JP4278739B2 - Flat heat pipe and manufacturing method thereof - Google Patents

Flat heat pipe and manufacturing method thereof Download PDF

Info

Publication number
JP4278739B2
JP4278739B2 JP25935398A JP25935398A JP4278739B2 JP 4278739 B2 JP4278739 B2 JP 4278739B2 JP 25935398 A JP25935398 A JP 25935398A JP 25935398 A JP25935398 A JP 25935398A JP 4278739 B2 JP4278739 B2 JP 4278739B2
Authority
JP
Japan
Prior art keywords
wick
sheet
heat pipe
container
flat heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25935398A
Other languages
Japanese (ja)
Other versions
JP2000074581A (en
Inventor
順二 素谷
勝 大海
良夫 石田
寛一 植嶋
伸一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP25935398A priority Critical patent/JP4278739B2/en
Publication of JP2000074581A publication Critical patent/JP2000074581A/en
Application granted granted Critical
Publication of JP4278739B2 publication Critical patent/JP4278739B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular

Description

【0001】
【発明の属する技術分野】
本発明は、ウィックが空洞部内に配置された扁平ヒートパイプに関する。
【0002】
【従来の技術】
近年、パソコン等の電気機器に搭載されている半導体素子等の発熱部品の冷却技術が注目されている。その一つの方法としてヒートパイプを応用した冷却技術がある。ヒートパイプを用いた冷却方法として、ヒートパイプを発熱部品に取り付け、そのヒートパイプを経路として発熱部品の熱を放熱用のフィン等まで運んで放散させる形態が代表的である。またそのフィン等に強制的に送風する小型ファンを設置した電気機器もある。
【0003】
ヒートパイプについて簡単に説明すると、ヒートパイプは内部に密封された空洞部を備えており、その空洞部に水、代替フロン等の作動流体(作動液ともいう)が一定量収容されているものである。空洞部内は真空引きされており、作動流体の蒸発が起きやすくなっている。作動流体は空洞部内で液相と気相(蒸気)の混在状態となって存在している。
【0004】
ヒートパイプは空洞部内の作動流体が蒸発し、その蒸気が移動することで熱移動機能が作動する。例えば直状タイプのヒートパイプの場合、その一端部側から熱を与えると(その部分をヒートパイプの吸熱部と呼ぶ)、その吸熱部において液相状態であった作動流体が蒸発し、その蒸気は他方端側に移動し、そこで蒸気が凝縮して放熱する(その部分をヒートパイプの放熱部と呼ぶ)。ヒートパイプの放熱部にはフィン等を取り付けておけば、作動流体の蒸気が有していた熱が外部に放散されやすくなる。
【0005】
ところで放熱部で凝縮した作動流体が吸熱部へ戻らなければ、上述の作動は継続しない。そこで放熱部で凝縮した作動流体(の液相)を吸熱部に帰還(還流)させる必要がある。通常は、吸熱部を放熱部より下方に位置させることで、放熱部で凝縮した作動流体の液相を重力によって下降させている。尚、このような状態をボトムヒートモードと呼ぶこともある。
【0006】
放熱部を吸熱部より上方に配置できない場合は、重力作用による作動流体の還流が期待できない。そこでヒートパイプの空洞部内に毛細管作用を発現するウィック(シート状ウィックやワイヤー等)を配置したり、空洞部内壁に微細な溝を形成したりする方法が知られている。尚、放熱部が吸熱部より下方に位置している場合をトップヒートモードと呼ぶ場合がある。放熱部が吸熱部とほぼ水平に位置している場合も重力作用による作動流体の還流が期待されにくいため、このような場合も、ウィックを配置したりすることが多い。
【0007】
【発明が解決しようとする課題】
近年は、パソコン等の電気機器の小型化、高性能化が著しく、それに搭載されるCPU、MPU等の発熱部品を冷却するための冷却機構の小型化、省スペース化が強く望まれている。従ってヒートパイプを用いた冷却機構の場合、そのヒートパイプの細径化も要求されることになる。
【0008】
そこで例えば外径3mm程度の細いヒートパイプが実用化され、既にそれがパソコン等の冷却機構に適用されている。しかし、パソコン等の筐体内のスペースの都合等により、その細い径のヒートパイプを更に潰して、断面を略扁平形状にしたヒートパイプ(扁平ヒートパイプ)を用いる場合もある。
【0009】
ところでヒートパイプを用いる利点の一つは、発熱部品の箇所と、その熱の放熱箇所(フィンを配置したりする箇所)との距離をある程度長くできる点にある。つまり、例えばCPUやMPU等の発熱部品は、パソコン本体内部の外壁付近できなく、そこから離れた位置に配置される場合が多いが、このような場合において、ヒートパイプを経由させることで、発熱部品の熱をフィンやファンが配置されるパソコン本体の外壁付近に効率的に運ぶことができるのである。
【0010】
一方、携帯型のパソコン等の場合、その小型化、軽量化が望まれるので、CPU、MPU等の発熱部品が搭載される本体部も、その形状が薄型化される傾向にある。このため、発熱部品の冷却機構に用いられるヒートパイプは、その吸熱部と放熱部とが概ね水平に位置するようになる場合も多い。またパソコン等の使用形態によっては、ヒートパイプがトップヒートモードになる場合もあり得る。このような事情から、パソコン等の機器に用いられるヒートパイプにはウィックをを挿入したり、空洞部内壁に微細な溝を形成したりする場合が多い。
【0011】
しかしヒートパイプがある程度長いと、作動流体の還流経路が長くなるため、上述した空洞部内壁に溝を形成したものでは、その毛細管作用が不足する場合がある。一方、空洞部内にウィックを配置したヒートパイプであっても、特に細径の扁平ヒートパイプの場合、その空洞部断面積が小さいため、作動流体の蒸気が高速化し、その蒸気と逆方向に移動すべき作動流体の液相の移動が妨げられやすくなる。特に厚さが1.5mm以下程度の薄型の扁平ヒートパイプの場合、この傾向が著しくなる傾向があった。
【0012】
作動流体の還流が不十分であると、いわゆるドライアウト現象が起きたりして、そのヒートパイプによる熱移動が停止あるいは性能低下が起きるので問題である。このような事情から、細径の扁平ヒートパイプの場合であっても、作動流体の還流が十分に維持され優れた特性が発現する扁平ヒートパイプの開発が望まれていた。
【0013】
【課題を解決するための手段】
本発明は、上述したような課題を踏まえ、作動流体の還流が十分に維持される優れた扁平ヒートパイプを提供すべくなされたものである。即ち本発明の扁平ヒートパイプは薄型であり、空洞部の横断面形状が扁平であるコンテナと、そのコンテナ内に挿入されたシート状ウィックとを有し、前記シート状ウィックは前記空洞部の横断面のほぼ中央部分または端部分に略Ω形状または略S形状または略U形状が1つ形成されており、前記シート状ウィックにより、前記空洞部内が作動流体の還流経路と蒸気流路とに区分されているというものである。
【0015】
また、空洞部横断面の長径方向において、シート状ウィックと空洞部の内壁との間にギャップを設けておくとよい。
【0016】
上述の本発明の扁平ヒートパイプ(薄型のもの)を製造する方法として本発明者らは次の方法を提案する。即ち、シート状ウィックを略円筒形状を有するコンテナ素管内に挿入する工程と、前記シート状ウィックのほぼ主面方向に潰す扁平加工を前記コンテナ素管に施す工程と、前記コンテナ素管をヒートパイプ化する工程とを有し、前記シート状ウィックには予めそのほぼ中央部分または端部分長手方向に沿った略Ω形状、略S字形状または略U字形状を1つ成形しておく、という製造方法を提案する。
【0017】
この扁平加工において、コンテナ素管の変形により前記シート状ウィックもその主面方向に潰されるようにすると良い。
【0018】
【発明の実施の形態】
図1を参照しながら本発明の実施の形態を説明する。図1は本発明の扁平ヒートパイプの製造工程の一部を模式的に示す説明図である。
先ずヒートパイプのコンテナとなるべきコンテナ素管200(例えば銅パイプ)を用意する。このコンテナ素管200内に、ほぼ中央部分に湾曲部や曲げ重なり部を形成しておいたシート状ウィック10(例えばメッシュ)を挿入する。シート状ウィックの形態例を幾つか図9に示しておく。図9(ア)は略Ω形状に形成したシート状ウィック、同(イ)はその略Ω形状が折れ曲がった形態の場合、同(ウ)は略S形状にした場合、同(エ)はそれが折れ曲がった形態の場合、を示している。
図1の例では、図2に示すような、湾曲部としてΩ形状部100を形成したシート状ウィック10を用いている。シート状ウィック10は例えば銅その他の金属製のメッシュをを用いればよい。
【0019】
さてシート状ウィック10をコンテナ素管200に挿入後、このコンテナ素管200をヒートパイプ化する。ここでヒートパイプ化とは、管の両端の封止して内部に密封された空洞部を形成する工程、その密封作業に先立って空洞部内に水等の作動流体(図示せず)を適量注入する工程、その他、細かい説明は省くが、空洞部内の脱気作業や洗浄作業等を適宜施す工程等により、ヒートパイプを組み立てる一連の工程の意味である。
【0020】
次いで図1(ア)に示す矢印方向の扁平加工(プレス加工等)を施す。図1(イ)はプレス後の状態を示す説明図であるが、こうして扁平形状に成形された扁平ヒートパイプ20が得られる。
【0021】
尚、上記扁平加工は、作動流体の注入、脱気、両端部の溶接封止等のヒートパイプ化工程を施してから行っても、ヒートパイプ化工程に先立ってコンテナ素管200に施しても良い。
【0022】
尚、図2に示すようにシート状ウィック10のほぼ中央部分にΩ形状部100を形成しておくことが望ましいが、場合によってはこのΩ形状部100はシート状ウィック10の端部分に設けても構わない。
【0023】
上述した本発明の扁平ヒートパイプ20は、シート状ウィック10のΩ形状部100がその全長に渡り、その空洞部のほぼ中央部分に配置されたものとなっている。この本発明の扁平ヒートパイプ20の作動試験を行ってみると、例え吸熱部が放熱部の下方に位置しない場合(水平配置またはトップヒートモード)でも、作動流体の還流が高く維持され優れた熱輸送特性を実現していることが判った。
