JPS6051034B2 - Heat pipe with fins - Google Patents

Heat pipe with fins

Info

Publication number
JPS6051034B2
JPS6051034B2 JP520878A JP520878A JPS6051034B2 JP S6051034 B2 JPS6051034 B2 JP S6051034B2 JP 520878 A JP520878 A JP 520878A JP 520878 A JP520878 A JP 520878A JP S6051034 B2 JPS6051034 B2 JP S6051034B2
Authority
JP
Japan
Prior art keywords
heat
heat pipe
fins
vibrator
partition plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP520878A
Other languages
Japanese (ja)
Other versions
JPS5499252A (en
Inventor
博志 金田
邦勝 吉田
充広 田中
太郎 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP520878A priority Critical patent/JPS6051034B2/en
Publication of JPS5499252A publication Critical patent/JPS5499252A/en
Publication of JPS6051034B2 publication Critical patent/JPS6051034B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は熱輸送力を高めたフィン付ヒートパイプの構造
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a structure of a finned heat pipe with increased heat transport capacity.

ヒートパイプは密閉容器内を真空にしそこに所望の特性
を有する作動媒体を封入し、その作動媒体の相変化すな
わち沸騰気化と凝縮の際の潜熱を利用して熱を輸送する
伝熱要素であり、このヒートパイプの伝熱効率をさらに
良好にするために、ヒートパイプにフィンを付したもの
が提供されているが、この従来のフィン付ヒートパイプ
にもいくつかの欠点がある。
A heat pipe is a heat transfer element that creates a vacuum in a closed container and seals a working medium with desired characteristics in it, and transports heat by utilizing the phase change of the working medium, that is, the latent heat during boiling vaporization and condensation. In order to further improve the heat transfer efficiency of this heat pipe, a heat pipe with fins has been provided, but this conventional finned heat pipe also has some drawbacks.

