JPS6338864B2 - - Google Patents

Info

Publication number
JPS6338864B2
JPS6338864B2 JP57013111A JP1311182A JPS6338864B2 JP S6338864 B2 JPS6338864 B2 JP S6338864B2 JP 57013111 A JP57013111 A JP 57013111A JP 1311182 A JP1311182 A JP 1311182A JP S6338864 B2 JPS6338864 B2 JP S6338864B2
Authority
JP
Japan
Prior art keywords
refrigerant
cooling air
section
passage
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57013111A
Other languages
Japanese (ja)
Other versions
JPS58131755A (en
Inventor
Osamu Watabe
Takashi Tanaka
Ryoichi Hoshino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1311182A priority Critical patent/JPS58131755A/en
Publication of JPS58131755A publication Critical patent/JPS58131755A/en
Publication of JPS6338864B2 publication Critical patent/JPS6338864B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、半導体素子の冷却装置に係り、特
に冷却装置内に充填された冷媒の気液間相変化を
利用した沸騰式の半導体素子の冷却装置の改良に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a cooling device for semiconductor devices, and particularly to a boiling type semiconductor device cooling device that utilizes the phase change between gas and liquid of a refrigerant filled in the cooling device. Concerning improvements in cooling devices.

[従来の説明] 従来この種の冷却装置として、特開昭50−
72587号公報に示すものが公知であり、第5図は
その全体の構成を示す図、第6図は第5図のY−
Y線に沿つて切断し、矢印方向に見た概略断面図
である。図中31は半導体素子、32はこの半導
体素子31の端面、33は蒸発器、34は絶縁継
手、35は下部室、36は上部室、37はフイン
38を有する細管、39は上昇路、40は凝縮器
である。
[Conventional explanation] As a conventional cooling device of this type,
The one shown in Japanese Patent No. 72587 is publicly known, and FIG. 5 is a diagram showing the overall configuration, and FIG. 6 is a diagram showing the Y--
FIG. 2 is a schematic cross-sectional view taken along the Y line and viewed in the direction of the arrow. In the figure, 31 is a semiconductor element, 32 is an end face of this semiconductor element 31, 33 is an evaporator, 34 is an insulating joint, 35 is a lower chamber, 36 is an upper chamber, 37 is a thin tube having fins 38, 39 is an ascending path, 40 is the condenser.

この図から明らかなように、凝縮器40の構造
は、冷却風の通る通路(フイン38部)と、内部
冷媒通路すなわち凝縮液または蒸気の通路が互い
に、サンドイツチ状に形成され、冷却風は、フイ
ン38部に入り、ここを通過後、装置外に直線的
に吹き抜ける構造となつている。又、内部冷媒通
路41は、フイン38部にかまぼこ板状にサンド
イツチされており、各内部冷媒通路41は下部室
35と上部室36で連通されている。そして、各
内部冷媒通路41内は、全く中空となつており、
特に凝縮液用通路と蒸気用通路等は仕切られてい
ない。第5図および第6図の場合、中央の冷媒通
路を、主に蒸気用通路とし、上部の連通部に蒸気
を送り、各細管37の途中で冷却風により、冷却
凝縮した液を蒸発器33に戻すようになつてい
る。
As is clear from this figure, the structure of the condenser 40 is such that the passage through which the cooling air passes (the fins 38) and the internal refrigerant passage, that is, the passage for condensed liquid or steam, are mutually formed in the shape of a sandwich arch. It enters the fin 38, passes through this, and then blows straight out of the device. Further, the internal refrigerant passages 41 are sandwiched in a semi-cylindrical plate shape in the fins 38, and each internal refrigerant passage 41 is communicated with the lower chamber 35 and the upper chamber 36. The inside of each internal refrigerant passage 41 is completely hollow,
In particular, the condensate passage and the steam passage are not partitioned. In the case of FIGS. 5 and 6, the central refrigerant passage is mainly used as a passage for steam, the steam is sent to the upper communication part, and the cooled and condensed liquid is sent to the evaporator 33 by cooling air in the middle of each thin tube 37. It is starting to return to .