【0024】
上述した本発明の扁平ヒートパイプ20が、トップヒートモード或いは吸熱部と放熱部とが実質水平配置の場合でも、優れた熱移動特性が維持された理由を、本発明者らは次のように推察する。
図3は上述した扁平ヒートパイプ20と同様の扁平ヒートパイプの断面を模式的に描いたものである。この図を参照しながら説明する。扁平ヒートパイプ21の内部には横断面が扁平の空洞部が形成されており、その空洞部内にはシート状ウィック11が配置され、更に作動流体(図示しない)が所定量収容されている。本発明の場合、この扁平ヒートパイプ21のほぼ全長に渡り、シート状ウィック11のΩ形状部110が空洞部のほぼ中央部分に位置している。
【0025】
従って、作動流体の液相部分を毛細管作用によって移動させるウィック機能を主に奏するΩ形状部110の部分が主に作動流体の還流経路となり、その他の部分が主に蒸気の流路(蒸気流路30)となる。この作動流体の還流経路と蒸気流路とが扁平ヒートパイプ21のほぼ全長に渡り区分されている。このため作動流体の蒸気の流れに逆行する作動流体の液相の移動が、蒸気により妨げられにくくなる。このような事情が本発明において、トップヒートモード或いは吸熱部と放熱部とが実質水平配置の場合でも、優れた熱移動特性が維持されたメカニズムであると本発明者らは推察する。
【0026】
ところで図7、8は、従来の扁平ヒートパイプの製造工程を示したものだが、この場合と本発明の場合とを比較してみる。
従来の扁平ヒートパイプの場合は、実用的には空洞部内に配置されたシート状ウィックや編素等のウィックが製造過程で乱れてやすく、このため作動流体の蒸気流路と作動流体の液相が毛細管作用で移動する経路の区分が乱れている場合が多い。
【0027】
図7の例は、メッシュ40をコンテナ素管41の内壁に沿うように配置し、それを潰して扁平にしたものである。しかしこの方法の場合、前記扁平加工の際、メッシュ40が図示するように乱れて乱雑になりやすい。また図8の例は、スパイラル状に巻いたスパイラルテープ420の弾性力によって、ワイヤーウィック421をコンテナ素管43内の内壁に沿って配置し、そのコンテナ素管43を潰して扁平した場合を示しているが、この場合でも、潰す工程において、ワイヤーウィック420が乱れてしまいやすい。
【0028】
図7、8に示す従来の例のように、ウィックとなるメッシュ40やワイヤーウィック420が乱れると、ウィック部分と蒸気流路の部分が入り乱れてしまう。特に細径の扁平ヒートパイプの場合、作動流体蒸気の移動が高速化しやすいので、作動流体蒸気によりウィック表面の作動流体液相が飛散させられる等の現象が起きやすいと思われる。このようなことが、作動流体の還流を不十分にさせていた原因と思われる。
【0029】
翻って図3に示すような本発明の扁平ヒートパイプ21の場合、主に作動流体の還流経路となるΩ形状部110と、蒸気の多くが通る経路となる蒸気流路30とが扁平ヒートパイプ21のほぼ全長に渡り区分されているので、作動流体の還流に対する蒸気移動の影響を受けにくく、従って十分な還流が維持され、優れた熱移動特性が発現するもの、と思われる。尚、蒸気はΩ形状部110の湾曲した内側も通る。
【0030】
図3において、シート状ウィック11のΩ形状部110は必ずしも空洞部30の中央部分に配置されなくても良い。例えば空洞部の端に寄せて配置しても良い。いずれにしても、扁平ヒートパイプ21のほぼ全長に渡り、Ω形状部110と蒸気流路の部分とが区分されていることが大切である。
【0031】
また図3に示すようにシート状ウィック11の端部分と空洞部内壁との間を少し離しておくとよい。このようなギャップ31も空洞部30の一部の空間を構成することは当然であるが、シート状ウィック11がないので、より蒸気流路が多く確保できる意味がある。その結果、扁平ヒートパイプの熱移動性能向上が期待できる。
【0032】
図4はΩ形状部120を形成したシート状ウィック12が、それが挿入されたコンテナ素管(図示せず)の扁平加工の際に変形する様子を模式的に描いた概念図である。この図ではシート状ウィック12は簡明を期するため実線で描いている。さてコンテナ素管が潰れると、その内壁に押されるようにシート状ウィック12もある程度潰される。この際、Ω形状部120のくびれ部分が図4(ア)に示すような矢印方向に更に変形する。図4(イ)はその変形した後の形状を示している。
【0033】
このように変形すれば、図3におけるギャップ31に相当する部分がより広く確保されることになる。このようなシート状ウィック12の望ましい変形は、略U形状に成形した場合より、略Ω形状に成形したシート状ウィックを用いた場合の方がより起こりやすい。
【0034】
図5は本発明の他の例として、図6に示すような略S形状に成形したシート状ウィック13を用いた場合の製造工程の一部を説明する図である。略S形状に成形したシート状ウィック13の他は、図1、2に示した例と同様である。コンテナ素管220内に挿入されたシート状ウィック13は、ヒートパイプ化工程と扁平加工を経て、シート状ウィック13のS字形状になった部分が製造された扁平ヒートパイプ22のほぼ全長に渡り、ほぼ中央部分に配置されるようになっている。またシート状ウィック13がその部分で曲げ重なった状態となるようにすれば、毛細管作用が一層向上することにもなる。
【0035】
この本発明の他の例の作動試験を行ってみると、吸熱部が放熱部の下方に位置しない場合(水平配置またはトップヒートモード)でも、作動流体の還流が高く維持され優れた熱輸送特性を実現していることが判った。
【0036】
【実施例】
本発明の実施の形態は上述した例に限られるものではないが、ここでは図1、2に示した例について実施例を説明しておく。
コンテナ素管20として銅製で外径6mm、肉厚0.25mm、シート状ウィック10として素線径0.1mmの金属線からなる網を用いた。扁平加工後の扁平ヒートパイプは厚さ1mmで、その長さ200mm程度である。
この扁平ヒートパイプを水平に置いて、その一方の端部から50mm部分を加熱、他方側を冷却放熱させたところ、8Wまでは加熱部と放熱部の温度差が非常に小さく維持できた。同様の試験を従来のヒートパイプで試みた結果と比べても数倍の熱輸送特性が実現していることが判った。
【0037】
【発明の効果】
以上のように本発明の扁平ヒートパイプとその製造方法は、作動流体の還流が十分に維持され、優れた熱移動特性が実現するものである。
【図面の簡単な説明】
【図1】本発明の扁平ヒートパイプの製造工程の一部を模式的に示す説明図である。
【図2】本発明の用いるシート状ウィックの例を示す説明図である。
【図3】本発明の扁平ヒートパイプの断面を示す説明図である。
【図4】本発明の製造方法における、シート状ウィックの変形を示す説明図である。
【図5】本発明の扁平ヒートパイプの製造工程の一部を模式的に示す説明図である。
【図6】本発明の扁平ヒートパイプの製造工程の一部を模式的に示す説明図である。
【図7】従来の扁平ヒートパイプの製造工程の一部を模式的に示す説明図である。
【図8】従来の扁平ヒートパイプの製造工程の一部を模式的に示す説明図である。
【図9】本発明に用いるシート状ウィックの例を示す説明図である。
【符号の説明】
10 シート状ウィック
200 コンテナ素管
20 扁平ヒートパイプ
100 Ω形状部
11 シート状ウィック
110 Ω形状部
21 扁平ヒートパイプ
30 蒸気流路
31 ギャップ
12 シート状ウィック
120 Ω形状部
13 シート状ウィック
22 扁平ヒートパイプ
220 コンテナ素管
40 メッシュ
41 コンテナ素管
420 ワイヤーウィック
421 スパイラルテープ
43 コンテナ素管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flat heat pipe in which a wick is disposed in a cavity.
[0002]
[Prior art]
In recent years, cooling technology for heat-generating components such as semiconductor elements mounted on electric devices such as personal computers has attracted attention. One method is a cooling technique using a heat pipe. A typical cooling method using a heat pipe is a mode in which a heat pipe is attached to a heat generating component, and heat of the heat generating component is carried to a heat radiating fin or the like through the heat pipe as a path to dissipate. There is also an electric device in which a small fan that forcibly blows air to the fins is installed.
[0003]
Briefly describing the heat pipe, the heat pipe has a hollow portion sealed inside, and a certain amount of working fluid (also referred to as hydraulic fluid) such as water or alternative chlorofluorocarbon is contained in the hollow portion. is there. The inside of the cavity is evacuated so that the working fluid is easily evaporated. The working fluid exists in a mixed state of a liquid phase and a gas phase (vapor) in the cavity.
[0004]
