JPH08219668A - Heat pipe - Google Patents

Heat pipe

Info

Publication number
JPH08219668A
JPH08219668A JP7026854A JP2685495A JPH08219668A JP H08219668 A JPH08219668 A JP H08219668A JP 7026854 A JP7026854 A JP 7026854A JP 2685495 A JP2685495 A JP 2685495A JP H08219668 A JPH08219668 A JP H08219668A
Authority
JP
Japan
Prior art keywords
tube
circumferential direction
heat pipe
pipe
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7026854A
Other languages
Japanese (ja)
Inventor
Hiromitsu Masumoto
博光 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7026854A priority Critical patent/JPH08219668A/en
Publication of JPH08219668A publication Critical patent/JPH08219668A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure

Abstract

PURPOSE: To provide a heat pipe which fails to drop even when a maximum heat transfer capacity is applied to unidirectional heating by changing the cross section shape of a wick for the generation of a capillary tube force in the peripheral direction of the tube. CONSTITUTION: This invention comprises a tightly closed tube 1, which is used as a heat pipe vessel and a porous material 2, which is used as a capillary force generation wick installed on the inner wall of the tube 1 and a working fluid 3, which is sealed inside the tube 1 and produces its phase changes. The thickness of the porous material 2 close to a heating board 6 is increased while the thickness of the porous material is reduced at a spot separated from the heating board 6 in the peripheral direction of the inner wall surface of the tube 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は例えば、宇宙用、地上
用の排熱装置に使用するヒートパイプに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pipe for use in a space or ground heat exhaust device.

【0002】[0002]

【従来の技術】図17は従来のヒートパイプで、図18
はその断面図である。図において、1はヒートパイプ容
器となる密閉された管、2は管1内壁に設けた毛細管力
発生用ウィックとしての多孔質材で、通常焼結金属や発
泡金属等が使用される。3は上記管1内に封入した相変
化を生じる作動流体、4はヒートパイプの加熱部、5は
ヒートパイプの冷却部、6はヒートパイプの加熱部4の
外表面に設けた加熱板、7はヒートパイプの冷却部5の
外表面に設けた冷却板である。
2. Description of the Related Art FIG. 17 shows a conventional heat pipe.
Is a sectional view thereof. In the figure, 1 is a sealed tube that serves as a heat pipe container, and 2 is a porous material as a wick for generating a capillary force provided on the inner wall of the tube 1. Usually, a sintered metal or a foam metal is used. Reference numeral 3 denotes a working fluid which causes a phase change enclosed in the tube 1, 4 denotes a heating portion of a heat pipe, 5 denotes a cooling portion of the heat pipe, 6 denotes a heating plate provided on the outer surface of the heating portion 4 of the heat pipe, 7 Is a cooling plate provided on the outer surface of the cooling unit 5 of the heat pipe.

【0003】次に、このヒートパイプを使用した場合の
動作原理について説明する。加熱板6から管1の外表面
に印加された熱は、管1の厚さ方向の熱伝導により加熱
部4の多孔質材2を通して多孔質材2内に存在する作動
流体3に伝達された作動流体3が蒸発する。蒸発した作
動流体3は、管1内を飽和蒸気圧力の低い冷却部5の方
向に流れ、冷却部5の多孔質材2で凝縮し、潜熱を放出
する。この熱は熱伝導により管1の外表面に伝達され、
冷却板7に放熱される。冷却部5の多孔質材2で凝縮し
た作動流体3は、毛細管力により多孔質材2内を加熱部
4へ還流する。このサイクルにより加熱板6から冷却板
7へ熱が伝達される。
Next, the principle of operation when this heat pipe is used will be described. The heat applied from the heating plate 6 to the outer surface of the tube 1 is transferred to the working fluid 3 existing in the porous material 2 through the porous material 2 of the heating part 4 by heat conduction in the thickness direction of the tube 1. The working fluid 3 evaporates. The evaporated working fluid 3 flows in the pipe 1 in the direction of the cooling part 5 having a low saturated vapor pressure, is condensed in the porous material 2 of the cooling part 5, and releases latent heat. This heat is transferred to the outer surface of the tube 1 by heat conduction,
The heat is radiated to the cooling plate 7. The working fluid 3 condensed in the porous material 2 of the cooling part 5 is returned to the heating part 4 in the porous material 2 by the capillary force. Heat is transferred from the heating plate 6 to the cooling plate 7 by this cycle.

【0004】図19は、軸方向溝型のヒートパイプの断
面図で、ウィックとして管1の内壁面に軸方向に伸びる
複数のフィン8を設けている以外は多孔質材を使用した
ヒートパイプと同一である。通常フィン8は管1と一体
で押出成形される。
FIG. 19 is a cross-sectional view of an axial groove type heat pipe, which uses a porous heat pipe except that a plurality of axially extending fins 8 are provided on the inner wall surface of the pipe 1 as a wick. It is the same. Usually, the fin 8 is extruded integrally with the tube 1.

【0005】次に、この軸方向溝型のヒートパイプを使
用した場合の動作原理について説明する。加熱板6から
管の外表面に印加された熱は、管1の厚さ方向の熱伝導
により加熱部4のフィン8に伝わる。フィン8に伝わっ
た熱はフィン8と管1内壁面とで形成する溝に存在する
作動流体3に伝わり、作動流体3が蒸発する。蒸発した
作動流体3は管1内を飽和蒸気圧の低い冷却部5の方向
へ流れ、冷却部5のフィン8で凝縮し、潜熱を放出す
る。この熱は熱伝導により管1の外表面に伝達され冷却
板7に放熱される。フィン8で凝縮した作動流体3はフ
ィン8と管1内壁面で形成される溝の毛細管力により加
熱部4へ還流する。このサイクルにより加熱板6から冷
却板7へ熱が伝達される。
Next, the operating principle when this axial groove type heat pipe is used will be described. The heat applied from the heating plate 6 to the outer surface of the tube is transmitted to the fins 8 of the heating section 4 by heat conduction in the thickness direction of the tube 1. The heat transferred to the fins 8 is transferred to the working fluid 3 existing in the groove formed by the fins 8 and the inner wall surface of the tube 1, and the working fluid 3 is evaporated. The evaporated working fluid 3 flows in the pipe 1 toward the cooling unit 5 having a low saturated vapor pressure, is condensed by the fins 8 of the cooling unit 5, and releases latent heat. This heat is transferred to the outer surface of the tube 1 by heat conduction and radiated to the cooling plate 7. The working fluid 3 condensed by the fins 8 is returned to the heating unit 4 by the capillary force of the groove formed by the fins 8 and the inner wall surface of the pipe 1. Heat is transferred from the heating plate 6 to the cooling plate 7 by this cycle.