[発明が解決しようとする問題点] ところが、各細管37の凝縮器40全面が有効
に冷却用として利用されにくい。これは、蒸気が
各細管37に行き渡り、始めて凝縮が始まるた
め、凝縮開始は細管37の途中より始まる虞れが
あるからである。また、第6図のB部において、
凝縮液戻りと、上昇蒸気流とが入り混じる虞れが
あり、このためフイン38を通過する冷却風は、
熱伝達により徐々に上昇し、後方程冷却能力が低
下するが、この配慮が何等なされていない。
[Problems to be Solved by the Invention] However, it is difficult to effectively utilize the entire surface of the condenser 40 of each thin tube 37 for cooling. This is because condensation begins only after the steam has spread through each of the thin tubes 37, so there is a possibility that condensation will begin in the middle of the thin tubes 37. In addition, in part B of Fig. 6,
There is a risk that the condensate return and the rising steam flow will mix, so the cooling air passing through the fins 38 will be
It gradually rises due to heat transfer, and the cooling capacity decreases towards the rear, but no consideration has been given to this.

そこで、この発明は、冷却効率が向上する半導
体素子の冷却装置を提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a semiconductor device cooling device that improves cooling efficiency.

[実施例] 以下、この発明の実施例について図面を参照し
て説明する。第1図は、この第1の実施例の一部
を断面した正面図であり、第2図は第1図のX−
X線に沿つて切断し矢印方向に見た図である。以
下、これについて説明する。蒸発部1は、有底筒
状の蒸発部側壁7の外周面に形成された取付け用
凹部21に図示しない半導体素子が取付け可能
で、蒸発部側壁7の内部空間に半導体素子の許容
温度上限以下に沸騰する冷媒液体6が充填されて
いる。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a partially sectional front view of this first embodiment, and FIG. 2 is a front view taken along the line X--X in FIG.
It is a view cut along the X-ray and seen in the direction of the arrow. This will be explained below. In the evaporation section 1, a semiconductor element (not shown) can be attached to a mounting recess 21 formed on the outer circumferential surface of the evaporation section side wall 7, which has a cylindrical shape with a bottom. It is filled with a refrigerant liquid 6 that boils.

そして、蒸発部側壁7内に、片面に複数の縦ス
リツト13aとリブ13bを有する2枚の伝熱板
14を、スリツト13aとリブ13bを有する面
が対向配置され、ブレージングシート15を介し
2枚の伝熱板14を一体にろう付し、縦の冷媒通
路が形成されている。
Two heat transfer plates 14 each having a plurality of vertical slits 13a and ribs 13b on one side are placed in the side wall 7 of the evaporator section, with the surfaces having the slits 13a and ribs 13b facing each other, and the two heat transfer plates 14 are placed with a brazing sheet 15 in between. The heat exchanger plates 14 are brazed together to form a vertical refrigerant passage.

蒸発部側壁7の上端に、開口部8aを有する液
溜り仕切り体たとえば仕切り板8を含むチヤンバ
ー例えば液溜り部2を介して凝縮部3が形成され
ている。
A condensing section 3 is formed at the upper end of the evaporating section side wall 7 via a chamber, for example, a liquid reservoir section 2, which includes a reservoir partition, for example, a partition plate 8, having an opening 8a.

この凝縮部3と液溜り部2とヘツダー4との間
を連通する複数本の凝縮管路9が連通され、この
各凝縮管路9の外周面には多数の放熱フイン10
が設けられている。
A plurality of condensing pipes 9 communicate between the condensing part 3, the liquid reservoir part 2, and the header 4, and a large number of heat radiation fins 10 are provided on the outer peripheral surface of each condensing pipe 9.
is provided.

そして、前記仕切り板8の開口部8aは、図示
しない強制冷却風発生手段から前記凝縮管路9に
対して直角でかつ一方向すなわち図のC矢印側
(冷却風流入側)からB矢印側(冷却風流出側)
に吹付けるようにし、この場合開口部8aは、B
矢印側に形成する。また、蒸発部1の内部であつ
て、前記冷却風流入側に、冷媒液体用通路例えば
液体戻り用パイプ17を上下に配置するととも
に、前記仕切り板8に連通固定させたものであ
る。
The opening 8a of the partition plate 8 is perpendicular to the condensing pipe line 9 from a forced cooling air generating means (not shown) and is opened in one direction, that is, from the arrow C side (cooling air inflow side) to the arrow B side ( cooling air outflow side)
In this case, the opening 8a is B
Form on the arrow side. Furthermore, inside the evaporator 1, on the cooling air inflow side, refrigerant liquid passages, such as liquid return pipes 17, are disposed vertically and communicated and fixed to the partition plate 8.

