JP2010054121A - Variable conductance heat pipe - Google Patents

Variable conductance heat pipe Download PDF

Info

Publication number
JP2010054121A
JP2010054121A JP2008219549A JP2008219549A JP2010054121A JP 2010054121 A JP2010054121 A JP 2010054121A JP 2008219549 A JP2008219549 A JP 2008219549A JP 2008219549 A JP2008219549 A JP 2008219549A JP 2010054121 A JP2010054121 A JP 2010054121A
Authority
JP
Japan
Prior art keywords
heat pipe
variable conductance
heat
liquid
sealed container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008219549A
Other languages
Japanese (ja)
Inventor
Shigetoshi Ipposhi
茂俊 一法師
Tetsuya Nagayasu
哲也 永安
Shingo Hironaka
伸吾 廣中
Kurayoshi Kitazaki
倉喜 北崎
Yukio Sato
行雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008219549A priority Critical patent/JP2010054121A/en
Priority to US12/548,861 priority patent/US20100051240A1/en
Priority to CN2009101710312A priority patent/CN101660880B/en
Publication of JP2010054121A publication Critical patent/JP2010054121A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/14Arrangements for modifying heat-transfer, e.g. increasing, decreasing by endowing the walls of conduits with zones of different degrees of conduction of heat

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cookers (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the stable starting and stable operation of a variable conductance heat pipe irrespective of a situation in preservation, transportation, and installation. <P>SOLUTION: In the variable conductance heat pipe, a working fluid and a non-condensible gas are sealed in an airtight container 1 extended in an axial direction, a heating source 9 is attached to one side of the airtight container 1, and a cold source 10 is attached to the other side. The pipe is composed so that a portion 15 with more favorable water conductivity than other portions is provided at one part of a cross section perpendicular to an axis of the airtight container 1, and the portion with favorable water conductivity is extended in the axial direction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、電子機器などの温度を制御する冷却機器、特に可変コンダクタンスヒートパイプを用いた冷却機器に関するものである。   The present invention relates to a cooling device for controlling the temperature of an electronic device or the like, and more particularly to a cooling device using a variable conductance heat pipe.

従来の電子機器用冷却器では、所望の機能を安定して得るために、電子機器の温度を許容温度以下に冷却することが重視されてきた。冷却器としては、輻射式、自然空冷式、強制空冷式、液冷式および沸騰冷却式などがあるが、近年、密閉容器の中に適量の作動流体を封止したヒートパイプなども多用されるようになっている。これらの冷却器は機器特有の熱抵抗を有しており、実使用の際、電子機器の発熱量の増加に伴い、また周囲環境温度の増加に伴い電子機器温度は増大し、一方、放熱部を通流する冷却媒体(空気、水など)の流量の増加に伴い電子機器温度は低下する。したがって、それらの動作因子または環境因子の変動により電子機器温度は可変し、実用上必ずヒートサイクルが発生する。このヒートサイクルは、電子機器を構成する各材料の線膨張係数の差に起因した内部応力を発生させ、電子機器の破壊、つまり電子機器の寿命を短縮する主要な原因となっている。   In the conventional cooler for electronic equipment, in order to stably obtain a desired function, it has been important to cool the temperature of the electronic equipment to an allowable temperature or less. The cooler includes a radiation type, a natural air cooling type, a forced air cooling type, a liquid cooling type, and a boiling cooling type. In recent years, a heat pipe in which an appropriate amount of working fluid is sealed in a sealed container is also frequently used. It is like that. These coolers have device-specific thermal resistance, and in actual use, the temperature of the electronic device increases as the heat generation amount of the electronic device increases and the ambient environment temperature increases. As the flow rate of the cooling medium (air, water, etc.) flowing therethrough increases, the electronic device temperature decreases. Therefore, the temperature of electronic equipment varies due to variations in operating factors or environmental factors, and a heat cycle is always generated in practice. This heat cycle generates an internal stress due to a difference in coefficient of linear expansion of each material constituting the electronic device, and is a major cause of destruction of the electronic device, that is, shortening the life of the electronic device.

このような背景のもと、電子機器の高寿命化のために上記ヒートサイクルを抑制する冷却機器が必要とされており、その一つの冷却デバイスとして、ヒートパイプ内部に不凝縮ガス(ヘリウム、アルゴン、窒素など)を入れた可変コンダクタンスヒートパイプが提案されている(例えば特許文献1)。   Against this background, a cooling device that suppresses the above heat cycle is required for extending the life of electronic devices. As one of such cooling devices, non-condensable gases (helium, argon, etc.) are formed inside the heat pipe. , Nitrogen, etc.) have been proposed (for example, Patent Document 1).

特開平10−122775号公報(2頁、図1)Japanese Patent Laid-Open No. 10-122775 (2 pages, FIG. 1)

このような可変コンダクタンスヒートパイプにあっては、受熱部、断熱部(輸送部)、放熱部、ガス溜めからなる密閉容器内部に作動流体(液体と蒸気)と不凝縮ガスが封止された構造であるが、製造時、保管時、輸送時、設置時において、種々の姿勢になるためガス溜め内に作動液体が流入する、また急激な温度変化によりガス溜め内に作動液が流入するなど、常に受熱部に液体があるとは限らず、可変コンダクタンスヒートパイプの安定起動および安定動作に問題があった。それゆえ、可変コンダクタンスヒートパイプの量産化は困難であった。   In such a variable conductance heat pipe, a working fluid (liquid and vapor) and non-condensable gas are sealed inside a sealed container consisting of a heat receiving part, a heat insulating part (transport part), a heat radiating part, and a gas reservoir. However, during manufacturing, storage, transportation, and installation, the working liquid flows into the gas reservoir because of various postures, and the working fluid flows into the gas reservoir due to a sudden temperature change. There was not always liquid in the heat receiving part, and there was a problem in the stable start-up and stable operation of the variable conductance heat pipe. Therefore, mass production of the variable conductance heat pipe has been difficult.

この発明に係る可変コンダクタンスヒートパイプは、軸方向に延びた密閉容器内に作動流体と不凝縮ガスを封止し、この密閉容器の一方を発熱源、もう一方を冷熱源に取り付けたものにおいて、上記密閉容器の軸に垂直な断面の一部に他の部分より導水性の良い部分を設け、この導水性の良い部分が軸方向に延びているものである。   In the variable conductance heat pipe according to the present invention, the working fluid and the non-condensable gas are sealed in a sealed container extending in the axial direction, and one of the sealed containers is attached to a heat source and the other is attached to a cold heat source. A part with better water conductivity than the other part is provided in a part of the cross section perpendicular to the axis of the closed container, and the good water conductivity part extends in the axial direction.

この発明によれば、保存、輸送、取付け時の状況に係わらず、可変コンダクタンスヒートパイプの安定起動および安定動作を提供することができる。   According to the present invention, it is possible to provide stable start-up and stable operation of the variable conductance heat pipe regardless of the situation during storage, transportation, and installation.

