JPS61153384A - Heat pipe - Google Patents

Heat pipe

Info

Publication number
JPS61153384A
JPS61153384A JP59273930A JP27393084A JPS61153384A JP S61153384 A JPS61153384 A JP S61153384A JP 59273930 A JP59273930 A JP 59273930A JP 27393084 A JP27393084 A JP 27393084A JP S61153384 A JPS61153384 A JP S61153384A
Authority
JP
Japan
Prior art keywords
section
inner tube
heat pipe
refrigerant
outer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59273930A
Other languages
Japanese (ja)
Other versions
JPH076751B2 (en
Inventor
Yoshiro Miyazaki
芳郎 宮崎
Yuji Ido
井戸 勇二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59273930A priority Critical patent/JPH076751B2/en
Priority to DE8585116626T priority patent/DE3568631D1/en
Priority to EP85116626A priority patent/EP0186216B1/en
Publication of JPS61153384A publication Critical patent/JPS61153384A/en
Priority to US07/193,190 priority patent/US4815529A/en
Priority to US07/278,361 priority patent/US4846263A/en
Publication of JPH076751B2 publication Critical patent/JPH076751B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure

Abstract

PURPOSE:To improve the mechanical strength of a heat pipe without making the size larger and at the same time contrive to facilitate the manufacture by a structure wherein refrigerant return passages, each of which ranges from the evaporator section to the condenser section and has a large cross section, are arranged between the inner tube and the outer tube of the heat pipe and similarly grooves with small cross section are arranged onto the inner surface of the inner tube and further communicating holes are provided between the grooves and the return passages. CONSTITUTION:Refrigerant, with the quantity of which the grooves 5 of an inner tube 3 and refrigerant return passages can be filled up, is sealed in a heat pipe after the pipe is evacuated. The refrigerant evaporated at the evaporator section reaches the condenser section through an evaporating passage 9. The liquid refrigerant condensed at the condenser section returns to the evaporator section mainly through the refrigerant return passages 7. Consequently, large flow rate is produced even by the slight capillary attraction of the groove 5, resulting in making the occurrence of drying-out at the evaporator section difficult and enabling to obtain the large heat transport capacity. In addition, because the outer tube 1 and the inner tube 3 directly contacts with each other at some portion, heat can efficiently be transmitted through th outer tube 1 to the evaporating surface and the condensing surface on the inner tube 3 side and no large heat resistance at the evaporator section and the condenser section, which may develop in an artery heat pipe employing mesh as wicking material, develops.

Description

【発明の詳細な説明】 [発明の技術分野〕 この発明は、ヒートパイプに関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a heat pipe.

[発明の技術的背景] 従来、ヒートパイプの熱輸送能力を高めるため、凝縮部
から蒸発部間にねたもて、アーテリすなわち凝縮液の帰
環路を特別に設けたヒートパイプがある。
[Technical Background of the Invention] Conventionally, there is a heat pipe in which a condensate return path is specially provided between a condensing section and an evaporating section in order to increase the heat transport ability of the heat pipe.

この種のアーチリヒートパイプを例えば第5図、第6図
に示す。第51図のものは、管体501の内面にウィッ
クとしてのメツシュ503を取付け、このメツシュ50
3の一部を変形させ凝縮液の帰環路505を形成させで
ある。また、第6図は管体601内面に周方向溝603
を設けるとともに、凝縮液の帰環路を形成するフェルト
状の金底605を管体601の内部に挿入したものであ
る。また、第7図のヒートパイプは、容器701内に、
周方向溝703を有する蒸気通路705とは別個に凝縮
液帰環路707を設けたモノグループヒートバイブと呼
ばれるものである。
This type of arch reheat pipe is shown in FIGS. 5 and 6, for example. The one in FIG. 51 has a mesh 503 as a wick attached to the inner surface of the tube body 501, and
3 is deformed to form a return path 505 for the condensate. In addition, FIG. 6 shows a circumferential groove 603 on the inner surface of the tube body 601.
In addition, a felt-like gold bottom 605 is inserted inside the tube body 601 to form a return path for the condensate. In addition, the heat pipe in FIG. 7 has inside the container 701,
This is a so-called monogroup heat vibe in which a condensate return path 707 is provided separately from a steam passage 705 having a circumferential groove 703.

