JP2003302180A - Self-excited oscillation type heat pipe - Google Patents

Self-excited oscillation type heat pipe

Info

Publication number
JP2003302180A
JP2003302180A JP2002109063A JP2002109063A JP2003302180A JP 2003302180 A JP2003302180 A JP 2003302180A JP 2002109063 A JP2002109063 A JP 2002109063A JP 2002109063 A JP2002109063 A JP 2002109063A JP 2003302180 A JP2003302180 A JP 2003302180A
Authority
JP
Japan
Prior art keywords
heat
self
heat pipe
pipe
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002109063A
Other languages
Japanese (ja)
Inventor
Kenji Nakamizo
賢治 中溝
Koji Yamamoto
孝司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2002109063A priority Critical patent/JP2003302180A/en
Publication of JP2003302180A publication Critical patent/JP2003302180A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a self-excited oscillation type heat pipe capable of improving the heat transportation efficiency by the capillary action without preventing the self-excited oscillation for the stability of the performance. <P>SOLUTION: The heat pipe is characterized by a number of fine fins 10 continuously formed in the length direction on the inner surface of a metal capillary 1. It is preferable that the ratio (h)/ (di) of the height (h) of the fin 10 to the inner diameter (di) of the capillary 1 is 0.01-0.35, and the ratio (n)/(di) of the number of the fins (n) to the inner diameter (di) of the capillary is 3-25. It is also preferable that the lead angle θ to the tube axis in the fin 10 is 0-20°, and the inner diameter of the capillary 1 is 0.5-5 mm. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はノート型パソコン、
携帯電話などの携帯型通信機器、ビデオカメラ、燃料電
池及びゲーム機器その他携帯ないし簡単に移動し得る機
器類の発熱部分の冷却装置に使用される自励振動型ヒー
トパイプに関するものである。
TECHNICAL FIELD The present invention relates to a notebook type personal computer,
The present invention relates to a self-excited vibration heat pipe used as a cooling device for a heat generating portion of a portable communication device such as a mobile phone, a video camera, a fuel cell, a game device, and other portable or easily movable devices.

【0002】[0002]

【従来の技術】自励振動型ヒートパイプでは、受熱部が
加熱されるとその熱量に対応して作動液に軸方向の振動
が発生し、これによって受熱部から放熱部への熱輸送が
行われる。このように、自励振動型ヒートパイプの熱輸
送は原理的には作動液の軸方向振動による熱輸送である
から、軸方向往復による振動の減衰を極力押さえる必要
があるので、例えば特開平4−190090号公報で
は、ループ型細径管コンテナの内面を化学的手段による
研磨などで可能な限り極めて平滑に加工することが提案
されている。また特開昭60−178291号公報に
は、ヒートパイプ内の毛細管力を強化して熱輸送量を増
大させるため、細径パイプ内に0.1mm程度のメッシ
ュからなるウイックをパイプ内面に充填することが提案
されている。
2. Description of the Related Art In a self-excited vibration type heat pipe, when the heat receiving part is heated, axial vibration is generated in the working fluid corresponding to the amount of heat, which causes heat transfer from the heat receiving part to the heat radiating part. Be seen. As described above, the heat transfer of the self-excited vibration type heat pipe is theoretically the heat transfer due to the axial vibration of the working fluid, and therefore it is necessary to suppress the vibration damping due to the axial reciprocation as much as possible. In Japanese Patent Laid-Open No. 19090, it is proposed that the inner surface of the loop type small diameter tube container is processed to be as smooth as possible by polishing with a chemical means. Further, in JP-A-60-178291, in order to strengthen the capillary force in the heat pipe and increase the heat transport amount, a wick made of a mesh of about 0.1 mm is filled in the pipe with a small diameter pipe. Is proposed.

【0003】[0003]

【発明が解決しようとする課題】特開平4−19009
0号公報で記載されているように、細径管の内面が研磨
されて極めて平滑化されていれば内部の作動液は振動し
易くなり、その意味では熱移動が促進されるが、毛管力
が小さくなるため管径をより小さくする(極細管にす
る)必要があった。しかしながら、極細管は単位面積当
たりの熱輸送量は増加するものの、全体的な熱輸送量は
小さいため、必要な熱輸送量を確保するためには、細管
の本数を増やすかループ型細径管のターン数を増加する
必要があり、ヒートパイプ自体の各種機器に対する空間
占拠率が高まり、機器の小型化の要請に逆行するほか、
より高コストになっていた。他方、特開昭60−178
291号公報に記載されているように、細径管内に微細
メッシュのウイックを充填するのは、ウイック自体が高
価であるほかにその充填工程も高価につくところから製
作コストが極めて高価であった。また、携帯用機器類で
は、ヒートパイプを使用する冷却装置が横転した状態で
も冷却性能を維持することが必要であるが、ウイック式
ヒートパイプではこのような場合、トップヒート性能が
ボトムヒート性能よりも大きく低下するため、性能の安
定性を害する原因となっている。本発明の目的は、簡単
な構成で自励振動を妨げることなく毛管作用を発揮させ
ることにより熱輸送効率を向上させ、しかも、性能の安
定性が図られる自励振動型ヒートパイプを提供すること
にある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
If the inner surface of the small-diameter tube is polished and extremely smoothed, as described in JP-A-0, the hydraulic fluid in the inside tends to vibrate, and in that sense, heat transfer is promoted. It was necessary to make the diameter of the pipe smaller (making it an ultra-fine pipe) because of the smaller size. However, although the heat transfer amount per unit area of extra-fine tubes increases, the overall heat transfer amount is small, so in order to secure the necessary heat transfer amount, increase the number of thin tubes or loop type thin tube. It is necessary to increase the number of turns of the heat pipe, the space occupancy rate of various equipment of the heat pipe itself increases, and it goes against the demand for miniaturization of equipment,
It was more expensive. On the other hand, JP-A-60-178
As described in Japanese Patent No. 291, the filling of a small-diameter pipe with a fine mesh wick is extremely expensive because the wick itself is expensive and the filling process is also expensive. . Also, in portable equipment, it is necessary to maintain cooling performance even when the cooling device that uses the heat pipe is overturned, but with such a wick type heat pipe, in such a case, the top heat performance is better than the bottom heat performance. Also greatly decreases, which is a cause of impairing the stability of performance. An object of the present invention is to provide a self-excited vibration type heat pipe which has a simple structure to improve the heat transport efficiency by exhibiting a capillary action without interfering with the self-excited vibration, and moreover, has stable performance. It is in.

