JP5786132B2 - Electric car - Google Patents

Electric car Download PDF

Info

Publication number
JP5786132B2
JP5786132B2 JP2011129901A JP2011129901A JP5786132B2 JP 5786132 B2 JP5786132 B2 JP 5786132B2 JP 2011129901 A JP2011129901 A JP 2011129901A JP 2011129901 A JP2011129901 A JP 2011129901A JP 5786132 B2 JP5786132 B2 JP 5786132B2
Authority
JP
Japan
Prior art keywords
heat
heat receiving
path
return path
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011129901A
Other languages
Japanese (ja)
Other versions
JP2012255624A (en
Inventor
杉山 誠
誠 杉山
郁 佐藤
郁 佐藤
俊司 三宅
俊司 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2011129901A priority Critical patent/JP5786132B2/en
Publication of JP2012255624A publication Critical patent/JP2012255624A/en
Application granted granted Critical
Publication of JP5786132B2 publication Critical patent/JP5786132B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Description

本発明は、電動モータを有する電気自動車に関するものである。   The present invention relates to an electric vehicle having an electric motor.

従来この種の電気自動車は、駆動動力源となる電動モータを電力変換回路であるインバータ回路でスイッチング駆動していた。   Conventionally, in this type of electric vehicle, an electric motor serving as a driving power source has been switched by an inverter circuit that is a power conversion circuit.

インバータ回路には、パワートランジスタを代表とする半導体スイッチング素子が複数個使われていて、それぞれの素子に数十アンペアの大電流が流れていた。   A plurality of semiconductor switching elements represented by power transistors are used in the inverter circuit, and a large current of several tens of amperes flows through each element.

そのため半導体スイッチング素子は大きく発熱し、冷却することが必要であった。   Therefore, the semiconductor switching element generates a large amount of heat and needs to be cooled.

そこで、従来は、例えば特許文献1のように、上下に冷媒放熱器と冷媒タンクを備えた沸騰冷却装置にて、下部に配したインバータ回路の冷却を行っていた。   Therefore, conventionally, as in Patent Document 1, for example, a boil cooling device having a refrigerant radiator and a refrigerant tank at the top and bottom has cooled an inverter circuit arranged at the bottom.

特開平8−126125号公報JP-A-8-126125

このような従来の冷却装置においては、半導体スイッチング素子に接触して冷媒タンクを配置し、冷媒タンク内の液化冷媒を、スイッチング素子からの熱を奪わせて気化させる。   In such a conventional cooling device, the refrigerant tank is disposed in contact with the semiconductor switching element, and the liquefied refrigerant in the refrigerant tank is vaporized by taking heat from the switching element.

そして、気化した冷媒を、上部に配置した冷媒放熱器に上昇させ、冷却し、液化させて再び下部に滴下されるサイクルを繰り返している。いわば自然対流によって冷媒が冷媒タンクと冷媒放熱器間を行き来するのである。   And the cycle which raises the vaporized refrigerant | coolant to the refrigerant | coolant heat radiator arrange | positioned at the upper part, cools, liquefies, and is dripped again at the lower part is repeated. In other words, natural convection causes the refrigerant to flow back and forth between the refrigerant tank and the refrigerant radiator.

しかしながら、このような自然対流式のものでは、スイッチング素子の熱を、冷媒タンク内に溜められた液化冷媒に、冷媒タンクの壁面(伝熱面)を介し、伝達させていただけであるので、伝熱面における伝熱効率を高めることができず、その結果として、スイッチング素子等の冷却効果を高めることが出来なかった。   However, in such a natural convection type, the heat of the switching element can only be transmitted to the liquefied refrigerant stored in the refrigerant tank via the wall (heat transfer surface) of the refrigerant tank. The heat transfer efficiency on the hot surface could not be increased, and as a result, the cooling effect of the switching elements and the like could not be increased.

そこで、インバータ回路を冷却する冷却装置を、前記インバータ回路の熱を吸熱する受熱部と、この受熱部に放熱経路を介して接続された放熱部と、この放熱部と前記受熱部を接続した帰還経路と、前記帰還経路、受熱部、放熱経路、放熱部で形成された循環経路中に充填された作動流体とによって構成することが考えられる。   Therefore, a cooling device that cools the inverter circuit includes a heat receiving part that absorbs heat of the inverter circuit, a heat radiating part connected to the heat receiving part via a heat radiating path, and a feedback that connects the heat radiating part and the heat receiving part. It may be configured by a path and a working fluid filled in a circulation path formed by the return path, the heat receiving section, the heat radiation path, and the heat radiation section.

つまり、前記特許文献1に示した自然対流に変えて循環式とするのであるが、作動流体を循環させるためのコンプレッサーなどを設けると、このコンプレッサーによる消費電力が大きくなり、その結果として電気自動車の走行可能距離が短くなってしまう。   In other words, instead of the natural convection shown in Patent Document 1, the circulation type is used. However, if a compressor for circulating the working fluid is provided, the power consumption by the compressor increases, and as a result, the electric vehicle The driving distance will be shortened.

そこで、冷却装置を、前記インバータ回路の熱を吸熱する受熱部と、この受熱部に放熱経路を介して接続された放熱部と、この放熱部と前記受熱部を接続した帰還経路と、この帰還経路の受熱部への接続部に配置した逆止弁と、前記帰還経路、受熱部、放熱経路、放熱部で形成された循環経路中に充填された作動流体とを有する構成とすることが考えられる。   Therefore, the cooling device includes a heat receiving portion that absorbs heat of the inverter circuit, a heat radiating portion connected to the heat receiving portion via a heat radiating path, a feedback path that connects the heat radiating portion and the heat receiving portion, and the feedback It is considered to have a configuration including a check valve disposed at a connection portion of the path to the heat receiving portion, and a working fluid filled in the circulation path formed by the return path, the heat receiving portion, the heat radiating route, and the heat radiating portion. It is done.