【0006】[0006]

【発明が解決しようとする課題】ヒートパイプの熱輸送
能力の限界はウィックの発生する最大毛細管圧力より作
動流体の圧力損失が大きくなるところで生じる。この毛
細管力による熱輸送の限界が生じると加熱部端まで作動
流体が還流せずウィックの乾きあがりが生じる。図19
のように加熱板が加熱部の周方向に一様に設置されてい
ると、ウィックは管の内壁面の周方向で同時に乾き上が
る。これは加熱板から蒸気となっている作動流体までの
熱抵抗が管の内壁面の周方向に一様で、ウィックへ伝わ
る熱流束も周方向に一様となるからである。
The limit of the heat transport capacity of the heat pipe occurs when the pressure loss of the working fluid becomes larger than the maximum capillary pressure generated by the wick. When the heat transfer is limited due to this capillary force, the working fluid does not flow back to the end of the heating section, and the wick is dried up. FIG.
If the heating plate is evenly installed in the circumferential direction of the heating section as described above, the wick simultaneously dries up in the circumferential direction of the inner wall surface of the tube. This is because the thermal resistance from the heating plate to the working fluid that is steam is uniform in the circumferential direction of the inner wall surface of the tube, and the heat flux transmitted to the wick is also uniform in the circumferential direction.

【0007】ところが図20に示すように加熱板が加熱
部の一部にしか設置されずヒートパイプが一方向からの
み加熱される場合、ウィックへの熱流束が最も大きくな
る加熱板に近いウィックがまず乾きあがり、序々に乾き
あがるウィックが管の内壁面の周方向へ拡大していく。
この場合、均一加熱に比べて一方向加熱の方が数割程度
最大熱輸送量が低下する問題点があった。これは、加熱
板から印加された熱は管を周方向に流れながら序々にウ
ィックに伝わるが、ウィックの蒸発熱抵抗は管の内壁面
の周方向に一様であるから、加熱板から遠いウィックほ
ど管周方向の熱抵抗が大きくなりウィックへの熱流束が
小さくなるためである。
However, as shown in FIG. 20, when the heating plate is installed only in a part of the heating portion and the heat pipe is heated only from one direction, the wick close to the heating plate having the largest heat flux to the wick is generated. First of all, the wick that dries up gradually expands in the circumferential direction of the inner wall surface of the pipe.
In this case, the one-way heating has a problem that the maximum heat transport amount is reduced by several tens of percent as compared with the uniform heating. This is because the heat applied from the heating plate is gradually transferred to the wick while flowing in the tube in the circumferential direction, but since the evaporation heat resistance of the wick is uniform in the circumferential direction of the inner wall surface of the tube, the wick far from the heating plate is used. This is because the thermal resistance in the pipe circumferential direction increases and the heat flux to the wick decreases.

【0008】この発明は上記のような問題点を解消する
ためになされたもので一方向加熱の場合でも毛細管力に
よる最大熱輸送能力の低下が小さいヒートパイプを提供
することを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a heat pipe in which the decrease in the maximum heat transfer capacity due to the capillary force is small even in the case of unidirectional heating.

【0009】[0009]

【課題を解決するための手段】この発明の実施例1によ
るヒートパイプは、従来同一厚さであった多孔質材の厚
さを管の内壁面の周方向に変化させたものである。
A heat pipe according to a first embodiment of the present invention is one in which the thickness of a porous material, which has been the same in the past, is changed in the circumferential direction of the inner wall surface of the tube.

【0010】この発明の実施例2による軸方向溝型のヒ
ートパイプは、従来同一高さであったフィンの高さを管
の内壁面の周方向に変化させたものである。
In the axial groove type heat pipe according to the second embodiment of the present invention, the height of the fin, which has been the same in the prior art, is changed in the circumferential direction of the inner wall surface of the pipe.

【0011】この発明の実施例3による軸方向溝型のヒ
ートパイプは、従来同一厚さであったフィンの厚さを管
の内壁面の周方向に変化させたものである。
In the axial groove type heat pipe according to the third embodiment of the present invention, the thickness of the fin, which has been the same in the past, is changed in the circumferential direction of the inner wall surface of the pipe.

【0012】この発明の実施例4による軸方向溝型のヒ
ートパイプは、従来同一間隔であったフィンの間隔を管
の内壁面の周方向に変化させたものである。
In the axial groove type heat pipe according to the fourth embodiment of the present invention, the fin intervals, which were conventionally the same, are changed in the circumferential direction of the inner wall surface of the tube.

【0013】この発明の実施例5による軸方向溝型のヒ
ートパイプは、従来同一形状であったフィンの高さと厚
さを管の内壁面の周方向に変化させたものである。
In the axial groove type heat pipe according to the fifth embodiment of the present invention, the height and thickness of the fin having the same shape in the prior art are changed in the circumferential direction of the inner wall surface of the pipe.

【0014】この発明の実施例6による軸方向溝型のヒ
ートパイプは、フィンの高さとフィンの間隔を管の内壁
面の周方向に変化させたものである。
The axial groove type heat pipe according to the sixth embodiment of the present invention is such that the fin height and the fin interval are changed in the circumferential direction of the inner wall surface of the pipe.

【0015】この発明の実施例7による軸方向溝型のヒ
ートパイプは、フィンの厚さとフィンの間隔を管の内壁
面の周方向に変化させたものである。
In the axial groove type heat pipe according to the seventh embodiment of the present invention, the fin thickness and the fin interval are changed in the circumferential direction of the inner wall surface of the pipe.

