JP2003302179A - Self-excited oscillation type heat pipe - Google Patents

Self-excited oscillation type heat pipe

Info

Publication number
JP2003302179A
JP2003302179A JP2002109054A JP2002109054A JP2003302179A JP 2003302179 A JP2003302179 A JP 2003302179A JP 2002109054 A JP2002109054 A JP 2002109054A JP 2002109054 A JP2002109054 A JP 2002109054A JP 2003302179 A JP2003302179 A JP 2003302179A
Authority
JP
Japan
Prior art keywords
fin
inclined side
angle
self
heat pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002109054A
Other languages
Japanese (ja)
Inventor
Kenji Nakamizo
賢治 中溝
Koji Yamamoto
孝司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2002109054A priority Critical patent/JP2003302179A/en
Publication of JP2003302179A publication Critical patent/JP2003302179A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a self-excited oscillation type heat pipe capable of accelerating the movement of a working fluid heated at a heat receiving part and bubbles generated there with a simple structure and capable of guaranteeing the reliability of the performance for a long period of time. <P>SOLUTION: A number of fine fins 10 whose sections are nearly triangular are formed continuously in the length direction on the inner surface of a metal capillary 1. In each fin 10, the inclination of one inclined side surface near the top of the fin and the other inclined side surface is asymmetric. The ratio θ1/θ2 of the angle θ1 to the angle θ2 is 0.5-0.9, and the lead angle β to the tube axis of the fin 10 is 10-35°. The angle θ1 is formed on the section side of the fin 10 by one inclined side surface of the fin 10 and a virtual line A, and the angle θ2 is formed on the section side of the fin 10 by the other inclined side surface of the fin 10 and a virtual line B. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はノート型パソコン、
携帯電話などの携帯型通信機器、ビデオカメラ、燃料電
池及びゲーム機器その他携帯ないし簡単に移動し得る機
器類の発熱部分の冷却装置に使用される自励振動型ヒー
トパイプに関するものである。
TECHNICAL FIELD The present invention relates to a notebook type personal computer,
The present invention relates to a self-excited vibration heat pipe used as a cooling device for a heat generating portion of a portable communication device such as a mobile phone, a video camera, a fuel cell, a game device, and other portable or easily movable devices.

【0002】[0002]

【従来の技術】例えば特開平4−190090号公報に
は、従来技術の引用(特開昭63−318493号公報
の引用)の形式により、細管の両端を連結して長楕円状
(ループ状)に形成し、一方のU字状ターン部を受熱部
とするとともに他方のU字状ターン部を放熱部とし、受
熱部と放熱部の間に逆止弁を設置した自励振動型ヒート
パイプが記載されている。
2. Description of the Related Art For example, Japanese Unexamined Patent Publication No. 4-190090 discloses a long elliptical shape (loop shape) in which both ends of a thin tube are connected by a conventional technique (cited in Japanese Unexamined Patent Publication No. Sho 63-318493). A self-excited vibration heat pipe in which one U-shaped turn portion is used as a heat receiving portion and the other U-shaped turn portion is used as a heat radiating portion, and a check valve is installed between the heat receiving portion and the heat radiating portion. Have been described.

【0003】[0003]

【発明が解決しようとする課題】自励振動型ヒートパイ
プでは、受熱部が加熱されるとその熱量に対応して作動
液には軸方向の振動が発生し、これによって受熱部から
放熱部へ熱輸送が行われる。しかしながら、作動液の振
動のみでは受熱部から放熱部への作動液の移動がなく熱
輸送量が小さいので、前述のようにヒートパイプ内に逆
止弁(ルビー球弁)を設けることにより作動液の循環を
促進させ、受熱部で加熱された作動液を放熱部ヘ移動さ
せて熱輸送量の向上を図っている。前述のように、ヒー
トパイプ内に逆止弁を設けると作動液の循環は促進され
るが、逆止弁による性能の長期信頼性保証が困難である
とともに、高コストを伴うという課題があるほか、特に
極細径の管の場合には逆止弁によりかえって作動液の循
環を阻害することがあった。本発明の目的は、簡単な構
造で受熱部で加熱された作動液やそこで発生した気泡の
放熱部への移動を促進させることができ、しかも、性能
の信頼性を長期にわたって保証することができる自励振
動型ヒートパイプを提供することにある。
In the self-excited vibration type heat pipe, when the heat receiving portion is heated, axial vibration is generated in the hydraulic fluid in accordance with the amount of heat, which causes the heat receiving portion to move to the heat radiating portion. Heat transport takes place. However, since only the vibration of the hydraulic fluid does not move the hydraulic fluid from the heat receiving part to the heat radiating part and the heat transfer amount is small, it is necessary to install a check valve (ruby ball valve) in the heat pipe as described above. The circulation of water is promoted and the working fluid heated in the heat receiving portion is moved to the heat radiating portion to improve the heat transport amount. As described above, if a check valve is provided in the heat pipe, the circulation of the hydraulic fluid is promoted, but it is difficult to guarantee long-term reliability of the performance by the check valve, and there are other problems such as high cost. In particular, in the case of an extremely thin pipe, the check valve may rather hinder the circulation of the hydraulic fluid. An object of the present invention is to facilitate the movement of the working fluid heated in the heat receiving portion and the bubbles generated therein to the heat radiating portion with a simple structure, and further, it is possible to guarantee the reliability of performance for a long period of time. It is to provide a self-excited vibration type heat pipe.