In the heat pipe, the working fluid in the cavity evaporates, and the heat transfer function is activated by the movement of the vapor. For example, in the case of a straight type heat pipe, when heat is applied from one end side thereof (this part is referred to as a heat absorption part of the heat pipe), the working fluid that is in a liquid phase in the heat absorption part evaporates, and the vapor Moves to the other end, where the vapor condenses and dissipates heat (this portion is called the heat dissipating part of the heat pipe). If fins or the like are attached to the heat radiating portion of the heat pipe, the heat of the working fluid vapor is easily dissipated to the outside.
[0005]
By the way, if the working fluid condensed in the heat radiating part does not return to the heat absorbing part, the above-described operation is not continued. Therefore, it is necessary to return (reflux) the working fluid (liquid phase) condensed in the heat radiating section to the heat absorbing section. Usually, the liquid phase of the working fluid condensed in the heat dissipation part is lowered by gravity by positioning the heat absorption part below the heat dissipation part. Such a state may be referred to as a bottom heat mode.
[0006]
When the heat dissipating part cannot be arranged above the heat absorbing part, the working fluid cannot be recirculated by the gravitational action. In view of this, a method is known in which a wick (sheet-like wick, wire, or the like) that exhibits capillary action is disposed in the cavity of the heat pipe, or a minute groove is formed in the inner wall of the cavity. In addition, the case where the heat radiating part is located below the heat absorbing part may be referred to as a top heat mode. Even when the heat dissipating part is positioned substantially horizontally with the heat absorbing part, it is difficult to expect the working fluid to recirculate due to the gravity action. In such a case, a wick is often disposed.
[0007]
[Problems to be solved by the invention]
In recent years, electrical devices such as personal computers have been remarkably downsized and improved in performance, and downsizing and space saving of a cooling mechanism for cooling heat-generating components such as CPU and MPU mounted thereon are strongly desired. Therefore, in the case of a cooling mechanism using a heat pipe, it is required to reduce the diameter of the heat pipe.
[0008]
Therefore, for example, a thin heat pipe having an outer diameter of about 3 mm has been put into practical use and has already been applied to a cooling mechanism such as a personal computer. However, depending on the space in the housing of a personal computer or the like, a heat pipe (flat heat pipe) in which the thin diameter heat pipe is further crushed to have a substantially flat cross section may be used.
[0009]
By the way, one of the advantages of using a heat pipe is that the distance between the location of the heat generating component and the heat radiation location (location where fins are arranged) can be increased to some extent. In other words, for example, heat-generating parts such as CPU and MPU cannot be located near the outer wall inside the PC main body and are often arranged at a position away from them, but in such a case, heat is generated by passing through a heat pipe. The heat of the parts can be efficiently transferred to the vicinity of the outer wall of the PC main body where the fins and fans are arranged.
[0010]
On the other hand, in the case of a portable personal computer or the like, since it is desired to reduce its size and weight, the shape of the main body portion on which heat generating components such as a CPU and MPU are mounted tends to be thinned. For this reason, the heat pipe used for the cooling mechanism of the heat-generating component often has its heat absorbing portion and heat radiating portion positioned substantially horizontally. Further, depending on the usage form of a personal computer or the like, the heat pipe may be in a top heat mode. For these reasons, a wick is often inserted into a heat pipe used in a device such as a personal computer or a fine groove is formed on the inner wall of the cavity.
[0011]
However, if the heat pipe is long to some extent, the return path of the working fluid becomes long. Therefore, in the case where the groove is formed on the inner wall of the cavity, the capillary action may be insufficient. On the other hand, even in the case of a heat pipe with a wick in the cavity, especially in the case of a flat heat pipe with a small diameter, the cross-sectional area of the cavity is small, so the steam of the working fluid becomes faster and moves in the opposite direction to the steam The movement of the liquid phase of the working fluid to be performed is likely to be hindered. In particular, in the case of a thin flat heat pipe having a thickness of about 1.5 mm or less, this tendency tends to be remarkable.
[0012]