[背景技術の問題点] しかしながら、第5図、第6図に示した従来例は、ヒー
トパイプが何らかの振動等を受けることにより、内部の
メツシュ503(第5図)やフェルト状の金属605(
第6図)が変形したり、ずれたりする等機械的強度に問
題がある他、これら挿入物を管体1の内面に密着するよ
うに製造するのは極めて難しく、その上第5図の場合は
、メツシュ503と管体501内檗との間に液膜が存在
する可能性があり、これにより熱抵抗が増大する等の問
題がある。
[Problems with the Background Art] However, in the conventional example shown in FIGS. 5 and 6, when the heat pipe receives some kind of vibration, the internal mesh 503 (FIG. 5) and the felt-like metal 605 (
In addition to problems with mechanical strength such as deformation or displacement of the inserts (Fig. 6), it is extremely difficult to manufacture these inserts so that they fit tightly against the inner surface of the tube body 1, and in addition, in the case of Fig. 5 In this case, there is a possibility that a liquid film exists between the mesh 503 and the inner cavity of the tube body 501, which causes problems such as an increase in thermal resistance.

これに対し、第7図のものは、内部に挿入物がないため
、上記問題点は解消できるが、蒸気通路705と凝縮液
帰環路707とが別個に設けられているので、ヒートパ
イプが大型し、重量も増加してしまうという問題があり
、また第6図の例でも言えることだが、周方向溝703
(第6図では周方向溝603)を通路内面に設けるとい
う難しい礪械加工を施さなければならない。
On the other hand, the one in FIG. 7 has no insert inside, so the above problem can be solved, but the steam passage 705 and the condensate return passage 707 are provided separately, so the heat pipe is There is a problem that the size and weight increase, and as can be said in the example of FIG. 6, the circumferential groove 703
A difficult machining process must be performed to provide a circumferential groove (circumferential groove 603 in FIG. 6) on the inner surface of the passage.

[発明の目的] この発明は、このような従来の問題点に鑑み@it7案
されたもので、大型化することなく機械的強度を向上さ
せ、製造も比較的容易なヒートパイプの掟供を目的とす
る。
[Purpose of the Invention] This invention was devised @it7 in view of these conventional problems, and provides a heat pipe that improves mechanical strength without increasing its size and is relatively easy to manufacture. purpose.

[発明の概要] この目的を達成するためにこの発明は、外管とこの外管
に挿入される内管とを有し、この内管と外管との間に蒸
発部から凝縮部にわたり比較的断面積の大きな冷媒帰環
路を設け、前記内管の内面には蒸発部から)U編部にわ
たり比較的断面積の小さな溝を設けるとと乙に、この溝
と前記冷媒帰環路とを連通ざける連通孔を677記内管
に設けたしのである。
[Summary of the Invention] In order to achieve this object, the present invention has an outer tube and an inner tube inserted into the outer tube, and a comparison between the inner tube and the outer tube extends from the evaporation section to the condensation section. A refrigerant return path with a large cross-sectional area is provided, and a groove with a relatively small cross-sectional area is provided on the inner surface of the inner tube extending from the evaporation section to the U section. A communication hole was provided in the inner tube 677 to allow communication between the two.

[発明の効果] この発明は、内管の外面に毛細管・ツノを発生さける溝
を設け、内管と外管との間に冷媒帰環路を設けるととも
に、この冷媒帰環路と面記溝とを連通孔により連通させ
たため、蒸気通路と凝縮液帰一路とを別個に設ける必要
がなく、また内部にメツシュ等の挿入物がないので、ヒ
ートパイプが大型化することなく、機械的強度を向上さ
せることができる。
[Effects of the Invention] This invention provides a groove on the outer surface of the inner tube to prevent the generation of capillary tubes and horns, a refrigerant return path between the inner tube and the outer tube, and a groove between the refrigerant return path and the surface groove. Since the heat pipes are communicated with each other through a communication hole, there is no need to separately provide a steam passage and a condensate return path, and there is no insert such as a mesh inside, so the mechanical strength can be increased without increasing the size of the heat pipe. can be improved.