つまり、受熱部でインバータ回路の熱を吸熱させることによって作動流体を蒸発させ、この蒸発時の圧力によって蒸気を放熱部に供給して放熱させ、放熱により液化した作動流体を帰還経路により受熱部へ戻して液化させ、このようにして戻った作動流体の水頭圧によって逆止弁を開放させ、再び受熱部に作動流体を供給するようにするのである。   In other words, the working fluid is evaporated by absorbing the heat of the inverter circuit at the heat receiving portion, the steam is supplied to the heat radiating portion by the pressure at the time of evaporation, the heat radiating is performed, and the working fluid liquefied by the heat radiation is sent to the heat receiving portion by the return path The liquid is returned and liquefied, and the check valve is opened by the hydraulic head pressure of the working fluid thus returned, and the working fluid is supplied again to the heat receiving portion.

そして、このようにすれば作動流体を循環させるためのコンプレッサーなどが不要となり、その結果として消費電力を抑制し、電気自動車の走行可能距離を長くすることができる。   In this way, a compressor for circulating the working fluid becomes unnecessary, and as a result, power consumption can be suppressed and the travelable distance of the electric vehicle can be increased.

しかしながら、このようなコンプレッサーを用いない循環式としようとしても、電気自動車は、その運転中に本体ボディーが前後に大きく傾斜してしまうこともあり、このような状況下においては、作動流体の循環が停止し、その結果としてインバータ回路の冷却ができず、電気自動車の運転状況が安定しなくなるおそれがある。   However, even if the circulation type without using the compressor is used, the main body of the electric vehicle may be greatly tilted back and forth during its operation. Under such circumstances, the working fluid is circulated. Stops, and as a result, the inverter circuit cannot be cooled, and the driving state of the electric vehicle may become unstable.

そこで、本発明は、電気自動車の運転状況を安定させることを目的とするものである。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to stabilize the driving situation of an electric vehicle.

そして、この目的を達成するために本発明は、本体ボディーと、この本体ボディーを駆動する電動モータと、この電動モータに電力を供給するインバータ回路と、このインバータ回路を冷却する冷却装置とを備え、前記冷却装置は、前記インバータ回路の熱を吸熱する受熱部と、この受熱部に放熱経路を介して接続された放熱部と、この放熱部と前記受熱部を接続した帰還経路と、この帰還経路の受熱部への接続部に配置した逆止弁と、前記帰還経路、受熱部、放熱経路、放熱部で形成された循環経路中に充填された作動流体とを有し、前記受熱部は、前記本体ボディーの床面よりも上方に配置し、前記放熱部は前記受熱部よりも上方に配置し、前記帰還経路の受熱部への接続部分は、前記本体ボディーの床面よりも上方に配置し、前記帰還経路の受熱部と放熱部の中間部分は、前記帰還経路の受熱部への接続部分よりも下方の前記本体ボディーの床面上に配置し、前記帰還経路の放熱部への接続部分は、前記帰還経路の受熱部への接続部分よりも上方に配置し、前記作動流体は、前記帰還経路の、前記受熱部への接続部分から、この帰還経路の受熱部と放熱部の中間部分、およびこの帰還経路の放熱部への接続部分側であって、前記帰還経路の、受熱部への接続部分よりも上方部分にまで充填し、これにより所期の目的を達成するものである。   In order to achieve this object, the present invention includes a main body, an electric motor that drives the main body, an inverter circuit that supplies electric power to the electric motor, and a cooling device that cools the inverter circuit. The cooling device includes a heat receiving part that absorbs heat of the inverter circuit, a heat radiating part connected to the heat receiving part via a heat radiating path, a feedback path connecting the heat radiating part and the heat receiving part, A check valve disposed at a connection portion to the heat receiving portion of the path, and a working fluid filled in a circulation path formed by the return path, the heat receiving portion, the heat radiating route, and the heat radiating portion, the heat receiving portion The heat dissipating part is disposed above the heat receiving part, and the connection part of the return path to the heat receiving part is located above the floor surface of the main body. Place and return said An intermediate portion between the heat receiving portion and the heat radiating portion of the path is disposed on the floor surface of the main body below the connection portion to the heat receiving portion of the return path, and the connection portion to the heat radiating portion of the return path is The working fluid is disposed above the connection part of the return path to the heat receiving part, and the working fluid is connected from the connection part of the return path to the heat receiving part, between the heat receiving part and the heat dissipation part of the return path, and The part of the return path connected to the heat radiating part is filled up to the part of the return path above the part connected to the heat receiving part, thereby achieving the intended purpose.

