JP2013160420A - Self-excited vibration heat pipe - Google Patents

Self-excited vibration heat pipe Download PDF

Info

Publication number
JP2013160420A
JP2013160420A JP2012021681A JP2012021681A JP2013160420A JP 2013160420 A JP2013160420 A JP 2013160420A JP 2012021681 A JP2012021681 A JP 2012021681A JP 2012021681 A JP2012021681 A JP 2012021681A JP 2013160420 A JP2013160420 A JP 2013160420A
Authority
JP
Japan
Prior art keywords
refrigerant
heat pipe
self
excited vibration
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012021681A
Other languages
Japanese (ja)
Inventor
Yuji Osada
裕司 長田
Yukio Miyaji
幸夫 宮地
Akitoshi Fujita
彰利 藤田
Noribumi Furuta
紀文 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2012021681A priority Critical patent/JP2013160420A/en
Publication of JP2013160420A publication Critical patent/JP2013160420A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a self-excited vibration heat pipe that has high starting characteristics without performing alteration of a flow passage structure, addition of a component and the like.SOLUTION: There is provided a self-excited vibration heat pipe 1 that includes: a heat pump body part 12 having a working fluid channel 10 arranged between a heating part 14 and a cooling part 16; and a refrigerant charged in the working fluid channel 10; wherein the refrigerant includes two or more kinds of immiscible refrigerants.

Description

本発明は、自励振動ヒートパイプに関する。   The present invention relates to a self-excited vibration heat pipe.

例えば、マイクロプロセッサ、インバータ、モータ、内燃機関及び二次電池等の発熱部品の熱を、自励振動ヒートパイプを介してヒートシンクや放熱板等の受熱部材で放熱することにより冷却する技術が知られている。   For example, a technique is known in which heat of a heat generating component such as a microprocessor, an inverter, a motor, an internal combustion engine and a secondary battery is cooled by radiating heat from a heat receiving member such as a heat sink or a heat sink through a self-excited vibration heat pipe. ing.

自励振動ヒートパイプは、発熱部と接する加熱部と、受熱部材と接する冷却部との間に配される作動流体流路に冷媒を封入したものであり、加熱部により流路の一端が加熱され、冷却部により流路の他端が冷却されると、圧力変動とボイド率変化の相互作用等で自励的な冷媒振動が生じ、加熱部から冷却部へ熱輸送が行われる装置である。   A self-excited vibration heat pipe is one in which a refrigerant is sealed in a working fluid channel disposed between a heating unit in contact with a heat generating unit and a cooling unit in contact with a heat receiving member, and one end of the channel is heated by the heating unit. When the other end of the flow path is cooled by the cooling unit, self-excited refrigerant vibration occurs due to the interaction between pressure fluctuation and void ratio change, etc., and heat is transferred from the heating unit to the cooling unit. .

例えば、特許文献1〜4及び非特許文献1には、流路構造の変更、自励振動ヒートパイプの構成部品の追加等により、冷媒の振動・循環流形成、振動制御等を行い、自励振動ヒートパイプの性能を向上させている。   For example, in Patent Documents 1 to 4 and Non-Patent Document 1, self-excitation is performed by changing the flow path structure, adding components of a self-excited vibration heat pipe, etc. to perform vibration / circulation flow formation and vibration control of the refrigerant. The performance of the vibration heat pipe is improved.

特開2008−298342号公報JP 2008-298342 A 特開2007−333246号公報JP 2007-333246 A 特開2003−302180号公報JP 2003-302180 A 特開2002−364991号公報JP 2002-364991 A

福田俊大等、第45回日本伝熱シンポジウム講演論文集、2008年Toshihiro Fukuda et al., Proceedings of the 45th Japan Heat Transfer Symposium, 2008

ところで、自励振動ヒートパイプの始動時においては、加熱部側の冷媒の沸騰、蒸発による流路内の圧力変動、ボイド率変化等が起こり難いため、低温時における始動特性が悪いという問題がある。なお、特許文献4の自励振動ヒートパイプは、強制的に冷媒を振動させる方法が採用されているが、そのためには外部動力等が必要であったり、システムが複雑化したりすることが懸念される。   By the way, at the time of starting the self-excited vibration heat pipe, since the boiling of the refrigerant on the heating unit side, the pressure fluctuation in the flow path due to evaporation, the void ratio change, etc. hardly occur, there is a problem that the starting characteristics at low temperature are poor. . The self-excited vibration heat pipe of Patent Document 4 employs a method of forcibly oscillating the refrigerant. However, there is a concern that external power or the like may be required or the system may be complicated. The

そこで、本発明の目的は、流路構造の変更、構成部品の追加等をすることなく、高い始動特性を有する自励振動ヒートパイプを提供する。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a self-excited vibration heat pipe having high starting characteristics without changing the flow path structure or adding components.

本発明は、加熱部と冷却部の間に配された作動流体流路を有するヒートポンプ本体部と、前記作動流体流路に封入される冷媒とを備える自励振動ヒートパイプであって、前記冷媒は、非相溶な2種類以上の冷媒を含む。   The present invention is a self-excited vibration heat pipe comprising a heat pump main body having a working fluid channel disposed between a heating unit and a cooling unit, and a refrigerant sealed in the working fluid channel, wherein the refrigerant Includes two or more incompatible refrigerants.

また、前記自励振動ヒートパイプにおいて、前記非相溶な2種類以上の冷媒は、少なくとも第1冷媒と前記第1冷媒より封入量の少ない第2冷媒を含み、前記第2冷媒は、前記第1冷媒より沸点が低いことが好ましい。   In the self-excited vibration heat pipe, the two or more incompatible refrigerants include at least a first refrigerant and a second refrigerant with a smaller amount of sealing than the first refrigerant, and the second refrigerant includes the second refrigerant It is preferable that the boiling point is lower than one refrigerant.