【0004】[0004]

【課題を解決するための手段】本発明に係る自励振動型
ヒートパイプは、前述の課題を解決するため以下のよう
に構成したものである。すなわち、請求項1に記載の自
励振動型ヒートパイプは、金属製の細管1の内面に長さ
方向に連続し断面が概ね三角形状を呈する微細なフィン
10が多数形成され、各フィン10の頂部寄りの一方の
傾斜側面と他方の傾斜側面とはそれらの傾斜が非対称で
あることを特徴としている。
The self-excited vibration type heat pipe according to the present invention is configured as follows in order to solve the above-mentioned problems. That is, in the self-excited vibration type heat pipe according to claim 1, a large number of fine fins 10 continuous in the length direction and having a substantially triangular cross section are formed on the inner surface of the metal thin tube 1, and The one inclined side surface near the top and the other inclined side surface are characterized in that their inclinations are asymmetric.

【0005】請求項2に記載の自励振動型ヒートパイプ
は、請求項1の自励振動型ヒートパイプの管軸と直交す
る断面において、前記フィン10の頂部寄りの一方の傾
斜側面と、当該傾斜側面又は当該傾斜側面の延長面と前
記細管1の内径線との交点を通りかつ細管1の半径方向
の直線に対して直交する仮想線Aとが当該フィン10の
断面側で形成する角度θ1と、前記フィン10の頂部寄
りの他方の傾斜側面と、当該傾斜面又は当該傾斜側面の
延長面と前記細管1の内径線との交点を通りかつ細管1
の半径方向の直線に対して直交する仮想線Bとが当該フ
ィン10の断面側で形成する角度θ2との比(θ1/θ
2)が、0.5〜0.9であることを特徴としている。
A self-excited vibration heat pipe according to a second aspect of the present invention is characterized in that, in a cross section orthogonal to the tube axis of the self-excited vibration heat pipe according to the first aspect, one inclined side surface near the top of the fin 10 is provided. An angle θ1 formed on the cross section side of the fin 10 by an imaginary line A passing through the intersection of the inclined side surface or the extension surface of the inclined side surface and the inner diameter line of the thin tube 1 and orthogonal to the straight line in the radial direction of the thin tube 1. Through the intersection of the other inclined side surface near the top of the fin 10, the inclined surface or the extension surface of the inclined side surface and the inner diameter line of the thin tube 1 and the thin tube 1
Of the imaginary line B orthogonal to the straight line in the radial direction of the angle θ2 formed on the cross section side of the fin 10 (θ1 / θ
2) is characterized by being 0.5 to 0.9.

【0006】請求項3に記載の自励振動型ヒートパイプ
は、請求項1又は2の自励振動型ヒートパイプにおい
て、前記フィン10の管軸に対するリード角βが10〜
35°であることを特徴としている。
A self-excited vibration heat pipe according to a third aspect of the present invention is the self-excited vibration heat pipe according to the first or second aspect, in which the lead angle β with respect to the tube axis of the fin 10 is 10 to 10.
It is characterized by being 35 °.

【0007】[0007]

【発明の実施の形態】図面を参照しながら、本発明に係
る自励振動型ヒートパイプの好適な実施形態を説明す
る。 第1実施形態 図1は本発明に係る第1実施形態の自励振動型ヒートパ
イプの部分断面図、図2は図1のヒートパイプの部分拡
大断面図であって、(a)図はフィンを半径方向の線で
二分したときの当該フィンの一半部を示す断面図、
(b)はフィンの他の一半部を示す断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of a self-excited vibration type heat pipe according to the present invention will be described with reference to the drawings. First Embodiment FIG. 1 is a partial cross-sectional view of a self-excited vibration type heat pipe according to the first embodiment of the present invention, FIG. 2 is a partial enlarged cross-sectional view of the heat pipe of FIG. 1, and FIG. Is a cross-sectional view showing one half of the fin when bisected by a radial line,
(B) is a sectional view showing the other half of the fin.

