JP5768514B2 - Loop heat pipe and electronic device equipped with the heat pipe - Google Patents

Loop heat pipe and electronic device equipped with the heat pipe Download PDF

Info

Publication number
JP5768514B2
JP5768514B2 JP2011127982A JP2011127982A JP5768514B2 JP 5768514 B2 JP5768514 B2 JP 5768514B2 JP 2011127982 A JP2011127982 A JP 2011127982A JP 2011127982 A JP2011127982 A JP 2011127982A JP 5768514 B2 JP5768514 B2 JP 5768514B2
Authority
JP
Japan
Prior art keywords
evaporator
pipe
heat
heat pipe
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011127982A
Other languages
Japanese (ja)
Other versions
JP2012255577A (en
Inventor
聖二 日比野
聖二 日比野
晋 尾形
晋 尾形
内田 浩基
浩基 内田
木村 孝浩
孝浩 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2011127982A priority Critical patent/JP5768514B2/en
Publication of JP2012255577A publication Critical patent/JP2012255577A/en
Application granted granted Critical
Publication of JP5768514B2 publication Critical patent/JP5768514B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本出願はループヒートパイプ及び該ヒートパイプを備えた電子機器に関する。以下に説明される実施の形態では、実施例として流体を搬送する流体搬送装置(ヒートパイプ)並びにヒートパイプを備えた電子機器が説明される。   The present application relates to a loop heat pipe and an electronic apparatus including the heat pipe. In the embodiments described below, a fluid conveyance device (heat pipe) that conveys fluid and an electronic device including the heat pipe will be described as examples.

従来、流体(作動液)の潜熱で熱を輸送するヒートパイプが知られている。このうち、ループヒートパイプは、外部から加熱されて作動液の蒸発が生じる蒸発器と、外部に熱を放散して蒸気の凝縮が生じる凝縮器とが、蒸気管と液管によってループを形成するように連結されたものである。このようなループヒートパイプ(循環型ヒートパイプとも呼ばれる)の構成は特許文献1の図1に開示されている。   Conventionally, a heat pipe that transports heat by the latent heat of a fluid (working fluid) is known. Among these, in the loop heat pipe, an evaporator that is heated from the outside to cause evaporation of the working liquid and a condenser that dissipates heat to the outside and condenses the steam form a loop by the steam pipe and the liquid pipe. Are connected together. The configuration of such a loop heat pipe (also called a circulation heat pipe) is disclosed in FIG.

ループヒートパイプでは、蒸発器で発生した作動液の蒸気は蒸気管で凝縮器に流れ、凝縮器で液体となった作動液が液管で蒸発器に流れるループが形成されている。作動液と作動液の蒸気は、液管或いは蒸発器に設けられたウィックの毛細管圧力をポンプ力として使用することにより蒸発器と凝縮器の間を循環する。ウィックは、例えばセラミックやニッケル、或いは銅、銅酸化物を原料とした多孔質材料、或いはポリエチレン樹脂等の高分子材料を原料とする多孔質材料で構成される。   In the loop heat pipe, a working fluid vapor generated in the evaporator flows into the condenser through a steam pipe, and a working fluid that has become liquid in the condenser flows into the evaporator through a liquid pipe. The working fluid and the working fluid vapor circulate between the evaporator and the condenser by using the wick capillary pressure in the fluid pipe or the evaporator as a pumping force. The wick is made of, for example, a porous material made of ceramic, nickel, copper, copper oxide or the like, or a porous material made of a polymer material such as polyethylene resin.

液管に設けられるウィックは液管の内周面に取り付けられる。一方、凝縮器に設けられるウィックは円筒状をしており、開口部が液管側に位置し、底部が蒸気管側に位置する。凝縮器に設けられる円筒状のウィックの外周面には、底部側から所定深さの溝であるグルーブがウィックの軸線に平行に複数本設けられている。   The wick provided in the liquid pipe is attached to the inner peripheral surface of the liquid pipe. On the other hand, the wick provided in the condenser has a cylindrical shape, with the opening located on the liquid pipe side and the bottom located on the steam pipe side. On the outer peripheral surface of the cylindrical wick provided in the condenser, a plurality of grooves, which are grooves having a predetermined depth from the bottom side, are provided in parallel to the axis of the wick.

このようなループヒートパイプは、直管型ヒートパイプのように、液体と蒸気が対向流とならないことから、作動液を円滑に流動させることができる。したがってループヒートパイプは、直管型ヒートパイプでは熱輸送が困難な、トップヒートモードでの熱輸送若しくは冷却に使用される。トップヒートモードとは、外部から加熱されて作動液の蒸発が生じる蒸発器を、作動液蒸気が外部に熱を放出して凝縮する凝縮器より高い位置に配置し、上から下に熱を輸送する熱輸送形態のことである。   Such a loop heat pipe can smoothly flow the working fluid because the liquid and the vapor do not become counterflows unlike the straight pipe heat pipe. Therefore, the loop heat pipe is used for heat transport or cooling in the top heat mode, in which heat transport is difficult with a straight pipe heat pipe. In top heat mode, the evaporator, which is heated from the outside and causes evaporation of the hydraulic fluid, is placed higher than the condenser where the hydraulic fluid vapor releases heat to condense and transports heat from top to bottom. It is a form of heat transport.

ループヒートパイプでは、蒸発器のグルーブ内には液相と気相の作動液が共存しており、グルーブ内の作動液の分布により、蒸発器に熱が加わった後のループヒートパイプの始動性が異なる。特に、グルーブ内に液相の作動液が存在する場合には、グルーブ内の作動液を蒸発させるために加熱が必要なため、蒸発器が加熱されてからループヒートパイプが始動する(startup)までに時間がかかる。この間はウィックの有効利用面積が小さいため、ウィックポンプ力の低下、グルーブ利用率減少による熱抵抗の上昇により、設計した動作温度よりも高い動作温度までヒートポンプが動作しないという問題がある。この問題は非特許文献1にも報告されている。   In the loop heat pipe, the liquid phase and the gas phase hydraulic fluid coexist in the groove of the evaporator, and the startability of the loop heat pipe after the heat is applied to the evaporator due to the distribution of the hydraulic fluid in the groove. Is different. In particular, when there is a liquid-phase working fluid in the groove, heating is necessary to evaporate the working fluid in the groove, so the loop heat pipe starts up after the evaporator is heated. Takes time. During this time, since the effective use area of the wick is small, there is a problem that the heat pump does not operate up to an operating temperature higher than the designed operating temperature due to a decrease in wick pump power and an increase in thermal resistance due to a decrease in groove utilization rate. This problem is also reported in Non-Patent Document 1.

特許第4459783号(図1)Japanese Patent No. 4459783 (FIG. 1)

Jentung Ku; 1998 Operating Characteristics of Loop Heat Pipes. Society of Automotive Engineers, Inc.Jentung Ku; 1998 Operating Characteristics of Loop Heat Pipes. Society of Automotive Engineers, Inc.

このように蒸発器のグルーブ内に液相の作動液が存在する場合には、ループヒートパイプの始動が遅れ、ループヒートパイプを半導体冷却装置として使用した場合には、半導体の温度が仕様温度を超えてしまい、半導体の破損を引き起こす問題が生じていた。しかしながら、非特許文献1にはこの現象の記載はあるものの、この現象を回避するための解決策の記載はなかった。   Thus, when the liquid phase hydraulic fluid is present in the groove of the evaporator, the start of the loop heat pipe is delayed, and when the loop heat pipe is used as a semiconductor cooling device, the temperature of the semiconductor becomes the specified temperature. This has caused a problem that causes damage to the semiconductor. However, although Non-Patent Document 1 describes this phenomenon, there is no description of a solution for avoiding this phenomenon.

本出願は、ウィックのグルーブ内に作動液が多く残留するループヒートパイプの始動時に、速やかにループヒートパイプを始動させることができるループヒートパイプ及び該ヒートパイプを用いた冷却装置を提供することを目的としている。   The present application provides a loop heat pipe capable of quickly starting a loop heat pipe and a cooling device using the heat pipe at the time of starting the loop heat pipe in which a large amount of hydraulic fluid remains in the wick groove. It is aimed.