実施の形態1.
図1は本発明の実施の形態1による可変コンダクタンスヒートパイプを示す断面図である。図中、左が可変コンダクタンスヒートパイプを構成する密閉容器の軸を含む断面図、右がその軸に垂直な断面を示す、すなわちA−A断面の拡大図である。密閉容器1の端部から、受熱部2(蒸発部)、断熱部3(輸送部)、放熱部4(凝縮部)、不凝縮ガス溜め部5が形成されており、密閉容器1内部には作動流体(液体6とその蒸気7)と不凝縮ガス8が封止されている。A−A断面拡大図で示すように、密閉容器1の内壁の一部には凹凸が設けられており、この凹凸は密閉容器1の軸方向に延びている。受熱部2は発熱源9と接し、放熱部4は冷熱源10と接することにより、より高温の発熱源9から受熱部2に熱が伝わり、さらに受熱部2内の液体6に伝えられ、液体6が潜熱の形態で吸熱し蒸発または沸騰し、蒸気7が生成され、蒸気7または蒸気7と液体6が断熱部3を経て放熱部4へ流入し、蒸気7が凝縮しつつ、蒸気7が保有する潜熱を放熱部4に放出し、この放出された熱を放熱部からより低温の冷熱源10へ放熱する。その際、蒸気7が凝縮して生成された凝縮液(液体6)は、重力または毛細管力により放熱部4から断熱部3を経て再び受熱部2へ還流される。これら蒸気7および液体6の循環により、発熱源9において発生した熱は冷熱源10に連続的に伝えられる(排熱される)。一方、密閉容器1内に封止された不凝縮ガス8は、蒸気7または蒸気7と液体6の移動に伴い、断熱部3および放熱部4を経て、不凝縮ガス溜め部5または不凝縮ガス溜め部5側の放熱部4へ移動させられ、集積され停滞する。不凝縮ガス8が停滞すると、蒸気7は不凝縮ガス8内に進入し難くなり、蒸気7と不凝縮ガス8の界面11を形成する。蒸気7は、不凝縮ガス8を連続的に押しつつ上記界面11が移動し、蒸気7と不凝縮ガス8の圧力が平衡に達することにより、界面11の移動が停止し、その位置が安定する。したがって、界面11が不凝縮ガス溜め部5に位置すると、放熱部4全体にわたり蒸気7が凝縮するため100%の放熱能力が得られ、放熱部4内に位置すると、蒸気7の凝縮する面積(放熱面積)が減少するため放熱能力が低下し(0<放熱能力<100%で可変)、断熱部3または受熱部2に位置すると断熱(放熱能力0%)することができる。但し、密閉容器1の壁を伝わる熱伝導により一部熱の移動が生じるため、実際には僅かであるが放熱する能力がある。ここまでの動作の説明は、可変コンダクタンスヒートパイプの動作原理である。
Embodiment 1 FIG.
FIG. 1 is a sectional view showing a variable conductance heat pipe according to Embodiment 1 of the present invention. In the figure, the left is a cross-sectional view including the axis of the sealed container constituting the variable conductance heat pipe, and the right is a cross-sectional view perpendicular to the axis, that is, an enlarged view of the AA cross section. A heat receiving part 2 (evaporating part), a heat insulating part 3 (transporting part), a heat radiating part 4 (condensing part), and a non-condensable gas reservoir part 5 are formed from the end of the sealed container 1. The working fluid (liquid 6 and its vapor 7) and non-condensable gas 8 are sealed. As shown in the enlarged A-A cross-sectional view, a part of the inner wall of the sealed container 1 is provided with unevenness, and the unevenness extends in the axial direction of the closed container 1. The heat receiving unit 2 is in contact with the heat source 9 and the heat radiating unit 4 is in contact with the cold source 10, whereby heat is transferred from the higher temperature heat source 9 to the heat receiving unit 2 and further transmitted to the liquid 6 in the heat receiving unit 2. 6 absorbs heat in the form of latent heat and evaporates or boils, generating steam 7, steam 7 or steam 7 and liquid 6 flow into heat radiating section 4 through heat insulating section 3, while steam 7 condenses, The stored latent heat is released to the heat radiating unit 4, and the released heat is radiated from the heat radiating unit to the cooler heat source 10 having a lower temperature. At that time, the condensate (liquid 6) generated by condensing the vapor 7 is recirculated from the heat radiating unit 4 to the heat receiving unit 2 through the heat insulating unit 3 by gravity or capillary force. Due to the circulation of the vapor 7 and the liquid 6, the heat generated in the heat source 9 is continuously transmitted (exhausted heat) to the cold heat source 10. On the other hand, the non-condensable gas 8 sealed in the sealed container 1 passes through the heat insulating part 3 and the heat radiating part 4 along with the movement of the vapor 7 or the vapor 7 and the liquid 6, and then the non-condensable gas reservoir 5 or the non-condensable gas. It is moved to the heat radiating part 4 on the side of the reservoir 5 and accumulated and stagnated. When the non-condensable gas 8 stagnates, the vapor 7 becomes difficult to enter the non-condensable gas 8 and forms an interface 11 between the vapor 7 and the non-condensable gas 8. The steam 11 continuously moves the non-condensable gas 8 while the interface 11 moves. When the pressure of the steam 7 and the non-condensable gas 8 reaches equilibrium, the movement of the interface 11 stops and the position is stabilized. . Therefore, when the interface 11 is located in the non-condensable gas reservoir 5, the heat 7 is condensed over the entire heat dissipating part 4, so that 100% heat dissipating ability is obtained. Since the heat dissipation area is reduced, the heat dissipation capability is reduced (0 <heat dissipation capability <100% variable), and when located in the heat insulating portion 3 or the heat receiving portion 2, heat insulation (heat dissipation capability 0%) can be achieved. However, since heat is partially transferred due to heat conduction that travels through the wall of the hermetic container 1, there is actually a slight ability to dissipate heat. The description of the operation so far is the operation principle of the variable conductance heat pipe.

可変コンダクタンスヒートパイプは、構造上密閉容器1の中に液体と蒸気と不凝縮ガスの三種類の流体が封止されている。原理的には、不凝縮ガス溜め部5の中に不凝縮ガスが停滞する方が好ましいが、実際は分子拡散により蒸気と不凝縮ガスが混在する。また、不凝縮ガスとして用いられるネオンの分子量は20、窒素は28、アルゴンは40で、例えば作動流体として水を使用した場合、水の分子量は18でより軽く、通常下方に設置される受熱部2に重力の影響により不凝縮ガス8がより停滞し易く、逆に通常上方に設置される不凝縮ガス溜め部5に蒸気11がより停滞しやすい。さらに、不凝縮ガス溜め部5内における蒸気の凝縮や、放熱部4を経て液体が不凝縮ガス溜め部5内に流入することもあるので、現実的には上記三種類の流体が存在することがある。これらのことは、可変コンダクタンスヒートパイプの保存、輸送、取付けなどに関しては特に問題を生じさせないが、実際に放熱素子としての起動および動作において、不凝縮ガス溜め部5内に液体が存在することにより、受熱部2内に液体が不足し、受熱部2内のドライアウトを引き起こし、受熱部2の温度が熱暴走するという問題を引き起こす。したがって、不凝縮ガス溜め部5内に存在する液体が、実使用時に必ず受熱部2へ還流する構造でなければならない。   In the variable conductance heat pipe, three kinds of fluids of liquid, vapor and non-condensable gas are sealed in a sealed container 1 in terms of structure. In principle, it is preferable that the non-condensable gas stays in the non-condensable gas reservoir 5, but in reality, vapor and non-condensable gas are mixed due to molecular diffusion. Neon used as non-condensable gas has a molecular weight of 20, nitrogen of 28, and argon of 40. For example, when water is used as a working fluid, the molecular weight of water is 18 and is lighter, and usually a heat receiving unit installed below. 2, the non-condensable gas 8 is more likely to stagnate due to the influence of gravity, and conversely, the vapor 11 is more likely to stagnate in the non-condensable gas reservoir 5 that is normally installed above. Furthermore, since the vapor may condense in the non-condensable gas reservoir 5 and the liquid may flow into the non-condensable gas reservoir 5 via the heat radiating unit 4, the above three types of fluids actually exist. There is. These do not cause any particular problems with respect to storage, transportation, installation, etc. of the variable conductance heat pipe. However, due to the presence of liquid in the non-condensable gas reservoir 5 in the actual start-up and operation as a heat dissipation element. The liquid in the heat receiving part 2 is insufficient, causing dryout in the heat receiving part 2 and causing the problem that the temperature of the heat receiving part 2 is thermally runaway. Accordingly, the liquid present in the non-condensable gas reservoir 5 must be configured to always return to the heat receiving unit 2 during actual use.