【0008】銅又は銅合金、アルミニウム又はアルミニ
ウム合金、ステンレス鋼、チタン又はチタン合金等の熱
伝導性のよい金属製の細管1の内面には、長さ方向に連
続し断面が概ね三角形状を呈する微細なフィン10が多
数形成され、フィン10相互の間は溝11になってい
る。図の細管1の溝底肉厚tは0.2mm、内径(溝1
1の底面が形成する円径)diは4mm、フィンピッチ
p(隣合うフィン10相互の頂部の間隔)は約0.3m
m、フィン高hは0.20mmになるように設計されて
いる。フィン高さhは、加工性を考慮して細管1の内径
diやフィンピッチpと比例するように形成される。一
応の目安としては、細管1の内径diが0.5mmであ
る場合フィン高さhは0.02〜0.12mm程度(最
適値は0.05〜0.10mm)、細管1の内径diが
5mmである場合、フィン高さhは0.10〜0.30
mm程度(最適値は0.15〜0.25mm)にそれぞ
れ設定するのが好ましい。
On the inner surface of the thin tube 1 made of metal having good thermal conductivity such as copper or copper alloy, aluminum or aluminum alloy, stainless steel, titanium or titanium alloy, the cross section is continuous in the length direction and has a generally triangular cross section. A large number of fine fins 10 are formed, and grooves 11 are formed between the fins 10. The groove bottom wall thickness t of the thin tube 1 in the figure is 0.2 mm, and the inner diameter (groove 1
The diameter of the circle formed by the bottom surface of 1) di is 4 mm, and the fin pitch p (the distance between the tops of adjacent fins 10) is about 0.3 m.
m and fin height h are designed to be 0.20 mm. The fin height h is formed so as to be proportional to the inner diameter di of the thin tube 1 and the fin pitch p in consideration of workability. As a rough guide, when the inner diameter di of the thin tube 1 is 0.5 mm, the fin height h is about 0.02 to 0.12 mm (the optimum value is 0.05 to 0.10 mm), and the inner diameter di of the thin tube 1 is When the height is 5 mm, the fin height h is 0.10 to 0.30.
It is preferable to set each to about mm (the optimum value is 0.15 to 0.25 mm).

【0009】細管1内の各フィン10の頂部寄りの一方
の傾斜側面と他方の傾斜側面とは、それらの傾斜が非対
称になるように構成されている。すなわち管軸と直交す
る断面において、フィン10の頂部寄りの一方の傾斜側
面と、当該傾斜側面(フィン10の裾まで傾斜が変化し
ていない場合)又はその延長面(フィン10の裾部にお
ける傾斜が頂部寄り位置よりも変化している場合)a1
と細管1の内径線(この明細書では「溝11底を円周方
向に結んだ線」を言う。)との交点P1を通りかつ細管
1の半径方向の直線a2に対して直交する仮想線Aとが
フィン10の断面側で形成する角度をθ1とし、前記フ
ィン10の頂部寄りの他方の傾斜側面と、当該傾斜面又
は当該傾斜側面の延長面b1と前記細管1の内径線との
交点P2を通りかつ細管1の半径方向の直線b2に対し
て直交する仮想線Bとがフィン10の断面側で形成する
角度をθ2とした場合において、角度θ1と角度θ2と
がほぼ一様に異なるように形成されている。前記角度θ
1とθ2との比θ1/θ2は0.5〜0.9の範囲であ
ることが好ましい。フィン10の管軸に対するリード角
β(図1)は、10〜35°であるのが好ましい。
The one inclined side surface and the other inclined side surface near the top of each fin 10 in the thin tube 1 are constructed so that their inclinations are asymmetric. That is, in a cross section orthogonal to the tube axis, one inclined side surface near the top of the fin 10 and the inclined side surface (when the inclination does not change to the hem of the fin 10) or its extension surface (inclination at the hem of the fin 10). Is changing from the position near the top) a1
And an inner diameter line of the thin tube 1 (in this specification, "a line connecting the bottom of the groove 11 in the circumferential direction"), an imaginary line passing through an intersection P1 and orthogonal to the straight line a2 in the radial direction of the thin tube 1. The angle formed by A on the cross-sectional side of the fin 10 is θ1, and the other inclined side surface near the top of the fin 10 and the intersection of the inclined surface or the extension surface b1 of the inclined side surface and the inner diameter line of the thin tube 1. When the angle formed by the imaginary line B passing through P2 and orthogonal to the radial line b2 of the thin tube 1 on the cross section side of the fin 10 is θ2, the angle θ1 and the angle θ2 are substantially uniformly different. Is formed. The angle θ
The ratio θ1 / θ2 between 1 and θ2 is preferably in the range of 0.5 to 0.9. The lead angle β (FIG. 1) of the fin 10 with respect to the tube axis is preferably 10 to 35 °.

【0010】第1実施形態の自励振動型ヒートパイプ
は、例えばボール転造加工法により工業的に製造され
る。すなわち、金属製の素管内にフローティングプラグ
と当該フローティングプラグへ回転自在に保持された溝
付きプラグとを挿入し、ダイスとフローティングプラグ
へ通過させて素管を引抜きながら所定量縮径する。溝付
きプラグの位置では、溝付きプラグの回りに等角度間隔
に配置したボールを自転かつ公転させながら素管の管壁
を溝付きプラグ表面へ押し付け、溝付きプラグの溝を素
管内面に転写することにより、細管1の内面へ前述のよ
うな多数のフィン10を連続的に形成する。前記ボール
転造加工法のほかに、例えば金属の板条材を繰り出しな
がら平滑ロールと溝付きロールによりその一面に微細な
多数のフィン10を連続的に形成し、フォーミングロー
ルにより前記板条材を前記フィン形成面が内側になるよ
うに順に丸め、板条材の両側縁部を突き合わせながら連
続的に溶接(高周波誘導溶接,TIG溶接,レーザ溶接
等)し、これをサイジングロールにより円形,多角形そ
の他の必要な管形状に成形することによっても製造する
ことができる。
The self-excited vibration type heat pipe of the first embodiment is industrially manufactured by, for example, a ball rolling method. That is, a floating plug and a grooved plug rotatably held in the floating plug are inserted into a metal shell, and the shell is passed through a die and the floating plug to pull out the shell and reduce the diameter by a predetermined amount. At the position of the grooved plug, the balls arranged at equal angular intervals around the grooved plug are rotated and revolved while pressing the pipe wall of the raw pipe against the surface of the grooved plug, and the groove of the grooved plug is transferred to the inner surface of the raw pipe. By doing so, many fins 10 as described above are continuously formed on the inner surface of the thin tube 1. In addition to the ball rolling method, for example, while rolling out a metal strip material, a large number of fine fins 10 are continuously formed on one surface by a smooth roll and a grooved roll, and the strip material is formed by a forming roll. The fins are rounded in order so that they are on the inside, and are welded continuously (high-frequency induction welding, TIG welding, laser welding, etc.) while abutting both side edges of the strip material, and then circular or polygonal with a sizing roll. It can also be manufactured by molding into other required tubular shapes.