If the working fluid is not sufficiently recirculated, a so-called dry-out phenomenon may occur, and heat transfer by the heat pipe stops or performance degradation occurs. Under such circumstances, even in the case of a thin flat heat pipe, it has been desired to develop a flat heat pipe that sufficiently maintains the reflux of the working fluid and exhibits excellent characteristics.
[0013]
[Means for Solving the Problems]
The present invention has been made in view of the above-described problems, and is intended to provide an excellent flat heat pipe that sufficiently maintains the reflux of the working fluid. That is, the flat heat pipe of the present invention has a thin container having a flat cross-sectional shape of the cavity and a sheet-like wick inserted into the container, and the sheet-like wick crosses the cavity. One substantially Ω-shaped, substantially S-shaped or substantially U-shaped is formed in the substantially central portion or end portion of the surface, and the inside of the cavity is divided into a working fluid reflux path and a steam flow path by the sheet-like wick. It is what has been done.
[0015]
Moreover, it is good to provide a gap between the sheet-like wick and the inner wall of the cavity in the major axis direction of the cavity section.
[0016]
The present inventors propose the following method as a method of manufacturing the flat heat pipe ( thin type) of the present invention described above. A step of inserting a sheet-like wick into a container pipe having a substantially cylindrical shape; a step of flattening the container base pipe in a substantially main surface direction of the sheet-like wick; and the container pipe being a heat pipe. and a step of reduction, the substantially Ω shape along the longitudinal direction in advance substantially central portion or the end portion thereof into a sheet wick, previously molded one substantially S-shaped or substantially U-shaped, that A manufacturing method is proposed.
[0017]
In the flat processing, the sheet-like wick may be crushed in the main surface direction by deformation of the container base tube.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIG. FIG. 1 is an explanatory view schematically showing a part of the manufacturing process of the flat heat pipe of the present invention.
First, a container base pipe 200 (for example, a copper pipe) to be a heat pipe container is prepared. A sheet-like wick 10 (for example, a mesh) in which a curved portion or a bent overlap portion is formed at a substantially central portion is inserted into the container base tube 200. Some examples of sheet-like wicks are shown in FIG. 9A is a sheet-like wick formed in a substantially Ω shape, FIG. 9A is a bent form of the substantially Ω shape, FIG. 9C is a substantially S shape, and FIG. In the case of a bent form, FIG.
In the example of FIG. 1, a sheet-like wick 10 in which an Ω-shaped portion 100 is formed as a curved portion as shown in FIG. 2 is used. For example, a copper or other metal mesh may be used for the sheet-like wick 10.
[0019]
Now, after inserting the sheet-like wick 10 into the container base tube 200, the container base tube 200 is formed into a heat pipe. Here, heat pipe formation is a process of forming a hollow part sealed inside by sealing both ends of the pipe, and an appropriate amount of working fluid (not shown) such as water is injected into the hollow part prior to the sealing operation. This is a series of steps for assembling the heat pipe by a step of appropriately performing a deaeration operation, a cleaning operation, or the like in the hollow portion, although a detailed description is omitted.
[0020]
Next, flattening (pressing or the like) in the direction of the arrow shown in FIG. FIG. 1 (a) is an explanatory view showing the state after pressing, and thus a flat heat pipe 20 formed into a flat shape is obtained.
[0021]
The flattening process may be performed after a heat pipe forming process such as working fluid injection, deaeration, and welding sealing at both ends, or may be performed on the container base pipe 200 prior to the heat pipe forming process. good.
[0022]
As shown in FIG. 2, it is desirable to form the Ω-shaped portion 100 at the substantially central portion of the sheet-like wick 10. However, in some cases, the Ω-shaped portion 100 is provided at the end portion of the sheet-like wick 10. It doesn't matter.
[0023]
In the flat heat pipe 20 of the present invention described above, the Ω-shaped portion 100 of the sheet-like wick 10 extends over the entire length thereof, and is disposed at a substantially central portion of the hollow portion. When the operation test of the flat heat pipe 20 of the present invention is performed, even when the heat absorbing portion is not located below the heat radiating portion (horizontal arrangement or top heat mode), the working fluid is maintained at a high reflux and has excellent heat. It was found that the transport characteristics were realized.