以上のように本発明は、本体ボディーと、この本体ボディーを駆動する電動モータと、この電動モータに電力を供給するインバータ回路と、このインバータ回路を冷却する冷却装置とを備え、前記冷却装置は、前記インバータ回路の熱を吸熱する受熱部と、この受熱部に放熱経路を介して接続された放熱部と、この放熱部と前記受熱部を接続した帰還経路と、この帰還経路の受熱部への接続部に配置した逆止弁と、前記帰還経路、受熱部、放熱経路、放熱部で形成された循環経路中に充填された作動流体とを有し、前記受熱部は、前記本体ボディーの床面よりも上方に配置し、前記放熱部は前記受熱部よりも上方に配置し、前記帰還経路の受熱部への接続部分は、前記本体ボディーの床面よりも上方に配置し、前記帰還経路の受熱部と放熱部の中間部分は、前記帰還経路の受熱部への接続部分よりも下方の前記本体ボディーの床面上に配置し、前記帰還経路の放熱部への接続部分は、前記帰還経路の受熱部への接続部分よりも上方に配置し、前記作動流体は、前記帰還経路の、前記受熱部への接続部分から、この帰還経路の受熱部と放熱部の中間部分、およびこの帰還経路の放熱部への接続部分側であって、前記帰還経路の、受熱部への接続部分よりも上方部分にまで充填したものであるので、電気自動車の運転状況を安定させることができる。   As described above, the present invention includes a main body, an electric motor that drives the main body, an inverter circuit that supplies electric power to the electric motor, and a cooling device that cools the inverter circuit. A heat receiving part that absorbs heat of the inverter circuit, a heat radiating part connected to the heat receiving part via a heat radiating path, a feedback path connecting the heat radiating part and the heat receiving part, and a heat receiving part of the feedback path A check valve disposed in the connection portion of the main body body, and a working fluid filled in a circulation path formed by the return path, the heat receiving section, the heat radiating path, and the heat radiating section. The heat dissipating part is disposed above the floor surface, the heat dissipating part is disposed above the heat receiving part, and the connection part of the return path to the heat receiving part is disposed above the floor surface of the main body body. Heat receiving part and heat radiating part The intermediate portion is disposed on the floor surface of the main body below the connection portion to the heat receiving portion of the return path, and the connection portion to the heat dissipation portion of the return path is connected to the heat receiving portion of the return path. The working fluid is disposed above the part, and the working fluid is connected from the connection part of the return path to the heat receiving part, to the intermediate part of the heat receiving part and the heat radiating part of the return path, and to the heat radiating part of the return path. Since it is a part side and is filled up to a part above the connection part to the heat receiving part of the return path, the driving situation of the electric vehicle can be stabilized.

すなわち、本発明における電気自動車は、インバータ回路が本体ボディーの床面上の水による影響を受けないように、このインバータ回路を床面上に配置したので、それにともなって前記受熱部も、前記本体ボディーの床面よりも上方に配置されたものとなっている。   That is, in the electric vehicle according to the present invention, the inverter circuit is arranged on the floor so that the inverter circuit is not affected by water on the floor of the main body. It is arranged above the floor of the body.

また、このような状況において、前記放熱部は前記受熱部よりも上方に配置し、前記帰還経路の受熱部への接続部分は、前記本体ボディーの床面よりも上方に配置し、前記帰還経路の受熱部と放熱部の中間部分は、前記帰還経路の受熱部への接続部分よりも下方の前記本体ボディーの床面上に配置し、前記帰還経路の放熱部への接続部分は、前記帰還経路の受熱部への接続部分よりも上方に配置し、前記作動流体は、前記帰還経路の、前記受熱部への接続部分から、この帰還経路の受熱部と放熱部の中間部分、およびこの帰還経路の放熱部への接続部分側であって、前記帰還経路の、受熱部への接続部分よりも上方部分にまで充填した。   In such a situation, the heat dissipating part is disposed above the heat receiving part, and the connection part of the return path to the heat receiving part is disposed above the floor surface of the main body, and the return path. An intermediate portion between the heat receiving portion and the heat radiating portion is disposed on the floor surface of the body body below the connection portion to the heat receiving portion of the return path, and the connection portion to the heat radiating portion of the return path is the feedback portion. The working fluid is disposed above the connection part to the heat receiving part of the path, and the working fluid is connected to the heat receiving part from the connection part of the return path to the intermediate part of the heat receiving part and the heat radiating part of the return path, and the feedback part. The portion of the path connected to the heat radiating portion was filled up to the upper portion of the return path from the portion connected to the heat receiving portion.

このため、電気自動車の本体ボディーが前後に傾斜した状態となっても、前記作動流体は、必ず帰還経路の受熱部への接続部分側で、逆止弁を開放させる水頭圧を発生させる分だけは存在する状況を形成することが出来、その結果として電気自動車の運転状況を安定させることができるのである。   For this reason, even when the body of the electric vehicle is tilted back and forth, the working fluid must be generated by the amount of water head pressure that always opens the check valve on the connection portion side to the heat receiving portion of the return path. Can form the existing situation, and as a result, the driving situation of the electric vehicle can be stabilized.

本発明の実施の形態1の電気自動車の概略図Schematic of the electric vehicle according to the first embodiment of the present invention. 同放熱体の構成を示す図Diagram showing the structure of the radiator 同冷却装置を示す概略図Schematic showing the cooling system 同冷却装置の受熱部斜視図Heat receiving part perspective view of the cooling device 同冷却装置の配管構成を示す図Diagram showing piping configuration of the cooling device 同冷却装置の配管構成を示す図Diagram showing piping configuration of the cooling device

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1に示すように、電気自動車の本体ボディー1の車軸(図示せず)を駆動する電動モータ(図示せず)は、電気自動車の本体ボディー1の内に配置した電力変換装置であるインバータ回路2に接続されている。
(Embodiment 1)
As shown in FIG. 1, an electric motor (not shown) for driving an axle (not shown) of a main body 1 of an electric vehicle is an inverter circuit that is a power conversion device disposed in the main body 1 of the electric vehicle. 2 is connected.

インバータ回路2は、電動モータに電力を供給するもので、複数の半導体スイッチング素子(図3の10)を備えおり、この半導体スイッチング素子(図3の10)が動作中に発熱する。   The inverter circuit 2 supplies electric power to the electric motor, and includes a plurality of semiconductor switching elements (10 in FIG. 3). The semiconductor switching elements (10 in FIG. 3) generate heat during operation.

このため、この半導体スイッチング素子(図3の10)を冷却するために、冷却装置3を備えている。   For this reason, in order to cool this semiconductor switching element (10 in FIG. 3), a cooling device 3 is provided.