これを図面に基づいて説明すると、第1図は従来のフィ
ン付ヒートパイプをガス対ガスの熱交換器として使用し
た場合を示す。ヒートパイプ1の外周には等間隔にフィ
ン2が付してあり、内部には作動媒体3が封入してある
。このヒートパイプ1を仕切板5で隔てた流路6および
7に設置し、流路7には未脱硝排ガス等の高温ガスを、
流路6には低温のガスをそれぞれ流すと、加熱部である
高温ガス流路7側では、ヒートパイプ1内の作動媒体3
が熱を受け取り蒸発し、蒸気4となる。この蒸発4は冷
却部である低温ガス流路6側に流れてゆき、凝縮して潜
熱を放出する。凝縮した作動媒体3は、ヒートパイプ1
内の多孔質材等による毛細管力により、もしくは重力に
よつて加熱部へ帰還して再び蒸発し、この作用を連続す
ることにより冷却部に伝熱を行う。従つてヒートパイプ
を安定して効率良く運転するためには作動媒体3を間断
なく加熱部へ帰還させる必要がある。しかし、従来のフ
ィン付ヒートパイプは、フィンを等間隔に取付けている
ため、高温ガスと低温ガスの温度差を大きくしてゆくと
、:ヒートパイプの他の部分に比較して、加熱部の仕切
板5に近い部分ほど表面熱流束が大きくなり、その結果
ヒートパイプの端部へ行くほど有効に働かなくなり、最
悪の場合はドライアウトを生じて伝熱効率を著しく低下
させる欠点があつた。これノを、長さ3wLの従来型フ
ィン付ヒートパイプを用いた実験結果を示す第3図およ
び第4図を用いて説明する。第3図は高温ガスと低温ガ
スの温度差ΔTを変えて熱輸送量を調べた結果を示す。
第4図はヒートパイプの軸方向の熱流束の分布を示しS
ており、横軸の0はヒートパイプの中央、−1は冷却部
の端部、+1は加熱部の端部をそれぞれ示す。第3図に
おいて、曲線8は従来型フィン付ヒートバイブを用いて
、高温ガスと低温ガスの温度差ΔTを大きくしていつた
場合の熱輸送量Qを測定したものであり、温度差ΔT1
て最大となり、以後、温度差が大きくなると熱輸送量は
低下する。温度差ΔT1のときの軸方向の熱流束分布は
、第4図の線10で示してあり、ほぼ一定であることが
わかる。ところが、温度差がΔT2の場合には、軸方向
の熱流束分布は、第4図の線11に示すように加熱部の
仕切板5に近い部分で著しく大きく、加熱部の端部へ向
つて急激に減少し、端部ではほとんど0になつている。
これは加熱部の端部でドライアウト現象が生じたことを
意味し、ヒートバイブの熱伝達能力が著しく低下したこ
とを示す。以上のように従来のフィン付ヒートバイブで
は、温度差が一定限度を越えるとドライアウト現象を出
じて、性能が著しく低下するという欠点があつた。本発
明の目的は、上記した従来技術の欠点を除去し、熱輸送
能力を向上させたフィン付ヒートパ,イプを提供するこ
とにある。
To explain this based on the drawings, FIG. 1 shows a case where a conventional finned heat pipe is used as a gas-to-gas heat exchanger. Fins 2 are attached to the outer periphery of the heat pipe 1 at equal intervals, and a working medium 3 is sealed inside. This heat pipe 1 is installed in channels 6 and 7 separated by a partition plate 5, and high temperature gas such as undenitrated exhaust gas is fed into the channel 7.
When low-temperature gas is flowed through each of the flow paths 6, the working medium 3 in the heat pipe 1 is
receives heat and evaporates, becoming steam 4. This evaporation 4 flows toward the low-temperature gas flow path 6, which is a cooling section, and condenses to release latent heat. The condensed working medium 3 is transferred to the heat pipe 1
It returns to the heating section and evaporates again due to the capillary force caused by the porous material inside or by gravity, and by continuing this action, heat is transferred to the cooling section. Therefore, in order to operate the heat pipe stably and efficiently, it is necessary to return the working medium 3 to the heating section without interruption. However, in conventional finned heat pipes, the fins are installed at equal intervals, so as the temperature difference between high temperature gas and low temperature gas increases: The closer the heat pipe is to the partition plate 5, the larger the surface heat flux becomes, and as a result, the closer it gets to the end of the heat pipe, the less effective the heat pipe becomes, and in the worst case, dry-out occurs, significantly reducing heat transfer efficiency. This will be explained using FIGS. 3 and 4, which show experimental results using a conventional finned heat pipe having a length of 3 wL. FIG. 3 shows the results of examining the amount of heat transport by varying the temperature difference ΔT between the high-temperature gas and the low-temperature gas.
Figure 4 shows the distribution of heat flux in the axial direction of the heat pipe.
On the horizontal axis, 0 indicates the center of the heat pipe, -1 indicates the end of the cooling section, and +1 indicates the end of the heating section. In Fig. 3, curve 8 is a measurement of the amount of heat transport Q when the temperature difference ΔT between high temperature gas and low temperature gas is increased using a conventional finned heat vibrator, and the temperature difference ΔT1
The amount of heat transported decreases as the temperature difference increases. The axial heat flux distribution when the temperature difference ΔT1 is indicated by line 10 in FIG. 4, and it can be seen that it is almost constant. However, when the temperature difference is ΔT2, the heat flux distribution in the axial direction is extremely large in the part of the heating section near the partition plate 5, as shown by line 11 in FIG. It decreases rapidly and reaches almost 0 at the end.
This means that a dry-out phenomenon occurred at the end of the heating section, indicating that the heat transfer ability of the heat vibrator was significantly reduced. As described above, the conventional finned heat vibrator has the disadvantage that when the temperature difference exceeds a certain limit, a dry-out phenomenon occurs, resulting in a significant drop in performance. SUMMARY OF THE INVENTION An object of the present invention is to provide a heat pipe with fins that eliminates the drawbacks of the prior art described above and has improved heat transport ability.