上記目的を達成するための本出願のループヒートパイプは、ウィックを内蔵し、ヒートパイプの始動後に外部から熱が加えられる蒸発器と、凝縮器と、蒸発器と凝縮器とを繋ぐ液管及び蒸気管とを有するループヒートパイプにおいて、ループヒートパイプの始動後の入熱による、蒸発器の蒸気管側の第1の部位の温度上昇速度を、液管側の第2の部位の温度上昇速度より遅らせる温度上昇速度遅延部材を、蒸発器の蒸気管側の部位に取り付けたことを特徴としている。 Loop heat pipe of the present application to achieve the above object, a built-in wick, and an evaporator that heat is applied from the outside after the heat pipe start, a condenser, a liquid pipe connecting the evaporator and the condenser and in the loop heat pipe to have a steam pipe, due to the heat input after the start of the loop heat pipe, the temperature rise rate of the first portion of the steam tube side of the evaporator, the temperature of the second portion of the liquid pipe A temperature increase rate delay member that delays the increase rate is attached to a portion on the vapor pipe side of the evaporator .

また、上記目的を達成するための本出願の電子機器は、電子部品と、電子部品に熱的に接触すると共に、ウィックを内蔵して電子部品の動作開始後に電子部品から熱が加えられる蒸発器と、凝縮器と、蒸発器と凝縮器とを繋ぐ液管及び蒸気管とを有し、電子部品の動作開始後の入熱による、蒸発器の蒸気管側の第1の部位の温度上昇速度を、液管側の第2の部位の温度上昇速度より遅らせる温度上昇速度遅延部材を、蒸発器の蒸気管側の部位に取り付けたループヒートパイプを備えたことを特徴としている。 The electronic device of the present application to achieve the above object, an electronic component, as well as thermal contact with the electronic components, that heat is applied from the electronic component built-in wick after the start of operation of the electronic component evaporation a vessel, a condenser, and a evaporator and the condenser liquid pipe connects the and steam pipe, by heat input after the start of the operation of the electronic components, the temperature rise of the first portion of the steam pipe side of the evaporator speed, is characterized in that the temperature increase rate delay member for delaying the temperature rise rate of the second portion of the liquid pipe, comprising a loop heat pipe attached to the site of the steam pipe side of the evaporator.

本出願のヒートパイプによれば、ウィックのグルーブ内の残留作動液が多くても、ヒートパイプの始動時に蒸発器の液管側の温度上昇速度が蒸気管側の温度上昇速度よりも速くなり、残留作動液が短時間で排出されてヒートパイプの始動性が向上する。また、本出願の電子機器によれば、電子機器の冷間からの起動時に、蒸発器に温度差発生手段が設けられたループヒートパイプにより、回路基板上の発熱体の温度を、過度に上昇させることなく起動させることが可能である。   According to the heat pipe of the present application, even if there is a lot of residual hydraulic fluid in the groove of the wick, the temperature rise rate on the liquid pipe side of the evaporator becomes faster than the temperature rise speed on the steam pipe side when starting the heat pipe, The residual hydraulic fluid is discharged in a short time, and the startability of the heat pipe is improved. In addition, according to the electronic device of the present application, when the electronic device is started from cold, the temperature of the heating element on the circuit board is excessively increased by the loop heat pipe provided with the temperature difference generating means in the evaporator. It is possible to start without making it.

(a)は従来のループヒートパイプの構成を示す図、(b)は(a)の蒸発器に内蔵されたウィックを作動液の入口側から見た斜視図、(c)は(a)の蒸発器に内蔵されたウィックを作動液の出口側から見た斜視図である。(A) is a figure which shows the structure of the conventional loop heat pipe, (b) is the perspective view which looked at the wick built in the evaporator of (a) from the inlet side of the hydraulic fluid, (c) is the figure of (a) It is the perspective view which looked at the wick built in the evaporator from the exit side of hydraulic fluid. (a)は、ループヒートパイプの始動時に図1(a)に示した蒸発器内にあるウィックのグルーブの目詰まりが小さく、グルーブ内に液相の作動液が少々存在する状態を示す図、(b)は(a)に示した状態でループヒートパイプの蒸発器に熱が加わった時の時間に対する半導体集積回路の温度変化を示す特性図である。(A) is a diagram showing a state in which the clogging of the wick groove in the evaporator shown in FIG. 1 (a) is small when the loop heat pipe is started, and there is a little liquid-phase working fluid in the groove; (B) is a characteristic diagram showing a temperature change of the semiconductor integrated circuit with respect to time when heat is applied to the evaporator of the loop heat pipe in the state shown in (a). (a)は、ループヒートパイプの始動時に図1(a)に示した蒸発器内にあるウィックのグルーブの目詰まりが大きく、グルーブ内に液相の作動液が多量に存在する状態を示す図、(b)は(a)に示した状態でループヒートパイプの蒸発器に熱が加わった時の時間に対する半導体集積回路の温度変化を示す特性図である。(A) is the figure which shows the state where the clogging of the groove | channel of the wick in the evaporator shown to Fig.1 (a) is large at the time of the start of a loop heat pipe, and a large amount of liquid-phase hydraulic fluid exists in a groove (B) is a characteristic view showing a temperature change of the semiconductor integrated circuit with respect to time when heat is applied to the evaporator of the loop heat pipe in the state shown in (a). ループヒートパイプの蒸発器に、本出願の蓄熱材を取り付ける工程の一実施例を示す組み立て斜視図である。It is an assembly perspective view which shows one Example of the process of attaching the thermal storage material of this application to the evaporator of a loop heat pipe. 図4(a)に示した本出願の蓄熱材が取り付けられたループヒートパイプの蒸発器を、回路基板に実装された半導体集積回路に取り付けて冷却装置を構成する工程を示す組み立て斜視図である。It is an assembly perspective view which shows the process of attaching the evaporator of the loop heat pipe to which the heat storage material of this application shown to Fig.4 (a) was attached to the semiconductor integrated circuit mounted in the circuit board, and comprising a cooling device. . (a)は、ウィックが1個内蔵されたループヒートパイプの蒸発器に、本出願の蓄熱材を取り付けた冷却装置の実施例の構成を示す斜視図、(b)は、ウィックが2個内蔵されたループヒートパイプの蒸発器に、本出願の蓄熱材を取り付けた実施例の構成を示す斜視図である。(A) is a perspective view showing a configuration of an embodiment of a cooling device in which a heat storage material of the present application is attached to an evaporator of a loop heat pipe in which one wick is incorporated, and (b) is a diagram in which two wicks are incorporated. It is a perspective view which shows the structure of the Example which attached the thermal storage material of this application to the evaporator of the made loop heat pipe. (a)は、融点40°Cの潜熱蓄熱材が取り付けられた本出願の蒸発器を備えた冷却装置の図6(a)のA−A線における断面図、(b)は(a)の状態で半導体集積回路が動作を開始した直後の蒸発器の熱勾配を示す図、(c)は(b)は(a)に示した状態で半導体集積回路が動作を開始した時の、時間に対する半導体集積回路の温度変化を示す特性図である。(A) is sectional drawing in the AA line of FIG. 6 (a) of the cooling device provided with the evaporator of this application to which the latent heat storage material of melting | fusing point 40 degreeC was attached, (b) is (a). The figure which shows the thermal gradient of the evaporator immediately after a semiconductor integrated circuit starts operation | movement in a state, (c) is (b) with respect to time when a semiconductor integrated circuit starts operation | movement in the state shown to (a). It is a characteristic view which shows the temperature change of a semiconductor integrated circuit. 図6(a)に示した潜熱蓄熱材の厚み、使用量、およびディレイタイムの関係を示す図である。It is a figure which shows the relationship between the thickness of the latent-heat storage material shown to Fig.6 (a), the usage-amount, and delay time. (a)は、融点50°Cの潜熱蓄熱材が取り付けられた本出願の蒸発器を備えた冷却装置の図6(a)のA−A線における断面図、(b)は(a)の状態で半導体集積回路が動作を開始した直後の蒸発器の熱勾配を示す図、(c)は(b)は(a)に示した状態で半導体集積回路が動作を開始した時の、時間に対する半導体集積回路の温度変化を示す特性図である。(A) is sectional drawing in the AA of FIG. 6 (a) of the cooling device provided with the evaporator of this application to which the latent heat storage material of melting | fusing point 50 degreeC was attached, (b) is (a). The figure which shows the thermal gradient of the evaporator immediately after a semiconductor integrated circuit starts operation | movement in a state, (c) is (b) with respect to time when a semiconductor integrated circuit starts operation | movement in the state shown to (a). It is a characteristic view which shows the temperature change of a semiconductor integrated circuit. (a)は、潜熱蓄熱材を取り外した状態の蒸発器を備えた冷却装置の要部の断面図、(b)は(a)の状態で半導体集積回路が動作を開始した直後の蒸発器の熱勾配を示す図、(c)は(b)は(a)に示した状態で半導体集積回路が動作を開始した時の、時間に対する半導体集積回路の温度変化を示す特性図である。(A) is sectional drawing of the principal part of the cooling device provided with the evaporator of the state which removed the latent heat storage material, (b) of the evaporator immediately after a semiconductor integrated circuit started operation | movement in the state of (a) FIG. 5C is a characteristic diagram showing a temperature change of the semiconductor integrated circuit with respect to time when the semiconductor integrated circuit starts operating in the state shown in FIG.