[0024]
In the above-described flat heat pipe 20 of the present invention, even when the top heat mode or the heat absorbing portion and the heat radiating portion are substantially horizontally arranged, the present inventors explain the reason why the excellent heat transfer characteristics are maintained as follows. I guess.
FIG. 3 schematically shows a cross section of a flat heat pipe similar to the flat heat pipe 20 described above. This will be described with reference to this figure. A hollow portion having a flat cross section is formed inside the flat heat pipe 21, and a sheet-like wick 11 is disposed in the hollow portion, and a predetermined amount of working fluid (not shown) is accommodated therein. In the case of the present invention, the Ω-shaped portion 110 of the sheet-like wick 11 is located at substantially the center portion of the hollow portion over almost the entire length of the flat heat pipe 21.
[0025]
Therefore, the part of the Ω-shaped part 110 that mainly exhibits the wick function of moving the liquid phase part of the working fluid by capillary action is mainly the reflux path of the working fluid, and the other part is mainly the steam channel (steam channel). 30). The working fluid recirculation path and the steam flow path are divided over substantially the entire length of the flat heat pipe 21. For this reason, the movement of the liquid phase of the working fluid that goes against the flow of the working fluid vapor is less likely to be hindered by the steam. In the present invention, the inventors speculate that such a situation is a mechanism in which excellent heat transfer characteristics are maintained even when the top heat mode or the heat absorbing portion and the heat radiating portion are substantially horizontally arranged.
[0026]
7 and 8 show the manufacturing process of the conventional flat heat pipe. Compare this case with the case of the present invention.
In the case of a conventional flat heat pipe, the wick such as a sheet-like wick or a knitted fabric arranged in the cavity is likely to be disturbed in the manufacturing process. Therefore, the working fluid vapor flow path and the working fluid liquid phase In many cases, the section of the path of movement is disturbed by capillary action.
[0027]
In the example of FIG. 7, the mesh 40 is arranged along the inner wall of the container shell 41 and is crushed and flattened. However, in the case of this method, the mesh 40 tends to become confused and messy as shown in the drawing. The example of FIG. 8 shows a case where the wire wick 421 is disposed along the inner wall of the container base tube 43 by the elastic force of the spiral tape 420 wound in a spiral shape, and the container base tube 43 is crushed and flattened. However, even in this case, the wire wick 420 is easily disturbed in the crushing process.
[0028]
7 and 8, when the mesh 40 or the wire wick 420 serving as a wick is disturbed, the wick portion and the steam flow path portion are disturbed. In particular, in the case of a flat heat pipe with a small diameter, the movement of the working fluid vapor is likely to be accelerated, and it is likely that a phenomenon such as the working fluid liquid phase on the wick surface being scattered by the working fluid vapor is likely to occur. This seems to be the cause of the insufficient reflux of the working fluid.
[0029]
In contrast, in the case of the flat heat pipe 21 of the present invention as shown in FIG. 3, the Ω-shaped portion 110 mainly serving as a return path for the working fluid and the steam flow path 30 serving as a path through which much of the steam passes are flat heat pipes. Since it is divided over almost the entire length of 21, it is considered that it is hardly affected by the vapor transfer with respect to the reflux of the working fluid, and therefore, sufficient reflux is maintained and excellent heat transfer characteristics are exhibited. The vapor also passes through the curved inner side of the Ω-shaped portion 110.
[0030]
In FIG. 3, the Ω-shaped portion 110 of the sheet-like wick 11 does not necessarily have to be disposed at the central portion of the hollow portion 30. For example, it may be arranged close to the end of the cavity. In any case, it is important that the Ω-shaped portion 110 and the portion of the steam flow path are separated over almost the entire length of the flat heat pipe 21.
[0031]
Moreover, as shown in FIG. 3, it is good to leave some distance between the edge part of the sheet-like wick 11, and a cavity inner wall. It is natural that such a gap 31 also constitutes a part of the space of the cavity 30, but since there is no sheet-like wick 11, there is a meaning that more steam flow paths can be secured. As a result, improvement in heat transfer performance of the flat heat pipe can be expected.