しかし、図2に示す従来構造(本発明との構造の違いは後述する。)の可変コンダクタンスヒートパイプでは、密閉容器1が細い場合、密閉容器1の端部に液体が存在すると、蒸気と不凝縮ガスからなる気体区画12と液体が停滞する液体区画13の境界である気液界面14に作用する毛細管力により液体は流下し難い。また、図2に示すように密閉容器1端部が液体で満たされている場合、通常の不凝縮ガスが無いヒートパイプでは、密閉容器1端部の液体が蒸気に変化し膨張することから液体が移動しやすいが、可変コンダクタンスヒートパイプの場合、気体区画12に不凝縮ガスが存在するため、密閉容器1端部の液体が蒸気に変化するほど内部圧力が小さくなく、液体が受熱部2方向へ移動しようとしても密閉容器1端部に気体(圧縮性流体、つまり蒸気)が生成されず(真空で液体を密閉容器1端部へ引き付けている)、移動し難い。さらに、液体が移動しようとした場合、通常の不凝縮ガスが無いヒートパイプの場合は気体区画12内の蒸気が凝縮しつつ気体区画12内の圧力が上昇しない状態であるが、可変コンダクタンスヒートパイプの場合、不凝縮ガスが存在するため、液体の移動に伴い気体区画12内圧力が増大するため、液体の移動を阻害する。それゆえ、液体は不凝縮ガス溜め部5に停滞し易く、結果として受熱部2内の液体が不足し、可変コンダクタンスヒートパイプの起動および動作が正常にできない可能性がある。   However, in the variable conductance heat pipe having the conventional structure shown in FIG. 2 (the difference in structure from the present invention will be described later), when the sealed container 1 is thin, if liquid is present at the end of the sealed container 1, the vapor and the heat cannot be generated. The liquid is difficult to flow down due to the capillary force acting on the gas-liquid interface 14 which is the boundary between the gas compartment 12 made of condensed gas and the liquid compartment 13 where the liquid stagnates. In addition, when the end of the sealed container 1 is filled with liquid as shown in FIG. 2, the liquid at the end of the sealed container 1 changes into vapor and expands in a normal heat pipe without non-condensable gas. However, in the case of a variable conductance heat pipe, non-condensable gas exists in the gas compartment 12, so that the internal pressure is not so small that the liquid at the end of the sealed container 1 changes to vapor, and the liquid is in the direction of the heat receiving part 2. Gas (compressible fluid, that is, vapor) is not generated at the end of the closed container 1 (the liquid is attracted to the end of the closed container 1 by a vacuum) and is difficult to move. Furthermore, when the liquid is about to move, in the case of a heat pipe having no normal non-condensable gas, the vapor in the gas compartment 12 is condensed and the pressure in the gas compartment 12 does not rise, but the variable conductance heat pipe In this case, since the non-condensable gas exists, the pressure in the gas compartment 12 increases with the movement of the liquid, so that the movement of the liquid is hindered. Therefore, the liquid tends to stagnate in the non-condensable gas reservoir 5, and as a result, the liquid in the heat receiving unit 2 is insufficient, and the variable conductance heat pipe may not be normally started and operated.

以下、本発明の構造、動作を図3を用いて詳しく説明する。本発明は、図3のA−A断面拡大図(図1のA−A断面拡大図にあっても同じ)に示す通り、密閉容器1の同一断面内に他の部分16より導水性の良い部分15を設けたことを特徴とする。具体的には、導水性の良い部分15は密閉容器1の内壁断面周方向の一部に凹凸を、この凹部および凸部が密閉容器の軸方向(液体や蒸気が移動する方向)に延びるよう設けたことにより、導水性の良い部分を形成したものである。この周方向にわたる導水性の非均一性から、何らかの原因で図1のようなドーム状の気液界面11が形成されず、図3で示すように、不凝縮ガス溜め部5付近に液体6すなわち液体区画13があった場合、導水性の良い部分15が一部液垂れした不均一な形状(軸対象ではない形状)を形成する。この液垂れ部分が優先的に液体6の移動を行い、気体区画12内の圧力上昇を引き起こさずに、気体区画12と液体区画13が入れ替わり、受熱部2へ液体6が移動し、可変コンダクタンスヒートパイプは正常に動作する。   Hereinafter, the structure and operation of the present invention will be described in detail with reference to FIG. As shown in the AA cross-sectional enlarged view of FIG. 3 (the same applies to the AA cross-sectional enlarged view of FIG. 1), the present invention has better water conductivity than the other portion 16 in the same cross section of the sealed container 1. A portion 15 is provided. Specifically, the portion 15 having good water conductivity has irregularities in a part of the inner wall cross-section circumferential direction of the sealed container 1, and the concave and convex portions extend in the axial direction of the sealed container (the direction in which the liquid or vapor moves). By providing, a portion having good water conductivity is formed. Due to the non-uniformity of the water conductivity over the circumferential direction, the dome-shaped gas-liquid interface 11 as shown in FIG. 1 is not formed for some reason, and the liquid 6 in the vicinity of the non-condensable gas reservoir 5 as shown in FIG. When the liquid compartment 13 is present, a non-uniform shape (a shape that is not an axis target) in which the portion 15 having good water conductivity is partially dripped is formed. This liquid dripping part preferentially moves the liquid 6 and causes the pressure in the gas compartment 12 not to rise, so that the gas compartment 12 and the liquid compartment 13 are interchanged, and the liquid 6 moves to the heat receiving portion 2, and the variable conductance heat. The pipe works normally.

