loop-shaped fine groove was provided on the inner surface inclined in one direction of the pipe. The inclination angle of the fine groove is 3 to
Various changes were made in the range of 60 degrees.
【0015】(実施例2)パイプ内面底部の中央に幅2
mm(パイプ内周長さの約7%)の溝なし部をパイプの
長さ方向に設けた他は、実施例1と同じ方法によりヒー
トパイプを製造した。前記溝なし部は微細溝を圧延加工
する段階で設けた。(Embodiment 2) The center of the bottom of the inner surface of the pipe has a width of 2
A heat pipe was manufactured in the same manner as in Example 1 except that a grooveless portion having a diameter of about 7% of the inner circumferential length of the pipe (about 7% of the inner length of the pipe) was provided in the length direction of the pipe. The non-groove portion was provided at the stage of rolling the fine groove.
【0016】(実施例3)微細溝を図2に示したヒート
パイプの一方方向に傾斜して設けられた螺旋状微細溝と
した他は、実施例1と同じ方法によりヒートパイプを製
造した。Example 3 A heat pipe was manufactured in the same manner as in Example 1, except that the fine grooves were formed as spiral fine grooves inclined in one direction of the heat pipe shown in FIG.
【0017】(実施例4)微細溝を図2に示したヒート
パイプの一方方向に傾斜して設けられた螺旋状微細溝と
した他は、実施例2と同じ方法によりパイプ内面底部に
溝なし部を設けたヒートパイプを製造した。Example 4 A groove was not formed at the bottom of the inner surface of the pipe by the same method as in Example 2 except that the fine groove was a spiral fine groove which was provided to be inclined in one direction of the heat pipe shown in FIG. The heat pipe provided with the section was manufactured.
【0018】実施例1〜4で製造した各々のヒートパイ
プについて限界熱輸送量を下記方法により測定した。即
ち、図4に示すように、水平に設置したヒートパイプ1
aの一方方向の側をファン7により冷却し、他方方向の
側のパイプ内面底部に板状ヒーター(発熱部)6を密着
させ、作動液温度を50℃に保持しつつ、板状ヒーター
6の発熱量とファン7の冷却量を増加させていき、発熱
部側の温度が急上昇してヒートパイプ1aが作動しなく
なる直前の板状ヒーター6の加熱量を求め、これを限界
熱輸送量とした。測定中は放熱部以外からの放熱がない
ように十分断熱した。比較のため、従来の、パイプ内面
にメッシュ状銅板を張り付けたヒートパイプおよびパイ
プ内面に微細な螺旋溝を設けたヒートパイプ(図5参
照)についても同様の測定を行った。結果を表1に示
す。なお、限界熱輸送量はパイプ内面にメッシュ状銅板
を張り付けた従来のヒートパイプの限界熱輸送量を1と
したときの比で示した。The critical heat transport rate of each of the heat pipes manufactured in Examples 1 to 4 was measured by the following method. That is, as shown in FIG.
a is cooled by a fan 7 on one side, and a plate-shaped heater (heating unit) 6 is adhered to the bottom of the pipe inner surface on the other side, and the temperature of the plate-shaped heater 6 is maintained while maintaining the working fluid temperature at 50 ° C. The amount of heat generated and the amount of cooling of the fan 7 were increased, and the amount of heating of the plate heater 6 immediately before the heat pipe 1a stopped operating due to a rapid rise in the temperature of the heat generating portion was defined as the critical heat transport amount. . During the measurement, the heat was sufficiently insulated so that there was no heat radiation other than the heat radiation part. For comparison, the same measurement was performed on a conventional heat pipe having a mesh copper plate adhered to the inner surface of the pipe and a heat pipe having fine spiral grooves formed on the inner surface of the pipe (see FIG. 5). Table 1 shows the results. In addition, the critical heat transport amount is shown as a ratio when the critical heat transport amount of a conventional heat pipe in which a mesh-like copper plate is adhered to the inner surface of the pipe is set to 1.
【0019】[0019]
【表1】 [Table 1]
【0020】表1より明らかなように、本発明例のN
o.1〜11は、いずれも限界熱輸送量が従来のヒート
パイプを上回った。パイプ内面底部に溝なし部を設けた
もの(No.9、11)は限界熱輸送量が一段と向上し
た。As is clear from Table 1, N of the present invention example
o. In all of Nos. 1 to 11, the critical heat transport amount exceeded the conventional heat pipe. The pipes provided with a grooveless portion at the bottom of the inner surface of the pipe (Nos. 9 and 11) showed a further increase in the critical heat transfer rate.