【0016】[0016]

【作用】この発明の実施例1によれば、加熱板近傍で多
孔質材の厚さが最も厚くなるように管の内壁面の周方向
に多孔質材の厚さを変化させることにより、多孔質材の
蒸発熱抵抗が加熱板近傍で最も大きく、加熱板から管の
内壁面の周方向に離れたところで小さくなるように、多
孔質材の蒸発熱抵抗が管の内壁面の周方向に変化する。
この効果と、管周方向の熱抵抗が加熱板から離れるにつ
れて大きくなる効果が相殺され、一方向加熱の場合でも
多孔質材への熱流束が管の内壁面の周方向に一様化さ
れ、最大熱輸送能力の低下を小さくすることができる。
また加熱板近傍の多孔質材の流路断面積が大きくなり、
加熱板近傍の多孔質材の熱輸送能力が大きくなることに
よっても最大熱輸送能力の低下を防ぐ効果もある。
According to the first embodiment of the present invention, the thickness of the porous material is varied in the circumferential direction of the inner wall surface of the pipe so that the thickness of the porous material becomes the thickest in the vicinity of the heating plate. The evaporation heat resistance of the porous material changes in the circumferential direction of the inner wall surface of the pipe so that the evaporation heat resistance of the porous material is the largest in the vicinity of the heating plate and becomes smaller at the distance from the heating plate in the circumferential direction of the inner wall surface of the pipe To do.
This effect and the effect that the thermal resistance in the pipe circumferential direction increases as the distance from the heating plate is canceled out, and even in the case of unidirectional heating, the heat flux to the porous material is made uniform in the circumferential direction of the inner wall surface of the pipe, It is possible to reduce the decrease in the maximum heat transport capacity.
In addition, the flow passage cross-sectional area of the porous material near the heating plate becomes large,
The increase in the heat transport capacity of the porous material near the heating plate also has the effect of preventing the maximum heat transport capacity from decreasing.

【0017】この発明の実施例2によれば、加熱板近傍
でフィンの高さが最も高くなるように管の内壁面の周方
向にフィンの高さを変化させることにより、蒸発熱抵抗
が加熱板近傍で最も大きく、加熱板から管の内壁面の周
方向に遠いところで小さくなる。この効果と、管周方向
の熱抵抗が加熱板から離れるにつれて大きくなる効果が
相殺され、一方向加熱の場合でも各溝への熱流束が一様
化され、最大熱輸送能力の低下を小さくすることができ
る。また、加熱板近傍の溝の流路断面積が大きくなり、
加熱板近傍の溝の熱輸送能力が大きくなることによって
も、最大熱輸送能力の低下を防ぐ効果もある。
According to the second embodiment of the present invention, the evaporation heat resistance is heated by changing the fin height in the circumferential direction of the inner wall surface of the tube so that the fin height becomes the highest near the heating plate. It is the largest in the vicinity of the plate, and becomes smaller at the position distant from the heating plate in the circumferential direction of the inner wall surface of the tube. This effect is offset by the effect that the thermal resistance in the circumferential direction of the pipe increases as it moves away from the heating plate, and even in the case of unidirectional heating, the heat flux to each groove is made uniform and the decrease in the maximum heat transfer capacity is reduced. be able to. Also, the flow passage cross-sectional area of the groove near the heating plate becomes large,
Even if the heat transport capacity of the groove near the heating plate is increased, the maximum heat transport capacity is prevented from being lowered.

【0018】この発明の実施例3によれば、加熱板近傍
でフィンの厚さが最も薄くなるように、管の内壁面の周
方向にフィンの厚さを変化させることにより、蒸発熱抵
抗が加熱板近傍で最も大きく、加熱板から管の内壁面の
周方向に遠いところで小さくなる。この効果と、管周方
向の熱抵抗が加熱板から離れるにつれて大きくなる効果
が相殺され、一方向加熱の場合でも各溝への熱流束が一
様化され、最大熱輸送能力の低下を小さくすることがで
きる。
According to the third embodiment of the present invention, the evaporation heat resistance is changed by changing the fin thickness in the circumferential direction of the inner wall surface of the tube so that the fin thickness becomes the thinnest in the vicinity of the heating plate. It is the largest in the vicinity of the heating plate and becomes smaller at the position farther from the heating plate in the circumferential direction of the inner wall surface of the tube. This effect is offset by the effect that the thermal resistance in the circumferential direction of the pipe increases as it moves away from the heating plate, and even in the case of unidirectional heating, the heat flux to each groove is made uniform and the decrease in the maximum heat transfer capacity is reduced. be able to.

【0019】この発明の実施例4によれば、加熱板近傍
でフィンの間隔が最も大きくなるように、管の内壁面の
周方向にフィンの間隔を変化させることにより、蒸発熱
抵抗が加熱板近傍で最も大きく、加熱板から管の内壁面
の周方向に遠いところで小さくなる。この効果と、管周
方向の熱抵抗が加熱板から離れるにつれて大きくなる効
果が相殺され、一方向加熱の場合でも各溝への熱流束が
一様化され、最大熱輸送能力の低下を小さくすることが
できる。
According to the fourth embodiment of the present invention, the evaporation heat resistance is changed by changing the fin interval in the circumferential direction of the inner wall surface of the tube so that the fin interval is maximized near the heating plate. It is the largest in the vicinity and becomes smaller at the position farther from the heating plate in the circumferential direction of the inner wall surface of the tube. This effect is offset by the effect that the thermal resistance in the circumferential direction of the pipe increases as it moves away from the heating plate, and even in the case of unidirectional heating, the heat flux to each groove is made uniform and the decrease in the maximum heat transfer capacity is reduced. be able to.

【0020】この発明の実施例5によれば、加熱板近傍
でフィンの高さが最も高くかつフィンの厚さが最も薄く
なるように、管の内壁面の周方向にフィンの高さと厚さ
を変化させることにより、蒸発熱抵抗が加熱板近傍で最
も大きく、加熱板から管の内壁面の周方向に遠いところ
で小さくなる。この効果と、管周方向の熱抵抗が加熱板
から離れるにつれて大きくなる効果が相殺され、一方向
加熱の場合でも各溝への熱流束が一様化され、最大熱輸
送能力の低下を小さくすることができる。また、加熱板
近傍の溝の熱輸送能力が大きくなることによっても最大
熱輸送能力の低下を防ぐ効果もある。
According to the fifth embodiment of the present invention, the height and the thickness of the fins are arranged in the circumferential direction of the inner wall surface of the pipe so that the height of the fins is the highest and the thickness of the fins is the thinnest in the vicinity of the heating plate. The evaporation heat resistance is maximized in the vicinity of the heating plate and is decreased at a position distant from the heating plate in the circumferential direction of the inner wall surface of the tube by changing the value of. This effect is offset by the effect that the thermal resistance in the circumferential direction of the pipe increases as it moves away from the heating plate, and even in the case of unidirectional heating, the heat flux to each groove is made uniform and the decrease in the maximum heat transfer capacity is reduced. be able to. Further, there is also an effect of preventing a decrease in the maximum heat transporting ability by increasing the heat transporting ability of the groove near the heating plate.