[発明の実施例] 以下、図面に基づきこの発明の実施例を詳細に説明する
[Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第1図は、密閉状の外管1に内管3が密着状態で挿入さ
れたヒートパイプの断面図で、第2図は内管3の斜視図
である。内管3の内面には比較的断面積が小さく、軸方
向に向けて形成された満5が全周にわたり設けられ、内
管3の外面には比較的断面積が大きく、軸方向に向【プ
て形成された冷媒帰環路7が設けられている。また、内
管3の内部には蒸発部で蒸発した冷媒の蒸気通路9が形
成されている。溝5は、液体冷媒を凝縮部から蒸発部へ
流ずための圧力差を毛細管力によって発生させ、かつ凝
縮作用時と蒸発作用時とにおける熱伝達を行なわける機
能をもっている。このため、満5は細く、蒸気相に広い
面積で接している。冷媒帰環路7は、いわゆるアーテリ
と呼ばれているもので、外管1と内管3との間に設けら
れた形となっており、凝縮部で凝縮された液体冷媒の蒸
発部への主な帰環路となっている。このため、この液体
冷媒の帰環時の流動抵抗を小さくするために、冷媒帰環
路7の断面積は比較的大きくなっているのである。
FIG. 1 is a cross-sectional view of a heat pipe in which an inner tube 3 is inserted into a sealed outer tube 1 in a tight state, and FIG. 2 is a perspective view of the inner tube 3. The inner surface of the inner tube 3 is provided with a hole having a relatively small cross-sectional area and facing in the axial direction, and the outer surface of the inner tube 3 has a hole having a relatively large cross-sectional area and facing in the axial direction. A refrigerant return path 7 is provided. Furthermore, a vapor passage 9 for the refrigerant evaporated in the evaporator section is formed inside the inner tube 3. The grooves 5 have the function of generating a pressure difference by capillary force to cause the liquid refrigerant to flow from the condensing section to the evaporating section, and also performing heat transfer during condensation and evaporation. For this reason, the polygon 5 is thin and has a wide area in contact with the vapor phase. The refrigerant return path 7 is so-called an arteri, and is provided between the outer tube 1 and the inner tube 3, and is configured to flow the liquid refrigerant condensed in the condensing section to the evaporating section. It is the main return route. Therefore, in order to reduce the flow resistance of the liquid refrigerant when it returns, the cross-sectional area of the refrigerant return path 7 is made relatively large.

また、前記溝5と冷媒帰環路7とを連通させる連通孔と
してのスリット11が、内管3に周方向に向けて複数穿
設されている。このスリット11は、内管3の外周側に
全周にわたり形成され、内周側の溝5と連通している。
Further, a plurality of slits 11 are provided in the inner tube 3 in the circumferential direction as communication holes for communicating the groove 5 and the refrigerant return path 7. This slit 11 is formed on the outer circumferential side of the inner tube 3 over the entire circumference, and communicates with the groove 5 on the inner circumferential side.

このように構成されたヒートパイプ内に、このパイプ内
を真空状態にし!ζ後適当な冷媒を封入する。この封入
量は内管3の溝5と冷媒帰環路7とを満たす程庶でよい
Create a vacuum inside the heat pipe configured like this! After ζ, fill with a suitable refrigerant. This amount may be small enough to fill the groove 5 of the inner tube 3 and the refrigerant return path 7.

そして、蒸発部で蒸発した冷媒は蒸発通路9を通って凝
縮部へ達し、ここで凝縮された液体冷媒は主として冷媒
帰環路7を通って蒸発部へ環流する。このため、i&5
の僅かな毛細管力によっても大きな流量が得られるので
蒸発部でのドライアウトが起こりに<<、大きな熱輸送
能力を得ることができる。
The refrigerant evaporated in the evaporation section passes through the evaporation passage 9 and reaches the condensation section, and the liquid refrigerant condensed here mainly flows back to the evaporation section through the refrigerant return path 7. For this reason, i&5
Since a large flow rate can be obtained even with a small capillary force, dryout in the evaporation section does not occur and a large heat transport capacity can be obtained.