また、前記自励振動ヒートパイプにおいて、前記第2冷媒は、前記第1冷媒より飽和蒸気圧差が大きいことが好ましい。   In the self-excited vibration heat pipe, it is preferable that the second refrigerant has a larger saturation vapor pressure difference than the first refrigerant.

また、前記第2冷媒は、フッ素系冷媒であることが好ましい。   The second refrigerant is preferably a fluorinated refrigerant.

また、前記第1冷媒は、水、エタノール、アセトンのうちの少なくともいずれか1つであることが好ましい。   The first refrigerant is preferably at least one of water, ethanol, and acetone.

本発明によれば、流路構造の変更、構成部品の追加等をすることなく、高い始動特性を有する自励振動ヒートパイプを提供することができる。   According to the present invention, it is possible to provide a self-excited oscillating heat pipe having high starting characteristics without changing the flow channel structure or adding components.

本実施形態に係る自励振動ヒートパイプの構成の一例を示す模式断面図である。It is a schematic cross section which shows an example of a structure of the self-excited vibration heat pipe which concerns on this embodiment. 流路内に封入した第1冷媒及び第2冷媒の状態を説明するための作動流体流路の断面模式図である。It is a cross-sectional schematic diagram of the working fluid flow path for demonstrating the state of the 1st refrigerant | coolant enclosed in the flow path, and a 2nd refrigerant | coolant. 流路内に封入した1種の冷媒の状態を説明するための作動流体流路の断面模式図である。It is a cross-sectional schematic diagram of the working fluid flow path for demonstrating the state of 1 type of refrigerant | coolant enclosed in the flow path. 第1及び第2冷媒の温度と表面張力との関係を示す図である。It is a figure which shows the relationship between the temperature and surface tension of a 1st and 2nd refrigerant | coolant. 第1及び第2冷媒の温度と飽和蒸気圧曲線との関係を示す図である。It is a figure which shows the relationship between the temperature of a 1st and 2nd refrigerant | coolant, and a saturated vapor pressure curve. 流路内に封入される冷媒の沸騰曲線を示す図である。It is a figure which shows the boiling curve of the refrigerant | coolant enclosed in a flow path.

以下、本発明の実施形態について、図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本実施形態に係る自励振動ヒートパイプの構成の一例を示す模式断面図である。図1に示すように、自励振動ヒートパイプ1は、作動流体流路10が形成されたヒートパイプ本体部12と、作動流体流路10に封入された冷媒と、を備える。ヒートパイプ本体部12は、アルミニウム、銅、ステンレス等の金属、耐熱性の樹脂等から構成された板状部材である。ヒートパイプ本体部12には、温度が高い外部熱源と接する加熱部14と、温度が低い受熱部材と接する冷却部16がある。そして、ヒートパイプ本体部12内には、加熱部14と冷却部16との間に配された作動流体流路10が形成されている。作動流体流路10の流路パターンは、加熱部14と冷却部16との間に配置されていればどのようなパターンであってもよい。例えば、図1に示す作動流体流路10は、加熱部14と冷却部16との間で直線状に延びる直線部Aと、加熱部14側及び冷却部16側で、直線部A同士を連結するターン部Bと、冷却部16側に形成される折返し部Cとから構成されており、加熱部14と冷却部16との間で蛇行する閉ループ流路となっている。図1に示すヒートパイプ本体部12は、例えば、流路パターンが形成された2枚の板状部材を接合することにより作製されたものであるが、例えば、ヒートパイプ本体部12は、加熱部14と冷却部16との間を複数回往復して蛇行状に配されたパイプ状部材であってもよい。この場合、パイプ状部材の内部が作動流体流路10となる。   FIG. 1 is a schematic cross-sectional view showing an example of the configuration of a self-excited vibration heat pipe according to the present embodiment. As shown in FIG. 1, the self-excited vibration heat pipe 1 includes a heat pipe main body 12 in which a working fluid channel 10 is formed, and a refrigerant sealed in the working fluid channel 10. The heat pipe main body 12 is a plate-like member made of a metal such as aluminum, copper, or stainless steel, a heat resistant resin, or the like. The heat pipe body 12 includes a heating unit 14 that is in contact with an external heat source having a high temperature and a cooling unit 16 that is in contact with a heat receiving member having a low temperature. In the heat pipe body 12, a working fluid flow path 10 disposed between the heating part 14 and the cooling part 16 is formed. The flow path pattern of the working fluid flow path 10 may be any pattern as long as it is disposed between the heating unit 14 and the cooling unit 16. For example, the working fluid flow path 10 shown in FIG. 1 connects the linear portions A linearly extending between the heating portion 14 and the cooling portion 16 and the straight portions A on the heating portion 14 side and the cooling portion 16 side. The turn section B and the folded section C formed on the cooling section 16 side are closed loop flow paths that meander between the heating section 14 and the cooling section 16. The heat pipe main body 12 shown in FIG. 1 is produced by, for example, joining two plate-like members on which flow path patterns are formed. For example, the heat pipe main body 12 is a heating unit. It may be a pipe-like member arranged in a meandering manner by reciprocating a plurality of times between 14 and the cooling unit 16. In this case, the inside of the pipe-shaped member becomes the working fluid flow path 10.