尚、蒸発部1の内側底部付近には、縦スリツト
13a並びにリブ13bに直交するように横溝2
2が形成されている。また、前記ヘツダー4上部
には、ノズル20を取付け、これにより、冷却装
置内部空間に真空引きした後、冷媒を注入し、ピ
ンチして冷媒の封入できるようにしてある。な
お、前記凝縮部3の上部にヘツダー4を配し、前
記蒸発部1の底部19、蒸発部1、液溜り部2、
凝縮部3とヘツダー4とを順次積重ねた上で、ろ
う付け又は溶接により一体に結合して冷却装置を
構成している。
Incidentally, near the inner bottom of the evaporation section 1, a horizontal groove 2 is provided so as to be orthogonal to the vertical slit 13a and the rib 13b.
2 is formed. Further, a nozzle 20 is attached to the upper part of the header 4, so that after the internal space of the cooling device is evacuated, a refrigerant is injected and the refrigerant can be sealed by pinching. Note that a header 4 is disposed above the condensing section 3, and the bottom section 19 of the evaporating section 1, the evaporating section 1, the liquid reservoir section 2,
A cooling device is constructed by stacking the condensing section 3 and the header 4 one after another and then joining them together by brazing or welding.

このような構成のものにおいて、半導体素子に
負荷がかかると、半導体素子から発生熱が蒸発部
側壁7を介し、蒸発部1の内部空間に伝わり、冷
媒6が沸騰し、冷媒6の一部が気化、蒸発し、液
溜り部2の仕切り板8の開口部8aを通り、上部
に位置する凝縮部3の凝縮管路9を実線矢印11
のごとく上昇し、仕切り板8の液戻り用パイプよ
り蒸発部1の蒸発部側壁の空間に充填されている
冷媒液体6まで戻つてくる。
In such a structure, when a load is applied to the semiconductor element, heat generated from the semiconductor element is transmitted to the internal space of the evaporator 1 via the evaporator side wall 7, the refrigerant 6 boils, and a part of the refrigerant 6 is heated. The liquid evaporates, passes through the opening 8a of the partition plate 8 of the liquid reservoir section 2, and connects the condensation pipe 9 of the condensation section 3 located at the top with a solid line arrow 11.
The refrigerant liquid 6 rises as shown in FIG.

この第1図の場合、特に次の効果が得られる。
一般に、半導体素子の冷却装置における冷媒各部
の温度分布・気流状態を測定・分析してみると、
凝縮部3のフイン10部への冷却風流入側(C矢
印方向)の冷媒温度の方が冷却風流出側(B矢印
方向)の冷媒温度より低くなつている。これは、
凝縮部3のフイン10部を通過する冷却風温度が
フイン10部入側より出側の方が劣つているため
である。すなわち、凝縮管路9中の冷媒は、冷却
風流入側(C方向)に行くに従つて凝縮が促進さ
れ、冷媒液体状態にあり、冷却風側では凝縮が不
十分で、気体冷媒状態あるいは気体混合状態を呈
している。このため、ここでは、冷媒状態を利用
し、冷却風流出側に仕切り板8の開口部8aを形
成し、また冷却風の流入側に液戻りパイプ17を
設けてあるので、冷却装置内を冷媒が円滑に循環
する。つまり、第1図は、凝縮液の戻りと、上昇
蒸気気流とが入り混じる虞れがなく、広い中空路
内に、蒸気が入り、低温の冷却風側にて凝縮が促
進され、例えば図の時計方向に冷媒の流路が形成
されるからである。このことから、冷却効率が向
上する。
In the case of FIG. 1, the following effects can be particularly obtained.
Generally, when measuring and analyzing the temperature distribution and airflow conditions of each part of the refrigerant in a semiconductor device cooling system,
The refrigerant temperature on the cooling air inflow side (in the direction of arrow C) to the fins 10 of the condensing section 3 is lower than the refrigerant temperature on the cooling air outflow side (in the direction of arrow B). this is,
This is because the temperature of the cooling air passing through the 10 fins of the condensing section 3 is lower on the outlet side than on the inlet side of the 10 fins. That is, the refrigerant in the condensing pipe line 9 is accelerated in condensation as it goes toward the cooling air inflow side (direction C) and is in a refrigerant liquid state, whereas on the cooling air side, condensation is insufficient and it is in a gaseous refrigerant state or a gaseous refrigerant state. It is in a mixed state. For this reason, here, by utilizing the refrigerant state, the opening 8a of the partition plate 8 is formed on the outflow side of the cooling air, and the liquid return pipe 17 is provided on the inflow side of the cooling air. circulates smoothly. In other words, in Fig. 1, there is no risk of the return of condensate and the rising steam airflow mixing, steam enters the wide hollow passage, and condensation is promoted on the low-temperature cooling air side. This is because a refrigerant flow path is formed in a clockwise direction. This improves cooling efficiency.