【0021】この発明の実施例6によれば、加熱板近傍
でフィンの高さが最も高くかつフィンの間隔が最も広く
なるように、管の内壁面の周方向にフィンの高さと間隔
を変化させることにより、蒸発熱抵抗が加熱板近傍で最
も大きく、加熱板から管の内壁面の周方向に遠いところ
で小さくなる。この効果と、管周方向の熱抵抗が加熱板
から離れるにつれて大きくなる効果が相殺され、一方向
加熱の場合でも各溝への熱流束が一様化され最大熱輸送
能力の低下を小さくすることができる。また、加熱板近
傍の溝の熱輸送能力が大きくなることによっても最大熱
輸送能力の低下を防ぐ効果もある。
According to the sixth embodiment of the present invention, the height and spacing of the fins are varied in the circumferential direction of the inner wall surface of the pipe so that the height of the fins is the highest and the spacing between the fins is the widest in the vicinity of the heating plate. By doing so, the evaporation heat resistance becomes maximum near the heating plate and becomes smaller at a position farther from the heating plate in the circumferential direction of the inner wall surface of the tube. This effect is offset by the effect that the thermal resistance in the pipe circumferential direction increases as the distance from the heating plate increases, and even in the case of unidirectional heating, the heat flux to each groove is made uniform and the decrease in maximum heat transfer capacity is reduced. You can Further, there is also an effect of preventing a decrease in the maximum heat transporting ability by increasing the heat transporting ability of the groove near the heating plate.

【0022】この発明の実施例7によれば、加熱板近傍
でフィンの厚さが最も薄くかつフィンの間隔が最も広く
なるように、管の内壁面の周方向にフィンの厚さと間隔
を変化させることにより、蒸発熱抵抗が加熱板近傍で最
も大きく加熱板から管の内壁面の周方向に遠いところで
小さくなる。この効果と、管周方向の熱抵抗が加熱板か
ら離れるにつれて大きくなる効果が相殺され、一方向加
熱の場合でも各溝への熱流束が一様化され、最大熱輸送
能力の低下を小さくすることができる。
According to the seventh embodiment of the present invention, the thickness and spacing of the fins are changed in the circumferential direction of the inner wall surface of the tube so that the thickness of the fins is the smallest and the spacing between the fins is the widest in the vicinity of the heating plate. By doing so, the evaporation heat resistance becomes the largest in the vicinity of the heating plate and becomes smaller at the position farther from the heating plate in the circumferential direction of the inner wall surface of the tube. This effect is offset by the effect that the thermal resistance in the circumferential direction of the pipe increases as it moves away from the heating plate, and even in the case of unidirectional heating, the heat flux to each groove is made uniform and the decrease in the maximum heat transfer capacity is reduced. be able to.

【0023】[0023]

【実施例】【Example】

実施例1.図1はこの発明の実施例1のヒートパイプを
示す図、図2は図1の断面図である。図において1はヒ
ートパイプ容器となる密閉された管、2は管1内壁に設
けた毛細管力発生用ウィックとしての多孔質材で通常焼
結金属や発泡金属等が使用される。3は上記管1内に封
入された相変化を生じる作動流体、4はヒートパイプの
加熱部、5はヒートパイプの冷却部、6はヒートパイプ
の加熱部4の外表面に設けた加熱板、7はヒートパイプ
の冷却部5の外表面に設けた冷却板である。多孔質材2
は加熱板6に近いところで最も厚く、管1の内壁面の周
方向に連続的に薄くしてある。
Example 1. 1 is a view showing a heat pipe according to a first embodiment of the present invention, and FIG. 2 is a sectional view of FIG. In the figure, reference numeral 1 is a closed tube that serves as a heat pipe container, and 2 is a porous material provided on the inner wall of the tube 1 as a wick for generating a capillary force, and usually a sintered metal or a foam metal is used. Reference numeral 3 denotes a working fluid which causes a phase change enclosed in the tube 1, 4 denotes a heating portion of the heat pipe, 5 denotes a cooling portion of the heat pipe, 6 denotes a heating plate provided on the outer surface of the heating portion 4 of the heat pipe, Reference numeral 7 is a cooling plate provided on the outer surface of the cooling unit 5 of the heat pipe. Porous material 2
Is the thickest near the heating plate 6 and is continuously thin in the circumferential direction of the inner wall surface of the tube 1.

【0024】次に、このヒートパイプを使用した場合の
動作原理について説明する。加熱板6から管1の外表面
に印加された熱は、管1の肉厚方向と周方向の熱伝導に
より管1内壁面に設けた多孔質材2に伝わる。多孔質材
2に伝わった熱は多孔質材2内に存在する作動流体3を
蒸発させる。蒸発した作動流体3は管1内を飽和蒸気圧
の低い冷却部5の方向に流れ、冷却部5内部の多孔質材
2で凝縮し潜熱を放出する。この熱は熱伝導により管1
の外表面に伝達され冷却板7へ放熱される。多孔質材2
で凝縮した作動流体3は多孔質材2の毛細管力により加
熱部4へ還流する。このサイクルにより加熱板6から冷
却板7へ熱が伝達される。
Next, the operating principle when this heat pipe is used will be described. The heat applied from the heating plate 6 to the outer surface of the tube 1 is transferred to the porous material 2 provided on the inner wall surface of the tube 1 by heat conduction in the thickness direction and the circumferential direction of the tube 1. The heat transmitted to the porous material 2 evaporates the working fluid 3 existing in the porous material 2. The evaporated working fluid 3 flows in the pipe 1 toward the cooling unit 5 having a low saturated vapor pressure, condenses in the porous material 2 inside the cooling unit 5 and releases latent heat. This heat is transferred to tube 1 by heat conduction.
And is radiated to the cooling plate 7. Porous material 2
The working fluid 3 condensed in 1 is returned to the heating unit 4 by the capillary force of the porous material 2. Heat is transferred from the heating plate 6 to the cooling plate 7 by this cycle.