また、ヒートパイプ本体部12には、外部から作動流体流路10内に冷媒を封入するための冷媒封入口18が設けられている。冷媒の封入は、例えば、作動流体流路10内部を真空脱気後、冷媒封入口18より作動流体流路10内へ冷媒が注入され、冷媒封入口18が封止されることにより行われる。そして、本実施形態では、非相溶な2種類以上の冷媒が、作動流体流路10に封入される。   The heat pipe main body 12 is provided with a refrigerant sealing port 18 for enclosing a refrigerant in the working fluid flow path 10 from the outside. The refrigerant is sealed by, for example, injecting the refrigerant into the working fluid channel 10 from the refrigerant sealing port 18 after the inside of the working fluid channel 10 is vacuum degassed, and sealing the refrigerant sealing port 18. In the present embodiment, two or more incompatible refrigerants are enclosed in the working fluid channel 10.

以下に、本実施形態の自励振動ヒートパイプ1の動作について説明する。本実施形態では、第1冷媒と第2冷媒の2種類の冷媒を流路内に封入した自励振動ヒートパイプを例について説明するが、これに制限されるものではなく、非相溶の関係にあれば第3冷媒等さらに複数の冷媒を流路内に封入してもよい。なお、冷媒の種類、物性については後段で詳述するが、第1冷媒としては例えば水(沸点100℃)、第2冷媒としては、例えば第1冷媒に対して非相溶なフッ素系冷媒(例えば、沸点60℃)等が用いられる。   Below, operation | movement of the self-excited vibration heat pipe 1 of this embodiment is demonstrated. In this embodiment, an example of a self-excited vibration heat pipe in which two types of refrigerants, a first refrigerant and a second refrigerant, are enclosed in a flow path will be described, but the present invention is not limited to this, and an incompatible relationship In this case, a plurality of refrigerants such as a third refrigerant may be enclosed in the flow path. Although the type and physical properties of the refrigerant will be described in detail later, the first refrigerant is, for example, water (boiling point 100 ° C.), and the second refrigerant is, for example, a fluorine-based refrigerant that is incompatible with the first refrigerant ( For example, a boiling point of 60 ° C.) is used.

図2は、流路内に封入した第1冷媒及び第2冷媒の状態を説明するための作動流体流路の断面模式図である。図3は、流路内に封入した1種の冷媒の状態を説明するための作動流体流路の断面模式図である。   FIG. 2 is a schematic cross-sectional view of the working fluid flow path for explaining the states of the first refrigerant and the second refrigerant sealed in the flow path. FIG. 3 is a schematic cross-sectional view of a working fluid channel for explaining the state of one type of refrigerant sealed in the channel.

図3に示すように、作動流体流路10内に1種の冷媒を封入すると、作動流体流路10内には、冷媒から構成される液プラグ20と、冷媒の蒸気から構成される蒸気プラグ22とが分布した状態となる。すなわち、液プラグ20両端の表面張力は、温度差が生じない限り、同じ値(σ1)となる。   As shown in FIG. 3, when one kind of refrigerant is sealed in the working fluid flow path 10, the working fluid flow path 10 has a liquid plug 20 made of refrigerant and a vapor plug made of refrigerant vapor. 22 are distributed. That is, the surface tension at both ends of the liquid plug 20 has the same value (σ1) unless a temperature difference occurs.

一方、図2に示すように、作動流体流路10内に第1及び第2冷媒を封入すると、作動流体流路10内には、主に第1冷媒から構成される第1液プラグ24及び主に第2冷媒から構成される第2液プラグ26を有する連結液プラグ28と、第1及び第2冷媒の蒸気から構成される蒸気プラグ30とが分布した状態となる。すなわち、連結液プラグ28の一端の表面張力は第1液プラグ24の表面張力σ1、連結液プラグ28の他端の表面張力は第2液プラグ26の表面張力σ2となり、それぞれ異なる表面張力が働くことになる。   On the other hand, as shown in FIG. 2, when the first and second refrigerants are sealed in the working fluid channel 10, the first liquid plug 24 mainly composed of the first refrigerant and The connection liquid plug 28 having the second liquid plug 26 mainly composed of the second refrigerant and the vapor plug 30 composed of the vapors of the first and second refrigerants are distributed. That is, the surface tension at one end of the connecting liquid plug 28 is the surface tension σ1 of the first liquid plug 24, and the surface tension at the other end of the connecting liquid plug 28 is the surface tension σ2 of the second liquid plug 26. It will be.

本実施形態では、作動流体流路10内に上記のような液プラグ(24,26,28)及び蒸気プラグ30を効率的に形成させるため、作動流体流路10内の内径を冷媒(第1冷媒、第2冷媒)に対するラプラス直径以下に設定している。ラプラス直径は、下式(1)により求められる。
D=1.84[σ/(g・(ρL−ρv))]0.5 (1)
D:ラプラス直径
σ:冷媒表面張力
g:重力加速度
ρL:液密度
ρv:蒸気密度
In the present embodiment, in order to efficiently form the liquid plugs (24, 26, 28) and the vapor plug 30 as described above in the working fluid channel 10, the inner diameter in the working fluid channel 10 is set to the refrigerant (first It is set to a Laplace diameter or less with respect to the refrigerant (second refrigerant). The Laplace diameter is determined by the following formula (1).
D = 1.84 [σ / (g · (ρL−ρv))] 0.5 (1)
D: Laplace diameter σ: Refrigerant surface tension g: Gravity acceleration ρL: Liquid density ρv: Vapor density

