WO2009099057A1 - Self-oscillating heat pipe - Google Patents

Self-oscillating heat pipe Download PDF

Info

Publication number
WO2009099057A1
WO2009099057A1 PCT/JP2009/051773 JP2009051773W WO2009099057A1 WO 2009099057 A1 WO2009099057 A1 WO 2009099057A1 JP 2009051773 W JP2009051773 W JP 2009051773W WO 2009099057 A1 WO2009099057 A1 WO 2009099057A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat pipe
self
heating unit
working fluid
excited vibration
Prior art date
Application number
PCT/JP2009/051773
Other languages
French (fr)
Japanese (ja)
Inventor
Kunito Okuyama
Shouji Mori
Original Assignee
National University Corporation Yokohama National University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Yokohama National University filed Critical National University Corporation Yokohama National University
Priority to JP2009552473A priority Critical patent/JP5403617B2/en
Priority to US12/866,550 priority patent/US20100319884A1/en
Priority to CN2009801044112A priority patent/CN101939611B/en
Publication of WO2009099057A1 publication Critical patent/WO2009099057A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Definitions

  • the present invention relates to a self-excited vibration heat pipe. This application claims priority based on Japanese Patent Application No. 2008-029713 for which it applied to Japan on February 8, 2008, and uses the content here.
  • wick heat pipes About 90% of recent notebook personal computers have built-in wick heat pipes. Such a heat pipe has an outer diameter of about 3 mm and a maximum heat transport amount when installed horizontally is about 12 W. However, the wick-type heat pipe has a problem in that the heat transport capability is drastically reduced when the pipe diameter is micronized (smaller diameter).
  • the self-excited vibration type heat pipe that uses a phase change that has a high heat transport capability even when micronized has recently attracted attention.
  • the self-excited vibration type heat pipe of the meandering loop type (the inner diameter is about 0.5 mm to 2 mm), which is a typical example, has the problems that it is necessary to meander many pipes and that it is difficult to operate when installed horizontally. Yes (see Non-Patent Document 1). Takao Nagasaki, “Review on Heat Transport Characteristics of Self-Excited Vibration Heat Pipe”, Heat Transfer, Vol. 44, no. 186, p. 13-17
  • the present invention has been made in view of the above circumstances, and provides a self-excited vibration heat pipe capable of exhibiting high heat transport capability even when installed horizontally without meandering the pipe.
  • One purpose is to provide a self-excited vibration heat pipe capable of exhibiting high heat transport capability even when installed horizontally without meandering the pipe.
  • the present invention employs the following configuration.
  • a heating section having a wick inside; a cooling section filled with a working fluid; a linear section connecting the heating section and the cooling section, and a flow path cut-off smaller than the flow path cross-sectional area of the heating section
  • a connection channel having an area; a liquid plug protruding from the cooling unit into the connection channel and containing the working fluid; and a vapor plug in the heating unit containing the vaporized working fluid; and the liquid plug
  • the self-excited vibration type heat pipe may be configured as follows: the working fluid filled in the cooling unit has a free liquid level that is not constrained by internal pressure.
  • the self-excited vibration type heat pipe may be configured as follows: the cooling unit has an opening, and the opening is provided with an adjustment unit that adjusts the internal volume of the cooling unit. It has been.
  • the self-excited vibration type heat pipe may be configured as follows: a ratio of a cross-sectional area of the heating unit and a cross-sectional area of the connection channel is 10: 1 to 2: 1. It is.
  • the self-excited vibration type heat pipe of the present invention it is possible to provide a self-excited vibration type heat pipe capable of exhibiting a high heat transport ability even when installed horizontally without meandering the pipe.
  • FIG. 1A is a schematic cross-sectional view of a self-excited vibration heat pipe according to an embodiment of the present invention.
  • FIG. 1B is a schematic cross-sectional view of a modification of the self-excited vibration heat pipe.
  • FIG. 1C is a schematic cross-sectional view of a modification of the self-excited vibration heat pipe.
  • FIG. 2 is a diagram for explaining an experimental method of a self-excited vibration heat pipe, and is a schematic diagram showing an experimental apparatus.
  • FIG. 3 is a diagram illustrating a state of occurrence of self-excited vibration in the self-excited vibration type heat pipe of Example 1, and is a graph illustrating a temporal change in temperature at a specific portion of the self-excited vibration type heat pipe.
  • FIG. 1A is a schematic cross-sectional view of a self-excited vibration heat pipe according to an embodiment of the present invention.
  • FIG. 1B is a schematic cross-sectional view of a modification of the self-excited vibration heat pipe
  • FIG. 4 is an enlarged view of FIG.
  • FIG. 5 is a graph showing the relationship between the heat transport rate Q and the effective thermal conductivity ⁇ eff in the self-excited vibration heat pipes of Examples 1-2 and Comparative Examples 1-3.
  • FIG. 6 is a graph showing the relationship between the heat transport rate Q and the effective thermal conductivity ⁇ eff in the self-excited vibration heat pipe of Example 1.
  • FIG. 6 also shows the theoretical value of the thermal conductivity of the prior art heat pipe.
  • 1A to 1C are schematic cross-sectional views of a self-excited vibration heat pipe according to this embodiment.
  • 1A to 1C are diagrams for explaining the structure of the self-excited vibration type heat pipe. The size, thickness, dimensions, etc. of each part shown in the figure may be different from those of the actual self-excited vibration type heat pipe. is there.
  • a self-excited vibration heat pipe 1 shown in FIG. 1A (hereinafter sometimes referred to as a heat pipe 1) includes a working fluid M, a heating unit 2 and a cooling unit 3, a wick 4 built in the heating unit 2, and a heating. It consists of the connection flow path 5 which connects the part 2 and the cooling part 3 roughly.
  • the working fluid M flows from the cooling unit 3 into the connection flow path 5 to form a liquid plug L.
  • the working fluid M is vaporized to form the vapor plug B. Heat conduction is performed by the liquid plug L self-excited in the connection flow path 5.
  • the heat pipe 1 of the present embodiment can be operated in any posture, but it is preferable to install and use it horizontally along the longitudinal direction in terms of increasing the effective thermal conductivity.
  • the heating part 2 is provided with a hollow part 2a communicated with the connection channel 5.
  • a wick 4 is disposed on the inner wall surface of the hollow portion 2a.
  • the cooling unit 3 is a container 3a that fills the working fluid M in the example shown in FIG. 1A.
  • the container 3a is filled with the working fluid M.
  • the working fluid M faces the outside of the heat pipe 1 and forms a free liquid level M1 that is not restricted by the internal pressure of the heat pipe 1.
  • the connection flow path 5 is attached to the side wall of the container 3a.
  • the end of the connection channel 5 on the container 3a side is an open end.
  • the container 3a and the connection channel 5 are communicated with each other by this open end.
  • the heating unit 2 and the connection channel 5 are hollow cylindrical tubes made of ceramics, glass, or metal.
  • One end 1a of the heating unit 2 is provided with a sealing member 1c made of ceramic, glass or metal.
  • the heating unit 2 and the connection channel 5 may each be made of borosilicate glass.
  • the channel cross-sectional area of the connecting channel 5 is smaller than the channel cross-sectional area of the hollow portion 2a of the heating unit 2.
  • the cross-sectional shape of the connecting channel 5 and the hollow part 2a of the heating unit 2 is substantially circular, and the inner diameter of the connecting channel 5 is smaller than the inner diameter of the hollow part 2a of the heating unit 2. .
  • the flow path cross-sectional area of the connection flow path 5 is smaller than the hollow part 2a of the heating part 2.
  • the flow path cross-sectional area ratio, the inner diameter ratio, or the inner diameter of the heating unit 2 is smaller than the above range, the evaporation amount of the heating unit 2 cannot be obtained sufficiently, or the heating unit 2 has a low liquid holding capacity, and thus is empty. Since it will be in a state, it is not preferable.
  • the flow path cross-sectional area ratio, the inner diameter ratio, or the inner diameter of the heating unit 2 exceeds the above range, the amount of fluid retained in the heating unit 2 increases, and the time from when heating is started until evaporation occurs is increased.
  • the low temperature working fluid flows from the cooling unit 3, the evaporation stops, and the self-excited vibration stops, and the time until the evaporation starts again by heating increases. .
  • the heating section 2 and the connecting flow path 5 have different inner diameters, and the outer diameters are also different because the thicknesses are almost equal.
  • the flange part 9 is formed in the junction part 8 of the heating part 2 and the connection flow path 5.
  • the heating unit 2 and the connection channel 5 are joined to each other through the flange portion 9.
  • this configuration is merely an example.
  • the inner diameters of the heating unit 2 and the connection channel 5 are made different from each other, the wall thickness of the connection channel 5 is increased to make both outer diameters substantially equal, The end face of the heating unit 2 may be joined.
  • the inner diameters of the heating unit 2 and the connection flow path 5 change abruptly with the joint 8 as a boundary.
  • the present invention is not limited to this, and the heating unit 2 and the connection flow are connected.
  • the inner diameter of the path 5 may be gradually changed in the vicinity of the joint 8.
  • connection channel 5 is formed in a straight line between the heating unit 2 and the cooling unit 3.
  • connection flow path 5 which concerns on this invention does not need to be made into a loop shape, and the working fluid M should just oscillate the inside of the linear connection flow path 5 at the time of the operation
  • the straight shape means that the tube is not bent into a loop shape as in the prior art but has a single tube structure.
  • the connecting flow path 5 is preferably substantially linear, but may be somewhat curved as long as self-excited vibration is generated. The vibration amplitude at the time of self-excited vibration of the working fluid M depends on the shape and size of the connection channel 5.
  • the inner diameter of the heating unit 2 is 5 mm
  • the inner diameter of the connection channel 5 is 2 mm
  • the connection channel 4 is 4 mm
  • the vibration amplitude becomes as large as about ⁇ 25 to ⁇ 50 mm. What is necessary is just to design the length of the heating part 2 and the connection flow path 5 suitably according to said vibration amplitude.
  • the wick 4 may be a conventionally known wick as long as it can transport a liquid working fluid by capillary action.
  • the wick 4 may be, for example, a metal net excellent in thermal conductivity such as copper, a cotton-like body such as glass wool, absorbent cotton, or the like.
  • the wick 4 may be filled in the entire region in the longitudinal direction of the heating unit 2. Or, one end of the wick 4 coincides with the joint 8 between the heating unit 2 and the connecting channel 5 so that the wick 4 is part of the longitudinal direction of the heating unit 2 (for example, about 2/3 of the entire length in the longitudinal direction). It may be filled only.
  • the working fluid M may be appropriately selected according to the operating temperature of the heat pipe 1.
  • the working fluid M is preferably pure water, an organic liquid such as ethanol, a refrigerant such as Freon, or a liquefied gas such as ammonia.
  • the connection flow path 5 and the heating unit 2 Prior to the operation of the heat pipe 1, it is preferable that the connection flow path 5 and the heating unit 2 are completely filled with the working fluid degassed in advance.
  • the working fluid M filled in the heating part 2 is vaporized to form the vapor plug B.
  • the working fluid M is pushed out of the heating unit 2 by the steam plug B.
  • the working fluid M remains in the connection channel 5 to form a liquid plug L.
  • the heat pipe 1 includes a working fluid M and a linear connection channel 5 that is disposed between the heating unit 2 and the cooling unit 3 and through which the working fluid M flows.
  • the flow channel cross-sectional area of the connection flow channel 5 is smaller than the flow channel cross-sectional area of the heating unit 2, and the heating unit 2 is provided with a wick 4.
  • the effective thermal conductivity and the maximum heat transport amount can be significantly increased as compared with the conventional self-excited vibration heat pipe.
  • the working fluid M can be stably evaporated in the heating unit 2, and as a result, the effective thermal conductivity and the maximum heat transport amount can be further increased. it can.
  • the heat pipe 1 can stably maintain the self-excited vibration when installed horizontally. Furthermore, according to said heat pipe 1, the heating part 2 and the connection flow path 5 are directly connected with each other. For this reason, a part of the liquid is supplied to the heating unit 2 every time the meniscus M at the tip of the liquid plug L comes to the joint 8 between the heating unit 2 and the connection channel 5. Accordingly, the working fluid can be held in the heating unit 2 to always evaporate. As a result, the working fluid can be stably self-excited and the effective thermal conductivity and the maximum heat transport amount can be increased.
  • the heat pipe 1 described above has sufficiently high performance, but if it is desired to increase the amount of heat transport, the number of pipes may be increased as necessary, and the thermal design becomes easy.
  • the conventional meandering loop type heat pipe could not exhibit the required performance unless meandering many times, but according to the above heat pipe, it is linear without meandering.
  • said heat pipe 1 can be used suitably for cooling of electronic elements, such as CPU.
  • FIG. 1B shows another example of a heat pipe.
  • the difference between the heat pipe 31 and the heat pipe 1 shown in FIG. 1A is the configuration of the cooling unit.
  • the cooling part 33 of the heat pipe 31 shown in FIG. 1B is a hollow cylindrical glass tube 33a made of borosilicate glass.
  • the inner diameter of the cooling unit 33 is larger than that of the connection channel 5.
  • An opening 33 b is provided at one end of the glass tube 33 a, and the opening 33 b is sealed with a rubber film (adjustment unit) 34.
  • the working fluid is filled in the cooling unit 33.
  • a heat radiating fin 35 is provided on the outer periphery of the cooling unit 33.
  • a part of the liquid plug L is pushed out to the cooling unit 33 when the vapor plug B is formed and self-excited vibration is generated, but the rubber film 34 provided in the cooling unit 33.
  • the internal volume of the cooling part is substantially increased, and the volume of the extruded liquid plug L can be absorbed.
  • a rubber film is used as the adjustment unit, but a diaphragm may be used instead.
  • FIG. 1C shows still another example of the heat pipe.
  • the difference between the heat pipe 41 and the heat pipe 31 shown in FIG. 1B is the position of the adjusting unit provided in the cooling unit.
  • the cooling part 43 of the heat pipe 41 shown in FIG. 1C is a hollow cylindrical glass tube 43a with one end made of borosilicate glass closed.
  • the inner diameter of the cooling unit 43 is larger than that of the connection channel 5.
  • An opening 43b is provided on the side surface of the glass tube 43a.
  • the opening 43 b is sealed with a rubber film (adjustment unit) 44.
  • the working fluid is filled in the cooling unit 43.
  • a heat dissipating fin 45 is provided on the outer periphery of the cooling unit 43.
  • Example 1 The characteristics of the heat pipe were evaluated by the experimental apparatus shown in FIG. First, prepare a glass tube 13 to be a connecting flow path 5 made of borosilicate glass having an inner diameter of 2 mm and a length of 250 mm, and a glass tube 12 to be a heating unit 2 made of borosilicate glass having an inner diameter of 5 mm and a length of 150 mm. Glass tubes 12 and 13 were fused. Next, a wick 14 made of copper mesh was attached to the inner wall of the glass tube 12. The wick 14 was mounted between 100 mm from the fused part. The portion where the wick 14 was mounted was designated as the heating unit 2.
  • the one end portion 11a was sealed with a sealing member 11c made of borosilicate glass.
  • the open end 11b of the glass tube 13 serving as the connection channel was immersed in the water bath 21 to fill the interiors of the glass tubes 12 and 13 with pure water serving as the working fluid 20.
  • the heat pipe 11 of Example 1 was manufactured.
  • the heater 22 was attached to the heating part 2 of the heat pipe 11 over a length L of 50 mm, and the heat pipe 11 was installed almost horizontally. Further, the portion immersed in the water bath 21 was used as the cooling unit 3 of the heat pipe 11. And the temperature of the cooling water 21a in the water bath 21 was maintained at 0 degreeC. On the other hand, the heat generation amount of the heater 22 was set to such an extent that the temperature of the heating part was kept at the boiling point of pure water of 100 ° C., and the heat pipe 11 was operated. After the heat pipe 11 was in a steady state (maximum heat transport amount 50 W), the surface temperature of each part of the heat pipe 11 and the temperature of the cooling water 21a of the water bath 21 were measured with thermocouples. The results are shown in FIGS.
  • the temperature at the measurement location TC1 is the temperature of the heating unit 2 and is the surface temperature on the one end 11a side of the heater 22 mounting portion.
  • the temperature of the measurement location TC2 is the temperature of the heating unit 2 and the surface temperature on the other end 11b side of the heater 22 mounting portion.
  • the temperature of the measurement location TC3 is the water temperature of the cooling water 22a.
  • the temperature of the measurement location TC4 is the water temperature immediately after the exit of the open end 11b.
  • TC1 and TC2 are maintained at about 100 ° C.
  • TC3 is maintained at about 0 ° C.
  • TC4 has a peak periodically.
  • the peak maximum temperature is about 10 ° C.
  • the peak frequency is 5 Hz.
  • the amplitude width of the working fluid 20 is 100 mm ( ⁇ 50 mm) at the maximum.
  • [rho density of the working fluid 20 (pure water)
  • c p is the specific heat at constant pressure of the working fluid 20 (pure water)
  • V is the enclosed amount of the working fluid 20
  • [Delta] T Is the amount of increase during the time ⁇ t of the water temperature of the cooling section.
  • L ⁇ 2 is the total length of the entire length of the connection channel and one half of the total length of the heating unit
  • T H is the temperature of the heating unit
  • T L is in the water bath.
  • D ⁇ 2 is the inner diameter of the connection channel.
  • Example 2 Next, a heat pipe of Example 2 was manufactured in the same manner as Example 1 except that the material of the heating side pipe and the cooling side pipe was quartz glass. Then, in the same manner as in Example 1, the relationship between the heat transport rate Q of the heat pipe of Example 2 and the effective thermal conductivity ⁇ eff was examined. The results are shown in FIG.
  • the heat pipe of Example 1 has a maximum heat transport rate of 33 W and an effective thermal conductivity ⁇ eff of 36000 W / (m ⁇ K) at the maximum.
  • the heat pipe of Example 2 has the same effective thermal conductivity ⁇ eff at the same heat transport speed as that of Example 1.
  • the heat pipes of Comparative Examples 1 to 3 have a maximum heat transport rate of 10 W or less and an effective thermal conductivity ⁇ eff of about 100 W / (m ⁇ K) at the maximum, which is higher than that of Examples 1 and 2. It can be seen that the transport speed Q and the effective thermal conductivity ⁇ eff are greatly reduced.
  • a self-excited vibration type heat pipe can be constructed by joining two pipes having different inner diameters and enclosing a working fluid in the hollow part of the pipe. It can be seen that self-excited vibration can be developed even when installed.
  • the correlation between the heat transport rate and the effective thermal conductivity ⁇ eff increases and increases linearly. I understand.
  • the effective thermal conductivity increased to a maximum of about 40000 W / (m ⁇ K), but this value was reduced to copper having a relatively high thermal conductivity (thermal conductivity 400 W / (m ⁇ K). )), It can be seen that the effective thermal conductivity is increased up to 100 times.
  • the temperature (TC1, TC2) of the heating part maintains the vicinity of the boiling point of the working fluid (pure water). Since pure water was used this time, the temperature of the heating unit was close to 100 ° C. However, if an appropriate working fluid is selected according to the allowable temperature of the object to be cooled, efficient heat conduction can be realized. In Example 1 above, the maximum value of the effective thermal conductivity was about 40000 W / (m ⁇ K) and the maximum value of the heat transport rate was about 50 W, but these values are not limit values. Even better results may be obtained by changing the experimental conditions.
  • FIG. 6 is a comparison diagram between experimental values of heat transport characteristics of the heat pipe of Example 1 and theoretical values of heat transport characteristics of the heat pipe (dream pipe) of the prior art.
  • the relationship between Q and effective thermal conductivity (lambda) eff is shown.
  • This conventional heat pipe is a type of heat pipe (dream pipe) that transports heat in the axial direction by forcibly vibrating a liquid in the pipe.
  • the effective thermal conductivity ⁇ eff of the dream pipe was calculated from the following formulas (3) and (4).
  • thermal conductivity of fluid
  • Pr Prandtl number
  • r pipe inner diameter
  • kinematic viscosity of water
  • f frequency
  • S amplitude.
  • This prior art dream pipe is a single-diameter pipe type that does not have a connecting channel 5 having a smaller diameter than the heating unit 2.
  • the effective thermal conductivity of the heat pipe of Example 1 is as large as about 10 times that of the conventional dream pipe.
  • One of the causes of this effect is that in the heat pipe of the first embodiment, the open end 11b of the glass tube 13 is opened in the water tank, so that the working fluid M in the glass tube 13 is vibrated every time the working fluid M vibrates. Is considered to be replaced with a low-temperature liquid in the water bath 21.
  • the self-excited vibration type heat pipe of the present invention it is possible to provide a self-excited vibration type heat pipe that can exhibit high heat transport capability even when installed horizontally without meandering the pipe.

Abstract

A self-oscillating heat pipe includes: a heating unit having a wick inside; a cooling unit filled with a work fluid; a connection channel which has a smaller channel cross section area than that of the heating unit and rectilinearly connects the heating unit to the cooling unit; a liquid plug protruding from the cooling unit into the connection channel and containing the work fluid; and a vapor plug in the heating unit containing the vaporized work fluid. The fluid plug oscillates by itself in the connection channel.

Description

自励振動型ヒートパイプSelf-excited vibration heat pipe
 本発明は、自励振動型ヒートパイプに関する。
 本願は、2008年2月8日に、日本に出願された特願2008-029713号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a self-excited vibration heat pipe.
This application claims priority based on Japanese Patent Application No. 2008-029713 for which it applied to Japan on February 8, 2008, and uses the content here.
 近年、電子機器の小型化、高集積化に伴って、半導体素子等の発熱密度が急増しており、効率的な熱除去手法の確立が急務となっている。しかし、例えばノート型のパーソナルコンピュータ等の電子機器の小型化が進むと、熱源である中央演算装置(CPU)の直上に大型のヒートシンクを設置するスペースが確保できなくなる。このような場合には、ヒートシンクを設置可能な場所まで発生した熱を輸送する輸送する必要が生じる。このようなことから、現状ではウィック式ヒートパイプが熱輸送手段として利用されている。 In recent years, with the miniaturization and high integration of electronic devices, the heat generation density of semiconductor elements and the like has increased rapidly, and the establishment of an efficient heat removal method has become an urgent task. However, as electronic devices such as notebook personal computers become smaller, it becomes impossible to secure a space for installing a large heat sink directly above a central processing unit (CPU) that is a heat source. In such a case, it is necessary to transport the generated heat to a place where the heat sink can be installed. For this reason, at present, wick-type heat pipes are used as heat transport means.
 最近のノート型のパーソナルコンピュータの約90%には、ウイック式ヒートパイプが内蔵されている。このようなヒートパイプは、外径約3mm、水平に設置した場合の最大熱輸送量は12W程度のものである。しかし、ウィック式ヒートパイプは、管径をマイクロ化(小径化)すると急激に熱輸送能力が低下するという問題がある。 About 90% of recent notebook personal computers have built-in wick heat pipes. Such a heat pipe has an outer diameter of about 3 mm and a maximum heat transport amount when installed horizontally is about 12 W. However, the wick-type heat pipe has a problem in that the heat transport capability is drastically reduced when the pipe diameter is micronized (smaller diameter).
 そこで、マイクロ化しても高い熱輸送能力を有す相変化を利用した自励振動型のヒートパイプが最近注目されている。しかし、その代表例である蛇行ループ式の自励振動型ヒートパイプ(内径0.5mm~2mm程度)は、多くの管を蛇行させる必要があること、水平設置すると作動しにくいなどの間題がある(非特許文献1参照)。
長崎孝夫、「自励振動ヒートパイプの熱輸送特性に関するレビュー」、伝熱、Vol.44、No.186、p.13-17
Therefore, a self-excited vibration type heat pipe that uses a phase change that has a high heat transport capability even when micronized has recently attracted attention. However, the self-excited vibration type heat pipe of the meandering loop type (the inner diameter is about 0.5 mm to 2 mm), which is a typical example, has the problems that it is necessary to meander many pipes and that it is difficult to operate when installed horizontally. Yes (see Non-Patent Document 1).
Takao Nagasaki, "Review on Heat Transport Characteristics of Self-Excited Vibration Heat Pipe", Heat Transfer, Vol. 44, no. 186, p. 13-17
 本発明は、上記事情に鑑みてなされたものであって、管を蛇行させることなく、水平設置しても高い熱輸送能力を発揮することが可能な自励振動型ヒートパイプを提供することを一つの目的とする。 The present invention has been made in view of the above circumstances, and provides a self-excited vibration heat pipe capable of exhibiting high heat transport capability even when installed horizontally without meandering the pipe. One purpose.
 上記の目的を達成するために、本発明は以下の構成を採用した。
(1) 内部にウイックを持つ加熱部と;作動流体が満たされた冷却部と;前記加熱部及び前記冷却部を直線状に連結し、前記加熱部の流路断面積よりも小さな流路断面積を有する連結流路と;前記冷却部から前記連結流路内に突出し、前記作動流体を含む液プラグと;気化した前記作動流体を含む前記加熱部内の蒸気プラグと;を備え、前記液プラグが前記連結流路内で自励振動することを特徴とする自励振動型ヒートパイプ。
(2) 上記の自励振動型ヒートパイプは、以下のように構成してもよい:前記冷却部に満たされた前記作動流体が、内圧に束縛されない自由液面を持つ。
(3) 上記の自励振動型ヒートパイプは、以下のように構成してもよい:前記冷却部が開口部を持ち、前記開口部には前記冷却部の内容積を調整する調整部が設けられている。
(4) 上記の自励振動型ヒートパイプは、以下のように構成してもよい:前記加熱部の断面積と、前記連結流路の断面積との比が、10:1~2:1である。
In order to achieve the above object, the present invention employs the following configuration.
(1) A heating section having a wick inside; a cooling section filled with a working fluid; a linear section connecting the heating section and the cooling section, and a flow path cut-off smaller than the flow path cross-sectional area of the heating section A connection channel having an area; a liquid plug protruding from the cooling unit into the connection channel and containing the working fluid; and a vapor plug in the heating unit containing the vaporized working fluid; and the liquid plug Is a self-excited vibration type heat pipe characterized by self-excited vibration in the connecting flow path.
(2) The self-excited vibration type heat pipe may be configured as follows: the working fluid filled in the cooling unit has a free liquid level that is not constrained by internal pressure.
(3) The self-excited vibration type heat pipe may be configured as follows: the cooling unit has an opening, and the opening is provided with an adjustment unit that adjusts the internal volume of the cooling unit. It has been.
(4) The self-excited vibration type heat pipe may be configured as follows: a ratio of a cross-sectional area of the heating unit and a cross-sectional area of the connection channel is 10: 1 to 2: 1. It is.
 本発明の自励振動型ヒートパイプによれば、管を蛇行させることなく、水平設置しても高い熱輸送能力を発揮することが可能な自励振動型ヒートパイプを提供できる。 According to the self-excited vibration type heat pipe of the present invention, it is possible to provide a self-excited vibration type heat pipe capable of exhibiting a high heat transport ability even when installed horizontally without meandering the pipe.
図1Aは、本発明の一実施形態に係る自励振動型ヒートパイプの断面模式図である。FIG. 1A is a schematic cross-sectional view of a self-excited vibration heat pipe according to an embodiment of the present invention. 図1Bは、上記自励振動型ヒートパイプの変形例の断面模式図である。FIG. 1B is a schematic cross-sectional view of a modification of the self-excited vibration heat pipe. 図1Cは、上記自励振動型ヒートパイプの変形例の断面模式図である。FIG. 1C is a schematic cross-sectional view of a modification of the self-excited vibration heat pipe. 図2は、自励振動型ヒートパイプの実験方法を説明する図であって、実験装置を示す模式図である。FIG. 2 is a diagram for explaining an experimental method of a self-excited vibration heat pipe, and is a schematic diagram showing an experimental apparatus. 図3は、実施例1の自励振動型ヒートパイプにおける自励振動の発生状況を示す図であって、自励振動型ヒートパイプの特定箇所における温度の経時変化を示すグラフである。FIG. 3 is a diagram illustrating a state of occurrence of self-excited vibration in the self-excited vibration type heat pipe of Example 1, and is a graph illustrating a temporal change in temperature at a specific portion of the self-excited vibration type heat pipe. 図4は、図3の拡大図である。FIG. 4 is an enlarged view of FIG. 図5は、実施例1~2及び比較例1~3の自励振動型ヒートパイプにおける熱輸送速度Qと有効熱伝導率λeffとの関係を示すグラフである。FIG. 5 is a graph showing the relationship between the heat transport rate Q and the effective thermal conductivity λ eff in the self-excited vibration heat pipes of Examples 1-2 and Comparative Examples 1-3. 図6は、実施例1の自励振動型ヒートパイプにおける熱輸送速度Qと有効熱伝導率λeffとの関係を示すグラフである。図6は、また、従来技術のヒートパイプの熱伝導率の理論値も示す。FIG. 6 is a graph showing the relationship between the heat transport rate Q and the effective thermal conductivity λ eff in the self-excited vibration heat pipe of Example 1. FIG. 6 also shows the theoretical value of the thermal conductivity of the prior art heat pipe.
符号の説明Explanation of symbols
1 ヒートパイプ(自励振動型ヒートパイプ)
2 加熱部
3,33,43 冷却部
4 ウイック
5 連結流路
33b,43b 開口部
34,44 調整部
B 蒸気プラグ
L 液プラグ
M 作動流体
M1 自由液面
1 Heat pipe (Self-excited vibration type heat pipe)
2 Heating part 3, 33, 43 Cooling part 4 Wick 5 Connection flow path 33b, 43b Opening part 34, 44 Adjustment part B Steam plug L Liquid plug M Working fluid M1 Free liquid level
 以下、本発明の実施の形態を図面を参照して説明する。図1A~Cは、本実施形態の自励振動型ヒートパイプの断面模式図である。尚、図1A~Cは自励振動型ヒートパイプの構造を説明するための図であり、図示される各部の大きさや厚さや寸法等は、実際の自励振動型ヒートパイプとは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1A to 1C are schematic cross-sectional views of a self-excited vibration heat pipe according to this embodiment. 1A to 1C are diagrams for explaining the structure of the self-excited vibration type heat pipe. The size, thickness, dimensions, etc. of each part shown in the figure may be different from those of the actual self-excited vibration type heat pipe. is there.
 図1Aに示す自励振動型ヒートパイプ1(以下、ヒートパイプ1という場合がある)は、作動流体Mと、加熱部2及び冷却部3と、加熱部2に内蔵されたウイック4と、加熱部2及び冷却部3を連結する連結流路5とから概略構成されている。
 このヒートパイプ1では、連結流路5内に冷却部3から作動流体Mが流入して液プラグLが形成される。また、加熱部2において、作動流体Mが気化されて蒸気プラグBが形成される。液プラグLが連結流路5内を自励振動することによって熱伝導が行われる。
 なお、本実施形態のヒートパイプ1は、どのような姿勢でも作動可能だが、長手方向に沿って水平に設置して使用することが有効熱伝導率を高くできる点で好ましい。
A self-excited vibration heat pipe 1 shown in FIG. 1A (hereinafter sometimes referred to as a heat pipe 1) includes a working fluid M, a heating unit 2 and a cooling unit 3, a wick 4 built in the heating unit 2, and a heating. It consists of the connection flow path 5 which connects the part 2 and the cooling part 3 roughly.
In the heat pipe 1, the working fluid M flows from the cooling unit 3 into the connection flow path 5 to form a liquid plug L. In the heating unit 2, the working fluid M is vaporized to form the vapor plug B. Heat conduction is performed by the liquid plug L self-excited in the connection flow path 5.
Note that the heat pipe 1 of the present embodiment can be operated in any posture, but it is preferable to install and use it horizontally along the longitudinal direction in terms of increasing the effective thermal conductivity.
 加熱部2には、連結流路5に連通された中空部2aが設けられている。この中空部2aの内壁面にウイック4が配置されている。また、冷却部3は、図1Aに示す例では作動流体Mを満たす容器3aである。この容器3aに作動流体Mが満たされる。また作動流体Mはヒートパイプ1の外部に面し、ヒートパイプ1の内圧に束縛されない、自由液面M1を形成する。また、容器3aの側壁に連結流路5が取り付けられる。連結流路5の容器3a側の端部は開放端である。この開放端により容器3aと連結流路5とが連通されている。 The heating part 2 is provided with a hollow part 2a communicated with the connection channel 5. A wick 4 is disposed on the inner wall surface of the hollow portion 2a. The cooling unit 3 is a container 3a that fills the working fluid M in the example shown in FIG. 1A. The container 3a is filled with the working fluid M. The working fluid M faces the outside of the heat pipe 1 and forms a free liquid level M1 that is not restricted by the internal pressure of the heat pipe 1. Moreover, the connection flow path 5 is attached to the side wall of the container 3a. The end of the connection channel 5 on the container 3a side is an open end. The container 3a and the connection channel 5 are communicated with each other by this open end.
 加熱部2及び連結流路5は、セラミックス、ガラスまたは金属で構成された中空円筒状の管である。加熱部2の一端部1aには、セラミックス、ガラスまたは金属で構成された封止部材1cが備えられている。特に、本実施形態では、加熱部2及び連結流路5をそれぞれ、ホウケイ酸ガラスで構成するとよい。 The heating unit 2 and the connection channel 5 are hollow cylindrical tubes made of ceramics, glass, or metal. One end 1a of the heating unit 2 is provided with a sealing member 1c made of ceramic, glass or metal. In particular, in the present embodiment, the heating unit 2 and the connection channel 5 may each be made of borosilicate glass.
 連結流路5の流路断面積は、加熱部2の中空部2aの流路断面積よりも小さい。図1A~Cに示す例では、連結流路5及び加熱部2の中空部2aの断面形状が略円形であり、連結流路5の内径が、加熱部2の中空部2aの内径よりも小さい。これにより、連結流路5の流路断面積が加熱部2の中空部2aよりも小さい。 The channel cross-sectional area of the connecting channel 5 is smaller than the channel cross-sectional area of the hollow portion 2a of the heating unit 2. In the example shown in FIGS. 1A to 1C, the cross-sectional shape of the connecting channel 5 and the hollow part 2a of the heating unit 2 is substantially circular, and the inner diameter of the connecting channel 5 is smaller than the inner diameter of the hollow part 2a of the heating unit 2. . Thereby, the flow path cross-sectional area of the connection flow path 5 is smaller than the hollow part 2a of the heating part 2.
 加熱部の中空部2aの流路断面積と、連結流路5の流路断面積との比は、例えば、加熱部:連結流路=10:1~2:1の範囲が好ましい。
 より具体的にパソコンのCPUの水冷に適用する場合で説明すると、加熱部の中空部2aの内径は3mm~6mmの範囲が好ましく、また、連結流路5の内径は0.5mm~3mmの範囲が好ましい。
The ratio of the channel cross-sectional area of the hollow portion 2a of the heating unit to the channel cross-sectional area of the connection channel 5 is preferably, for example, in the range of heating unit: connection channel = 10: 1 to 2: 1.
More specifically, in the case of application to water cooling of a CPU of a personal computer, the inner diameter of the hollow part 2a of the heating part is preferably in the range of 3 mm to 6 mm, and the inner diameter of the connection channel 5 is in the range of 0.5 mm to 3 mm. Is preferred.
 加熱部2の流路断面積比、内径比または内径が上記の範囲よりも小さくなると、加熱部2の蒸発量が十分に得られず、あるいは加熱部2の液保持能力が低いために空だき状態になるので好ましくない。また、加熱部2の流路断面積比、内径比または内径が上記の範囲を超えると、加熱部2内の流体の保有量が多くなり、加熱を開始してから蒸発が生じるまでの時間が長くなり、また、冷却部3から低温の作動流体が流れこんだ場合に蒸発が停止し、それにより自励振動が停止して、再度加熱により蒸発が開始するまでの時間が長くなるので好ましくない。 If the flow path cross-sectional area ratio, the inner diameter ratio, or the inner diameter of the heating unit 2 is smaller than the above range, the evaporation amount of the heating unit 2 cannot be obtained sufficiently, or the heating unit 2 has a low liquid holding capacity, and thus is empty. Since it will be in a state, it is not preferable. Moreover, when the flow path cross-sectional area ratio, the inner diameter ratio, or the inner diameter of the heating unit 2 exceeds the above range, the amount of fluid retained in the heating unit 2 increases, and the time from when heating is started until evaporation occurs is increased. When the low temperature working fluid flows from the cooling unit 3, the evaporation stops, and the self-excited vibration stops, and the time until the evaporation starts again by heating increases. .
 また、加熱部2と連結流路5は、内径が相互に異なり、各肉厚がほぼ等しくなっているために外径も異なっている。このため、加熱部2と連結流路5との接合部8にはフランジ部9が形成される。このフランジ部9を介して加熱部2と連結流路5とが相互に接合されている。但し、この構成はあくまで一例である。別の例として、例えば、加熱部2及び連結流路5の内径を相互に異ならしめ、連結流路5の肉厚を厚くして両方の外径をほぼ等しくし、連結流路5の端面に加熱部2の端面を接合させてもよい。 Also, the heating section 2 and the connecting flow path 5 have different inner diameters, and the outer diameters are also different because the thicknesses are almost equal. For this reason, the flange part 9 is formed in the junction part 8 of the heating part 2 and the connection flow path 5. The heating unit 2 and the connection channel 5 are joined to each other through the flange portion 9. However, this configuration is merely an example. As another example, for example, the inner diameters of the heating unit 2 and the connection channel 5 are made different from each other, the wall thickness of the connection channel 5 is increased to make both outer diameters substantially equal, The end face of the heating unit 2 may be joined.
 また、図1A~Cに示す例では、接合部8を境にして加熱部2と連結流路5との内径が急に変化するが、本発明はこれに限らず、加熱部2及び連結流路5の内径を接合部8の近辺において漸次変化させるようにしてもよい。 In the example shown in FIGS. 1A to 1C, the inner diameters of the heating unit 2 and the connection flow path 5 change abruptly with the joint 8 as a boundary. However, the present invention is not limited to this, and the heating unit 2 and the connection flow are connected. The inner diameter of the path 5 may be gradually changed in the vicinity of the joint 8.
 連結流路5は、図1A~Cに示すように、加熱部2と冷却部3との間において直線状に形成されている。また、本発明に係る連結流路5は、ループ状にする必要はなく、ヒートパイプ1の作動時に作動流体Mが直線状の連結流路5内を往復振動できればよい。ここで直線状とは、従来のようなループ状に屈曲させるものではなく単管構造であることを意味する。連結流路5は、ほぼ直線状であることが好ましいが、自励振動が生じる範囲であれば、多少の湾曲などがあってもよい。
 作動流体Mの自励振動時の振動振幅は、連結流路5の形状や大きさによるが、例えば、加熱部2の内径を5mmとし、連結流路5の内径を2mmとし、連結流路4の長さを150mmとして加熱部2を加熱した場合の振動振幅は、±25~±50mm程度と非常に大きくなる。加熱部2及び連結流路5の長さは、上記の振動振幅に合わせて適宜設計すればよい。
As shown in FIGS. 1A to 1C, the connection channel 5 is formed in a straight line between the heating unit 2 and the cooling unit 3. Moreover, the connection flow path 5 which concerns on this invention does not need to be made into a loop shape, and the working fluid M should just oscillate the inside of the linear connection flow path 5 at the time of the operation | movement of the heat pipe 1. Here, the straight shape means that the tube is not bent into a loop shape as in the prior art but has a single tube structure. The connecting flow path 5 is preferably substantially linear, but may be somewhat curved as long as self-excited vibration is generated.
The vibration amplitude at the time of self-excited vibration of the working fluid M depends on the shape and size of the connection channel 5. For example, the inner diameter of the heating unit 2 is 5 mm, the inner diameter of the connection channel 5 is 2 mm, and the connection channel 4. When the heating section 2 is heated with a length of 150 mm, the vibration amplitude becomes as large as about ± 25 to ± 50 mm. What is necessary is just to design the length of the heating part 2 and the connection flow path 5 suitably according to said vibration amplitude.
 ウイック4は、毛細管現象によって液状の作動流体を輸送できるものであれば従来公知のウイックでよい。ウイック4は、例えば銅などの熱伝導性に優れた金属網、グラスウール、脱脂綿等の綿状体等でよい。また、ウイック4は、加熱部2の長手方向全部の領域に充填されていてもよい。あるいは、ウイック4の一端が加熱部2と連結流路5との接合部8に一致するようにしてウイック4が加熱部2の長手方向の一部(例えば長手方向全長の2/3程度)にのみ充填されていてもよい。 The wick 4 may be a conventionally known wick as long as it can transport a liquid working fluid by capillary action. The wick 4 may be, for example, a metal net excellent in thermal conductivity such as copper, a cotton-like body such as glass wool, absorbent cotton, or the like. Moreover, the wick 4 may be filled in the entire region in the longitudinal direction of the heating unit 2. Or, one end of the wick 4 coincides with the joint 8 between the heating unit 2 and the connecting channel 5 so that the wick 4 is part of the longitudinal direction of the heating unit 2 (for example, about 2/3 of the entire length in the longitudinal direction). It may be filled only.
 作動流体Mは、ヒートパイプ1の作動温度に合わせて適宜選択すればよい。作動流体Mは、例えば、純水、エタノールなどの有機液体、フロンなどの冷媒、アンモニアなどの液化ガス等が好ましい。
 ヒートパイプ1の作動前には、連結流路5及び加熱部2に、予め脱気された作動流体を完全に満たしておくことが好ましい。ヒートパイプ1の加熱部2を加熱することにより、加熱部2に満たされた作動流体Mが気化して蒸気プラグBが形成される。この蒸気プラグBによって作動流体Mが加熱部2から押し出される。作動流体Mは、連結流路5に残って液プラグLを形成する。その後、定常状態に至ると、液プラグLの先端のメニスカスMにおいて、作動流体Mの蒸発と凝縮とが交互に起こる。このため、連結流路5内で液プラグLが自励振動する。連結流路5を目視すると、蒸気プラグBと液プラグLとの気液界面となるメニスカスMが、連結流路5内を往復振動していることが確認でき、これによって自励振動の有無を判定できる。
 また、蒸気プラグBの形成時及び自励振動の発生時において、液プラグLの一部が冷却部3(容器3a)に押し出されるが、容器3aに満たされた作動流体Mは自由液面M1を有するので、押し出された液プラグLを吸収できる。
The working fluid M may be appropriately selected according to the operating temperature of the heat pipe 1. The working fluid M is preferably pure water, an organic liquid such as ethanol, a refrigerant such as Freon, or a liquefied gas such as ammonia.
Prior to the operation of the heat pipe 1, it is preferable that the connection flow path 5 and the heating unit 2 are completely filled with the working fluid degassed in advance. By heating the heating part 2 of the heat pipe 1, the working fluid M filled in the heating part 2 is vaporized to form the vapor plug B. The working fluid M is pushed out of the heating unit 2 by the steam plug B. The working fluid M remains in the connection channel 5 to form a liquid plug L. Thereafter, when the steady state is reached, evaporation and condensation of the working fluid M occur alternately in the meniscus M at the tip of the liquid plug L. For this reason, the liquid plug L self-excites in the connection flow path 5. When the connection flow path 5 is visually observed, it can be confirmed that the meniscus M, which is the gas-liquid interface between the steam plug B and the liquid plug L, reciprocates in the connection flow path 5, thereby confirming the presence or absence of self-excited vibration. Can be judged.
In addition, when the steam plug B is formed and when self-excited vibration occurs, a part of the liquid plug L is pushed out to the cooling unit 3 (container 3a), but the working fluid M filled in the container 3a is free liquid level M1. Therefore, the extruded liquid plug L can be absorbed.
 上記のヒートパイプ1は、作動流体Mと、加熱部2と冷却部3との間に配されて作動流体Mが流通する直線状の連結流路5を備える。連結流路5の流路断面積が、加熱部2の流路断面積より小さく、更に加熱部2にウイック4が備えられている。このため、有効熱伝導率及び最大熱輸送量を従来の自励振動型ヒートパイプに比べて格段に高めることができる。
 特に、加熱部2にウイック4が備えられることで、加熱部2において作動流体Mの蒸発を安定して起こすことができ、結果として有効熱伝導率及び最大熱輸送量を更に格段に高めることができる。
 また、上記のヒートパイプ1は、水平設置した場合に自励振動を安定して持続させることができる。
 更に、上記のヒートパイプ1によれば、加熱部2と連結流路5とを相互に直接に連通させている。このため、液プラグLの先端のメニスカスMが、加熱部2と連結流路5との接合部8に来るごとに、液体の一部が加熱部2に供給される。従って、加熱部2に作動流体を保持させて常に蒸発を起こすことができる。これにより作動流体を安定して自励振動させることができ、有効熱伝導率及び最大熱輸送量を高くできる。
The heat pipe 1 includes a working fluid M and a linear connection channel 5 that is disposed between the heating unit 2 and the cooling unit 3 and through which the working fluid M flows. The flow channel cross-sectional area of the connection flow channel 5 is smaller than the flow channel cross-sectional area of the heating unit 2, and the heating unit 2 is provided with a wick 4. For this reason, the effective thermal conductivity and the maximum heat transport amount can be significantly increased as compared with the conventional self-excited vibration heat pipe.
In particular, by providing the heating unit 2 with the wick 4, the working fluid M can be stably evaporated in the heating unit 2, and as a result, the effective thermal conductivity and the maximum heat transport amount can be further increased. it can.
In addition, the heat pipe 1 can stably maintain the self-excited vibration when installed horizontally.
Furthermore, according to said heat pipe 1, the heating part 2 and the connection flow path 5 are directly connected with each other. For this reason, a part of the liquid is supplied to the heating unit 2 every time the meniscus M at the tip of the liquid plug L comes to the joint 8 between the heating unit 2 and the connection channel 5. Accordingly, the working fluid can be held in the heating unit 2 to always evaporate. As a result, the working fluid can be stably self-excited and the effective thermal conductivity and the maximum heat transport amount can be increased.
 上記のヒートパイプ1は、1本だけでも十分高性能であるが、熱輸送量を多くしたい場合には必要に応じてパイプの本数を増やせばよく、熱設計が容易となる。
 また、従来の蛇行ループ型のヒートパイプでは、多数回に渡って蛇行させなければ所用の性能を発揮することができなかったが、上記のヒートパイプによれば、蛇行させることなく直線状とすることで有効熱伝導率及び最大熱輸送量を高くできる。
 また、上記のヒートパイプ1は、CPU等の電子素子の冷却に好適に用いることができる。
The heat pipe 1 described above has sufficiently high performance, but if it is desired to increase the amount of heat transport, the number of pipes may be increased as necessary, and the thermal design becomes easy.
In addition, the conventional meandering loop type heat pipe could not exhibit the required performance unless meandering many times, but according to the above heat pipe, it is linear without meandering. Thus, the effective thermal conductivity and the maximum heat transport amount can be increased.
Moreover, said heat pipe 1 can be used suitably for cooling of electronic elements, such as CPU.
 次に、図1Bには、ヒートパイプの別の例を示す。このヒートパイプ31と図1Aに示すヒートパイプ1の相違点は、冷却部の構成である。
 図1Bに示すヒートパイプ31の冷却部33は、ホウケイ酸ガラスからなる中空円柱状のガラス管33aである。冷却部33の内径は、連結流路5よりも大きい。このガラス管33aの一端には開口部33bが設けられており、この開口部33bは、ゴム製の膜(調整部)34によって封止されている。そして、冷却部33に作動流体が満たされている。
 また、冷却部33の外周には、放熱用のフィン35が備えられている。
Next, FIG. 1B shows another example of a heat pipe. The difference between the heat pipe 31 and the heat pipe 1 shown in FIG. 1A is the configuration of the cooling unit.
The cooling part 33 of the heat pipe 31 shown in FIG. 1B is a hollow cylindrical glass tube 33a made of borosilicate glass. The inner diameter of the cooling unit 33 is larger than that of the connection channel 5. An opening 33 b is provided at one end of the glass tube 33 a, and the opening 33 b is sealed with a rubber film (adjustment unit) 34. The working fluid is filled in the cooling unit 33.
Further, a heat radiating fin 35 is provided on the outer periphery of the cooling unit 33.
 このヒートパイプ31によれば、蒸気プラグBの形成時及び自励振動の発生時において、液プラグLの一部が冷却部33に押し出されるが、冷却部33に備えられたゴム製の膜34が変形することによって、冷却部の内容積が実質的に増大し、押し出された液プラグLの容積を吸収できる。本例では、調整部としてゴム製の膜を用いたが、これに代えてダイヤフラムを用いても良い。 According to the heat pipe 31, a part of the liquid plug L is pushed out to the cooling unit 33 when the vapor plug B is formed and self-excited vibration is generated, but the rubber film 34 provided in the cooling unit 33. By deforming, the internal volume of the cooling part is substantially increased, and the volume of the extruded liquid plug L can be absorbed. In this example, a rubber film is used as the adjustment unit, but a diaphragm may be used instead.
 次に、図1Cには、ヒートパイプの更に別の例を示す。このヒートパイプ41と図1Bに示すヒートパイプ31の相違点は、冷却部に備えた調整部の位置である。
 図1Cに示すヒートパイプ41の冷却部43は、ホウケイ酸ガラスからなる一端が閉塞された中空円柱状のガラス管43aである。冷却部43の内径は、連結流路5よりも大きい。このガラス管43aの側面には開口部43bが設けられている。この開口部43bは、ゴム製の膜(調整部)44によって封止されている。そして、冷却部43に作動流体が満たされている。
 また、冷却部43の外周には、放熱用のフィン45が備えられている。
Next, FIG. 1C shows still another example of the heat pipe. The difference between the heat pipe 41 and the heat pipe 31 shown in FIG. 1B is the position of the adjusting unit provided in the cooling unit.
The cooling part 43 of the heat pipe 41 shown in FIG. 1C is a hollow cylindrical glass tube 43a with one end made of borosilicate glass closed. The inner diameter of the cooling unit 43 is larger than that of the connection channel 5. An opening 43b is provided on the side surface of the glass tube 43a. The opening 43 b is sealed with a rubber film (adjustment unit) 44. The working fluid is filled in the cooling unit 43.
Further, a heat dissipating fin 45 is provided on the outer periphery of the cooling unit 43.
 このヒートパイプ41によれば、先のヒートパイプ31と同様に、蒸気プラグBの形成時及び自励振動の発生時において、液プラグLの一部が冷却部43に押し出される。このとき、冷却部43に備えられたゴム製の膜44が変形することによって、冷却部43の内容積が実質的に増大し、押し出された液プラグLの容積を吸収できる。本例では、調整部としてゴム製の膜を用いたが、これに代えてダイヤフラムを用いても良い。 According to this heat pipe 41, a part of the liquid plug L is pushed out to the cooling unit 43 when the steam plug B is formed and when self-excited vibration is generated, as in the case of the previous heat pipe 31. At this time, the rubber film 44 provided in the cooling unit 43 is deformed, so that the internal volume of the cooling unit 43 is substantially increased and the volume of the extruded liquid plug L can be absorbed. In this example, a rubber film is used as the adjustment unit, but a diaphragm may be used instead.
 以下、実施例により本発明を更に具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
(自励振動の観察:実施例1)
 図2に示す実験装置によってヒートパイプの特性を評価した。
 先ず、内径2mm、長さ250mmのホウケイ酸ガラスからなる連結流路5となるガラス管13と、内径5mm、長さ150mmのホウケイ酸ガラスからなる加熱部2となるガラス管12を用意し、各ガラス管12,13を融着させた。次いで、ガラス管12の内壁に、銅網からなるウイック14を装着した。ウイック14は、融着部から100mmの間にかけて装着した。ウイック14が装着された部分を加熱部2とした。次いで、一端部11aをホウケイ酸ガラスからなる封止部材11cによって封止した。次に、連結流路となるガラス管13の開放端11bをウオーターバス21浸漬させて、ガラス管12,13の内部を作動流体20となる純水で満たした。このようにして、実施例1のヒートパイプ11を製造した。
(Observation of self-excited vibration: Example 1)
The characteristics of the heat pipe were evaluated by the experimental apparatus shown in FIG.
First, prepare a glass tube 13 to be a connecting flow path 5 made of borosilicate glass having an inner diameter of 2 mm and a length of 250 mm, and a glass tube 12 to be a heating unit 2 made of borosilicate glass having an inner diameter of 5 mm and a length of 150 mm. Glass tubes 12 and 13 were fused. Next, a wick 14 made of copper mesh was attached to the inner wall of the glass tube 12. The wick 14 was mounted between 100 mm from the fused part. The portion where the wick 14 was mounted was designated as the heating unit 2. Next, the one end portion 11a was sealed with a sealing member 11c made of borosilicate glass. Next, the open end 11b of the glass tube 13 serving as the connection channel was immersed in the water bath 21 to fill the interiors of the glass tubes 12 and 13 with pure water serving as the working fluid 20. Thus, the heat pipe 11 of Example 1 was manufactured.
 次に、ヒートパイプ11の加熱部2に50mmの長さLに渡ってヒータ22を装着し、ヒートパイプ11をほぼ水平に設置した。また、ウオーターバス21内に浸漬された部分をヒートパイプ11の冷却部3とした。そして、ウオーターバス21内の冷却水21aの温度を0℃に維持した。一方、ヒータ22の発熱量を加熱部の温度が純水の沸点100℃に保たれる程度に設定して、ヒートパイプ11を作動させた。
 ヒートパイプ11が定常状態(最大熱輸送量50W)になった後に、ヒートパイプ11の各部の表面温度と、ウオーターバス21の冷却水21aの温度とを熱電対でそれぞれ測定した。結果を図3及び図4に示す。
Next, the heater 22 was attached to the heating part 2 of the heat pipe 11 over a length L of 50 mm, and the heat pipe 11 was installed almost horizontally. Further, the portion immersed in the water bath 21 was used as the cooling unit 3 of the heat pipe 11. And the temperature of the cooling water 21a in the water bath 21 was maintained at 0 degreeC. On the other hand, the heat generation amount of the heater 22 was set to such an extent that the temperature of the heating part was kept at the boiling point of pure water of 100 ° C., and the heat pipe 11 was operated.
After the heat pipe 11 was in a steady state (maximum heat transport amount 50 W), the surface temperature of each part of the heat pipe 11 and the temperature of the cooling water 21a of the water bath 21 were measured with thermocouples. The results are shown in FIGS.
 図2~図4において、測定箇所TC1の温度は、加熱部2の温度であってヒータ22の装着部分の一端部11a側の表面温度である。測定箇所TC2の温度は、加熱部2の温度であってヒータ22の装着部分の他端部11b側の表面温度である。測定箇所TC3の温度は冷却水22aの水温である。測定箇所TC4の温度は開放端11bの出口直後の水温である。 2 to 4, the temperature at the measurement location TC1 is the temperature of the heating unit 2 and is the surface temperature on the one end 11a side of the heater 22 mounting portion. The temperature of the measurement location TC2 is the temperature of the heating unit 2 and the surface temperature on the other end 11b side of the heater 22 mounting portion. The temperature of the measurement location TC3 is the water temperature of the cooling water 22a. The temperature of the measurement location TC4 is the water temperature immediately after the exit of the open end 11b.
 図3~図4に示すように、TC1及びTC2は100℃程度を維持しており、TC3は0℃程度を維持していることがわかる。一方、TC4は、周期的にピークを持っていることがわかる。ピークの最大温度は約10℃であり、ピークの周波数は5Hzとなっている。また、作動流体20の振幅幅は最大で100mm(±50mm)となっている。このように、実施例1のヒートパイプ11は、定常状態において作動流体20の自励振動が観察された。 3 to 4, it can be seen that TC1 and TC2 are maintained at about 100 ° C., and TC3 is maintained at about 0 ° C. On the other hand, it can be seen that TC4 has a peak periodically. The peak maximum temperature is about 10 ° C., and the peak frequency is 5 Hz. The amplitude width of the working fluid 20 is 100 mm (± 50 mm) at the maximum. Thus, in the heat pipe 11 of Example 1, self-excited vibration of the working fluid 20 was observed in a steady state.
「熱輸送速度Q及び有効熱伝導率λeffの測定」
 次に、実施例1のヒートパイプの熱輸送速度Q(熱輸送量)と、有効熱伝導率λeffとの関係を調べた。この実験では、冷却水の水温とヒータの加熱温度を適宜変更して測定した。また、熱輸送速度Q及び有効熱伝導率λeffは、下記式(1)及び(2)により求めた。結果を図5に示す。
“Measurement of heat transport rate Q and effective thermal conductivity λ eff
Next, the relationship between the heat transport rate Q (heat transport amount) of the heat pipe of Example 1 and the effective thermal conductivity λ eff was examined. In this experiment, the water temperature of the cooling water and the heating temperature of the heater were appropriately changed and measured. Further, the heat transport rate Q and the effective thermal conductivity λ eff were obtained by the following formulas (1) and (2). The results are shown in FIG.
 なお、式(1)において、ρは作動流体20(純水)の密度であり、cは作動流体20(純水)の定圧比熱であり、Vは作動流体20の封入量であり、ΔTは冷却部の水温の時間Δtの間における上昇分である。
 また、式(2)において、LΦ2は連結流路の全長と加熱部の全長の二分の一との合計の長さであり、Tは加熱部の温度であり、Tはウオーターバス内の冷却水の水温であり、dΦ2は連結流路の内径である。
In the equation (1), [rho is density of the working fluid 20 (pure water), c p is the specific heat at constant pressure of the working fluid 20 (pure water), V is the enclosed amount of the working fluid 20, [Delta] T Is the amount of increase during the time Δt of the water temperature of the cooling section.
In Formula (2), L Φ2 is the total length of the entire length of the connection channel and one half of the total length of the heating unit, T H is the temperature of the heating unit, and T L is in the water bath. D Φ2 is the inner diameter of the connection channel.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001

Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
(実施例2)
 次に、加熱側パイプ及び冷却側パイプの材質を石英ガラスとしたこと以外は実施例1と同様にして実施例2のヒートパイプを製造した。そして、実施例1と同様にして、実施例2のヒートパイプの熱輸送速度Qと、有効熱伝導率λeffとの関係を調べた。結果を図5に示す。
(Example 2)
Next, a heat pipe of Example 2 was manufactured in the same manner as Example 1 except that the material of the heating side pipe and the cooling side pipe was quartz glass. Then, in the same manner as in Example 1, the relationship between the heat transport rate Q of the heat pipe of Example 2 and the effective thermal conductivity λ eff was examined. The results are shown in FIG.
(比較例1)
 次に、加熱側パイプ及び冷却側パイプの材質を石英ガラスとし、ウイックを設置しなかったこと以外は実施例1と同様にして比較例1のヒートパイプを製造した。そして、実施例1と同様にして、比較例1のヒートパイプの熱輸送速度Qと、有効熱伝導率λeffとの関係を調べた。結果を図5に示す。
(Comparative Example 1)
Next, the heat pipe of Comparative Example 1 was manufactured in the same manner as Example 1 except that the material of the heating side pipe and the cooling side pipe was quartz glass and no wick was installed. In the same manner as in Example 1, the relationship between the heat transport rate Q of the heat pipe of Comparative Example 1 and the effective thermal conductivity λ eff was examined. The results are shown in FIG.
(比較例2)
 次に、内径5mm、長さ400mmの石英ガラスからなるガラス管を用意し、このガラス管の中空部の内壁面に銅網からなるウイックを装着した。次いで、パイプの一端部を封止部材によって封止した。そして、中空部を作動流体20(純水)で満たした。このようにして、比較例2のヒートパイプ11を製造した。
 そして、実施例1と同様にして、比較例2のヒートパイプの熱輸送速度Qと、有効熱伝導率λeffとの関係を調べた。結果を図5に示す。
(Comparative Example 2)
Next, a glass tube made of quartz glass having an inner diameter of 5 mm and a length of 400 mm was prepared, and a wick made of copper mesh was attached to the inner wall surface of the hollow portion of the glass tube. Next, one end of the pipe was sealed with a sealing member. And the hollow part was filled with the working fluid 20 (pure water). Thus, the heat pipe 11 of the comparative example 2 was manufactured.
In the same manner as in Example 1, the relationship between the heat transport rate Q of the heat pipe of Comparative Example 2 and the effective thermal conductivity λ eff was examined. The results are shown in FIG.
(比較例3)
 次に、ウイックを設置しなかったこと以外は比較例2と同様にして比較例3のヒートパイプを製造した。そして、実施例1と同様にして、比較例3のヒートパイプの熱輸送速度Qと、有効熱伝導率λeffとの関係を調べた。結果を図5に示す。
(Comparative Example 3)
Next, the heat pipe of the comparative example 3 was manufactured like the comparative example 2 except not having installed the wick. In the same manner as in Example 1, the relationship between the heat transport rate Q of the heat pipe of Comparative Example 3 and the effective thermal conductivity λ eff was examined. The results are shown in FIG.
(評価)
 図5に示すように、実施例1のヒートパイプは、熱輸送速度が最大で33Wを示すとともに、有効熱伝導率λeffが最大で36000W/(m・K)を示していることがわかる。
 また、実施例2のヒートパイプは、実施例1と同じ熱輸送速度において同程度の有効熱伝導率λeffとなっている。
 一方、比較例1~3のヒートパイプは、熱輸送速度が最大で10W以下となり、有効熱伝導率λeffは最大でも100W/(m・K)程度となり、実施例1~2に比べて熱輸送速度Q及び有効熱伝導率λeffが大幅に低下していることが判る。
(Evaluation)
As shown in FIG. 5, it can be seen that the heat pipe of Example 1 has a maximum heat transport rate of 33 W and an effective thermal conductivity λ eff of 36000 W / (m · K) at the maximum.
Moreover, the heat pipe of Example 2 has the same effective thermal conductivity λ eff at the same heat transport speed as that of Example 1.
On the other hand, the heat pipes of Comparative Examples 1 to 3 have a maximum heat transport rate of 10 W or less and an effective thermal conductivity λ eff of about 100 W / (m · K) at the maximum, which is higher than that of Examples 1 and 2. It can be seen that the transport speed Q and the effective thermal conductivity λ eff are greatly reduced.
 実施例1~2の結果から、内径の異なる2本のパイプを接合し、パイプの中空部に作動流体を封入することで、自励振動型のヒートパイプを構成でき、このヒートパイプは水平に設置しても自励振動を発現できることがわかる。
 内径の異なる2本のパイプを接合してヒートパイプを構成した場合(実施例1~2)には、熱輸送速度と有効熱伝導率λeffとの相関が高くなり、直線的に増加することが判る。また、実施例1では、有効熱伝導率が最大で約40000W/(m・K)程度まで増加したが、この値を、熱伝導率が比較的高い銅(熱伝導率400W/(m・K))と比べると、有効熱伝導率が100倍まで高まっていることがわかる。
 また、図3~図4に示すように、加熱部の温度(TC1、TC2)が作動流体(純水)の沸点付近を維持していることが判る。今回は純水を用いたので、加熱部の温度が100℃近傍になったが、冷却対象物の許容温度に応じて適切な作動流体を選定すれば、効率的な熱伝導を実現できる。
 なお、上記の実施例1では、有効熱伝導率の最大値が約40000W/(m・K)程度、熱輸送速度の最大値は約50Wであったが、これらの値は限界値ではなく、実験条件の変更によって、更に優れた結果が得られる可能性がある。
From the results of Examples 1 and 2, a self-excited vibration type heat pipe can be constructed by joining two pipes having different inner diameters and enclosing a working fluid in the hollow part of the pipe. It can be seen that self-excited vibration can be developed even when installed.
When two pipes with different inner diameters are joined to form a heat pipe (Examples 1 and 2), the correlation between the heat transport rate and the effective thermal conductivity λ eff increases and increases linearly. I understand. In Example 1, the effective thermal conductivity increased to a maximum of about 40000 W / (m · K), but this value was reduced to copper having a relatively high thermal conductivity (thermal conductivity 400 W / (m · K). )), It can be seen that the effective thermal conductivity is increased up to 100 times.
Further, as shown in FIGS. 3 to 4, it can be seen that the temperature (TC1, TC2) of the heating part maintains the vicinity of the boiling point of the working fluid (pure water). Since pure water was used this time, the temperature of the heating unit was close to 100 ° C. However, if an appropriate working fluid is selected according to the allowable temperature of the object to be cooled, efficient heat conduction can be realized.
In Example 1 above, the maximum value of the effective thermal conductivity was about 40000 W / (m · K) and the maximum value of the heat transport rate was about 50 W, but these values are not limit values. Even better results may be obtained by changing the experimental conditions.
 図6は、実施例1のヒートパイプの熱輸送特性の実験値と、従来技術のヒートパイプ(ドリームパイプ)の熱輸送特性の理論値との比較図であり、各ヒートパイプについて、熱輸送速度Qと、有効熱伝導率λeffとの関係を示す。
 この従来技術のヒートパイプは、パイプ内の液体を強制的に振動させることにより、軸方向に熱を輸送するタイプのヒートパイプ(ドリームパイプ)である。ドリームパイプの有効熱伝導率λeffは、下記の式(3)及び(4)から算出した。
Figure JPOXMLDOC01-appb-M000003

Figure JPOXMLDOC01-appb-M000004

 ここで、λ:流体の熱伝導率,Pr:プラントル数,r:管内径,ν:水の動粘度,f :振動数,S:振幅である。この従来技術のドリームパイプは、加熱部2より小径の連結流路5を持たない単一径管式である。
 図6に示されるように、実施例1のヒートパイプの有効熱伝導率は、従来技術のドリームパイプの約10倍と非常に大きい。この効果の原因の一つは、実施例1のヒートパイプでは、ガラス管13の開放端11bが水槽中に開放されているため、作動流体Mが振動する度にガラス管13内の作動流体Mがウオーターバス21中の低温の液と入れ替わることであると考えられる。
FIG. 6 is a comparison diagram between experimental values of heat transport characteristics of the heat pipe of Example 1 and theoretical values of heat transport characteristics of the heat pipe (dream pipe) of the prior art. The relationship between Q and effective thermal conductivity (lambda) eff is shown.
This conventional heat pipe is a type of heat pipe (dream pipe) that transports heat in the axial direction by forcibly vibrating a liquid in the pipe. The effective thermal conductivity λeff of the dream pipe was calculated from the following formulas (3) and (4).
Figure JPOXMLDOC01-appb-M000003

Figure JPOXMLDOC01-appb-M000004

Here, λ: thermal conductivity of fluid, Pr: Prandtl number, r: pipe inner diameter, ν: kinematic viscosity of water, f: frequency, S: amplitude. This prior art dream pipe is a single-diameter pipe type that does not have a connecting channel 5 having a smaller diameter than the heating unit 2.
As shown in FIG. 6, the effective thermal conductivity of the heat pipe of Example 1 is as large as about 10 times that of the conventional dream pipe. One of the causes of this effect is that in the heat pipe of the first embodiment, the open end 11b of the glass tube 13 is opened in the water tank, so that the working fluid M in the glass tube 13 is vibrated every time the working fluid M vibrates. Is considered to be replaced with a low-temperature liquid in the water bath 21.
 本発明の自励振動型ヒートパイプによれば、管を蛇行させることなく、水平設置しても高い熱輸送能力を発揮することが可能な自励振動型ヒートパイプを提供できる。 According to the self-excited vibration type heat pipe of the present invention, it is possible to provide a self-excited vibration type heat pipe that can exhibit high heat transport capability even when installed horizontally without meandering the pipe.

Claims (4)

  1.  内部にウイックを持つ加熱部と;
     作動流体が満たされた冷却部と;
     前記加熱部及び前記冷却部を直線状に連結し、前記加熱部の流路断面積よりも小さな流路断面積を有する連結流路と;
     前記冷却部から前記連結流路内に突出し、前記作動流体を含む液プラグと;
     気化した前記作動流体を含む前記加熱部内の蒸気プラグと;を備え、
     前記液プラグが前記連結流路内で自励振動することを特徴とする自励振動型ヒートパイプ。
    A heating section with a wick inside;
    A cooling section filled with working fluid;
    A connecting channel that connects the heating unit and the cooling unit in a straight line and has a channel cross-sectional area smaller than the channel cross-sectional area of the heating unit;
    A liquid plug protruding from the cooling section into the connection flow path and containing the working fluid;
    A vapor plug in the heating section containing the vaporized working fluid;
    The self-excited vibration type heat pipe, wherein the liquid plug self-excites in the connection flow path.
  2.  前記冷却部に満たされた前記作動流体が、内圧に束縛されない自由液面を持つことを特徴とする請求項1に記載の自励振動型ヒートパイプ。 The self-excited vibration type heat pipe according to claim 1, wherein the working fluid filled in the cooling section has a free liquid level that is not constrained by an internal pressure.
  3.  前記冷却部が開口部を持ち、前記開口部には前記冷却部の内容積を調整する調整部が設けられていることを特徴とする請求項1に記載の自励振動型ヒートパイプ。 The self-excited vibration heat pipe according to claim 1, wherein the cooling section has an opening, and the adjustment section for adjusting the internal volume of the cooling section is provided in the opening.
  4.  前記加熱部の断面積と、前記連結流路の断面積との比が、10:1~2:1であることを特徴とする請求項1に記載の自励振動型ヒートパイプ。 2. The self-excited vibration heat pipe according to claim 1, wherein a ratio of a cross-sectional area of the heating unit and a cross-sectional area of the connection flow path is 10: 1 to 2: 1.
PCT/JP2009/051773 2008-02-08 2009-02-03 Self-oscillating heat pipe WO2009099057A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009552473A JP5403617B2 (en) 2008-02-08 2009-02-03 Self-excited vibration heat pipe
US12/866,550 US20100319884A1 (en) 2008-02-08 2009-02-03 Self-excited oscillating flow heat pipe
CN2009801044112A CN101939611B (en) 2008-02-08 2009-02-03 Self-oscillating heat pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008029713 2008-02-08
JP2008-029713 2008-02-08

Publications (1)

Publication Number Publication Date
WO2009099057A1 true WO2009099057A1 (en) 2009-08-13

Family

ID=40952132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051773 WO2009099057A1 (en) 2008-02-08 2009-02-03 Self-oscillating heat pipe

Country Status (4)

Country Link
US (1) US20100319884A1 (en)
JP (1) JP5403617B2 (en)
CN (1) CN101939611B (en)
WO (1) WO2009099057A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014216380A (en) * 2013-04-23 2014-11-17 株式会社デンソー Cooler
JP2014214906A (en) * 2013-04-23 2014-11-17 株式会社デンソー Cooler
JP2014214907A (en) * 2013-04-23 2014-11-17 株式会社デンソー Cooler
JP2014224647A (en) * 2013-05-16 2014-12-04 株式会社デンソー Cooler
JP2015146381A (en) * 2014-02-03 2015-08-13 株式会社デンソー cooler
JP2016001070A (en) * 2014-06-11 2016-01-07 株式会社デンソー Cooler
JP2016142511A (en) * 2015-02-05 2016-08-08 株式会社デンソー Cooler
JP2016145667A (en) * 2015-02-06 2016-08-12 株式会社デンソー Cooler
JP2016200293A (en) * 2015-04-07 2016-12-01 株式会社デンソー Cooler
JP2017063068A (en) * 2015-09-22 2017-03-30 株式会社デンソー Cooler

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9482111B2 (en) 2012-12-14 2016-11-01 United Technologies Corporation Fan containment case with thermally conforming liner
JP5788069B1 (en) * 2014-08-29 2015-09-30 古河電気工業株式会社 Flat type heat pipe
CN105423790A (en) * 2015-12-04 2016-03-23 王轶珂 Heat absorption and dissipation device
US9750160B2 (en) * 2016-01-20 2017-08-29 Raytheon Company Multi-level oscillating heat pipe implementation in an electronic circuit card module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201281A (en) * 1992-12-28 1994-07-19 Akutoronikusu Kk Non-loop type trombone capillary heat pipe
JP2003287378A (en) * 2002-03-27 2003-10-10 Mitsubishi Electric Corp Capillary heat pipe and heat exchanger
JP2003302180A (en) * 2002-04-11 2003-10-24 Furukawa Electric Co Ltd:The Self-excited oscillation type heat pipe

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3517730A (en) * 1967-03-15 1970-06-30 Us Navy Controllable heat pipe
US3621906A (en) * 1969-09-02 1971-11-23 Gen Motors Corp Control system for heat pipes
US3933198A (en) * 1973-03-16 1976-01-20 Hitachi, Ltd. Heat transfer device
JPS5241149B2 (en) * 1974-03-16 1977-10-17
JPS5381132A (en) * 1976-12-25 1978-07-18 Ricoh Co Ltd Preparation of heat pipe roller
US4387762A (en) * 1980-05-22 1983-06-14 Massachusetts Institute Of Technology Controllable heat transfer device
US4470451A (en) * 1981-03-16 1984-09-11 Grumman Aerospace Corporation Dual axial channel heat pipe
US4554966A (en) * 1983-06-02 1985-11-26 Vasiliev Leonard L Heat-transfer device
US5566751A (en) * 1995-05-22 1996-10-22 Thermacore, Inc. Vented vapor source
US6889753B2 (en) * 2001-12-19 2005-05-10 Ts Heatronics Co., Ltd. Capillary tube heat pipe and temperature controlling apparatus
US20030192674A1 (en) * 2002-04-02 2003-10-16 Mitsubishi Denki Kabushiki Kaisha Heat transport device
US6983790B2 (en) * 2003-03-27 2006-01-10 Mitsubishi Denki Kabushiki Kaisha Heat transport device, semiconductor apparatus using the heat transport device and extra-atmospheric mobile unit using the heat transport device
US20060065386A1 (en) * 2004-08-31 2006-03-30 Mohammed Alam Self-actuating and regulating heat exchange system
US20060054308A1 (en) * 2004-09-14 2006-03-16 Smith Mark A Multiple fluid heat pipe
US20070196833A1 (en) * 2005-04-21 2007-08-23 Gjerde Douglas T Open channel solid phase extraction systems and methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201281A (en) * 1992-12-28 1994-07-19 Akutoronikusu Kk Non-loop type trombone capillary heat pipe
JP2003287378A (en) * 2002-03-27 2003-10-10 Mitsubishi Electric Corp Capillary heat pipe and heat exchanger
JP2003302180A (en) * 2002-04-11 2003-10-24 Furukawa Electric Co Ltd:The Self-excited oscillation type heat pipe

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014216380A (en) * 2013-04-23 2014-11-17 株式会社デンソー Cooler
JP2014214906A (en) * 2013-04-23 2014-11-17 株式会社デンソー Cooler
JP2014214907A (en) * 2013-04-23 2014-11-17 株式会社デンソー Cooler
JP2014224647A (en) * 2013-05-16 2014-12-04 株式会社デンソー Cooler
JP2015146381A (en) * 2014-02-03 2015-08-13 株式会社デンソー cooler
JP2016001070A (en) * 2014-06-11 2016-01-07 株式会社デンソー Cooler
JP2016142511A (en) * 2015-02-05 2016-08-08 株式会社デンソー Cooler
JP2016145667A (en) * 2015-02-06 2016-08-12 株式会社デンソー Cooler
JP2016200293A (en) * 2015-04-07 2016-12-01 株式会社デンソー Cooler
JP2017063068A (en) * 2015-09-22 2017-03-30 株式会社デンソー Cooler

Also Published As

Publication number Publication date
JP5403617B2 (en) 2014-01-29
JPWO2009099057A1 (en) 2011-05-26
CN101939611B (en) 2012-05-30
CN101939611A (en) 2011-01-05
US20100319884A1 (en) 2010-12-23

Similar Documents

Publication Publication Date Title
JP5403617B2 (en) Self-excited vibration heat pipe
US7647961B2 (en) Heat pipe with axial and lateral flexibility
US10184729B2 (en) Heat pipe
US7594537B2 (en) Heat pipe with capillary wick
US7520315B2 (en) Heat pipe with capillary wick
US10976112B2 (en) Heat pipe
US20160091258A1 (en) Heat pipe
US20060283574A1 (en) Thermoduct
JP2001035980A (en) Microminiature cooling device
US20100051240A1 (en) Variable conductance heat pipe
US20140054014A1 (en) Heat pipe and method for making the same
KR101097390B1 (en) Heat pipe with double pipe structure
JP4382891B2 (en) Flat heat pipe and manufacturing method thereof
JP2009115346A (en) Heat pipe
Hossain et al. Design, Fabrication and Experimental Study of Heat Transfer Characteristics of a Micro Heat Pipe.
JP3113254U (en) heat pipe
Ma et al. Heat transport capability in pulsating heat pipes
JP2009024996A (en) Method of manufacturing heat pipe
JP2000074579A (en) Flat heat pipe and manufacture thereof
JP2012154622A (en) Thin heat pipe
KR20120042403A (en) Heat pipe and cooling apparatus having the same
JP2011237156A (en) Vibration type heat pipe
JP7284988B2 (en) Heat pipe manufacturing method
JP2009216343A (en) Heat transfer hinge device and cooling apparatus
JP7179170B2 (en) Self-excited oscillating heat pipe cooling device and railway vehicle equipped with the cooling device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980104411.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09708823

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2009552473

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12866550

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09708823

Country of ref document: EP

Kind code of ref document: A1