【0025】加熱板6近くの多孔質材2では、管1の熱
抵抗は小さい一方多孔質材2の熱抵抗が大きく、逆に加
熱板6から管1の内壁面の周方向に離れた多孔質材2で
は、管1の熱抵抗が大きい一方多孔質材2の熱抵抗が小
さい。従って、多孔質材2への熱流束が管の内壁面の周
方向に一様化される。
In the porous material 2 near the heating plate 6, the heat resistance of the tube 1 is small, while the heat resistance of the porous material 2 is large, and conversely, the porous material 2 is separated from the heating plate 6 in the circumferential direction of the inner wall surface of the tube 1. In the quality material 2, the heat resistance of the tube 1 is high, while the heat resistance of the porous material 2 is low. Therefore, the heat flux to the porous material 2 is made uniform in the circumferential direction of the inner wall surface of the tube.

【0026】図3に多孔質材の厚さを管1の内壁面の周
方向に部分的に変えた場合を示す。図において2が部分
的に厚さを変えた多孔質材で、加熱板6近傍の厚さのみ
を変えた例であるが、複数部分の厚さを変えてもよい。
FIG. 3 shows a case where the thickness of the porous material is partially changed in the circumferential direction of the inner wall surface of the tube 1. In the figure, 2 is a porous material having a partially changed thickness, and only the thickness in the vicinity of the heating plate 6 is changed, but the thickness of a plurality of portions may be changed.

【0027】実施例2.図4はこの発明の実施例2の軸
方向溝型のヒートパイプを示す図、図5は図4の断面を
管周方向に展開した図である。図においてウィックとし
て管1の内壁面に軸方向に伸びる複数のフィン8を設け
ている以外は、実施例1の構成と同一である。フィン8
は加熱板6に近いところで高さを最も高くし、周方向に
連続的に低くしてある。
Example 2. FIG. 4 is a diagram showing an axial groove type heat pipe according to a second embodiment of the present invention, and FIG. 5 is a diagram in which the cross section of FIG. 4 is developed in the pipe circumferential direction. In the figure, the structure is the same as that of the first embodiment except that a plurality of fins 8 extending in the axial direction are provided on the inner wall surface of the tube 1 as a wick. Fin 8
Has the highest height near the heating plate 6 and continuously lowers in the circumferential direction.

【0028】次に、この軸方向溝型のヒートパイプを使
用した場合の動作原理について説明する。加熱板6から
管1の外表面に印加された熱は、管1の肉厚方向と周方
向の熱伝導により加熱部4のフィン8に伝わる。フィン
8に伝わった熱はフィン8と管1内壁面とで形成する溝
に存在する作動流体3に伝わり作動流体3が蒸発する。
蒸発した作動流体3は管1内を飽和蒸気圧の低い冷却部
5の方向へ流れ、冷却部5内のフィン8で凝縮し、潜熱
を放出する。この熱は熱伝導により管1の外表面に伝達
され冷却板7に放熱される。フィン8で凝縮した作動流
体3はフィン8と管1内壁面で形成される溝の毛細管力
により加熱部4へ還流する。このサイクルにより加熱板
6から冷却板7へ熱が伝達される。
Next, the operating principle when this axial groove type heat pipe is used will be described. The heat applied from the heating plate 6 to the outer surface of the tube 1 is transferred to the fins 8 of the heating section 4 by heat conduction in the wall thickness direction and the circumferential direction of the tube 1. The heat transferred to the fins 8 is transferred to the working fluid 3 existing in the groove formed by the fins 8 and the inner wall surface of the tube 1, and the working fluid 3 is evaporated.
The evaporated working fluid 3 flows in the pipe 1 toward the cooling unit 5 having a low saturated vapor pressure, is condensed by the fins 8 in the cooling unit 5, and releases latent heat. This heat is transferred to the outer surface of the tube 1 by heat conduction and radiated to the cooling plate 7. The working fluid 3 condensed by the fins 8 is returned to the heating unit 4 by the capillary force of the groove formed by the fins 8 and the inner wall surface of the pipe 1. Heat is transferred from the heating plate 6 to the cooling plate 7 by this cycle.

【0029】加熱板6近くのフィン8では、管1の熱抵
抗は小さい一方フィン8の蒸発熱抵抗が大きく、逆に加
熱板6から離れたフィン8では、管1の熱抵抗が大きい
一方フィン8部の蒸発熱抵抗が小さい。従ってフィン8
への熱流束が周方向に一様化される。
In the fins 8 near the heating plate 6, the heat resistance of the tube 1 is small, whereas the fins 8 have a large evaporation heat resistance, and conversely, in the fins 8 apart from the heating plate 6, the heat resistance of the tube 1 is large. Evaporation heat resistance of 8 parts is small. Therefore fin 8
The heat flux to is uniformed in the circumferential direction.

【0030】図6にフィンの高さを管1の内壁面の周方
向に部分的に変えた軸方向溝型のヒートパイプの断面展
開図を示す。図において8が部分的に高さを変えたフィ
ンで加熱板6a近傍の高さのみを変えた例であるが複数
部分の高さを変えてもよい。
FIG. 6 is a sectional development view of an axial groove type heat pipe in which the fin height is partially changed in the circumferential direction of the inner wall surface of the tube 1. In the drawing, 8 is an example in which only the height in the vicinity of the heating plate 6a is changed by the fin whose height is partially changed, but the heights of a plurality of portions may be changed.

【0031】実施例3.図7はこの発明の実施例3の軸
方向溝型のヒートパイプの断面展開図である。図におい
てフィン8を加熱板6に近いところで厚さを最も薄くし
管1の内壁面の周方向に連続的に厚くしてある以外は実
施例2の構成と同一である。動作原理は実施例2と同一
である。
Example 3. FIG. 7 is a sectional development view of an axial groove type heat pipe according to a third embodiment of the present invention. In the figure, the configuration is the same as that of the second embodiment except that the fin 8 is thinnest in the vicinity of the heating plate 6 and is continuously thickened in the circumferential direction of the inner wall surface of the tube 1. The operating principle is the same as that of the second embodiment.