【0004】[0004]

【課題を解決するための手段】本発明に係る自励振動型
ヒートパイプは、前述の課題を解決するため以下のよう
に構成したものである。すなわち、請求項1に記載の自
励振動型ヒートパイプは、金属製の細管1の内面に長さ
方向に連続する微細なフィン10を多数形成したことを
特徴とするものである。
The self-excited vibration type heat pipe according to the present invention is configured as follows in order to solve the above-mentioned problems. That is, the self-excited vibration type heat pipe according to claim 1 is characterized in that a large number of fine fins 10 continuous in the length direction are formed on the inner surface of the metal thin tube 1.

【0005】請求項2に記載の自励振動型ヒートパイプ
は、請求項1の自励振動型ヒートパイプにおいて、前記
フィン10のフィン高さhと管内径diとの比h/di
=0.01〜0.35であって、フィン数nと管内径d
iとの比n/di=3〜25であることを特徴としてい
る。
The self-excited vibration type heat pipe according to claim 2 is the self-excited vibration type heat pipe according to claim 1, wherein the ratio h / di between the fin height h of the fin 10 and the pipe inner diameter di.
= 0.01 to 0.35, the number of fins n and the inner diameter of the pipe d
The ratio to i is n / di = 3 to 25.

【0006】請求項3に記載の自励振動型ヒートパイプ
は、請求項1又は2の自励振動型ヒートパイプにおい
て、前記フィン10の管軸に対するリード角θを0〜2
0°としたことを特徴としている。
A self-excited vibration heat pipe according to a third aspect is the self-excited vibration heat pipe according to the first or second aspect, in which the lead angle θ with respect to the tube axis of the fin 10 is 0 to 2.
The feature is that it is set to 0 °.

【0007】請求項4に記載の自励振動型ヒートパイプ
は、請求項1〜3のいずれかの自励振動型ヒートパイプ
において、前記細管1は内径を0.5〜5mmとしたこ
とを特徴としている。
The self-excited vibration heat pipe according to claim 4 is the self-excited vibration heat pipe according to any one of claims 1 to 3, wherein the thin tube 1 has an inner diameter of 0.5 to 5 mm. I am trying.

【0008】[0008]

【発明の実施の形態】図面を参照しながら、本発明に係
る自励振動型ヒートパイプの好適な実施形態を説明す
る。 第1実施形態 図1は本発明に係る第1実施形態の自励振動型ヒートパ
イプの部分断面図、図2は図1のヒートパイプの拡大断
面図、図3は図1のヒートパイプの部分拡大展開断面、
図4は図1のヒートパイプをループ型に連結した状態の
概略正面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of a self-excited vibration type heat pipe according to the present invention will be described with reference to the drawings. First Embodiment FIG. 1 is a partial sectional view of a self-excited vibration type heat pipe according to a first embodiment of the present invention, FIG. 2 is an enlarged sectional view of the heat pipe of FIG. 1, and FIG. 3 is a portion of the heat pipe of FIG. Expanded cross section,
FIG. 4 is a schematic front view of the heat pipe of FIG. 1 connected in a loop shape.

【0009】銅又は銅合金、アルミニウム又はアルミニ
ウム合金、ステンレス鋼、チタン又はチタン合金等の熱
伝導性のよい金属製の細管1の内面には、長さ方向に連
続した微細なフィン10が多数形成されており、フィン
10相互の間は溝11になっている。細管1の肉厚(溝
底肉厚)tは0.2mm、管内径(溝11の底面が形成
する円径)diは0.5mm〜5mm、フィンピッチp
(隣合うフィン10相互の頂部の間隔)は0.2mm以
上である。フィン高さhは、細管1の内径diと比例す
るように形成される。一応の目安としては、細管1の内
径diが0.5mm,5mmである場合、フィン高さh
はそれぞれ0.05〜0.10mm,0.15〜0.2
5mm程度に設定するのが好ましい。フィン裾部には、
必要に応じて上部両側の傾斜面よりも緩慢な傾斜面を形
成したり、当該部分を凹円弧状又は凸円弧状に形成する
ことができる。
A large number of fine fins 10 continuous in the longitudinal direction are formed on the inner surface of the thin tube 1 made of a metal having good thermal conductivity such as copper or copper alloy, aluminum or aluminum alloy, stainless steel, titanium or titanium alloy. There is a groove 11 between the fins 10. The thin tube 1 has a wall thickness (groove bottom wall thickness) t of 0.2 mm, a tube inner diameter (circular diameter formed by the bottom surface of the groove 11) di of 0.5 mm to 5 mm, and a fin pitch p.
(The distance between the tops of the adjacent fins 10) is 0.2 mm or more. The fin height h is formed so as to be proportional to the inner diameter di of the thin tube 1. As a rough guide, if the inner diameter di of the thin tube 1 is 0.5 mm or 5 mm, the fin height h
Are 0.05 to 0.10 mm and 0.15 to 0.2, respectively.
It is preferably set to about 5 mm. On the fin hem,
If necessary, an inclined surface slower than the inclined surfaces on both sides of the upper portion can be formed, or the portion can be formed in a concave arc shape or a convex arc shape.