【0011】前述のように内面に多数のフィン10を形
成した細管1は、洗浄により管内の油分,酸化膜その他
の付着物を除去した後、還元性雰囲気中で焼鈍を施す。
その後、例えば図4で示すように細管1をU字状に曲げ
加工し、両端のヘアピン部相互をY字状の管継ぎ手12
を用いてロウ付けによりU字状に連結する。このように
連結した細管1は、Y字状の継ぎ手12の部分から真空
脱気した後、所定量の作動液を封入し、内部の真空度を
保ちつつY字基部を圧着させて溶接(TIG溶接、高周
波溶接、超音波溶接等)により封止する。内部に封入す
る作動液は、純水,メタン,フレオン,メタノール,フ
ロン(R141b,R142b等),シクロペンタン等
である。
The thin tube 1 having a large number of fins 10 formed on the inner surface thereof as described above is annealed in a reducing atmosphere after the oil content, oxide film and other deposits in the tube have been removed by washing.
Then, for example, as shown in FIG. 4, the thin tube 1 is bent into a U-shape, and the hairpin portions at both ends are mutually Y-shaped.
Are brazed together to form a U-shape. The thin tube 1 connected in this way is vacuum-degassed from the portion of the Y-shaped joint 12, and then sealed with a predetermined amount of hydraulic fluid, and the Y-shaped base is crimped and welded while maintaining the internal vacuum (TIG Welding, high frequency welding, ultrasonic welding, etc.). The working liquid sealed inside is pure water, methane, freon, methanol, freon (R141b, R142b, etc.), cyclopentane, and the like.

【0012】前述のように構成されたヒートパイプは、
Uターン部分の一方を受熱部とし、Uターン部分の他方
を放熱部として使用する。Y字状の管継ぎ手12の設置
部分は、受熱部又は放熱部とするが、好ましくは受熱部
として使用する。その理由は、放熱部で凝縮した作動液
をフィン10相互間の毛管作用により継ぎ手部分で阻害
されることなく受熱部へ移動させることができるからで
ある。受熱部や放熱部をヒートパイプのストレートな部
分に配置することができるが、この場合にも同様な理由
で管継ぎ手を受熱部に配置するのが好ましい。細管1
は、図4のように連結することに代えて、要求される冷
却能力によっては、例えば多数の細管を多数のU字状タ
ーン部分を介して蛇行状に連結し、最後にその両端部を
連結してループ状としても実施することができる。
The heat pipe constructed as described above is
One of the U-turn portions is used as a heat receiving portion and the other of the U-turn portions is used as a heat radiating portion. The installation portion of the Y-shaped pipe joint 12 is a heat receiving portion or a heat radiating portion, and is preferably used as a heat receiving portion. The reason is that the working liquid condensed in the heat radiating portion can be moved to the heat receiving portion without being hindered by the joint portion due to the capillary action between the fins 10. The heat receiving portion and the heat radiating portion can be arranged in the straight portion of the heat pipe, but in this case also, it is preferable to arrange the pipe joint in the heat receiving portion for the same reason. Thin tube 1
Instead of connecting as shown in FIG. 4, depending on the required cooling capacity, for example, a large number of thin tubes are connected in a meandering manner through a large number of U-shaped turn portions, and finally both ends thereof are connected. Then, it can be implemented as a loop.

【0013】第1実施形態の自励振動型ヒートパイプ
は、金属製の細管1の内面に長さ方向に連続し断面が概
ね三角形状を呈する微細なフィン10を多数形成し、各
フィン10の頂部寄り位置の一方の傾斜側面と他方の傾
斜側面とは、それらの傾斜が非対称になるように構成さ
れている。すなわち、フィン10の頂部寄りの一方の傾
斜側面と前記仮想線Aとが形成する角度θ1は、フィン
10の頂部寄りの他方の傾斜側面と前記仮想線Bとが形
成する角度θ2よりも小さくなるように形成されてお
り、小さい角度θ1側から大きい角度θ2側への作動液
の移動よりも、大きい角度θ2側から小さい角度θ1側
への移動の方が抵抗が大きくなるため、作動液の移動に
方向性が付与され、受熱部で加熱された作動液及び気泡
の放熱部への移動がおおいに促進される結果、熱輸送量
が大幅に向上する。
In the self-excited vibration type heat pipe of the first embodiment, a large number of fine fins 10 continuous in the length direction and having a substantially triangular cross section are formed on the inner surface of a metal thin tube 1, and each fin 10 is The one inclined side surface and the other inclined side surface at the position near the top are configured such that their inclinations are asymmetric. That is, the angle θ1 formed by one sloping side surface of the fin 10 near the top and the imaginary line A is smaller than the angle θ2 formed by the other sloping side surface of the fin 10 near the top and the imaginary line B. Since the movement from the large angle θ2 side to the small angle θ1 side has a greater resistance than the movement of the hydraulic fluid from the small angle θ1 side to the large angle θ2 side, the movement of the hydraulic fluid is As a result, the movement of the working fluid and the bubbles heated in the heat receiving portion to the heat radiating portion is greatly promoted, and as a result, the heat transport amount is significantly improved.