通常、自励振動ヒートパイプ1では、外部加熱源により加熱部14が加熱され、受熱部材により冷却部16が冷却されると、加熱部14での冷媒蒸発による圧力上昇と冷却部16での蒸気凝縮による圧力降下による流路内の圧力変化及びボイド率(気液の体積割合)変化の相互作用により、加熱部14と冷却部16との間で冷媒が振動しながら移動し、熱輸送が行われる。したがって、作動流体流路10内に1種の冷媒を封入した自励振動ヒートパイプでは、加熱部14の加熱初期段階、具体的には、冷媒の沸点前後の低温域では、流路内での圧力変化及びボイド率変化の相互作用が生じ難く、自励振動ヒートパイプの始動特性には改善の余地がある。   Normally, in the self-excited vibration heat pipe 1, when the heating unit 14 is heated by an external heating source and the cooling unit 16 is cooled by the heat receiving member, the pressure rise due to refrigerant evaporation in the heating unit 14 and the vapor in the cooling unit 16. The refrigerant moves between the heating unit 14 and the cooling unit 16 oscillating between the heating unit 14 and the cooling unit 16 due to the interaction between the pressure change in the flow path due to the pressure drop due to condensation and the change in the void ratio (volume ratio of gas and liquid). Is called. Therefore, in the self-excited vibration heat pipe in which one kind of refrigerant is sealed in the working fluid flow path 10, in the initial heating stage of the heating unit 14, specifically, in the low temperature range around the boiling point of the refrigerant, The interaction between the pressure change and the void ratio change hardly occurs, and there is room for improvement in the starting characteristics of the self-excited vibration heat pipe.

これに対し、作動流体流路10内に第1及び第2冷媒を封入した場合では、外部加熱源により加熱部14が加熱され、受熱部材により冷却部16が冷却されると、加熱部14近傍の作動流体流路10内で静止していた連結液プラグ28の両端に働く表面張力σ1,σ2が変化する。図4は、第1及び第2冷媒の温度と表面張力との関係を示す図である。例えば、第1冷媒を水、第2冷媒をフッ素系冷媒とした場合、各冷媒の温度上昇と共に、表面張力σ1とσ2との差がさらに大きくなり、連結液プラグ28の両端に働く力のバランスが崩れ、冷媒は小さな振動を開始し、加熱部14と冷却部16との間を移動する。なお、作動流体流路10内に1種の冷媒を封入した場合では、液プラグ20の両端の表面張力は同じであるため(σ1)、加熱部14が加熱され、加熱部14近傍の冷媒に温度変化があっても、通常、液プラグ20の両端の温度差はほとんどないため(両端の表面張力の差はほとんどないため)、冷媒の振動は起こり難い。したがって、非相溶の2種の冷媒を用いた自励振動ヒートパイプ1は、加熱量が小さい状態でも、1種の冷媒を用いた自励振動ヒートパイプより、冷媒の振動が起きやすいため、低温領域等でのヒートパイプの始動特性を高めることが可能となる。   On the other hand, in the case where the first and second refrigerants are enclosed in the working fluid flow path 10, when the heating unit 14 is heated by the external heating source and the cooling unit 16 is cooled by the heat receiving member, the vicinity of the heating unit 14 The surface tensions σ1 and σ2 acting on both ends of the connecting liquid plug 28 that is stationary in the working fluid flow path 10 change. FIG. 4 is a diagram illustrating the relationship between the temperature and the surface tension of the first and second refrigerants. For example, when the first refrigerant is water and the second refrigerant is a fluorine-based refrigerant, the difference between the surface tensions σ1 and σ2 further increases as the temperature of each refrigerant increases, and the balance of forces acting on both ends of the connecting liquid plug 28 is increased. The refrigerant starts to oscillate, and moves between the heating unit 14 and the cooling unit 16. When one kind of refrigerant is sealed in the working fluid flow path 10, the surface tension at both ends of the liquid plug 20 is the same (σ1), so the heating unit 14 is heated, and the refrigerant in the vicinity of the heating unit 14 is heated. Even if there is a temperature change, there is usually almost no temperature difference between both ends of the liquid plug 20 (because there is almost no difference in surface tension between both ends), so that the vibration of the refrigerant hardly occurs. Therefore, since the self-excited vibration heat pipe 1 using two kinds of incompatible refrigerants is more susceptible to vibration of the refrigerant than the self-excited vibration heat pipe using one kind of refrigerant, even when the amount of heating is small, It becomes possible to improve the starting characteristics of the heat pipe in a low temperature region or the like.