【0010】フィン10のフィン高さhと管内径diと
の比h/diは0.01〜0.35の範囲に、フィン数
nと管内径diとの比n/diは3〜25の範囲にそれ
ぞれ設定される。フィン10の管軸に対するリード角θ
は0〜20°であるのが好ましい。
The ratio h / di between the fin height h of the fin 10 and the pipe inner diameter di is in the range of 0.01 to 0.35, and the ratio n / di between the number of fins n and the pipe inner diameter di is 3 to 25. It is set to each range. Lead angle θ with respect to the tube axis of the fin 10
Is preferably 0 to 20 °.

【0011】第1実施形態の自励振動型ヒートパイプ
は、ボール転造加工法により工業的に製造される。すな
わち、金属製の素管内にフローティングプラグと当該フ
ローティングプラグへ回転自在に保持された溝付きプラ
グとを挿入し、ダイスとフローティングプラグへ通過さ
せて素管を引抜きながら所定量縮径する。溝付きプラグ
の位置では、溝付きプラグの回りに等角度間隔に配置し
たボールを自転かつ公転させながら素管の管壁を溝付き
プラグ表面へ押し付け、溝付きプラグの溝を素管内面に
転写することにより、細管1の内面へ前述のような多数
のフィン10を連続的に形成する。前記のボール転造加
工法のほかに、例えば金属の板条材を繰り出しながら平
滑ロールと溝付きロールによりその一面に微細な多数の
フィン10を連続的に形成し、フォーミングロールによ
り前記板条材を前記フィン形成面が内側になるように順
に丸め、板条材の両側縁部を突き合わせながら連続的に
溶接(高周波誘導溶接,TIG溶接,レーザ溶接等)
し、これをサイジングロールにより円形,多角形その他
の必要な管形状に成形することによっても製造すること
ができる。
The self-excited vibration type heat pipe of the first embodiment is industrially manufactured by a ball rolling method. That is, a floating plug and a grooved plug rotatably held in the floating plug are inserted into a metal shell, and the shell is passed through a die and the floating plug to pull out the shell and reduce the diameter by a predetermined amount. At the position of the grooved plug, the balls arranged at equal angular intervals around the grooved plug are rotated and revolved while pressing the pipe wall of the raw pipe against the surface of the grooved plug, and the groove of the grooved plug is transferred to the inner surface of the raw pipe. By doing so, many fins 10 as described above are continuously formed on the inner surface of the thin tube 1. In addition to the ball rolling method described above, a number of fine fins 10 are continuously formed on one surface by a smooth roll and a grooved roll while feeding a metal strip material, and the strip material is formed by a forming roll. Are sequentially rounded so that the fin forming surface is on the inside, and welded continuously while abutting the side edges of the strip (high frequency induction welding, TIG welding, laser welding, etc.)
However, it can also be manufactured by forming this into a required tubular shape such as a circular shape, a polygonal shape or the like by using a sizing roll.

【0012】前述のように内面に多数のフィン10を形
成した細管1は、洗浄により管内の油分,酸化膜その他
の付着物を除去した後、還元性雰囲気中で焼鈍を施す。
その後、例えば図4で示すように細管1をU字状に曲げ
加工し、両端のヘアピン部相互をY字状の管継ぎ手12
を用いてロウ付けによりU字状に連結する。このように
連結した細管1は、Y字状の継ぎ手12の部分から真空
脱気した後、所定量の作動液を封入し、内部の真空度を
保ちつつY字基部を圧着させて溶接(TIG溶接、高周
波溶接、超音波溶接等)により封止する。内部に封入す
る作動液は、純水,メタン,フレオン,メタノール,フ
ロン(R141b,R142b等),シクロペンタン等
である。
The thin tube 1 having a large number of fins 10 formed on the inner surface thereof as described above is annealed in a reducing atmosphere after the oil content, oxide film and other deposits in the tube are removed by washing.
Then, for example, as shown in FIG. 4, the thin tube 1 is bent into a U-shape, and the hairpin portions at both ends are mutually Y-shaped.
Are brazed together to form a U-shape. The thin tube 1 connected in this way is vacuum-degassed from the portion of the Y-shaped joint 12, and then sealed with a predetermined amount of hydraulic fluid, and the Y-shaped base is crimped and welded while maintaining the internal vacuum (TIG Welding, high frequency welding, ultrasonic welding, etc.). The working liquid sealed inside is pure water, methane, freon, methanol, freon (R141b, R142b, etc.), cyclopentane, and the like.

【0013】前述のように構成されたヒートパイプは、
Uターン部分の一方を受熱部とし、Uターン部分の他方
を放熱部として使用する。Y字状の管継ぎ手12の設置
部分は、受熱部又は放熱部とするが、好ましくは受熱部
として使用する。その理由は、放熱部で凝縮した作動液
をフィン10相互間の毛管作用により継ぎ手部分で阻害
されることなく受熱部へ円滑に移動させることができる
からである。受熱部や放熱部をヒートパイプのストレー
トな部分に配置することができるが、この場合にも同様
な理由で管継ぎ手を受熱部に配置するのが好ましい。細
管1は、図4のように連結することに代えて、要求され
る冷却能力によっては、例えば多数の細管を多数のU字
状ターン部分を介して蛇行状に連結し、最後にその両管
端部を連結しても実施することができる。また、要求さ
れる冷却能力が小さい場合や対象とする機器類によって
は、両管端部を連結しなくてもよい。
The heat pipe configured as described above is
One of the U-turn portions is used as a heat receiving portion and the other of the U-turn portions is used as a heat radiating portion. The installation portion of the Y-shaped pipe joint 12 is a heat receiving portion or a heat radiating portion, and is preferably used as a heat receiving portion. The reason is that the working fluid condensed in the heat radiating portion can be smoothly moved to the heat receiving portion without being hindered by the joint portion due to the capillary action between the fins 10. The heat receiving portion and the heat radiating portion can be arranged in the straight portion of the heat pipe, but in this case also, it is preferable to arrange the pipe joint in the heat receiving portion for the same reason. Instead of connecting the thin tubes 1 as shown in FIG. 4, depending on the required cooling capacity, for example, a large number of thin tubes are connected in a meandering manner through a large number of U-shaped turn portions, and finally both tubes are connected. It can also be implemented by connecting the ends. Further, both pipe ends may not be connected depending on the case where the required cooling capacity is small or depending on the target equipment.