また、外管1と内管3とは、直接接触している部分があ
るため、外管1を通して内管3側の蒸発面および凝縮面
に効率よく熱を伝えることができる。このため、メツシ
ュを用いたアーチリヒートパイプのように、蒸発部およ
び凝縮部で大きな熱抵抗が発生することはない。
Further, since the outer tube 1 and the inner tube 3 have a portion in direct contact with each other, heat can be efficiently transferred through the outer tube 1 to the evaporation surface and the condensation surface on the inner tube 3 side. Therefore, unlike arch reheat pipes using mesh, large thermal resistance does not occur in the evaporation section and the condensation section.

また、内管3の満5は押出し成型により形成し、外面よ
りスリット11を加工すればよいので製)在は比較的容
易で、内管3の外管1への密着状君での挿入は、冷し嵌
め等により容易に行なうことができる。
In addition, since the inner tube 3 is formed by extrusion molding and the slit 11 is formed from the outer surface, it is relatively easy to insert the inner tube 3 into the outer tube 1 in a tight manner. This can be easily done by cold fitting or the like.

第3図は他の実施例を示すヒートパイプの断面図である
。なお、ここでは前述の実施例と同一構成要素には同一
符号を付して説明を簡略化する。
FIG. 3 is a sectional view of a heat pipe showing another embodiment. In addition, here, the same reference numerals are attached to the same components as in the above-described embodiment to simplify the explanation.

すなわち、この実施例は内管3の一部を蒸気通路9側へ
突出させることで、外管1と内管3どの間に冷媒帰環路
7を設ける構成としである。そして、冷媒帰環路7が設
けられていない内管3の内面にはiM 5が設けられて
おり、溝5と冷媒帰環路7とは、第2図と略同様な図外
のスリットにより連通している。
That is, in this embodiment, a part of the inner tube 3 is made to protrude toward the steam passage 9, so that a refrigerant return path 7 is provided between the outer tube 1 and the inner tube 3. An iM 5 is provided on the inner surface of the inner tube 3 where the refrigerant return path 7 is not provided, and the groove 5 and the refrigerant return path 7 are connected by a slit (not shown) substantially similar to that in FIG. It's communicating.

この実施例は、冷媒帰環路7の断面積を大きくてきるの
で、液体冷媒の流動抵抗をより一層減少さじることがで
き、また外管1と内管3との接触面積も大きくとれるた
め、蒸発部および凝縮部での熱伝達効率が更に向上する
In this embodiment, since the cross-sectional area of the refrigerant return path 7 is increased, the flow resistance of the liquid refrigerant can be further reduced, and the contact area between the outer tube 1 and the inner tube 3 can also be increased. , the heat transfer efficiency in the evaporation section and the condensation section is further improved.

第4図は更に他の実施例を示す。なお、この実施例では
前述の第1図および第2図の実施例と同一構成要素に(
よ同一符号を付して説明を簡略化づる。この実施例は、
外管1の外形が略正方形で、その四隅に内面から四部を
設けることで、外管1と内管3との間に冷媒帰環路7が
設けられる構成となっている。そして、満5は第1図と
同様に内管3の内面全周に設けてあり、満5と冷媒帰環
路7とは、第2図と略同様な図外のスリットにより連通
している。この実施例も第3図の実施例と略同様に、冷
媒帰環路7の断面積を大きくでき、外管1と内管3との
接触面積も大きくとれる。
FIG. 4 shows yet another embodiment. Note that in this embodiment, the same components as those in the embodiments shown in FIGS. 1 and 2 described above (
The same reference numerals are used to simplify the explanation. This example is
The outer tube 1 has a substantially square outer shape, and four sections are provided at its four corners from the inner surface, so that a refrigerant return path 7 is provided between the outer tube 1 and the inner tube 3. The full 5 is provided around the entire inner surface of the inner pipe 3 as in FIG. 1, and the full 5 and the refrigerant return path 7 are communicated through a slit not shown, which is almost the same as in FIG. . Similar to the embodiment shown in FIG. 3, this embodiment also allows the cross-sectional area of the refrigerant return path 7 to be increased, and the contact area between the outer tube 1 and the inner tube 3 to be increased.