【0032】図8にフィンの厚さを管1の内壁面の周方
向に部分的に変えた軸方向溝型のヒートパイプの断面展
開図を示す。図において8が部分的に厚さを変えたフィ
ンで加熱板6近傍の厚さのみを変えた例であるが複数部
分の厚さを変えてもよい。
FIG. 8 is a sectional development view of an axial groove type heat pipe in which the thickness of the fin is partially changed in the circumferential direction of the inner wall surface of the tube 1. In the drawing, 8 is an example in which only the thickness in the vicinity of the heating plate 6 is changed by the fin whose thickness is partially changed, but the thickness of a plurality of portions may be changed.

【0033】実施例4.図9はこの発明の実施例4の軸
方向溝型のヒートパイプの断面展開図である。図におい
てフィン8を加熱板6に近いところで間隔を最も広く
し、管1の内壁面の周方向に連続的に狭くしてある以外
は実施例2の構成と同一である。動作原理は実施例2と
同一である。
Example 4. FIG. 9 is a sectional development view of the axial groove type heat pipe according to the fourth embodiment of the present invention. In the figure, the structure is the same as that of the second embodiment except that the fins 8 are widest in the vicinity of the heating plate 6 and are continuously narrowed in the circumferential direction of the inner wall surface of the tube 1. The operating principle is the same as that of the second embodiment.

【0034】図10にフィンの間隔を管1の内壁面の周
方向に部分的に変えた軸方向溝型のヒートパイプの断面
展開図を示す。図において8が部分的に間隔を変えたフ
ィンで加熱板6a近傍の間隔のみを変えた例であるが複
数部分の間隔を変えてもよい。
FIG. 10 is a sectional development view of an axial groove type heat pipe in which the fin intervals are partially changed in the circumferential direction of the inner wall surface of the tube 1. In the figure, 8 is an example in which only the gap in the vicinity of the heating plate 6a is changed by the fin whose gap is partially changed, but the gap of a plurality of parts may be changed.

【0035】実施例5.図11はこの発明の実施例5の
軸方向溝型のヒートパイプの断面展開図である。図にお
いてフィン8を加熱板6に近いところで高さを最も高く
かつ厚さを最も薄くし、管1の内壁面の周方向に連続的
にフィン高さを低くかつ厚さを厚くしてある以外は実施
例2と同一である。道理原理は実施例2と同一である。
Example 5. FIG. 11 is a sectional development view of an axial groove type heat pipe according to a fifth embodiment of the present invention. In the figure, except that the fin 8 has the highest height and the smallest thickness near the heating plate 6, and the fin height is continuously low and the thickness is thick in the circumferential direction of the inner wall surface of the tube 1. Is the same as in Example 2. The reasoning principle is the same as that of the second embodiment.

【0036】図12にフィン高さと厚さを管1の内壁面
の周方向に部分的に変えた軸方向溝型のヒートパイプの
断面展開図を示す。図において8が部分的に高さと厚さ
を変えたフィンで加熱板6近傍の高さと厚さのみを変え
た例であるが、複数部分の高さと厚さを変えてもよい。
FIG. 12 is a sectional development view of an axial groove type heat pipe in which the fin height and thickness are partially changed in the circumferential direction of the inner wall surface of the tube 1. In the figure, 8 is an example in which only the height and thickness in the vicinity of the heating plate 6 are changed by fins whose height and thickness are partially changed, but the height and thickness of a plurality of portions may be changed.

【0037】実施例6.図13はこの発明の実施例6の
軸方向溝型のヒートパイプの断面展開図である。図にお
いてフィン8を加熱板6に近いところで高さを最も高く
かつ間隔を最も広くし、管1の内壁面の周方向に連続的
にフィン高さを低くかつ間隔を狭くしてある以外は実施
例2と同一である。動作原理は実施例2と同一である。
Example 6. FIG. 13 is a sectional development view of the axial groove type heat pipe according to the sixth embodiment of the present invention. In the drawing, the fins 8 have the highest height and the widest space near the heating plate 6, and the fin height is continuously low in the circumferential direction of the inner wall surface of the tube 1 and the space is narrow. Same as example 2. The operating principle is the same as that of the second embodiment.

【0038】図14にフィン高さと間隔を管1の内壁面
の周方向に部分的に変えた軸方向溝型のヒートパイプの
断面展開図を示す。図において8が部分的に高さと間隔
を変えたフィンで加熱板6近傍の高さと間隔のみを変え
た例であるが、複数部分の高さと間隔を変えてもよい。
FIG. 14 shows a sectional development view of an axial groove type heat pipe in which fin heights and intervals are partially changed in the circumferential direction of the inner wall surface of the tube 1. In the figure, 8 is an example in which only the height and the spacing in the vicinity of the heating plate 6 are changed by the fins whose height and spacing are partially changed, but the height and the spacing of a plurality of portions may be changed.

【0039】実施例7.図15はこの発明の実施例7の
軸方向溝型のヒートパイプの断面展開図である。図にお
いてフィン8を加熱板6に近いところで厚さを最も薄く
かつ間隔を最も広くし、管1の内壁面の周方向に連続的
に厚さを厚くかつ間隔を狭くしてある以外は実施例2と
同一である。動作原理は実施例2と同一である。
Example 7. FIG. 15 is a sectional development view of the axial groove type heat pipe according to the seventh embodiment of the present invention. In the embodiment, except that the fins 8 have the smallest thickness and the widest space in the vicinity of the heating plate 6 in the figure, and the thickness is continuously thick and the space is narrowed in the circumferential direction of the inner wall surface of the tube 1. Same as 2. The operating principle is the same as that of the second embodiment.

【0040】図16にフィン厚さと間隔を管1の内壁面
の周方向に部分的に変えた軸方向溝型のヒートパイプの
断面展開図を示す。図において8が部分的に厚さと間隔
を変えたフィンで加熱板6近傍の厚さと間隔のみを変え
た例であるが、複数部分の厚さと間隔を変えてもよい。
FIG. 16 is a sectional development view of an axial groove type heat pipe in which the fin thickness and interval are partially changed in the circumferential direction of the inner wall surface of the tube 1. In the figure, 8 is an example in which only the thickness and the spacing in the vicinity of the heating plate 6 are changed by the fin whose thickness and spacing are partially changed, but the thickness and the spacing of a plurality of portions may be changed.