一方、受熱部2においても同様の効果があり、図2に示すような従来構造の、すなわち密閉容器1の内壁に何の処理や加工を施さず、周方向に均一な導水性を有する可変コンダクタンスヒートパイプでは、構造上必ずしも受熱部2が液体で満たされているとは限らず、最悪条件として不凝縮ガスで満たされる可能性がある。不凝縮ガスで満たされた場合、放熱部4より液体が流入しようとしても、図2のように、不凝縮ガスと液体の気液界面17が形成され、断面内に均一な毛細管圧力が発生し、液体により蓋をしてしまう。受熱部2が加熱されると受熱部2内の不凝縮ガスが膨張し、上記気液界面17が断熱部3方向に移動する。このとき受熱部2内に液体が存在しなければ、上記した正常な熱輸送が行われず、受熱部2の温度が上昇する。結果として、液体が受熱部2内に流入しないため、正常な可変コンダクタンスヒートパイプの動作には至らない。一方、本発明による図3(図1も同様)の構造の可変コンダクタンスヒートパイプにおいては、図2に示す従来構造のものと異なり、受熱部2内断面内の周方向の一部に導水性の良い部分15があることから、上記不凝縮ガス溜め部5に液体があった場合と同様、この周方向にわたる導水性の非均一性から図2のようなドーム状の気液界面17が形成されず、導水性の良い部分15が一部液垂れした不均一な形状(軸対象ではない形状)を形成する。この液垂れ部分が優先的に液体の移動を行い、受熱部2先端へ液体が移動する。この受熱部2先端へ流入した液体が、発熱源9からの熱の印加により、蒸発または沸騰することにより蒸気が生成され、受熱部2内に停滞していた不凝縮ガスを断熱部3へ送出し、密閉容器1内に分散していた不凝縮ガス、特に受熱部2内に存在する不凝縮ガスを可変コンダクタンスヒートパイプ自身の動作により、不凝縮ガス溜め部5に移動・集積させ、受熱部2へ連続的に液体を供給し、また受熱部2から連続的に蒸気を送出することが可能になり、可変コンダクタンスヒートパイプとしての動作を安定化することができる。   On the other hand, the heat receiving part 2 has the same effect, and has a variable conductance having a conventional structure as shown in FIG. 2, i.e., having no uniform treatment or processing on the inner wall of the sealed container 1 and having uniform water conductivity in the circumferential direction. In the heat pipe, the heat receiving portion 2 is not necessarily filled with liquid because of the structure, and may be filled with non-condensable gas as the worst condition. When filled with non-condensable gas, even if the liquid tries to flow in from the heat radiating section 4, a gas-liquid interface 17 between the non-condensable gas and liquid is formed as shown in FIG. 2, and uniform capillary pressure is generated in the cross section. Cover with liquid. When the heat receiving part 2 is heated, the non-condensable gas in the heat receiving part 2 expands, and the gas-liquid interface 17 moves toward the heat insulating part 3. If there is no liquid in the heat receiving part 2 at this time, the above normal heat transport is not performed and the temperature of the heat receiving part 2 rises. As a result, since the liquid does not flow into the heat receiving portion 2, the normal variable conductance heat pipe cannot be operated. On the other hand, in the variable conductance heat pipe having the structure of FIG. 3 (same as in FIG. 1) according to the present invention, unlike the conventional structure shown in FIG. Since there is a good portion 15, a dome-like gas-liquid interface 17 as shown in FIG. 2 is formed due to the non-uniformity of the water conductivity over the circumferential direction as in the case where liquid is present in the non-condensable gas reservoir 5. Therefore, the non-uniform shape (shape which is not an axis | shaft object) which the part 15 with good water-conductivity dripped partially forms. The liquid dripping portion preferentially moves the liquid, and the liquid moves to the tip of the heat receiving portion 2. The liquid flowing into the tip of the heat receiving unit 2 is evaporated or boiled by the application of heat from the heat generating source 9 to generate steam, and the uncondensed gas stagnated in the heat receiving unit 2 is sent to the heat insulating unit 3. Then, the non-condensable gas dispersed in the hermetic container 1, in particular, the non-condensable gas existing in the heat receiving part 2 is moved and accumulated in the non-condensable gas reservoir part 5 by the operation of the variable conductance heat pipe itself. The liquid can be continuously supplied to 2 and the steam can be continuously sent out from the heat receiving unit 2, and the operation as a variable conductance heat pipe can be stabilized.

上記導水性の良い部分15は、図1や図3に示すものの他、断面における内壁の一部を変形させ、滑らかではない形状(断面において屈曲点がある形状、180度以上あるいは180度以下の点がある形状)、たとえば、図4(a)に示す涙形状、図4(b)に示す瓢箪形状、図4(c)に示す楔状の流路が複数ある形状にしたものでも実現できる。さらに、密閉容器1断面における内壁の周方向の一部を親水性が異なるようにしたもの、例えば、表面粗さを一部粗くしたものや一部UV処理(表面活性化)、酸化処理、あるいはオゾン処理したものや、一部に撥水皮膜を付着させたものなど、内壁の一部に導水性が良くなる処理を施すことによっても実現できる。   The portion 15 having good water conductivity deforms a part of the inner wall in the cross section in addition to those shown in FIGS. 1 and 3, and has a non-smooth shape (a shape having a bending point in the cross section, 180 ° or more or 180 ° or less). It is also possible to realize a shape having a point), for example, a teardrop shape shown in FIG. 4A, a ridge shape shown in FIG. 4B, and a shape having a plurality of wedge-shaped channels shown in FIG. Further, a part in the circumferential direction of the inner wall in the cross section of the sealed container 1 having different hydrophilicity, for example, a part of which the surface roughness is partly roughened, partly UV treatment (surface activation), oxidation treatment, or It can also be realized by subjecting a part of the inner wall to a treatment for improving water conductivity, such as an ozone-treated one or a part having a water-repellent film adhered to it.

本発明の発熱源9は、受熱部2へ熱を印加するものであれば良く、寸法や形状等特に制約は無く、電子機器の発熱部、ヒータ、熱輸送デバイスやヒートポンプや熱交換器の放熱部などの固体、高温液体および高温気体などの流体でも良い。なお、太陽や高温物体など輻射により熱を印加するものであっても良い。   The heat source 9 of the present invention is not limited as long as it applies heat to the heat receiving part 2 and there is no particular limitation on the size and shape, and heat dissipation of the heat generating part, heater, heat transport device, heat pump and heat exchanger of the electronic equipment. A fluid such as a solid, a high-temperature liquid, and a high-temperature gas may be used. Note that heat may be applied by radiation such as the sun or a high-temperature object.

一方、冷熱源10は、放熱部4からの熱を受け取るものであれば良く、寸法や形状など特に制約は無く、水および空気などの流体、熱輸送デバイスやヒートポンプや熱交換器の受熱部および土壌および構造物などの固体でも良い。なお、輻射を利用した遠方の物質でも良い。   On the other hand, the cold heat source 10 is not particularly limited as long as it receives heat from the heat radiating unit 4, and is not particularly limited in size and shape, such as a fluid such as water and air, a heat receiving device of a heat transport device, a heat pump or a heat exchanger, and Solids such as soil and structures may be used. A distant material using radiation may also be used.

密閉容器1は、液体と蒸気と不凝縮ガスを収納する気密容器であり、好ましくは液体および蒸気と密閉容器1内壁の間で化学反応がほとんどない金属である方が良い。たとえば、液体が水の場合は密閉容器1の材料は銅が好ましく、アンモニアの場合はアルミニウムやステンレスなど、化学反応により不凝縮ガスを発生しない材料が良い。   The hermetic container 1 is an airtight container that stores liquid, vapor, and non-condensable gas, and is preferably a metal that has almost no chemical reaction between the liquid and vapor and the inner wall of the hermetic container 1. For example, when the liquid is water, the material of the sealed container 1 is preferably copper, and when ammonia is used, a material that does not generate non-condensable gas due to a chemical reaction, such as aluminum or stainless steel, is preferable.

受熱部2は、発熱源9より熱が印加され、その熱を液体に伝える役割を有する。なお、その内面に沸騰を促進する構造体(多孔質物質または表面に設けられた蒸気をトラップする構造)を設けても良い。   The heat receiving unit 2 has a role of receiving heat from the heat source 9 and transmitting the heat to the liquid. Note that a structure that promotes boiling (a structure that traps a porous material or vapor provided on the surface) may be provided on the inner surface thereof.

断熱部3は、液体および蒸気および不凝縮ガスが移動する通路である。断熱部3は、その周囲を空気などの流体にさらし、また構造体と接触し放熱しても良く、逆に断熱材を設けて断熱しても良い。また、放熱部4は、蒸気が凝縮し液化させ、その際放出する潜熱を冷熱源10に放出する役割を有する。図1や図3に示すように、放熱部4外周面には冷熱源10への放熱を促進するために伝熱面積を大きくするフィンを設けても良い。なお、断熱部3および放熱部4は、上記した通り気液界面15がその内部に位置することがあり、その一部は不凝縮ガスを収容する通路または容器の役割を担う。   The heat insulating portion 3 is a passage through which liquid, vapor, and noncondensable gas move. The heat insulating part 3 may be exposed to a fluid such as air, may contact the structure to radiate heat, or may be insulated by providing a heat insulating material. Further, the heat radiating unit 4 has a role of condensing and liquefying the vapor and releasing the latent heat released at that time to the cold heat source 10. As shown in FIGS. 1 and 3, fins that increase the heat transfer area may be provided on the outer peripheral surface of the heat dissipating part 4 in order to promote heat dissipation to the cold heat source 10. In addition, as above-mentioned, the gas-liquid interface 15 may be located in the heat insulation part 3 and the thermal radiation part 4, and the one part plays the role of the channel | path or container which accommodates noncondensable gas.