【0014】第1実施形態の自励振動型ヒートパイプ
は、金属製の細管1の内面に長さ方向に連続する微細な
フィン10を多数形成したので、フィン10相互の毛管
作用により管内面を濡らし、安定した熱輸送性能を維持
することができる。また、前記フィン10のフィン高さ
hと管内径diとの比h/diを0.01〜0.35と
し、フィン数nと管内径diとの比n/diを3〜25
とすることにより、前記効果が一層よく発揮される。さ
らに、フィン10の管軸に対するリード角θを0〜20
°の範囲内とすることにより、前記効果がさらに一層よ
く発揮される。細管1の内径を0.5〜5mmとするこ
とにより、作動液の振動を阻害せずに自励振動の効果が
よりよく発揮される。
In the self-excited vibration type heat pipe of the first embodiment, since a large number of fine fins 10 continuous in the length direction are formed on the inner surface of the metal thin tube 1, the inner surface of the tube is formed by the mutual capillary action of the fins 10. It can be wet and maintain stable heat transport performance. Further, the ratio h / di between the fin height h of the fin 10 and the pipe inner diameter di is 0.01 to 0.35, and the ratio n / di between the number of fins n and the pipe inner diameter di is 3 to 25.
By setting the above, the above-mentioned effects can be more effectively exhibited. Further, the lead angle θ with respect to the tube axis of the fin 10 is 0 to 20.
By setting it within the range of °, the above-mentioned effect can be exerted even better. By setting the inner diameter of the thin tube 1 to 0.5 to 5 mm, the effect of self-excited vibration is better exhibited without impeding the vibration of the hydraulic fluid.

【0015】試験例1 実施例群サンプル 管内径di,フィン高さh,フィン数等が表1のように
異なり、図4のようにループ状に連結されていて、以下
のような実施例群の自励振動型ヒートパイプサンプル5
種を製造した。 細管材質=純銅管 管肉厚t=0.2mm フィン10の管軸に対するリード角θ=0° ヒートパイプ全長=160mm 封入作動液=パイプ容積の50%の純水
Test Example 1 Example group The sample tube inner diameter di, the fin height h, the number of fins, etc. are different as shown in Table 1 and are connected in a loop as shown in FIG. Self-excited vibration type heat pipe sample 5
Seed produced. Thin tube material = Pure copper tube Tube thickness t = 0.2 mm Lead angle θ = 0 ° with respect to tube axis of fin 10 Heat pipe total length = 160 mm Filled hydraulic fluid = Pure water of 50% of pipe volume

【0016】表1 Table 1

【0017】比較例1群サンプル 管内径diが6mm,4mm,1mm,0.5mm,
0.3mmであって、内面が平滑で図4のようにループ
状に連結され、以下のような比較例1群の自励振動型ヒ
ートパイプサンプル5種を製造した。 細管材質=純銅管 管肉厚t=0.2mm ヒートパイプ全長=160mm 封入作動液=パイプ容積の50%の純水
Comparative Example 1 group sample tube inner diameter di 6 mm, 4 mm, 1 mm, 0.5 mm,
Five self-excited vibration type heat pipe samples of Comparative Example 1 group as described below were manufactured having a thickness of 0.3 mm and having a smooth inner surface and connected in a loop shape as shown in FIG. Capillary material = Pure copper tube Tube thickness t = 0.2 mm Heat pipe total length = 160 mm Filled hydraulic fluid = Pure water of 50% of pipe volume

【0018】比較例2群サンプル 管内径diが6mm,4mmのサンプルには線径0.1
mmの銅線を編んだウイックを、管内径diが1mm,
0.5mm,0.3mmのサンプルには線径0.2mm
の銅線を編んだウイックを、それぞれ管内壁面に2層張
り合わせものを図4のようにループ状に連結し、以下の
ような比較例2群の自励振動型ヒートパイプサンプル5
種を製造した。 細管材質=純銅管 管肉厚t=0.2mm ヒートパイプ全長=160mm 封入作動液=パイプ容積の50%の純水
Comparative Example 2 group sample tube inner diameter di 6mm, for the sample of 4mm, wire diameter 0.1
mm woven copper wire, pipe inner diameter di 1mm,
0.2 mm wire diameter for 0.5 mm and 0.3 mm samples
Each of the wicks woven with the copper wire is laminated on the inner wall surface of the pipe in a two-layer structure and connected in a loop shape as shown in FIG.
Seed produced. Capillary material = Pure copper tube Tube thickness t = 0.2 mm Heat pipe total length = 160 mm Filled hydraulic fluid = Pure water of 50% of pipe volume