【0041】[0041]

【発明の効果】以上のようにこの発明の実施例1〜7に
よれば、ウィック形状を周方向に変化させ蒸発熱抵抗を
ヒートパイプの加熱板近くで大きくし、加熱板から管の
内壁面の周方向に離れたところで小さくすることによ
り、一方向加熱の場合でも最大熱輸送能力の低下を押え
ることができる。
As described above, according to Embodiments 1 to 7 of the present invention, the evaporation heat resistance is increased near the heating plate of the heat pipe by changing the wick shape in the circumferential direction, and the inner wall surface of the pipe is removed from the heating plate. By reducing the distance in the circumferential direction, it is possible to suppress the decrease in the maximum heat transport capacity even in the case of unidirectional heating.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施例1によるヒートパイプを示
す図である。
FIG. 1 is a diagram showing a heat pipe according to a first embodiment of the present invention.

【図2】 この発明の実施例1によるヒートパイプのA
A線断面を示した図である。
FIG. 2 A of a heat pipe according to Embodiment 1 of the present invention
It is the figure which showed the A line cross section.

【図3】 この発明の実施例1において多孔質材の厚さ
を部分的に変化させたヒートパイプの断面を示した図で
ある。
FIG. 3 is a view showing a cross section of a heat pipe in which the thickness of the porous material is partially changed in Example 1 of the present invention.

【図4】 この発明の実施例2による軸方向溝型のヒー
トパイプを示す図である。
FIG. 4 is a diagram showing an axial groove type heat pipe according to a second embodiment of the present invention.

【図5】 この発明の実施例2による軸方向溝型のヒー
トパイプの断面を管の周方向に展開した図である。
FIG. 5 is a diagram showing a cross section of an axial groove type heat pipe according to a second embodiment of the present invention, which is developed in a circumferential direction of the pipe.

【図6】 この発明の実施例2においてフィンの高さを
部分的に変化させた軸方向溝型のヒートパイプの断面を
管の周方向に展開した図である。
FIG. 6 is a diagram in which a cross section of an axial groove type heat pipe in which the height of the fin is partially changed in the second embodiment of the present invention is developed in the circumferential direction of the pipe.

【図7】 この発明の実施例3による軸方向溝型のヒー
トパイプの断面を管の周方向に展開した図である。
FIG. 7 is a diagram in which a cross section of an axial groove type heat pipe according to a third embodiment of the present invention is developed in a circumferential direction of the pipe.

【図8】 この発明の実施例3においてフィンの厚さを
部分的に変化させた軸方向溝型のヒートパイプの断面を
管の周方向に展開した図である。
FIG. 8 is a view in which a cross section of an axial groove type heat pipe in which a thickness of a fin is partially changed in a third embodiment of the present invention is developed in a circumferential direction of the pipe.

【図9】 この発明の実施例4による軸方向溝型のヒー
トパイプの断面を管の周方向に展開した図である。
FIG. 9 is a sectional view of the axial groove type heat pipe according to the fourth embodiment of the present invention, which is developed in the circumferential direction of the pipe.

【図10】 この発明の実施例4においてフィンの間隔
を部分的に変化させた軸方向溝型のヒートパイプの断面
を管の周方向に展開した図である。
FIG. 10 is a diagram in which a cross section of an axial groove type heat pipe in which a gap between fins is partially changed in a fourth embodiment of the present invention is developed in a circumferential direction of the pipe.

【図11】 この発明の実施例5による軸方向溝型のヒ
ートパイプの断面を管の周方向に展開した図である。
FIG. 11 is a view in which a cross section of an axial groove type heat pipe according to a fifth embodiment of the present invention is developed in the circumferential direction of the pipe.

【図12】 この発明の実施例5においてフィンの高さ
と厚さを部分的に変化させた軸方向溝型のヒートパイプ
の断面を管の周方向に展開した図である。
FIG. 12 is a view in which the cross section of an axial groove type heat pipe in which the height and thickness of the fin are partially changed in the fifth embodiment of the present invention is developed in the circumferential direction of the pipe.

【図13】 この発明の実施例6による軸方向溝型のヒ
ートパイプの断面を管の周方向に展開した図である。
FIG. 13 is a sectional view of an axial groove type heat pipe according to a sixth embodiment of the present invention, which is developed in the circumferential direction of the pipe.

【図14】 この発明の実施例6においてフィンの高さ
と間隔を部分的に変化させた軸方向溝型のヒートパイプ
の断面を管の周方向に展開した図である。
FIG. 14 is a view in which a cross section of an axial groove type heat pipe in which the heights and intervals of fins are partially changed in the sixth embodiment of the present invention is developed in the circumferential direction of the pipe.

【図15】 この発明の実施例7による軸方向溝型のヒ
ートパイプの断面を管の周方向に展開した図である。
FIG. 15 is a view showing a cross section of an axial groove type heat pipe according to a seventh embodiment of the present invention, which is developed in a circumferential direction of the pipe.

【図16】 この発明の実施例7においてフィンの厚さ
と間隔を部分的に変化させた軸方向溝型のヒートパイプ
の断面を管の周方向に展開した図である。
FIG. 16 is a view in which a cross section of an axial groove type heat pipe in which the thickness and intervals of fins are partially changed in Example 7 of the present invention is developed in the circumferential direction of the pipe.

【図17】 従来のヒートパイプで、管の周方向に一様
に加熱を受ける場合の図である。
FIG. 17 is a diagram showing a case where a conventional heat pipe is uniformly heated in the circumferential direction of the pipe.

【図18】 従来のヒートパイプのAA線断面を示す図
である。
FIG. 18 is a view showing a cross section taken along line AA of a conventional heat pipe.

【図19】 従来の軸方向溝型のヒートパイプの断面を
示す図である。
FIG. 19 is a view showing a cross section of a conventional axial groove type heat pipe.

【図20】 従来の軸方向溝型のヒートパイプで、一方
向からの加熱を受ける場合の図である。
FIG. 20 is a view showing a case where a conventional axial groove type heat pipe receives heating from one direction.

