JPS6277593A - Heat pipe - Google Patents

Heat pipe

Info

Publication number
JPS6277593A
JPS6277593A JP21513985A JP21513985A JPS6277593A JP S6277593 A JPS6277593 A JP S6277593A JP 21513985 A JP21513985 A JP 21513985A JP 21513985 A JP21513985 A JP 21513985A JP S6277593 A JPS6277593 A JP S6277593A
Authority
JP
Japan
Prior art keywords
coolant
tube
groove
outer tube
outer side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21513985A
Other languages
Japanese (ja)
Inventor
Yoshiro Miyazaki
芳郎 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21513985A priority Critical patent/JPS6277593A/en
Priority to EP85116626A priority patent/EP0186216B1/en
Priority to DE8585116626T priority patent/DE3568631D1/en
Publication of JPS6277593A publication Critical patent/JPS6277593A/en
Priority to US07/193,190 priority patent/US4815529A/en
Priority to US07/278,361 priority patent/US4846263A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To miniaturize the heat pipe and improve the mechanical strength thereof by forming the heat pipe into a dual pipe consisting of an inner side pipe forming a coolant feedback path and an outer side pipe forming a vapor passage, and communicating the inner side of the outer side pipe with the outer side thereof. CONSTITUTION:A liquid coolant retained by grooves 11 formed on the inner surface of an outer side pipe 9 reaches a condensing part via a vapor passage 7. The liquid coolant condensed flows into a coolant return passage 5 via grooves 11 of an outer side pipe 9 and a communication passage 15 because of a differenece in pressure between the coolant at a condensing part and that at an evaporating part, and then circulated to the evaporating part and supplied to the groove 11 via the communicating passage 15. Since the condensed liquid coolant is fed back mainly through a coolant via a coolant feedback path 5 where the drift resistance is small, a large flow amount can be obtained even by a slight capillary force of the grooves 11, and hence a large heat transport ability can be obtained. The groove 11 is easily formed because it is sufficient to subject it to extrusion molding.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、ヒートパイプに関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a heat pipe.

〔発明の技術的前頭とその問題点〕[Technical front of the invention and its problems]

従来、ヒートパイプの熱輸送能力を高めるため、凝縮部
から蒸発部間にわたって、アーテリすなわち凝縮液の帰
還路を特別に設けたヒートパイプがある。
BACKGROUND ART Conventionally, in order to increase the heat transport ability of a heat pipe, there is a heat pipe in which a special return path for the condensate is provided between a condensing section and an evaporating section.

この種のヒートパイプとしては、例えば第4図。An example of this type of heat pipe is shown in FIG. 4, for example.

第5図に示すようなものがある。第4図に示したものは
、管体101の内面にウィックとしてのメツシュ103
を取付け、このメツシュ103の一部を変形させ、凝縮
液の帰還路105を形成させである。また、第5図に示
したものは、管体201内面に周方向溝203を設ける
とともに、凝縮液の帰還路を形成するフェルト状の金属
205を管体201の内部に挿入したものである。
There is something like the one shown in Figure 5. The one shown in FIG. 4 has a mesh 103 as a wick on the inner surface of the tube body 101.
The mesh 103 is partially deformed to form a condensate return path 105. Further, in the one shown in FIG. 5, a circumferential groove 203 is provided on the inner surface of the tube body 201, and a felt-like metal 205 is inserted into the inside of the tube body 201 to form a return path for the condensate.

しかしながら、上記第4図、第5図に示した従来例のも
のは、ヒートパイプが何らかの振動等を受けることによ
り、内部のメツシュ103(第4図)やフェルト状の金
属205(第5図)が変形したり、ずれたりする等機械
的強度に問題がある他、これら挿入物を管体101,2
01 (第4図及び第5図)の内面に密着するように製
造することは極めてガ1しく、その上第4図に示したも
のの場合は、メツシュ103と管体101内壁との間に
液膜が存在づる可能性があり、これにより熱抵抗が増大
する等問題がある。
However, in the conventional example shown in FIGS. 4 and 5, when the heat pipe is subjected to some kind of vibration etc. In addition to problems with mechanical strength such as deformation or displacement of the inserts, these inserts may
01 (FIGS. 4 and 5) is extremely difficult to manufacture, and in addition, in the case of the mesh 103 shown in FIG. There is a possibility that a film may be present, which causes problems such as increased thermal resistance.