不凝縮ガス溜め部5は、不凝縮ガスを収容する役割を有する。非動作時においては、液体および蒸気および不凝縮ガスを収容することもある。可変コンダクタンスヒートパイプの通流路に関して受熱部2から最も離れた端部に設けられ、好ましくは、構成部位の最上部に設けられ、流入した液体が放熱部4へ流下する構造である方が良い。   The non-condensable gas reservoir 5 has a role of storing non-condensable gas. When not in operation, it may contain liquids and vapors and non-condensable gases. The variable conductance heat pipe is provided at the end farthest from the heat receiving portion 2 with respect to the flow path of the variable conductance heat pipe, preferably provided at the uppermost portion of the component, and has a structure in which the inflowed liquid flows down to the heat radiating portion 4. .

液体は、沸騰および蒸発し凝縮する液体であり、水、アンモニアなどの単一成分流体でも良く、不凍液などの多成分流体でも良い。蒸気は、液体または液体の一部が気化した気体である。不凝縮ガスは、使用環境化において凝縮しない気体であり、通常環境下では、ヘリウム、アルゴン、ネオン、窒素などである。好ましくは、密閉容器1の材料、液体、蒸気と化学反応しない気体であり、不活性ガスである方がさらに好ましい。なお、封入初期に、敢えて密閉容器1と液体が化学反応させ発生した不凝縮ガスでも良い。   The liquid is a liquid that boils and evaporates and condenses, and may be a single component fluid such as water or ammonia, or a multicomponent fluid such as an antifreeze. Vapor is a gas in which a liquid or a part of the liquid is vaporized. The non-condensable gas is a gas that does not condense in the use environment, and is a helium, argon, neon, nitrogen, or the like under a normal environment. Preferably, it is a gas that does not chemically react with the material, liquid, or vapor of the hermetic container 1, and is more preferably an inert gas. In addition, non-condensable gas generated by a chemical reaction between the sealed container 1 and the liquid may be used in the initial stage of encapsulation.

実施の形態2.
図5は本発明の実施の形態2による可変コンダクタンスヒートパイプの概略を示す断面図である。図2で示した従来構造の可変コンダクタンスヒートパイプ内に挿入物19を挿入したものである。この挿入物19により、密閉容器1内を大きな断面積の流路20と小さな断面積の流路21に分け、気液界面がそれぞれの流路に形成される。また、大きな断面積の流路20と小さな断面積の流路21は開口18を有し、この開口18は軸方向に連続している(一部に連続していない部分、すなわち挿入物19と密閉容器1の内壁が接触している部分があっても差し支えない)ため、開口18が不凝縮ガス排出通路および周方向液体吸引口として機能する。大きな断面積の流路20の気液界面にはより小さな毛細管力が発生し、小さな断面積の流路21の気液界面にはより大きな毛細管力が発生し、同一断面の流路内に毛細管力の非平衡状態が発生する。したがって、毛細管力が大きい流路21へ上記密閉容器1端部に停滞していた液体は移動し(流路21内の気液界面14は受熱部2方向へ移動し)、毛細管力が小さい流路20の気液界面が密閉容器1端部方向へ移動する。すなわち、小さな断面積の流路21部分は大きな断面積の流路20部分よりも導水性が良い部分となり、液体の通路となる。これにより、可変コンダクタンスヒートパイプ動作時において、実施の形態1で説明したのと同じ動作状態となり、受熱部2内に適量の液体が存在し、安定した起動および動作を確立することができる。
Embodiment 2. FIG.
FIG. 5 is a sectional view schematically showing a variable conductance heat pipe according to Embodiment 2 of the present invention. The insert 19 is inserted into the variable conductance heat pipe having the conventional structure shown in FIG. With this insert 19, the inside of the sealed container 1 is divided into a flow path 20 having a large cross-sectional area and a flow path 21 having a small cross-sectional area, and a gas-liquid interface is formed in each flow path. In addition, the large cross-sectional flow path 20 and the small cross-sectional flow path 21 have an opening 18, and this opening 18 is continuous in the axial direction (a portion not continuous to the part, that is, the insert 19). Therefore, the opening 18 functions as a non-condensable gas discharge passage and a circumferential liquid suction port. A smaller capillary force is generated at the gas-liquid interface of the channel 20 having a large cross-sectional area, and a larger capillary force is generated at the gas-liquid interface of the channel 21 having a small cross-sectional area. A force non-equilibrium condition occurs. Therefore, the liquid stagnated at the end of the sealed container 1 moves to the flow path 21 where the capillary force is large (the gas-liquid interface 14 in the flow path 21 moves toward the heat receiving part 2), and the flow with a small capillary force is present. The gas-liquid interface of the path 20 moves toward the end of the sealed container 1. That is, the flow passage 21 portion having a small cross-sectional area is a portion having better water conductivity than the flow passage 20 portion having a large cross-sectional area, and serves as a liquid passage. As a result, during the variable conductance heat pipe operation, the same operation state as described in the first embodiment is obtained, and an appropriate amount of liquid is present in the heat receiving unit 2, and stable start-up and operation can be established.

一方、受熱部2内でも同様の効果があり、図2の従来構造の可変コンダクタンスヒートパイプと異なり、受熱部2内に挿入物19が装着され、大きな断面積の流路20と小さな断面積の流路21に分けられていることから、同一断面の流路内に毛細管力の非平衡状態が発生する。したがって、毛細管力が大きい流路21は液体6で満たされ(受熱部2の先端が液体6と接する)、一方毛細管力が小さい流路20は不凝縮ガスが停滞する。可変コンダクタンスヒートパイプが動作する際、受熱部2に熱が印加されると、受熱部2の先端に液体が接しており、受熱部2端部より蒸気が生成され、この蒸気が断熱部3を経て放熱部4へ移動する際に、上記停滞していた不凝縮ガスを不凝縮ガス溜め部5方向へ移動させる。このようにして、密閉容器1内に分散していた不凝縮ガス、特に受熱部2内に存在する不凝縮ガスを可変コンダクタンスヒートパイプ自身の動作により、不凝縮ガス溜め部5に移動・集積させ、受熱部2へ連続的に液体を供給し、また受熱部2から連続的に蒸気を送出することが可能になり、可変コンダクタンスヒートパイプとしての動作を安定化することができる。   On the other hand, there is a similar effect in the heat receiving portion 2, and unlike the variable conductance heat pipe having the conventional structure in FIG. 2, an insert 19 is mounted in the heat receiving portion 2, and the flow path 20 having a large cross-sectional area and a small cross-sectional area are provided. Since the flow path 21 is divided, a non-equilibrium state of capillary force is generated in the flow path having the same cross section. Therefore, the flow path 21 having a large capillary force is filled with the liquid 6 (the tip of the heat receiving portion 2 is in contact with the liquid 6), while the non-condensable gas stagnates in the flow path 20 having a small capillary force. When the variable conductance heat pipe is operated, when heat is applied to the heat receiving unit 2, the liquid is in contact with the tip of the heat receiving unit 2, and steam is generated from the end of the heat receiving unit 2. Then, when moving to the heat radiating unit 4, the stagnated non-condensable gas is moved toward the non-condensable gas reservoir 5. In this way, the non-condensable gas dispersed in the hermetic container 1, particularly the non-condensable gas present in the heat receiving part 2, is moved and accumulated in the non-condensable gas reservoir part 5 by the operation of the variable conductance heat pipe itself. The liquid can be continuously supplied to the heat receiving unit 2 and the steam can be continuously sent out from the heat receiving unit 2 so that the operation as the variable conductance heat pipe can be stabilized.