[0032]
FIG. 4 is a conceptual diagram schematically illustrating a state in which the sheet-like wick 12 in which the Ω-shaped portion 120 is formed is deformed during flattening of a container base tube (not shown) into which the sheet-like wick 12 is inserted. In this figure, the sheet-like wick 12 is drawn with a solid line for the sake of simplicity. Now, when the container tube is crushed, the sheet-like wick 12 is also crushed to some extent so as to be pushed against its inner wall. At this time, the constricted portion of the Ω-shaped portion 120 is further deformed in the arrow direction as shown in FIG. FIG. 4 (a) shows the shape after the deformation.
[0033]
If deformed in this way, a portion corresponding to the gap 31 in FIG. 3 is secured more widely. Such desirable deformation of the sheet-like wick 12 is more likely to occur when the sheet-like wick shaped into a substantially Ω shape is used than when it is shaped into a substantially U shape.
[0034]
FIG. 5 is a diagram for explaining a part of the manufacturing process when a sheet-like wick 13 formed in a substantially S shape as shown in FIG. 6 is used as another example of the present invention. Other than the sheet-like wick 13 formed into a substantially S shape, it is the same as the example shown in FIGS. The sheet-like wick 13 inserted into the container tube 220 is subjected to a heat pipe forming process and a flattening process, and almost the entire length of the flat heat pipe 22 in which the S-shaped portion of the sheet-like wick 13 is manufactured. It is designed to be arranged in the middle part. In addition, if the sheet-like wick 13 is bent and overlapped at that portion, the capillary action is further improved.
[0035]
When performing an operation test of another example of the present invention, even when the heat absorption part is not located below the heat dissipation part (horizontal arrangement or top heat mode), the reflux of the working fluid is maintained high and excellent heat transport characteristics It was found that
[0036]
【Example】
The embodiment of the present invention is not limited to the above-described example, but here, an example of the example shown in FIGS. 1 and 2 will be described.
A net made of a metal wire made of copper having an outer diameter of 6 mm and a wall thickness of 0.25 mm and a sheet-like wick 10 of an element wire diameter of 0.1 mm was used as the container base tube 20. The flat heat pipe after flat processing has a thickness of 1 mm and a length of about 200 mm.
When this flat heat pipe was placed horizontally, a 50 mm portion was heated from one end portion and the other side was cooled and dissipated, and the temperature difference between the heating portion and the heat dissipating portion could be kept very small up to 8W. It was found that several times the heat transport characteristics were realized compared to the result of a similar test conducted with a conventional heat pipe.
[0037]
【The invention's effect】
As described above, the flat heat pipe and the manufacturing method thereof according to the present invention sufficiently maintain the reflux of the working fluid and realize excellent heat transfer characteristics.
[Brief description of the drawings]
FIG. 1 is an explanatory view schematically showing a part of a manufacturing process of a flat heat pipe of the present invention.
FIG. 2 is an explanatory view showing an example of a sheet-like wick used in the present invention.
FIG. 3 is an explanatory view showing a cross section of the flat heat pipe of the present invention.
FIG. 4 is an explanatory view showing deformation of a sheet-like wick in the manufacturing method of the present invention.
FIG. 5 is an explanatory view schematically showing a part of the manufacturing process of the flat heat pipe of the present invention.
FIG. 6 is an explanatory view schematically showing a part of the manufacturing process of the flat heat pipe of the present invention.
FIG. 7 is an explanatory view schematically showing a part of a manufacturing process of a conventional flat heat pipe.
FIG. 8 is an explanatory view schematically showing a part of a manufacturing process of a conventional flat heat pipe.
FIG. 9 is an explanatory view showing an example of a sheet-like wick used in the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Sheet | seat wick 200 Container base pipe 20 Flat heat pipe 100 Ω shape part 11 Sheet wick 110 Ω shape part 21 Flat heat pipe 30 Steam flow path 31 Gap 12 Sheet wick 120 Ω shape part 13 Sheet wick 22 Flat heat pipe 220 Container tube 40 Mesh 41 Container tube 420 Wire wick 421 Spiral tape 43 Container tube