第1冷媒及び第2冷媒を作動流体流路10内に封入した自励振動ヒートパイプ1では、更に加熱部14での加熱量が増加すると、加熱部14と冷却部16での冷媒の飽和蒸気圧差が大きくなり、加熱部14と冷却部16間で、流路内の圧力変化に起因したポンプ効果が作用し、冷媒の振動が促進される。図5は、第1及び第2冷媒の温度と飽和蒸気圧曲線との関係を示す図であり、飽和蒸気圧曲線の傾きが飽和蒸気圧差である。特に、図5に示すように、第1冷媒より第2冷媒の飽和蒸気圧差が大きい場合、第1冷媒のみを封入した自励振動ヒートパイプと比べて、流路内の圧力変化に起因したポンプ効果が大きく作用するため、低温領域等での自励振動ヒートパイプ1の始動特性を大きく改善することが可能となる。そして、流路内の第2冷媒が沸騰を開始する温度に達すると、流路内の圧力変化及びボイド率変化が大きくなり、流路内全体に振動が波及する。さらに、第1冷媒より沸点が低い、又は飽和蒸気圧差が大きい第2冷媒が第1冷媒より先に沸騰することにより、加熱部14近傍の流路内の圧力が上昇するため、後述するように、冷媒が沸騰を開始する表面過熱度が低下する。その結果、作動流体流路10内の連結液プラグ28或いは第1液プラグ24の沸騰開始が促進され、より低温・低熱流速条件で流路内の気液プラグ群の振動が開始される。   In the self-excited vibration heat pipe 1 in which the first refrigerant and the second refrigerant are sealed in the working fluid flow path 10, when the heating amount in the heating unit 14 further increases, the saturated vapor of the refrigerant in the heating unit 14 and the cooling unit 16. The pressure difference becomes large, and a pump effect due to a pressure change in the flow path acts between the heating unit 14 and the cooling unit 16 to promote the vibration of the refrigerant. FIG. 5 is a diagram showing the relationship between the temperatures of the first and second refrigerants and the saturated vapor pressure curve, and the slope of the saturated vapor pressure curve is the saturated vapor pressure difference. In particular, as shown in FIG. 5, when the saturation vapor pressure difference of the second refrigerant is larger than that of the first refrigerant, the pump is caused by the pressure change in the flow path as compared with the self-excited vibration heat pipe in which only the first refrigerant is sealed. Since the effect acts greatly, it is possible to greatly improve the starting characteristics of the self-excited vibration heat pipe 1 in a low temperature region or the like. And when the temperature reaches the temperature at which the second refrigerant in the flow path starts to boil, the pressure change and the void ratio change in the flow path become large, and vibrations spread throughout the flow path. Furthermore, since the second refrigerant having a boiling point lower than that of the first refrigerant or having a large saturation vapor pressure difference boils before the first refrigerant, the pressure in the flow path near the heating unit 14 increases. The surface superheat degree at which the refrigerant begins to boil is reduced. As a result, the start of boiling of the connecting liquid plug 28 or the first liquid plug 24 in the working fluid flow path 10 is promoted, and vibration of the gas-liquid plug group in the flow path is started at a lower temperature and a lower heat flow rate condition.

なお、第1冷媒より沸点の低い第2冷媒のみを作動流体流路10内に封入した自励振動ヒートパイプの場合、液プラグ20両端の表面張力の差による冷媒の振動はほとんど期待できないため、冷媒が沸騰を開始する温度に達するまでは、流路内での振動は起こり難く、1種の冷媒を用いた自励振動ヒートパイプの始動特性は、非相溶の冷媒を2種以上用いた自励振動ヒートパイプ1の始動特性より劣る結果となる。   In the case of a self-excited vibration heat pipe in which only the second refrigerant having a boiling point lower than that of the first refrigerant is enclosed in the working fluid flow path 10, vibration of the refrigerant due to the difference in surface tension at both ends of the liquid plug 20 can hardly be expected. Until the temperature reaches the temperature at which the refrigerant begins to boil, vibration in the flow path hardly occurs, and the starting characteristics of the self-excited vibration heat pipe using one type of refrigerant use two or more types of incompatible refrigerants. The result is inferior to the starting characteristic of the self-excited vibration heat pipe 1.

以下に、第1及び第2冷媒の種類、物性等について説明する。   Hereinafter, the types and physical properties of the first and second refrigerants will be described.

第1冷媒は、例えば、水やアンモニア等の自然冷媒、メタノール、エタノール等のアルコール系溶媒、アセトン等のケトン系冷媒、エチレングリコール等が挙げられる。特に、第1冷媒は、自励振動ヒートパイプ1の熱輸送を受け持つ主冷媒として、自励振動ヒートパイプ1の設置場の温度領域に応じて選定されることが好ましく、設置場の温度が室温付近の温度領域であれば、水、エタノール、アセトン等が好ましく、自励振動ヒートパイプ1における熱物性の良好な水を選択することがより好ましい。なお、第1冷媒は、相溶性のある冷媒同士であれば、例えば水とエタノールを混合した冷媒等も含まれる。第2冷媒は、第1冷媒に対して非相溶な溶媒であれば特に制限されるものではなく、フッ素系冷媒、炭化水素系冷媒等が挙げられる。例えば、水等を第1冷媒として用いる場合には、水との非相溶性、水との沸点又は飽和蒸気圧との関係等から、フッ素系冷媒を用いることが好ましい。第2冷媒としては、例えば、フロリナート等のフッ化炭素系冷媒、HCFC123、HFC134a等のフロン系冷媒、ブタン等の炭化水素冷媒等が挙げられる。第2冷媒も第1冷媒と同様に、相溶性のある冷媒同士であれば、混合した冷媒等も含まれる。第1冷媒及び第2冷媒の上記物質は例示であってこれに制限されるものではなく、第1冷媒と第2冷媒とが非相溶の関係にあれば、自励振動ヒートパイプに適用可能な全ての冷媒を採用することができる。   Examples of the first refrigerant include natural refrigerants such as water and ammonia, alcohol solvents such as methanol and ethanol, ketone refrigerants such as acetone, and ethylene glycol. In particular, the first refrigerant is preferably selected as a main refrigerant responsible for heat transport of the self-excited vibration heat pipe 1 according to the temperature range of the installation site of the self-excited vibration heat pipe 1, and the temperature of the installation site is room temperature. In the vicinity of the temperature range, water, ethanol, acetone and the like are preferable, and it is more preferable to select water having good thermal properties in the self-excited vibration heat pipe 1. In addition, as long as the 1st refrigerant | coolant is compatible refrigerant | coolants, the refrigerant | coolant etc. which mixed water and ethanol are also contained, for example. The second refrigerant is not particularly limited as long as it is an incompatible solvent with respect to the first refrigerant, and examples thereof include a fluorine-based refrigerant and a hydrocarbon-based refrigerant. For example, when water or the like is used as the first refrigerant, it is preferable to use a fluorine-based refrigerant from the viewpoint of incompatibility with water, the boiling point with water or the saturated vapor pressure, and the like. Examples of the second refrigerant include fluorocarbon refrigerants such as fluorinate, Freon refrigerants such as HCFC123 and HFC134a, hydrocarbon refrigerants such as butane, and the like. Similarly to the first refrigerant, the second refrigerant includes mixed refrigerants as long as they are compatible refrigerants. The above-mentioned substances of the first refrigerant and the second refrigerant are exemplifications and are not limited to these. If the first refrigerant and the second refrigerant are incompatible with each other, they can be applied to a self-excited vibration heat pipe. All refrigerants can be used.