【0014】フィン10の頂部寄り位置における一方の
傾斜側面と前記仮想線Aとが形成する角度θ1と、他方
の傾斜側面と前記仮想線Bとが形成する角度θ2との比
θ1/θ2が0.5〜0.9であって、フィン10の管
軸に対するリード角βが10〜35°であるとき、熱輸
送量はより大きくなる。
The ratio θ1 / θ2 of the angle θ1 formed by one of the inclined side surfaces and the virtual line A at the position near the top of the fin 10 and the angle θ2 formed by the other inclined side surface and the virtual line B is 0. When the lead angle β of the fin 10 with respect to the tube axis is 10 to 35 °, the heat transfer amount becomes larger.

【0015】第2実施形態 本発明に係るヒートパイプにおいて、フィン10の裾部
に図2のように頂部寄り位置の傾斜側面よりも緩慢な小
傾斜面を有している場合の外に、フィン10の両方の傾
斜側面の傾斜がその裾部において変化していない場合で
あっても、あるいは図3のように、両裾部が断面凹円弧
状(又は凸円弧状)に形成されていても実施することが
できる。図3のように、フィン10の両裾部が断面凹円
弧状(又は凸円弧状)に形成されている場合でも、それ
ぞれの傾斜側面の延長面a1,b1と内径線との交点が
各仮想線A,Bの一つの基準となる。
Second Embodiment In the heat pipe according to the present invention, the fin 10 has a small sloping surface slower than the sloping side surface near the top as shown in FIG. Even if the inclination of both inclined side surfaces of 10 does not change at the skirt, or both skirts are formed in a concave arc shape (or a convex arc shape) in cross section as shown in FIG. It can be carried out. As shown in FIG. 3, even when both skirts of the fin 10 are formed in a concave arc shape (or a convex arc shape) in cross section, the intersections between the extension surfaces a1 and b1 of the inclined side surfaces and the inner diameter line are virtual. It serves as a reference for the lines A and B.

【0016】試験例 細管材質=純銅管、管内径di=4mm、フィン高さh
=0.2mm、管肉厚t=0.2mmであり、フィン1
0の一方の側面の角度θ1と他方の側面の角度θ2、及
び角度θ1とθ2との比θ1/θ2がそれぞれ表1のと
おりであり、それぞれ図4のように構成され、作動液と
して内部に管容積の50%の純水が封入され、フィン1
0の管軸に対するリード角βが0〜50°の範囲で異な
り、全長各160mmである実施例1〜3,比較例1,
2のヒートパイプのサンプルを製造した。
Test Example Thin tube material = pure copper tube, tube inner diameter di = 4 mm, fin height h
= 0.2 mm, tube wall thickness t = 0.2 mm, fin 1
The angle θ1 of one side surface of 0 and the angle θ2 of the other side surface, and the ratio θ1 / θ2 of the angles θ1 and θ2 are as shown in Table 1, and are respectively configured as shown in FIG. The fin 1 is filled with pure water of 50% of the tube volume.
The lead angle β with respect to the tube axis of 0 is different in the range of 0 to 50 °, and the total length is 160 mm for each of Examples 1 to 3 and Comparative Example 1,
Two heat pipe samples were produced.

【0017】限界熱輸送量の測定 各サンプルを管継ぎ手12によりループ状に連結すると
ともに、端部のパイプ長さ50mmの部分を受熱部1a
とし、この受熱部1aにヒータ13を巻き付けて加熱し
た。他方の端部のパイプ長さ50mmの部分を放熱部1
cとし、この部分に冷却水の流入口14と流出口15と
を有する冷却ボックス16を設置し、放熱部1cを20
℃の冷却水で冷却した。ヒートパイプの受熱部1aと放
熱部1cの中間領域は断熱部1bとして断熱材により断
熱し、各部の温度を熱電対で測定しながら断熱部1bの
温度が50℃となるように冷却水の温度を制御し、ドラ
イアウトするまで加熱温度を上昇させて限界熱輸送量を
測定した。
Measurement of Limiting Heat Transport Quantity Each sample is connected in a loop shape by a pipe joint 12, and the end of the pipe having a length of 50 mm is heat receiving portion 1a.
Then, the heater 13 was wound around the heat receiving portion 1a and heated. At the other end, the part with a pipe length of 50 mm is attached to the heat dissipation part 1.
c, a cooling box 16 having a cooling water inlet 14 and a cooling water outlet 15 is installed at this portion, and the heat radiating portion 1c is set to 20.
It cooled with the cooling water of (degreeC). The intermediate area between the heat receiving portion 1a and the heat radiating portion 1c of the heat pipe is insulated by a heat insulating material as a heat insulating portion 1b, and the temperature of the cooling water is controlled so that the temperature of each heat insulating portion 1b becomes 50 ° C. while measuring the temperature of each portion with a thermocouple. Was controlled, and the heating temperature was raised until dryout was performed to measure the limit heat transport amount.