挿入物19は、密閉容器1の同一断面内に毛細管力の非平衡状態を形成し、密閉容器1内壁沿いに液体6専用通路を設け、この専用通路の軸方向にわたりまたは一部に不凝縮ガス排出通路と周方向液体吸引口を兼ねた開口18を有するように密閉容器1内に挿入されていれば良く、偏芯して板を挿入したものでも良い。なお、密閉容器1の断面において断面を完全に仕切るようにして開口18を有さない専用通路を設けた場合、専用通路内に不凝縮ガスが混入、停滞し、専用通路内で液体とその不凝縮ガスとの界面に働く毛細管力により液体6が専用通路を通流することができなくなり、動作できなくなる。   The insert 19 forms a non-equilibrium state of capillary force in the same cross section of the sealed container 1, and a dedicated passage for the liquid 6 is provided along the inner wall of the sealed container 1. What is necessary is just to insert in the airtight container 1 so that it may have the opening 18 which served as the discharge channel and the circumferential direction liquid suction port, and what inserted the board eccentrically may be used. In addition, when a dedicated passage that does not have the opening 18 is provided so that the cross section is completely partitioned in the cross section of the hermetic container 1, non-condensable gas is mixed and stagnated in the dedicated passage, and the liquid and its non-restriction in the dedicated passage. Due to the capillary force acting at the interface with the condensed gas, the liquid 6 cannot flow through the dedicated passage and cannot operate.

なお、図5では、挿入物19の形状として、凹面の板状のものを示したが、平面の板状のものであっても良く、パンチングメタルや金網のようなものでも良い。さらに、断面形状として、図6に示すV字状や、さらにはW字状のようなものでも良く、これらV字状やW字状のものにあっては、挿入された挿入物19が固定され動かなくなるという効果がある。このように、挿入物19の断面形状としては、密閉容器1内を、開口18を有した大きな断面積の流路20と小さな断面積の流路21に分ける形状であれば、どのような形状のものでも良い。   In FIG. 5, the insert 19 has a concave plate shape, but may be a flat plate shape or a punching metal or a wire mesh. Further, the cross-sectional shape may be a V shape shown in FIG. 6 or even a W shape, and in these V shape or W shape, the inserted insert 19 is fixed. It has the effect of getting stuck. As described above, the cross-sectional shape of the insert 19 may be any shape as long as the inside of the sealed container 1 is divided into a large cross-sectional flow path 20 having an opening 18 and a small cross-sectional flow path 21. May be good.

さらに、図5では、密閉容器1が直管のものを示したが、図7に示すように端部を折り曲げ、すなわち断熱部3辺りに屈曲部を設けても良く、この場合、屈曲部を有することにより密閉容器1内に挿入された挿入物19が固定され動かなくなるという効果がある。また、挿入物19として、図8に示すように中間に幅が拡がった部分を有する板状のものを用い、幅の拡がった部分を屈曲部辺りになるように設置すれば、挿入物19がより固定される効果がある。この、中間が拡がった形状の挿入物19は、図7のような屈曲部がある密閉容器1で効果があるだけではなく、図3のような直管においても効果があるのは言うまでもない。さらには、中間に拡がった部分を有する挿入物19の拡がった部分を折り曲げる、あるいは湾曲させることにより、特に直管に挿入した場合、挿入物19を確実に偏心させて固定できる効果がある。その他、図9に示すように、挿入物19の端部を折り曲げて挿入することにより、あるいは別途スペーサを配置するなど、挿入物19を偏心させて固定する構造としては通常採用される種々の構造が可能である。   Further, in FIG. 5, the sealed container 1 is shown as a straight pipe, but as shown in FIG. 7, the end may be bent, that is, a bent portion may be provided around the heat insulating portion 3. By having this, there is an effect that the insert 19 inserted into the sealed container 1 is fixed and cannot move. Further, as the insert 19, as shown in FIG. 8, if a plate-like thing having a portion with a widened width is used as the insert 19, and the portion with the widened width is installed around the bent portion, the insert 19 is There is a more fixed effect. It goes without saying that the insert 19 having an expanded middle portion is not only effective in the closed container 1 having a bent portion as shown in FIG. 7, but also effective in a straight pipe as shown in FIG. Furthermore, by bending or curving the expanded portion of the insert 19 having a portion expanded in the middle, there is an effect that the insert 19 can be reliably decentered and fixed particularly when inserted into a straight pipe. In addition, as shown in FIG. 9, various structures that are normally employed as the structure for fixing the insert 19 eccentrically, such as bending the end of the insert 19 and inserting a separate spacer, etc. Is possible.

実施の形態3.
図10は本発明の実施の形態3による可変コンダクタンスヒートパイプの軸に垂直な断面を示す拡大断面図である。図10に示すような断面が稠密な棒19を偏心させて挿入してもよい。この場合棒と密閉容器1の間で狭くなった空間が導水性の良い部分となる。図7の棒の代わりに撚り線を用いても良く、撚り線では素線間の狭い空間も導水性の良い部分となる。さらに、直線状の棒ではなく、細い線を螺旋状にしたものを用い密閉容器1の内壁に沿わせるように挿入してもよく、この場合は螺旋状に導水性の良い部分が形成される。
Embodiment 3 FIG.
FIG. 10 is an enlarged sectional view showing a section perpendicular to the axis of the variable conductance heat pipe according to the third embodiment of the present invention. A rod 19 having a dense cross section as shown in FIG. 10 may be inserted eccentrically. In this case, the space narrowed between the rod and the sealed container 1 is a portion having good water conductivity. A stranded wire may be used in place of the bar in FIG. 7, and in the stranded wire, a narrow space between the strands is also a portion having good water conductivity. Further, instead of a straight bar, a thin line spiraled may be used to be inserted along the inner wall of the sealed container 1, and in this case, a portion having good water conductivity is formed in a spiral. .

実施の形態2や3で示した挿入物19の材料としては、無酸素銅が好適であり、表面の付着物を除去するためにアセトンなどで洗浄した後、高温下で酸化処理したものが、小さな断面積の流路21をより導水性を良いものにできる。   As the material of the insert 19 shown in the second and third embodiments, oxygen-free copper is suitable, and after washing with acetone or the like in order to remove surface deposits, a material oxidized at a high temperature is used. The channel 21 having a small cross-sectional area can be made more water-conductive.

また、実施の形態2や3において、密閉容器1の内壁に軸方向に溝を設けて内壁を凹凸面にしても良い。溝は周方向に均一に設けても良いし、不均一に設けても良く、また螺旋状に設けても良い。   In the second and third embodiments, grooves may be provided in the axial direction on the inner wall of the sealed container 1 so that the inner wall has an uneven surface. The grooves may be provided uniformly in the circumferential direction, may be provided unevenly, or may be provided spirally.

以上説明したように、本発明における導水性の良い部分は、実施の形態1のように、密閉容器内壁の一部に凹凸を設け、あるいは変形させて内壁表面の一部に他の内壁表面部分より液体が軸方向に良く拡がる部分を形成することにより実現できる。また、内壁表面の一部に、親水性が良くなる処理を施しても実現することが出来る。さらに、実施の形態2や3で説明したように、挿入物を挿入して内壁との間に狭い空間を形成することによっても実現できる。なお、導水性の良い悪いについては、導水性の良い悪いを確かめようとする部分に液を垂らした場合、他の部分よりも液が軸方向に長く拡がる部分が導水性の良い部分であると判断できる。   As described above, the portion having good water conductivity in the present invention is the same as that of the first embodiment in that a part of the inner wall of the sealed container is provided with unevenness or is deformed so that the other inner wall surface part is part of the inner wall surface. This can be realized by forming a portion where the liquid spreads more in the axial direction. It can also be realized by applying a treatment for improving hydrophilicity to a part of the inner wall surface. Further, as described in the second and third embodiments, it can be realized by inserting an insert and forming a narrow space with the inner wall. In addition, as for the good and bad water conductivity, when the liquid is dropped on the part where the good and poor water conductivity is to be confirmed, the part where the liquid spreads longer in the axial direction than the other part is the part with good water conductivity. I can judge.