以下、添付図面を用いて本出願の実施の形態を、具体的な実施例に基づいて詳細に説明するが、本出願の実施の形態を説明する前に、従来のループヒートパイプの構成及び始動時の問題点を図1から図3を用いて説明する。   Hereinafter, embodiments of the present application will be described in detail based on specific examples with reference to the accompanying drawings. Prior to describing the embodiments of the present application, the configuration and start-up of a conventional loop heat pipe will be described. The problem of time will be described with reference to FIGS.

図1(a)は従来のループヒートパイプ10の構成を示すものである。ループヒートパイプ10には、蒸発器1、凝縮器2、蒸発器1から凝縮器2に作動液の蒸気7を送る蒸気管3、及び凝縮器2から蒸発器1に作動液6を送る液管4がある。蒸発器1は、外部から加熱されて作動液を蒸気にするものであり、凝縮器2は、外部に熱を放散することにより蒸気を凝縮させて液相の作動液にするものである。蒸発器1の中には、凝縮器2で凝縮された作動液6を蒸発器1に還流させる毛細管圧力を生じさせるウイック5が設けられている。蒸発器1を発熱体に取り付ければ、発熱体を冷却することができる。   FIG. 1A shows a configuration of a conventional loop heat pipe 10. The loop heat pipe 10 includes an evaporator 1, a condenser 2, a steam pipe 3 for sending the working liquid vapor 7 from the evaporator 1 to the condenser 2, and a liquid pipe for sending the working liquid 6 from the condenser 2 to the evaporator 1. There are four. The evaporator 1 is heated from the outside to convert the working fluid into vapor, and the condenser 2 condenses the vapor by dissipating heat to the outside to form a liquid-phase working fluid. In the evaporator 1, a wick 5 is provided that generates a capillary pressure that causes the working fluid 6 condensed in the condenser 2 to flow back to the evaporator 1. If the evaporator 1 is attached to the heating element, the heating element can be cooled.

ウィック5は、図1(b)、(c)に示すように円筒状をしており、液管4側が開口して中空部8が設けられている。また、ウィック5の外周面には、ウィック5の軸線方向に、蒸発管3側から液管4側に向かって複数本の溝であるグルーブ9が設けられている。ウィック5は、セラミックス、金属、樹脂などを材料とした多孔質体である。ループヒートパイプ10の内部は、完全に真空引きされた後、水系、アルコール系、フッ化炭化水素化合物系など液体が作動流体(作動液)として封入されている。作動液は、熱が加えられる蒸発器1のウィック5で液相の作動液6が蒸気7になって蒸気管3を流れ、凝縮器2で蒸気7が液相の作動液6になって蒸発器1に還流する。作動液はウィック5の毛細管力によってループ内を循環する。 The wick 5 has a cylindrical shape as shown in FIGS. 1B and 1C, and the liquid pipe 4 side is open to be provided with a hollow portion 8. Further, on the outer peripheral surface of the wick 5, grooves 9 that are a plurality of grooves are provided in the axial direction of the wick 5 from the evaporation tube 3 side toward the liquid tube 4 side. The wick 5 is a porous body made of ceramic, metal, resin or the like. The inside of the loop heat pipe 10 is completely evacuated, and then a liquid such as water, alcohol, or fluorinated hydrocarbon compound is sealed as a working fluid (working fluid). The working fluid is vaporized in the wick 5 of the evaporator 1 to which heat is applied, the liquid-phase working fluid 6 becomes steam 7 and flows through the steam pipe 3, and in the condenser 2, the steam 7 becomes liquid-phase working fluid 6 and evaporates. Reflux to vessel 1. The hydraulic fluid 6 circulates in the loop by the capillary force of the wick 5.

図2(a)は、ループヒートパイプの蒸発器1に熱が加えられる前の、蒸発器1の部分を断面で示している。この状態では、ウィック5のグルーブ9の目詰まりが小さく、グルーブ9内に液相の作動液6aが少々残留する程度である。この状態で蒸発器1に熱が加えられると、グルーブ9内の液相の作動液6aの量は少量であるので直ぐに蒸発する。従って、図2(b)に示すように、ループヒートパイプの蒸発器1に熱が加えられる始動時には、グルーブ9内の液相の作動液6aが蒸発した後、ウィック5が本来の動作を行う。この結果、蒸発器1を取り付けた半導体集積回路の温度は最初に目標温度から少し上昇するだけで、後は目標温度に近い状態で推移する。   Fig.2 (a) has shown the part of the evaporator 1 in a cross section before heat is added to the evaporator 1 of a loop heat pipe. In this state, the clogging of the groove 9 of the wick 5 is small, and the liquid-phase working fluid 6a remains in the groove 9 a little. When heat is applied to the evaporator 1 in this state, the amount of the liquid-phase working fluid 6a in the groove 9 is small, so that it evaporates immediately. Therefore, as shown in FIG. 2 (b), at the time of starting heat applied to the evaporator 1 of the loop heat pipe, the wick 5 performs its original operation after the liquid-phase working fluid 6a in the groove 9 evaporates. . As a result, the temperature of the semiconductor integrated circuit to which the evaporator 1 is attached only rises slightly from the target temperature at first, and thereafter changes in a state close to the target temperature.

図3(a)は、ループヒートパイプの蒸発器1に熱が加えられる前の、蒸発器1の部分を断面で示している。この状態では、ウィック5のグルーブ9の目詰まりが大きく、グルーブ9内に液相の作動液6aが多量に残留する。この状態で蒸発器1に熱が加えられると、グルーブ9内の液相の作動液6aの残留量が多いので、液相の作動液6aが蒸発してグルーブ9内の液相の作動液6aが排出されるまでに時間がかかる。すると、図3(b)に示すように、ループヒートパイプの蒸発器1に熱が加えられる始動時には、グルーブ9内の液相の作動液6aが完全に蒸発するまでの間、ウィック5が本来の動作を行うことができない。この結果、蒸発器1を取り付けた半導体集積回路の温度は、最初に仕様温度を超えてしまう。グルーブ9内の液相の作動液6aが完全に蒸発した後は、目標温度に近い状態で推移する。 FIG. 3A shows a section of the evaporator 1 in a cross section before heat is applied to the evaporator 1 of the loop heat pipe. In this state, the clogging of the groove 9 of the wick 5 is large, and a large amount of liquid-phase working fluid 6a remains in the groove 9. When heat is applied to the evaporator 1 in this state, since the residual amount of the liquid-phase working fluid 6a in the groove 9 is large, the liquid-phase working fluid 6a is evaporated and the liquid-phase working fluid 6a in the groove 9 is evaporated. It takes time to be discharged. Then, as shown in FIG. 3 (b) , at the time of starting the heat applied to the evaporator 1 of the loop heat pipe, the wick 5 is originally kept until the liquid-phase working fluid 6a in the groove 9 is completely evaporated. Can not be performed. As a result, the temperature of the semiconductor integrated circuit to which the evaporator 1 is attached first exceeds the specification temperature. After the liquid-phase working fluid 6a in the groove 9 has completely evaporated, the state changes to a state close to the target temperature.