冷却装置3は、受熱部4と、この受熱部4で吸収した熱を放熱する放熱部5を備え、受熱部4と放熱部5の間で熱媒体となる作動流体(図3の12で、例えば水)を循環させる放熱経路6、帰還経路7を設けることで、受熱部4、放熱経路6、放熱部5、帰還経路7、前記受熱部4となる循環経路を構成している。   The cooling device 3 includes a heat receiving portion 4 and a heat radiating portion 5 that radiates heat absorbed by the heat receiving portion 4, and a working fluid (12 in FIG. 3) serving as a heat medium between the heat receiving portion 4 and the heat radiating portion 5. For example, by providing the heat radiation path 6 and the return path 7 for circulating water), the heat receiving section 4, the heat radiation path 6, the heat radiation section 5, the feedback path 7, and the circulation path serving as the heat receiving section 4 are configured.

つまり、この循環経路においては、作動流体(図3の12)が、気体(水の場合水蒸気)や液体及びその混合状態で、受熱部4、放熱経路6、放熱部5、帰還経路7、前記受熱部4と一方向に、循環するようになっている。   That is, in this circulation path, the working fluid (12 in FIG. 3) is a gas (water vapor in the case of water) or a liquid and a mixed state thereof, the heat receiving part 4, the heat radiation path 6, the heat radiation part 5, the return path 7, It circulates in one direction with the heat receiving part 4.

前記放熱部5は、図2に示すように、外気に熱を放出する放熱体8を備えている。   As shown in FIG. 2, the heat dissipating part 5 includes a heat dissipating body 8 that releases heat to the outside air.

この放熱体8は、アルミニウムを短冊状に薄く形成したフィンを所定の間隔をあけて積層したブロック体と、積層したフィンを貫通する放熱経路6とで構成されている。   The heat dissipating body 8 includes a block body in which fins formed by thinly forming aluminum in a strip shape are stacked at a predetermined interval, and a heat dissipating path 6 penetrating the stacked fins.

そして、この放熱体8の表面に送風機9から外気を送風することで、放熱をさせている。なお、この放熱体8の表面からの放熱は、電気自動車の本体ボディー1車内の暖房に活用することも出来る。   And heat is radiated by blowing outside air from the blower 9 onto the surface of the radiator 8. The heat radiation from the surface of the heat radiating body 8 can also be used for heating the main body 1 of the electric vehicle.

また、受熱部4は、図3に示すように、半導体スイッチング素子10に接触させて熱を吸収する受熱板11と、この受熱板11の表面を覆い、流れ込んだ作動流体12を蒸発させる受熱空間13を形成する受熱板カバー14とを備えている。   Further, as shown in FIG. 3, the heat receiving section 4 is in contact with the semiconductor switching element 10 to absorb heat and a heat receiving space that covers the surface of the heat receiving plate 11 and evaporates the flowing working fluid 12. And a heat-receiving plate cover 14 that forms 13.

さらに、受熱板カバー14には、受熱空間13に液化した作動流体12を流し込む流入口15と、受熱空間13から作動流体12を気体にして排出する排出口16が設けられている。   Furthermore, the heat receiving plate cover 14 is provided with an inlet 15 for flowing the liquefied working fluid 12 into the heat receiving space 13 and an outlet 16 for discharging the working fluid 12 from the heat receiving space 13 as a gas.

図3においては、前記受熱部4を模式的に示したが、具体的には図4に示すような構造となっている。   In FIG. 3, although the said heat receiving part 4 was shown typically, it has a structure as specifically shown in FIG.

すなわち、受熱板カバー14の上面に、流入口15と排出口16を設けており、流入口15には帰還経路7を接続し、また排出口16には放熱経路6を接続している。   That is, the inlet 15 and the outlet 16 are provided on the upper surface of the heat receiving plate cover 14, the return path 7 is connected to the inlet 15, and the heat dissipation path 6 is connected to the outlet 16.

さらに、前記帰還経路7の受熱部4側には、前記受熱部4内に前記作動流体12を供給する流入管19を、受熱空間13内に突入させた状態で接続し、また前記受熱部4の流入口15と、前記流入管19の接続部に逆止弁18を設けている。以下、受熱空間13内の流入管19を導入管17と記載する。   Further, an inflow pipe 19 for supplying the working fluid 12 into the heat receiving portion 4 is connected to the heat receiving portion 4 side of the return path 7 in a state of protruding into the heat receiving space 13, and the heat receiving portion 4. A check valve 18 is provided at a connection portion between the inlet 15 and the inlet pipe 19. Hereinafter, the inflow pipe 19 in the heat receiving space 13 is referred to as an introduction pipe 17.

また、この流入管19の内壁には、この流入管19を構成する材質(例えば銅)よりも熱伝導率の低いコーティング材料(耐熱性の樹脂)をコーティングした。   The inner wall of the inflow pipe 19 was coated with a coating material (heat-resistant resin) having a lower thermal conductivity than the material (for example, copper) constituting the inflow pipe 19.

このような構成による冷却装置3の作用について説明する。   The operation of the cooling device 3 having such a configuration will be described.

上記構成において、インバータ回路2の半導体スイッチング素子10が動作を開始すると電動モータに電力が供給されて、電気自動車の本体ボディー1は、動きだすこととなる。   In the above configuration, when the semiconductor switching element 10 of the inverter circuit 2 starts operation, electric power is supplied to the electric motor, and the main body 1 of the electric vehicle starts to move.

このとき、半導体スイッチング素子10には大電流が流れることにより、少なくとも全電力の数%が損失となって大きく発熱する。   At this time, when a large current flows through the semiconductor switching element 10, at least several percent of the total power is lost and a large amount of heat is generated.

一方で、半導体スイッチング素子10から発される熱は、受熱空間13の受熱板11上に供給された液状の作動流体12に、半導体スイッチング素子10から熱が移動されると、この液状の作動流体12は一瞬にして蒸発することになり、排出口16から放熱経路6へと流れ、放熱部5で熱を外気に放出する。   On the other hand, when the heat generated from the semiconductor switching element 10 is transferred from the semiconductor switching element 10 to the liquid working fluid 12 supplied onto the heat receiving plate 11 of the heat receiving space 13, the liquid working fluid is heated. 12 evaporates instantaneously, flows from the discharge port 16 to the heat radiation path 6, and releases heat to the outside air by the heat radiation portion 5.