【0018】表1 Table 1

【0019】限界熱輸送量の測定結果は図5に示されて
おり、この結果によれば、フィン10の一方の側面の角
度θ1と他方の側面の角度θ2との比θ1/θ2が0.
5〜0.9の範囲にあり、かつ、フィン10の管軸に対
するリード角βが10〜35°であるとき、比較例1
(θ1/θ2=1、すなわち、フィンの両面が対称であ
る場合)及び比較例2(θ1/θ2=0.36)よりも
高い熱輸送量を示している。これまでの通常のヒートパ
イプのように、θ1/θ2の値が1又は1に近い場合
(フィン10の両側面の傾斜が対称又は対称に近い場
合)には、作動液がその場で振動してしまうため受熱部
で加熱された作動液が放熱部まで移動せず、その結果高
い性能を発揮することができなかったものと考えられ
る。
The measurement result of the limit heat transport amount is shown in FIG. 5, and according to this result, the ratio θ1 / θ2 between the angle θ1 of one side surface of the fin 10 and the angle θ2 of the other side surface is 0.
When the lead angle β with respect to the tube axis of the fin 10 is 10 to 35 ° in the range of 5 to 0.9, Comparative Example 1
(Θ1 / θ2 = 1, that is, when both surfaces of the fin are symmetrical) and Comparative Example 2 (θ1 / θ2 = 0.36) show a higher heat transport amount. When the value of θ1 / θ2 is 1 or close to 1 (when the inclinations of both side surfaces of the fin 10 are symmetrical or nearly symmetrical) as in conventional heat pipes, the hydraulic fluid vibrates on the spot. It is probable that the working fluid heated in the heat receiving part did not move to the heat radiating part, and as a result, high performance could not be exhibited.

【0020】図5の結果から明らかなように、θ1/θ
2の値が0.7前後であるときに最も高い限界熱輸送量
を示しているが、θ1/θ2の値が0.5よりも小さく
なると、フィン10相互間の溝が浅くなるか潰れ、その
結果フィン相互間での毛管力が低下して熱輸送能力が低
下するものと考えられる。また、その対応策としてフィ
ン間隔を大きくすると、フィン間隔の広がりにより毛管
力が低下して逆効果になる。フィン10の管軸に対する
リード角βが10〜35°であるとき、特に20°前後
であるとき最も熱輸送量が増大しているが、フィンのリ
ード角βが35°を超えると、フィン間の毛管力により
軸方向への作動液の移動が低下して熱輸送量が低下する
ものと考えられる。
As is clear from the result of FIG. 5, θ1 / θ
The maximum limit heat transfer amount is shown when the value of 2 is around 0.7, but when the value of θ1 / θ2 becomes smaller than 0.5, the grooves between the fins 10 become shallow or crushed, As a result, it is considered that the capillary force between the fins is reduced and the heat transport capability is reduced. If the fin spacing is increased as a countermeasure, the capillary force is reduced due to the widening of the fin spacing, which has the opposite effect. When the lead angle β of the fin 10 with respect to the tube axis is 10 to 35 °, especially when it is around 20 °, the heat transfer amount increases most. However, if the lead angle β of the fin exceeds 35 °, the space between the fins increases. It is considered that due to the capillary force of, the movement of the hydraulic fluid in the axial direction is reduced and the heat transport amount is reduced.

【0021】[0021]

【発明の効果】請求項1の発明に係る自励振動型ヒート
パイプによれば、内面に長さ方向に連続し断面が概ね三
角形状を呈する微細なフィン10が多数形成され、各フ
ィン10の頂部寄り位置の一方の傾斜側面と他方の傾斜
側面とは、それらの傾斜が非対称になるように構成され
ており、受熱部で加熱された作動液の移動に方向性が付
与され、受熱部で加熱された作動液及び気泡の放熱部へ
の移動がおおいに促進される結果、熱輸送量が大幅に向
上する。また、構成が簡単で性能の長期信頼性を保証す
ることができる。
According to the self-excited vibration type heat pipe of the first aspect of the present invention, a large number of fine fins 10 which are continuous in the length direction and have a substantially triangular cross section are formed on the inner surface of each fin 10. The one inclined side surface and the other inclined side surface at the position near the top are configured such that their inclinations are asymmetrical, and directivity is given to the movement of the working fluid heated in the heat receiving portion, and the heat receiving portion The movement of the heated working fluid and bubbles to the heat radiating section is greatly promoted, and as a result, the heat transport amount is significantly improved. In addition, the configuration is simple and long-term reliability of performance can be guaranteed.