このように蒸発器1のグルーブ9内に液相の作動液6aが多く存在する状態でループヒートパイプが始動された場合には、ループヒートパイプが正常に動作するまでに時間がかかる。このため、ループヒートパイプを電子機器に搭載された半導体用の冷却装置として使用した場合には、蒸発器1を取り付けた半導体集積回路の温度が半導体の仕様温度を超えてしまい、半導体の破損を引き起こす問題が生じていた。   As described above, when the loop heat pipe is started in a state where the liquid phase hydraulic fluid 6a exists in the groove 9 of the evaporator 1, it takes time until the loop heat pipe operates normally. For this reason, when the loop heat pipe is used as a cooling device for a semiconductor mounted on an electronic device, the temperature of the semiconductor integrated circuit to which the evaporator 1 is attached exceeds the specified temperature of the semiconductor, and the semiconductor is damaged. There was a problem to cause.

本出願は、ウィックのグルーブ内に液相の作動液が多く残留する状態でのループヒートパイプの始動時に、蒸発器の過度の温度上昇(過熱)を招くことなく、速やかにループヒートパイプを始動させることができるものである。以下にはループヒートパイプ及びループヒートパイプを用いた電子機器が説明される。   The present application starts the loop heat pipe quickly without incurring excessive temperature rise (overheating) of the evaporator when the loop heat pipe is started in a state where a lot of liquid-phase hydraulic fluid remains in the wick groove. It can be made to. Hereinafter, a loop heat pipe and an electronic device using the loop heat pipe will be described.

過熱が最小限になるようにループヒートパイプを始動させるためには、蒸発器に熱が加わる入熱時点でグルーブ内に残留している作動液を速やかにグルーブから排除する必要がある。そこで、本発明者らは、過熱が最小限になるようにループヒートパイプを始動させるためには、入熱時点の蒸発器の蒸気側と液側の温度上昇速度が異なるようにすれば良いことを見出した。これは、入熱時点で蒸発器の蒸気管側の第1の部位と、液管側の第2の部位の昇温速度が異なると、先に温度が上昇した側から優先的に蒸気発生が始まり、その結果、グルーブに残留する作動液を、発生した蒸気の圧力で素早く押し出すことが可能になるからである。   In order to start the loop heat pipe so as to minimize overheating, it is necessary to quickly remove the working fluid remaining in the groove at the time of heat input when heat is applied to the evaporator. Therefore, in order to start the loop heat pipe so as to minimize overheating, the present inventors have only to make the temperature rise rate of the vapor side and the liquid side of the evaporator different from each other at the time of heat input. I found. This is because, when the heating rate of the first part on the vapor pipe side of the evaporator and the second part on the liquid pipe side are different at the time of heat input, steam is preferentially generated from the side where the temperature has risen first. This is because, as a result, the hydraulic fluid remaining in the groove can be quickly pushed out by the generated steam pressure.

ループヒートパイプの始動時に、蒸発器の温度上昇速度に差をつけるためには、熱容量の違う材料を接合して蒸発器を作る、蒸発器の半分に冷却器をあてがう、蒸発器の半分に加熱器をあてがう、蓄熱材を蒸発器の蒸気側に設置する等の方法が考えられる。入熱初期の過熱状態に至る過程のみ温度上昇に差がつけば良いことを考え、本発明者らは、蓄熱材を用いて蒸発器の温度上昇速度に差をつける装置を案出した。特に、潜熱を利用する蓄熱材は少量でも大きな熱量に対応可能であるため、潜熱を利用した装置を案出した。   At the start of the loop heat pipe, in order to make a difference in the temperature rise rate of the evaporator, materials with different heat capacities are joined to make an evaporator, a cooler is applied to half of the evaporator, and half of the evaporator is heated. It is possible to use a method such as placing a heater or installing a heat storage material on the vapor side of the evaporator. Considering that the temperature rise only needs to be different only in the process leading to the superheated state at the initial stage of heat input, the present inventors have devised a device that uses a heat storage material to make a difference in the temperature rise rate of the evaporator. In particular, a heat storage material using latent heat can cope with a large amount of heat even with a small amount, so an apparatus using latent heat has been devised.

潜熱蓄熱材としては、塩化カルシウム水和物、硫酸ナトリウム水和物、酢酸ナトリウム水和物、チオ硫酸ナトリウム水和物、パラフィン等があるが、パラフィン系の材料を用いた。パラフィン系の材料は分子量の制御により、広い範囲で融解温度を設定することが可能であるからである。潜熱蓄熱材は、パラフィンをアルミラミネートフィルムに封止したシートを用いて、伝熱効率及びサイクル性の向上を図った。このような潜熱蓄熱材としては、三菱電線製MHSシリーズ(登録商標)を使用できる。これは、この材料が潜熱蓄熱材として、内部で相変化は起こしてもバルクとしての外見上は固体として取り扱いが可能であるため非常に適応しやすいからである。ここにあげた材料以外でも多種のものがあり、それぞれ適応が可能である。   Examples of the latent heat storage material include calcium chloride hydrate, sodium sulfate hydrate, sodium acetate hydrate, sodium thiosulfate hydrate, paraffin, and the like. Paraffin-based materials were used. This is because the melting temperature of paraffinic materials can be set in a wide range by controlling the molecular weight. The latent heat storage material used the sheet | seat which sealed the paraffin to the aluminum laminate film, and aimed at the improvement of heat-transfer efficiency and cycling characteristics. As such a latent heat storage material, MHS series (registered trademark) manufactured by Mitsubishi Electric Cable can be used. This is because this material is very easy to adapt because it can be handled as a solid in appearance as a bulk even if a phase change occurs inside as a latent heat storage material. There are many other types of materials other than those listed here, and each can be adapted.

以上のことから、本出願では、ループヒートパイプの蒸発器に、パラフィンをアルミラミネートフィルムに封止した潜熱蓄熱材(以後単に蓄熱材と言う)を取り付け、ループヒートパイプの始動時に蒸発器に熱勾配を持たせるようにした。この結果、ループヒートパイプのウィックのグルーブ内に作動液が、始動前に多く残留する場合でも、作動液をグルーブから素早く排出することに成功した。以下にこの本出願の蓄熱材の蒸発器への取り付けについて説明する。なお、従来と同じ構成部材には同じ符号を付して説明する。   From the above, in this application, a latent heat storage material (hereinafter simply referred to as a heat storage material) in which paraffin is sealed in an aluminum laminate film is attached to the evaporator of the loop heat pipe, and heat is supplied to the evaporator when the loop heat pipe is started. A gradient was added. As a result, even when a large amount of hydraulic fluid remained in the groove of the wick of the loop heat pipe, the hydraulic fluid was quickly discharged from the groove. The attachment of the heat storage material of the present application to the evaporator will be described below. In addition, the same code | symbol is attached | subjected and demonstrated to the same structural member as the past.