本明細書における非相溶とは、完全に相溶性がない場合に限定されるものではなく、流路内に形成される連結液プラグ28において、第1液プラグ24と第2液プラグ26との間に界面が存在していれば非相溶であり、第1液プラグ24中に第2冷媒が微量に含まれていたり、第2液プラグ26中に第1冷媒が微量に含まれていたりしてもよい。また、第1冷媒と第2冷媒との非相溶性は、溶媒に対する溶解度を考慮することが好ましい。   Incompatible in this specification is not limited to the case where there is no complete compatibility. In the connection liquid plug 28 formed in the flow path, the first liquid plug 24 and the second liquid plug 26 Between the first liquid plug 24 and the second liquid plug 26 contains a small amount of the second refrigerant, or the second liquid plug 26 contains a small amount of the first refrigerant. Or you may. Moreover, it is preferable to consider the solubility with respect to a solvent for the incompatibility of a 1st refrigerant | coolant and a 2nd refrigerant | coolant.

第1冷媒と第2冷媒の封入量の割合は、熱特性の良好な冷媒を第1冷媒として用いる場合、自励振動ヒートパイプ1の熱輸送量は主に第1冷媒に受け持たせることが望ましいため、第2冷媒は第1冷媒より少ない割合(量)で封入されることが好ましい。そして、第1冷媒より第2冷媒の封入割合が少ない場合、第2冷媒は第1冷媒の沸点より低い冷媒を選択することが好ましい。また、第2冷媒は第1冷媒より飽和蒸気圧差が大きい冷媒であることが好ましい。このように、封入量の少ない第2冷媒が低沸点であったり、大きい飽和蒸気圧差であったりすると、加熱部14と冷却部16での冷媒の飽和蒸気圧差が大きくなり、加熱部14と冷却部16間で、流路内の圧力変化に起因したポンプ効果が大きく作用するため、熱輸送率を向上させることが可能となる。その結果、自励振動ヒートパイプの始動特性を向上させることができる。上記のような沸点及び飽和蒸気圧の関係を満たす組み合わせとしては、第1冷媒として水を用い、第2冷媒としてフッ素系冷媒を用いることが好ましい。   The ratio of the enclosed amount of the first refrigerant and the second refrigerant is such that, when a refrigerant with good thermal characteristics is used as the first refrigerant, the amount of heat transported by the self-excited oscillating heat pipe 1 can be mainly assigned to the first refrigerant. Since it is desirable, it is preferable to enclose the second refrigerant in a smaller proportion (amount) than the first refrigerant. And when the enclosure ratio of a 2nd refrigerant | coolant is smaller than a 1st refrigerant | coolant, it is preferable to select a refrigerant | coolant whose 2nd refrigerant | coolant is lower than the boiling point of a 1st refrigerant | coolant. The second refrigerant is preferably a refrigerant having a larger saturation vapor pressure difference than the first refrigerant. Thus, if the second refrigerant with a small amount of sealing has a low boiling point or a large saturated vapor pressure difference, the saturated vapor pressure difference between the refrigerant in the heating unit 14 and the cooling unit 16 becomes large, and the heating unit 14 and the cooling Since the pump effect due to the pressure change in the flow path acts greatly between the portions 16, it is possible to improve the heat transport rate. As a result, the starting characteristics of the self-excited vibration heat pipe can be improved. As a combination satisfying the relationship between the boiling point and the saturated vapor pressure as described above, it is preferable to use water as the first refrigerant and use a fluorine-based refrigerant as the second refrigerant.

図6は、流路内に封入される冷媒の沸騰曲線を示す図である。図6に示すように、通常、圧力が高い状態にあるほど、冷媒が沸騰を開始する表面過熱度が低下する。したがって、第1冷媒より沸点の低い、或いは飽和蒸気圧差の大きい第2冷媒が先に沸騰することにより、加熱部14近傍の流路内の圧力が上昇するため、連結液プラグ28或いは第1液プラグ24の沸騰を開始する表面過熱度が低下し、作動流体流路10内の連結液プラグ28或いは第1液プラグ24の沸騰開始が促進される。その結果、低温・低熱流速条件で流路内の気液プラグ群の自励振動が開始される。   FIG. 6 is a diagram showing a boiling curve of the refrigerant sealed in the flow path. As shown in FIG. 6, normally, the higher the pressure is, the lower the surface superheat degree at which the refrigerant starts boiling. Accordingly, the second refrigerant having a lower boiling point or a larger saturated vapor pressure difference than the first refrigerant boils first, so that the pressure in the flow path in the vicinity of the heating unit 14 increases, and therefore the connecting liquid plug 28 or the first liquid The degree of surface superheat at which boiling of the plug 24 starts is lowered, and the start of boiling of the connecting liquid plug 28 or the first liquid plug 24 in the working fluid flow path 10 is promoted. As a result, the self-excited vibration of the gas-liquid plug group in the flow path is started under a low temperature / low heat flow rate condition.