実施の形態1から3で説明した本発明は、特に作動流体の表面張力が原因で作動流体が動き難い細い密閉容器に対して効果が大きい。例えば作動流体が水の場合、密閉容器の直径が10mm程度以下の場合に効果があり、特に直径6mm程度以下の小径の密閉容器に対しては大きな効果がある。したがって、一つの可変コンダクタンスヒートパイプで輸送できる熱量が小さな用途に適しており、例えば出力が数W程度の半導体レーザなどの冷却に適している。半導体レーザは、動作時の温度変化がレーザの発振波長や出力に大きく影響するため、発熱源の動作時に受熱部の温度変化が小さい可変コンダクタンスヒートパイプの特性を有効に活かすことができ、この面からも本発明に適した用途といえる。   The present invention described in the first to third embodiments is particularly effective for a thin sealed container in which the working fluid is difficult to move due to the surface tension of the working fluid. For example, when the working fluid is water, it is effective when the diameter of the sealed container is about 10 mm or less, and is particularly effective for a small-sized sealed container having a diameter of about 6 mm or less. Therefore, it is suitable for applications in which the amount of heat that can be transported by one variable conductance heat pipe is small, and is suitable for cooling, for example, a semiconductor laser having an output of several W. In semiconductor lasers, the temperature change during operation greatly affects the oscillation wavelength and output of the laser.Therefore, the characteristics of the variable conductance heat pipe, in which the temperature change of the heat receiving part is small during the operation of the heat source, can be effectively utilized. Therefore, it can be said that the present invention is suitable for the present invention.

本発明の実施の形態1による可変コンダクタンスヒートパイプの要部を示す概略断面図である。It is a schematic sectional drawing which shows the principal part of the variable conductance heat pipe by Embodiment 1 of this invention. 従来の可変コンダクタンスヒートパイプの要部を示す概略断面図である。It is a schematic sectional drawing which shows the principal part of the conventional variable conductance heat pipe. 本発明の実施の形態1による可変コンダクタンスヒートパイプの動作を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating operation | movement of the variable conductance heat pipe by Embodiment 1 of this invention. 本発明の実施の形態1による可変コンダクタンスヒートパイプの変形例をを示す断面図である。It is sectional drawing which shows the modification of the variable conductance heat pipe by Embodiment 1 of this invention. 本発明の実施の形態2による可変コンダクタンスヒートパイプの要部を示す概略断面図である。It is a schematic sectional drawing which shows the principal part of the variable conductance heat pipe by Embodiment 2 of this invention. 本発明の実施の形態2による挿入物の変形例を示す概略断面図である。It is a schematic sectional drawing which shows the modification of the insert by Embodiment 2 of this invention. 本発明の実施の形態2による可変コンダクタンスヒートパイプの変形例の要部を示す概略断面図である。It is a schematic sectional drawing which shows the principal part of the modification of the variable conductance heat pipe by Embodiment 2 of this invention. 本発明の実施の形態2による挿入物の一例を示す図である。It is a figure which shows an example of the insert by Embodiment 2 of this invention. 本発明の実施の形態2による可変コンダクタンスヒートパイプの他の変形例の要部を示す概略断面図である。It is a schematic sectional drawing which shows the principal part of the other modification of the variable conductance heat pipe by Embodiment 2 of this invention. 本発明の実施の形態3による挿入物を示す概略断面図である。It is a schematic sectional drawing which shows the insert by Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 密閉容器、2 受熱部、3 断熱部、4 放熱部、5不凝縮ガス溜め部、6 液体、7 蒸気、8 不凝縮ガス、9 発熱源、10 冷熱源、11 界面、12 気体区画、13 液体区画、14 気液界面、15 導水性の良い部分、16 導水性の悪い部分、17 気液界面、18 開口、19 挿入物、20 大きな断面積の流路、21 小さな断面積の流路。 DESCRIPTION OF SYMBOLS 1 Airtight container, 2 Heat receiving part, 3 Heat insulation part, 4 Heat radiation part, 5 Non-condensable gas reservoir part, 6 Liquid, 7 Steam, 8 Non-condensable gas, 9 Heat source, 10 Cold source, 11 Interface, 12 Gas section, 13 Liquid compartment, 14 gas-liquid interface, 15 well-conducting part, 16 poorly-conducting part, 17 gas-liquid interface, 18 opening, 19 insert, 20 large cross-sectional flow path, 21 small cross-sectional flow path.

Claims (12)

軸方向に延びた密閉容器内に作動流体と不凝縮ガスを封止し、この密閉容器の一方を発熱源、もう一方を冷熱源に取り付けた可変コンダクタンスヒートパイプにおいて、上記密閉容器の軸に垂直な断面の一部に他の部分より導水性の良い部分を設け、この導水性の良い部分が上記軸方向に延びていることを特徴とする可変コンダクタンスヒートパイプ。 A variable conductance heat pipe in which a working fluid and a non-condensable gas are sealed in a sealed container extending in the axial direction, and one of the sealed containers is attached to a heat source and the other is attached to a cold heat source. A variable conductance heat pipe characterized in that a portion having a better water conductivity than the other portion is provided in a part of the cross section, and the good water conductivity portion extends in the axial direction. 密閉容器内に、挿入物を偏心して挿入し、上記密閉容器の内壁と上記挿入物との間の空間に導水性の良い部分を形成したことを特徴とする請求項1記載の可変コンダクタンスヒートパイプ。 2. The variable conductance heat pipe according to claim 1, wherein an insert is eccentrically inserted into the sealed container, and a portion having good water conductivity is formed in a space between the inner wall of the sealed container and the insert. . 密閉容器の軸方向にわたり、上記密閉容器の内壁との間に断面積の大きな流路と断面積の小さな流路を形成するように、かつ上記断面積の大きな流路と上記断面積の小さな流路は少なくとも一部で連通するよう挿入物を偏心して挿入したことを特徴とする請求項2記載の可変コンダクタンスヒートパイプ。 A flow path with a large cross-sectional area and a flow path with a small cross-sectional area are formed between the large cross-sectional area and a flow with a small cross-sectional area so as to form a flow path with a large cross-sectional area and a flow path with a small cross-sectional area between the inner wall of the closed container. 3. The variable conductance heat pipe according to claim 2, wherein an insert is inserted eccentrically so as to communicate with at least a part of the path. 挿入物が板または金網であることを特徴とする請求項3記載の可変コンダクタンスヒートパイプ。 4. The variable conductance heat pipe according to claim 3, wherein the insert is a plate or a wire mesh. 挿入物が密閉容器の内壁に密着しないようにするスペーサを設けたことを特徴とする請求項3または4記載の可変コンダクタンスヒートパイプ。 The variable conductance heat pipe according to claim 3 or 4, further comprising a spacer for preventing the insert from coming into close contact with the inner wall of the sealed container. 挿入物が、一部に断面積が大きい部分を有することを特徴とする請求項2ないし5いずれかに記載の可変コンダクタンスヒートパイプ。 6. The variable conductance heat pipe according to claim 2, wherein the insert has a portion having a large cross-sectional area. 密閉容器内に、棒を偏心して挿入したことを特徴とする請求項2記載の可変コンダクタンスヒートパイプ。 3. The variable conductance heat pipe according to claim 2, wherein the rod is eccentrically inserted into the sealed container. 密閉容器の内壁に、螺旋状の細線を沿わせたことを特徴とする請求項1記載の可変コンダクタンスヒートパイプ。 2. The variable conductance heat pipe according to claim 1, wherein a spiral thin wire is provided along the inner wall of the sealed container. 密閉容器の内壁の一部に、導水性が良くなる処理を施したことを特徴とする請求項1記載の可変コンダクタンスヒートパイプ。 The variable conductance heat pipe according to claim 1, wherein a part of the inner wall of the sealed container is subjected to a treatment for improving water conductivity. 密閉容器の内壁の一部に、凹部分と凸部分が軸方向に延びた凹凸を設けたことを特徴とする請求項9記載の可変コンダクタンスヒートパイプ。 10. The variable conductance heat pipe according to claim 9, wherein a concave portion and a convex portion are provided on a part of the inner wall of the sealed container so that the convex portion extends in the axial direction. 密閉容器の断面における内壁の一部を変形させ、変形部分が導水性の良い部分を形成したことを特徴とする請求項1記載の可変コンダクタンスヒートパイプ。 2. The variable conductance heat pipe according to claim 1, wherein a part of the inner wall in the cross section of the sealed container is deformed and the deformed part forms a part having good water conductivity. 発熱源が半導体レーザであることを特徴とする請求項1記載の可変コンダクタンスヒートパイプ。 2. The variable conductance heat pipe according to claim 1, wherein the heat source is a semiconductor laser.
JP2008219549A 2008-08-28 2008-08-28 Variable conductance heat pipe Pending JP2010054121A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008219549A JP2010054121A (en) 2008-08-28 2008-08-28 Variable conductance heat pipe
US12/548,861 US20100051240A1 (en) 2008-08-28 2009-08-27 Variable conductance heat pipe
CN2009101710312A CN101660880B (en) 2008-08-28 2009-08-28 Variable conductance heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008219549A JP2010054121A (en) 2008-08-28 2008-08-28 Variable conductance heat pipe