図4は、ループヒートパイプ10の蒸発器1の蒸気管3側に、本出願の一実施例の蓄熱材11を取り付ける工程を示すものである。この実施例では、蒸発器1、蒸気管3及び液管4は断面が矩形をしているが、蒸発器1、蒸気管3及び液管4は断面が円形でも良い。本出願では、蒸発器1の蒸気管3側の外壁1Aに、外壁1Aを覆う蓄熱材11を取り付ける。蓄熱材11は蒸発器1の蒸気管3側の全周を覆うようにするために、この実施例では蓄熱材11を予め左側蓄熱材11Aと右側蓄熱材11Bに分割しておく。そして、左側蓄熱材11Aと右側蓄熱材11Bの内側には、蒸発器1の形状に合わせて凹部11Cを形成しておく。蓄熱材11の分割の仕方は左右分割に限定されるものではない。また、蓄熱材11の蒸発器1への取り付け長さL及び蓄熱材11の厚さTについては後述する。 FIG. 4 shows a process of attaching the heat storage material 11 of one embodiment of the present application to the steam pipe 3 side of the evaporator 1 of the loop heat pipe 10 . In this embodiment, the evaporator 1, the steam pipe 3 and the liquid pipe 4 have a rectangular cross section, but the evaporator 1, the steam pipe 3 and the liquid pipe 4 may have a circular cross section. In the present application, the heat storage material 11 covering the outer wall 1A is attached to the outer wall 1A on the steam pipe 3 side of the evaporator 1. In this embodiment, the heat storage material 11 is divided into a left heat storage material 11A and a right heat storage material 11B in advance in order to cover the entire circumference of the evaporator 1 on the steam pipe 3 side. And the recessed part 11C is formed inside 11A of left side heat storage materials, and the right side heat storage material 11B according to the shape of the evaporator 1. FIG. The method of dividing the heat storage material 11 is not limited to right and left division. The length L of the heat storage material 11 attached to the evaporator 1 and the thickness T of the heat storage material 11 will be described later.

なお、蓄熱材11としてパラフィンをアルミラミネートフィルムに封止したシートを用いる場合は、図4に示すような形状の左側蓄熱材11Aと右側蓄熱材11Bを金属の筐体として形成し、内部にシートを詰め込んだり、パラフィンを充填するようにすれば良い。また、シート状の蓄熱材11を直接蒸発器1の蒸気管3側の外壁1Aに巻き付けるようにしても良い。   In addition, when using the sheet | seat which sealed the paraffin in the aluminum laminate film as the thermal storage material 11, the left thermal storage material 11A and the right thermal storage material 11B of a shape as shown in FIG. 4 are formed as a metal housing, and a sheet | seat is formed inside Can be packed or filled with paraffin. Alternatively, the sheet-shaped heat storage material 11 may be directly wound around the outer wall 1A of the evaporator 1 on the steam pipe 3 side.

図4に示した左側蓄熱材11Aと右側蓄熱材11Bを蒸発器1の蒸気管3側の外壁1Aに取り付けると、図5に示すようになる。蓄熱材11が取り付けられた蒸発器1は、電子機器の回路基板20に実装された発熱部材である半導体集積回路21の上に、ヒートスプレッダ22を介して取り付けられ、半導体用の冷却装置30が構成される。蒸発器1の回路基板20への取り付け方法については図示を省略するが、蒸発器1にフランジ部等を設けておいてねじ等を用いて取り付ければ良い。   When the left heat storage material 11A and the right heat storage material 11B shown in FIG. 4 are attached to the outer wall 1A on the steam pipe 3 side of the evaporator 1, the result is as shown in FIG. The evaporator 1 to which the heat storage material 11 is attached is attached via a heat spreader 22 on a semiconductor integrated circuit 21 which is a heat generating member mounted on a circuit board 20 of an electronic device, and a semiconductor cooling device 30 is configured. Is done. Although the illustration of the method of attaching the evaporator 1 to the circuit board 20 is omitted, a flange portion or the like may be provided on the evaporator 1 and attached using screws or the like.

また、この実施例では、蒸発器1によって回路基板20に実装された半導体集積回路21を発熱体として冷却するので、蒸発器1の底面1Bが平坦に形成されており、シート状のヒートスプレッダ22を介して蒸発器1が半導体集積回路21に取り付けられる。一方、発熱体が平坦な形状をしていない場合は、蒸発器1の底面を発熱体の形状に合わせて作るか、或いはヒートスプレッダ22を発熱体の形状に合わせて構成すれば良い。 In this embodiment, since the semiconductor integrated circuit 21 mounted on the circuit board 20 is cooled by the evaporator 1 as a heating element, the bottom surface 1B of the evaporator 1 is formed flat, and the sheet-like heat spreader 22 is The evaporator 1 is attached to the semiconductor integrated circuit 21. On the other hand, when the heating element does not have a flat shape, the bottom surface of the evaporator 1 may be formed according to the shape of the heating element, or the heat spreader 22 may be configured according to the shape of the heating element.

図5に示した電子機器に内蔵された半導体用の冷却装置30は、電子機器の回路基板20が動作して半導体集積回路21が発熱した時に、半導体集積回路21から熱を奪って冷却する動作を行う。この半導体用の冷却装置30における蒸発器1の動作について以下に説明する。   The semiconductor cooling device 30 incorporated in the electronic device shown in FIG. 5 operates to take heat from the semiconductor integrated circuit 21 and cool it when the circuit board 20 of the electronic device operates and the semiconductor integrated circuit 21 generates heat. I do. The operation of the evaporator 1 in the semiconductor cooling device 30 will be described below.

図6(a)は、ウィック5が1個内蔵されたループヒートパイプ10の蒸発器1に、本出願の蓄熱材11を取り付けた半導体用の冷却装置30の一実施例の構成を示すものである。円筒状のウィック5を内蔵する蒸発器1は断面が矩形状であり、蒸発器1の平坦な底面1Bがヒートスプレッダ22を介して回路基板20の上に実装された半導体集積回路21の上に取り付けられて半導体用の冷却装置30が構成されている。また、蒸発器1に接続する蒸気管3と液管4の断面は、この実施例では円形になっている。   FIG. 6A shows a configuration of an embodiment of the semiconductor cooling device 30 in which the heat storage material 11 of the present application is attached to the evaporator 1 of the loop heat pipe 10 in which one wick 5 is incorporated. is there. The evaporator 1 incorporating the cylindrical wick 5 has a rectangular cross section, and the flat bottom surface 1B of the evaporator 1 is mounted on the semiconductor integrated circuit 21 mounted on the circuit board 20 via the heat spreader 22. Thus, the semiconductor cooling device 30 is configured. Moreover, the cross section of the vapor | steam pipe | tube 3 connected to the evaporator 1 and the liquid pipe | tube 4 is circular in this Example.

図6(b)は、ウィック5が2個内蔵されたループヒートパイプ10の蒸発器1に、本出願の蓄熱材11を取り付けた半導体用の冷却装置30の実施例の構成を示すものであり、回路基板20、半導体集積装置21及びヒートスプレッダ22の図示は省略してある。円筒状のウィック5を2個並列に内蔵する蒸発器1は断面が長方形状である。この実施例の蒸発器1は、回路基板20の上に実装された半導体集積回路21が大きい場合に使用される。この実施例でも蒸発器1に接続する蒸気管3と液管4の断面は、円形になっている。回路基板20の上に実装された半導体集積回路21が更に大きく、より広範囲の部分を冷却する必要がある場合には、ウィック5を横に並列に並べる個数を多くすれば良い。   FIG. 6B shows a configuration of an embodiment of the semiconductor cooling device 30 in which the heat storage material 11 of the present application is attached to the evaporator 1 of the loop heat pipe 10 in which two wicks 5 are incorporated. The circuit board 20, the semiconductor integrated device 21, and the heat spreader 22 are not shown. The evaporator 1 incorporating two cylindrical wicks 5 in parallel has a rectangular cross section. The evaporator 1 of this embodiment is used when the semiconductor integrated circuit 21 mounted on the circuit board 20 is large. Also in this embodiment, the cross sections of the steam pipe 3 and the liquid pipe 4 connected to the evaporator 1 are circular. If the semiconductor integrated circuit 21 mounted on the circuit board 20 is larger and it is necessary to cool a wider area, the number of wicks 5 arranged in parallel may be increased.