第3図は、この発明の第2の実施例の一部を断
面した正面図であり、第4図は第3図の−線
に沿つて切断し、矢印方向に見た図である。これ
は、前述の実施例とは次の点が異なる。すなわ
ち、蒸発部1の上部に仕切り板8を有する液溜り
部2を設け、この仕切り板8の冷却風流出側(B
矢印方向)に第1の開口部8bを設けるととも
に、この第1の開口部8bとは対向する低位置す
なわち冷却風流入側方向(C矢印方向)には第2
の開口部8cを設けたものである。そして、液溜
り部2の上に偏平チユーブ形の凝縮管路9とフイ
ン10と両側面に壁板とを配して凝縮部3とな
し、さらに該凝縮部3の上部にヘツダー4を配
し、前記蒸発部1の底部19、蒸発部1、液溜り
部2、凝縮部3とヘツダー4とを順次積重ねた上
で、ろうづけ又は溶接により一体に結合してあ
る。また、前記仕切り板8は、図のように傾斜し
て取付けられ、これはヘツダー4の上部に取付け
られたノズル18より冷却装置内部を真空引きし
た後、ノズル20より冷媒を注入しピンチして冷
媒の封入を行ない、冷媒液体の還元を促進させる
ためである。
FIG. 3 is a partially sectional front view of the second embodiment of the present invention, and FIG. 4 is a view cut along the - line in FIG. 3 and viewed in the direction of the arrow. This differs from the previous embodiment in the following points. That is, a liquid reservoir section 2 having a partition plate 8 is provided above the evaporation section 1, and the cooling air outflow side of this partition plate 8 (B
A first opening 8b is provided in the direction of the arrow C), and a second opening 8b is provided at a lower position opposite to the first opening 8b, that is, in the direction of the cooling air inflow side (direction of the arrow C).
An opening 8c is provided. Then, a flat tube-shaped condensing pipe line 9, fins 10, and wall plates on both sides are arranged on the liquid reservoir part 2 to form a condensing part 3, and a header 4 is further arranged in the upper part of the condensing part 3. The bottom part 19 of the evaporating part 1, the evaporating part 1, the liquid reservoir part 2, the condensing part 3, and the header 4 are stacked one on top of the other, and are then integrally connected by brazing or welding. The partition plate 8 is installed at an angle as shown in the figure, and this is done by evacuating the inside of the cooling device through a nozzle 18 installed at the top of the header 4, and then injecting refrigerant through the nozzle 20 and pinching. This is to encapsulate the refrigerant and promote the reduction of the refrigerant liquid.

この実施例では、通路の狭くなつている仕切り
板8の第1の開口部8bを蒸気上昇専用としてい
るので、冷却装置内の蒸気の上昇が円滑に進む。
又、液溜り部2の仕切り板8第2の開口部8cが
下方になるように傾斜しているため、凝縮した冷
媒液体が蒸発部1に帰還するのが促進される。こ
のようなことから、この発明の第2の実施例の場
合も冷却効率が向上する。
In this embodiment, the first opening 8b of the partition plate 8, which has a narrow passage, is used exclusively for rising steam, so that the steam within the cooling device rises smoothly.
Furthermore, since the second opening 8c of the partition plate 8 of the liquid reservoir 2 is inclined downward, the return of the condensed refrigerant liquid to the evaporator 1 is promoted. For this reason, the cooling efficiency is also improved in the second embodiment of the present invention.