放熱部5の作用によって熱を放出した作動流体12は、液化して帰還経路7へと流れ、流入口15の逆止弁18上に溜まることとなる。   The working fluid 12 that has released heat by the action of the heat radiating unit 5 is liquefied and flows to the return path 7 and accumulates on the check valve 18 of the inflow port 15.

液化した作動流体12は、徐々に帰還経路7内で増加する一方、受熱空間13内での作動流体12の気化量が減少し、受熱空間13内の圧力も減少し、逆止弁18上に溜まった作動流体12の水頭による圧力によって逆止弁18を押し下げると、再び受熱空間13内の受熱板11上に作動流体12が供給される。   While the liquefied working fluid 12 gradually increases in the return path 7, the vaporization amount of the working fluid 12 in the heat receiving space 13 decreases, the pressure in the heat receiving space 13 also decreases, and the pressure on the check valve 18 is increased. When the check valve 18 is pushed down by the pressure of the accumulated working fluid 12 due to the water head, the working fluid 12 is again supplied onto the heat receiving plate 11 in the heat receiving space 13.

このようにして作動流体12が冷却装置3内を循環することで、半導体スイッチング素子10の冷却を行なうことになる。   In this way, the working fluid 12 circulates in the cooling device 3 to cool the semiconductor switching element 10.

ここで、受熱空間13内の冷却のメカニズムについて説明を加える。   Here, the cooling mechanism in the heat receiving space 13 will be described.

受熱空間13内では、帰還経路7からの作動流体12は、導入管17から受熱板11上に液滴となって滴下される。滴下した作動流体12は、導入管17の端部開口と受熱板11の隙間から外周部へ拡散される。   In the heat receiving space 13, the working fluid 12 from the return path 7 is dropped as droplets from the introduction pipe 17 onto the heat receiving plate 11. The dropped working fluid 12 is diffused from the gap between the end opening of the introduction pipe 17 and the heat receiving plate 11 to the outer periphery.

このとき受熱板11の表面には、放射状に流路が拡大する形状にしているので、作動流体12は、薄い膜として受熱板11上に高速で広がる。受熱板11の裏面側は、半導体スイッチング素子10に接触しているので、薄い膜となった作動流体12は、一瞬にして加熱され蒸発することなり、ほぼ静止状態の冷媒が多量に受熱板11上に存在する場合に比べ、高い熱伝達率をもった熱伝達現象となる。   At this time, since the surface of the heat receiving plate 11 has a shape in which the flow path radially expands, the working fluid 12 spreads on the heat receiving plate 11 at a high speed as a thin film. Since the back surface side of the heat receiving plate 11 is in contact with the semiconductor switching element 10, the working fluid 12 that has become a thin film is heated and evaporated in an instant, and a large amount of substantially stationary refrigerant is received. This is a heat transfer phenomenon having a higher heat transfer rate than the case of existing above.

受熱空間13を含む循環経路内の気圧は、大気圧よりも低く設定しているので、作動流体12は、水を使用しても大気圧中の水の沸騰に比べて低い温度で気化させることができる。   Since the atmospheric pressure in the circulation path including the heat receiving space 13 is set lower than the atmospheric pressure, the working fluid 12 is vaporized at a temperature lower than the boiling of water in the atmospheric pressure even if water is used. Can do.

本実施の形態のように、循環経路内は、ほぼ真空にした状態で作動流体12を封入した状態となっているため、内部圧力は、外気温に依存した飽和蒸気圧となる。例えば、作動流体12に水を用いた場合、外気温度が25℃では、内部圧力は約3kPa(絶対圧力)となる。よって、外気温に応じた作動流体12の沸騰温度が決定され容易に作動流体12を気化させることができ、このときに半導体スイッチング素子10の熱を奪い、冷却することができる。   As in the present embodiment, since the inside of the circulation path is in a state where the working fluid 12 is sealed in a substantially vacuum state, the internal pressure becomes a saturated vapor pressure depending on the outside air temperature. For example, when water is used as the working fluid 12, the internal pressure is about 3 kPa (absolute pressure) when the outside air temperature is 25 ° C. Therefore, the boiling temperature of the working fluid 12 corresponding to the outside air temperature is determined, and the working fluid 12 can be easily vaporized. At this time, the semiconductor switching element 10 can be deprived of heat and cooled.

また、作動流体12が気化するときに受熱空間13内の圧力が増加するが、逆止弁18の作用により作動流体12は逆流して帰還経路7側へ戻ることはなく、確実に排出口16から放熱経路6へ放出させることができる。   Further, when the working fluid 12 is vaporized, the pressure in the heat receiving space 13 increases. However, the working fluid 12 does not flow back to the return path 7 due to the action of the check valve 18, and the discharge port 16 is surely provided. To the heat dissipation path 6.

このように冷却装置3を動作させることで、規則的な受熱と放熱のサイクルができ、連続して作動流体12を受熱空間13内で気化させて半導体スイッチング素子10の冷却を行なうことができ、大きな冷却効果を得ることができる。   By operating the cooling device 3 in this manner, a regular heat receiving and releasing cycle can be performed, and the working fluid 12 can be continuously vaporized in the heat receiving space 13 to cool the semiconductor switching element 10. A large cooling effect can be obtained.

次に、本実施形態における最も特徴的な部分について説明する。   Next, the most characteristic part in this embodiment will be described.