これに対して、第6図に示1ように、容器301内に、
周方向溝303を有する蒸気通路305とは別個に凝縮
液帰還路307を設けたモノグループヒートパイプと称
呼されるものがある。
On the other hand, as shown in FIG. 6, inside the container 301,
There is a heat pipe called a monogroup heat pipe in which a condensate return path 307 is provided separately from a steam passage 305 having a circumferential groove 303.

この第6図に示したものは、内部に挿入物がないため、
蒸気の問題点は解消できるが、蒸気通路305と凝縮液
帰還路307とが別個に設けられているので、ヒートパ
イプが大型化し、mlも増加してしまうという問題があ
り、また、第5図の従来例にも言えることであるが、周
方向溝303(第5図では周方向溝203)を通路内面
に設【プるという難しい機械加工を施さなければならな
いという問題がある。
The one shown in Figure 6 has no insert inside, so
Although the steam problem can be solved, since the steam passage 305 and the condensate return passage 307 are provided separately, there is a problem that the heat pipe becomes large and the ml increases. This also applies to the conventional example, but there is a problem in that difficult machining must be performed to form the circumferential groove 303 (circumferential groove 203 in FIG. 5) on the inner surface of the passage.

(発明の目的) この発明は、このような従来の問題点に鑑み創案さたも
のであって、大型化することなく機械的強度を向上させ
、製造も比較的容易なヒートパイプの提供を目的とする
(Purpose of the Invention) The present invention was devised in view of these conventional problems, and aims to provide a heat pipe that has improved mechanical strength without increasing its size and is relatively easy to manufacture. shall be.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、この発明は、外管と、この
外管内に挿入される内管とを有し、前記内管を冷媒帰還
路を形成する内側管と蒸気通路を形成する外側管とから
なる二重管構造に設け、前記外側管の内面には蒸発部か
ら凝縮部にわたり比較的断面積の小さな溝を設けるとと
もに、蒸発部側と凝縮部側との外周面には前記溝と連通
ずる連通孔を設け、この外側管の連通孔と前記内側管と
を連通させる連通路を前記内側管と外側管との間に設け
る構成とした。
In order to achieve the above object, the present invention has an outer tube and an inner tube inserted into the outer tube, and the inner tube is connected to an inner tube forming a refrigerant return path and an outer tube forming a vapor passage. A groove with a relatively small cross-sectional area is provided on the inner surface of the outer tube extending from the evaporation section to the condensation section, and the groove and the groove are provided on the outer peripheral surfaces of the evaporation section side and the condensation section side. A communicating hole is provided, and a communicating path is provided between the inner tube and the outer tube to communicate the communication hole of the outer tube with the inner tube.

〔発明の効果〕〔Effect of the invention〕

この発明の構成によれば、内管を冷媒帰還路を形成する
内側管と蒸気通路を形成する外側管とからなる二重管構
造とし、前記外側管の内面に毛細管力を発生させる溝を
設けるとともに、その外周面に前記溝と連通する連通孔
を設け、この外側管の連通孔と前記内側管とを連通路に
より連通させたため、内部にメツシュ等の挿入物を設け
る必要がないので、ヒートパイプが大型化することなく
、機械的強度を向上させることができる。又内管と外管
とを密着させることができ、蒸発面あるいは凝縮面への
熱伝導がメツシュ等を用いたものより熱伝導が効率よく
行なわれ、熱抵抗の小さなヒートパイプが得られる。冷
媒帰還路が管の内部に設【プられているので管全周から
加熱が可能である。
According to the configuration of the present invention, the inner tube has a double tube structure consisting of an inner tube forming a refrigerant return path and an outer tube forming a vapor passage, and a groove for generating capillary force is provided on the inner surface of the outer tube. At the same time, a communication hole communicating with the groove is provided on the outer circumferential surface of the outer tube, and the communication hole of the outer tube and the inner tube are communicated with each other through a communication path, so there is no need to provide an insert such as a mesh inside, so that heat can be reduced. Mechanical strength can be improved without increasing the size of the pipe. Furthermore, the inner tube and the outer tube can be brought into close contact with each other, and heat conduction to the evaporating surface or condensing surface is more efficient than that using a mesh or the like, and a heat pipe with low thermal resistance can be obtained. Since the refrigerant return path is installed inside the tube, heating can be done from all around the tube.

管の内面に周方向溝を設けなくてよいから製造が容易で
ある。
Manufacturing is easy because there is no need to provide a circumferential groove on the inner surface of the tube.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を第1図及び第2図に基づい
て説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は、密閉状の外管1に内管3が密着状態で挿入さ
れたヒートパイプの断面図、第2図は内管3の斜視図を
示ずものである。内管3は冷媒帰還路4を形成する内側
管5と冷媒の蒸気通路7を形成する外側管9とからなる
二重管4?l造で構成されている。外側管9の内面には
比較的断面積が小さく、軸方向に向けて蒸発部から凝縮
部にわたって形成された溝11が全周にわたり設けられ
ている。また、外側管9の内部には蒸発部で蒸発した冷
媒の蒸気通路7が形成されている。
FIG. 1 is a sectional view of a heat pipe in which an inner tube 3 is inserted into a sealed outer tube 1 in close contact with the heat pipe, and FIG. 2 is a perspective view of the inner tube 3 without showing it. The inner tube 3 is a double tube 4 consisting of an inner tube 5 forming a refrigerant return path 4 and an outer tube 9 forming a refrigerant vapor passage 7. It is composed of l-structure. The inner surface of the outer tube 9 is provided with a groove 11 that has a relatively small cross-sectional area and is formed along the entire circumference from the evaporating section to the condensing section in the axial direction. Further, a vapor passage 7 for the refrigerant evaporated in the evaporator is formed inside the outer tube 9.

前記11111は、液体冷媒を凝縮部から蒸発部へ流す
ための圧力差を毛細管力によって発生させ、かつ、凝縮
作用時と蒸発作用時とにおける熱伝達を行なわせる機能
をもっている。このため、溝11は細く、蒸気相に広い
面積で接している。
The above 11111 has a function of generating a pressure difference by capillary force to cause the liquid refrigerant to flow from the condensing section to the evaporating section, and also performing heat transfer during the condensing action and the evaporating action. Therefore, the groove 11 is narrow and contacts the vapor phase over a wide area.

内側管5によって構成される冷媒帰還路4は、いわゆる
アーテリと呼ばれているもので、凝縮部で凝縮された液
体冷媒の蒸発部への主な帰還路となっている。このため
、この冷媒液体の帰還時の流動抵抗を小さくするために
、冷媒帰還路すなわら内側管5の断面積は溝11に比較
して大きくなっている。
The refrigerant return path 4 constituted by the inner tube 5 is what is called an arteri, and serves as the main return path for the liquid refrigerant condensed in the condensing section to the evaporating section. Therefore, in order to reduce the flow resistance when the refrigerant liquid returns, the cross-sectional area of the refrigerant return path, that is, the inner tube 5 is made larger than that of the groove 11.

また、前記溝11と冷媒帰還路4とを連通させる連通孔
としての周方向のスリット13が、外側管9の蒸発部側
から凝縮部側にかけて複数穿設されている。このスリッ
ト13は、第2図に示すように、外側管9の外周面に全
周にわたり形成され、内周側の溝11と連通している。
Further, a plurality of circumferential slits 13 serving as communication holes for communicating the grooves 11 and the refrigerant return path 4 are bored from the evaporating section side to the condensing section side of the outer tube 9. As shown in FIG. 2, the slit 13 is formed all around the outer circumferential surface of the outer tube 9 and communicates with the groove 11 on the inner circumferential side.