Claims (6)

空洞部の横断面形状が扁平であるコンテナと、そのコンテナ内に挿入されたシート状ウィックとを有し、前記シート状ウィックは前記空洞部の横断面のほぼ中央部分または端部分略Ω形状が1つ形成されており、前記シート状ウィックにより、前記空洞部内が作動流体の還流経路と蒸気流路とに区分されている薄型の扁平ヒートパイプ。A container having a flat cross-sectional shape of the hollow portion and a sheet-like wick inserted into the container, and the sheet-like wick is substantially Ω-shaped at a substantially central portion or an end portion of the cross-section of the hollow portion. A thin flat heat pipe in which the inside of the hollow portion is divided into a working fluid reflux path and a steam flow path by the sheet-like wick. 空洞部の横断面形状が扁平であるコンテナと、そのコンテナ内に挿入されたシート状ウィックとを有し、前記シート状ウィックは前記空洞部の横断面のほぼ中央部分または端部分略S形状が1つ形成されており、前記シート状ウィックにより、前記空洞部内が作動流体の還流経路と蒸気流路とに区分されている薄型の扁平ヒートパイプ。A container having a flat cross-sectional shape of the hollow portion and a sheet-like wick inserted into the container, and the sheet-like wick is substantially S-shaped at a substantially central portion or an end portion of the cross-section of the hollow portion. A thin flat heat pipe in which the inside of the hollow portion is divided into a working fluid reflux path and a steam flow path by the sheet-like wick. 空洞部の横断面形状が扁平であるコンテナと、そのコンテナ内に挿入されたシート状ウィックとを有し、前記シート状ウィックは前記空洞部の横断面のほぼ中央部分または端部分略U形状が1つ形成されており、前記シート状ウィックにより、前記空洞部内が作動流体の還流経路と蒸気流路とに区分されている薄型の扁平ヒートパイプ。A container having a flat cross-sectional shape of the hollow portion and a sheet-like wick inserted into the container, and the sheet-like wick is substantially U-shaped at a substantially central portion or an end portion of the cross-section of the hollow portion. A thin flat heat pipe in which the inside of the hollow portion is divided into a working fluid reflux path and a steam flow path by the sheet-like wick. 前記横断面の長径方向において、前記シート状ウィックと当該空洞部の内壁との間にギャップが設けられている、請求項1〜3のいずれかに記載の薄型の扁平ヒートパイプ。The thin flat heat pipe according to any one of claims 1 to 3, wherein a gap is provided between the sheet-like wick and the inner wall of the hollow portion in the major axis direction of the transverse section. シート状ウィックを略円筒形状を有するコンテナ素管内に挿入する工程と、前記シート状ウィックのほぼ主面方向に潰す扁平加工を前記コンテナ素管に施す工程と、前記コンテナ素管をヒートパイプ化する工程とを有し、前記シート状ウィックには予めそのほぼ中央部分または端部分長手方向に沿った略Ω形状、略S字形状または略U字形状を1つ成形しておく、請求項1〜4のいずれに記載の扁平ヒートパイプを製造する薄型の扁平ヒートパイプの製造方法。A step of inserting a sheet-like wick into a container pipe having a substantially cylindrical shape, a step of flattening the sheet-like wick in a substantially main surface direction of the sheet-like wick, and a step of forming the container base pipe into a heat pipe. and a step, wherein a substantially Ω shape along the longitudinal direction in advance substantially central portion or the end portion thereof into a sheet wick, previously molded one substantially S-shaped or substantially U-shaped, claim 1 The manufacturing method of the thin flat heat pipe which manufactures the flat heat pipe as described in any of -4. 前記扁平加工において、前記コンテナ素管の変形により前記シート状ウィックもその主面方向に潰される、請求項5に記載の薄型の扁平ヒートパイプの製造方法。The method for manufacturing a thin flat heat pipe according to claim 5, wherein, in the flattening process, the sheet-like wick is also crushed in a main surface direction by deformation of the container base tube.
JP25935398A 1998-08-28 1998-08-28 Flat heat pipe and manufacturing method thereof Expired - Lifetime JP4278739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25935398A JP4278739B2 (en) 1998-08-28 1998-08-28 Flat heat pipe and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25935398A JP4278739B2 (en) 1998-08-28 1998-08-28 Flat heat pipe and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000074581A JP2000074581A (en) 2000-03-14
JP4278739B2 true JP4278739B2 (en) 2009-06-17