本実施形態の自励振動ヒートパイプは、マイクロプロセッサ、インバータ、モータ、内燃機関及び二次電池等の発熱部品の放熱装置や、種々の温度調節装置等に用いることができる。   The self-excited vibration heat pipe of this embodiment can be used for a heat radiating device for heat-generating parts such as a microprocessor, an inverter, a motor, an internal combustion engine, and a secondary battery, various temperature control devices, and the like.

1 自励振動ヒートパイプ、10 作動流体流路、12 ヒートパイプ本体部、14 加熱部、16 冷却部、18 冷媒封入口、20 液プラグ、22 蒸気プラグ、24 第1液プラグ、26 第2液プラグ、28 連結液プラグ、30 蒸気プラグ。   DESCRIPTION OF SYMBOLS 1 Self-excited vibration heat pipe, 10 Working fluid flow path, 12 Heat pipe main-body part, 14 Heating part, 16 Cooling part, 18 Refrigerant enclosure port, 20 liquid plug, 22 Steam plug, 24 1st liquid plug, 26 2nd liquid Plug, 28 connecting fluid plug, 30 steam plug.

Claims (5)

加熱部と冷却部の間に配された作動流体流路を有するヒートパイプ本体部と、前記作動流体流路に封入される冷媒とを備える自励振動ヒートパイプであって、
前記冷媒は、非相溶な2種類以上の冷媒を含むことを特徴とする自励振動ヒートパイプ。
A self-excited oscillating heat pipe comprising a heat pipe body having a working fluid channel disposed between a heating unit and a cooling unit, and a refrigerant sealed in the working fluid channel,
The self-excited vibration heat pipe, wherein the refrigerant includes two or more kinds of incompatible refrigerants.
前記非相溶な2種類以上の冷媒は、少なくとも第1冷媒と前記第1冷媒より封入量の少ない第2冷媒を含み、前記第2冷媒は、前記第1冷媒より沸点が低いことを特徴とする請求項1記載の自励振動ヒートパイプ。   The two or more incompatible refrigerants include at least a first refrigerant and a second refrigerant with a smaller amount of sealing than the first refrigerant, and the second refrigerant has a lower boiling point than the first refrigerant. The self-excited vibration heat pipe according to claim 1. 前記第2冷媒は、前記第1冷媒より飽和蒸気圧差が大きいことを特徴とする請求項2記載の自励振動ヒートパイプ。   The self-excited vibration heat pipe according to claim 2, wherein the second refrigerant has a larger saturated vapor pressure difference than the first refrigerant. 前記第2冷媒は、フッ素系冷媒であることを特徴とする請求項1〜3のいずれか1項に記載の自励振動ヒートパイプ。   The self-excited vibration heat pipe according to any one of claims 1 to 3, wherein the second refrigerant is a fluorine-based refrigerant. 前記第1冷媒は、水、エタノール、アセトンのうちの少なくともいずれか1つであることを特徴とする請求項1〜4のいずれか1項に記載の自励振動ヒートパイプ。   The self-excited vibration heat pipe according to any one of claims 1 to 4, wherein the first refrigerant is at least one of water, ethanol, and acetone.
JP2012021681A 2012-02-03 2012-02-03 Self-excited vibration heat pipe Pending JP2013160420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012021681A JP2013160420A (en) 2012-02-03 2012-02-03 Self-excited vibration heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012021681A JP2013160420A (en) 2012-02-03 2012-02-03 Self-excited vibration heat pipe

Publications (1)

Publication Number Publication Date
JP2013160420A true JP2013160420A (en) 2013-08-19

Family

ID=49172819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012021681A Pending JP2013160420A (en) 2012-02-03 2012-02-03 Self-excited vibration heat pipe

Country Status (1)