[発明の効果] 以上述べたこの発明によれば、冷却効率が向上
する半導体素子の冷却装置を提供することができ
る。
[Effects of the Invention] According to the present invention described above, it is possible to provide a cooling device for semiconductor elements with improved cooling efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1の実施例の一部を断面
した正面図、第2図は第1図のX−X線に沿つて
矢印に見た図、第3図はこの発明の第2の実施例
の一部を断面した正面図、第4図は第1図の−
線に沿つて矢印に見た図、第5図は従来の一例
を示す正面図、第6図は第5図のY−Y線に沿つ
て切断し矢印方向に見た断面図である。 1……蒸発部、2……液溜り部、3……凝縮
部、4……ヘツダー、6……冷媒、8a,8b…
…開口部、8……仕切り板、9……凝縮管路、1
7……液戻り用パイプ。
FIG. 1 is a partially sectional front view of a first embodiment of the present invention, FIG. 2 is a view taken along the line X--X in FIG. 1, and FIG. FIG. 4 is a partially sectional front view of the embodiment No. 2, and FIG.
FIG. 5 is a front view showing a conventional example, and FIG. 6 is a sectional view taken along line Y--Y in FIG. 5 and viewed in the direction of the arrow. 1... Evaporation section, 2... Liquid reservoir section, 3... Condensation section, 4... Header, 6... Refrigerant, 8a, 8b...
...opening, 8...partition plate, 9...condensation pipe, 1
7...Liquid return pipe.

Claims (1)

【特許請求の範囲】 1 有底容器の外壁に冷却すべき半導体素子が取
付けられ、前記容器内部空間に充填されている冷
媒液体を前記半導体素子の発熱により蒸気を作る
蒸発部と、 この蒸発部の上部に上下方向に配置され、その
上部に形成されたヘツダーと、その下部に形成さ
れた液溜り部との間に、それぞれ上下方向に配設
されるとともに各端部がそれぞれに連通された複
数個のフイン付冷媒通路をサンドイツチ状にして
なる凝縮部と、 この凝縮部を構成している冷媒通路に対してほ
ぼ直角で一方向から強制的に冷却風を送風させる
冷却風送風手段と、 前記液溜り部内に配置され、前記蒸発部と前記
凝縮部とを仕切るとともに前記蒸発部で作られる
蒸気を前記凝縮部に導くための開口部を、前記冷
却風の流出側に形成してなる仕切り体と、 前記蒸発部内に上下方向であつて前記冷却風の
流入側に配置され、前記凝縮部で液化された冷媒
液体を前記仕切り体を通して前記蒸発部に戻す冷
媒戻り用通路とを具備し、 前記冷媒通路のうち、冷却風の流出側および流
入側にあるものをそれぞれ冷媒蒸気通路および凝
縮液通路とし、また前記以外の中間にある冷媒通
路を前記半導体素子の負荷変動による冷媒蒸気発
熱量変動に応じ冷媒蒸気通路あるいは凝縮液通路
として用いることを特徴とする半導体素子の冷却
装置。
[Scope of Claims] 1. An evaporation section in which a semiconductor element to be cooled is attached to the outer wall of a bottomed container, and a refrigerant liquid filled in the inner space of the container is turned into vapor by heat generation of the semiconductor element; The header is arranged vertically on the upper part of the header, and between the header formed on the upper part and the liquid reservoir formed on the lower part, the liquid is arranged in the vertical direction, and each end is communicated with each other. a condensing section formed of a plurality of finned refrigerant passages in a sandwich-like configuration; a cooling air blowing means for forcibly blowing cooling air from one direction substantially perpendicular to the refrigerant passages constituting the condensing section; a partition disposed within the liquid reservoir, which partitions the evaporation section and the condensation section, and has an opening formed on the outflow side of the cooling air for guiding vapor produced in the evaporation section to the condensation section; a refrigerant return passage, which is disposed vertically within the evaporator and on the inflow side of the cooling air, and returns the refrigerant liquid liquefied in the condenser to the evaporator through the partition; Among the refrigerant passages, those on the outflow side and the inflow side of the cooling air are respectively referred to as the refrigerant vapor passage and the condensate passage, and the refrigerant passages located in the middle other than the above are used to handle refrigerant vapor calorific value fluctuations due to load fluctuations of the semiconductor elements. 1. A cooling device for a semiconductor device, which is used as a refrigerant vapor passage or a condensate passage depending on the requirements.
JP1311182A 1982-01-29 1982-01-29 Cooling device Granted JPS58131755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1311182A JPS58131755A (en) 1982-01-29 1982-01-29 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1311182A JPS58131755A (en) 1982-01-29 1982-01-29 Cooling device

Publications (2)

