WO2002016832A1 - Floor heater, thermal siphon heat pipe, and method of manufacturing heat pipe - Google Patents

Floor heater, thermal siphon heat pipe, and method of manufacturing heat pipe Download PDF

Info

Publication number
WO2002016832A1
WO2002016832A1 PCT/JP2001/007059 JP0107059W WO0216832A1 WO 2002016832 A1 WO2002016832 A1 WO 2002016832A1 JP 0107059 W JP0107059 W JP 0107059W WO 0216832 A1 WO0216832 A1 WO 0216832A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
heat
heating device
outer pipe
floor heating
Prior art date
Application number
PCT/JP2001/007059
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuyuki Kitagawa
Original Assignee
Hokko Sohgoh Kaihatsu K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokko Sohgoh Kaihatsu K.K. filed Critical Hokko Sohgoh Kaihatsu K.K.
Priority to JP2002521890A priority Critical patent/JP3765572B2/en
Publication of WO2002016832A1 publication Critical patent/WO2002016832A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/12Tube and panel arrangements for ceiling, wall, or underfloor heating
    • F24D3/14Tube and panel arrangements for ceiling, wall, or underfloor heating incorporated in a ceiling, wall or floor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/12Tube and panel arrangements for ceiling, wall, or underfloor heating
    • F24D3/14Tube and panel arrangements for ceiling, wall, or underfloor heating incorporated in a ceiling, wall or floor
    • F24D3/141Tube mountings specially adapted therefor
    • F24D3/142Tube mountings specially adapted therefor integrated in prefab construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/12Tube and panel arrangements for ceiling, wall, or underfloor heating
    • F24D3/14Tube and panel arrangements for ceiling, wall, or underfloor heating incorporated in a ceiling, wall or floor
    • F24D3/148Tube and panel arrangements for ceiling, wall, or underfloor heating incorporated in a ceiling, wall or floor with heat spreading plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to a floor heating device, a thermosiphon heat pipe, and a method of manufacturing a heat pipe.
  • the present invention relates to a floor heating device, a thermosiphon heat source, a top pipe, and a method of manufacturing a heat pipe.
  • a panel 90 with a built-in pipe 91 through which hot water flows is laid between a plurality of joists 92, 2 and a panel 90 covered with an aluminum plate 93 are known.
  • the panel 90 is brought into contact with the aluminum plate 93 to transfer the heat of the hot water to the aluminum plate 93 and radiate heat from the aluminum plate 93 to heat the room.
  • FIGS. 32A and 32B show another example of a conventional floor heating device using a heat pipe.
  • This floor heating device is configured such that one end of a plurality of heat pipes 102 is connected to a pipe 101 heated by hot water or the like.
  • the heat pipe 102 is configured by filling a working fluid as a heat transport medium into a pipe whose inside is evacuated. When one end of the heat pipe 102 is heated by the pipe 101, the working fluid evaporates. The evaporated working fluid is condensed at the other end, and heat is exchanged with the outside air or the heat transfer member at the other end to perform heating.
  • the plurality of joists 92 and the panel 90 are separate members, and the number of installation steps such as positioning of the joists 92 increases.
  • Insulation material 96 must be laid between panel 90 and concrete foundation (soil) 95. This is another factor that increases manufacturing costs.
  • An object of the present invention is to provide a floor heating device in which the cost of parts is low and the number of installation steps is small.
  • thermosiphon heat pipe and a method for manufacturing the heat pipe, which have improved heat transport efficiency.
  • a floor heating device includes a resin heat insulating panel integrally formed, a heat source laid on the heat insulating panel, and a support column formed integrally with the heat insulating panel.
  • a heat sink formed between the heat sink and the heat insulating panel; and a heat source that radiates heat from the heat source into the heating space to heat the heat sink.
  • the floor heating device is a resin heat insulating panel integrally formed, a heat source laid on the heat insulating panel, and a plurality of through holes provided, and a support pillar integrally formed on the heat insulating panel. And a heating space formed between the floor plate and the heat insulating panel, and the air heated by radiating heat from the heat source into the heating space through the through hole is provided to the heating space. Lead to.
  • the number of parts can be suppressed and the number of assembly steps can be suppressed, and the period and cost can be reduced.
  • the positioning member for positioning the heat source may be formed integrally with the support column. It is preferable to provide holes on the heat sink at predetermined intervals to communicate the heating space with the heating space. It is preferable that a lattice-shaped groove is formed in the heat insulating panel, and a pipe-shaped heat source is provided in this groove. It is also possible to surround and connect the support pillars formed on adjacent heat insulation panels. it can. A rug equivalent to one tatami mat whose surface is covered with rug-like pieces may be laid on the upper part of the heat sink.
  • a concave portion may be formed on the bottom surface of the heat insulating panel.
  • thermosiphon heat pipe is used as the heat source, a floor heating device with high heat efficiency and high space efficiency can be provided.
  • the outer peripheral edge of the heat insulating panel may be formed of a circular polystyrene foam, and the length of the heat pipe may be different depending on the area where the heat pipe is laid. It is preferable that the heat insulating panel is made of polystyrene foam.
  • the outer pipe of the thermosiphon heat pipe and the lid may be fixed by caulking or may be fixed by an adhesive.
  • the surface of the heat pipe is preferably coated with ceramics.
  • thermosiphon heat pipe according to the present invention comprises an outer pipe and an inner pipe partially supported in a circumferential direction by a protruding portion projecting from the inner circumferential surface of the outer pipe to the inner diameter side. It has a double pipe.
  • the method for manufacturing a heat pipe according to the present invention comprises: extruding a double pipe having an outer pipe and an inner pipe partially supported in a circumferential direction by a protruding portion projecting from the inner circumferential surface of the outer pipe to the inner diameter side.
  • a first step of integrally forming by molding a second step of closing both ends of a predetermined space between the outer peripheral surface of the inner pipe and the inner peripheral surface of the outer pipe in the pipeline direction with a closing member, And a third step of evacuating the specified space and enclosing a predetermined heat transport medium.
  • the closing member is formed of resin and adhered to both ends of the double pipe in the pipe direction.
  • the fin members may be radially provided on the outer peripheral portion of the outer pipe by extrusion.
  • FIG. 1 is a plan view of an embodiment of a floor heating device according to the present invention.
  • FIG. 2 is a perspective view of a main part of the floor heating device as viewed from a direction II in FIG.
  • FIG. 3 is a plan view of a heat insulating panel of the floor heating device according to the present invention.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG.
  • FIG. 5 is a cross-sectional view taken along line VV of FIG.
  • Figure 6 is a view from the line VI-VI of Figure 3.
  • Figure 7A is a plan view of the heat insulation panel as viewed from the back.
  • FIG. 7B is a cross-sectional view taken along line bb of FIG. 7A.
  • FIG. 8A is a perspective view of a connecting member that connects the heat insulating panels.
  • FIG. 8B is a plan view showing a connection state by a connection member.
  • FIG. 8C is a cross-sectional view of the connecting portion.
  • FIG. 9A is a cross-sectional view cut along a plane perpendicular to the axial direction of the heat pipe.
  • FIG. 9B is a longitudinal sectional view of the heat pipe cut along an axial surface.
  • FIG. 10A is a diagram illustrating heat radiation in a cross section taken along the line IV-IV in FIG. 3.
  • FIG. 10B is a view for explaining heat radiation in a cross section taken along line VV of FIG. 3.
  • FIG. 11 is a diagram corresponding to FIG. 3 showing another embodiment of the heat insulating panel.
  • FIG. 12 is a diagram showing an example of an object laid on a heat sink.
  • FIGS. 13A and 13B are diagrams illustrating another method of fixing the lid to the outer pipe with an adhesive.
  • 14A and 14B are diagrams illustrating another method of fixing the caulking type lid to the outer pipe.
  • Fig. 15 is a diagram illustrating the jig block and other devices that fill the working fluid by evacuating the pipes of Figs. 14A and B and seal them with a ball.
  • FIG. 16 is a view showing a modification of the jig block shown in FIG.
  • FIG. 17 is a diagram illustrating another example of sealing the inside of a pipe.
  • FIG. 18 is an elevation view of a prefabricated styrofoam dome on which a floor heating device according to the present invention is installed.
  • FIG. 19 is a plan view of the assembled styrofoam dome of FIG.
  • FIG. 20 is an internal plan view of the assembled styrofoam dome of FIG.
  • FIG. 21 is a perspective view showing a dome piece of the assembled styrofoam dome of FIG. 18.
  • Fig. 22A is a plan view showing the heat insulation panel and heat pipes installed on the prefabricated styrofoam dome in Fig. 18.
  • FIG. 22B is an enlarged view of a main part of FIG. 22A.
  • FIG. 23 is a cross-sectional view showing another example of the double pipe constituting the heat pipe.
  • FIG. 24 is a diagram for explaining the extrusion molding process.
  • FIG. 25A is a front view of the dice used to form the double tube of FIG.
  • FIG. 25B is a cross-sectional view taken along the line bb of FIG. 25A.
  • FIG. 26A is a front view of a lid used for the double pipe of FIG.
  • FIG. 26B is an enlarged view of a main part showing a state where the lid is attached.
  • Figure 26C is a perspective view of the lid.
  • FIG. 27A to FIG. 27C are diagrams showing modified examples of FIG.
  • FIG. 28 is a diagram showing a modification of FIG.
  • FIG. 29 is a cross-sectional view showing still another example of the double pipe constituting the heat pipe.
  • FIGS. 3OA to 30C are diagrams showing modified examples of FIG.
  • Figure 31A is a plan view of a conventional floor heating device.
  • FIG. 31B is a side view of FIG. 31A.
  • Fig. 32A is a plan view of a conventional floor heating device.
  • FIG. 32B is a side view showing the side view of FIG. 32A.
  • FIGS. Fig. 1 is a plan view showing the floor heating device with the heat sink removed
  • Fig. 2 is an exploded perspective view of the floor heating device as viewed from the direction of arrow II in Fig. 1
  • Fig. 3 is a heat insulating panel 10 of the floor heating device.
  • the floor heating system consists of four styrofoam insulation panels 10 placed on the surface of the concrete-soil CB, and eight heat-sifon heat pipes 20 a, 20 held by the insulation panels 10 1 ⁇ "20 h (hereinafter, sometimes referred to as 20 as a representative), sealing side plates 50 a and 5 Ob surrounding four insulating panels 10 and sealing the inside, and insulating panels 1 And a hot water supply device 40 for circulating hot water through the heat pipe 20.
  • the number of heat insulating panels 10 and the heat pipe 2 are provided. The number of 0s is not limited to that shown in Fig. 1, but may be provided as necessary according to the indoor space to be heated.
  • the heat capacity to be heated is appropriately determined according to the size of the indoor space to be heated, the area, and the like.
  • Each of the heat insulating panels 10 is formed of a rectangular Styrofoam material having a thickness of about 12 O mm. As also shown in FIGS. 2 and 3, the heat insulating panel 10 is surrounded by grooves 11 A and 11 B formed in a lattice shape orthogonal to each other, and grooves 11 A and 11 B. A bundle 12 and a heat insulating portion 13 at the bottom of the panel are provided.
  • the groove 11A has a U-shaped cross section having the pipe outer diameter and width of the heat pipe 20, and one heat pipe 20 is provided for every three grooves 11A. Is arranged. That is, the heat pipes 20 are provided at every third groove 11A.
  • the heat sink 30 is bonded to the upper surface of the bundle 12. Therefore, the bundle 12 has a function of holding the heat sink 30 on the heat insulating panel 10, a function as a cushion material of the heat sink 30, and a function of insulating the heat of the heat sink 30. .
  • the bundle 12 also functions as a member for positioning the heat pipe 20 on the heat insulating panel 10.
  • the heat radiating plate 30 is, for example, a plywood called a control panel.
  • One heat radiating plate 30 is provided with about 400 holes 30a having a diameter of 8 mm at intervals of 80 mm.
  • the heat pipe 20 is installed in the groove 11 A extending in the X direction, the upper space of the bundle 12, that is, the predetermined upper space US between the back surface of the heat sink 30 and the heat pipe 20 (FIG. 4) is formed.
  • the groove 11A communicates with the groove 11B extending in the Y direction, the groove 11B also communicates with the space.
  • the groove 11A in which the heat pipe 20 is not accommodated also communicates with the space and the plurality of grooves 11B. Therefore, the space U S formed by the heat insulating panel 10, the heat radiating plate 30, and the sealed side plates 50 a and 50 b is one heating space.
  • the number and interval of the holes 30a are also determined as appropriate, and are not limited to the embodiment.
  • the heat sink 30 may be made of a material other than plywood.
  • a metal plate such as an aluminum plate may be used. It is not essential to open the hole 30a.
  • a metal radiator plate and a plywood may be stacked and used.
  • the upper half of the outer peripheral surface of the heat pipe 20 faces the above-mentioned space US for almost the entire length in the axial direction, and both left and right outer peripheral surfaces of the heat pipe 20 are grooved by predetermined pitches. It faces 1 1 B. Therefore, as described in detail in FIGS. 10A and 10B, heat is radiated from the heat pipe 20 to the upper space US and the plurality of grooves 11B, and Is warmed.
  • the expansion ratio of the styrofoam of the heat insulating panel 10 is about 10 to 60 times, preferably 20 to 40 times.
  • the bundle 12 has a square cross-sectional shape with a side of about 50 mm, and the height H 1 (FIG. 4) of the bundle 12 is about 100 mm.
  • the thickness H2 (FIG. 4) of the heat insulating portion 13 is approximately 20 mm.
  • the outer diameter of the heat pipe 20 is 50 mm
  • the bottom of the groove 11 A is a semicircular shape having a radius of 25 mm
  • the width of the groove 11 A is in accordance with the outer diameter of the heat pipe 20. 50 mm.
  • the heat pipe 20 is fitted into the groove 11A and positioned on the heat insulating panel 10.
  • the above numerical values are for this embodiment, and the floor heating device according to the present invention is not limited to these values. These figures are appropriately determined according to the required heating capacity, which depends on the size of the room and the area.
  • the closed side plate 50b is provided with a hole through which an inner pipe 22 of the heat pipe 20 described later penetrates, and the heat pipe 20 is formed by the closed side plate 50b. Is also positioned. That is, rotation of the heat pipe 20 around the axis is prohibited.
  • lattice-shaped grooves 11C are provided on the rear surface of the heat insulating panel 10 so as to correspond to the grooves 11A and 11B on the front surface.
  • a bundle 14 is formed at the bottom of the panel by the groove 11 C, and the lower surface of the bundle 14 is adhered to the surface of the concrete space C B.
  • the bonding surface of the heat insulating panel 1 follows the undulations and unevenness of the concrete soil CB, and the adhesiveness is improved.
  • a plurality of circular or rectangular concave portions may be provided on the back surface of the heat insulating panel 10 instead of the lattice-like grooves 14. In this case, a recess may be provided in the lower part of the bundle 12 having a large thickness.
  • the four heat insulating panels 10 are joined using the connecting members 15.
  • the connecting member 15 is an octagonal plate-like member having a thickness substantially equal to the depth of the grooves 11A and 11B, and a rectangular through hole 1 5a is provided.
  • Bundles 1 2 1 and 1 2 2 of the edges of adjacent panels (referred to as 10 A and 10 B) are inserted into the through-holes 15 a in close contact with each other, so that the panels 1 ⁇ ⁇ and ⁇ 0 B are combined.
  • FIG. 9 is a diagram showing details of the thermosiphon heat pipe 20.
  • the heat pipe 20 is made of an aluminum outer pipe 21 having a diameter of 50 mm, and an aluminum pipe penetrating the outer pipe 21 as a double pipe and eccentrically provided with respect to the outer pipe 21.
  • An inner pipe 22 having a diameter of 12 mm; an aluminum lid 24 for sealing the vacuum space 23 formed between the inner and outer pipes 21 and 22 and holding the inner pipe 22; And a working fluid 25 filled in the vacuum space 23.
  • the working fluid is filled into the vacuum space 23 such that the upper peripheral surface of the inner pipe 22 is exposed to the vacuum space 23.
  • the inner pipe 22 protrudes through the lid 24, is attached to the lid 24, and is fixed.
  • the lid 24 coated with the adhesive on the inner peripheral surface to the outer pipe 21 the lid 24 is fixed to the outer pipe 21 with the adhesive BD.
  • the size and shape of the pipes 21 and 22 are not limited to the embodiment.
  • a hose 26 made of an elastic material is connected to a tip of the inner pipe 22 protruding from the lid 24.
  • the hot water supply device 40 shown in FIG. 1 is connected to the elastic body hose 26, and hot water adjusted to a predetermined temperature is supplied through the inner pipe 22, that is, the heat pipes 20a, 20b-20h. Circulate and return to hot water supply device 40. That is, as shown in FIG. 1, the hot water from the hot water supply device 40 is guided to the entrance IN at one end of the heat pipe 20a and flows into the inner pipe 22. This hot water is led from the outlet OUT at the other end of the heat pipe 20a to the inlet IN of the heat pipe 20d, and flows into the pipe 22 therein.
  • This hot water is led from the outlet OUT at the other end of the heat pipe 20d to the inlet IN of the next heat pipe 20e.
  • the hot water that has passed through each heat pipe 20 returns to the hot water supply device 40 from the outlet OUT of the heat pipe 20b.
  • the behavior of heat radiation by the heat pipe 20 will be described in detail with reference to FIGS. 1OA and 10B.
  • the working water 25 is heated by flowing hot water through the inner pipe 22 by the hot water supply device 40.
  • the working fluid 25 evaporates when heated.
  • the working liquid 25 evaporated in the vacuum space 23 comes into contact with the upper inner wall surface of the outer pipe 21 to be deprived of heat and condensed.
  • the condensed working fluid 25 travels along the inner wall surface of the outer pipe 21 and returns to the lower part of the vacuum space 23.
  • the heat is radiated from the outer wall surface of the outer pipe 21 thus heated as shown by the arrow. You That is, in the cross section shown in FIG. 1OA, heat is radiated to the space US above the heat pipe 20 only in the groove 11A.
  • the heat pipe 20 not only radiates heat upward in the groove 11A but also radiates heat to the lateral groove 11B as indicated by the arrow.
  • the heating space surrounded by the heat insulating panel 10, the sealing members 50a and 50b, and the radiator plate 30 is warmed by the heat radiation from the heat pipe 20.
  • the heated air in the heating space directly heats the heat sink 30 and is guided upward through the hole 30a. Therefore, if a carpet or a flooring material is provided on the heat radiating plate 30, the carpet / the flooring material is heated and the indoor space is heated.
  • the portion of the heat radiating plate 30 that is in contact with the bundle 12 is not heated by the air in the heating space, but is heated by the heat transfer inside the heat radiating plate 30. Therefore, if the contact area with the bundle 12, that is, the cross-sectional area of the bundle 12 is too large, the temperature of that part differs from the surrounding temperature. Therefore, when such a temperature difference becomes a problem, the bundle 12A may be thinned as shown in FIG. In FIG. 11, reference numeral 12B denotes a lower portion of the bundle 12A and functions as a positioning member for the heat pipe 20. In this case, the cross-sectional area of the bundle 12A is determined so that the function of the bundle 12A as a cushioning agent is not impaired.
  • the heat pipe 20 is positioned by the bundle 12 integrally formed on the heat insulating panel 10 made of styrene foam, and the radiator plate 30 is supported by the bundle 12. Therefore, the function of insulating from the concrete soil CB, the function of supporting the radiator plate 30, and the function of positioning the heat pipe 20 can all be performed by one heat insulating panel 10. As a result, the number of parts and the number of assembling steps can be reduced, and an inexpensive floor heating device that can be installed in a short time can be provided.
  • thermosiphon heat pipe Since a thermosiphon heat pipe is used, the amount of hot water flowing through the inner pipe 22 can be reduced, and a small and efficient floor heating device can be obtained.
  • Holes 30a are made in the heat sink 30, so not only the heat dissipation of the heat sink 30 but also the hole 30a
  • the carpet / flooring material can be directly heated by the heated air convection from a, resulting in good thermal efficiency.
  • the bonding surface of the panel 10 follows the undulations and unevenness of the concrete soil CB, and the adhesiveness is improved.
  • the panels 10 are connected to each other by the connecting members 15, the panels 10 can be positioned accurately.
  • a tatami mat may be laid on the heat sink 30.
  • a non-slip sheet 16A formed from a laminate of foamed polyethylene and polyfilm, a cushioning material 16B made of foamed polyethylene, and a laminate of nonwoven fabric, charcoal and nonwoven fabric
  • the sheet 16C and the rush-like pieces 16D may be laminated to form a thin tatami mat 16 having a size of one tatami mat, which may be laid on the heat sink 30 and adhered.
  • the heat radiating plate 30 and the thin plate 16 may be bonded using a double-sided tape for heat resistance.
  • the thin tatami mat 16 has the cushion material 16 B, the same elasticity as the tatami mat can be obtained by the elasticity of the cushion material 16 B, and a room with tatami mats can be created at low cost.
  • the ionate sheet 16C containing charcoal is placed at the bottom of the stone 16D, the smell in the room can be removed by the deodorizing action of charcoal.
  • the adhesive BD is applied to the peripheral surface of the frustoconical lid 24A to which the inner pipe 22 is fixed in advance, and this lid 24A is axially attached to the outer pipe 21. Push in from the direction.
  • the outer pipe 21 is deformed into a taper shape by the lid 24A, and the lid 24A is fixed to the outer pipe 21 by the adhesive BD. Since the inside of the outer pipe 21 is evacuated, the lid 24 A is sucked from the inside of the pipe and the tapered portion is pressed by the deformed taper portion of the outer pipe 21, so that the bonding with the adhesive BD is more reliable. become.
  • the outer pipe 21 may be caulked to the lid 24B and fixed.
  • the inner pipe 22 is pre-attached to the lid 24 B via the sleeve 24 1. It is attached.
  • a collar 24 is provided on the lid 24B. Insert the o-ring 2 43 into the outer ring recess 2 42 of the lid 24 B shown in FIG. 14A. Insert the outer pipe 21 into the lid 24 B so as to cover the outer ring recess 2 42, and crimp the collar 2 42 with a tool (not shown). Thereby, as shown in FIG. 14B, the collar 242 caulks the outer pipe 21, and the lid 24 B is fixed to the outer pipe 21. The O-ring 2 43 is crushed by swaging, and the inside of the pipe is securely sealed.
  • the thickness of the outer pipe 21 can be reduced, thereby reducing the weight and cost. Can be achieved.
  • the outer pipe 21 needs to be thicker.
  • the jig block 60 includes a concave portion 60 a to which the material 21 S of the heat pipe 20 in which the lid 24 B is fixed to the outer pipe 21, and a passage 60 opening to the concave portion 60 a. b, an aluminum ball insertion passage 60 c communicating with the passage 60 b, and a vacuum Z liquid filling passage 60 d communicating with the passage 6 O b.
  • the distal end piston 70 a of the driving plate 70 is inserted into the passage 6 Ob.
  • a valve 72 is provided in the aluminum ball inlet passage 60c via a passage 71A.
  • the vacuum Z liquid filling passage 60d is provided with valves 73 and 74 via a passage 71B.
  • the valve 73 is connected to a hydraulic fluid nozzle 75, and the valve 74 is connected to a vacuum pump 76.
  • valve 72 is opened, and a sealed aluminum ball 77 is loaded into the aluminum ball insertion passage 60c as shown by a two-dot chain line. Close valves 72 and 73, open valve 74, and evacuate outer pipe 21. When the specified vacuum pressure is confirmed by the vacuum gauge 78, the valve 74 is closed. The valve 73 is opened for a predetermined time to fill the outer pipe 21 with a predetermined amount of hydraulic fluid. The steps up to this point are the step of evacuating the pipe and the step of filling the working fluid. All the valves 72 to 74 are closed, and the driving plate 70 is operated in the extracting direction to drop the sealing ball 77 into the passage 6 Ob.
  • the operation of the driving plate 70 is facilitated by providing the jig block 60 with an indicating ring 80 for indicating the operation position of the driving plate 70. That is, the indicating ring 80 is provided with a contact surface 80a indicating a ball-in position, a contact surface 80b indicating a vacuum / liquid-in position, and a contact surface 80c indicating a driving position.
  • a positioning projection 72 is provided on the operating shaft 71 of the driving plate 70. The driving plate 70 can be operated to a required position in each step only by abutting and locking the positioning projection 72 against each contact surface.
  • the method of sealing the inside of the outer pipe 21 is not limited to the ball driving method described above.
  • the inside of the outer pipe 21 is evacuated through a through hole 242 formed in a lid 24C fixed to the outer pipe 21 with an adhesive.
  • a plug 77A may be driven into the through hole 242 in a vacuum atmosphere to seal the inside of the pipe.
  • the outer pipe 21 is fitted into the ring-shaped groove 243 provided on the end face of the lid 24C, and the outer pipe 21 is bonded with the adhesive BD.
  • the floor heating device described above can be used as a floor heating device for a general house, and can also be used as a floor heating device for a prefabricated styrofoam dome described below.
  • FIG. 18 is an elevational view showing the whole of the prefabricated styrofoam dome
  • FIG. 19 is a plan view of the dome
  • FIG. 20 is a plan view of the inside of the dome.
  • the assembled styrofoam dome 200 is formed by assembling a plurality of dome pieces 210 to 219 made of styrofoam and forming a hemispherical living space SP therein.
  • WD denotes a window provided in advance on a predetermined dome piece
  • PT denotes an entrance provided in advance on a predetermined dome piece.
  • Each of the plurality of dome pieces 210 to 219 has a shape as shown in FIG. 21 and is formed of styrene foam having a foaming ratio of 10 to 50 times and a thickness of 10 to 50 cm. .
  • a dome piece made of styrene foam having a foaming ratio of 20 times and a thickness of 20 cm can be used.
  • the thickness is increased by increasing the expansion ratio.
  • the foaming ratio should be larger than 20 times or the thickness should be 20 cm or less. Can be thin below.
  • Each of the dome pieces 10 to 19 has an L-shaped base DB, joining edges DE and DD rising from the base DB, and a concave top DR at the tip of the joining edges DE and DD.
  • Such dome pieces 210 to 219 are connected to each other at the top end DR of the dome pieces 210 to 219 by a top joint 221.
  • the joining edges DE and DD The dome is assembled by fastening the dome piece to the adjacent dome piece with the fastener 222 and bonding them.
  • a region HR indicated by a two-dot chain line is a region where a heat pipe is laid to perform heating, that is, a floor heating device installation space.
  • Fig. 22A and Fig. 22B are diagrams explaining the state of laying the heat pipe.
  • FIG. 22A a plurality of styrene foam insulation panels 110 are arranged on a circular indoor floor.
  • Each of the heat insulating panels 110 disposed in the center of the room has a rectangular shape as shown in FIG.
  • a part of the heat insulating panel 110 disposed on the peripheral edge is circular. Since the heat insulating panel 110 is made of styrofoam, processing on site is extremely easy.
  • the heat insulating panel 110 has a different shape, but has a lattice-like groove 111A, 111B, and a bundle 112 surrounded by the groove 111A, 111B, as shown in Fig. 22B.
  • the points are exactly the same as the insulation panel 10 shown in FIGS. Since it has a circular shape, four types of heat pipes 120a to 120d (hereinafter sometimes represented by reference numeral 120) of different lengths are arranged for each area in the circular room.
  • reference numeral 120 four types of heat pipes 120a to 120d of different lengths are arranged for each area in the circular room.
  • FIG. 23 is a cross-sectional view of the double pipe 320 constituting the heat pipe 300. Double pipe 32 0 has the same cross-sectional shape in the pipe direction. As shown in FIG.
  • the lower outer peripheral surface of the outer pipe 3 21 has a concave shape, that is, the lower inner peripheral surface of the outer pipe 3 21 projects toward the inner diameter side, and the projecting portion 3 2 2 Is provided.
  • a substantially circular inner pipe 3 2 3 is connected to the protrusion 3 2 2, and a vacuum space H is formed between the inner peripheral surface of the outer pipe 3 2 1 and the outer peripheral surface of the inner pipe 3 2 3 . As a result, most of the outer peripheral surface of the inner pipe 3 23 is in contact with the vacuum space H.
  • outer diameter of outer pipe 3 2 1 ⁇ 1 25 mm
  • outer diameter of inner pipe 3 2 3 ⁇ 2 5 mm
  • wall thickness of pipes 3 2 1 and 3 2 3 t 1.5 mm
  • protrusion The apex angle ⁇ of 32 2 is 130 °
  • the inner pipe 32 3 is eccentrically provided below in the vacuum space ⁇ .
  • the double tube 320 is molded by direct extrusion.
  • a billet 3332 made of aluminum as a material is set in a container 331, and the billet 332 is extruded with a stem 3333 while heating.
  • the heating temperature in this case is from 200 ° C. to 600 ° C., preferably from 450 ° C. to 550 ° C.
  • the extruded aluminum penetrates the die 3 35 supported by the die ring 3 3 4.
  • a molded product having the same shape as the die 335 is formed.
  • the double tube 320 may be formed by pultruding instead of extrusion.
  • FIG. 25A is a front view of the die 335
  • FIG. 25B is a cross-sectional view taken along the line VIII-VIII of FIGS.
  • the die 3 35 is composed of the auta part 35a supported by the die ring 33, and the joint part 35b in the circumferential direction (five places in the figure).
  • the first inner part 35 supported by the outer part 35a through the joint 35 and the outer part 35a and the first inner part 35 through a plurality of (four in the figure) joints 35d in the circumferential direction.
  • a second inner portion 35d supported by the inner portion 35c of the second portion.
  • the joint 35 b is O cn! From the end face on the entrance side in the extrusion direction of aluminum.
  • the joint 35 d is provided in a range of 4 cm to 6 cm.
  • the aluminum molded product is divided in the circumferential direction when passing through the joints 35b and 35d.
  • the aluminum is extruded at a high pressure (700 t to 800 ot)
  • they expand in the circumferential direction, and are joined again over the entire circumference.
  • the double pipe 320 can be molded without being affected by the joints 35b and 35d.
  • FIG. 26A is a front view of the lid 330
  • FIG. 26B is an enlarged view of a main part showing an attached state of the lid 330
  • FIG. 26C is a lid 3
  • FIG. 3 is a perspective view (a view as seen from a double-pipe 320 side) of FIG.
  • the lid 330 is made of resin and is formed by resin molding. As shown in FIGS.2.6A to 26C, the lid 330 is formed of a side wall 3a, an outer pipe portion 3b having an inner peripheral surface having the same shape as the outer peripheral surface of the outer pipe 321, and an inner pipe 3b. It has an inner pipe portion 3c having an outer peripheral surface having the same shape as the inner peripheral surface of the pipe 32, and a joint 3d penetrating through the inner pipe portion 3c and protruding outside the side wall 3a.
  • An adhesive is applied between 3 b and the outer pipe 3 21, whereby the lid 3 30 is fixed to the outer pipe 3 2 1.
  • a hose is connected to the joint 3d, and hot water is supplied to the inner pipe 3 23 via the hose.
  • the pressure in the vacuum space H is released by the vacuum pump 76 through the hole 3 e provided in the side wall 3 a of the lid 330, as in FIG. State.
  • a predetermined amount is inserted into the space H through the hole 3 e so that the upper end of the outer peripheral surface of the inner pipe 3 23 is covered with the hydraulic fluid as the heat transport medium (see FIG. 27A).
  • the working fluid is, for example, alcohol or water.
  • a plug 3 f ⁇ hard sphere is driven into the hole 3 e with a hammer or the like to close the hole 3 e, and the working fluid is sealed in the vacuum space H. Thereby, the heat pipe 300 is completed.
  • the following operation is performed. effective.
  • the lid 330 is made of resin, and the lid 330 is joined to the outer pipe 321 with adhesive, so joining is easier than welding or caulking the lid end. Yes, costs can be reduced.
  • a pipe section may be formed as shown in FIGS. 27A to 27C.
  • both the outer pipe 3 2 a and the inner pipe 3 2 3 a have a circular pipe shape, and a protruding portion 3 2 2 a is provided upward from the lower inner peripheral surface of the outer pipe 3 21.
  • the inner pipe 3 2 3 a is supported via the projection 3 2 2 a. Since the contact area between the protruding part 3 22 a and the inner pipe 3 23 a is small, the contact area between the warm water and the working fluid via the inner pipe 3 23 a is further increased, and the thermal efficiency is further improved.
  • the outer diameter of the outer pipe 32 1a ⁇ 1 25 mm
  • the inner diameter of the inner pipe 32 3 a ⁇ 2 5 mm
  • the wall thickness t 1.5 mm
  • the cross-sectional shapes of the pipes 3 2 1 and 3 2 3 may be triangular, square, or elliptical.
  • the outer pipes 3 2 1 b and 3 21 c are formed into a sector shape, and the projections 3 2 2 b and 3 2 2 c provided on the lower inner peripheral surface thereof.
  • the inner pipes 3 2 3 b and 3 2 3 c may be supported through the holes. This reduces the cross-sectional area of the lower part of the vacuum space H. And the amount of hydraulic fluid can be saved. That is, when the hydraulic fluid is filled so as to cover the upper end of the inner pipes 32 3 a, 32 3 b, and 32 3 c in FIGS.
  • a plurality of (seven in the figure) fins 324 may be radially provided on the outer peripheral surface of the outer pipe 321.
  • the fins 324 are provided uniformly in the pipe direction, and the fins 324 are also integrally formed by direct extrusion.
  • Such a double pipe 320 is buried in the ground such as a field, for example, in a ridge.
  • the working fluid evaporates and condenses, radiating heat from the outer peripheral surface of the outer pipe 3 2 1 and the fins 3 2 4, heating the soil and promoting the growth of agricultural crops. In addition, it can kill underground pathogens.
  • the fins 324 can be similarly provided in the double pipe 320 shown in FIG. An example is shown in FIG.
  • heat dissipation can be improved, and heating can be performed over a wide area such as underground. The rigidity is further improved.
  • the scoop contacts the fins 324 first, so that the outer pipe 321 can be prevented from being broken.
  • the outer surfaces of the heat pipes 20, 120, and 300 described above may be subjected to ceramics coating. In this case, far-infrared rays are emitted from the heat pipes 20 and 300, and the heating effect is promoted.
  • the heat pipes 20 and 300 are made of aluminum, they may be made of other materials such as steel, iron, stainless steel, titanium and other metals and resins.
  • the heat insulating panels 10 and 110 are formed of styrofoam.
  • the heat insulating panel of the present invention is not limited to styrofoam, and can be formed of a resin having heat insulation properties and a cushion function such as urethane.
  • heat pipe 2 Although a thermosiphon heat pipe was used for 0 and 300, a heat pipe having a wick inside may be used. Instead of a heat pipe, a hot water pipe through which only hot water flows may be used. Alternatively, a heat source that generates heat electrically, such as a nichrome wire, may be used instead of a pipe-shaped heat source.
  • the heat pipes 20 and 120 are positioned at the lower part of the bundles 12 and 112, the heat pipes 20 and 120 may be positioned by another member.
  • a heat insulating floor plate made of styrene foam or the like may be placed on the heat insulating panel 10. In this case, it is essential to open a large number of through holes such as the hole 30a.
  • the heat-insulating floorboard does not have a heat radiation effect, the air heated in the heating space is guided to the upper heating space from the through hole, and the carpet / flooring material is warmed from the lower surface.
  • the expansion ratio and thickness of the styrofoam are determined so that the required strength is obtained for the styrofoam floorboard.
  • a gypsum board having a large number of through holes may be used as a floor plate.
  • one hot water supply device 40 is arranged in each room and each dome.
  • one hot water supply device for a plurality of rooms and a plurality of domes may be provided outside the room.
  • a so-called boiler may be used.
  • the floor heating device is applied to the prefabricated styrofoam dome.
  • the floor heating device according to the present invention can be similarly applied to ordinary houses.

Abstract

A floor heater, comprising an integral-formed resin insulating panel (10), heat sources (20) laid down on the insulating panel (10), a radiating plate (30) supportedly placed on supporting columns (12) formed integrally with the insulating panel (10), and a heating space formed between the radiating plate (30) and the insulating panel (10), wherein the radiating plate (30) is heated by the heat radiated from the heat sources (20) into the heating space.

Description

床暖房装置、 熱サイフォン式ヒ一トパイプおよびヒートパイプの製造方法 技術分野  TECHNICAL FIELD The present invention relates to a floor heating device, a thermosiphon heat pipe, and a method of manufacturing a heat pipe.
本発明は、 床暖房装置、 熱サイフォン式ヒ、 トパイプおよびヒートパイプの製 造方法に関する。 背景技術  The present invention relates to a floor heating device, a thermosiphon heat source, a top pipe, and a method of manufacturing a heat pipe. Background art
( 1 ) 従来の床暖房装置として、 図 3 1 Α, 3 I Bに示すように、 温水などが 流通するパイプ 9 1を内蔵したパネル 9 0を複数の根太 9 2の間に敷設し、 根太 9 2とパネル 9 0をアルミ板 9 3で覆ったものが知られている。 この床暖房装置 では、 パネル 9 0をアルミ板 9 3に接触させて温水の熱をアルミ板 9 3に熱伝達 させ、 アルミ板 9 3から放熱させて室内を暖房する。  (1) As a conventional floor heating device, as shown in Figures 31Α and 3IB, a panel 90 with a built-in pipe 91 through which hot water flows is laid between a plurality of joists 92, 2 and a panel 90 covered with an aluminum plate 93 are known. In this floor heating device, the panel 90 is brought into contact with the aluminum plate 93 to transfer the heat of the hot water to the aluminum plate 93 and radiate heat from the aluminum plate 93 to heat the room.
( 2 ) 図 3 2 A, 3 2 Bは従来の床暖房装置の他の例を示す図であり、 ヒート パイプを使用するものである。 この床暖房装置は、 温水などで加熱されるパイプ 1 0 1に複数本のヒートパイプ 1 0 2の一端が接続されて構成されている。 ヒ一 トパイプ 1 0 2は、 内部を真空としたパイプ中に熱輸送媒体としての作動液を充 填して構成される。 ヒートパイプ 1 0 2の一端をパイプ 1 0 1で加熱すると作動 液が蒸発する。 蒸発した作動液を他端側で凝縮させ、 他端側で外気あるいは熱伝 達部材との間で熱交換して暖房が行なわれる。  (2) FIGS. 32A and 32B show another example of a conventional floor heating device using a heat pipe. This floor heating device is configured such that one end of a plurality of heat pipes 102 is connected to a pipe 101 heated by hot water or the like. The heat pipe 102 is configured by filling a working fluid as a heat transport medium into a pipe whose inside is evacuated. When one end of the heat pipe 102 is heated by the pipe 101, the working fluid evaporates. The evaporated working fluid is condensed at the other end, and heat is exchanged with the outside air or the heat transfer member at the other end to perform heating.
( 1 )図 3 1 A, 3 1 Bに示した従来の床暖房装置には次のような問題がある。 (1) The conventional floor heating devices shown in FIGS. 31A and 31B have the following problems.
①図 3 1 Bからわかるように、 パイプ 9 1はパネル 9 0内の狭い溝 9 4内に設置 されているため、 パイプ 9 1の側方へ放熱しても、 狭い溝 9 4を加熱するだけで あり、 パイプ 9 1の側方への熱の伝達効率が著しく悪いという問題がある。 (1) As can be seen from Fig. 31B, since the pipe 91 is installed in the narrow groove 94 in the panel 90, even if heat is radiated to the side of the pipe 91, the narrow groove 94 is heated. However, there is a problem that the efficiency of heat transfer to the side of the pipe 91 is extremely low.
②複数の根太 9 2とパネル 9 0はそれぞれ別々の部材であり、 根太 9 2の位置決 めなど設置工数が多くなる。  (2) The plurality of joists 92 and the panel 90 are separate members, and the number of installation steps such as positioning of the joists 92 increases.
③パネル 9 0とコンクリー.ト基礎 (土間) 9 5との間に断熱材 9 6を敷設する必 要があり、 これも製造コストを上昇する要因である。 ③ Insulation material 96 must be laid between panel 90 and concrete foundation (soil) 95. This is another factor that increases manufacturing costs.
( 2 ) 図 3 2 A, 3 2 Bに示した従来のヒートパイプによる床暖房装置は次の ような問題を有する。  (2) The conventional heat pipe floor heating system shown in Figs. 32A and 32B has the following problems.
ヒー卜パイプ 1 0 2の一端を加熱する方式であり、 熱輸送効率が悪く、 ヒート パイプ 1 0 2の長さに制約がある。 そのため、 ヒートパイプ 1 0 2の本数と、 そ の加熱源であるパイプ 1 0 1の設置本数が多くなり、 床面積の広い場合にはコス 卜が高くなるという問題がある。 発明の開示  This is a method of heating one end of the heat pipe 102, which has poor heat transport efficiency, and the length of the heat pipe 102 is limited. For this reason, the number of heat pipes 102 and the number of heat pipes 101 as heating sources are increased, and there is a problem that the cost increases when the floor area is large. Disclosure of the invention
本発明の目的は、 部品コストを廉価とし、 かつ設置工数が少ない床暖房装置を 提供することにある。  An object of the present invention is to provide a floor heating device in which the cost of parts is low and the number of installation steps is small.
本発明の他の目的は、 熱輸送効率を向上させた熱サイフォン式ヒートパイプお よびヒートパイプの製造方法を提供することにある。  It is another object of the present invention to provide a thermosiphon heat pipe and a method for manufacturing the heat pipe, which have improved heat transport efficiency.
上記目的を達成するために、 本発明による床暖房装置は、 一体成形される樹脂 製の断熱パネルと、 この断熱パネルに敷設される熱源と、 断熱パネルに一体に形 成された支持柱に支持されて載置される放熱板と、 放熱板と前記断熱パネルとの 間に形成される加熱空間とを備え、 熱源から加熱空間内に放熱して放熱板を暖め る。  In order to achieve the above object, a floor heating device according to the present invention includes a resin heat insulating panel integrally formed, a heat source laid on the heat insulating panel, and a support column formed integrally with the heat insulating panel. A heat sink formed between the heat sink and the heat insulating panel; and a heat source that radiates heat from the heat source into the heating space to heat the heat sink.
また、 本発明による床暖房装置は、 一体成形される樹脂製の断熱パネルと、 こ の断熱パネルに敷設される熱源と、 多数の貫通孔が設けられ、 断熱パネルに一体 に形成された支持柱に支持されて載置される断熱性の床板と、 床板と断熱パネル との間に形成される加熱空間とを備え、 熱源から加熱空間内に放熱して暖められ た空気を貫通孔から暖房空間へ導く。  Further, the floor heating device according to the present invention is a resin heat insulating panel integrally formed, a heat source laid on the heat insulating panel, and a plurality of through holes provided, and a support pillar integrally formed on the heat insulating panel. And a heating space formed between the floor plate and the heat insulating panel, and the air heated by radiating heat from the heat source into the heating space through the through hole is provided to the heating space. Lead to.
これにより、 部品点数を抑制するとともに組立工数を抑制することができ、 ェ 期とコストを低減することができる。  As a result, the number of parts can be suppressed and the number of assembly steps can be suppressed, and the period and cost can be reduced.
熱源を位置決めする位置決め部材を支持柱と一体に形成してもよい。放熱板に、 加熱空間を暖房空間と連通する孔を所定間隔で設けることが好ましい。 断熱パネ ルに格子状の溝を形成し、 この溝にパイプ状の熱源を配設することが好ましい。 隣接する断熱パネルにそれぞれ形成された支持柱を囲い込んで連結することも できる。 放熱板の上部に表面が藺草状のござで覆われる 1畳相当の大きさの敷物 を敷設してもよい。 The positioning member for positioning the heat source may be formed integrally with the support column. It is preferable to provide holes on the heat sink at predetermined intervals to communicate the heating space with the heating space. It is preferable that a lattice-shaped groove is formed in the heat insulating panel, and a pipe-shaped heat source is provided in this groove. It is also possible to surround and connect the support pillars formed on adjacent heat insulation panels. it can. A rug equivalent to one tatami mat whose surface is covered with rug-like pieces may be laid on the upper part of the heat sink.
断熱パネルに格子状の溝を形成し、 この溝にパイプ状の熱源を配設することが 望ましい。 断熱パネルの底面に凹部を形成してもよい。  It is desirable to form a grid-like groove in the heat insulating panel, and arrange a pipe-like heat source in this groove. A concave portion may be formed on the bottom surface of the heat insulating panel.
熱サイフォン式ヒートパイプを熱源とすれば、 熱効率が高くしかもスペース効 率が高い床暖房装置を提供できる。  If a thermosiphon heat pipe is used as the heat source, a floor heating device with high heat efficiency and high space efficiency can be provided.
断熱パネルの外周縁を円形形状の発泡スチロールで形成し、 ヒートパイプの長 さを敷設される領域に応じて異なった長さとしてもよい。 断熱パネルは発泡スチ ロール製とすることが好ましい。  The outer peripheral edge of the heat insulating panel may be formed of a circular polystyrene foam, and the length of the heat pipe may be different depending on the area where the heat pipe is laid. It is preferable that the heat insulating panel is made of polystyrene foam.
熱サイフォン式ヒートパイプの外パイプと蓋をかしめにより固着したり、 接着 材で固着してもよい。 ヒートパイプの表面には、 セラミックスをコーティングす ることが好ましい。  The outer pipe of the thermosiphon heat pipe and the lid may be fixed by caulking or may be fixed by an adhesive. The surface of the heat pipe is preferably coated with ceramics.
また、 本発明による熱サイフォン式ヒートパイプは、 外パイプとこの外パイプ の内周面から内径側に突出する突出部により周方向の一部が支持される内パイプ とを管路方向にわたって一体に有する 2重管から構成される。  In addition, the thermosiphon heat pipe according to the present invention comprises an outer pipe and an inner pipe partially supported in a circumferential direction by a protruding portion projecting from the inner circumferential surface of the outer pipe to the inner diameter side. It has a double pipe.
これにより、 熱輸送効率の高いヒートパイプを安価に形成することができる。 さらに、 本発明によるヒートパイプの製造方法は、 外パイプとこの外パイプの 内周面から内径側に突出する突出部により周方向の一部が支持される内パイプと を有する 2重管を押出成形により一体に形成する第 1の工程と、 内パイプの外周 面と外パイプの内周面との間の所定空間の管路方向両端部を閉塞部材により閉塞 する第 2の工程と、 この閉塞された所定空間内を真空引きし、 所定の熱輸送媒体 を封入する第 3の工程とを有する。  Thereby, a heat pipe having high heat transfer efficiency can be formed at low cost. Further, the method for manufacturing a heat pipe according to the present invention comprises: extruding a double pipe having an outer pipe and an inner pipe partially supported in a circumferential direction by a protruding portion projecting from the inner circumferential surface of the outer pipe to the inner diameter side. A first step of integrally forming by molding, a second step of closing both ends of a predetermined space between the outer peripheral surface of the inner pipe and the inner peripheral surface of the outer pipe in the pipeline direction with a closing member, And a third step of evacuating the specified space and enclosing a predetermined heat transport medium.
これにより、 熱効率を犠牲にすることなく、 加工コストを抑えてヒートパイプ を製造することができる。  This makes it possible to manufacture a heat pipe without sacrificing thermal efficiency and at a reduced processing cost.
閉塞部材を樹脂で成形し、 2重管の管路方向両端部に接着することが好ましい。 押出成形により、 外パイプの外周部に放射状にフィン部材を設けてもよい。 図面の簡単な説明  It is preferable that the closing member is formed of resin and adhered to both ends of the double pipe in the pipe direction. The fin members may be radially provided on the outer peripheral portion of the outer pipe by extrusion. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明による床暖房装置の一実施の形態の平面図。 図 2は、 図 1の I I方向から見た床暖房装置の要部斜視図。 FIG. 1 is a plan view of an embodiment of a floor heating device according to the present invention. FIG. 2 is a perspective view of a main part of the floor heating device as viewed from a direction II in FIG.
図 3は、 本発明による床暖房装置の断熱パネルの平面図。  FIG. 3 is a plan view of a heat insulating panel of the floor heating device according to the present invention.
図 4は、 図 3の I V— I V線断面図。  FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG.
図 5は、 図 3の V— V線断面図。  FIG. 5 is a cross-sectional view taken along line VV of FIG.
図 6は、 図 3の V I — V I線から見た図。  Figure 6 is a view from the line VI-VI of Figure 3.
図 7 Aは、 断熱パネルを裏面から見た平面図。  Figure 7A is a plan view of the heat insulation panel as viewed from the back.
図 7 Bは、 図 7 Aの b— b線断面図。  FIG. 7B is a cross-sectional view taken along line bb of FIG. 7A.
図 8 Aは、 断熱パネルを連結する連結部材の斜視図。  FIG. 8A is a perspective view of a connecting member that connects the heat insulating panels.
図 8 Bは、 連結部材による連結状態を示す平面図。  FIG. 8B is a plan view showing a connection state by a connection member.
図 8 Cは、 連結部の断面図。  FIG. 8C is a cross-sectional view of the connecting portion.
図 9 Aは、 ヒ一トパイプの軸方向に直交する面で切断して示す横断面図。 図 9 Bは、 ヒートパイプの軸方向の面で切断して示す縦断面図。  FIG. 9A is a cross-sectional view cut along a plane perpendicular to the axial direction of the heat pipe. FIG. 9B is a longitudinal sectional view of the heat pipe cut along an axial surface.
図 1 0 Aは、 図 3の I V— I V線断面における放熱を説明する図。  FIG. 10A is a diagram illustrating heat radiation in a cross section taken along the line IV-IV in FIG. 3.
図 1 0 Bは、 図 3の V— V線断面における放熱を説明する図。  FIG. 10B is a view for explaining heat radiation in a cross section taken along line VV of FIG. 3.
図 1 1は、 断熱パネルの別実施の形態を示す図 3に相当する図。  FIG. 11 is a diagram corresponding to FIG. 3 showing another embodiment of the heat insulating panel.
図 1 2は、 放熱板の上の敷設物の例を示す図。  FIG. 12 is a diagram showing an example of an object laid on a heat sink.
図 1 3 A, Bは、 接着剤で蓋を外パイプに固着する他の方式を説明する図。 図 1 4 A, Bは、 かしめ方式蓋を外パイプに固着する他の方式を説明する図。 図 1 5は、 図 1 4 A, Bのパイプ内を真空引きして作動液を充填し、 球で封止 する治具プロックと他の装置を説明する図。  FIGS. 13A and 13B are diagrams illustrating another method of fixing the lid to the outer pipe with an adhesive. 14A and 14B are diagrams illustrating another method of fixing the caulking type lid to the outer pipe. Fig. 15 is a diagram illustrating the jig block and other devices that fill the working fluid by evacuating the pipes of Figs. 14A and B and seal them with a ball.
図 1 6は、 図 1 5に示した治具ブロックの変形例を示す図。  FIG. 16 is a view showing a modification of the jig block shown in FIG.
図 1 7は、 パイプ内を封止する他の例を説明する図。  FIG. 17 is a diagram illustrating another example of sealing the inside of a pipe.
図 1 8は、 本発明による床暖房装置が設置される組立式発泡スチロールドーム の立面図。  FIG. 18 is an elevation view of a prefabricated styrofoam dome on which a floor heating device according to the present invention is installed.
図 1 9は、 図 1 8の組立式発泡スチロールドームの平面図。  FIG. 19 is a plan view of the assembled styrofoam dome of FIG.
図 2 0は、 図 1 8の組立式発泡スチロールドームの内部平面図。  FIG. 20 is an internal plan view of the assembled styrofoam dome of FIG.
図 2 1は、 図 1 8の組立式発泡スチロールドームのドーム片を示す斜視図。 図 2 2 Aは、 図 1 8の組立式発泡スチロールドームに設置された断熱パネルと ヒートパイプ示す平面図。 図 2 2 Bは、 図 2 2 Aの要部拡大図。 FIG. 21 is a perspective view showing a dome piece of the assembled styrofoam dome of FIG. 18. Fig. 22A is a plan view showing the heat insulation panel and heat pipes installed on the prefabricated styrofoam dome in Fig. 18. FIG. 22B is an enlarged view of a main part of FIG. 22A.
図 2 3は、 ヒートパイプを構成する二重管の他の例を示す断面図。  FIG. 23 is a cross-sectional view showing another example of the double pipe constituting the heat pipe.
図 2 4は、 押出成形の工程を説明する図。  FIG. 24 is a diagram for explaining the extrusion molding process.
図 2 5 Aは、 図 2 3の二重管を形成するために用いられるダイスの正面図。 図 2 5 Bは、 図 2 5 Aの b— b線断面図。  FIG. 25A is a front view of the dice used to form the double tube of FIG. FIG. 25B is a cross-sectional view taken along the line bb of FIG. 25A.
図 2 6 Aは、 図 2 3の二重管に用いられる蓋の正面図。  FIG. 26A is a front view of a lid used for the double pipe of FIG.
図 2 6 Bは、 蓋の取り付け状態を示す要部拡大図。  FIG. 26B is an enlarged view of a main part showing a state where the lid is attached.
図 2 6 Cは、 蓋の斜視図。  Figure 26C is a perspective view of the lid.
図 2 7 A〜図 2 7 Cは、 図 2 3の変形例を示す図。  FIG. 27A to FIG. 27C are diagrams showing modified examples of FIG.
図 2 8は、 図 2 6の変形例を示す図。  FIG. 28 is a diagram showing a modification of FIG.
図 2 9は、 ヒートパイプを構成する二重管のさらに別の例を示す断面図。 図 3 O A〜図 3 0 Cは、 図 2 9の変形例を示す図。  FIG. 29 is a cross-sectional view showing still another example of the double pipe constituting the heat pipe. FIGS. 3OA to 30C are diagrams showing modified examples of FIG.
図 3 1 Aは、 従来の床暖房装置の平面図。  Figure 31A is a plan view of a conventional floor heating device.
図 3 1 Bは、 図 3 1 Aの側面図。  FIG. 31B is a side view of FIG. 31A.
図 3 2 Aは、 従来の床暖房装置の平面図。  Fig. 32A is a plan view of a conventional floor heating device.
図 3 2 Bは、 図 3 2 Aの側面図を示す側面図。 発明を実施するための最良の形態  FIG. 32B is a side view showing the side view of FIG. 32A. BEST MODE FOR CARRYING OUT THE INVENTION
図 1〜図 2 2を参照して本発明による床暖房装置の一実施の形態を説明する。 図 1はこの床暖房装置の放熱板を除去して示す平面図、 図 2は図 1の矢印 I I方 向から見た床暖房装置の分解斜視図、 図 3は床暖房装置の断熱パネル 1 0の平面 図である。 床暖房装置は、 コンクリート土間 C Bの表面に載置された 4つの発泡 スチロール製の断熱パネル 1 0と、 断熱パネル 1 0に保持された 8本の熱サイフ オン式ヒートパイプ 2 0 a、 2 0 1^" 2 0 h (以下、 代表して符号 2 0とするこ ともある) と、 4つの断熱パネル 1 0を取り囲んで内部を密閉する密閉側板 5 0 a, 5 O bと、 断熱パネル 1 0の上面に載置される密閉上板 (放熱板) 3 0と、 ヒートパイプ 2 0に温水を循環させる温水供給装置 4 0とを備えている。 断熱パ ネル 1 0の個数やヒートパイプ 2 0の本数は図 1に示したものに限定されず、 暖 房する室内空間に応じて必要なだけ設けられる。 とくに、 ヒートパイプ 2 0によ る熱容量は暖房すべき室内空間の広さ、 地域などに応じて適宜決定される。 One embodiment of a floor heating device according to the present invention will be described with reference to FIGS. Fig. 1 is a plan view showing the floor heating device with the heat sink removed, Fig. 2 is an exploded perspective view of the floor heating device as viewed from the direction of arrow II in Fig. 1, and Fig. 3 is a heat insulating panel 10 of the floor heating device. FIG. The floor heating system consists of four styrofoam insulation panels 10 placed on the surface of the concrete-soil CB, and eight heat-sifon heat pipes 20 a, 20 held by the insulation panels 10 1 ^ "20 h (hereinafter, sometimes referred to as 20 as a representative), sealing side plates 50 a and 5 Ob surrounding four insulating panels 10 and sealing the inside, and insulating panels 1 And a hot water supply device 40 for circulating hot water through the heat pipe 20. The number of heat insulating panels 10 and the heat pipe 2 are provided. The number of 0s is not limited to that shown in Fig. 1, but may be provided as necessary according to the indoor space to be heated. The heat capacity to be heated is appropriately determined according to the size of the indoor space to be heated, the area, and the like.
断熱パネル 1 0の各々は、 厚み 1 2 O mm程度の矩形の発泡スチロール材で形 成される。 図 2および図 3にも示されるように、 断熱パネル 1 0は、 互いに直交 して格子状に形成された溝 1 1 A、 1 1 Bと、 溝 1 1 A、 1 1 Bで囲まれた束 1 2と、 パネル底部の断熱部 1 3とを備えている。  Each of the heat insulating panels 10 is formed of a rectangular Styrofoam material having a thickness of about 12 O mm. As also shown in FIGS. 2 and 3, the heat insulating panel 10 is surrounded by grooves 11 A and 11 B formed in a lattice shape orthogonal to each other, and grooves 11 A and 11 B. A bundle 12 and a heat insulating portion 13 at the bottom of the panel are provided.
図 4および図 5に示すように、 溝 1 1 Aはヒートパイプ 2 0のパイプ外径と幅 を有する U字断面を有し、 3本の溝 1 1 Aごとに 1本のヒートパイプ 2 0が配設 される。 すなわち、 溝 1 1 Aの 3本置きにヒートパイプ 2 0が配設される。 放熱 板 3 0は束 1 2の上面に接着される。 したがって、 束 1 2は放熱板 3 0を断熱パ ネル 1 0上に保持する機能と、 放熱板 3 0のクッション材としての機能と、 放熱 板 3 0の熱を断熱する機能とを備えている。 束 1 2は断熱パネル 1 0上でヒート パイプ 2 0を位置決めする部材としても機能する。  As shown in FIGS. 4 and 5, the groove 11A has a U-shaped cross section having the pipe outer diameter and width of the heat pipe 20, and one heat pipe 20 is provided for every three grooves 11A. Is arranged. That is, the heat pipes 20 are provided at every third groove 11A. The heat sink 30 is bonded to the upper surface of the bundle 12. Therefore, the bundle 12 has a function of holding the heat sink 30 on the heat insulating panel 10, a function as a cushion material of the heat sink 30, and a function of insulating the heat of the heat sink 30. . The bundle 12 also functions as a member for positioning the heat pipe 20 on the heat insulating panel 10.
放熱板 3 0はたとえばコンパネと呼ばれる合板であり、 1枚の放熱板 3 0には、 8 0 mm間隔で直径 8 mmの孔 3 0 aが約 4 0 0個あけられている。 X方向に延 在する溝 1 1 Aにヒートパイプ 2 0を設置したとき、 束 1 2の上面、 すなわち、 放熱板 3 0の裏面とヒートパイプ 2 0との間に所定の上部空間 U S (図 4参照) が形成される。 また、 溝 1 1 Aは Y方向に延在する溝 1 1 Bと連通するから、 溝 1 1 Bは上記空間とも連通する。 溝 1 1 Aのうちヒートパイプ 2 0が収容されて いない溝 1 1 Aも上記空間および複数の溝 1 1 Bと連通する。 したがって、 断熱 パネル 1 0と放熱板 3 0と密閉側板 5 0 a、 5 0 bとにより形成される空間 U S は 1つの加熱空間である。  The heat radiating plate 30 is, for example, a plywood called a control panel. One heat radiating plate 30 is provided with about 400 holes 30a having a diameter of 8 mm at intervals of 80 mm. When the heat pipe 20 is installed in the groove 11 A extending in the X direction, the upper space of the bundle 12, that is, the predetermined upper space US between the back surface of the heat sink 30 and the heat pipe 20 (FIG. 4) is formed. Further, since the groove 11A communicates with the groove 11B extending in the Y direction, the groove 11B also communicates with the space. Among the grooves 11A, the groove 11A in which the heat pipe 20 is not accommodated also communicates with the space and the plurality of grooves 11B. Therefore, the space U S formed by the heat insulating panel 10, the heat radiating plate 30, and the sealed side plates 50 a and 50 b is one heating space.
なお、 孔 3 0 aの個数や間隔も適宜定められるものであり、 実施の形態に限定 されない。 また、 放熱板 3 0を合板以外の材質のもので構成してもよい。 たとえ ば、 アルミニウム製の平板など金属製のものでもよい。 孔 3 0 aをあけることも 必須ではない。 金属製の放熱板と合板を重ねて使用してもよい。  The number and interval of the holes 30a are also determined as appropriate, and are not limited to the embodiment. Further, the heat sink 30 may be made of a material other than plywood. For example, a metal plate such as an aluminum plate may be used. It is not essential to open the hole 30a. A metal radiator plate and a plywood may be stacked and used.
溝 1 1 A内では、 ヒートパイプ 2 0の外周面の上半分は軸方向のほぼ全長にわ たり上記空間 U Sと対向し、 ヒートパイプ 2 0の外周面の左右両面は所定のピッ チで溝 1 1 Bと対向する。 したがって、 図 1 0 A, 図 1 0 Bで詳述するように、 ヒートパイプ 2 0から上記上部空間 U Sと複数の溝 1 1 Bへ放熱して、 加熱空間 が暖められる。 In the groove 11 A, the upper half of the outer peripheral surface of the heat pipe 20 faces the above-mentioned space US for almost the entire length in the axial direction, and both left and right outer peripheral surfaces of the heat pipe 20 are grooved by predetermined pitches. It faces 1 1 B. Therefore, as described in detail in FIGS. 10A and 10B, heat is radiated from the heat pipe 20 to the upper space US and the plurality of grooves 11B, and Is warmed.
断熱パネル 1 0の発泡スチロールの発泡倍率は 1 0〜6 0倍程度であり、 好ま しくは 2 0倍〜 4 0倍である。 束 1 2は一辺が略 5 0 mmの正方形断面形状を有 し、束 1 2の高さ H 1 (図 4 )は略 1 0 0 mmである。断熱部 1 3の厚み H 2 (図 4 ) は略 2 0 mmである。 ヒートパイプ 2 0の外径は 5 0 mmであり、 溝 1 1 A の底部は半径 2 5 mmの半円形形状とされ、 溝 1 1 Aの幅はヒートパイプ 2 0の 外径に即して 5 0 mmとされる。 これにより、 ヒートパイプ 2 0は溝 1 1 Aには め込まれて断熱パネル 1 0上で位置決めされる。 以上の各数値はこの実施の形態 のものであり、本発明による床暖房装置がこれらの値に限定されるものではない。 これらの数値は、 部屋の広さ、 地域などに依存する必要な暖房容量に応じて適宜 決定される。  The expansion ratio of the styrofoam of the heat insulating panel 10 is about 10 to 60 times, preferably 20 to 40 times. The bundle 12 has a square cross-sectional shape with a side of about 50 mm, and the height H 1 (FIG. 4) of the bundle 12 is about 100 mm. The thickness H2 (FIG. 4) of the heat insulating portion 13 is approximately 20 mm. The outer diameter of the heat pipe 20 is 50 mm, the bottom of the groove 11 A is a semicircular shape having a radius of 25 mm, and the width of the groove 11 A is in accordance with the outer diameter of the heat pipe 20. 50 mm. Thus, the heat pipe 20 is fitted into the groove 11A and positioned on the heat insulating panel 10. The above numerical values are for this embodiment, and the floor heating device according to the present invention is not limited to these values. These figures are appropriately determined according to the required heating capacity, which depends on the size of the room and the area.
なお、 図 6に示すように、 密閉側板 5 0 bには、 後述するヒートパイプ 2 0の 内パイプ 2 2が貫通する孔が設けられており、 ヒートパイプ 2 0はこの密閉側板 5 0 bによっても位置決めされる。 つまり、 ヒートパイプ 2 0の軸回りの回転が 禁止される。  As shown in FIG. 6, the closed side plate 50b is provided with a hole through which an inner pipe 22 of the heat pipe 20 described later penetrates, and the heat pipe 20 is formed by the closed side plate 50b. Is also positioned. That is, rotation of the heat pipe 20 around the axis is prohibited.
図 7に示すように、 断熱パネル 1 0の裏面には、表面の溝 1 1 A, 1 1 Bに対応 して格子状の溝 1 1 Cが設けられている。 この溝 1 1 Cによりパネル底部に束 1 4が形成され、 コンクリート土間 C Bの表面に束 1 4の下面が接着される。 これ により、断熱パネル 1の接着面はコンクリート土間 C Bのうねりや凹凸に追従し、 接着性が向上する。 断熱パネル 1 0の裏面に格子状の溝 1 4の代わりに円形もし くは矩形状の複数の凹部を設けるようにしてもよい。 この場合、 厚みの大きい束 1 2の下部に凹部を設ければよい。  As shown in FIG. 7, lattice-shaped grooves 11C are provided on the rear surface of the heat insulating panel 10 so as to correspond to the grooves 11A and 11B on the front surface. A bundle 14 is formed at the bottom of the panel by the groove 11 C, and the lower surface of the bundle 14 is adhered to the surface of the concrete space C B. As a result, the bonding surface of the heat insulating panel 1 follows the undulations and unevenness of the concrete soil CB, and the adhesiveness is improved. A plurality of circular or rectangular concave portions may be provided on the back surface of the heat insulating panel 10 instead of the lattice-like grooves 14. In this case, a recess may be provided in the lower part of the bundle 12 having a large thickness.
4つの断熱パネル 1 0は連結部材 1 5を用いて接合される。 図 8 A〜図 8じに 示すように、連結部材 1 5は溝 1 1 A,1 1 Bの深さと略等しい厚みを有する八角 形の板状部材であり、 中央に矩形状の貫通孔 1 5 aが設けられている。 貫通孔 1 5 aには、 隣接するパネル ( 1 0 A, 1 0 Bとする) の縁部の束 1 2 1 , 1 2 2が 密着して挿入され、 これによりパネル 1 Ο Α, Ι 0 B同士が結合される。 このよう にパネル同士を結合することで、 パネル 1 0を精度よく位置決めすることができ る。 連結部材 1 5を設けることでパネル上面の面積、 すなわちパネル 1 0と放熱 板 3 0との接触面積が増加するので、 放熱板 3 0の上面からパネル 1 0の単位面 積あたりに作用する力 (面圧) が小さくなり、 パネル 1 0の強度が向上する。 図 9は熱サイフォン式ヒートパイプ 2 0の詳細を示す図である。 ヒートパイプ 2 0は、 アルミニウム製の直径 5 0 mmの外パイプ 2 1と、 この外パイプ 2 1に 2重管として貫通し、 外パイプ 2 1に対して偏心して設けられているアルミニゥ ム製の直径 1 2 mmの内パイプ 2 2と、 内外のパイプ 2 1 , 2 2との間に形成さ れた真空空間 2 3を密閉するとともに内パイプ 2 2を保持するアルミニウム製の 蓋 2 4と、 真空空間 2 3に充填された作動液 2 5とを備える。 内パイプ 2 2の上 側の周面が真空空間 2 3に露出する程度の作動液が真空空間 2 3に充填される。 内パイプ 2 2は蓋 2 4を貫通して突出され、盖 2 4に口一付けされて固着される。 内周面に接着剤を塗布した蓋 2 4を外パイプ 2 1に嵌合することにより、 蓋 2 4 は接着剤 B Dで外パイプ 2 1に固着される。 なお、 パイプ 2 1 , 2 2の大きさや 形状も実施の形態に限定されない。 The four heat insulating panels 10 are joined using the connecting members 15. As shown in FIG. 8A to FIG. 8, the connecting member 15 is an octagonal plate-like member having a thickness substantially equal to the depth of the grooves 11A and 11B, and a rectangular through hole 1 5a is provided. Bundles 1 2 1 and 1 2 2 of the edges of adjacent panels (referred to as 10 A and 10 B) are inserted into the through-holes 15 a in close contact with each other, so that the panels 1 Ο Α and Ι 0 B are combined. By connecting the panels in this way, the panel 10 can be positioned accurately. By providing the connecting member 15, the area of the panel top surface, that is, the panel 10 and heat radiation Since the contact area with the plate 30 increases, the force (surface pressure) acting on the panel 10 per unit area from the upper surface of the heat sink 30 decreases, and the strength of the panel 10 improves. FIG. 9 is a diagram showing details of the thermosiphon heat pipe 20. The heat pipe 20 is made of an aluminum outer pipe 21 having a diameter of 50 mm, and an aluminum pipe penetrating the outer pipe 21 as a double pipe and eccentrically provided with respect to the outer pipe 21. An inner pipe 22 having a diameter of 12 mm; an aluminum lid 24 for sealing the vacuum space 23 formed between the inner and outer pipes 21 and 22 and holding the inner pipe 22; And a working fluid 25 filled in the vacuum space 23. The working fluid is filled into the vacuum space 23 such that the upper peripheral surface of the inner pipe 22 is exposed to the vacuum space 23. The inner pipe 22 protrudes through the lid 24, is attached to the lid 24, and is fixed. By fitting the lid 24 coated with the adhesive on the inner peripheral surface to the outer pipe 21, the lid 24 is fixed to the outer pipe 21 with the adhesive BD. The size and shape of the pipes 21 and 22 are not limited to the embodiment.
蓋 2 4から突出する内パイプ 2 2の先端には弾性体からなるホース 2 6が接続 される。 弾性体ホース 2 6には図 1に示す温水供給装置 4 0が接続され、 所定の 温度に調節された温水が内パイプ 2 2内、 すなわちヒートパイプ 2 0 a , 2 0 b ー2 0 hを循環して温水供給装置 4 0へ戻る。 すなわち、 図 1に示すように、 温 水供給装置 4 0からの温水をヒートパイプ 2 0 aの一端の入り口 I Nへ導いてそ の内パイプ 2 2へ流入させる。 この温水は、 ヒートパイプ 2 0 aの他端の出口 O U Tからヒートパイプ 2 0 dの入り口 I Nへ導かれその内パイプ 2 2へ流入する。 この温水は、 ヒートパイプ 2 0 dの他端の出口 O U Tから次のヒートパイプ 2 0 eの入り口 I Nへ導かれる。 このように各ヒートパイプ 2 0を通過した温水はヒ ートパイプ 2 0 bの出口 O U Tから温水供給装置 4 0へ戻る。  A hose 26 made of an elastic material is connected to a tip of the inner pipe 22 protruding from the lid 24. The hot water supply device 40 shown in FIG. 1 is connected to the elastic body hose 26, and hot water adjusted to a predetermined temperature is supplied through the inner pipe 22, that is, the heat pipes 20a, 20b-20h. Circulate and return to hot water supply device 40. That is, as shown in FIG. 1, the hot water from the hot water supply device 40 is guided to the entrance IN at one end of the heat pipe 20a and flows into the inner pipe 22. This hot water is led from the outlet OUT at the other end of the heat pipe 20a to the inlet IN of the heat pipe 20d, and flows into the pipe 22 therein. This hot water is led from the outlet OUT at the other end of the heat pipe 20d to the inlet IN of the next heat pipe 20e. The hot water that has passed through each heat pipe 20 returns to the hot water supply device 40 from the outlet OUT of the heat pipe 20b.
図 1 O A, 図 1 0 Bを参照してヒートパイプ 2 0による放熱の挙動を詳細に説 明する。 温水供給装置 4 0により内パイプ 2 2に温水を流通させて作動液 2 5を 加熱する。 作動液 2 5は加熱されると蒸発する。 真空空間 2 3内で蒸発した作動 液 2 5は外パイプ 2 1の上側の内壁面に接触して熱を奪われて凝縮する。 凝縮し た作動液 2 5は外パイプ 2 1の内壁面を伝わって真空空間 2 3の下部へ戻る。 こ のようにして加熱された外パイプ 2 1の外壁面から矢印のように放熱される。 す なわち、 図 1 O Aに示す断面では、 溝 1 1 A内においてのみヒートパイプ 2 0の 上方空間 U Sへ放熱される。 図 1 0 Bに示す断面では、 矢印で示すように、 ヒー トパイプ 2 0は溝 1 1 A内で上方へ放熱するのみならず側方の溝 1 1 Bにも放熱 する。 これにより、 断熱パネル 1 0と、 密閉部材 5 0 a , 5 O bと、 放熱板 3 0 とで囲まれた加熱空間がヒー卜パイプ 2 0からの放熱により暖められる。そして、 加熱空間の暖められた空気は放熱板 3 0を直接暖めるとともに孔 3 0 aから上部 へ導かれる。 したがって、 放熱板 3 0の上に絨毯やフローリング材を設けておけ ば、 絨毯ゃフローリング材が暖められ室内空間を暖房することになる。 The behavior of heat radiation by the heat pipe 20 will be described in detail with reference to FIGS. 1OA and 10B. The working water 25 is heated by flowing hot water through the inner pipe 22 by the hot water supply device 40. The working fluid 25 evaporates when heated. The working liquid 25 evaporated in the vacuum space 23 comes into contact with the upper inner wall surface of the outer pipe 21 to be deprived of heat and condensed. The condensed working fluid 25 travels along the inner wall surface of the outer pipe 21 and returns to the lower part of the vacuum space 23. The heat is radiated from the outer wall surface of the outer pipe 21 thus heated as shown by the arrow. You That is, in the cross section shown in FIG. 1OA, heat is radiated to the space US above the heat pipe 20 only in the groove 11A. In the cross section shown in FIG. 10B, the heat pipe 20 not only radiates heat upward in the groove 11A but also radiates heat to the lateral groove 11B as indicated by the arrow. Thereby, the heating space surrounded by the heat insulating panel 10, the sealing members 50a and 50b, and the radiator plate 30 is warmed by the heat radiation from the heat pipe 20. Then, the heated air in the heating space directly heats the heat sink 30 and is guided upward through the hole 30a. Therefore, if a carpet or a flooring material is provided on the heat radiating plate 30, the carpet / the flooring material is heated and the indoor space is heated.
束 1 2と接触する放熱板 3 0の部分は加熱空間の空気によって加熱されず、 放 熱板 3 0内部の熱伝達により加熱される。 そのため、 束 1 2との接触面積、 すな わち束 1 2の断面積を大きくしすぎると、 その部分の温度が周囲の温度と相違す る。 そこで、 このような温度差が問題となる場合には、 図 1 1に示すように、 束 1 2 Aを細くすればよい。図 1 1において、符号 1 2 Bは束 1 2 Aの下部であり、 ヒートパイプ 2 0の位置決め部材として機能する。 この場合、 束 1 2 Aのクッシ ヨン剤としての機能が損なわれないように、 束 1 2 Aの断面積を定める。  The portion of the heat radiating plate 30 that is in contact with the bundle 12 is not heated by the air in the heating space, but is heated by the heat transfer inside the heat radiating plate 30. Therefore, if the contact area with the bundle 12, that is, the cross-sectional area of the bundle 12 is too large, the temperature of that part differs from the surrounding temperature. Therefore, when such a temperature difference becomes a problem, the bundle 12A may be thinned as shown in FIG. In FIG. 11, reference numeral 12B denotes a lower portion of the bundle 12A and functions as a positioning member for the heat pipe 20. In this case, the cross-sectional area of the bundle 12A is determined so that the function of the bundle 12A as a cushioning agent is not impaired.
このような実施の形態による床暖房装置によれば次のような作用効果がある。 According to the floor heating device according to such an embodiment, the following operation and effect can be obtained.
①発泡スチロール製の断熱パネル 1 0に一体的に形成された束 1 2でヒートパイ プ 2 0を位置決めするとともに、 束 1 2で放熱板 3 0を支持するようにした。 し たがって、 コンクリート土間 C Bから断熱する機能と、 放熱板 3 0を支持する機 能と、 ヒートパイプ 2 0を位置決めする機能とを、 すべて一つの断熱パネル 1 0 でおこなうことができる。 その結果、 部品点数を抑制するとともに組立工数を抑 制することができ、 廉価で短期間に設置できる床暖房装置を提供できる。 (1) The heat pipe 20 is positioned by the bundle 12 integrally formed on the heat insulating panel 10 made of styrene foam, and the radiator plate 30 is supported by the bundle 12. Therefore, the function of insulating from the concrete soil CB, the function of supporting the radiator plate 30, and the function of positioning the heat pipe 20 can all be performed by one heat insulating panel 10. As a result, the number of parts and the number of assembling steps can be reduced, and an inexpensive floor heating device that can be installed in a short time can be provided.
②ヒートパイプ 2 0上方、 左右側方へ放熱するようにし、 床暖房装置を平面から 見たときに略十字形状の加熱区間の空気を暖めるようにした。 したがって、 従来 のように、 パイプ状の熱源の上方にだけ放熱する床暖房装置に比べて、 熱効率が よい。  (2) The heat was radiated upward from the heat pipe 20 to the left and right sides, and the air in the substantially cross-shaped heating section was heated when the floor heating device was viewed from a plane. Therefore, the heat efficiency is higher than that of a floor heating device that radiates heat only above a pipe-shaped heat source as in the related art.
③熱サイフォン式ヒートパイプを使用するので、 内パイプ 2 2を流通させる温水 の量を少なくすることができ、小型で効率のよい床暖房装置とすることができる。 (3) Since a thermosiphon heat pipe is used, the amount of hot water flowing through the inner pipe 22 can be reduced, and a small and efficient floor heating device can be obtained.
④放熱板 3 0に孔 3 0 aをあけたので、 放熱板 3 0の放熱だけではなく、 孔 3 0 aから対流する加熱空気で直接に絨毯ゃフローリング材を暖めることができ、 熱 効率がよい。 孔 Holes 30a are made in the heat sink 30, so not only the heat dissipation of the heat sink 30 but also the hole 30a The carpet / flooring material can be directly heated by the heated air convection from a, resulting in good thermal efficiency.
⑤密閉側板 5 0 bによってヒートパイプ 2 0の軸回りの回転が禁止されるので、 ヒートパイプ 2 0の内パイプ 2 2は常時下方に位置し、 作動液はいつでも温水で 加熱される。 ヒートパイプ 2 0が回転して内パイプ 2 2が上方に位置すると、 作 動液と内パイプとの接触面積が少なくなつて、 熱効率が悪くなる。  回 転 Because rotation of the heat pipe 20 around the axis is prohibited by the sealed side plate 50b, the inner pipe 22 of the heat pipe 20 is always located below, and the hydraulic fluid is always heated with hot water. When the heat pipe 20 rotates and the inner pipe 22 is positioned above, the contact area between the working fluid and the inner pipe is reduced, and the heat efficiency is reduced.
⑥断熱パネル 1 0の裏面に溝 1 4を設けたので、 パネル 1 0の接着面がコンクリ ート土間 C Bのうねりや凹凸に追従し、 接着性が向上する。  溝 Since the groove 14 is provided on the back surface of the heat insulating panel 10, the bonding surface of the panel 10 follows the undulations and unevenness of the concrete soil CB, and the adhesiveness is improved.
⑦各パネル 1 0同士は連結部材 1 5により結合するので、 パネル 1 0を精度よく 位置決めすることができる。  ⑦Because the panels 10 are connected to each other by the connecting members 15, the panels 10 can be positioned accurately.
放熱板 3 0の上に畳を敷設してもよい。 図 1 2に示すように、 発泡ポリェチレ ンとポリフィルムのラミネート品から形成される滑り止めシート 1 6 A、 発泡ポ リエチレン製のクッション材 1 6 B、 不織布と炭と不織布の積層品であるィォネ ートシート 1 6 C、 藺草状のござ 1 6 Dを積層して一畳の大きさに薄畳 1 6を形 成し、 これを放熱板 3 0の上に敷きつめ接着してもよい。 この場合、 耐熱用の両 面テープを用いて放熱板 3 0と薄板 1 6を接着すればよい。 薄畳 1 6はクッショ ン材 1 6 Bを有するので、 クッション材 1 6 Bの弾力性により畳と同様の感触が 得られ、 安価に畳敷きの部屋を作成することができる。 また、 ござ 1 6 Dの下部 に炭を含んだィォネートシート 1 6 Cが置かれるので、 炭による脱臭作用によつ て室内の臭いを取り除くことができる。  A tatami mat may be laid on the heat sink 30. As shown in Fig. 12, a non-slip sheet 16A formed from a laminate of foamed polyethylene and polyfilm, a cushioning material 16B made of foamed polyethylene, and a laminate of nonwoven fabric, charcoal and nonwoven fabric The sheet 16C and the rush-like pieces 16D may be laminated to form a thin tatami mat 16 having a size of one tatami mat, which may be laid on the heat sink 30 and adhered. In this case, the heat radiating plate 30 and the thin plate 16 may be bonded using a double-sided tape for heat resistance. Since the thin tatami mat 16 has the cushion material 16 B, the same elasticity as the tatami mat can be obtained by the elasticity of the cushion material 16 B, and a room with tatami mats can be created at low cost. In addition, since the ionate sheet 16C containing charcoal is placed at the bottom of the stone 16D, the smell in the room can be removed by the deodorizing action of charcoal.
外パイプ 2 1に蓋 2 4を固着する他の方法について説明する。 図 1 3 Aに示す ように、 内パイプ 2 2があらかじめ固着された円錐台形状の蓋 2 4 Aの周面に接 着剤 B Dを塗布し、 この蓋 2 4 Aを外パイプ 2 1に軸方向から押し込む。 これに より、図 1 3 Bに示すように、外パイプ 2 1が蓋 2 4 Aによりテ一パ状に変形し、 接着剤 B Dにより蓋 2 4 Aは外パイプ 2 1に固着される。 外パイプ 2 1の内部は 真空とされるから、 蓋 2 4 Aはパイプ内部から吸引されてテーパ部分が外パイプ 2 1の変形したテ一パ部分に押圧され、接着剤 B Dによる接着がより確実になる。 図 1 4 A, 図 1 4 Bに示すように外パイプ 2 1を蓋 2 4 Bにかしめて固着して もよい。 蓋 2 4 Bには、 スリーブ 2 4 1を介して内パイプ 2 2があらかじめ取り 付けられている。 また蓋 2 4 Bにはつば 2 4 2が設けられている。 図 1 4 Aに示 す蓋 2 4 Bの外輪凹部 2 4 2に〇リング 2 4 3を装填する。 外輪凹部 2 4 2を覆 うように蓋 2 4 Bに外パイプ 2 1を差込み、 つば 2 4 2を図示しない工具でかし める。 これにより、 図 1 4 Bに示すように、 つば 2 4 2が外パイプ 2 1をかしめ、 蓋 2 4 Bが外パイプ 2 1に固着される。 かしめにより Oリング 2 4 3がつぶれて パイプ内部が確実に封止される。 Another method of fixing the lid 24 to the outer pipe 21 will be described. As shown in Fig. 13A, the adhesive BD is applied to the peripheral surface of the frustoconical lid 24A to which the inner pipe 22 is fixed in advance, and this lid 24A is axially attached to the outer pipe 21. Push in from the direction. As a result, as shown in FIG. 13B, the outer pipe 21 is deformed into a taper shape by the lid 24A, and the lid 24A is fixed to the outer pipe 21 by the adhesive BD. Since the inside of the outer pipe 21 is evacuated, the lid 24 A is sucked from the inside of the pipe and the tapered portion is pressed by the deformed taper portion of the outer pipe 21, so that the bonding with the adhesive BD is more reliable. become. As shown in FIGS. 14A and 14B, the outer pipe 21 may be caulked to the lid 24B and fixed. The inner pipe 22 is pre-attached to the lid 24 B via the sleeve 24 1. It is attached. In addition, a collar 24 is provided on the lid 24B. Insert the o-ring 2 43 into the outer ring recess 2 42 of the lid 24 B shown in FIG. 14A. Insert the outer pipe 21 into the lid 24 B so as to cover the outer ring recess 2 42, and crimp the collar 2 42 with a tool (not shown). Thereby, as shown in FIG. 14B, the collar 242 caulks the outer pipe 21, and the lid 24 B is fixed to the outer pipe 21. The O-ring 2 43 is crushed by swaging, and the inside of the pipe is securely sealed.
このように、 かしめや接着剤を用いて外パイプ 2 1に蓋 2 4 Aあるいは 2 4 B を固着することにより、 外パイプ 2 1の肉厚を薄くすることができるから、 軽量 化とコスト低減を図ることができる。 蓋 2 4と外パイプ 2 1をねじで結合する場 合には外パイプ 2 1の肉厚を厚くする必要がある。  By fixing the lid 24A or 24B to the outer pipe 21 using caulking or an adhesive as described above, the thickness of the outer pipe 21 can be reduced, thereby reducing the weight and cost. Can be achieved. When connecting the lid 24 and the outer pipe 21 with screws, the outer pipe 21 needs to be thicker.
次に、 ヒートパイプ製造手順について説明する。 この製造手順は、 パイプ内を 真空引きする工程と、 作動液を充填する工程と、 パイプ内を真空状態で封止する 工程からなる。 図 1 5により説明する。 治具ブロック 6 0には、 外パイプ 2 1に 蓋 2 4 Bが固着されたヒートパイプ 2 0の素材 2 1 Sが固定される凹部 6 0 aと、 凹部 6 0 aに開口する通路 6 0 bと、 通路 6 0 bに連通するアルミ球挿入通路 6 0 cと、 通路 6 O b に連通する真空 Z液充填通路 6 0 dとが設けられている。 通 路 6 O bには、 打ち込み板 7 0の先端ピストン 7 0 aが挿入されている。 アルミ 球揷入通路 6 0 cには通路 7 1 Aを介してバルブ 7 2が設けられている。 真空 Z 液充填通路 6 0 dには通路 7 1 Bを介してバルブ 7 3 , 7 4が設けられている。 バルブ 7 3には作動液夕ンク 7 5が接続され、 バルブ 7 4には真空ポンプ 7 6が 接続されている。  Next, a heat pipe manufacturing procedure will be described. This manufacturing procedure includes a step of evacuating the inside of a pipe, a step of filling a working fluid, and a step of sealing the inside of the pipe in a vacuum state. This will be described with reference to FIG. The jig block 60 includes a concave portion 60 a to which the material 21 S of the heat pipe 20 in which the lid 24 B is fixed to the outer pipe 21, and a passage 60 opening to the concave portion 60 a. b, an aluminum ball insertion passage 60 c communicating with the passage 60 b, and a vacuum Z liquid filling passage 60 d communicating with the passage 6 O b. The distal end piston 70 a of the driving plate 70 is inserted into the passage 6 Ob. A valve 72 is provided in the aluminum ball inlet passage 60c via a passage 71A. The vacuum Z liquid filling passage 60d is provided with valves 73 and 74 via a passage 71B. The valve 73 is connected to a hydraulic fluid nozzle 75, and the valve 74 is connected to a vacuum pump 76.
まず、 バルブ 7 2を開いて、 2点鎖線で示すようにアルミ球挿入通路 6 0 c内 に封止アルミ球 7 7を装填する。 バルブ 7 2と 7 3を閉じてバルブ 7 4を開き、 外パイプ 2 1内を真空引きする。 真空計 7 8により所定の真空圧になったことを 確認したら、 バルブ 7 4を閉じる。 バルブ 7 3を所定時間だけ開いて外パイプ 2 1内にあらかじめ定めた量の作動液を充填する。 ここまでがパイブ内を真空引き する工程と、 作動液を充填する工程である。 すべてのバルブ 7 2〜7 4を閉じ、 打ち込み板 7 0を抜き出し方向に操作して封止球 7 7を通路 6 O b内に落とし込 む。 そして、 打ち込み板 7 0で封止球 7 7を押し込み、 ハンマ 7 9で打ち込み板 7 0を叩いて封止球 7 7を蓋 2 4 Bの通路 2 4 1に嵌合固着する。 これがパイプ 内を真空状態で封止する工程である。 First, the valve 72 is opened, and a sealed aluminum ball 77 is loaded into the aluminum ball insertion passage 60c as shown by a two-dot chain line. Close valves 72 and 73, open valve 74, and evacuate outer pipe 21. When the specified vacuum pressure is confirmed by the vacuum gauge 78, the valve 74 is closed. The valve 73 is opened for a predetermined time to fill the outer pipe 21 with a predetermined amount of hydraulic fluid. The steps up to this point are the step of evacuating the pipe and the step of filling the working fluid. All the valves 72 to 74 are closed, and the driving plate 70 is operated in the extracting direction to drop the sealing ball 77 into the passage 6 Ob. Then, press the sealing ball 77 with the driving plate 70, and press the hammer 79 with the driving plate. Hit 70 to fit the sealing ball 77 into the passage 24 1 of the lid 24 B. This is the process of sealing the inside of the pipe in a vacuum.
図 1 6に示すように、 打ち込み板 7 0の操作位置を指示する指示リング 8 0を 治具プロック 6 0に設ければ、 打ち込み板 7 0の操作が容易である。 すなわち、 指示リング 8 0には球入れ位置を示す当たり面 8 0 aと、 真空引き/液入位置を 示す当たり面 8 O bと、 打ち込み位置を示す当たり面 8 0 cとを設ける。 打ち込 み板 7 0の操作軸 7 1に位置決め用突起 7 2を設ける。 位置決め用突起 7 2を各 当たり面に当接して係止するだけで、 打ち込み板 7 0を各工程で必要な位置に操 作できる。  As shown in FIG. 16, the operation of the driving plate 70 is facilitated by providing the jig block 60 with an indicating ring 80 for indicating the operation position of the driving plate 70. That is, the indicating ring 80 is provided with a contact surface 80a indicating a ball-in position, a contact surface 80b indicating a vacuum / liquid-in position, and a contact surface 80c indicating a driving position. A positioning projection 72 is provided on the operating shaft 71 of the driving plate 70. The driving plate 70 can be operated to a required position in each step only by abutting and locking the positioning projection 72 against each contact surface.
外パイプ 2 1の内部を封止する方法は、 以上説明した球打ち込み方式に限定さ れない。 たとえば図 1 7に示すように、 接着剤で外パイプ 2 1に固着した蓋 2 4 Cにあけられている貫通孔 2 4 2を介して外パイプ 2 1内を真空引きする。 そし て、 真空雰囲気中で栓 7 7 Aを貫通孔 2 4 2に打ち込み、 パイプ内を封止しても よい。 なお、 図 1 7では、 蓋 2 4 Cの端面に設けたリング状の溝 2 4 3に外パイ プ 2 1を嵌合して接着剤 B Dで接着する。  The method of sealing the inside of the outer pipe 21 is not limited to the ball driving method described above. For example, as shown in FIG. 17, the inside of the outer pipe 21 is evacuated through a through hole 242 formed in a lid 24C fixed to the outer pipe 21 with an adhesive. Then, a plug 77A may be driven into the through hole 242 in a vacuum atmosphere to seal the inside of the pipe. In FIG. 17, the outer pipe 21 is fitted into the ring-shaped groove 243 provided on the end face of the lid 24C, and the outer pipe 21 is bonded with the adhesive BD.
以上説明した床暖房装置は一般家屋の床暖房装置に使用できる他、 以下に説明 する組立式発泡スチロールドームの床暖房装置として利用することもできる。 図 1 8は組立式発泡スチロールドームの全体を示す立面図、 図 1 9はドームの 平面図、 図 2 0はドームの内部平面図である。 組立式発泡スチロールドーム 2 0 0は、発泡スチロールを構成材とする複数のドーム片 2 1 0〜2 1 9を集合して、 内部に半球状の居住空間 S Pを形成したものである。 図 1 8において、 WDは所 定のドーム片にあらかじめ設けられた窓部、 P Tは所定のドーム片にあらかじめ 設けられた玄関部である。  The floor heating device described above can be used as a floor heating device for a general house, and can also be used as a floor heating device for a prefabricated styrofoam dome described below. FIG. 18 is an elevational view showing the whole of the prefabricated styrofoam dome, FIG. 19 is a plan view of the dome, and FIG. 20 is a plan view of the inside of the dome. The assembled styrofoam dome 200 is formed by assembling a plurality of dome pieces 210 to 219 made of styrofoam and forming a hemispherical living space SP therein. In FIG. 18, WD denotes a window provided in advance on a predetermined dome piece, and PT denotes an entrance provided in advance on a predetermined dome piece.
複数のドーム片 2 1 0〜2 1 9は、 それぞれ図 2 1に示すような形状をし、 発 泡倍率が 1 0〜5 0倍で厚さ 1 0〜5 0 c mの発泡スチロールから形成される。 たとえば、 積雪が最大で 8 0 c m程度の場合には、 発泡倍率 2 0倍、 厚さ 2 0 c mの発泡スチロールからなるドーム片とすることができる。 なお、 同じ強度を得 るためには、 発泡倍率を大きくすれば厚みが厚くなる。 また、 積雪を考慮する必 要がない地域では、 発泡倍率を 2 0倍より大きくし、 あるいは厚みを 2 0 c m以 下に薄くできる。 反対に、 積雪量が lm以上の地域では、 発泡倍率を 20倍以下 に小さくして強度を担保するか、 厚みを厚くする。 各ドーム片 10〜19には L 字状の基部 DBと、 基部 DBから立ち上がる接合縁 DE, DDと、 接合縁 DE, DDの先端の凹状頂部 DRとを有する。 このようなドーム片 210〜219を、 ドームの頂部においてドーム片 210〜219の先端上部 DRを頂部ジョイント 221で互いに結合するとともに、 複数のド一ム片 210〜219の各々の接合 縁 DEと DDとを、 隣接するドーム片と締結具 222で締結した上で接着するこ とにより、 ドームが組立てられる。 Each of the plurality of dome pieces 210 to 219 has a shape as shown in FIG. 21 and is formed of styrene foam having a foaming ratio of 10 to 50 times and a thickness of 10 to 50 cm. . For example, when the snow cover is about 80 cm at the maximum, a dome piece made of styrene foam having a foaming ratio of 20 times and a thickness of 20 cm can be used. In order to obtain the same strength, the thickness is increased by increasing the expansion ratio. In areas where it is not necessary to consider snow cover, the foaming ratio should be larger than 20 times or the thickness should be 20 cm or less. Can be thin below. Conversely, in areas where the snow cover is more than lm, the foaming ratio is reduced to 20 times or less to secure the strength or increase the thickness. Each of the dome pieces 10 to 19 has an L-shaped base DB, joining edges DE and DD rising from the base DB, and a concave top DR at the tip of the joining edges DE and DD. At the top of the dome, such dome pieces 210 to 219 are connected to each other at the top end DR of the dome pieces 210 to 219 by a top joint 221. At the same time, the joining edges DE and DD The dome is assembled by fastening the dome piece to the adjacent dome piece with the fastener 222 and bonding them.
図 20において、 2点鎖線で示す領域 HRがヒートパイプを敷設して暖房を行 う領域、 すなわち床暖房装置設置スペースである。 図 22A, 図 22Bは、 ヒー トパイプの敷設の様子を説明する図である。 図 22 Aにおいて、 円形の室内床に 発泡スチロール製の複数の断熱パネル 1 10が並べられている。 部屋の中央部に 配設される断熱パネル 1 10の各々は、 図 1に示すものと同様に矩形形状をして いる。 周縁部に配設される断熱パネル 110は、 一部の縁形状が円形形状とされ ている。 断熱パネル 1 10は発泡スチロール製なので、 現場での加工は極めて容 易である。 断熱パネル 1 10は外形形状こそ異なるが、 図 22 Bに示すように、 格子状の溝 111 A, 1 1 1 Bと、 溝 11 1A, 1 1 1 Bに囲まれた束 1 12と を有する点は図 1〜12に示した断熱パネル 10とまったく同様なものである。 円形形状であるから、 異なった長さの 4種類のヒートパイプ 120 a〜l 20 d (以下、 符号 120で代表することもある) を円形室内の領域ごとに配置して いる。 図 22A, 図 22 Bの床暖房装置では、 図 2に示した密閉側板 50 a, 5 O bに相当するものは、 円形をフラットにした直線部分 150にのみ配設され、 円形周縁部分はドーム片 210〜219により塞がれる。 断熱パネル 1 10の上 面には、 図 2に示したものと同様に無数の貫通孔があけられた放熱板 (不図示) が配設される。 そして、 ヒートパイプ 120 a〜l 20 dを温水ホース 26で接 続し、図示しない温水供給装置 40により温水をヒートパイプ 120に流通する。 温水ホース 26は適宜の箇所を引き回すことができる。 —次に、 図 23〜図 30 を用いて、熱サイフォン式ヒートパイプの他の形状について説明する。図 23は、 ヒートパイプ 300を構成する二重管 320の断面図である。 なお、 二重管 32 0は管路方向に同一の断面形状を有している。 図 2 3に示すように、 外パイプ 3 2 1の下部外周面は凹形状を有し、 すなわち、 外パイプ 3 2 1の下部内周面は内 径側に向かって突出し、 突出部 3 2 2が設けられている。 この突出部 3 2 2には 略円管状の内パイプ 3 2 3が接続され、 外パイプ 3 2 1の内周面と内パイプ 3 2 3の外周面の間には真空空間 Hが形成される。 これにより内パイプ 3 2 3の外周 面の大部分は真空空間 Hに接触している。 例えば外パイプ 3 2 1の外径 φ 1= 2 5 mm, 内パイプ 3 2 3の外径 Φ 2= 5 mm、 パイプ 3 2 1, 3 2 3の肉厚 t = 1 . 5 mm, 突出部 3 2 2の頂角 θ = 1 3 0 ° であり、 内パイプ 3 2 3は真空空間 Η 内の下方に偏心して設けられている。 In FIG. 20, a region HR indicated by a two-dot chain line is a region where a heat pipe is laid to perform heating, that is, a floor heating device installation space. Fig. 22A and Fig. 22B are diagrams explaining the state of laying the heat pipe. In FIG. 22A, a plurality of styrene foam insulation panels 110 are arranged on a circular indoor floor. Each of the heat insulating panels 110 disposed in the center of the room has a rectangular shape as shown in FIG. A part of the heat insulating panel 110 disposed on the peripheral edge is circular. Since the heat insulating panel 110 is made of styrofoam, processing on site is extremely easy. The heat insulating panel 110 has a different shape, but has a lattice-like groove 111A, 111B, and a bundle 112 surrounded by the groove 111A, 111B, as shown in Fig. 22B. The points are exactly the same as the insulation panel 10 shown in FIGS. Since it has a circular shape, four types of heat pipes 120a to 120d (hereinafter sometimes represented by reference numeral 120) of different lengths are arranged for each area in the circular room. In the floor heating devices of FIGS. 22A and 22B, those corresponding to the closed side plates 50a and 5Ob shown in FIG. Blocked by pieces 210-219. On the upper surface of the heat insulating panel 110, a heat radiating plate (not shown) having an infinite number of through-holes similar to that shown in FIG. 2 is provided. Then, the heat pipes 120 a to 120 d are connected by a hot water hose 26, and hot water is circulated to the heat pipe 120 by a hot water supply device 40 (not shown). The hot water hose 26 can be routed at an appropriate location. —Next, other shapes of the thermosiphon heat pipe will be described with reference to FIGS. FIG. 23 is a cross-sectional view of the double pipe 320 constituting the heat pipe 300. Double pipe 32 0 has the same cross-sectional shape in the pipe direction. As shown in FIG. 23, the lower outer peripheral surface of the outer pipe 3 21 has a concave shape, that is, the lower inner peripheral surface of the outer pipe 3 21 projects toward the inner diameter side, and the projecting portion 3 2 2 Is provided. A substantially circular inner pipe 3 2 3 is connected to the protrusion 3 2 2, and a vacuum space H is formed between the inner peripheral surface of the outer pipe 3 2 1 and the outer peripheral surface of the inner pipe 3 2 3 . As a result, most of the outer peripheral surface of the inner pipe 3 23 is in contact with the vacuum space H. For example, outer diameter of outer pipe 3 2 1 φ 1 = 25 mm, outer diameter of inner pipe 3 2 3 Φ 2 = 5 mm, wall thickness of pipes 3 2 1 and 3 2 3 t = 1.5 mm, protrusion The apex angle θ of 32 2 is 130 °, and the inner pipe 32 3 is eccentrically provided below in the vacuum space Η.
なお、 上記の二重管 3 2 0の寸法は一例であり、 これに限定されるものではな い。 加工の面からは、 肉厚 t = 0 . 2〜 5 mm, 管路方向長さ 5 0 cm〜 1 0 m、 外 パイプ 3 2 1の外径 φ 1= 2 O nm!〜 1 0 O mm、 内パイプ 3 2 3の外径 φ 2= 3 mm〜5 0 mm の範囲内に抑えることが好ましく、 この範囲内で使用箇所、 使用 環境等に応じて寸法を決定すればよい。  It should be noted that the dimensions of the above-described double tube 320 are only examples, and the present invention is not limited to this. From the machining point of view, wall thickness t = 0.2 to 5 mm, length in pipe direction 50 cm to 10 m, outer diameter of outer pipe 32 1 φ 1 = 2 O nm! ~ 10 O mm, outer diameter of inner pipe 3 2 3 It is preferable to keep it within the range of φ 2 = 3 mm to 50 mm.If the dimensions are determined according to the place of use, use environment, etc. within this range Good.
以下、 上述したヒートパイプ 3 0 0の製造方法を製造手順に従って説明する。 ( 1 ) 押出工程  Hereinafter, a method of manufacturing the above-described heat pipe 300 will be described according to a manufacturing procedure. (1) Extrusion process
まず、 二重管 3 2 0を直接押出によって成型する。 この直接押出は、 図 2 4に 示すように、 コンテナー 3 3 1内に素材であるアルミのビレツト 3 3 2をセット し、 ビレット 3 3 2を加熱しながらステム 3 3 3で押し出す。 この場合の加熱温 度は 2 0 0 °C〜6 0 0 °C、 好ましくは 4 5 0 °C〜5 5 0 °Cである。 押し出された アルミはダイリング 3 3 4で支持されたダイス 3 3 5を貫通する。 これにより、 ダイス 3 3 5と同形状の成型品が形成される。 なお、 二重管 3 2 0を押出成形で はなく引抜成形により形成してもよい。  First, the double tube 320 is molded by direct extrusion. In this direct extrusion, as shown in Fig. 24, a billet 3332 made of aluminum as a material is set in a container 331, and the billet 332 is extruded with a stem 3333 while heating. The heating temperature in this case is from 200 ° C. to 600 ° C., preferably from 450 ° C. to 550 ° C. The extruded aluminum penetrates the die 3 35 supported by the die ring 3 3 4. As a result, a molded product having the same shape as the die 335 is formed. The double tube 320 may be formed by pultruding instead of extrusion.
図 2 5 Aはダイス 3 3 5の正面図であり、図 2 5 Bは図 2ら八のゎ-ゎ線断面図 である。 図 2 5 A, 図 2 5 Bに示すように、 ダイス 3 3 5はダイリング 3 3 4で 支持されるァウタ部 3 5 aと、 周方向複数 (図では 5箇所) の接合部 3 5 bを介 してァウタ部 3 5 aから支持される第 1のインナ部 3 5じと、 周方向複数 (図で は 4箇所) の接合部 3 5 dを介してァウタ部 3 5 aおよび第 1のインナ部 3 5 c から支持される第 2のインナ部 3 5 dとを有する。 図 2 5 Bに示すように、 例え ばダイス 3 3 5の長さを 1 0 cm とすると、 接合部 3 5 bはアルミの押出方向入 口側端面から O cn!〜 2 cmの範囲に設けられ、 接合部 3 5 dは 4 cm〜6 cmの範 囲に設けられる。これによりアルミ成型品は接合部 3 5 b,3 5 dを通過する際に 周方向に分断するが、 アルミは高圧 (7 0 0 0 t〜8 0 0 O t) で押し出されるた め、 接合部 3 5 b , 3 5 dを通過するとすぐに周方向に拡がり、再び全周にわたつ て接合す 。 その結果、 接合部 3 5 b , 3 5 dの影響なく二重管 3 2 0を成型する ことができる。 FIG. 25A is a front view of the die 335, and FIG. 25B is a cross-sectional view taken along the line VIII-VIII of FIGS. As shown in Fig. 25A and Fig. 25B, the die 3 35 is composed of the auta part 35a supported by the die ring 33, and the joint part 35b in the circumferential direction (five places in the figure). The first inner part 35 supported by the outer part 35a through the joint 35 and the outer part 35a and the first inner part 35 through a plurality of (four in the figure) joints 35d in the circumferential direction. And a second inner portion 35d supported by the inner portion 35c of the second portion. As shown in Figure 25B, for example Assuming that the length of the die 335 is 10 cm, the joint 35 b is O cn! From the end face on the entrance side in the extrusion direction of aluminum. The joint 35 d is provided in a range of 4 cm to 6 cm. As a result, the aluminum molded product is divided in the circumferential direction when passing through the joints 35b and 35d. However, since the aluminum is extruded at a high pressure (700 t to 800 ot), Immediately after passing through the portions 35b and 35d, they expand in the circumferential direction, and are joined again over the entire circumference. As a result, the double pipe 320 can be molded without being affected by the joints 35b and 35d.