Country Link
JP (1) JP2013160420A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015141002A (en) * 2014-01-30 2015-08-03 富士通株式会社 Manufacturing method of heat pipe, heat pipe, and electronic apparatus
CN105091643A (en) * 2014-05-09 2015-11-25 财团法人工业技术研究院 Pulse type multi-tube heat pipe
JP2016142511A (en) * 2015-02-05 2016-08-08 株式会社デンソー Cooler
KR20180030863A (en) 2015-10-22 2018-03-26 가부시키가이샤 마루산덴키 A piping member, a heat pipe, and a cooling device
JPWO2020225981A1 (en) * 2019-05-08 2020-11-12
JP2021032558A (en) * 2019-08-20 2021-03-01 大連海事大学 Method for designing start critical pipe diameter of pulsation heat pipe in vertical state
WO2022030464A1 (en) * 2020-08-07 2022-02-10 ダイキン工業株式会社 Immersion cooling device, heat pipe, and cold plate
JP2022533989A (en) * 2019-08-20 2022-07-27 大連海事大学 Liquid metal high temperature self-oscillating heat pipe and test method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002364991A (en) * 2001-06-07 2002-12-18 Ts Heatronics Co Ltd Forced vibration flow type heat pipe and its designing method
JP2003287378A (en) * 2002-03-27 2003-10-10 Mitsubishi Electric Corp Capillary heat pipe and heat exchanger
JP2003302180A (en) * 2002-04-11 2003-10-24 Furukawa Electric Co Ltd:The Self-excited oscillation type heat pipe
JP2007333246A (en) * 2006-06-12 2007-12-27 Nissan Motor Co Ltd Variable conductance heat pipe and temperature adjusting device using the same
JP2008235565A (en) * 2007-03-20 2008-10-02 Mitsubishi Electric Corp Cooling system for electronic device
JP2008298342A (en) * 2007-05-30 2008-12-11 Kanai Educational Institution Check valve, self-excited vibration heat pipe, heat generation device, manufacturing method of check valve and manufacturing method of self-excited vibration heat pipe
US20090020263A1 (en) * 2006-01-26 2009-01-22 Akihiro Ohsawa Cooling Apparatus for Fluid
JP2011021789A (en) * 2009-07-14 2011-02-03 Toyota Industries Corp Evaporative cooling device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002364991A (en) * 2001-06-07 2002-12-18 Ts Heatronics Co Ltd Forced vibration flow type heat pipe and its designing method
JP2003287378A (en) * 2002-03-27 2003-10-10 Mitsubishi Electric Corp Capillary heat pipe and heat exchanger
JP2003302180A (en) * 2002-04-11 2003-10-24 Furukawa Electric Co Ltd:The Self-excited oscillation type heat pipe
US20090020263A1 (en) * 2006-01-26 2009-01-22 Akihiro Ohsawa Cooling Apparatus for Fluid
JP2007333246A (en) * 2006-06-12 2007-12-27 Nissan Motor Co Ltd Variable conductance heat pipe and temperature adjusting device using the same
JP2008235565A (en) * 2007-03-20 2008-10-02 Mitsubishi Electric Corp Cooling system for electronic device
JP2008298342A (en) * 2007-05-30 2008-12-11 Kanai Educational Institution Check valve, self-excited vibration heat pipe, heat generation device, manufacturing method of check valve and manufacturing method of self-excited vibration heat pipe
JP2011021789A (en) * 2009-07-14 2011-02-03 Toyota Industries Corp Evaporative cooling device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015141002A (en) * 2014-01-30 2015-08-03 富士通株式会社 Manufacturing method of heat pipe, heat pipe, and electronic apparatus
CN105091643A (en) * 2014-05-09 2015-11-25 财团法人工业技术研究院 Pulse type multi-tube heat pipe
JP2016142511A (en) * 2015-02-05 2016-08-08 株式会社デンソー Cooler
KR20180030863A (en) 2015-10-22 2018-03-26 가부시키가이샤 마루산덴키 A piping member, a heat pipe, and a cooling device
US10247485B2 (en) 2015-10-22 2019-04-02 Marusan Electronics Co., Ltd. Pipe member, heat pipe, and cooling device
DE112016004824B4 (en) 2015-10-22 2021-08-05 Marusan Electronics Co., Ltd. Pipe element, heat pipe and cooling device
WO2020225981A1 (en) * 2019-05-08 2020-11-12 株式会社日立製作所 Self-excited vibration heat pipe cooling device, and railway vehicle on which cooling device is mounted
JPWO2020225981A1 (en) * 2019-05-08 2020-11-12
JP7179170B2 (en) 2019-05-08 2022-11-28 株式会社日立製作所 Self-excited oscillating heat pipe cooling device and railway vehicle equipped with the cooling device
JP2021032558A (en) * 2019-08-20 2021-03-01 大連海事大学 Method for designing start critical pipe diameter of pulsation heat pipe in vertical state
JP7011343B2 (en) 2019-08-20 2022-01-26 大連海事大学 How to design the starting critical tube diameter of the pulsating heat pipe in the vertical state
JP2022533989A (en) * 2019-08-20 2022-07-27 大連海事大学 Liquid metal high temperature self-oscillating heat pipe and test method
JP7300202B2 (en) 2019-08-20 2023-06-29 大連海事大学 Test system and test method used to measure the heat transfer performance of liquid metal high temperature self-oscillating heat pipes
WO2022030464A1 (en) * 2020-08-07 2022-02-10 ダイキン工業株式会社 Immersion cooling device, heat pipe, and cold plate
JP2022030744A (en) * 2020-08-07 2022-02-18 ダイキン工業株式会社 Immersion cooling device

Similar Documents

Publication Publication Date Title
JP2013160420A (en) Self-excited vibration heat pipe
Chen et al. Steady-state and transient performance of a miniature loop heat pipe
JP4978401B2 (en) Cooling system
Ambirajan et al. Loop heat pipes: a review of fundamentals, operation, and design
JP5872985B2 (en) Self-excited vibration heat pipe
JP5768514B2 (en) Loop heat pipe and electronic device equipped with the heat pipe
US20070214784A1 (en) External combustion engine
CN104422320B (en) Heat pipe
JP6260368B2 (en) Self-excited vibration heat pipe
JP7011343B2 (en) How to design the starting critical tube diameter of the pulsating heat pipe in the vertical state
JP6285356B2 (en) Boiling cooler
JP5370074B2 (en) Loop type heat pipe and electronic device equipped with the same
JP5471119B2 (en) Loop heat pipe, electronic device
JP6433848B2 (en) Heat exchangers, vaporizers, and electronics
US20190154352A1 (en) Loop heat pipe structure
JP6102815B2 (en) Cooler
Fourgeaud et al. Experimental investigations of a Multi-Source Loop Heat Pipe for electronics cooling
JP2010050326A (en) Cooling device
JP2009191624A (en) Engine waste heat recovery device
KR101700753B1 (en) Steam generator and nuclear power plant having the same
JP5252059B2 (en) Cooling system
JP6596986B2 (en) Cooling parts and electronic equipment
JP2015055380A (en) Cooling device
JP7115091B2 (en) Evaporator and loop heat pipe
Birajdar et al. Experimental investigations of pump‐driven closed‐loop thermosyphon system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150526