本実施形態の電気自動車は、上述のごとく、本体ボディー1と、この本体ボディー1を駆動する電動モータと、この電動モータに電力を供給するインバータ回路2と、このインバータ回路2を冷却する冷却装置3とを備えている。   As described above, the electric vehicle of this embodiment includes the main body 1, the electric motor that drives the main body 1, the inverter circuit 2 that supplies power to the electric motor, and the cooling device that cools the inverter circuit 2. 3 is provided.

また、前記冷却装置3は、図3に示すように、前記インバータ回路2の熱を吸熱する受熱部4と、この受熱部4に放熱経路6を介して接続された放熱部5と、この放熱部5と前記受熱部4を接続した帰還経路7と、この帰還経路7の受熱部4への接続部に配置した逆止弁18と、前記帰還経路7、受熱部4、放熱経路6、放熱部5で形成された循環経路中に充填された作動流体12とを有している。   Further, as shown in FIG. 3, the cooling device 3 includes a heat receiving portion 4 that absorbs heat from the inverter circuit 2, a heat radiating portion 5 connected to the heat receiving portion 4 via a heat radiating path 6, A return path 7 connecting the part 5 and the heat receiving part 4, a check valve 18 disposed in a connection part of the feedback path 7 to the heat receiving part 4, the feedback path 7, the heat receiving part 4, the heat dissipation path 6, heat dissipation And a working fluid 12 filled in a circulation path formed by the section 5.

このような基本的な構成において、本実施形態では、図5、図6に示すように、前記受熱部4は、前記本体ボディー1の床面1aよりも上方に配置し、前記放熱部5は前記受熱部4よりも上方に配置している。   In this basic configuration, in this embodiment, as shown in FIGS. 5 and 6, the heat receiving portion 4 is disposed above the floor surface 1 a of the main body 1, and the heat radiating portion 5 is It is arranged above the heat receiving part 4.

また、前記帰還経路7の受熱部4への接続部分は、前記本体ボディー1の床面1aよりも上方に配置している。   Further, the connection portion of the return path 7 to the heat receiving portion 4 is disposed above the floor surface 1 a of the main body 1.

さらに、前記帰還経路7の受熱部4と放熱部5の中間部分は、前記帰還経路7の受熱部4への接続部分よりも下方の前記本体ボディー1の床面1a上に配置している。   Further, an intermediate portion between the heat receiving portion 4 and the heat radiating portion 5 of the return path 7 is disposed on the floor surface 1 a of the main body 1 below the connection portion of the return path 7 to the heat receiving portion 4.

さらにまた、前記帰還経路7の放熱部5への接続部分は、前記帰還経路7の受熱部4への接続部分よりも上方に配置している。   Furthermore, the connection part of the return path 7 to the heat radiating part 5 is disposed above the connection part of the return path 7 to the heat receiving part 4.

そして、前記作動流体12は、前記帰還経路7の、前記受熱部4への接続部分から、この帰還経路7の受熱部4と放熱部5の中間部分、およびこの帰還経路7の放熱部5への接続部分側であって、前記帰還経路7の、受熱部4への接続部分よりも上方部分にまで充填している。   The working fluid 12 is transferred from the connection portion of the return path 7 to the heat receiving portion 4 to the intermediate portion between the heat receiving portion 4 and the heat radiating portion 5 of the feedback path 7 and the heat radiating portion 5 of the feedback path 7. The return path 7 is filled up to a portion above the connection portion to the heat receiving portion 4.

さらに詳しくは、前記帰還経路7は、図6に示すごとく、放熱部5の接続部から下方に配管され(図6のA範囲)、次に、この帰還経路7の前記放熱部5と受熱部4の中間部分(図6のB範囲)に導通され、その後、前記受熱部4への接続部よりも上方に配管され(図6のC範囲)、その後、若干水平方向に伸びたに後(図6のD範囲)、前記受熱部4への接続部に向けて下降させられている(図6のE範囲)。   More specifically, as shown in FIG. 6, the return path 7 is piped downward from the connecting portion of the heat radiating portion 5 (A range in FIG. 6), and then the heat radiating portion 5 and the heat receiving portion of the feedback path 7. 4 is connected to the intermediate portion (B range in FIG. 6), and then piped upward from the connection portion to the heat receiving portion 4 (C range in FIG. 6). 6 (D range of FIG. 6), it is lowered toward the connection part to the heat receiving part 4 (E range of FIG. 6).

すなわち、本実施形態の電気自動車は、インバータ回路2が本体ボディー1の床面1a上の水による影響を受けないように、このインバータ回路2を床面1a上に配置したので、それにともなって前記受熱部4も、前記本体ボディー1の床面1aよりも上方に配置されたものとなっている。前記インバータ回路2と受熱部4は車内の空間を有効に活用すべく、座席20の下に配置している。また、前記放熱部5と受熱部4の中間部分(図6のB範囲)も空間を有効に活用すべく、床面1a上に配置している。さらに、放熱部5と帰還経路7のA範囲は車両空調ユニット空間21に配置している。   That is, in the electric vehicle according to the present embodiment, the inverter circuit 2 is arranged on the floor surface 1a so that the inverter circuit 2 is not affected by the water on the floor surface 1a of the main body 1. The heat receiving portion 4 is also disposed above the floor surface 1a of the main body 1. The inverter circuit 2 and the heat receiving portion 4 are disposed under the seat 20 in order to effectively use the space in the vehicle. Moreover, the intermediate part (B range of FIG. 6) of the said thermal radiation part 5 and the heat receiving part 4 is also arrange | positioned on the floor surface 1a in order to utilize space effectively. Furthermore, the A range of the heat radiating unit 5 and the return path 7 is arranged in the vehicle air conditioning unit space 21.