【0019】限界熱輸送量の測定 各サンプルの管継ぎ手12側部分の端部のパイプ長さ5
0mmの部分を受熱部1aとし、この受熱部1aにヒー
タ13を巻き付けて加熱した。他方の端部のパイプ長さ
50mmの部分を放熱部1cとし、この部分に冷却水の
流入口14と流出口15とを有する冷却ボックス16を
設置し、放熱部1cを20℃の冷却水で冷却した。ヒー
トパイプの受熱部1aと放熱部1cの中間領域は断熱部
1bとして断熱材により断熱し、各部の温度を熱電対で
測定しながら断熱部1bの温度が50℃となるように冷
却水の温度を制御し、ドライアウトするまで加熱温度を
上昇させて限界熱輸送量(W)を測定した。限界熱輸送
量は、サンプルを水平にした場合(図5)と、受熱部を
上部に位置させてサンプルを垂直に立てた場合(トップ
ヒートモード)(図6)と、受熱部を下部に位置させて
サンプルを垂直に立てた場合(ボトムヒートモード)
(図7)とでそれぞれ測定した。
Measurement of critical heat transport amount Pipe length 5 at the end of the pipe joint 12 side of each sample
The 0 mm portion was used as the heat receiving portion 1a, and the heater 13 was wound around the heat receiving portion 1a to heat it. A portion of the other end having a pipe length of 50 mm is used as a heat radiating portion 1c, a cooling box 16 having an inlet 14 and an outlet 15 of cooling water is installed in this portion, and the heat radiating portion 1c is cooled by 20 ° C. Cooled. The intermediate area between the heat receiving portion 1a and the heat radiating portion 1c of the heat pipe is insulated by a heat insulating material as a heat insulating portion 1b, and the temperature of the cooling water is controlled so that the temperature of each heat insulating portion 1b becomes 50 ° C. while measuring the temperature of each portion with a thermocouple. Was controlled, the heating temperature was raised until dry out, and the limiting heat transport amount (W) was measured. The limit heat transfer amount is when the sample is horizontal (Fig. 5), when the heat receiving part is positioned at the top and the sample is vertically placed (top heat mode) (Fig. 6), and when the heat receiving part is positioned at the bottom. And the sample is placed vertically (bottom heat mode)
(FIG. 7) and measured respectively.

【0020】限界熱輸送量の測定結果は図5〜図7に示
されており、この結果によれば、実施例のヒートパイプ
サンプルは、いずれのモードで測定した場合でも、フィ
ンのない内面が平滑な自励振動型ヒートパイプサンプル
と比較して、安定して熱輸送量を確保することができ
た。これは、管内面のフィン10が作動液の振動を阻害
することなく効率的に熱輸送できたためであり、また、
ドライアウト直前にはフィン間に生じる毛管現象により
放熱部から受熱部に作動液が熱輸送されたためである。
しかしながら、管内径が0.5mm未満になると内面の
フィンが作動液の振動を阻害し、自励振動はするものの
内面が平滑なサンプルよりも若干伝熱性能が落ちてい
る。他方、管内径5mmを超えると自励振動効果が小さ
くなる。比較例2群サンプルのように内面にウイックを
有するヒートパイプは、ボトムヒートモードではウイッ
クの毛管現象により熱輸送が円滑に行われ実施例群サン
プルに近い性能を発揮したが、トップヒートモードでは
毛管力が弱く、さらに、ウイックが作動液の自励振動を
阻害するため実施例群サンプルと比較して性能が極めて
低くなったものと考えられる。
The results of the measurement of the limit heat transport amount are shown in FIGS. 5 to 7. According to these results, the heat pipe sample of the example shows that the inner surface without fins is As compared with the smooth self-excited vibration type heat pipe sample, the heat transfer amount could be stably secured. This is because the fins 10 on the inner surface of the pipe were able to efficiently transfer heat without hindering the vibration of the hydraulic fluid.
This is because the hydraulic fluid was heat-transported from the heat radiating portion to the heat receiving portion due to the capillary phenomenon generated between the fins immediately before the dry-out.
However, when the inner diameter of the tube is less than 0.5 mm, the fins on the inner surface impede the vibration of the working fluid, and although the self-excited vibration occurs, the heat transfer performance is slightly lower than that of the sample having a smooth inner surface. On the other hand, if the pipe inner diameter exceeds 5 mm, the self-excited vibration effect becomes small. The heat pipe having a wick on the inner surface like the sample of Comparative Example 2 group performed the heat transfer smoothly by the capillary phenomenon of the wick in the bottom heat mode and exhibited the performance close to that of the sample of the Example group, but the capillary tube in the top heat mode. It is considered that the performance was extremely low as compared with the sample of the example group because the force was weak and the wick hindered the self-excited vibration of the hydraulic fluid.

【0021】試験例2(フィン高さと熱輸送量との関
係) 前記実施例群サンプルの中、管内径di=4mmのサン
プルと同様であって、フィン高さhを0〜1.7mm
(フィン高さh/管内径diを0〜0.43)までの範
囲で変化させたヒートパイプサンプルを製造し、それぞ
れについてサンプルを水平状態にして熱輸送量を測定
し、その結果を図8に示した。図8の結果と図5の結果
とを比較すると、図8で示すようにフィン高さh/管内
径diが0.01〜0.35の範囲内での限界熱輸送量
は40W以上であり、図5において内径4mmで内面が
平滑な自励振動型ヒートパイプサンプルの熱輸送量の4
0W、及び、内径4mmで内面にウイックを有する自励
振動型ヒートパイプサンプルの熱輸送量の36Wをいず
れも超えていて、h/diが0.01〜0.35の範囲
であるとき、比較例等と比べてより大きな熱輸送量が得
られることが判る。
Test Example 2 (Relationship between Fin Height and Heat Transport Amount) This is the same as the sample having the tube inner diameter di = 4 mm among the samples of the above Examples, and the fin height h is 0 to 1.7 mm.
A heat pipe sample was manufactured in which the fin height h / the pipe inner diameter di was changed in the range of 0 to 0.43, and the heat transport amount was measured with each sample in a horizontal state. It was shown to. Comparing the results of FIG. 8 and the results of FIG. 5, as shown in FIG. 8, the limit heat transport amount is 40 W or more when the fin height h / the pipe inner diameter di is in the range of 0.01 to 0.35. In FIG. 5, the heat transfer amount of the self-excited vibration type heat pipe sample with an inner diameter of 4 mm and a smooth inner surface was 4
When both 0 W and 36 W, which is the heat transfer amount of a self-excited vibration heat pipe sample having an inner diameter of 4 mm and a wick on the inner surface, are exceeded and h / di is in the range of 0.01 to 0.35, comparison It can be seen that a larger heat transfer amount can be obtained as compared with the examples.