なお、この発明は前述の実施例に限定されるものではな
い。例えば、外管1と内管3とを連通させる連通孔は、
スリット11とせずに小孔でもよく、要するに内管3の
内側と外側とを連通させるような構成であればよい。
Note that this invention is not limited to the above-described embodiments. For example, the communication hole that connects the outer tube 1 and the inner tube 3 is
A small hole may be used instead of the slit 11, and in short, any structure that allows communication between the inside and outside of the inner tube 3 may be used.

また、上記したヒートパイプは宇宙空間で使用すると複
数の冷媒帰環路7をすべて使用できるので有効である。
Further, the above-described heat pipe is effective when used in outer space because all of the plurality of coolant return paths 7 can be used.

また、地上で使用する場合は、重力により液体冷媒は概
ね下部側の冷媒帰環路7を流れるため、上部側の冷媒帰
環路7はなくてもよい。
Furthermore, when used on the ground, the liquid refrigerant generally flows through the lower refrigerant return path 7 due to gravity, so the upper refrigerant return path 7 may not be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例のヒートパイプの断面図、
第2図は第1図における内管の斜視図、第3図は池の実
施例のヒートパイプの断面図、第4図は更に他の実施例
のヒートパイプの断面図、第5図および第6図はそれぞ
れ従来のアルテリ型ヒートバイブの断面図、第7図は従
来のモノグループ型ヒートパイプの断面図である。 (図面の主要部を表わす符号の説明) 1・・・外管    3・・・内管    5・・・満
7・・・冷媒帰環路   11・・・スリット(連通孔
〉第1rlA 第2図 第3図 第4図 第5図        第6図 第’lf
FIG. 1 is a sectional view of a heat pipe according to an embodiment of the present invention.
FIG. 2 is a perspective view of the inner tube in FIG. 1, FIG. 3 is a sectional view of the heat pipe of the pond embodiment, FIG. 4 is a sectional view of the heat pipe of another embodiment, and FIGS. FIG. 6 is a cross-sectional view of a conventional Arteri type heat vibrator, and FIG. 7 is a cross-sectional view of a conventional monogroup type heat pipe. (Explanation of symbols representing main parts of the drawings) 1...Outer pipe 3...Inner pipe 5...Full 7...Refrigerant return path 11...Slit (communicating hole) No. 1rlA Fig. 2 Figure 3 Figure 4 Figure 5 Figure 6 'lf

Claims (1)

【特許請求の範囲】[Claims] 外管とこの外管内に挿入される内管とを有し、この内管
と外管との間に蒸発部から凝縮部にわたり比較的断面積
の大きな冷媒帰環路を設け、前記内管の内面には蒸発部
から凝縮部にわたり比較的断面積の小さな溝を設けると
ともに、この溝と前記冷媒帰環路とを連通させる連通孔
を前記内管に設けたことを特徴とするヒートパイプ。
It has an outer tube and an inner tube inserted into the outer tube, and a refrigerant return path with a relatively large cross-sectional area is provided between the inner tube and the outer tube from the evaporation section to the condensation section, and the inner tube A heat pipe characterized in that a groove with a relatively small cross-sectional area is provided on the inner surface extending from the evaporating section to the condensing section, and a communication hole is provided in the inner tube to communicate the groove with the refrigerant return path.
JP59273930A 1984-12-27 1984-12-27 heat pipe Expired - Lifetime JPH076751B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59273930A JPH076751B2 (en) 1984-12-27 1984-12-27 heat pipe
DE8585116626T DE3568631D1 (en) 1984-12-27 1985-12-27 Heat pipe
EP85116626A EP0186216B1 (en) 1984-12-27 1985-12-27 Heat pipe
US07/193,190 US4815529A (en) 1984-12-27 1988-05-13 Heat pipe
US07/278,361 US4846263A (en) 1984-12-27 1988-12-01 Heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59273930A JPH076751B2 (en) 1984-12-27 1984-12-27 heat pipe