また、このような状況において、前記放熱部5は前記受熱部4よりも上方に配置し、前記帰還経路7の受熱部4への接続部分は、前記本体ボディー1の床面1aよりも上方に配置し、前記帰還経路7の受熱部4と放熱部5の中間部分は、前記帰還経路7の受熱部4への接続部分よりも下方の前記本体ボディー1の床面1a上に配置し、前記帰還経路7の放熱部5への接続部分は、前記帰還経路7の受熱部4への接続部分よりも上方に配置している。   In such a situation, the heat dissipating part 5 is disposed above the heat receiving part 4, and the connection part of the return path 7 to the heat receiving part 4 is above the floor surface 1 a of the main body 1. The intermediate part of the heat receiving part 4 and the heat radiating part 5 of the return path 7 is arranged on the floor surface 1a of the main body 1 below the connection part to the heat receiving part 4 of the return path 7, The connection part of the return path 7 to the heat radiating part 5 is arranged above the connection part of the return path 7 to the heat receiving part 4.

そして、前記作動流体12は、前記帰還経路7の、前記受熱部4への接続部分から、この帰還経路7の受熱部4と放熱部5の中間部分、およびこの帰還経路7の放熱部5への接続部分側であって、前記帰還経路7の、受熱部4への接続部分よりも上方部分にまで充填した。   The working fluid 12 is transferred from the connection portion of the return path 7 to the heat receiving portion 4 to the intermediate portion between the heat receiving portion 4 and the heat radiating portion 5 of the feedback path 7 and the heat radiating portion 5 of the feedback path 7. The return path 7 is filled up to the upper part of the connection part to the heat receiving part 4.

このため、運転初期において、作動流体12は受熱部4側から、(図6のE範囲)、(図6のD範囲)、(図6のC範囲)、(図6のB範囲)、および(図6のA範囲で、図6のD範囲よりも上の位置まで)充填された状態となっている。   For this reason, in the initial stage of operation, the working fluid 12 is from the heat receiving part 4 side (E range of FIG. 6), (D range of FIG. 6), (C range of FIG. 6), (B range of FIG. 6), and It is in a filled state (up to the position above the D range in FIG. 6 in the A range in FIG. 6).

このため、電気自動車の本体ボディー1が走行中や停車時に、前後に傾斜した状態となっても、前記作動流体12は、必ず帰還経路7の受熱部4への接続部分側で、逆止弁18を開放させる水頭圧を発生させる分だけは存在する状況を形成することが出来る。   For this reason, even if the main body 1 of the electric vehicle is tilted back and forth when the vehicle is traveling or stopped, the working fluid 12 is always on the side of the return path 7 connected to the heat receiving portion 4, and a check valve. The situation that exists can be formed only by the amount of water head pressure that opens 18.

したがって、受熱部4において、インバータ回路2の熱で作動流体12を蒸発させ、その圧力で作動流体12を循環させ、その結果としてインバータ回路2を安定的に冷却し、電気自動車の運転状況を安定させることができるのである。   Therefore, in the heat receiving part 4, the working fluid 12 is evaporated by the heat of the inverter circuit 2, the working fluid 12 is circulated by the pressure, and as a result, the inverter circuit 2 is stably cooled, and the operation state of the electric vehicle is stabilized. It can be made.

以上のように、本発明は電気自動車の運転状況を安定させることができるのであるので、今後の電気自動車に広く活用することが期待される。   As described above, the present invention can stabilize the driving situation of an electric vehicle, and is expected to be widely used in future electric vehicles.

1 本体ボディー
1a 床面
2 インバータ回路
3 冷却装置
4 受熱部
5 放熱部
6 放熱経路
7 帰還経路
8 放熱体
9 送風機
10 半導体スイッチング素子
11 受熱板
12 作動流体
13 受熱空間
14 受熱板カバー
15 流入口
16 排出口
17 導入管
18 逆止弁
19 流入管
20 座席
21 車両空調ユニット空間
DESCRIPTION OF SYMBOLS 1 Main body body 1a Floor surface 2 Inverter circuit 3 Cooling device 4 Heat receiving part 5 Heat radiating part 6 Heat radiating path 7 Return path 8 Heat radiating body 9 Blower 10 Semiconductor switching element 11 Heat receiving plate 12 Working fluid 13 Heat receiving space 14 Heat receiving plate cover 15 Inlet 16 Discharge port 17 Introduction pipe 18 Check valve 19 Inflow pipe 20 Seat 21 Vehicle air conditioning unit space

Claims (2)