前記内側管5と外側管9のスリット13とは、軸方向に
延設された間隔の狭い連通路15によつて連通している
The slits 13 of the inner tube 5 and the outer tube 9 communicate with each other through a narrow communication path 15 extending in the axial direction.

前記内管3は、押し出し成形によって内側管5、外側管
9.溝11及び連通路15を形成することができ、その
後、外面よりスリット13を加工すればよいので、比較
的容易に製造することができるものである。また、内管
3の外管1への密着状態での挿入は、冷し嵌め等によっ
て容易に行なうことができる。
The inner tube 3 is formed into an inner tube 5, an outer tube 9. by extrusion molding. The groove 11 and the communicating path 15 can be formed, and then the slit 13 can be formed from the outer surface, so it can be manufactured relatively easily. Further, the inner tube 3 can be easily inserted into the outer tube 1 in a tight state by cold fitting or the like.

このように構成されたヒートパイプ内に、このパイプ内
を真空状態にした侵適当な冷媒を封入する。この封入量
は、外側管9の溝11と冷媒帰還路5とを満たす程度で
よい。
In the heat pipe constructed in this way, an appropriate refrigerant is sealed so that the inside of the pipe is evacuated. This sealed amount may be enough to fill the groove 11 of the outer tube 9 and the refrigerant return path 5 .

つぎに、上記−実施例の作用について述べる。Next, the operation of the above embodiment will be described.

ヒートパイプの蒸発部では、外側管9の内面の溝11に
保持された液体冷媒が蒸発し、液体冷媒の減少により液
面が凹状となり、表面張力の作用によってこの部分の圧
力が低下する。一方、蒸発部で蒸発した冷媒は、蒸気通
路7を通って凝縮部へ達し凝縮される。従ってこの凝縮
部におGノる溝11内の冷媒液面は略平坦であり、冷媒
の圧力は蒸発部の冷媒の圧力よりも高くなっている。
In the evaporation section of the heat pipe, the liquid refrigerant held in the grooves 11 on the inner surface of the outer tube 9 evaporates, and the liquid level becomes concave due to the decrease in the amount of liquid refrigerant, and the pressure in this area decreases due to the action of surface tension. On the other hand, the refrigerant evaporated in the evaporation section passes through the vapor passage 7 and reaches the condensation section, where it is condensed. Therefore, the liquid level of the refrigerant in the groove 11 in the condensing section is approximately flat, and the pressure of the refrigerant is higher than the pressure of the refrigerant in the evaporating section.

この冷媒の圧力差によって、凝縮された液体冷媒は外側
管9の溝11からスリット13及び連通路15を通って
冷媒帰還路5に流れ込み、蒸発部へ還流される。そして
、還流された液体冷媒は連通路15及びスリット13を
通って溝11に供給される。このように、凝縮された液
体冷媒は、主として流動抵抗の小さい冷媒帰還路5を通
って帰還されるので、溝11め僅かな毛細管力によって
も大きな流量を得ることができ、蒸発部でのドライアウ
トが起りにくく、大きな熱輸送能力を得ることができる
Due to this refrigerant pressure difference, the condensed liquid refrigerant flows from the groove 11 of the outer tube 9 through the slit 13 and the communication path 15 into the refrigerant return path 5, and is returned to the evaporator. The recirculated liquid refrigerant is then supplied to the groove 11 through the communication path 15 and the slit 13. In this way, the condensed liquid refrigerant is mainly returned through the refrigerant return path 5 with low flow resistance, so a large flow rate can be obtained through the groove 11 even with a slight capillary force, and the dry Out-out is less likely to occur and a large heat transport capacity can be obtained.

また、外管1と内管3とは、直接接触している部分があ
るため、外管1を通して内管3側の蒸発面および凝縮面
に効率よく熱を伝えることができる。このため、メツシ
ュを用いたアーチリヒートパイプのように、蒸発部およ
び凝縮部で大きな熱抵抗が発生することがない。
Further, since the outer tube 1 and the inner tube 3 have a portion in direct contact with each other, heat can be efficiently transferred through the outer tube 1 to the evaporation surface and the condensation surface on the inner tube 3 side. Therefore, unlike arch reheat pipes using meshes, large thermal resistance does not occur in the evaporation section and the condensation section.