要するに本発明は、ヒートバイブの熱輸送量が著しく低
下する原因が、加熱部の仕切板に近い部分で熱流束が大
きくなり、その外側でドライアウト現象が発生すること
にある点に着目し、ドライ2アウト現象の発生を防止す
る手段として、熱流束が大きくなる領域のフィン取付密
度小さくしたものである。
In short, the present invention focuses on the fact that the cause of the significant decrease in the heat transport amount of the heat vibrator is that the heat flux increases in the part of the heating section near the partition plate, and the dry-out phenomenon occurs outside of that part. As a means to prevent the dry two-out phenomenon from occurring, the fin mounting density is reduced in areas where the heat flux is large.

次に本発明の実施例を図面に基づいて説明する。Next, embodiments of the present invention will be described based on the drawings.

第2図において、本発明のフィン付ヒートパ3イプのフ
ィン2はヒートバイブ1の仕切板貫通部、即ち中央部に
向つて徐々に粗になるように配置してある。この配置状
態は、中央部のフィンの取付密度を両端部のフィンの取
付密度に対して11?度にすると良好である。その他、
ヒートバイ3。プl内の構造は前記した、従来型のフィ
ン付ヒー 一1
武fトパイプと同様である。本発明によれば、加熱部の
仕切板に近い部分での熱流束が小さくなり、加熱部端部
および該端部付近でのドライアウト現象が生じるのを防
止でき、加熱部と冷却部の温度差が大きくなつても著し
い熱輸送量の低下をきたすことがなく、従来型のフィン
付ヒートバイブに比較して熱輸量を高めることがてきる
In FIG. 2, the fins 2 of the finned heat pipe 3 of the present invention are arranged so that they become gradually coarser toward the partition plate penetrating portion of the heat vibrator 1, that is, toward the center. In this arrangement, the mounting density of the fins in the center is 11? It is good when used in moderation. others,
Heatby 3. The structure inside the pulley is the same as the conventional finned heating element described above.
It is similar to the martial arts pipe. According to the present invention, the heat flux in the portion of the heating section near the partition plate is reduced, and it is possible to prevent the dryout phenomenon from occurring at the end of the heating section and in the vicinity of the end. Even if the difference becomes large, there is no significant decrease in the amount of heat transport, and the amount of heat transport can be increased compared to the conventional heat vibrator with fins.

このことを第3図および第4図により、具体的に示す。
この第3図および第4図)には、本発明に係る3rn,
のフィン付ヒートバイブを用いた実験結果が示してあり
、第3図の曲線9は、前記従来型のヒートバイブの場合
と同様、高温ガスと低温ガスの温度差ΔTを変化して、
加熱側から冷却側に輸送される熱量を測定した結果であ
る。これによると、温度差がΔT2になつても熱輸送量
のピークは現れず、熱輸量が上昇していることがわかる
。この場合のヒートバイブ軸方向の熱流束分布は第4図
の曲線12に示すようにドライアウト現象は発生してい
ず、軸方向でほぼ等しい熱流束を保つていることがわか
る。この発明を実施することによりヒートバイブ内のド
ライアウトが防止され効率よく大きい量の熱伝達をさせ
ることが可能となる効果を奏するものてある。
This is specifically shown in FIGS. 3 and 4.
3rn and 4) according to the present invention,
The results of an experiment using a heat vibrator with fins are shown, and curve 9 in FIG.
These are the results of measuring the amount of heat transported from the heating side to the cooling side. According to this, it can be seen that even when the temperature difference becomes ΔT2, the peak of the heat transport amount does not appear, and the heat transport amount increases. The heat flux distribution in the axial direction of the heat vibrator in this case is as shown by curve 12 in FIG. 4, which shows that no dryout phenomenon occurs and the heat flux is maintained almost equal in the axial direction. By implementing the present invention, it is possible to prevent dryout within the heat vibrator and to efficiently transfer a large amount of heat.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のフィン付ヒートバイブの構造を示す断面
図、第2図は本発明のフィン付ヒートバイブの構造を示
す断面図、第3図は従来型フィン付ヒートバイブと本発
明のフィン付ヒートバイブの熱輸送量を示すグラフで横
軸に温度差を縦軸に熱輸送量をとつたもの、第4図は前
記両フィン付ヒートバイブの軸方向の熱流束分布を示す
グラフで横軸に軸方向を、縦軸の熱流束を示してある。
Fig. 1 is a sectional view showing the structure of a conventional finned heat vibrator, Fig. 2 is a sectional view showing the structure of a finned heat vibrator of the present invention, and Fig. 3 is a sectional view of the conventional finned heat vibrator and the fin of the present invention. Figure 4 is a graph showing the heat flux distribution in the axial direction of the heat vibrator with double fins, with temperature difference on the horizontal axis and heat transport on the vertical axis. The axial direction is shown on the axis, and the heat flux on the vertical axis is shown.