図7(a)は、融点40°Cの蓄熱材11が取り付けられた本出願の蒸発器1を備えた半導体用の冷却装置30を示しており、図6(a)のA−A線における半導体用の冷却装置30の断面を示している。蓄熱材11の蒸発器1への取り付け長さLは、ウィック5に設けられたグルーブ9の長さMを、蓄熱材11が半分覆う程度にすれば良い。この実施例の半導体集積回路21は、動作温度60°C、仕様温度70°Cで使用する30mm角の発熱体である。また、ループヒートパイプ10の蒸発器1は、半導体集積回路21より一回り大きな40mm角で、厚さは10mmとした。また、使用したパラフィンの総量は7.5gとした。ただし、図7(a)はこの寸法を正確に表すものではない。   Fig.7 (a) has shown the cooling device 30 for semiconductors provided with the evaporator 1 of this application with which the thermal storage material 11 of melting | fusing point 40 degreeC was attached, In the AA line of Fig.6 (a) The cross section of the cooling device 30 for semiconductors is shown. The attachment length L of the heat storage material 11 to the evaporator 1 may be such that the heat storage material 11 covers half the length M of the groove 9 provided in the wick 5. The semiconductor integrated circuit 21 of this embodiment is a 30 mm square heating element used at an operating temperature of 60 ° C. and a specified temperature of 70 ° C. Further, the evaporator 1 of the loop heat pipe 10 is a 40 mm square that is slightly larger than the semiconductor integrated circuit 21 and has a thickness of 10 mm. The total amount of paraffin used was 7.5 g. However, FIG. 7A does not accurately represent this dimension.

図7(b)は、図7(a)の状態で半導体集積回路21が動作を開始した直後の蒸発器1の熱勾配を示している。即ち、図7(b)は、蒸発器1の液管4側の端部を”0”とし、他端部を”L”とした場合の温度勾配を示すものである。冷間状態から半導体集積回路21が動作を開始して熱が発生すると、蒸発器1の液管4側の温度は上昇するが、蒸発器1の蒸発管3側の温度は蓄熱材11に吸収されて上昇しない。この結果、半導体集積回路21の動作開始直後は、蒸発器1の液管4側が温度が高く、蒸気管3側の温度は低い。電子機器がONされて冷間状態から半導体集積回路21が動作を開始し、所定時間が経過すると蓄熱材11の蓄熱量が飽和し、以後は熱を吸収しなくなるので、蒸発器1の蒸気管3側の温度が上昇し、液管4側の温度と同じになる。   FIG. 7B shows the thermal gradient of the evaporator 1 immediately after the operation of the semiconductor integrated circuit 21 in the state of FIG. That is, FIG. 7B shows the temperature gradient when the end of the evaporator 1 on the liquid tube 4 side is “0” and the other end is “L”. When the semiconductor integrated circuit 21 starts operating from the cold state and generates heat, the temperature on the liquid tube 4 side of the evaporator 1 rises, but the temperature on the evaporator tube 3 side of the evaporator 1 is absorbed by the heat storage material 11. It will not rise. As a result, immediately after the operation of the semiconductor integrated circuit 21 is started, the temperature on the liquid tube 4 side of the evaporator 1 is high, and the temperature on the vapor tube 3 side is low. When the electronic device is turned on and the semiconductor integrated circuit 21 starts operating from a cold state and a predetermined time elapses, the heat storage amount of the heat storage material 11 is saturated, and thereafter the heat does not absorb heat. The temperature on the 3 side rises and becomes the same as the temperature on the liquid tube 4 side.

図7(c)は、図7(a)の状態で電子機器に実装された半導体集積回路21が動作を開始した後の、時間に対する半導体集積回路21の温度変化を示すものである。このように、蓄熱材11を取り付けた本出願の蒸発器1を使用すれば、電子機器にある発熱する電子部品である半導体集積回路21の温度が仕様温度を超えることがない。   FIG. 7C shows a change in temperature of the semiconductor integrated circuit 21 with respect to time after the semiconductor integrated circuit 21 mounted on the electronic device starts operating in the state of FIG. Thus, if the evaporator 1 of this application which attached the heat storage material 11 is used, the temperature of the semiconductor integrated circuit 21 which is an electronic component which heats in an electronic device will not exceed specification temperature.

図8は、図7(a)に示した蓄熱材11の厚みT、使用量、およびディレイタイムの関係を示す図である。融点40°Cのパラフィン系の融解潜熱は200J/kg相当であり、半導体集積回路21の発熱量を100W、蒸発器1のケースのサイズが40mm角とする。そして、蒸発器1のケースの蒸気管3側に蓄熱材11を取り付けた場合に、蓄熱材11が蒸発器1のケースを覆う面積を24平方センチメートルとする。また、蓄熱材11の比重は1g/ccとして計算している。図8に示した計算結果から、ディレイタイムとして、蒸発器1のケースの液管側と蒸気管側で温度上昇速度に5秒以上の差を持たせる場合には、蓄熱材11の厚さTとしては1mm以上が適当である。しかし、蓄熱材11の厚さTを厚くすると、蓄熱材11の蒸発器1のケースへの設置が困難になるため、蓄熱材11の厚さTは4mm以内が適用範囲と考えられる。   FIG. 8 is a diagram showing the relationship between the thickness T, the amount used, and the delay time of the heat storage material 11 shown in FIG. The latent heat of melting of a paraffinic system having a melting point of 40 ° C. is equivalent to 200 J / kg, the heat generation amount of the semiconductor integrated circuit 21 is 100 W, and the size of the case of the evaporator 1 is 40 mm square. And when the heat storage material 11 is attached to the steam pipe 3 side of the case of the evaporator 1, the area where the heat storage material 11 covers the case of the evaporator 1 is 24 square centimeters. Moreover, the specific gravity of the heat storage material 11 is calculated as 1 g / cc. From the calculation result shown in FIG. 8, when the difference in temperature rise rate is 5 seconds or more between the liquid pipe side and the steam pipe side of the case of the evaporator 1 as the delay time, the thickness T of the heat storage material 11 1 mm or more is suitable. However, if the thickness T of the heat storage material 11 is increased, it becomes difficult to install the heat storage material 11 in the case of the evaporator 1, so the thickness T of the heat storage material 11 is considered to be within 4 mm.

図9(a)は、融点50°Cの蓄熱材11が取り付けられた本出願の蒸発器1を備えた半導体用の冷却装置30を示しており、図9(b)は図9(a)の状態で電子機器の半導体集積回路30が動作を開始した直後の蒸発器の熱勾配を示している。蓄熱材11にはパラフィンをアルミラミネートフィルムで密封したシートを用いたことは図8(a)の蓄熱材11と同じであり、パラフィンの総量も7.5gである。また、図9(c)は、図9(a)に示した状態で半導体集積回路30が動作を開始した時の、時間に対する半導体集積回路30の温度変化を示すものである。   FIG. 9A shows a cooling device 30 for a semiconductor provided with the evaporator 1 of the present application to which a heat storage material 11 having a melting point of 50 ° C. is attached. FIG. In this state, the thermal gradient of the evaporator immediately after the operation of the semiconductor integrated circuit 30 of the electronic device is shown. The fact that a sheet in which paraffin is sealed with an aluminum laminate film is used as the heat storage material 11 is the same as the heat storage material 11 in FIG. 8A, and the total amount of paraffin is 7.5 g. FIG. 9C shows the temperature change of the semiconductor integrated circuit 30 with respect to time when the semiconductor integrated circuit 30 starts operating in the state shown in FIG. 9A.

このように、蓄熱材11の融点を50°Cに変更しても、ループヒートパイプ10を用いた電子機器に実装された半導体用の冷却装置30の動作初期の過熱状態を効果的に抑制することができるが、融点が40°Cの時よりも動作初期の目標温度は上昇している。したがって、蓄熱材11の融点は、蒸発器1のサイズなどに応じて適宜選択すれば良い。   Thus, even if the melting point of the heat storage material 11 is changed to 50 ° C., the overheating state in the initial operation of the semiconductor cooling device 30 mounted on the electronic device using the loop heat pipe 10 is effectively suppressed. However, the target temperature at the initial stage of operation is higher than when the melting point is 40 ° C. Therefore, the melting point of the heat storage material 11 may be appropriately selected according to the size of the evaporator 1 and the like.