また、内管3の外側管9の溝11は押出し成形により形
成し、外面よりスリット13を加工すればよいので製造
は比較的容易で、内管3の外管1への密着状態での挿入
は、冷し嵌め等により容易に行なうことができる。
In addition, the groove 11 of the outer tube 9 of the inner tube 3 is formed by extrusion molding, and the slit 13 is formed from the outer surface, so manufacturing is relatively easy. This can be easily done by cold fitting or the like.

さらに、冷媒帰還路5が内管3の内部に設けられている
ため、外管1の全周からの加熱が可能となる。
Furthermore, since the refrigerant return path 5 is provided inside the inner tube 3, heating from the entire circumference of the outer tube 1 is possible.

第3図はこの発明の他の実施例を示すヒートパイプの断
面図を示すものである。なお、ここでは前述の実施例と
同一構成要素には同一符号を付して説明を省略する。こ
の実施例は、冷媒帰還路4を形成する内側管5と外側管
9とを連通ずる連通路17を複数個設ける構成としであ
る。この場合には、複数個の扇形状の管を外管1に当接
させるために、内側管5内に挿入板19を設けることも
できる。
FIG. 3 shows a sectional view of a heat pipe showing another embodiment of the present invention. Note that here, the same components as those in the above-mentioned embodiment are given the same reference numerals, and the explanation thereof will be omitted. This embodiment has a configuration in which a plurality of communication passages 17 are provided to communicate the inner pipe 5 and the outer pipe 9 forming the refrigerant return passage 4. In this case, an insertion plate 19 may be provided within the inner tube 5 in order to bring a plurality of fan-shaped tubes into contact with the outer tube 1.

この実施例は、内側管5と外側管9との連通路17を大
きくできるので、液体冷媒の流動抵抗をより一層減少さ
せることができ熱輸送能力が更に向上する。
In this embodiment, since the communication path 17 between the inner tube 5 and the outer tube 9 can be made larger, the flow resistance of the liquid refrigerant can be further reduced, and the heat transport ability can be further improved.

なお、この発明は前述の実施例に限定されるものではな
い。例えば、外側管9に穿設するスリット13は、螺旋
状に形成してもよく、要するに外側管9の内側と外側と
を連通させるような構成であればよい。
Note that this invention is not limited to the above-described embodiments. For example, the slit 13 formed in the outer tube 9 may be formed in a spiral shape, and in short, any structure that allows communication between the inside and the outside of the outer tube 9 may be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係るヒートパイプの断面
図、第2図は第1図における内管の斜視図、第3図は他
の実施例に係るヒートパイプの断面図、第4図及び第5
図はそれぞれ従来のアーチリヒートバイブの断面図、第
6図は従来のモノグループ形ヒートパイプの断面図であ
る。 (図面の主要部を表わす符号の説明) 1・・・外管      3内管 4・・・冷媒帰還路   5・・・内側管9・・・外側
管     11・・・溝13・・・スリット(連通孔
) 15.17・・・連通路
FIG. 1 is a cross-sectional view of a heat pipe according to an embodiment of the present invention, FIG. 2 is a perspective view of the inner tube in FIG. 1, FIG. 3 is a cross-sectional view of a heat pipe according to another embodiment, and FIG. Figure and 5th
Each figure is a sectional view of a conventional arch reheat vibrator, and FIG. 6 is a sectional view of a conventional monogroup heat pipe. (Explanation of symbols representing main parts of the drawings) 1... Outer tube 3 Inner tube 4... Refrigerant return path 5... Inner tube 9... Outer tube 11... Groove 13... Slit ( Communication hole) 15.17...Communication path

Claims (1)

【特許請求の範囲】[Claims] 外管とこの外管内に挿入される内管とを有し、前記内管
を冷媒帰還路を形成する内側管と蒸気通路を形成する外
側管とからなる二重管構造とし、前記外側管の内面には
蒸発部から凝縮部にわたり比較的断面積の小さな溝を設
けるとともに、蒸発部側と凝縮部側との外周面には前記
溝と連通する連通孔を設け、この外側管の連通孔と前記
内側管とを連通させる連通路を前記内側管との間に設け
たことを特徴とするヒートパイプ。
It has an outer tube and an inner tube inserted into the outer tube, and the inner tube has a double tube structure consisting of an inner tube forming a refrigerant return path and an outer tube forming a steam passage. A groove with a relatively small cross-sectional area is provided on the inner surface extending from the evaporation section to the condensation section, and a communication hole that communicates with the groove is provided on the outer peripheral surface of the evaporation section side and the condensation section side, and the communication hole of the outer tube and A heat pipe characterized in that a communication path is provided between the inner tube and the inner tube.
JP21513985A 1984-12-27 1985-09-30 Heat pipe Pending JPS6277593A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP21513985A JPS6277593A (en) 1985-09-30 1985-09-30 Heat pipe
EP85116626A EP0186216B1 (en) 1984-12-27 1985-12-27 Heat pipe
DE8585116626T DE3568631D1 (en) 1984-12-27 1985-12-27 Heat pipe
US07/193,190 US4815529A (en) 1984-12-27 1988-05-13 Heat pipe
US07/278,361 US4846263A (en) 1984-12-27 1988-12-01 Heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21513985A JPS6277593A (en) 1985-09-30 1985-09-30 Heat pipe

Publications (1)

Publication Number Publication Date
JPS6277593A true JPS6277593A (en) 1987-04-09

Family

ID=16667341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21513985A Pending JPS6277593A (en) 1984-12-27 1985-09-30 Heat pipe

Country Status (1)

Country Link
JP (1) JPS6277593A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002016832A1 (en) * 2000-08-18 2002-02-28 Hokko Sohgoh Kaihatsu K.K. Floor heater, thermal siphon heat pipe, and method of manufacturing heat pipe
CN102003902A (en) * 2009-08-28 2011-04-06 富瑞精密组件(昆山)有限公司 Heat pipe manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002016832A1 (en) * 2000-08-18 2002-02-28 Hokko Sohgoh Kaihatsu K.K. Floor heater, thermal siphon heat pipe, and method of manufacturing heat pipe
CN102003902A (en) * 2009-08-28 2011-04-06 富瑞精密组件(昆山)有限公司 Heat pipe manufacturing method

Similar Documents

Publication Publication Date Title
EP0186216B1 (en) Heat pipe
US5335720A (en) Heat pipe
JPH01193591A (en) Heat pipe system
CN111504103B (en) Pump driven two-phase fluid loop evaporator
JP2000171181A (en) Heat pipe
JPS6277593A (en) Heat pipe
JPS61153384A (en) Heat pipe
JPS5816187A (en) Heat transfer device
JPS6338864B2 (en)
JP2904199B2 (en) Evaporator for capillary pump loop and heat exchange method thereof
JP2003269878A (en) Loop type heat pipe evaporator
JP2707070B2 (en) High temperature heat pipe
JPH0231313B2 (en) BUNRIGATAHIITOPAIPUSHIKIKUKYONETSUKI
KR20070105224A (en) Doiuble heat pipe and manufacturing methode thereof
JP3036811B2 (en) Evaporator for capillary pump loop
JPS60259861A (en) Heat pipe type solar heat collector
JPH0387596A (en) Heat pipe
JP2707069B2 (en) heat pipe
JPS5953472B2 (en) Liquid refrigerant vaporization method
JPH08219668A (en) Heat pipe
JPH0547967Y2 (en)
JPS62175586A (en) Closed loop type heat pipe
JPH0612369Y2 (en) Double pipe heat exchanger heat pipe
JPH0674957B2 (en) Heat exchanger
JPH068717B2 (en) Structure of wick in heat pipe