Claims (1)

【特許請求の範囲】 1 ヒートパイプに設けたフィンの配置密度をヒートパ
イプが貫通する仕切板に近くなるに従い粗になるよう配
置したことを特徴とするフィン付ヒートパイプ。 2 ヒートパイプの仕切板貫通部付近のフィンの配置密
度を両端部のフィンの配置密度の1/3としたことを特
徴とする特許請求の範囲第1項記載のフィン付ヒートパ
イプ。
[Scope of Claims] 1. A heat pipe with fins, characterized in that the arrangement density of the fins provided on the heat pipe becomes coarser as they get closer to the partition plate through which the heat pipe passes. 2. The finned heat pipe according to claim 1, wherein the arrangement density of the fins near the partition plate penetration portion of the heat pipe is set to 1/3 of the arrangement density of the fins at both ends.
JP520878A 1978-01-23 1978-01-23 Heat pipe with fins Expired JPS6051034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP520878A JPS6051034B2 (en) 1978-01-23 1978-01-23 Heat pipe with fins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP520878A JPS6051034B2 (en) 1978-01-23 1978-01-23 Heat pipe with fins

Publications (2)

Publication Number Publication Date
JPS5499252A JPS5499252A (en) 1979-08-04
JPS6051034B2 true JPS6051034B2 (en) 1985-11-12

Family

ID=11604766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP520878A Expired JPS6051034B2 (en) 1978-01-23 1978-01-23 Heat pipe with fins

Country Status (1)

Country Link
JP (1) JPS6051034B2 (en)

Also Published As

Publication number Publication date
JPS5499252A (en) 1979-08-04

Similar Documents

Publication Publication Date Title
JPH0612370Y2 (en) Double tube heat pipe type heat exchanger
US3170512A (en) Heat exchanger
US20070227703A1 (en) Evaporatively cooled thermosiphon
JPH05118780A (en) Heat pipe
US4058160A (en) Heat transfer device
US4567736A (en) Absorption heat pump
US3168137A (en) Heat exchanger
JPS6338864B2 (en)
US4260015A (en) Surface condenser
JPS6051034B2 (en) Heat pipe with fins
RU2332818C1 (en) Cooling device for electronic elements
JPS6237689A (en) Annular heat pipe
JPS6247933A (en) Multiple heat pipe for linear beam tube
US20200329584A1 (en) Heat exchanger with integrated two-phase heat spreader
JP2005265205A (en) Heat pipe and its manufacturing method
JP2021188890A (en) Heat transfer member and cooling device having heat transfer member
JP2001024122A (en) Cooling device for heat generating element
JPH08219668A (en) Heat pipe
JPH0498093A (en) Electric insulation type heat pipe
JPS61228292A (en) Heat transfer tube with heat pipe built-in fins
JPS58182054A (en) Solar heat collector
JPS59112192A (en) Construction of heat transfer container
TW508487B (en) Thermal exchange structure of annular-looped hot tube
JPS58210439A (en) Heat pipe type solar heat water heater
JP2772178B2 (en) Condenser