Family

ID=17332940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25935398A Expired - Lifetime JP4278739B2 (en) 1998-08-28 1998-08-28 Flat heat pipe and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4278739B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7275588B2 (en) * 2004-06-02 2007-10-02 Hul-Chun Hsu Planar heat pipe structure
TWM264484U (en) * 2004-10-27 2005-05-11 Jia-Hau Li Forming structure of heat-pipe multi-layered capillary constitution
TW201038896A (en) * 2009-04-16 2010-11-01 Yeh Chiang Technology Corp Ultra-thin heat pipe
CN102449423A (en) 2009-07-21 2012-05-09 古河电气工业株式会社 Flattened heat pipe, and method for manufacturing the heat pipe
JP2011075259A (en) * 2009-10-02 2011-04-14 Furukawa Electric Co Ltd:The Flat heat pipe and manufacturing method of the same
CN110220404A (en) * 2014-11-28 2019-09-10 台达电子工业股份有限公司 Heat pipe
JP6049837B1 (en) * 2015-10-28 2016-12-21 株式会社フジクラ Flat heat pipe
JP6462771B2 (en) * 2017-06-01 2019-01-30 古河電気工業株式会社 Flat type heat pipe
JPWO2023085350A1 (en) * 2021-11-15 2023-05-19

Also Published As

Publication number Publication date
JP2000074581A (en) 2000-03-14

Similar Documents

Publication Publication Date Title
JP3146158U (en) Heat dissipation module
JP4382891B2 (en) Flat heat pipe and manufacturing method thereof
JP3202014B2 (en) Micro cooling device
US20050077030A1 (en) Transport line with grooved microchannels for two-phase heat dissipation on devices
JP2009068787A (en) Thin heat pipe and method of manufacturing the same
JP2001094023A (en) Cooler for electronic device
JP4278739B2 (en) Flat heat pipe and manufacturing method thereof
JP2011043320A (en) Flattened heat pipe, and method of manufacturing the same
JP4426684B2 (en) heatsink
WO2009099057A1 (en) Self-oscillating heat pipe
JP2016095108A (en) Heat pipe
JP5323614B2 (en) Heat pipe and manufacturing method thereof
JP2006284020A (en) Heat pipe
JP2010054121A (en) Variable conductance heat pipe
TW202037872A (en) Cooling device
US20080093055A1 (en) Heat-dissipating structure
JP4382892B2 (en) Flat heat pipe and manufacturing method thereof
US10724803B2 (en) Heat pipe and method for making the same
JP2009115346A (en) Heat pipe
JP3113254U (en) heat pipe
JP2009024996A (en) Method of manufacturing heat pipe
JP5567059B2 (en) Thin heat pipe
JP4128669B2 (en) Flat heat pipe and manufacturing method thereof
JP2010025407A (en) Heat pipe container and heat pipe
JP2000130972A (en) Plate-type heat pipe and its manufacture

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

EXPY Cancellation because of completion of term