【0022】試験例3(フィン数と熱輸送量との関係) 前記実施例群サンプルの中、管内径di=4mmのサン
プルと同様であって、フィン数nを0〜110(フィン
数n/管内径diを0〜27.5)までの範囲で変化さ
せたヒートパイプサンプルを製造し、それぞれについて
サンプルを水平状態にして熱輸送量を測定し、その結果
を図9に示した。図9の結果と図5の結果とを比較する
と、図9で示すようにフィン数n/管内径diが3〜2
5の範囲内での限界熱輸送量は40W以上であり、図5
において内径4mmで内面が平滑な自励振動型ヒートパ
イプサンプルの熱輸送量の40W、及び、内径4mmで
内面にウイックを有する自励振動型ヒートパイプサンプ
ルの熱輸送量の36Wをいずれも超えていて、n/di
が3〜25の範囲であるとき、比較例等と比べてより大
きな熱輸送量が得られることが判る。
Test Example 3 (relationship between the number of fins and the amount of heat transport) Among the samples of the above-mentioned examples, the sample was the same as the sample having the tube inner diameter di = 4 mm and the number of fins n was 0 to 110 (the number of fins n / Heat pipe samples were manufactured in which the pipe inner diameter di was changed in the range of 0 to 27.5), and the heat transport amount was measured for each of the samples in a horizontal state. The results are shown in FIG. When the results of FIG. 9 and the results of FIG. 5 are compared, as shown in FIG. 9, the number of fins n / the pipe inner diameter di is 3 to 2
The critical heat transport amount within the range of 5 is 40 W or more.
In both cases, the heat transfer amount of the self-excited vibration heat pipe sample having an inner diameter of 4 mm and a smooth inner surface was 40 W, and the heat transfer amount of the self-excited vibration heat pipe sample having an inner surface of 4 mm and a wick was 36 W. , N / di
It can be seen that a larger amount of heat transport can be obtained when the value is in the range of 3 to 25 as compared with Comparative Examples and the like.

【0023】試験例4(フィンの管軸に対するリード角
θと熱輸送量との関係) 前記実施例群サンプルの中、管内径di=4mmのサン
プルと同様であって、フィンの管軸に対するリード角θ
を0〜40°までの範囲で変化させたヒートパイプサン
プルを製造し、それぞれについてサンプルを水平状態に
して熱輸送量を測定し、その結果を図10に示した。図
10の結果と図5の結果とを比較すると、フィンの管軸
に対するリード角θが0〜20°であるとき、比較例の
ヒートパイプサンプルと比べてより大きな熱輸送量が得
られることが判る。
Test Example 4 (Relationship between the Lead Angle θ with respect to the Fin Tube Axis and the Heat Transport Amount) Similar to the sample of the tube inner diameter di = 4 mm among the samples of the above-mentioned Examples, the lead with respect to the fin tube axis was used. Angle θ
Was manufactured in the range of 0 to 40 °, and the heat transfer amount was measured for each of the samples with the sample in a horizontal state. The results are shown in FIG. 10. Comparing the results of FIG. 10 with the results of FIG. 5, when the lead angle θ with respect to the tube axis of the fin is 0 to 20 °, a larger heat transport amount can be obtained as compared with the heat pipe sample of the comparative example. I understand.

【0024】[0024]

【発明の効果】請求項1の発明に係る自励振動型ヒート
パイプによれば、金属製の細管1の内面に長さ方向に連
続する微細なフィン10を多数形成したので、フィン1
0相互の毛管作用により管内面を濡らし、安定した熱輸
送性能を維持することができる。
According to the self-excited vibration type heat pipe of the first aspect of the present invention, since a large number of fine fins 10 continuous in the lengthwise direction are formed on the inner surface of the metal thin tube 1, the fin 1
It is possible to wet the inner surface of the tube by mutual zero capillary action and maintain stable heat transport performance.

【0025】請求項2の発明に係る自励振動型ヒートパ
イプによれば、前記フィン10のフィン高さhと管内径
diとの比h/diを0.01〜0.35とし、フィン
数nと管内径diとの比n/diを3〜25とすること
により、前記効果が一層よく発揮される。
According to the self-excited vibration type heat pipe of the present invention, the ratio h / di between the fin height h of the fin 10 and the pipe inner diameter di is set to 0.01 to 0.35, and the number of fins is set. By setting the ratio n / di between n and the inner diameter di of the pipe to 3 to 25, the above-mentioned effect is more effectively exhibited.

【0026】請求項3の発明に係る自励振動型ヒートパ
イプによれば、フィン10の管軸に対するリード角θを
0〜20°の範囲内とすることにより、前記効果がさら
に一層よく発揮される。
According to the self-excited vibration type heat pipe of the third aspect of the present invention, the effect is further enhanced by setting the lead angle θ of the fin 10 to the tube axis within the range of 0 to 20 °. It

【0027】請求項4の発明に係る自励振動型ヒートパ
イプによれば、細管1の内径を0.5〜5mmとするこ
とにより、作動液の振動を阻害せずに自励振動の効果が
よりよく発揮される。
According to the self-excited vibration type heat pipe of the fourth aspect of the present invention, the effect of self-excited vibration is obtained without inhibiting the vibration of the working fluid by setting the inner diameter of the thin tube 1 to 0.5 to 5 mm. Better demonstrated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る第1実施形態の自励振動型ヒート
パイプの部分断面図である。
FIG. 1 is a partial cross-sectional view of a self-excited vibration type heat pipe according to a first embodiment of the present invention.