Publications (2)

Publication Number Publication Date
JPS61153384A true JPS61153384A (en) 1986-07-12
JPH076751B2 JPH076751B2 (en) 1995-01-30

Family

ID=17534551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59273930A Expired - Lifetime JPH076751B2 (en) 1984-12-27 1984-12-27 heat pipe

Country Status (1)

Country Link
JP (1) JPH076751B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145300A (en) * 1987-11-30 1989-06-07 Natl Space Dev Agency Japan(Nasda) Heat exchanger
JPH063077A (en) * 1992-06-24 1994-01-11 Natl Space Dev Agency Japan<Nasda> Double pipe-type heat pipe
US6474074B2 (en) * 2000-11-30 2002-11-05 International Business Machines Corporation Apparatus for dense chip packaging using heat pipes and thermoelectric coolers
JP2010054121A (en) * 2008-08-28 2010-03-11 Mitsubishi Electric Corp Variable conductance heat pipe
CN102954720A (en) * 2011-08-24 2013-03-06 昆山巨仲电子有限公司 Light-weight heat pipe manufacturing method and light-weight heat pipe finished product
JP6442594B1 (en) * 2017-12-25 2018-12-19 株式会社フジクラ Heat dissipation module
CN113624045A (en) * 2021-07-19 2021-11-09 西安交通大学 One-way heat transfer device and working method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816187A (en) * 1981-07-22 1983-01-29 Hitachi Ltd Heat transfer device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816187A (en) * 1981-07-22 1983-01-29 Hitachi Ltd Heat transfer device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145300A (en) * 1987-11-30 1989-06-07 Natl Space Dev Agency Japan(Nasda) Heat exchanger
JPH063077A (en) * 1992-06-24 1994-01-11 Natl Space Dev Agency Japan<Nasda> Double pipe-type heat pipe
US6474074B2 (en) * 2000-11-30 2002-11-05 International Business Machines Corporation Apparatus for dense chip packaging using heat pipes and thermoelectric coolers
JP2010054121A (en) * 2008-08-28 2010-03-11 Mitsubishi Electric Corp Variable conductance heat pipe
CN102954720A (en) * 2011-08-24 2013-03-06 昆山巨仲电子有限公司 Light-weight heat pipe manufacturing method and light-weight heat pipe finished product
JP6442594B1 (en) * 2017-12-25 2018-12-19 株式会社フジクラ Heat dissipation module
WO2019131589A1 (en) * 2017-12-25 2019-07-04 株式会社フジクラ Heatsink module
JP2019113270A (en) * 2017-12-25 2019-07-11 株式会社フジクラ Heat radiation module
CN113624045A (en) * 2021-07-19 2021-11-09 西安交通大学 One-way heat transfer device and working method

Also Published As

Publication number Publication date
JPH076751B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
US4846263A (en) Heat pipe
JP3940019B2 (en) Flat plate vaporizer
JPH0612370Y2 (en) Double tube heat pipe type heat exchanger
JPH01193591A (en) Heat pipe system
JP4516676B2 (en) Flat plate heat pipe
JPS61153384A (en) Heat pipe
US4422501A (en) External artery heat pipe
JPH0810205Y2 (en) heat pipe
JP3946551B2 (en) Loop heat pipe evaporator
JPS6338864B2 (en)
JPH0724293B2 (en) Boiling cooler
US20020134427A1 (en) Thermosyphon radiators
JPS6277593A (en) Heat pipe
CN115507686A (en) Heat pipe
JPH09264681A (en) Loop heat pipe
JPH0730023A (en) Semiconductor element cooling device
JP2707070B2 (en) High temperature heat pipe
JP2585479B2 (en) Boiling cooling device
JPS60259861A (en) Heat pipe type solar heat collector
JP3036811B2 (en) Evaporator for capillary pump loop
JPS6226492A (en) Heat pipe
JPH09126672A (en) Heat pipe
JPS5812989A (en) Heat transfer device
JPH08219668A (en) Heat pipe
JPS58175851A (en) Enclosed type boiling cooler

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term