( 2 ) 蓋取付工程  (2) Lid mounting process
次いで、 二重管 3 2 0に蓋 3 3 0を取り付ける。 図 2 6 Aは蓋 3 3 0の正面図 であり、 図 2 6 Bは蓋 3 3 0の取り付け状態を示す要部拡大図、 図 2 6 Cは蓋 3 Next, the lid 330 is attached to the double tube 320. FIG. 26A is a front view of the lid 330, FIG. 26B is an enlarged view of a main part showing an attached state of the lid 330, and FIG. 26C is a lid 3
3 0の斜視図 (二重管 3 2 0側から見た図) である。 蓋 3 3 0は樹脂製であり、 樹脂成形により形成される。 図 2.6 A〜図 2 6 Cに示すように、 蓋 3 3 0は、 側 壁 3 aと、 外パイプ 3 2 1の外周面と同形状の内周面を有する外管部 3 bと、 内 パイプ 3 2 3の内周面と同形状の外周面を有する内管部 3 cと、 内管部 3 cを貫 通して側壁 3 aの外側に突出して設けられるジョイント 3 dとを有する。 外管部FIG. 3 is a perspective view (a view as seen from a double-pipe 320 side) of FIG. The lid 330 is made of resin and is formed by resin molding. As shown in FIGS.2.6A to 26C, the lid 330 is formed of a side wall 3a, an outer pipe portion 3b having an inner peripheral surface having the same shape as the outer peripheral surface of the outer pipe 321, and an inner pipe 3b. It has an inner pipe portion 3c having an outer peripheral surface having the same shape as the inner peripheral surface of the pipe 32, and a joint 3d penetrating through the inner pipe portion 3c and protruding outside the side wall 3a. Outer tube
3 bの内周面と外パイプ 3 2 1の外周面および内管部 3 cの外周面と内パイプ 33b inner circumference and outer pipe 3 2 1 outer circumference and inner pipe 3c outer circumference and inner pipe 3
2 3の内周面は、 それぞれ図示しない Oリングを介して嵌合されている。 外管部The inner peripheral surfaces of 23 are fitted via O-rings (not shown). Outer tube
3 bと外パイプ 3 2 1の間には接着材が塗布され、 これにより蓋 3 3 0は外パイ プ 3 2 1に固定される。 ジョイント 3 dにはホースが接続され、 ホースを介して 内パイプ 3 2 3に温水が供給される。 An adhesive is applied between 3 b and the outer pipe 3 21, whereby the lid 3 30 is fixed to the outer pipe 3 2 1. A hose is connected to the joint 3d, and hot water is supplied to the inner pipe 3 23 via the hose.
( 3 ) 真空引き、 作動液充填工程  (3) Vacuum and hydraulic fluid filling process
次に、 蓋 3 3 0の側壁 3 aに設けられた孔 3 eを介して、 前述した図 1 5と同 様、 真空ポンプ 7 6で真空空間 H内の圧を抜き、 空間 H内を真空状態にする。 そ して、 例えば内パイプ 3 2 3の外周面の上端部までが熱輸送媒体としての作動液 に覆われるように(図 2 7 A参照)、孔 3 eを介して空間 H内に所定量の作動液を 充填する。 作動液は例えばアルコールや水である。 最後に、 孔 3 eに栓 3 fゃ剛 球などをハンマ等で打ち込んで孔 3 eを塞ぎ、真空空間 H内に作動液を密封する。 これによりヒートパイプ 3 0 0が完成する。  Next, the pressure in the vacuum space H is released by the vacuum pump 76 through the hole 3 e provided in the side wall 3 a of the lid 330, as in FIG. State. Then, for example, a predetermined amount is inserted into the space H through the hole 3 e so that the upper end of the outer peripheral surface of the inner pipe 3 23 is covered with the hydraulic fluid as the heat transport medium (see FIG. 27A). Fill with hydraulic fluid. The working fluid is, for example, alcohol or water. Finally, a plug 3 f ゃ hard sphere is driven into the hole 3 e with a hammer or the like to close the hole 3 e, and the working fluid is sealed in the vacuum space H. Thereby, the heat pipe 300 is completed.
このような実施の形態によるヒートパイプの製造方法によれば次のような作用 効果がある。 According to the method of manufacturing a heat pipe according to such an embodiment, the following operation is performed. effective.
①内パイプ 3 2 3と外パイプ 3 2 1からなる二重管 3 2 0を直接押出により一体 に成形したので、 内パイプ 3 2 3と外パイプ 3 2 1を接合するなどの工数が省略 され、 加工コストが抑えられるとともに、 加工精度のばらつきも少ない。 この場 合、 外パイプ 3 2 1の下部断面に突出部 3 2 2を形成し、 そこに内パイプ 3 2 3 を設けるようにした。 すなわち、 内パイプ 3 2 3の周方向の一部を外パイプ 3 2 1から支持するようにしたので、 内パイプ 3 2 3を介して温水と作動液との接触 面積が大きく、 効率よく作動液が加熱される。  (1) Since the double pipe 3200 consisting of the inner pipe 3 2 3 and the outer pipe 3 2 1 was integrally formed by direct extrusion, the man-hours for joining the inner pipe 3 2 3 and the outer pipe 3 2 1 were omitted. The processing cost is kept low and the processing accuracy is small. In this case, a projecting portion 3222 was formed in the lower cross section of the outer pipe 3221, and the inner pipe 3223 was provided there. In other words, since a part of the inner pipe 3 2 3 in the circumferential direction is supported from the outer pipe 3 2 1, the contact area between the hot water and the hydraulic fluid through the inner pipe 3 2 3 is large, and the hydraulic fluid is efficiently Is heated.
②外パイプ 3 2 1の下部外周面を凹形状として突出部 3 2 2を設けたので、 真空 空間 H内の下部断面積が小さくなり、 内パイプ 3 2 3の上端部を覆うように作動 液を充填したときに作動液を節約することができる。 ヒートパイプ 3 0 0の全高 を低くすることができ、 高さ制限がある箇所での使用が容易になる。  (2) Since the lower outer peripheral surface of the outer pipe 3 2 1 is concave and the protruding portion 3 2 2 is provided, the lower cross-sectional area in the vacuum space H becomes smaller, and the working fluid covers the upper end of the inner pipe 3 2 3. The working fluid can be saved when filling. The total height of the heat pipe 300 can be reduced, and it is easy to use in places where there is a height restriction.
③盖 3 3 0を樹脂にて形成し、 接着材で蓋 3 3 0を外パイプ 3 2 1に接合するよ うにしたので、 溶接や蓋端部のかしめなどの方法に比べて接合が容易であり、 コ ストを低減できる。  ③ The lid 330 is made of resin, and the lid 330 is joined to the outer pipe 321 with adhesive, so joining is easier than welding or caulking the lid end. Yes, costs can be reduced.
④内パイプ 3 2 3と外パイプ 3 2 1を管路長さ方向にわたって一体化するので、 二重管 3 2 0の曲げ剛性が向上する。  ④Because the inner pipe 3 2 3 and the outer pipe 3 2 1 are integrated in the pipe length direction, the bending rigidity of the double pipe 3 20 is improved.
なお、 例えば図 2 7 A〜図 2 7 Cに示すようにパイプ断面を形成してもよい。 図 2 7 Aでは、 外パイプ 3 2 1 a ,内パイプ 3 2 3 aともに円管形状であり、 外パ イブ 3 2 1の下部内周面から上方に向かって突出部 3 2 2 aが設けられ、 突出部 3 2 2 aを介して内パイプ 3 2 3 aが支持されている。 突出部 3 2 2 aと内パイ プ 3 2 3 aの接触面積が小さいので、 内パイプ 3 2 3 aを介して温水と作動液と の接触面積がさらに大きくなり、 熱効率が一層向上する。 この場合、 例えば外パ ィプ 3 2 1 aの外径 φ 1= 2 5 mm、 内パイプ 3 2 3 aの内径 φ 2= 5 mm、 肉厚 t = 1 . 5 mm, 突出部 3 2 2 aの高さ z = 7 mmである。  For example, a pipe section may be formed as shown in FIGS. 27A to 27C. In FIG. 27A, both the outer pipe 3 2 a and the inner pipe 3 2 3 a have a circular pipe shape, and a protruding portion 3 2 2 a is provided upward from the lower inner peripheral surface of the outer pipe 3 21. The inner pipe 3 2 3 a is supported via the projection 3 2 2 a. Since the contact area between the protruding part 3 22 a and the inner pipe 3 23 a is small, the contact area between the warm water and the working fluid via the inner pipe 3 23 a is further increased, and the thermal efficiency is further improved. In this case, for example, the outer diameter of the outer pipe 32 1a φ 1 = 25 mm, the inner diameter of the inner pipe 32 3 a φ 2 = 5 mm, the wall thickness t = 1.5 mm, the protrusion 3 2 2 The height of a is z = 7 mm.
パイプ 3 2 1 , 3 2 3の断面形状は、 三角、 四角、 楕円形状でもよい。 例えば図 2 7 B , 図 2 7 Cに示すように外パイプ 3 2 1 b , 3 2 1 cを扇形形状とし、 その 下部内周面に設けられた突出部 3 2 2 b , 3 2 2 cを介して内パイプ 3 2 3 b , 3 2 3 cを支持するようにしてもよい。 これにより真空空間 Hの下部の断面積が狭 くなり、 作動液の量を節約できる。 すなわち、 図 2 7 A〜図 2 7 Cにおいて内パ イブ 3 2 3 a , 3 2 3 b , 3 2 3 cの上端部を覆うように作動液を充填したとき (液面 1,し2,し3)、 図 2 7 Aの場合より図 2 7 B, 図 2 7 Cの方が作動液量は 少なくてすむ。 なお、 二重管 3 2 0の高さ hば図 2 7 Bでは h = 4 5 mm、 図 2 7 Cでは h = 3 O nmiである。 また、 チューブ 3 dを蓋 3 3 0と一体に成型する ようにしたが、 図 2 8に示すように、 チューブ 3 0 dを蓋 3 3 0の側壁 3 aを貫 通して、 内パイプ 3 c内にねじ込むようにしてもよい。 The cross-sectional shapes of the pipes 3 2 1 and 3 2 3 may be triangular, square, or elliptical. For example, as shown in FIGS. 27B and 27C, the outer pipes 3 2 1 b and 3 21 c are formed into a sector shape, and the projections 3 2 2 b and 3 2 2 c provided on the lower inner peripheral surface thereof. The inner pipes 3 2 3 b and 3 2 3 c may be supported through the holes. This reduces the cross-sectional area of the lower part of the vacuum space H. And the amount of hydraulic fluid can be saved. That is, when the hydraulic fluid is filled so as to cover the upper end of the inner pipes 32 3 a, 32 3 b, and 32 3 c in FIGS. 27A to 27C (liquid levels 1, 2, and 3). 3) The hydraulic fluid volume in Fig. 27B and Fig. 27C is smaller than in Fig. 27A. The height h of the double tube 320 is h = 45 mm in Fig. 27B and h = 30 nmi in Fig. 27C. In addition, the tube 3d was molded integrally with the lid 330, but as shown in FIG. 28, the tube 30d was passed through the side wall 3a of the lid 330 to form the inner pipe 3c. It may be screwed inside.
図 2 9に示すように、 外パイプ 3 2 1の外周面に複数 (図では 7個) のフィン 3 2 4を放射状に設けてもよい。 例えばフィン 3 2 4の長さ 1 = 2 O nmi、 厚さ t = 0 . 5 mmである。 フィン 3 2 4は管路方向に一様に設けられ、 フィン 3 2 4 も直接押出により一体に成形される。  As shown in FIG. 29, a plurality of (seven in the figure) fins 324 may be radially provided on the outer peripheral surface of the outer pipe 321. For example, the fin 324 has a length 1 = 2 O nmi and a thickness t = 0.5 mm. The fins 324 are provided uniformly in the pipe direction, and the fins 324 are also integrally formed by direct extrusion.
このような二重管 3 2 0は、 畑などの地中、 例えば畝に埋設される。 内パイプ 3 2 3内に温水を流すと作動液の蒸発、 凝縮により外パイプ 3 2 1の外周面およ びフィン 3 2 4から放熱されて土が加熱され、 農作物の発育が促進されるととも に、 地中の病原菌を殺傷することができる。 なお、 フィン 3 2 4は図 2 7に示し た二重管 3 2 0にも同様に設けることができる。 その一例を図 3 0に示す。 このように外パイプ 3 2 1の外周面に放射状にフィン 3 2 4を設ければ、 放熱 性が向上し、 地中などの広範囲にわたって加熱することができるとともに、 二重 管 3 2 0の曲げ剛性が一層向上する。 また、 二重管 3 2 0を地中に埋設した状態 でスコップを用いて農作業を行う際に、 スコップは先にフィン 3 2 4に接触する ため、 外パイプ 3 2 1の破壊を防止できる。  Such a double pipe 320 is buried in the ground such as a field, for example, in a ridge. When hot water flows through the inner pipe 3 2 3, the working fluid evaporates and condenses, radiating heat from the outer peripheral surface of the outer pipe 3 2 1 and the fins 3 2 4, heating the soil and promoting the growth of agricultural crops. In addition, it can kill underground pathogens. Note that the fins 324 can be similarly provided in the double pipe 320 shown in FIG. An example is shown in FIG. By providing the fins 324 radially on the outer peripheral surface of the outer pipe 321 as described above, heat dissipation can be improved, and heating can be performed over a wide area such as underground. The rigidity is further improved. In addition, when agricultural work is performed using a scoop with the double pipe 320 buried in the ground, the scoop contacts the fins 324 first, so that the outer pipe 321 can be prevented from being broken.
以上説明したヒートパイプ 2 0、 1 2 0、 3 0 0の外表面にセラミツクスコ一 ティングを施してもよい。 この場合、 ヒートパイプ 2 0、 3 0 0から遠赤外線が 放射され、 暖房効果が促進される。 ヒートパイプ 2 0、 3 0 0をアルミニウム製 としたが、 鋼、 鉄、 ステンレス、 チタン等の金属や樹脂等、 他の材料で形成して もよい。  The outer surfaces of the heat pipes 20, 120, and 300 described above may be subjected to ceramics coating. In this case, far-infrared rays are emitted from the heat pipes 20 and 300, and the heating effect is promoted. Although the heat pipes 20 and 300 are made of aluminum, they may be made of other materials such as steel, iron, stainless steel, titanium and other metals and resins.
以上では断熱パネル 1 0, 1 1 0を発泡スチロールで成形するようにしたが、 本発明の断熱パネルは発泡スチロールに限定されず、 ウレタンなど断熱性があり かつクッション機能がある樹脂で成形することができる。 また、 ヒートパイプ 2 0、 3 0 0として熱サイフォン式ヒートパイプを使用したが、 内部にウィックを 有するタイプのヒートパイプでもよい。 ヒートパイプに代えて、 温水だけが流通 する温水パイプでもよい。 あるいは、 パイプ状熱源ではなくニクロム線など電気 的に熱を発生する熱源でもよい。 In the above description, the heat insulating panels 10 and 110 are formed of styrofoam. However, the heat insulating panel of the present invention is not limited to styrofoam, and can be formed of a resin having heat insulation properties and a cushion function such as urethane. . Also, heat pipe 2 Although a thermosiphon heat pipe was used for 0 and 300, a heat pipe having a wick inside may be used. Instead of a heat pipe, a hot water pipe through which only hot water flows may be used. Alternatively, a heat source that generates heat electrically, such as a nichrome wire, may be used instead of a pipe-shaped heat source.
なお、 束 1 2、 1 1 2の下部の部分でヒートパイプ 2 0、 1 2 0の位置決めを 行うようにしたが、 別部材でヒートパイプ 2 0、 1 2 0を位置決めしてもよい。 また、 合板による放熱板 3 0に代えて、 発泡スチロールなどからなる断熱性の 床板を断熱パネル 1 0上に載置してもよい。 この場合、 孔 3 0 aのような貫通孔 を多数あけることが不可欠である。 すなわち、 断熱性の床板では放熱効果がない ので、 加熱空間で暖められた空気を貫通孔から上部暖房空間へ導き、 絨毯ゃフロ ーリング材を下面から暖める。 発布スチロール床板には必要とされる強度が得ら れるように、 発泡スチロールの発泡倍率や厚さが決定される。 多数の貫通孔をぁ けた石膏ボードを床板として使用してもよい。  Although the heat pipes 20 and 120 are positioned at the lower part of the bundles 12 and 112, the heat pipes 20 and 120 may be positioned by another member. Further, instead of the radiating plate 30 made of plywood, a heat insulating floor plate made of styrene foam or the like may be placed on the heat insulating panel 10. In this case, it is essential to open a large number of through holes such as the hole 30a. In other words, since the heat-insulating floorboard does not have a heat radiation effect, the air heated in the heating space is guided to the upper heating space from the through hole, and the carpet / flooring material is warmed from the lower surface. The expansion ratio and thickness of the styrofoam are determined so that the required strength is obtained for the styrofoam floorboard. A gypsum board having a large number of through holes may be used as a floor plate.
さらに以上の実施の形態では、 各部屋、 各ドームに 1個の温水供給装置 4 0を 配置した。 しかし、 複数の部屋、 複数のドームに対して 1つの温水供給装置を部 屋の外部に設けてもよい。 この場合、 いわゆるボイラーを使用すればよい。 産業上の利用の可能性  Further, in the above embodiment, one hot water supply device 40 is arranged in each room and each dome. However, one hot water supply device for a plurality of rooms and a plurality of domes may be provided outside the room. In this case, a so-called boiler may be used. Industrial applicability
以上では、 組立式発泡スチロールドームに床暖房装置を適用した例について説 明したが、一般家屋にも本発明による床暖房装置を同様に適用することができる。  In the above, the example in which the floor heating device is applied to the prefabricated styrofoam dome has been described. However, the floor heating device according to the present invention can be similarly applied to ordinary houses.