【0021】[0021]
【発明の効果】以上に述べたように、本発明のヒートパ
イプは、パイプ内面に複数のループ状微細溝または1乃
至複数の螺旋状微細溝をヒートパイプの長さ方向の一方
方向に傾斜させて設けたものなので、このヒートパイプ
を、ヒートパイプの一方方向の側を放熱部に配し、他方
方向の側の底部を発熱部に配して用いることにより、ヒ
ートパイプを水平または水平に近い状態で使用しても、
放熱部で凝縮した作動液はヒートパイプの両側面におい
て重力の作用を受けて発熱部側へ円滑に移動し、またヒ
ートパイプ1の下面に落ちた作動液は両側面でループ状
微細溝3が発熱部側に向いているので作動液の発熱部側
への流れが阻害されるようなことがない。さらにパイプ
内面底部に溝なし部を長さ方向に所定幅設けておくこと
により凝縮作動液は発熱部側へより円滑に移動する。依
って、本発明のヒートパイプは水平または水平に近い状
態で使用しても伝熱特性に優れ、工業上顕著な効果を奏
する。As described above, in the heat pipe of the present invention, a plurality of loop-shaped fine grooves or one or a plurality of spiral fine grooves are inclined in one direction in the length direction of the heat pipe on the inner surface of the pipe. Since the heat pipe is provided with the heat pipe, one side of the heat pipe is arranged in the heat radiating portion, and the bottom of the other side is arranged in the heat generating portion, so that the heat pipe is horizontal or nearly horizontal. Even if used in the state,
The hydraulic fluid condensed in the heat radiating part is smoothly moved to the heat generating part side by the action of gravity on both sides of the heat pipe, and the hydraulic fluid dropped on the lower surface of the heat pipe 1 has the loop-shaped fine grooves 3 on both sides. Since it is directed to the heat generating portion side, the flow of the working fluid to the heat generating portion side is not obstructed. Further, by providing a predetermined width in the length direction of the grooveless portion at the bottom of the inner surface of the pipe, the condensed working fluid moves more smoothly to the heat generating portion side. Therefore, the heat pipe of the present invention has excellent heat transfer characteristics even when used in a horizontal or nearly horizontal state, and has an industrially significant effect.
【図1】本発明のヒートパイプの第1の実施形態を示す
(イ)透視図、(ロ)手前から見たC面上のループ状微
細溝の説明図、(ハ)同D面上のループ状微細溝の説明
図である。FIG. 1 is a perspective view showing a first embodiment of a heat pipe of the present invention, FIG. 1 (b) is an explanatory view of a loop-shaped fine groove on a C plane viewed from the front, and FIG. It is explanatory drawing of a loop-shaped fine groove.
【図2】本発明のヒートパイプの第2の実施形態を示す
(イ)透視図、(ロ)手前から見たC面上の螺旋状微細
溝の説明図、(ハ)同D面上の螺旋状微細溝の説明図で
ある。FIG. 2 is a perspective view showing a second embodiment of the heat pipe of the present invention, FIG. 2 (b) is an explanatory view of a spiral fine groove on a C plane viewed from the front, and FIG. It is explanatory drawing of a spiral fine groove.
【図3】本発明のヒートパイプの第3の実施形態を示す
パイプ内面底部展開図である。FIG. 3 is a developed view of a bottom portion of an inner surface of a heat pipe according to a third embodiment of the present invention.
【図4】ヒートパイプの限界熱輸送量を測定する方法の
説明図である。FIG. 4 is an explanatory diagram of a method for measuring a critical heat transport amount of a heat pipe.
【図5】従来のヒートパイプの(イ)透視図、(ロ)手
前から見たC面上の微細な螺旋溝の説明図、(ハ)同D
面上の微細な螺旋溝の説明図である。5 (a) is a perspective view of a conventional heat pipe, FIG. 5 (b) is an explanatory view of a fine spiral groove on the C-plane viewed from the front, and FIG.
It is explanatory drawing of the fine spiral groove on a surface.