【図2】図1の自励振動型ヒートパイプの拡大断面図で
ある。
FIG. 2 is an enlarged cross-sectional view of the self-excited vibration heat pipe of FIG.

【図3】図1の自励振動型ヒートパイプの部分拡大展開
断面図である。
FIG. 3 is a partially enlarged development sectional view of the self-excited vibration type heat pipe of FIG.

【図4】自励振動型ヒートパイプの限界熱輸送量の測定
方法を説明するための概略正面図である。
FIG. 4 is a schematic front view for explaining a method of measuring a limit heat transport amount of a self-excited vibration type heat pipe.

【図5】各ヒートパイプサンプル群の水平姿勢における
限界熱輸送量の測定結果を示す線図である。
FIG. 5 is a diagram showing the measurement results of the limit heat transport amount in the horizontal posture of each heat pipe sample group.

【図6】各ヒートパイプサンプル群のトップヒートモー
ドにおる限界熱輸送量の測定結果を示す線図である。
FIG. 6 is a diagram showing the measurement results of the critical heat transport amount in the top heat mode of each heat pipe sample group.

【図7】各ヒートパイプサンプル群のボトムヒートモー
ドにおる限界熱輸送量の測定結果を示す線図である。
FIG. 7 is a diagram showing the measurement results of the critical heat transport amount in the bottom heat mode of each heat pipe sample group.

【図8】本発明に係る自励振動型ヒートパイプにおい
て、フィン高さと熱輸送量との関係を示す線図である。
FIG. 8 is a diagram showing a relationship between fin height and heat transport amount in the self-excited vibration type heat pipe according to the present invention.

【図9】本発明に係る自励振動型ヒートパイプにおい
て、フィン数と熱輸送量との関係を示す線図である。
FIG. 9 is a diagram showing the relationship between the number of fins and the amount of heat transport in the self-excited vibration type heat pipe according to the present invention.

【図10】本発明に係る自励振動型ヒートパイプにおい
て、管軸に対するフィンのリード角と熱輸送量との関係
を示す線図である。
FIG. 10 is a diagram showing a relationship between a lead angle of a fin with respect to a tube axis and a heat transport amount in a self-excited vibration type heat pipe according to the present invention.

【符号の説明】[Explanation of symbols]

1 細管 10 フィン 11 溝 12 管継ぎ手 13 ヒータ 14 流入口 15 流出口 16 冷却ボックス 1a 受熱部 1b 断熱部 1c 放熱部 θ フィンのリード角 t 管の溝底肉厚 h フィン高さ di 管内径 1 thin tube 10 fins 11 grooves 12 pipe fittings 13 heater 14 Inlet 15 Outlet 16 cooling box 1a Heat receiving part 1b Heat insulation part 1c Heat dissipation part θ Fin lead angle t Tube groove bottom thickness h fin height di tube inner diameter

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属製の細管(1)の内面に長さ方向に
連続する微細なフィン(10)が多数形成されているこ
とを特徴とする、自励振動型ヒートパイプ。
1. A self-excited vibration type heat pipe, characterized in that a large number of fine fins (10) continuous in the longitudinal direction are formed on the inner surface of a metal thin tube (1).
【請求項2】 前記フィン(10)のフィン高さ(h)
と管内径(di)との比(h/di)=0.01〜0.
35、フィン数(n)と管内径(di)との比(n/d
i)=3〜25であることを特徴とする、請求項1に記
載の自励振動型ヒートパイプ。
2. Fin height (h) of said fin (10)
(H / di) = 0.01 to 0.
35, the ratio of the number of fins (n) to the inner diameter of the pipe (di) (n / d
The self-excited vibration type heat pipe according to claim 1, wherein i) = 3 to 25.
【請求項3】 フィン(10)の管軸に対するリード角
(θ)が0〜20°であることを特徴とする、請求項1
又は2に記載の自励振動型ヒートパイプ。
3. The lead angle (θ) of the fin (10) with respect to the tube axis is 0 to 20 °.
Alternatively, the self-excited vibration heat pipe according to item 2.
【請求項4】 前記細管(1)は内径が0.5〜5mm
であることを特徴とする、請求項1〜3のいずれかに記
載の自励振動型ヒートパイプ。
4. The thin tube (1) has an inner diameter of 0.5 to 5 mm.
The self-excited vibration type heat pipe according to any one of claims 1 to 3, wherein
JP2002109063A 2002-04-11 2002-04-11 Self-excited oscillation type heat pipe Pending JP2003302180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002109063A JP2003302180A (en) 2002-04-11 2002-04-11 Self-excited oscillation type heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002109063A JP2003302180A (en) 2002-04-11 2002-04-11 Self-excited oscillation type heat pipe

Publications (1)

Publication Number Publication Date
JP2003302180A true JP2003302180A (en) 2003-10-24

Family

ID=29392627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002109063A Pending JP2003302180A (en) 2002-04-11 2002-04-11 Self-excited oscillation type heat pipe

Country Status (1)