本体ボディーと、この本体ボディーを駆動する電動モータと、この電動モータに電力を供給するインバータ回路と、このインバータ回路を冷却する冷却装置とを備え、前記冷却装置は、前記インバータ回路の熱を吸熱する受熱部と、この受熱部に放熱経路を介して接続された放熱部と、この放熱部と前記受熱部を接続した帰還経路と、この帰還経路の受熱部への接続部に配置した逆止弁と、前記帰還経路、受熱部、放熱経路、放熱部で形成された循環経路中に充填された作動流体とを有し、前記受熱部は、前記本体ボディーの床面よりも上方に配置し、前記放熱部は前記受熱部よりも上方に配置し、前記帰還経路の受熱部への接続部分は、前記本体ボディーの床面よりも上方に配置し、前記帰還経路の受熱部と放熱部の中間部分は、前記帰還経路の受熱部への接続部分よりも下方の前記本体ボディーの床面上に配置し、前記帰還経路の放熱部への接続部分は、前記帰還経路の受熱部への接続部分よりも上方に配置し、前記作動流体は、前記帰還経路の、前記受熱部への接続部分から、この帰還経路の受熱部と放熱部の中間部分、およびこの帰還経路の放熱部への接続部分側であって、前記帰還経路の、受熱部への接続部分よりも上方部分にまで充填された電気自動車。 A main body, an electric motor that drives the main body, an inverter circuit that supplies electric power to the electric motor, and a cooling device that cools the inverter circuit, the cooling device absorbs heat from the inverter circuit. A heat receiving part, a heat radiating part connected to the heat receiving part via a heat radiating path, a feedback path connecting the heat radiating part and the heat receiving part, and a check placed on a connection part of the feedback path to the heat receiving part. And a working fluid filled in a circulation path formed by the return path, the heat receiving section, the heat radiating path, and the heat radiating section, and the heat receiving section is disposed above the floor surface of the body body. The heat dissipating part is disposed above the heat receiving part, and the connection part of the return path to the heat receiving part is disposed above the floor surface of the body body, and the heat receiving part and the heat dissipating part of the return path are arranged. The middle part is the return Arranged on the floor surface of the body body below the connecting part to the heat receiving part of the path, the connecting part to the heat radiating part of the return path is arranged above the connecting part to the heat receiving part of the return path The working fluid is connected to the heat receiving portion of the feedback path, from the heat receiving portion and the heat radiating portion of the feedback path, and to the heat dissipation portion of the feedback path. An electric vehicle in which the return path is filled up to a portion above a connection portion to a heat receiving portion. 帰還経路は、放熱部の接続部から下方に配管され、次に、この帰還経路の前記放熱部と受熱部の中間部分に導通され、その後、前記受熱部への接続部よりも上方に配管され、その後前記受熱部への接続部に向けて下降させたこと特徴とする請求項1記載の電気自動車。 The return path is piped downward from the connecting part of the heat radiating part, and then conducted to the intermediate part between the heat radiating part and the heat receiving part of the feedback path, and then piped above the connecting part to the heat receiving part. 2. The electric vehicle according to claim 1, wherein the electric vehicle is then lowered toward the connection portion to the heat receiving portion.
JP2011129901A 2011-06-10 2011-06-10 Electric car Expired - Fee Related JP5786132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011129901A JP5786132B2 (en) 2011-06-10 2011-06-10 Electric car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011129901A JP5786132B2 (en) 2011-06-10 2011-06-10 Electric car

Publications (2)

Publication Number Publication Date
JP2012255624A JP2012255624A (en) 2012-12-27
JP5786132B2 true JP5786132B2 (en) 2015-09-30

Family

ID=47527331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011129901A Expired - Fee Related JP5786132B2 (en) 2011-06-10 2011-06-10 Electric car

Country Status (1)

Country Link
JP (1) JP5786132B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11047627B2 (en) 2016-03-31 2021-06-29 Nec Corporation Cooling device
JP2019196839A (en) * 2016-09-09 2019-11-14 株式会社デンソー Device temperature regulation device
JP2019196842A (en) * 2016-09-09 2019-11-14 株式会社デンソー Device temperature regulator
JP7102977B2 (en) * 2017-11-28 2022-07-20 株式会社デンソー Thermosiphon type heating system
WO2019107058A1 (en) * 2017-11-28 2019-06-06 株式会社デンソー Thermosiphon type heating system
JP2020098041A (en) * 2018-12-17 2020-06-25 株式会社デンソー Equipment temperature control device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50110461U (en) * 1974-02-16 1975-09-09
JPS56173872U (en) * 1980-05-26 1981-12-22
JPS6229894A (en) * 1985-07-29 1987-02-07 Hitachi Plant Eng & Constr Co Ltd Heat pipe type air conditioning system
JPS6241587A (en) * 1985-08-15 1987-02-23 Ishikawajima Harima Heavy Ind Co Ltd Heat pipe heat exchanger
JP3824928B2 (en) * 2001-12-25 2006-09-20 本田技研工業株式会社 Power storage device and vehicle drive device
JP3972863B2 (en) * 2003-05-26 2007-09-05 株式会社デンソー Vehicle cooling system
JP5151362B2 (en) * 2007-09-28 2013-02-27 パナソニック株式会社 COOLING DEVICE AND ELECTRONIC DEVICE HAVING THE SAME
JP4978401B2 (en) * 2007-09-28 2012-07-18 パナソニック株式会社 Cooling system

Also Published As

Publication number Publication date
JP2012255624A (en) 2012-12-27

Similar Documents

Publication Publication Date Title
JP5786132B2 (en) Electric car
TW201641910A (en) Coolant type heat dissipation device
WO2015146110A1 (en) Phase-change cooler and phase-change cooling method
WO2019039187A1 (en) Battery temperature regulator
JP5957686B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE AND ELECTRIC CAR HAVING THE SAME
JP5891349B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE AND ELECTRIC CAR HAVING THE SAME
JP6101936B2 (en) Cooling device and electric vehicle equipped with the same
JP6171164B2 (en) COOLING DEVICE AND ELECTRIC CAR AND ELECTRONIC DEVICE EQUIPPED WITH THE SAME
JP2014048002A (en) Cooling device, electric vehicle equipped with the same, and electronic apparatus equipped with the same
JP5799205B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
JP2018105525A (en) Cooling device, electronic apparatus mounted with the same and electric vehicle
JP5903549B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
JP2013019549A (en) Cooling device, and electronic apparatus and electric vehicle equipped with the same
JP5938574B2 (en) Cooling device and electric vehicle equipped with the same
JP5903548B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
JP2018031557A (en) Cooling device and electric equipment mounting the same, and electric car
JP5934886B2 (en) Cooling device and electric vehicle equipped with the same
JP6028232B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
JP5887479B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
JP6035513B2 (en) Cooling device and electric vehicle equipped with the same
JP5994103B2 (en) COOLING DEVICE AND ELECTRIC CAR AND ELECTRONIC DEVICE EQUIPPED WITH THE SAME
JP2017067355A (en) Cooling device and electronic apparatus mounting the same and electric vehicle
JP2014116385A (en) Cooler and electric car and electronic apparatus mounting the same
JP2017009253A (en) Cooler, electronic equipment mounted with the same, and electric vehicle
JP6010753B2 (en) Cooling device and electric vehicle equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140523

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140612

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150216

LAPS Cancellation because of no payment of annual fees