Claims

請求の範囲 The scope of the claims
1 . 一体成形される樹脂製の断熱パネルと、 1. Insulation panel made of resin that is integrally molded,
この断熱パネルに敷設される熱源と、  A heat source laid on the heat insulation panel,
前記断熱パネルに一体に形成された支持柱に支持されて載置される放熱板と、 前記放熱板と前記断熱パネルとの間に形成される加熱空間とを備え、 前記熱源から前記加熱空間内に放熱して前記放熱板を暖める床暖房装置。  A heat radiating plate supported and placed on a support pillar formed integrally with the heat insulating panel; and a heating space formed between the heat radiating plate and the heat insulating panel, A floor heating device that radiates heat to the radiator plate.
2 . 請求の範囲第 1項に記載の床暖房装置において、 2. The floor heating device according to claim 1,
前記熱源を位置決めする位置決め部材を前記支持柱と一体に形成する。  A positioning member for positioning the heat source is formed integrally with the support column.
3 . 請求の範囲第 1項または第 2項に記載の床暖房装置において、 3. The floor heating device according to claim 1 or 2,
前記放熱板には、 前記加熱空間を暖房空間と連通する孔が所定間隔で設けられ る。  Holes communicating the heating space with the heating space are provided at predetermined intervals in the heat sink.
4 . 請求の範囲第 1項〜第 3項のいずれかに記載の床暖房装置において、 隣接する前記断熱パネルにそれぞれ形成された前記支持柱を囲い込んで連結す る連結部材を有する。 4. The floor heating device according to any one of claims 1 to 3, further comprising a connecting member that surrounds and connects the support columns formed on the adjacent heat insulating panels.
5 . 請求の範囲第 1項〜第 4項のいずれかに記載の床暖房装置において、 前記放熱板の上面に、 表面が藺草状のござで覆われる 1畳相当の大きさの敷物 が敷設される。 5. The floor heating device according to any one of claims 1 to 4, wherein a rug having a size equivalent to one tatami mat, the surface of which is covered with rush-like rugs, is laid on an upper surface of the heat sink. You.
6 . 請求の範囲第 1項〜第 5項に記載の床暖房装置において、 6. The floor heating device according to any one of claims 1 to 5,
前記断熱パネルは格子状に形成された溝を有し、  The heat insulating panel has a groove formed in a lattice shape,
前記位置決め部材と支持柱は前記溝に囲まれて設けられ、  The positioning member and the support column are provided surrounded by the groove,
前記熱源は少なくとも一方向の溝に配設されるパイプ状を呈する。  The heat source has a pipe shape provided in at least one direction groove.
7 . 請求の範囲第 6項に記載の床暖房装置において、 前記断熱パネルは、 その底面に前記溝に対応して格子状に形成された凹部を有 する。 7. The floor heating device according to claim 6, wherein The heat insulation panel has a concave portion formed in a lattice shape corresponding to the groove on the bottom surface.
8 . 請求の範囲第 6項または第 7項に記載の床暖房装置において、 8. The floor heating device according to claim 6 or 7,
前記熱源は、 外パイプと、 この外パイプに 2重管として貫通して設けられる内 パイプと、 内外のパイプとの間に形成された真空空間を密閉するとともに内パイ プを保持する蓋と、 真空空間に充填された作動液とを備える熱サイフォン式ヒー トパイプを複数本有する。  The heat source includes: an outer pipe; an inner pipe penetrating the outer pipe as a double pipe; a lid for sealing a vacuum space formed between the inner and outer pipes, and holding the inner pipe; It has a plurality of thermosiphon heat pipes including a working fluid filled in a vacuum space.
9 . 請求の範囲第 8項に記載の床暖房装置において、 9. The floor heating device according to claim 8,
前記外パイプの表面にセラミックスをコ一ティングする。  A ceramic is coated on the surface of the outer pipe.
1 0 . 請求の範囲第 8項または第 9項に記載の床暖房装置において、 10. The floor heating device according to claim 8 or 9, wherein:
前記断熱パネルは少なくとも一部の外周縁が円形形状の発泡スチロールで形成 され、 前記複数本のヒートパイプは敷設される領域に応じて異なった長さとされ る。  At least a part of the heat-insulating panel is formed of styrene foam having a circular outer periphery, and the plurality of heat pipes have different lengths depending on the area where the heat pipes are laid.
1 1 . 請求の範囲第 1項〜第 9項のいずれかに記載の床暖房装置において、 前記断熱パネルは発泡スチ口ール製である。 11. The floor heating device according to any one of claims 1 to 9, wherein the heat insulation panel is made of foamed steel.
1 2 . 一体成形される樹脂製の断熱パネルと、 1 2. Insulation panel made of resin that is integrally molded,
この断熱パネルに敷設される熱源と、  A heat source laid on the heat insulation panel,
多数の貫通孔が設けられ、 前記断熱パネルに一体に形成された支持柱に支持さ れて載置される断熱性の床板と、  A plurality of through-holes, a heat-insulating floor plate that is placed and supported by a support pillar formed integrally with the heat-insulating panel;
前記床板と前記断熱パネルとの間に形成される加熱空間とを備え、  A heating space formed between the floor panel and the heat insulating panel,
前記熱源から前記加熱空間内に放熱して暖められた空気を前記貫通孔から暖房 空間へ導く床暖房装置。  An underfloor heating device that guides heated air radiated from the heat source into the heating space to the heating space from the through hole.
1 3 . 請求の範囲第 1 2項に記載の床暖房装置において、 前記熱源は、 外パイプと、 この外パイプに 2重管として貫通して設けられる内 パイプと、 内外のパイプとの間に形成された真空空間を密閉するとともに内パイ プを保持する蓋と、 真空空間に充填された作動液とを備える熱サイフォン式ヒー トパイプを複数本有する。 1 3. The floor heating device according to claim 1, 2. The heat source includes: an outer pipe; an inner pipe penetrating the outer pipe as a double pipe; a lid for sealing a vacuum space formed between the inner and outer pipes, and holding the inner pipe; It has a plurality of thermosiphon heat pipes including a working fluid filled in a vacuum space.
1 4 . 請求の範囲第 1 2項または第 1 3項に記載の床暖房装置において、 前記断熱パネルおよび前記床板は発泡スチ口ール製である。 14. The floor heating device according to claim 12 or 13, wherein the heat insulating panel and the floor plate are made of foamed steel.
1 5 . 外パイプと、 1 5. Outer pipe and
この外パイプに 2重管として貫通し、 前記外パイプに対して偏心して設けられ ている内パイプと、  An inner pipe that penetrates the outer pipe as a double pipe and is eccentrically provided with respect to the outer pipe;
内外のパイプとの間に形成された真空空間を密閉するとともに内パイプを保持 する蓋と、  A lid for sealing the vacuum space formed between the inner and outer pipes and holding the inner pipe,
真空空間に充填された作動液とを備え、  With a working fluid filled in a vacuum space,
前記蓋を前記外パイプにかしめで固定する熱サイフォン式ヒートパイプ。  A thermosiphon heat pipe in which the lid is caulked and fixed to the outer pipe.
1 6 . 外パイプと、 1 6. Outer pipe and
この外パイプに 2重管として貫通し、 前記外パイプに対して偏心して設けられ ている内パイプと、  An inner pipe that penetrates the outer pipe as a double pipe and is eccentrically provided with respect to the outer pipe;
内外のパイプとの間に形成された真空空間を密閉するとともに内パイプを保持 する蓋と、  A lid for sealing the vacuum space formed between the inner and outer pipes and holding the inner pipe,
真空空間に充填された作動液とを備え、  With a working fluid filled in a vacuum space,
前記蓋を前記外パイプに接着剤で固定する熱サイフォン式ヒートパイプ。  A thermosiphon heat pipe in which the lid is fixed to the outer pipe with an adhesive.
1 7 . 外パイプと、 1 7. Outer pipe and
この外パイプに 2重管として貫通し、 前記外パイプに対して偏心して設けられ ている内パイプと、  An inner pipe that penetrates the outer pipe as a double pipe and is eccentrically provided with respect to the outer pipe;
内外のパイプとの間に形成された真空空間を密閉するとともに内パイプを保持 する蓋と、 真空空間に充填された作動液とを備え、 A lid for sealing the vacuum space formed between the inner and outer pipes and holding the inner pipe, With a working fluid filled in a vacuum space,
前記内パイプは前記外パイプの内周面から内径側に突出する突出部により管路 方向にわたって周方向の一部が支持される熱サイフォン式ヒートパイプ。  A thermosiphon heat pipe, wherein the inner pipe is partially supported in a circumferential direction over a pipe direction by a protruding portion projecting from the inner circumferential surface of the outer pipe to the inner diameter side.
1 8 . 請求の範囲第 1 5項〜第 1 7項のいずれかに記載の熱サイフォン式ヒー 卜パイプにおいて、 18. The thermosiphon heat pipe according to any one of claims 15 to 17,
前記外パイプの表面にセラミックスをコーティングする。  The surface of the outer pipe is coated with ceramics.
1 9 . 外パイプとこの外パイプの内周面から内径側に突出する突出部により周 方向の一部が支持される内パイプとを有する二重管を押出成形により一体に形成 する第 1の工程と、 19. The first method in which a double pipe having an outer pipe and an inner pipe partially supported in the circumferential direction by a protruding portion protruding from the inner circumferential surface of the outer pipe to the inner diameter side is integrally formed by extrusion molding. Process and
前記内パイプの外周面と前記外パイプの内周面との間の所定空間の管路方向両 端部を閉塞部材により閉塞する第 2の工程と、  A second step of closing both ends in a pipe direction of a predetermined space between an outer peripheral surface of the inner pipe and an inner peripheral surface of the outer pipe with a closing member;
この閉塞された所定空間内を真空引きし、 所定の熱輸送媒体を封入する第 3の 工程とを有するヒートパイプの製造方法。  A third step of evacuating the closed predetermined space and enclosing a predetermined heat transport medium.
2 0 . 請求の範囲第 2 0項に記載のヒートパイプの製造方法において、 前記閉塞部材を樹脂成形する工程を有し、 前記第 2の工程は、 前記閉塞部材を 前記二重管の管路方向両端部に接着する。 20. The method for manufacturing a heat pipe according to claim 20, further comprising a step of resin-molding said closing member, wherein said second step includes connecting said closing member to a conduit of said double pipe. Adhere to both ends in the direction.
2 1 . 請求の範囲第 1 9項または第 2 0項に記載のヒートパイプの製造方法に おいて、 21. In the method for manufacturing a heat pipe according to claim 19 or 20,
前記第 1の工程は、 前記外管の外周部に放射状にフィン部材を有するように前 記二重管を押出成型する。  In the first step, the double pipe is extruded so as to radially have a fin member on an outer peripheral portion of the outer pipe.
2 2 . 請求の範囲第 1 9項〜第 2 1項のいずれかに記載の製造方法により製造 されたヒートパイプ。 22. A heat pipe manufactured by the manufacturing method according to any one of claims 19 to 21.
PCT/JP2001/007059 2000-08-18 2001-08-16 Floor heater, thermal siphon heat pipe, and method of manufacturing heat pipe WO2002016832A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002521890A JP3765572B2 (en) 2000-08-18 2001-08-16 Floor heating device, thermosiphon heat pipe, and method of manufacturing heat pipe

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-248668 2000-08-18
JP2000248668 2000-08-18
JP2001-201226 2001-07-02
JP2001201226 2001-07-02

Publications (1)

Publication Number Publication Date
WO2002016832A1 true WO2002016832A1 (en) 2002-02-28

Family

ID=26598099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007059 WO2002016832A1 (en) 2000-08-18 2001-08-16 Floor heater, thermal siphon heat pipe, and method of manufacturing heat pipe

Country Status (2)

Country Link
JP (1) JP3765572B2 (en)
WO (1) WO2002016832A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015098991A (en) * 2013-11-20 2015-05-28 好史 大良 Heat radiation pipe
JP2022501260A (en) * 2018-09-28 2022-01-06 ヴァレオ システム デシュヤージュValeo Systemes D’Essuyage Liquid spray wiper frame for automobile windows and optimization of sealing of this frame

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112211371A (en) * 2020-10-30 2021-01-12 天津大学 Wood structure two-phase closed siphon pipe floor structure

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5176659A (en) * 1974-12-26 1976-07-02 Furukawa Electric Co Ltd HIITOPAI PUNO SEIZOHOHO
JPS51119154A (en) * 1975-04-10 1976-10-19 Matsushita Electric Ind Co Ltd Floor heating system
JPS5810577A (en) * 1981-07-02 1983-01-21 シグマ−タウ・インズストリエ・フアルマチエウチケ・リウニテ・エツセ・ピ・ア Ester of 2-senoylmercaptopropionylglycine, manufacture and medicinal composition
WO1983000544A1 (en) * 1981-08-04 1983-02-17 Manfred Fennesz Installation for tempering a room
JPS6277593A (en) * 1985-09-30 1987-04-09 Toshiba Corp Heat pipe
JPS63152843U (en) * 1987-03-28 1988-10-06
JPH074877A (en) * 1992-03-26 1995-01-10 Osaka Gas Co Ltd Heat pipe
JPH07269886A (en) * 1994-03-25 1995-10-20 Teitai Ri Piping panel for hot water type floor heating apparatus
JPH10238793A (en) * 1997-02-21 1998-09-08 Harman Co Ltd Floor heating panel
JPH1151406A (en) * 1997-08-04 1999-02-26 Junko Harashima Floor heating structure
JP2000171183A (en) * 1998-12-04 2000-06-23 Furukawa Electric Co Ltd:The Method for welding and sealing tube for heat pipe

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5176659A (en) * 1974-12-26 1976-07-02 Furukawa Electric Co Ltd HIITOPAI PUNO SEIZOHOHO
JPS51119154A (en) * 1975-04-10 1976-10-19 Matsushita Electric Ind Co Ltd Floor heating system
JPS5810577A (en) * 1981-07-02 1983-01-21 シグマ−タウ・インズストリエ・フアルマチエウチケ・リウニテ・エツセ・ピ・ア Ester of 2-senoylmercaptopropionylglycine, manufacture and medicinal composition
WO1983000544A1 (en) * 1981-08-04 1983-02-17 Manfred Fennesz Installation for tempering a room
JPS6277593A (en) * 1985-09-30 1987-04-09 Toshiba Corp Heat pipe
JPS63152843U (en) * 1987-03-28 1988-10-06
JPH074877A (en) * 1992-03-26 1995-01-10 Osaka Gas Co Ltd Heat pipe
JPH07269886A (en) * 1994-03-25 1995-10-20 Teitai Ri Piping panel for hot water type floor heating apparatus
JPH10238793A (en) * 1997-02-21 1998-09-08 Harman Co Ltd Floor heating panel
JPH1151406A (en) * 1997-08-04 1999-02-26 Junko Harashima Floor heating structure
JP2000171183A (en) * 1998-12-04 2000-06-23 Furukawa Electric Co Ltd:The Method for welding and sealing tube for heat pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015098991A (en) * 2013-11-20 2015-05-28 好史 大良 Heat radiation pipe
JP2022501260A (en) * 2018-09-28 2022-01-06 ヴァレオ システム デシュヤージュValeo Systemes D’Essuyage Liquid spray wiper frame for automobile windows and optimization of sealing of this frame
JP7210712B2 (en) 2018-09-28 2023-01-23 ヴァレオ システム デシュヤージュ Liquid spray wiper frame for automotive windows and optimization of the sealing of this frame
US11623615B2 (en) 2018-09-28 2023-04-11 Valeo Systèmes d'Essuyage Liquid spraying wiper frame for motor vehicle windows, and optimisation of the sealing of this frame

Also Published As

Publication number Publication date
JP3765572B2 (en) 2006-04-12

Similar Documents

Publication Publication Date Title
US8020783B2 (en) Radiant mat grid
US5743330A (en) Radiant heat transfer panels
US20090026192A1 (en) Electric radiant heating element positioning mats and related methods
JP3183582U (en) Improved heat exchanger system and method
CA2236560C (en) Apparatus and method of attaching radiating plate to holders of modular unit for radiant floor and wall hydronic heating systems
US20200392743A1 (en) Insulating modular panel configuration
US6926077B2 (en) Foldable heat radiating sheet
WO2002016832A1 (en) Floor heater, thermal siphon heat pipe, and method of manufacturing heat pipe
CA1156645A (en) Heat exchangers
US20040074631A1 (en) Dry type heating pipeline structure and construction method thereof
KR101177696B1 (en) Sound insolating pannel and the assembly with a radiant floor heating system
JP2003222345A (en) Hot water type floor heating panel and method for constructing floor heating
KR200394430Y1 (en) A panel assembly for heating
KR200291665Y1 (en) Panel assembly for the korean under-floor heating system
JP4308080B2 (en) Heat exchanger and air conditioning structure of house using the same
JP2005069537A (en) Buried pipe for heat exchange
EP3983620A1 (en) Insulating modular panel configuration
JPH0371612B2 (en)
JP2003035427A (en) Floor/wall surface cooling/heating unit and cooling/ heating structure of house as well as method for installing the same
JP2002146961A (en) Floor structure and execution method for floor
KR200333454Y1 (en) Hot­water heating hypocaust panel of dry process
JP3426021B2 (en) Plumbing panels for hot water floor heating
KR102299894B1 (en) Heating panel assembly for indoor floor
JP2002106862A (en) Heat radiator
JPH0240404Y2 (en)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 521890

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US