図10(a)は、蓄熱材11を取り外した状態の蒸発器1を備えた電子機器の半導体用の冷却装置30の要部を示すものであり、図10(b)は図10(a)の状態で半導体集積回路21が動作を開始した直後の半導体蒸発器21の熱勾配を示すものである。また、図10(c)は、図10(a)に示す状態で半導体集積回路21が動作を開始した時の、時間に対する半導体集積回路21の温度変化を示す特性図である。このように、蒸発器1に蓄熱材11が取り付けられていない状態では、半導体集積回路21の動作初期に過熱状態を抑制できず、半導体集積回路21が仕様温度を越えるオーバーシュートを起こす。以上のことから、蓄熱材11を用いて、半導体集積回路21の動作初期に蒸発器1の温度上昇速度に差をつけた本願のループヒートパイプを使用した半導体用の冷却装置30は優れたスタートアップ性能を示すことが分かる。   FIG. 10A shows a main part of a cooling device 30 for a semiconductor of an electronic apparatus provided with the evaporator 1 with the heat storage material 11 removed, and FIG. 10B shows the main part of FIG. In this state, the thermal gradient of the semiconductor evaporator 21 immediately after the operation of the semiconductor integrated circuit 21 is shown. FIG. 10C is a characteristic diagram showing a temperature change of the semiconductor integrated circuit 21 with respect to time when the semiconductor integrated circuit 21 starts operating in the state shown in FIG. As described above, in a state where the heat storage material 11 is not attached to the evaporator 1, the overheat state cannot be suppressed in the initial operation of the semiconductor integrated circuit 21, and the semiconductor integrated circuit 21 causes an overshoot exceeding the specified temperature. From the above, the semiconductor cooling device 30 using the loop heat pipe of the present application that uses the heat storage material 11 and has a difference in the temperature rise rate of the evaporator 1 in the initial operation of the semiconductor integrated circuit 21 is an excellent start-up. It can be seen that it shows performance.

以上、本出願を特にその好ましい実施の形態について詳述したが、本出願は特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本出願の要旨の範囲内において、種々の変形及び変更が可能である。即ち、蒸発器の温度上昇速度に差をつけるためには、蓄熱材を蒸発器の蒸気側に設置する構成以外にも、熱容量の違う材料を接合して蒸発器を作る構成、蒸発器の半分に冷却器をあてがう構成、蒸発器の半分に加熱器をあてがう構成が可能である。ここで、本出願の容易な理解のために、本出願の具体的な形態を以下に付記する。   As mentioned above, although this application was explained in full detail about the preferable embodiment in particular, this application is not limited to specific embodiment, In the range of the summary of this application described in the claim, various Can be modified and changed. In other words, in order to make a difference in the temperature rise rate of the evaporator, in addition to the structure in which the heat storage material is installed on the vapor side of the evaporator, the structure in which the evaporator is made by joining materials with different heat capacities, half of the evaporator It is possible to adopt a configuration in which a cooler is applied to the heater, and a heater is applied to half of the evaporator. Here, for easy understanding of the present application, specific forms of the present application are appended below.

(付記1)ウィックを内蔵する蒸発器と、
凝縮器と、
前記蒸発器と前記凝縮器とを繋ぐ液管及び蒸気管と、を有し、
前記蒸発器において、冷間からの入熱時に、前記蒸気管側の第1の部位よりも、前記液管側の第2の部位が高温となるような温度差発生手段を設けることを特徴とするループヒートパイプ。
(付記2)前記温度差発生手段は、前記第2の部位に相当する前記蒸発器の外周を覆う蓄熱材であることを特徴とする付記1に記載のループヒートパイプ。
(付記3)前記温度差発生手段は、前記蒸発器の第1の部位と第2の部位を熱容量の違う材料を接合して蒸発器を作ることにより得られることを特徴とする付記1に記載のループヒートパイプ。
(付記4)前記温度差発生手段は、前記蒸発器の第1の部分に冷却器をあてがうことによって構成されることを特徴とする付記1に記載のループヒートパイプ。
(付記5)前記温度差発生手段は、前記蒸発器の第2の部分に加熱器をあてがうことによって構成されることを特徴とする付記1に記載のループヒートパイプ。
(Appendix 1) an evaporator with a built-in wick;
A condenser,
A liquid pipe and a steam pipe connecting the evaporator and the condenser;
The evaporator is provided with a temperature difference generating means that causes the second part on the liquid pipe side to be higher in temperature than the first part on the steam pipe side when heat is input from the cold. Loop heat pipe.
(Supplementary note 2) The loop heat pipe according to supplementary note 1, wherein the temperature difference generating means is a heat storage material covering an outer periphery of the evaporator corresponding to the second part.
(Appendix 3) The temperature difference generating means is obtained by joining the first part and the second part of the evaporator with materials having different heat capacities to form an evaporator. Loop heat pipe.
(Additional remark 4) The said temperature difference generation means is comprised by assigning a cooler to the 1st part of the said evaporator, The loop heat pipe of Additional remark 1 characterized by the above-mentioned.
(Additional remark 5) The said temperature difference generation means is comprised by assigning a heater to the 2nd part of the said evaporator, The loop heat pipe of Additional remark 1 characterized by the above-mentioned.

(付記6)前記温度差発生手段は、前記蒸発器への冷間からの入熱時に、前記蒸気管側の第1の部位の温度上昇速度を、前記液管側の第2の部位の温度上昇速度よりも遅らせるように構成されていることを特徴とする付記1に記載のループヒートパイプ。
(付記7)前記ウィックは円筒状で、前記液管側が開口しており、その外周面には前記ウィックの軸線方向に前記蒸発管側から前記液管側に向かって複数本の溝が設けられており、
前記液管側の第2の部位は、前記蒸発器の前記蒸発管側の端部から、前記溝の中間部の位置までの部位であることを特徴とする付記1から6の何れかに記載のループヒートパイプ。
(付記8)前記蓄熱材には、パラフィンをアルミラミネートフィルムで密封したシートを使用したことを特徴とする付記7に記載のループヒートパイプ。
(付記9)前記蓄熱材の厚さは、1〜4mmであることを特徴とする付記8に記載のループヒートパイプ。
(付記10) 電子部品と、
前記電子部品に熱的に接触し、ウィックを内蔵する蒸発器と、
凝縮器と、
前記蒸発器と前記凝縮器とを繋ぐ液管及び蒸気管と、を有し、
前記蒸発器において、冷間からの前記電子部品からの入熱時に、前記蒸気管側の第1の部位よりも、前記液管側の第2の部位が高温となるような温度差発生手段を設けるループヒートパイプを備えたことを特徴とする電子機器。
(Additional remark 6) The said temperature difference production | generation means is the temperature of the 2nd site | part by the side of the said liquid pipe at the time of the temperature rise rate of the 1st site | part by the side of the said steam pipe at the time of the heat input from the cold to the said evaporator. The loop heat pipe according to appendix 1, wherein the loop heat pipe is configured to be slower than the rising speed.
(Appendix 7) The wick is cylindrical and the liquid pipe side is open, and a plurality of grooves are provided on the outer peripheral surface of the wick in the axial direction of the wick from the evaporation pipe side to the liquid pipe side. And
The second part on the liquid pipe side is a part from the end part on the evaporator pipe side of the evaporator to a position of an intermediate part of the groove. Loop heat pipe.
(Additional remark 8) The loop heat pipe of Additional remark 7 characterized by using the sheet | seat which sealed the paraffin with the aluminum laminate film for the said heat storage material.
(Additional remark 9) The thickness of the said thermal storage material is 1-4 mm, The loop heat pipe of Additional remark 8 characterized by the above-mentioned.
(Supplementary Note 10) Electronic components,
An evaporator in thermal contact with the electronic component and containing a wick;
A condenser,
A liquid pipe and a steam pipe connecting the evaporator and the condenser;
In the evaporator, a temperature difference generating means that causes the second part on the liquid pipe side to be higher in temperature than the first part on the steam pipe side when heat is input from the electronic component from a cold state. An electronic device comprising a loop heat pipe to be provided.