Country Link
JP (1) JP2003302180A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228613A (en) * 2005-02-18 2006-08-31 Matsushita Electric Ind Co Ltd Fuel cell power generation system
JP2007010249A (en) * 2005-06-30 2007-01-18 Toshiba Corp Cooling device, and electronic apparatus
JP2008185288A (en) * 2007-01-31 2008-08-14 Sumitomo Light Metal Ind Ltd Inner surface grooved pipe for heat pipe
JPWO2007086418A1 (en) * 2006-01-26 2009-06-18 株式会社小松製作所 Fluid cooling device
WO2009099057A1 (en) * 2008-02-08 2009-08-13 National University Corporation Yokohama National University Self-oscillating heat pipe
WO2010078686A1 (en) * 2009-01-06 2010-07-15 昆山开思拓空调技术有限公司 Capillary tube for heat exchange
JP2012067976A (en) * 2010-09-24 2012-04-05 Kiko Kagi Kofun Yugenkoshi Sealing structure for flat type heat pipe and method of manufacturing the same
JP2013073722A (en) * 2011-09-27 2013-04-22 Furukawa Electric Co Ltd:The Battery temperature adjusting unit and battery temperature adjusting apparatus
JP2013160420A (en) * 2012-02-03 2013-08-19 Toyota Central R&D Labs Inc Self-excited vibration heat pipe
JP2014224647A (en) * 2013-05-16 2014-12-04 株式会社デンソー Cooler
CN112833689A (en) * 2021-01-08 2021-05-25 青岛宝润科技有限公司 Circular arc temperature-equalizing loop heat pipe with variable upstream angle
CN112833690A (en) * 2021-01-08 2021-05-25 青岛宝润科技有限公司 Circular arc temperature-equalizing loop heat pipe with variable downstream angle
CN112833692A (en) * 2021-01-08 2021-05-25 青岛宝润科技有限公司 Radian-variable straight-plate uniform-temperature loop heat pipe

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228613A (en) * 2005-02-18 2006-08-31 Matsushita Electric Ind Co Ltd Fuel cell power generation system
JP2007010249A (en) * 2005-06-30 2007-01-18 Toshiba Corp Cooling device, and electronic apparatus
JPWO2007086418A1 (en) * 2006-01-26 2009-06-18 株式会社小松製作所 Fluid cooling device
JP2008185288A (en) * 2007-01-31 2008-08-14 Sumitomo Light Metal Ind Ltd Inner surface grooved pipe for heat pipe
JP5403617B2 (en) * 2008-02-08 2014-01-29 国立大学法人横浜国立大学 Self-excited vibration heat pipe
WO2009099057A1 (en) * 2008-02-08 2009-08-13 National University Corporation Yokohama National University Self-oscillating heat pipe
WO2010078686A1 (en) * 2009-01-06 2010-07-15 昆山开思拓空调技术有限公司 Capillary tube for heat exchange
JP2012067976A (en) * 2010-09-24 2012-04-05 Kiko Kagi Kofun Yugenkoshi Sealing structure for flat type heat pipe and method of manufacturing the same
JP2013073722A (en) * 2011-09-27 2013-04-22 Furukawa Electric Co Ltd:The Battery temperature adjusting unit and battery temperature adjusting apparatus
JP2013160420A (en) * 2012-02-03 2013-08-19 Toyota Central R&D Labs Inc Self-excited vibration heat pipe
JP2014224647A (en) * 2013-05-16 2014-12-04 株式会社デンソー Cooler
CN112833689A (en) * 2021-01-08 2021-05-25 青岛宝润科技有限公司 Circular arc temperature-equalizing loop heat pipe with variable upstream angle
CN112833690A (en) * 2021-01-08 2021-05-25 青岛宝润科技有限公司 Circular arc temperature-equalizing loop heat pipe with variable downstream angle
CN112833692A (en) * 2021-01-08 2021-05-25 青岛宝润科技有限公司 Radian-variable straight-plate uniform-temperature loop heat pipe
CN112833692B (en) * 2021-01-08 2022-05-24 苏州好嗨哟智能科技有限公司 Radian-variable straight-plate uniform-temperature loop heat pipe
CN112833690B (en) * 2021-01-08 2022-05-27 东莞市立敏达电子科技有限公司 Circular arc temperature-equalizing loop heat pipe with variable downstream angle

Similar Documents

Publication Publication Date Title
US10184729B2 (en) Heat pipe
JP2003302180A (en) Self-excited oscillation type heat pipe
JP4653247B2 (en) Flat heat pipe and method of manufacturing the same
US6981322B2 (en) Cooling apparatus having low profile extrusion and method of manufacture therefor
US20090020268A1 (en) Grooved heat pipe and method for manufacturing the same
JP2009068787A (en) Thin heat pipe and method of manufacturing the same
JP2007120787A (en) Heat exchanger tube with inner surface groove
JP2008164245A (en) Heat exchanger
JP2007271123A (en) Inner face-grooved heat transfer tube
TW201930811A (en) Heat pipe
JP4084174B2 (en) Heat exchanger
JP4925597B2 (en) Heat pipe for heat pipe and heat pipe
JP4389565B2 (en) Boiling heat transfer tube and manufacturing method thereof
JP2000074578A (en) Flat heat pipe and manufacture thereof
KR101200597B1 (en) A complex pipe for transferring heat, heat exchanging system and heat exchanger using the same
JP2006189232A (en) Heat transfer pipe for heat pipe, and heat pipe
JP2008241180A (en) Heat transfer tube for heat pipe and heat pipe
JP5567059B2 (en) Thin heat pipe
JP2006130558A (en) Method for manufacturing heat exchanger
JP2005291599A (en) Tube with internal groove for heat pipe and heat pipe
JP2009243864A (en) Inner surface grooved pipe for heat pipe, and heat pipe
JP2009024996A (en) Method of manufacturing heat pipe
JP2003302179A (en) Self-excited oscillation type heat pipe
JP2000074579A (en) Flat heat pipe and manufacture thereof
US20020074114A1 (en) Finned heat exchange tube and process for forming same