Publication Number Publication Date
JPS58131755A JPS58131755A (en) 1983-08-05
JPS6338864B2 true JPS6338864B2 (en) 1988-08-02

Family

ID=11824036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1311182A Granted JPS58131755A (en) 1982-01-29 1982-01-29 Cooling device

Country Status (1)

Country Link
JP (1) JPS58131755A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527887Y2 (en) * 1987-10-30 1993-07-16

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3487382B2 (en) * 1994-12-28 2004-01-19 株式会社デンソー Boiling cooling device
JP3255818B2 (en) * 1995-03-20 2002-02-12 カルソニックカンセイ株式会社 Cooling device for electronic components
JPH08264694A (en) * 1995-03-20 1996-10-11 Calsonic Corp Cooling device for electronic parts
JP3216770B2 (en) * 1995-03-20 2001-10-09 カルソニックカンセイ株式会社 Cooling device for electronic components
US6073683A (en) * 1995-07-05 2000-06-13 Nippondenso Co., Ltd. Cooling apparatus using boiling and condensing refrigerant and method for manufacturing the same
US6119767A (en) * 1996-01-29 2000-09-19 Denso Corporation Cooling apparatus using boiling and condensing refrigerant
FR2746177B1 (en) * 1996-03-14 2000-04-07 COOLING DEVICE USING A BOILING REFRIGERANT AND CONDENSING
US6279649B1 (en) * 1998-04-27 2001-08-28 Denso Corporation Cooling apparatus using boiling and condensing refrigerant
JP5163548B2 (en) * 2009-03-10 2013-03-13 トヨタ自動車株式会社 Boiling cooler
JP2011174647A (en) * 2010-02-24 2011-09-08 Showa Denko Kk Heat pipe type radiator
CN108955326B (en) * 2018-07-12 2020-03-17 上海交通大学 Micro-channel gas-liquid separation evaporator device based on distribution and recovery channel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026142A (en) * 1973-07-11 1975-03-19
JPS5072587A (en) * 1973-10-29 1975-06-16
JPS5111330A (en) * 1974-07-19 1976-01-29 Hitachi Ltd MOJIHYO JISOCHI
JPS5240859A (en) * 1975-09-27 1977-03-30 Mitsubishi Electric Corp Heat discharging body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080742U (en) * 1973-11-26 1975-07-11

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026142A (en) * 1973-07-11 1975-03-19
JPS5072587A (en) * 1973-10-29 1975-06-16
JPS5111330A (en) * 1974-07-19 1976-01-29 Hitachi Ltd MOJIHYO JISOCHI
JPS5240859A (en) * 1975-09-27 1977-03-30 Mitsubishi Electric Corp Heat discharging body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527887Y2 (en) * 1987-10-30 1993-07-16

Also Published As

Publication number Publication date
JPS58131755A (en) 1983-08-05

Similar Documents

Publication Publication Date Title
US4688399A (en) Heat pipe array heat exchanger
JP3651081B2 (en) Boiling cooler
JPH0612370Y2 (en) Double tube heat pipe type heat exchanger
US6681843B2 (en) Cooling apparatus boiling and condensing refrigerant
JPS6338864B2 (en)
JP2534668B2 (en) Heat exchanger
US6073683A (en) Cooling apparatus using boiling and condensing refrigerant and method for manufacturing the same
CN214507714U (en) Split type thermosiphon phase change radiator and industrial control equipment
JPS61107062A (en) Absorption type heat pump
JP3549933B2 (en) Plate fin type element cooler
US6279649B1 (en) Cooling apparatus using boiling and condensing refrigerant
US3598178A (en) Heat pipe
JPH09326582A (en) Boiling cooling device and case cooling device equipped therewith
JP3893651B2 (en) Boiling cooling device and casing cooling device using the same
JPH1098142A (en) Boiling cooler
US6102109A (en) Cooling device boiling and condensing refrigerant
CN110986639A (en) Heat exchanger of thermosiphon
JPS6122468B2 (en)
JP2787236B2 (en) Heat pipe manufacturing method
JPS6111591A (en) Heat pipe heat exchanger
JP3810119B2 (en) Boiling cooler
JPS5926606Y2 (en) Condenser for boiling cooler
JPS5911456Y2 (en) Boiling cooler
JPH0658198B2 (en) Shell tube heat exchanger
JPH02293595A (en) Refrigerant condenser