1a,b,c 本発明のヒートパイプ 2 パイプ 3 一方方向に傾斜して設けられたループ状微細溝 4 一方方向に傾斜して設けられた螺旋状微細溝 5 パイプ内面底部に設けられた溝なし部 6 板状ヒーター 7 ファン 8 従来のヒートパイプ 9 微細な螺旋溝 1a, b, c Heat pipe 2 of the present invention 2 Pipe 3 Loop-shaped fine groove provided in one direction inclined 4 Spiral fine groove provided in one direction inclined 5 No groove provided at bottom of pipe inner surface Part 6 Plate heater 7 Fan 8 Conventional heat pipe 9 Fine spiral groove
Claims (3)
作動液が封入されたヒートパイプにおいて、前記パイプ
内面の微細溝が、パイプの長さ方向の一方方向に傾斜し
た1乃至複数の螺旋状微細溝または複数のループ状微細
溝であることを特徴とするヒートパイプ。1. A heat pipe in which a fine groove is provided on an inner surface of a pipe and a working fluid is sealed therein, wherein the fine groove on the inner surface of the pipe has one or more spirals inclined in one direction in a length direction of the pipe. A heat pipe comprising a plurality of loop-shaped fine grooves or a plurality of loop-shaped fine grooves.
部を設けた請求項1記載のヒートパイプ。2. The heat pipe according to claim 1, wherein a grooveless portion having a predetermined width is provided in a length direction of the pipe.
傾斜角が5〜50度であることを特徴とする請求項1ま
たは2記載のヒートパイプ。3. The heat pipe according to claim 1, wherein an inclination angle of the fine groove with respect to a length direction of the pipe is 5 to 50 degrees.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000112240A JP2001296093A (en) | 2000-04-13 | 2000-04-13 | Heat pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000112240A JP2001296093A (en) | 2000-04-13 | 2000-04-13 | Heat pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001296093A true JP2001296093A (en) | 2001-10-26 |
Family
ID=18624444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000112240A Pending JP2001296093A (en) | 2000-04-13 | 2000-04-13 | Heat pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001296093A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100494861C (en) * | 2006-11-22 | 2009-06-03 | 中国科学院电工研究所 | Heat switch of low temperature heat pipe for conducting cooling magnetic body |
JP2017009239A (en) * | 2015-06-25 | 2017-01-12 | 国立大学法人九州工業大学 | Liquid transport device and heat pipe using the same |
-
2000
- 2000-04-13 JP JP2000112240A patent/JP2001296093A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100494861C (en) * | 2006-11-22 | 2009-06-03 | 中国科学院电工研究所 | Heat switch of low temperature heat pipe for conducting cooling magnetic body |
JP2017009239A (en) * | 2015-06-25 | 2017-01-12 | 国立大学法人九州工業大学 | Liquid transport device and heat pipe using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6688863B2 (en) | Cooling device and cooling system using the cooling device | |
CN100346475C (en) | Flat plate heat transferring apparatus and manufacturing method thereof | |
US6935409B1 (en) | Cooling apparatus having low profile extrusion | |
EP3405733B1 (en) | Multi-level oscillating heat pipe implementation in an electronic circuit card module | |
US20140166244A1 (en) | Flat heat pipe and method for manufacturing the same | |
KR101926035B1 (en) | Fractal heat transfer device | |
JP5759600B1 (en) | Flat heat pipe | |
JP4382891B2 (en) | Flat heat pipe and manufacturing method thereof | |
JP4389565B2 (en) | Boiling heat transfer tube and manufacturing method thereof | |
JP4925597B2 (en) | Heat pipe for heat pipe and heat pipe | |
KR101200597B1 (en) | A complex pipe for transferring heat, heat exchanging system and heat exchanger using the same | |
JP4382892B2 (en) | Flat heat pipe and manufacturing method thereof | |
US8695687B2 (en) | Hybrid pin-fin micro heat pipe heat sink and method of fabrication | |
JP2001296093A (en) | Heat pipe | |
JP2003302180A (en) | Self-excited oscillation type heat pipe | |
JP4278739B2 (en) | Flat heat pipe and manufacturing method thereof | |
JP5567059B2 (en) | Thin heat pipe | |
JP2018204882A (en) | Ebullition cooler | |
JP2005291599A (en) | Tube with internal groove for heat pipe and heat pipe | |
JP2009024996A (en) | Method of manufacturing heat pipe | |
TWI738499B (en) | Cooling device and cooling system using the cooling device | |
JP4467338B2 (en) | Heat pipe manufacturing method | |
US20020074114A1 (en) | Finned heat exchange tube and process for forming same | |
WO2020054752A1 (en) | Cooling device and cooling system using same | |
KR101404853B1 (en) | Finned tube for condensation and evaporation |