【0022】請求項2の発明に係る自励振動型ヒートパ
イプによれば、管軸と直交する断面において、前記フィ
ン10の頂部寄りの一方の傾斜側面と、当該傾斜側面又
は当該傾斜側面の延長面と前記細管1の内径線との交点
を通りかつ細管1の半径方向の直線に対して直交する仮
想線Aとがフィン10の断面側で形成する角度θ1と、
前記フィン10の頂部寄りの他方の傾斜側面と、当該傾
斜面又は当該傾斜側面の延長面と前記細管1の内径線と
の交点を通りかつ細管1の半径方向の直線に対して直交
する仮想線Bとがフィン10の断面側で形成する角度θ
2との比(θ1/θ2)が、0.5〜0.9であるの
で、前記効果が最もよく発揮される。
According to the self-excited vibration type heat pipe of the invention of claim 2, in the cross section orthogonal to the tube axis, one inclined side surface near the top of the fin 10 and the inclined side surface or the extension of the inclined side surface. An angle θ1 formed on the cross-sectional side of the fin 10 by an imaginary line A passing through the intersection of the surface and the inner diameter line of the thin tube 1 and orthogonal to the straight line in the radial direction of the thin tube 1,
An imaginary line that passes through the intersection of the other inclined side surface near the top of the fin 10 and the inclined surface or the extended surface of the inclined side surface and the inner diameter line of the thin tube 1 and is orthogonal to the radial straight line of the thin tube 1. The angle θ formed by B and the cross section side of the fin 10
Since the ratio with 2 (θ1 / θ2) is 0.5 to 0.9, the above effect is most effectively exhibited.

【0023】請求項3の発明に係る自励振動型ヒートパ
イプによれば、フィン10の管軸に対するリード角βが
10〜35°であるので、熱輸送量がより大きくなる。
According to the self-excited vibration type heat pipe of the third aspect of the present invention, since the lead angle β of the fin 10 with respect to the tube axis is 10 to 35 °, the heat transport amount is further increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る第1実施形態の自励振動型ヒート
パイプの部分断面図である。
FIG. 1 is a partial cross-sectional view of a self-excited vibration type heat pipe according to a first embodiment of the present invention.

【図2】図1のヒートパイプの部分拡大断面図であっ
て、(a)図はフィンを半径方向の線で二分したときの
当該フィンの一半部を示す断面図、(b)はフィンの他
の一半部を示す断面図である。
2 is a partially enlarged cross-sectional view of the heat pipe of FIG. 1, where (a) is a cross-sectional view showing a half of the fin when the fin is divided into two lines in the radial direction, and (b) is the fin. It is sectional drawing which shows another one-half part.

【図3】本発明に係る実施形態の自励振動型ヒートパイ
プの変形形態を示す部分拡大断面図である。
FIG. 3 is a partially enlarged sectional view showing a modification of the self-excited vibration type heat pipe according to the embodiment of the present invention.

【図4】自励振動型ヒートパイプの限界熱輸送量の測定
方法を説明するための概略正面図である。
FIG. 4 is a schematic front view for explaining a method of measuring a limit heat transport amount of a self-excited vibration type heat pipe.

【図5】各ヒートパイプサンプルの限界熱輸送量を示す
線図である。
FIG. 5 is a diagram showing a critical heat transport amount of each heat pipe sample.

【符号の説明】 1 細管 10 フィン 11 溝 12 管継ぎ手 13 ヒータ 14 流入口 15 流出口 16 冷却ボックス 1a 受熱部 1b 断熱部 1c 放熱部 β フィンのリード角 θ1,θ2 角度 t 溝底肉厚 h フィン高さ di 管内径 a1,b1 延長線 a2,b2 半径方向の直線 p1,p2 交点 A,B 仮想線[Explanation of symbols] 1 thin tube 10 fins 11 grooves 12 pipe fittings 13 heater 14 Inlet 15 Outlet 16 cooling box 1a Heat receiving part 1b Heat insulation part 1c Heat dissipation part β-fin lead angle θ1, θ2 angle t Groove thickness h fin height di tube inner diameter a1, b1 extension line a2, b2 radial straight line p1, p2 intersection A, B virtual line