【符号の説明】[Explanation of symbols]

1 管、 2 多孔質材、3 作動流体、4 加熱部、
5 冷却部、6 加熱板、7 冷却板、8 フィン。
1 tube, 2 porous material, 3 working fluid, 4 heating part,
5 cooling parts, 6 heating plates, 7 cooling plates, 8 fins.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ヒートパイプ容器となる密閉された管
と、毛細管力発生用のウィックとして管理壁に設けた多
孔質材と、上記管内に封入した相変化を生じる作動流体
から構成されるヒートパイプにおいて、上記多孔質材の
厚さが上記管の内壁面の周方向に変えてあることを特徴
とするヒートパイプ。
1. A heat pipe comprising a closed pipe to be a heat pipe container, a porous material provided on a management wall as a wick for generating a capillary force, and a working fluid enclosed in the pipe to cause a phase change. In the heat pipe, the thickness of the porous material is changed in the circumferential direction of the inner wall surface of the tube.
【請求項2】 上記ウィックとして管内壁に管の長手方
向に伸びる複数のフィンで構成される軸方向溝型のヒー
トパイプにおいて、上記フィンの高さが上記管の内壁面
の周方向に変えてあることを特徴とするヒートパイプ。
2. An axial groove type heat pipe comprising a plurality of fins extending in the longitudinal direction of the tube as an inner wall of the tube as the wick, wherein the height of the fin is changed in the circumferential direction of the inner wall surface of the tube. A heat pipe characterized by being present.
【請求項3】 上記軸方向溝型のヒートパイプにおい
て、上記フィンの厚さが上記管の内壁面の周方向に変え
てあることを特徴とするヒートパイプ。
3. The heat pipe of the axial groove type, wherein the thickness of the fin is changed in the circumferential direction of the inner wall surface of the pipe.
【請求項4】 上記軸方向溝型のヒートパイプにおい
て、上記フィンの間隔が上記管の内壁面の周方向に変え
てあることを特徴とするヒートパイプ。
4. The heat pipe of the axial groove type heat pipe, wherein the intervals of the fins are changed in the circumferential direction of the inner wall surface of the pipe.
【請求項5】 上記軸方向溝型のヒートパイプにおい
て、上記フィンの高さと厚さが上記管の内壁面の周方向
に変えてあることを特徴とするヒートパイプ。
5. The heat pipe of the axial groove type, wherein the height and thickness of the fins are changed in the circumferential direction of the inner wall surface of the pipe.
【請求項6】 上記軸方向溝型のヒートパイプにおい
て、上記フィンの高さとフィンの間隔が上記管の内壁面
の周方向に変えてあることを特徴とするヒートパイプ。
6. The heat pipe of the axial groove type, wherein the height of the fins and the distance between the fins are changed in the circumferential direction of the inner wall surface of the pipe.
【請求項7】 上記軸方向溝型のヒートパイプにおい
て、上記フィンの厚さとフィンの間隔が上記管の内壁面
の周方向に変えてあることを特徴とするヒートパイプ。
7. The heat pipe of the axial groove type heat pipe, wherein the thickness of the fins and the distance between the fins are changed in the circumferential direction of the inner wall surface of the pipe.
JP7026854A 1995-02-15 1995-02-15 Heat pipe Pending JPH08219668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7026854A JPH08219668A (en) 1995-02-15 1995-02-15 Heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7026854A JPH08219668A (en) 1995-02-15 1995-02-15 Heat pipe

Publications (1)

Publication Number Publication Date
JPH08219668A true JPH08219668A (en) 1996-08-30

Family

ID=12204871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7026854A Pending JPH08219668A (en) 1995-02-15 1995-02-15 Heat pipe

Country Status (1)

Country Link
JP (1) JPH08219668A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030065686A (en) * 2002-01-30 2003-08-09 삼성전기주식회사 Heat pipe and method thereof
US7334312B2 (en) * 2005-02-23 2008-02-26 U.S. Manufacturing Corporation Method of forming axles with internally thickened wall sections
CN103353249A (en) * 2013-07-08 2013-10-16 昆山德泰新材料科技有限公司 Eccentric metal pipe
CN105698579A (en) * 2014-11-28 2016-06-22 台达电子工业股份有限公司 Heat pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030065686A (en) * 2002-01-30 2003-08-09 삼성전기주식회사 Heat pipe and method thereof
US7334312B2 (en) * 2005-02-23 2008-02-26 U.S. Manufacturing Corporation Method of forming axles with internally thickened wall sections
CN103353249A (en) * 2013-07-08 2013-10-16 昆山德泰新材料科技有限公司 Eccentric metal pipe
CN105698579A (en) * 2014-11-28 2016-06-22 台达电子工业股份有限公司 Heat pipe

Similar Documents

Publication Publication Date Title
US7013958B2 (en) Sintered grooved wick with particle web
CN101311662B (en) Flat type evaporator radiation system
US20190195569A1 (en) Wick structure and loop heat pipe using same
JP2020076554A (en) heat pipe
JPH05118780A (en) Heat pipe
JP2006313056A (en) Heat pipe, and exhaust heat recovery system using the same
US4058160A (en) Heat transfer device
JPH08219668A (en) Heat pipe
US4260015A (en) Surface condenser
JP3946551B2 (en) Loop heat pipe evaporator
US11662155B2 (en) Pulse loop heat exchanger and manufacturing method of the same
TWM413109U (en) Improved structure of loop-configured heat pipe
US4601331A (en) Multiple heat pipes for linear beam tubes having common coolant and vaporizing surface area enhancement
US3955619A (en) Heat transfer device
JP3210120U (en) Capillary structure and loop heat pipe having the capillary structure
JP2016133287A (en) Loop type heat pipe
JP2707070B2 (en) High temperature heat pipe
CN216011894U (en) Turbulent flow structure of temperature equalizing plate
JPH08219667A (en) Heat pipe
KR102219184B1 (en) Heat sink having 3d-circular shape
JP3341449B2 (en) heat pipe
CN218959373U (en) Radiator
JPS6051034B2 (en) Heat pipe with fins
TWI626416B (en) Capillary structure and loop heat pipe having the capillary structure
JPH0429245Y2 (en)