Publications (1)

Publication Number Publication Date
JP2010054121A true JP2010054121A (en) 2010-03-11

Family

ID=41723599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008219549A Pending JP2010054121A (en) 2008-08-28 2008-08-28 Variable conductance heat pipe

Country Status (3)

Country Link
US (1) US20100051240A1 (en)
JP (1) JP2010054121A (en)
CN (1) CN101660880B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096386A (en) * 2011-11-07 2013-05-20 Toshiba Corp Shape memory alloy actuator and manufacturing method thereof
KR102063035B1 (en) * 2018-08-31 2020-01-07 한국항공대학교산학협력단 Variable conductance heat pipe structure, manufacturing method for the same and working fluid applied to the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201532142U (en) * 2009-10-30 2010-07-21 昆山巨仲电子有限公司 Flat heat pipe with hooked capillary structure
US20150068703A1 (en) * 2013-09-06 2015-03-12 Ge Aviation Systems Llc Thermal management system and method of assembling the same
JP6206389B2 (en) * 2014-04-08 2017-10-04 トヨタ自動車株式会社 heat pipe
US10638639B1 (en) * 2015-08-07 2020-04-28 Advanced Cooling Technologies, Inc. Double sided heat exchanger cooling unit
US9835384B2 (en) 2015-10-13 2017-12-05 International Business Machines Corporation Demand-based charging of a heat pipe
US9863712B2 (en) 2015-10-13 2018-01-09 International Business Machines Corporation Demand-based charging of a heat pipe
US10321606B2 (en) * 2017-03-28 2019-06-11 Intel Corporation Flexible thermally-conductive shunt
US11051431B2 (en) 2018-06-29 2021-06-29 Juniper Networks, Inc. Thermal management with variable conductance heat pipe
US12016156B2 (en) * 2021-10-29 2024-06-18 The Boeing Company Mil-aero conduction cooling chassis

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145957A (en) * 1974-05-13 1975-11-22
JPS5543345A (en) * 1978-09-25 1980-03-27 Babcock Hitachi Kk Heat pipe
JPS59153096A (en) * 1983-02-19 1984-08-31 Akutoronikusu Kk Container for heat pipe
JPS61153384A (en) * 1984-12-27 1986-07-12 Toshiba Corp Heat pipe
JPS6380470U (en) * 1986-11-14 1988-05-27
JPH0285268U (en) * 1988-12-07 1990-07-04
JP2001044554A (en) * 1999-07-30 2001-02-16 Ricoh Co Ltd Ld stem and optical pickup

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058159A (en) * 1975-11-10 1977-11-15 Hughes Aircraft Company Heat pipe with capillary groove and floating artery
EP0186216B1 (en) * 1984-12-27 1989-03-08 Kabushiki Kaisha Toshiba Heat pipe
US5044426A (en) * 1990-03-12 1991-09-03 The Babcock & Wilcox Company Variable conductance heat pipe enhancement
US20070068657A1 (en) * 2005-09-27 2007-03-29 Kenichi Yamamoto Sheet -shaped heat pipe and method of manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145957A (en) * 1974-05-13 1975-11-22
JPS5543345A (en) * 1978-09-25 1980-03-27 Babcock Hitachi Kk Heat pipe
JPS59153096A (en) * 1983-02-19 1984-08-31 Akutoronikusu Kk Container for heat pipe
JPS61153384A (en) * 1984-12-27 1986-07-12 Toshiba Corp Heat pipe
JPS6380470U (en) * 1986-11-14 1988-05-27
JPH0285268U (en) * 1988-12-07 1990-07-04
JP2001044554A (en) * 1999-07-30 2001-02-16 Ricoh Co Ltd Ld stem and optical pickup

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096386A (en) * 2011-11-07 2013-05-20 Toshiba Corp Shape memory alloy actuator and manufacturing method thereof
KR102063035B1 (en) * 2018-08-31 2020-01-07 한국항공대학교산학협력단 Variable conductance heat pipe structure, manufacturing method for the same and working fluid applied to the same

Also Published As

Publication number Publication date
US20100051240A1 (en) 2010-03-04
CN101660880B (en) 2012-01-04
CN101660880A (en) 2010-03-03

Similar Documents

Publication Publication Date Title
JP2010054121A (en) Variable conductance heat pipe
US20190154353A1 (en) Heat pipe having a wick with a hybrid profile
JP5556897B2 (en) Loop heat pipe and electronic device using the same
US7007746B2 (en) Circulative cooling apparatus
JP4978401B2 (en) Cooling system
EP2713132A1 (en) A vapor-based heat transfer apparatus
US20080078530A1 (en) Loop heat pipe with flexible artery mesh
JP2007513506A (en) Cooling system with bubble pump
JP2009088125A (en) Cooling unit, and electronic equipment equipped with the same
JPWO2011007604A1 (en) Loop heat pipe and method for starting the same
US20160018166A1 (en) Flat heat pipe
JP4953075B2 (en) heatsink
JP2007107784A (en) Loop type heat pipe
JP2009024996A (en) Method of manufacturing heat pipe
JP2004020116A (en) Plate type heat pipe
WO2015104842A1 (en) Cooling device
JP2010025407A (en) Heat pipe container and heat pipe
JP2007132639A (en) Loop-type heat pipe
JP2007003034A (en) Cooling device
JP2011237156A (en) Vibration type heat pipe
JP7444704B2 (en) Heat transfer member and cooling device having heat transfer member
JP5252059B2 (en) Cooling system
JP4725138B2 (en) Heat transport device and electronic equipment
KR20050121128A (en) A heat pipe
JP2010065282A (en) Evaporation source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002