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属製の細管(1)の内面に長さ方向に
連続し断面が概ね三角形状を呈する微細なフィン(1
0)が多数形成され、各フィン(10)の頂部寄りの一
方の傾斜側面と他方の傾斜側面とはそれらの傾斜が非対
称であることを特徴とする、自励振動型ヒートパイプ。
1. A fine fin (1) which is continuous in the lengthwise direction with an inner surface of a metal thin tube (1) and has a substantially triangular cross section.
0) is formed in a large number, and one inclined side surface near the top of each fin (10) and the other inclined side surface are asymmetric in inclination, and a self-excited vibration type heat pipe.
【請求項2】 管軸と直交する断面において、前記フィ
ン(10)の頂部寄りの一方の傾斜側面と、当該傾斜側
面又は当該傾斜側面の延長面と前記細管(1)の内径線
との交点を通りかつ細管(1)の半径方向の直線に対し
て直交する仮想線(A)とが当該フィン(10)の断面
側で形成する角度(θ1)と、前記フィン(10)の頂
部寄りの他方の傾斜側面と、当該傾斜面又は当該傾斜側
面の延長面と前記細管(1)の内径線との交点を通りか
つ細管(1)の半径方向の直線に対して直交する仮想線
(B)とが当該フィン(10)の断面側で形成する角度
(θ2)との比(θ1/θ2)が、0.5〜0.9であ
ることを特徴とする、請求項1に記載の自励振動型ヒー
トパイプ。
2. An intersection of one inclined side surface near the top of the fin (10), the inclined side surface or an extension surface of the inclined side surface and an inner diameter line of the thin tube (1) in a cross section orthogonal to the tube axis. And an imaginary line (A) that passes through and is orthogonal to the radial straight line of the thin tube (1) forms an angle (θ1) formed on the cross-sectional side of the fin (10) and the top of the fin (10). An imaginary line (B) passing through the intersection of the other inclined side surface, the inclined surface or the extension surface of the inclined side surface and the inner diameter line of the thin tube (1), and orthogonal to the radial straight line of the thin tube (1). The self-excitation according to claim 1, characterized in that the ratio (θ1 / θ2) to the angle (θ2) formed on the cross section side of the fin (10) is 0.5 to 0.9. Vibratory heat pipe.
【請求項3】 前記フィン(10)の管軸に対するリー
ド角(β)が10〜35°であることを特徴とする、請
求項1又は2に記載の自励振動型ヒートパイプ。
3. The self-excited vibration heat pipe according to claim 1, wherein a lead angle (β) of the fin (10) with respect to the tube axis is 10 to 35 °.
JP2002109054A 2002-04-11 2002-04-11 Self-excited oscillation type heat pipe Pending JP2003302179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002109054A JP2003302179A (en) 2002-04-11 2002-04-11 Self-excited oscillation type heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002109054A JP2003302179A (en) 2002-04-11 2002-04-11 Self-excited oscillation type heat pipe

Publications (1)

Publication Number Publication Date
JP2003302179A true JP2003302179A (en) 2003-10-24

Family

ID=29392621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002109054A Pending JP2003302179A (en) 2002-04-11 2002-04-11 Self-excited oscillation type heat pipe

Country Status (1)

Country Link
JP (1) JP2003302179A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010249A (en) * 2005-06-30 2007-01-18 Toshiba Corp Cooling device, and electronic apparatus
CN100402945C (en) * 2006-01-11 2008-07-16 华北电力大学 Shading type oscillation flow heat pipe solar energy water heater
JP2008185283A (en) * 2007-01-31 2008-08-14 Toshiba Home Technology Corp Heat pipe
JP2008185288A (en) * 2007-01-31 2008-08-14 Sumitomo Light Metal Ind Ltd Inner surface grooved pipe for heat pipe
WO2016035436A1 (en) * 2014-09-04 2016-03-10 富士通株式会社 Heat transport device and electronic equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010249A (en) * 2005-06-30 2007-01-18 Toshiba Corp Cooling device, and electronic apparatus
CN100402945C (en) * 2006-01-11 2008-07-16 华北电力大学 Shading type oscillation flow heat pipe solar energy water heater
JP2008185283A (en) * 2007-01-31 2008-08-14 Toshiba Home Technology Corp Heat pipe
JP2008185288A (en) * 2007-01-31 2008-08-14 Sumitomo Light Metal Ind Ltd Inner surface grooved pipe for heat pipe
WO2016035436A1 (en) * 2014-09-04 2016-03-10 富士通株式会社 Heat transport device and electronic equipment
JPWO2016035436A1 (en) * 2014-09-04 2017-05-25 富士通株式会社 Heat transport device and electronic equipment

Similar Documents

Publication Publication Date Title
JP2730824B2 (en) Heat transfer tube with inner groove and method of manufacturing the same
US9844807B2 (en) Tube with fins having wings
JP4822238B2 (en) Heat transfer tube with internal groove for liquid medium and heat exchanger using the heat transfer tube
JP2007271123A (en) Inner face-grooved heat transfer tube
JP2010532855A (en) Finned tube with stepped top
JP2003302180A (en) Self-excited oscillation type heat pipe
JP2003302179A (en) Self-excited oscillation type heat pipe
JP2010256000A (en) Internally-grooved pipe for heat pipe, and heat pipe
JP4389565B2 (en) Boiling heat transfer tube and manufacturing method thereof
KR101200597B1 (en) A complex pipe for transferring heat, heat exchanging system and heat exchanger using the same
JP2006275346A (en) Heat transfer pipe for heat pipe, and heat pipe
JP2006189232A (en) Heat transfer pipe for heat pipe, and heat pipe
JP2016102643A (en) Heat exchanger
JP2008241180A (en) Heat transfer tube for heat pipe and heat pipe
JP2009243864A (en) Inner surface grooved pipe for heat pipe, and heat pipe
JP2005291599A (en) Tube with internal groove for heat pipe and heat pipe
JPH09101093A (en) Heat transfer pipe with inner surface groove
JPH04260793A (en) Heat transfer tube with inner surface groove
JP2009243863A (en) Internally grooved pipe for heat pipe, and heat pipe
JP5243831B2 (en) Inner grooved tube for heat pipe and heat pipe
US20020074114A1 (en) Finned heat exchange tube and process for forming same
JP2010133581A (en) Inner helically grooved tube for heat pipe and the heat pipe
JP2010019489A (en) Heat transfer pipe with inner helical groove for evaporator
JP2912826B2 (en) Heat transfer tube with internal groove
JP2002168576A (en) Heat exchanging tube and its manufacturing method