1 蒸発器
1A 外壁
1B 底部
2 凝縮器
3 蒸気管
4 液管
5 ウィック
6 作動液
7 作動液の蒸気
8 中空部
9 グルーブ(溝)
10 ヒートパイプ
11,11A,11B 蓄熱材
11C 凹部
20 回路基板
21 集積回路
30 半導体冷却装置
DESCRIPTION OF SYMBOLS 1 Evaporator 1A Outer wall 1B Bottom part 2 Condenser 3 Steam pipe 4 Liquid pipe 5 Wick 6 Hydraulic fluid 7 Hydraulic fluid vapor 8 Hollow part 9 Groove (groove)
DESCRIPTION OF SYMBOLS 10 Heat pipe 11, 11A, 11B Thermal storage material 11C Recessed part 20 Circuit board 21 Integrated circuit 30 Semiconductor cooling device

Claims (3)

ウィックを内蔵し、ヒートパイプの始動後に外部から熱が加えられる蒸発器と、凝縮器と、前記蒸発器と前記凝縮器とを繋ぐ液管及び蒸気管とを有するループヒートパイプにおいて、
前記ループヒートパイプの始動後の入熱による、前記蒸発器の前記蒸気管側の第1の部位の温度上昇速度を、前記液管側の第2の部位の温度上昇速度より遅らせる温度上昇速度遅延部材を、前記蒸発器の前記蒸気管側の部位に取り付けたことを特徴とするループヒートパイプ。
A built-in wick, and an evaporator that heat is applied from the outside after the heat pipe start, a condenser, in a loop heat pipe that perforated the liquid pipe and steam pipe connecting said condenser and said evaporator,
Temperature rise rate delay that delays the temperature rise rate of the first part on the vapor pipe side of the evaporator from the temperature rise rate of the second part on the liquid pipe side due to heat input after the start of the loop heat pipe A loop heat pipe , wherein a member is attached to a portion of the evaporator on the steam pipe side .
前記温度上昇速度遅延部材は、前記第1の部位に相当する前記蒸発器の外周を覆う蓄熱材であることを特徴とする請求項1に記載のループヒートパイプ。 The loop heat pipe according to claim 1, wherein the temperature increase rate delay member is a heat storage material that covers an outer periphery of the evaporator corresponding to the first part. 電子部品と、
前記電子部品に熱的に接触すると共に、ウィックを内蔵して前記電子部品の動作開始後に前記電子部品から熱が加えられる蒸発器と、
凝縮器と、
前記蒸発器と前記凝縮器とを繋ぐ液管及び蒸気管とを有し、
前記電子部品の動作開始後の入熱による、前記蒸発器の前記蒸気管側の第1の部位の温度上昇速度を、前記液管側の第2の部位の温度上昇速度より遅らせる温度上昇速度遅延部材を、前記蒸発器の前記蒸気管側の部位に取り付けたループヒートパイプを備えたことを特徴とする電子機器。
Electronic components,
As well as thermal contact with the electronic component, and the evaporator from the electronic component that heat is applied after the start of operation of the electronic component built-in wick,
A condenser,
And a liquid pipe and steam pipe connecting said condenser and said evaporator,
Temperature rise rate delay that delays the temperature rise rate of the first part on the vapor pipe side of the evaporator from the temperature rise rate of the second part on the liquid pipe side due to heat input after the operation of the electronic component starts An electronic apparatus comprising a loop heat pipe having a member attached to a portion of the evaporator on the steam pipe side .
JP2011127982A 2011-06-08 2011-06-08 Loop heat pipe and electronic device equipped with the heat pipe Expired - Fee Related JP5768514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011127982A JP5768514B2 (en) 2011-06-08 2011-06-08 Loop heat pipe and electronic device equipped with the heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011127982A JP5768514B2 (en) 2011-06-08 2011-06-08 Loop heat pipe and electronic device equipped with the heat pipe

Publications (2)

Publication Number Publication Date
JP2012255577A JP2012255577A (en) 2012-12-27
JP5768514B2 true JP5768514B2 (en) 2015-08-26

Family

ID=47527294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011127982A Expired - Fee Related JP5768514B2 (en) 2011-06-08 2011-06-08 Loop heat pipe and electronic device equipped with the heat pipe

Country Status (1)

Country Link
JP (1) JP5768514B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160076426A1 (en) * 2013-04-18 2016-03-17 Toyota Jidosha Kabushiki Kaisha Heat transfer apparatus
CN107407531B (en) 2015-03-26 2020-05-08 株式会社村田制作所 Sheet type heat pipe
JP6772831B2 (en) * 2016-12-28 2020-10-21 セイコーエプソン株式会社 Heat transport equipment and projector
JP6828438B2 (en) 2017-01-06 2021-02-10 セイコーエプソン株式会社 Heat transport equipment and projector
CN110736374B (en) * 2018-04-03 2021-10-08 郑坤 Heat accumulator capable of automatically heating according to temperature of heat storage material
JP7350434B2 (en) * 2019-08-09 2023-09-26 矢崎エナジーシステム株式会社 Structure and its manufacturing method
CN114518044B (en) * 2020-11-18 2023-11-21 山东大学 Loop heat pipe of silicon-based evaporator
CN114017270B (en) * 2021-11-11 2023-10-27 张家港市恒强冷却设备有限公司 Wind turbine generator system heat abstractor based on disconnect-type heat pipe heat exchanger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181469A (en) * 2000-12-14 2002-06-26 Mitsubishi Electric Corp Looped heat pipe
FR2903222B1 (en) * 2006-06-28 2008-12-26 Eads Astrium Sas Soc Par Actio PASSIVE THERMAL CONTROL ARRANGEMENT BASED ON DIPHASIC FLUID LOOP WITH CAPILLARY PUMPING WITH THERMAL CAPACITY.
JP2008255945A (en) * 2007-04-06 2008-10-23 Toyota Motor Corp Warming up device for engine

Also Published As

Publication number Publication date
JP2012255577A (en) 2012-12-27

Similar Documents

Publication Publication Date Title
JP5768514B2 (en) Loop heat pipe and electronic device equipped with the heat pipe
JP4524289B2 (en) Cooling system with bubble pump
US20070227703A1 (en) Evaporatively cooled thermosiphon
JP2006317013A (en) Heat pipe and waste heat recovering device using the same
US9746248B2 (en) Heat pipe having a wick with a hybrid profile
WO2016143213A1 (en) Cooling device
JP2007278623A (en) Exhaust heat recovery system
JP2009024648A (en) Exhaust heat recovery device
US20040163796A1 (en) Circulative cooling apparatus
JP2020076554A (en) heat pipe
JP2018194197A (en) Heat pipe and electronic equipment
JP2006313056A (en) Heat pipe, and exhaust heat recovery system using the same
JP6433848B2 (en) Heat exchangers, vaporizers, and electronics
JP2012241976A (en) Loop heat pipe
JP5786132B2 (en) Electric car
JP5304479B2 (en) Heat transport device, electronic equipment
JP2011099599A (en) Heat transport pipe
JP2010133579A (en) Loop-type heat pipe and electronic equipment
JP2007024423A (en) Exhaust heat recovery device
JP5321716B2 (en) Loop heat pipe and electronic equipment
US20160334170A1 (en) Motor vehicle heat exchanger system
JP2006292337A (en) Heat pipe device
JP2008292116A (en) Cooling apparatus
JP5252059B2 (en) Cooling system
US20190170447A1 (en) Heat pipe with non-condensable gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R150 Certificate of patent or registration of utility model

Ref document number: 5768514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees