WO2019039187A1 - Battery temperature regulator - Google Patents

Battery temperature regulator Download PDF

Info

Publication number
WO2019039187A1
WO2019039187A1 PCT/JP2018/028139 JP2018028139W WO2019039187A1 WO 2019039187 A1 WO2019039187 A1 WO 2019039187A1 JP 2018028139 W JP2018028139 W JP 2018028139W WO 2019039187 A1 WO2019039187 A1 WO 2019039187A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
battery
heat exchanger
heat medium
connection
Prior art date
Application number
PCT/JP2018/028139
Other languages
French (fr)
Japanese (ja)
Inventor
康光 大見
義則 毅
功嗣 三浦
竹内 雅之
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019039187A1 publication Critical patent/WO2019039187A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6572Peltier elements or thermoelectric devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a battery temperature control device that adjusts the temperature of a battery.
  • the battery temperature control device described in Patent Document 1 adjusts the temperature of a battery installed in a vehicle by a thermosiphon circuit.
  • a heat exchanger for a battery fixed to a battery and a condenser provided above the heat exchanger for a battery are connected by two pipes, in which a working fluid is provided.
  • the heat medium is sealed.
  • this battery temperature control device when the battery generates heat, the heat medium inside the battery heat exchanger absorbs heat from the battery, evaporates, and flows into the condenser through one pipe.
  • the condenser condenses the heat medium in the gas phase by heat exchange with an external heat medium.
  • the heat medium of the liquid phase condensed by the condenser flows down the inside of the other pipe by its own weight and flows into the battery heat exchanger.
  • this battery temperature control device naturally circulates the heat medium in the thermosyphon circuit, and cools the battery by heat of vaporization when the heat medium is boiled and evaporated inside the heat exchanger for the battery.
  • this battery temperature control apparatus is equipped with the heating part which can heat a heat carrier inside the heat exchanger for batteries.
  • the battery temperature control device heats the heat medium by the heating unit when the battery is warmed up.
  • the heated heat medium evaporates inside the battery heat exchanger and then condenses by radiating heat to the battery.
  • the battery temperature control device can also heat the battery by phase change of the heat medium inside the battery heat exchanger.
  • Patent No. 5942943 gazette
  • the inventors have found the following problems regarding the battery temperature control device mounted on a vehicle as described in Patent Document 1 or the like. That is, as shown in FIG. 17, a large battery 2 installed in a vehicle or the like is used as a battery pack 5 in which a plurality of battery modules 4 in which a plurality of battery cells 3 are combined is stored. It is mounted at the bottom etc.
  • the battery heat exchanger 710 provided in the battery temperature adjustment device 700 is adhered to the battery module 4 stored in the battery pack 5 by an adhesive heat-dissipation sheet or the like (not shown).
  • the plurality of battery modules 4 to which the battery heat exchanger 710 is adhered are stored in the case of the battery pack 5 with almost no gap.
  • the condensers 770 and 780 included in the battery temperature control device 700 are disposed in the engine room of the vehicle or the like. Therefore, the piping 720 connecting the battery heat exchanger 710 and the condensers 770 and 780 will be complicatedly routed around each part of the vehicle body.
  • the battery heat exchanger 710 stored in the battery pack 5 and the piping 720 around each part of the vehicle body are separated by the screw 790 or the like. It is necessary to work to connect. Then, it is necessary to evacuate the thermosiphon circuit configured as described above and fill the heat medium there.
  • connection work of battery heat exchanger 710 and battery module 4 work of attachment of battery pack 5 to vehicle body work of connection of battery heat exchanger 710 and piping 720 ⁇ It is necessary to evacuate the thermosyphon circuit ⁇ fill the heat medium. Therefore, installation of the battery temperature control apparatus 700 in a vehicle etc., and maintenance of the battery 2 installed in the vehicle etc. require very big time and effort.
  • the battery which the battery temperature control apparatus of this indication makes temperature adjustment object is not restricted to what is mounted in a vehicle.
  • the battery temperature control device of the present disclosure is not limited to the battery mounted on the vehicle, but also covers the battery installed in stationary equipment and the like.
  • An object of the present disclosure is to provide a battery temperature control device capable of enhancing assemblability and maintainability.
  • a battery temperature control device for controlling the temperature of the battery, A battery heat exchanger that exchanges heat between the battery and the heat medium; Piping connected to the battery heat exchanger and through which the heat medium flows; A connection heat exchanger configured to flow a heat medium through the battery heat exchanger and the piping and having a first thermal contact surface formed along the direction of gravity; It has a second thermal contact surface configured to be attachable to and detachable from the connection heat exchanger and in direct thermal contact with the first thermal contact surface or indirectly through the thermal conduction member, and the first thermal contact surface and the second thermal contact surface And a heat source portion capable of cooling or heating the heat medium flowing through the connection heat exchanger in a state of thermal contact with the thermal contact surface.
  • the work of installing the battery heat exchanger, piping and connection heat exchanger in the battery and the work of installing the heat source unit in the vehicle or stationary equipment etc. It is possible to carry out in the process. Then, the first thermal contact surface of the connection heat exchanger and the second thermal contact surface of the heat source unit are brought into direct thermal contact or indirect thermal contact via the thermal conduction member, thereby adjusting the battery temperature as one thermal circuit. It is possible to configure the device.
  • the connection heat exchanger and the heat source unit are separated, the battery, the battery heat exchanger, the piping, and the connection heat exchange are performed.
  • the devices can be removed together from the vehicle or stationary equipment etc. Therefore, even if the arrangement of the piping of the heat source unit in a vehicle or stationary equipment etc. has a complicated configuration, the heat exchanger for battery can be carried out without performing the work of extracting the heat medium to the heat exchanger for battery etc.
  • battery maintenance can be easily performed in a short time. Therefore, this battery temperature control device can enhance the assemblability of the battery temperature control device and the battery with respect to the vehicle or stationary equipment and the like, and the maintainability of the battery temperature control device and the battery at the time of use.
  • FIG. 5 is a cross-sectional view taken along line VV of FIG. 4; It is a partial perspective view of the heat exchanger for batteries of 3rd Embodiment.
  • FIG. 7 is a cross-sectional view taken along line VII-VII of FIG. It is a partial perspective view of the heat exchanger for batteries of 4th Embodiment.
  • FIG. 9 is a cross-sectional view taken along line IX-IX in FIG. It is a circuit block diagram of the battery temperature control apparatus which concerns on 5th Embodiment. It is a circuit block diagram of the battery temperature control apparatus which concerns on 6th Embodiment. It is a circuit block diagram of the battery temperature control apparatus which concerns on 7th Embodiment. It is a circuit block diagram of the battery temperature control apparatus which concerns on 8th Embodiment. It is a circuit block diagram of the battery temperature control apparatus which concerns on 9th Embodiment. It is a circuit block diagram of the battery temperature control apparatus which concerns on 10th Embodiment. It is a perspective view which shows schematic structure of the battery temperature control apparatus which concerns on 11th Embodiment. It is a perspective view which shows schematic structure of the battery temperature control apparatus of a comparative example.
  • the battery temperature control device 1 of the first embodiment is mounted on an electric vehicle such as an electric vehicle or a hybrid vehicle (hereinafter, simply referred to as a “vehicle”).
  • the battery temperature control device 1 of the first embodiment functions as a cooling device for cooling a secondary battery (hereinafter referred to as “battery 2”) mounted on a vehicle.
  • a large battery 2 installed in a vehicle is mounted under a seat of a vehicle or under a trunk room as a battery pack 5 (i.e., a storage device) in which a plurality of battery modules 4 in which a plurality of battery cells 3 are combined is stored. Ru.
  • the power stored in the battery 2 is supplied to the vehicle drive motor via an inverter or the like.
  • the battery 2 generates heat when charging and discharging, for example, while the vehicle is traveling. When the temperature of the battery 2 becomes high, it not only can not exert sufficient functions but also causes deterioration or breakage, so a cooling device for maintaining the battery 2 at a certain temperature or lower is required.
  • the temperature of the battery 2 rises not only while the vehicle is traveling but also while it is parked and the like.
  • the battery 2 is often disposed under the floor of the vehicle, under the trunk room, etc., and although the amount of heat per unit time given to the battery 2 is small, the temperature of the battery 2 gradually rises by leaving for a long time.
  • the life of the battery 2 is shortened. Therefore, it is desirable to maintain the temperature of the battery 2 at a low temperature, such as cooling the battery 2 while the vehicle is left.
  • battery 2 is configured as battery module 4 including a plurality of battery cells 3, if there is variation in the temperature of each battery cell 3, bias occurs in the deterioration of battery cell 3, and the storage performance of battery 2 It will decrease. This is because the input / output characteristics of the power storage device are determined in accordance with the characteristics of the battery cell 3 that has deteriorated the most. Therefore, in order to cause the battery 2 to exhibit desired performance over a long period of time, it is important to make the temperature uniform to reduce the temperature variation among the plurality of battery cells 3.
  • the battery temperature control device 1 of the first embodiment adopts a thermo-siphon system in which the temperature of the battery 2 is adjusted by natural circulation of the heat medium.
  • the battery temperature adjustment device 1 includes a battery heat exchanger 10, a pipe 20, a connection heat exchanger 30, and a heat source unit 40.
  • the battery heat exchanger 10, the pipe 20, and the connection heat exchanger 30 included in the battery temperature control device 1 according to the first embodiment constitute a first thermosyphon circuit 100.
  • the first thermosiphon circuit 100 is provided on the battery pack 5 side.
  • the pipe 20 constituting the first thermosiphon circuit 100 is referred to as a first pipe 20
  • the connection heat exchanger 30 constituting the first thermosiphon circuit 100 is referred to as a first connection heat exchanger 30.
  • the heat medium flowing through the first thermosiphon circuit 100 is referred to as a first heat medium.
  • a fluorocarbon working fluid such as HFO-1234yf or HFC-134a is used as the first heat medium.
  • the battery heat exchanger 10 includes an upper header tank 11, a lower header tank 12, and a plurality of tubes 13 communicating the upper header tank 11 with the lower header tank 12.
  • the liquid surface FL1 of the first heat medium circulating in the first thermosyphon circuit 100 is located in the middle of the flow path inside the tube 13 of the battery heat exchanger 10.
  • the battery heat exchanger 10 is bonded to the battery module 4 by a heat-radiating sheet or the like having adhesiveness. Therefore, the battery heat exchanger 10 can perform heat exchange between the battery 2 and the first heat medium.
  • the plurality of battery modules 4 to which the battery heat exchanger 10 is adhered are stored in the case of the battery pack 5 with almost no gap.
  • the first connection heat exchanger 30 also has an upper header tank 31, a lower header tank 32, and a plurality of tubes 33 communicating the upper header tank 31 and the lower header tank 32 with each other.
  • the liquid surface FL2 of the first heat medium circulating in the first thermosyphon circuit 100 is located in the middle of the flow path inside the tube 33 of the first connection heat exchanger 30.
  • the first connection heat exchanger 30 has a first thermal contact surface 35. In FIG. 1 and FIG. 2, in order to show the range of the 1st thermal contact surface 35 intelligibly, although it is not a cross section, the 1st thermal contact surface 35 is hatched.
  • the first thermal contact surface 35 is formed along the direction of gravity.
  • first thermal contact surface 35 is inclined by about 30 ° with respect to the direction of gravity, in addition to the fact that the first thermal contact surface 35 is formed parallel to the direction of gravity. Is also meant to be included.
  • the first thermal contact surface 35 is in direct contact with the second thermal contact surface 55 of the heat source unit 40 described later, or indirectly in thermal contact via the thermal conduction member 41.
  • the first pipe 20 has a first liquid passage 21 and a first gas passage 22.
  • the first liquid passage 21 connects the outlet / inlet 121 provided in the lower header tank 12 of the battery heat exchanger 10 with the outlet / inlet 321 provided in the lower header tank 32 of the first connection heat exchanger 30. ing. That is, the first liquid passage 21 is the liquid inlet / outlet 121 provided below the liquid surface FL1 of the heat medium in the battery heat exchanger 10, and the liquid of the heat medium in the first connection heat exchanger 30. It connects with the outflow inlet 321 provided below the plane FL2.
  • the first gas passage 22 connects the outlet / inlet 111 provided in the upper header tank 11 of the battery heat exchanger 10 and the outlet / inlet 311 provided in the upper header tank 31 of the first connection heat exchanger 30. ing. That is, the first gas passage 22 is provided at the outflow / inflow port 111 provided above the liquid surface FL1 of the heat medium in the battery heat exchanger 10, and the liquid surface of the heat medium in the first connection heat exchanger 30. It connects with the outflow inlet 311 provided above FL2.
  • the battery heat exchanger 10, the first connection heat exchanger 30, the first liquid passage 21 and the first gas passage 22 constitute a first thermosiphon circuit 100 in which the first heat medium circulates.
  • the first thermosiphon circuit 100 is detachably provided to the vehicle body together with the battery 2.
  • the heat source unit 40 provided in the battery temperature adjustment device 1 of the first embodiment includes the second connection heat exchanger 50, the second pipe 60, and the radiators 70, 80.
  • the second connection heat exchanger 50, the second pipe 60, and the radiators 70, 80 of the heat source unit 40 constitute a second thermosiphon circuit 200.
  • the second thermosiphon circuit 200 is provided across each part of the vehicle body.
  • the heat medium flowing through the second thermosiphon circuit 200 is referred to as a second heat medium.
  • the first heat medium flowing through the first thermosiphon circuit 100 and the second heat medium flowing through the second thermosiphon circuit 200 may be the same heat medium because they do not mix with each other, or And may be different heat transfer media.
  • the second connection heat exchanger 50 also has an upper header tank 51, a lower header tank 52, and a plurality of tubes 53 communicating the upper header tank 51 with the lower header tank 52.
  • the liquid surface FL3 of the second heat medium circulating in the second thermosiphon circuit 200 is located midway in the flow path inside the tube 53 of the second connection heat exchanger 50.
  • the second connection heat exchanger 50 has a second thermal contact surface 55.
  • the second thermal contact surface 55 is also formed along the direction of gravity.
  • the first connection heat exchanger 30 and the second connection heat exchanger 50 described above are configured to be removable. Specifically, the first connection heat exchanger 30 and the second connection heat exchanger 50 are configured to be detachably fixed, for example, by a fixing member such as a screw or a clamp. That is, when installing the battery temperature control device 1 in a vehicle, or when performing maintenance of the battery 2 installed in the vehicle, the first connection heat exchanger 30 and the second connection heat exchanger 50 can easily be used. It is a removable configuration.
  • the battery temperature control device 1 constitutes one thermal circuit capable of heat transfer between the first thermosiphon circuit 100 and the second thermosiphon circuit 200.
  • the radiators 70 and 80 are composed of an air radiator 70, a refrigerant radiator 80, and the like.
  • the air radiator 70 and the refrigerant radiator 80 are provided in, for example, an engine room of a vehicle.
  • the air radiator 70 performs heat exchange between the second heat medium circulating in the second thermosiphon circuit 200 and the outside air passing through the air radiator 70 to dissipate the heat of the second heat medium to the outside air. It is a heat exchanger.
  • the outside air passing through the air radiator 70 is an example of an external heat medium.
  • the refrigerant radiator 80 performs heat exchange between the second heat medium circulating in the second thermosyphon circuit 200 and the low-temperature low-pressure refrigerant flowing through the evaporator 86 of the refrigeration cycle 85 to obtain the heat medium of the second heat medium. Is radiated to the refrigerant of the refrigeration cycle 85.
  • the refrigerant of the refrigeration cycle 85 is also an example of the external heat medium.
  • the air radiator 70 and the refrigerant radiator 80 can be selectively used depending on the heat generation state of the battery 2 or the traveling state of the vehicle.
  • the radiator may be configured by a liquid-cooling radiator that performs heat exchange between a heat medium and a liquid such as cooling water flowing in a liquid circuit (not shown). In that case, a liquid such as cooling water is also an example of the external heat medium.
  • the second pipe 60 has a second liquid passage 61 and a second gas passage 62.
  • the second liquid passage 61 includes an outlet port 521 provided in the lower header tank 52 of the second connection heat exchanger 50, an outlet port 71 provided on the lower side of the air radiator 70, and a lower portion of the refrigerant radiator 80. It connects with the outflow inlet 81 provided on the side.
  • the second gas passage 62 is disposed on the outlet / inlet 511 provided in the upper header tank 51 of the second connection heat exchanger 50, the outlet / inlet 72 provided above the air radiator 70, and above the refrigerant radiator 80. It is connected with the provided inlet / outlet port 82.
  • the second piping 60 complicates the various parts of the vehicle body between under the seat or trunk room of the vehicle provided with the battery pack 5 and in the engine room where the air radiator 70 and the refrigerant radiator 80 are provided. It will be circumvented.
  • the second connection heat exchanger 50, the radiators 70, 80, the second liquid passage 61, and the second gas passage 62 constitute a second thermosiphon circuit 200 in which the second heat medium circulates.
  • the battery temperature control device 1 includes the operation of installing the battery pack 5 and the first thermosiphon circuit 100 in the vehicle at the time of manufacturing the vehicle, and the second thermosiphon circuit 200 in the vehicle. It is possible to carry out the installation work in separate steps. Then, the first thermal contact surface 35 of the first connection heat exchanger 30 and the second thermal contact surface 55 of the second connection heat exchanger 50 are in direct thermal contact or indirect thermal contact via the thermal conductive member 41. Thus, it is possible to configure the battery temperature control device 1 as one thermal circuit.
  • the battery temperature adjustment device 1 of the first embodiment separates the first connection heat exchanger 30 and the second connection heat exchanger 50 at the time of maintenance of the battery 2, the first thermo The siphon circuit 100 can be easily removed from the vehicle. Then, maintenance of the battery 2 can be easily performed in a short time without performing the work of extracting and refilling the first and second heat mediums with respect to the first thermosiphon circuit 100 and the second thermosiphon circuit 200. It is possible.
  • FIG. 3 shows the movement of the first heat medium of the first thermosyphon circuit 100 and the second heat medium of the second thermosyphon circuit 200 when the battery temperature control device 1 cools the battery 2.
  • the movement of the first and second heat transfer media of the gas is indicated by broken arrows
  • the movement of the first and second heat transfer media of the liquid is indicated by solid arrows.
  • the heat is absorbed by the first heat medium in the battery heat exchanger 10, and the first heat medium evaporates in the battery heat exchanger 10.
  • the first heat medium that has become gas in the battery heat exchanger 10 flows from the battery heat exchanger 10 through the first gas passage 22 into the first connection heat exchanger 30. That is, heat is transported from the battery heat exchanger 10 to the first connection heat exchanger 30 by the first heat medium.
  • the first thermal contact surface 35 of the first connection heat exchanger 30 and the second thermal contact surface 55 of the second connection heat exchanger 50 are in direct contact or indirectly through the thermal conduction member 41. In thermal contact. Therefore, in the first connection heat exchanger 30 and the second connection heat exchanger 50, heat exchange between the first heat medium and the second heat medium is performed. That is, heat is transported by thermal contact between the first connection heat exchanger 30 and the second connection heat exchanger 50. When the temperature of the second heat medium is lower than the temperature of the first heat medium, the first heat medium is transferred to the second heat medium via the first and second heat contact surfaces 35 and 55 in the first connection heat exchanger 30. Heat dissipates and condenses. The first heat medium that has become liquid in the first connection heat exchanger 30 flows into the battery heat exchanger 10 through the first liquid passage 21.
  • the second heat medium absorbs heat from the first heat medium via the first and second thermal contact surfaces 35, 55 and evaporates.
  • the second heat medium that has become a gas in the second connection heat exchanger 50 flows from the second connection heat exchanger 50 through the second gas passage 62 into the radiators 70 and 80.
  • the second heat medium dissipates heat to the external heat medium such as the outside air, the refrigerant of the refrigeration cycle, or the cooling water and condenses. That is, heat is transported from the second connection heat exchanger 50 to the radiators 70 and 80 by the second heat medium, and is dissipated to the external heat medium.
  • the second heat medium that has become liquid in the radiators 70 and 80 flows down the second liquid passage 61 and flows into the second connection heat exchanger 50.
  • the heat generated from the battery 2 is transported from the battery heat exchanger 10, the first connection heat exchanger 30, the second connection heat exchanger 50, and the radiators 70, 80 in this order, and then the external heat Heat is dissipated to the heat medium.
  • the battery temperature control device 1 of the first embodiment can cool the battery 2 mounted on the vehicle.
  • the battery temperature control device 1 according to the first embodiment described above has the following effects.
  • the battery temperature control device 1 according to the first embodiment includes the battery heat exchanger 10, the first pipe 20, and the first connection heat exchanger 30, which constitute the first thermosiphon circuit 100, and the second thermo And a heat source unit 40 constituting the siphon circuit 200.
  • the 1st connection heat exchanger 30 and the 2nd connection heat exchanger 50 with which the heat source part 40 is provided are comprised so that attachment or detachment is possible.
  • the 1st thermal contact surface 35 which the 1st connection heat exchanger 30 has, and the 2nd thermal contact surface 55 which the 2nd connection heat exchanger 50 has are formed along the direction of gravity, and are directly contacted or heat The thermal contact is made indirectly via the conductive member 41.
  • the operation of installing the battery heat exchanger 10, the first pipe 20 and the first connection heat exchanger 30 in the battery 2 and the operation of installing the heat source section 40 in the vehicle body are different. It is possible to carry out in the process. Then, the first thermal contact surface 35 of the first connection heat exchanger 30 and the second thermal contact surface 55 of the second connection heat exchanger 50 constituting the heat source unit 40 are in direct contact or via the thermal conduction member 41. By indirect thermal contact, the battery temperature control device 1 as one thermal circuit can be configured.
  • the battery temperature control device 1 can enhance the assemblability of the battery temperature control device 1 at the time of manufacturing the vehicle and the maintainability of the battery 2 at the time of use of the vehicle.
  • the liquid surfaces FL1 and FL2 of the first heat medium flowing through the first thermosiphon circuit 100 are located in the middle of the flow path inside the battery heat exchanger 10, and It is located in the middle of the flow path inside the 1-connected heat exchanger 30. According to this, when cold heat is supplied from the heat source unit 40 to the first connection heat exchanger 30 during cooling of the battery 2, the first heat medium evaporated in the battery heat exchanger 10 is the first gas passage 22. Flow to the first connection heat exchanger 30. Then, the first heat medium condensed in the first connection heat exchanger 30 flows from the first liquid passage 21 to the battery heat exchanger 10. Therefore, the battery temperature control device 1 can cool the battery 2 by circulating the first heat medium.
  • the battery temperature adjustment device 1 is configured to supply heat from the heat source unit 40 to the first connection heat exchanger 30, the first heat medium evaporated inside the first connection heat exchanger 30 is the first heat medium. It flows from the gas passage 22 to the battery heat exchanger 10. Then, the first heat medium condensed in the battery heat exchanger 10 flows from the first liquid passage 21 to the first connection heat exchanger 30. Therefore, the battery temperature control device 1 can warm the battery 2 by circulating the first heat medium.
  • the configuration for warming up the battery 2 will be described in the ninth and tenth embodiments described later.
  • the second embodiment will be described with reference to FIGS. 4 and 5.
  • the second embodiment is the same as the first embodiment except that the configuration of the first connection heat exchanger 30 is modified with respect to the first embodiment, and therefore, parts different from the first embodiment Only explain.
  • the upper header tank 31 and the lower header tank 32 of the first connection heat exchanger 30 are omitted.
  • the first connection heat exchanger 30 of the second embodiment includes a heat transfer portion 36 between the tube 33 and the tube 33.
  • the first connection heat exchanger 30 includes an inner fin 34 in the flow passage inside the tube 33.
  • the inner fins 34 extend in the direction of gravity.
  • the heat transfer portion 36 also extends in the gravity direction.
  • the heat transfer portion 36 is a member formed of a thick material having good thermal conductivity, such as aluminum.
  • the heat transfer portion 36 may be formed of a heat pipe instead of being formed of a thick material.
  • the heat transfer portion 36 extends in the gravity direction along the tube 33 so as to straddle the liquid surface FL2 of the first heat medium flowing in the flow passage inside the tube 33 of the first connection heat exchanger 30.
  • the heat transfer section 36 has a function of performing heat conduction between the liquid phase first heat medium flowing inside the tube 33 of the first connection heat exchanger 30 and the gas phase first heat medium. That is, the heat transfer between the liquid phase first heat medium and the gas phase first heat medium inside the first connection heat exchanger 30 is efficiently performed via the heat transfer section 36. Therefore, the heat transfer efficiency from the heat source unit 40 to the first connection heat exchanger 30 is improved.
  • the heat transfer portion 36 is provided on the opposite side of the first thermal contact surface 35 to the second thermal contact surface 55 in the first connection heat exchanger 30.
  • the heat transfer portion 36 does not impede the heat transfer between the first thermal contact surface 35 and the second thermal contact surface 55, and the liquid phase of the liquid phase flowing inside the tube 33 of the first connection heat exchanger 30. It is possible to conduct heat conduction between the first heat carrier and the gas phase first heat carrier. Therefore, the battery temperature control device 1 of the second embodiment can enhance the cooling capacity and the warming function of the battery 2 by including the heat transfer portion 36.
  • the heat transfer part 36 mentioned above may be provided not only in the 1st connection heat exchanger 30 but in the 2nd connection heat exchanger 50. This is the same in the third and fourth embodiments described later.
  • the third embodiment is the same as the second embodiment except that the configuration of the first connection heat exchanger 30 is modified with respect to the second embodiment, and therefore parts different from the second embodiment Only explain. Also in FIG. 6, the upper header tank 31 and the lower header tank 32 of the first connection heat exchanger 30 are omitted.
  • the member itself forming the tube 33 of the first connection heat exchanger 30 constitutes the heat transfer portion 36.
  • the tube 33 and the heat transfer section 36 are both members made of a thick material having good thermal conductivity, such as aluminum.
  • the heat transfer of the liquid phase first heat medium and the gas phase first heat medium inside the first connection heat exchanger 30 is efficiently performed via the heat transfer section 36. Therefore, the heat transfer efficiency from the heat source unit 40 to the first connection heat exchanger 30 is improved.
  • the thickness T2 of the portion extending from the first thermal contact surface 35 to the opposite side to the second thermal contact surface 55 is thinner than the thickness T1 of the portion forming the first thermal contact surface 35. It is formed to be thick.
  • the heat transfer portion 36 does not impede the heat transfer between the first thermal contact surface 35 and the second thermal contact surface 55, and the liquid phase of the liquid phase flowing inside the tube 33 of the first connection heat exchanger 30. It is possible to conduct heat conduction between the first heat carrier and the gas phase first heat carrier. Therefore, the battery temperature control device 1 of the third embodiment can enhance the cooling capacity and the warm-up function of the battery 2 by including the heat transfer portion 36.
  • FIGS. 8 and 9 A fourth embodiment will be described with reference to FIGS. 8 and 9.
  • the fourth embodiment is the same as the second and third embodiments except that the configuration of the first connection heat exchanger 30 is modified with respect to the second and third embodiments. And, only portions different from the third embodiment will be described. Also in FIG. 8, the upper header tank 31 and the lower header tank 32 of the first connection heat exchanger 30 are omitted.
  • the member itself forming the tube 33 of the first connection heat exchanger 30 constitutes the heat transfer portion 36.
  • the heat transfer portion 36 is a member formed of a thick material having good thermal conductivity, such as aluminum.
  • the heat transfer portion 36 includes a portion of the first connection heat exchanger 30 which forms the first thermal contact surface 35, and the first thermal contact surface 35 with the flow passage inside the tube 33 with respect to the portion. Is provided at the opposite site.
  • the heat transfer of the liquid phase first heat medium and the gas phase first heat medium inside the first connection heat exchanger 30 is efficiently performed via the heat transfer section 36. Therefore, the heat transfer efficiency from the heat source unit 40 to the first connection heat exchanger 30 is improved. Therefore, the battery temperature control device 1 of the fourth embodiment can also enhance the cooling capacity and the warming function of the battery 2 by including the heat transfer portion 36.
  • the fifth embodiment will be described with reference to FIG. In FIG. 10, the state in which the first thermal contact surface 35 and the second thermal contact surface 55 are separated is described. However, also in the fifth embodiment, as in the first embodiment and the like, the first thermal contact surface 35 and the second thermal contact surface 55 are in direct thermal contact or indirect thermal contact via the thermal conductive member 41.
  • the battery temperature control device 1 is configured as one thermal circuit. The same applies to FIGS. 11 to 16 referred to in the embodiments to be described later.
  • the battery heat exchanger 10, the first pipe 20, the first connection heat exchanger 30, and the first pump 25 included in the battery temperature adjustment device 1 constitute a first liquid circuit 300.
  • the first liquid circuit 300 is detachably provided to the vehicle body together with the battery 2.
  • the first fluid circuit 300 is filled with a first heat medium.
  • a liquid such as water or oil is used.
  • the battery heat exchanger 10 is bonded to the battery module 4 by a heat-radiating sheet or the like having adhesiveness. Therefore, the battery heat exchanger 10 can perform heat exchange between the battery 2 and the first heat medium.
  • the first connection heat exchanger 30 has a first thermal contact surface 35 formed along the direction of gravity.
  • the second thermal contact surface 55 of the heat source portion 40 is in direct contact with the first thermal contact surface 35 or indirectly in thermal contact via the thermal conduction member 41.
  • the first pipe 20 has a first outward path 23 and a first return path 24.
  • the first forward path 23 connects the outlet / inlet 121 provided below the battery heat exchanger 10 and the outlet / inlet 321 provided below the first connection heat exchanger 30.
  • the first return path 24 connects the outlet / inlet 111 provided above the battery heat exchanger 10 and the outlet / inlet 311 provided above the first connection heat exchanger 30.
  • a first pump 25 is provided in the first forward path 23 or the first return path 24. When the first pump 25 is driven, the first heat medium circulates in the first liquid circuit 300.
  • the heat source section 40 provided in the battery temperature adjustment device 1 of the fifth embodiment is a second heat exchanger 50, a second pipe 60, radiators 70, 80, a second pump 65, and a reserve tank 66.
  • the second fluid circuit 400 is provided across each part of the vehicle body.
  • the second fluid circuit 400 is filled with a second heat medium.
  • a liquid such as water or oil is used.
  • the first heat medium flowing in the first liquid circuit 300 and the second heat medium flowing in the second liquid circuit 400 may not be mixed with each other, and therefore may be the same heat medium or different. It may be a heat medium.
  • the second connection heat exchanger 50 has a second thermal contact surface 55.
  • the second thermal contact surface 55 is also formed along the direction of gravity.
  • the first connection heat exchanger 30 and the second connection heat exchanger 50 are configured to be removable, as in the first embodiment described above. That is, when installing the battery temperature control device 1 in a vehicle, or when performing maintenance of the battery 2 installed in the vehicle, the first connection heat exchanger 30 and the second connection heat exchanger 50 can easily be used. It is a removable configuration.
  • the battery temperature control apparatus 1 of the fifth embodiment also constitutes one thermal circuit capable of heat transfer between the first liquid circuit 300 and the second liquid circuit 400.
  • the air radiator 70 is provided in an engine room or the like of the vehicle.
  • the air radiator 70 performs heat exchange between the second heat medium circulating in the second liquid circuit 400 and the outside air passing through the air radiator 70 to dissipate the heat of the second heat medium to the outside air. It is an exchanger.
  • the outside air passing through the air radiator 70 is an example of an external heat medium.
  • the refrigerant radiator 80 is configured to be supplied with cold heat from the evaporator 86 of the refrigeration cycle 85.
  • the refrigerant flowing through the refrigeration cycle 85 is an example of an external heat medium.
  • the radiator may be configured by a liquid cooling radiator that exchanges heat with a liquid such as cooling water flowing in a liquid circuit (not shown).
  • a liquid such as cooling water is also an example of the external heat medium.
  • the second pipe 60 has a second outward path 63 and a second return path 64.
  • the second forward path 63 is provided at the lower side of the refrigerant radiator 80, an outlet port 521 provided below the second connection heat exchanger 50, an outlet port 71 provided below the air radiator 70, and the refrigerant radiator 80. And the outlet port 81.
  • the second return path 64 has an outlet / inlet 511 provided above the second connection heat exchanger 50, an outlet / inlet 72 provided above the air radiator 70, and an outlet provided above the refrigerant radiator 80. It is connected with the entrance 82.
  • the second piping 60 complicates each part of the vehicle body between under the seat or trunk room of the vehicle provided with the battery pack 5 and in the engine room where the air radiator 70 and the refrigerant radiator 80 are provided. It will be circumvented.
  • a second pump 65 is provided in the second outward path 63 or the second return path 64. When the second pump 65 is driven, the second heat medium circulates in the second fluid circuit 400.
  • the battery temperature adjustment device 1 Similar to the first embodiment, the battery temperature adjustment device 1 according to the fifth embodiment described above installs the battery pack 5 and the first liquid circuit 300 in the vehicle when the vehicle is manufactured, and It is possible to perform the work of installing the two liquid circuits 400 in separate steps. Then, the first thermal contact surface 35 of the first connection heat exchanger 30 and the second thermal contact surface 55 of the second connection heat exchanger 50 are in direct thermal contact or indirect thermal contact via the thermal conductive member 41. Thus, it is possible to configure the battery temperature control device 1 as one thermal circuit.
  • the battery temperature adjustment device 1 of the fifth embodiment separates the first connection heat exchanger 30 and the second connection heat exchanger 50 at the time of maintenance of the battery 2, It is possible to remove the battery pack 5 and the first fluid circuit 300 together from the vehicle. Therefore, the battery 2 can be easily maintained in a short time without performing the first and second heat medium extraction and refilling operations for the first and second liquid circuits 300 and 400. is there.
  • FIG. 10 the movement of the first heat medium of the first liquid circuit 300 and the movement of the second heat medium of the second liquid circuit 400 when the battery temperature control device 1 cools the battery 2 are indicated by solid arrows. It shows.
  • the battery temperature control device 1 cools the battery 2
  • the first pump 25 and the second pump 65 are driven.
  • the first heat medium circulates in the first liquid circuit 300
  • the second heat medium circulates in the second liquid circuit 400.
  • the heat generated by the battery 2 is absorbed by the first heat medium in the battery heat exchanger 10.
  • the first heat medium heated by the battery heat exchanger 10 flows into the first connection heat exchanger 30 through the first return path 24.
  • heat exchange between the first heat medium and the second heat medium is performed. That is, heat is transported by thermal contact between the first connection heat exchanger 30 and the second connection heat exchanger 50.
  • the first heat medium is transferred to the second heat medium via the first and second heat contact surfaces 35 and 55 in the first connection heat exchanger 30. Heat is released.
  • the first heat medium cooled by the first connection heat exchanger 30 flows into the battery heat exchanger 10 through the first forward path 23 and the first pump 25.
  • the second heat medium absorbs heat from the first heat medium via the first and second thermal contact surfaces 35, 55.
  • the second heat medium heated by the second connection heat exchanger 50 passes through the second return path 64 and flows into the radiators 70, 80.
  • the second heat medium dissipates heat to an external heat medium such as ambient air or a refrigerant.
  • the second heat medium cooled by the radiators 70 and 80 flows into the second connection heat exchanger 50 through the second outward path 63 and the second pump 65.
  • the battery temperature control device 1 of the fifth embodiment can also cool the battery 2 mounted on the vehicle.
  • the battery temperature adjusting device 1 of the fifth embodiment described above can exhibit the same effects as those of the first embodiment and the like.
  • a Peltier element 90 is provided between the first connection heat exchanger 30 and the second connection heat exchanger 50 in the fifth embodiment. That is, in the sixth embodiment, heat transfer is performed between the first heat medium flowing in the first liquid circuit 300 and the second heat medium flowing in the second liquid circuit 400 via the Peltier element 90.
  • the surface 91 on the first thermal contact surface 35 side of the Peltier device 90 is a cooling surface
  • the surface 92 on the second thermal contact surface 55 of the Peltier element 90 is a heat dissipation surface Become.
  • the first connection heat exchange is performed via the Peltier element 90.
  • Cold heat of a desired temperature lower than the outside air temperature can be supplied to the vessel 30.
  • the battery temperature control apparatus 1 of the sixth embodiment described above can also achieve the same function and effect as those of the first embodiment and the like.
  • a Peltier element 90 is provided between the first connection heat exchanger 30 and the second connection heat exchanger 50 in the first embodiment. That is, in the seventh embodiment, heat transfer is performed via the Peltier element 90 between the first heat medium flowing through the first thermosiphon circuit 100 and the second heat medium flowing through the second thermosiphon circuit 200. .
  • the function of the Peltier device 90 is the same as that described in the sixth embodiment. Therefore, the battery temperature control apparatus 1 of the seventh embodiment can also achieve the same function and effect as those of the first embodiment and the like.
  • the eighth embodiment will be described with reference to FIG.
  • the eighth embodiment is a combination of the sixth and seventh embodiments.
  • the Peltier element 90 is provided between the first connection heat exchanger 30 and the second connection heat exchanger 50. That is, in the seventh embodiment, heat transfer is performed between the first heat medium flowing in the first thermosiphon circuit 100 and the second heat medium flowing in the second liquid circuit 400 via the Peltier element 90.
  • the battery temperature control device 1 of the eighth embodiment can also achieve the same effects as those of the first embodiment and the like.
  • thermosiphon circuit 200 a first heat medium flowing in the first liquid circuit 300 and a second heat medium flowing in the second thermosiphon circuit 200
  • heat transfer may be performed via the Peltier element 90.
  • the ninth embodiment A ninth embodiment will be described with reference to FIG.
  • a heating unit 45 and a flow path switching valve 46 are provided to the second thermosiphon circuit 200, as compared with the first embodiment.
  • the heating unit 45 is a device capable of heating the second heat medium flowing through the second thermosiphon circuit 200.
  • the second connection heat exchanger 50 is separately connected to the second pipe 60 provided with the heating unit 45 and the second pipe 60 provided with the radiators 70 and 80. If this is done, it is possible to omit the flow path switching valve 46.
  • FIG. 14 shows the movement of the first heat medium of the first thermosyphon circuit 100 and the second heat medium of the second thermosyphon circuit 200 when the battery temperature control device 1 warms up the battery 2 as a broken line and a solid line Shown by the arrow.
  • the heating unit 45 is driven. Further, the flow path is switched by the flow path switching valve 46, and the second heat medium circulates between the heating unit 45 and the second connection heat exchanger 50 without passing through the radiators 70 and 80.
  • the second heat medium that has evaporated into a gas flows from the heating unit 45 into the second connection heat exchanger 50. That is, heat is transported from the heating unit 45 to the second connection heat exchanger 50 by the second heat medium.
  • heat exchange between the second heat medium and the first heat medium is performed via the second heat contact surface 55 and the first heat contact surface 35.
  • the second heat medium is transferred to the first heat medium via the first and second heat contact surfaces 35 and 55 in the second connection heat exchanger 50. Heat dissipates and condenses.
  • the second heat medium that has become liquid in the second connection heat exchanger 50 flows into the heating unit 45 again.
  • the first heat medium absorbs heat from the second heat medium via the first and second thermal contact surfaces 35, 55 and evaporates.
  • the first heat medium that has become a gas in the first connection heat exchanger 30 flows from the first connection heat exchanger 30 through the first gas passage 22 into the battery heat exchanger 10.
  • the battery heat exchanger 10 the first heat medium releases heat to the battery 2 and condenses. That is, heat is transported from the battery heat exchanger 10 to the battery 2 by the first heat medium, and the battery 2 is warmed up.
  • the first heat medium that has become liquid in the battery heat exchanger 10 flows into the first connection heat exchanger 30 again from the first liquid passage 21.
  • the heat generated from the heating unit 45 is transported in the order of the second connection heat exchanger 50, the first connection heat exchanger 30, the battery heat exchanger 10, and the battery 2.
  • the battery temperature adjustment device 1 supplies the first heat to the first connection heat exchanger 30 from the second connection heat exchanger 50 provided in the heat source unit 40, thereby providing the first thermosiphon circuit 100 with the first temperature.
  • the heat medium can be circulated to warm up the battery 2.
  • the Peltier element 90 may be disposed between the first thermal contact surface 35 and the second thermal contact surface 55. Thereby, when supplying heat from the second connection heat exchanger 50 included in the heat source unit 40 to the first connection heat exchanger 30, the temperature of the second thermal contact surface 55 of the heat source unit 40 is higher by the Peltier element 90 Can be supplied to the first thermal contact surface 35.
  • a heating unit 45 and a flow path switching valve 46 are provided in the second thermosiphon circuit 200 in the eighth embodiment.
  • the movement of the first heat medium of the first thermosiphon circuit 100 when the battery temperature control device 1 warms up the battery 2 is indicated by a solid line and a broken arrow, and the second liquid circuit 400 The movement of the heat medium is indicated by solid arrows.
  • the heating unit 45 and the pump 65 are driven. Further, the flow path is switched by the flow path switching valve 46, and the second heat medium circulates between the heating unit 45 and the second connection heat exchanger 50 without passing through the radiators 70 and 80.
  • the second heat medium heated by the heating unit 45 flows from the heating unit 45 into the second connection heat exchanger 50.
  • the second heat medium is transferred to the first heat medium via the first and second heat contact surfaces 35 and 55 in the second connection heat exchanger 50. Heat is released.
  • the second heat medium that has dissipated and cooled in the second connection heat exchanger 50 flows into the heating unit 45 again.
  • the movement of the first heat medium of the first thermosiphon circuit 100 is the same as the movement of the first heat medium described in the ninth embodiment.
  • the battery temperature control apparatus 1 of the tenth embodiment can also achieve the same function and effect as those of the ninth embodiment.
  • the eleventh embodiment is a modification of the first embodiment in which part of the configuration of the first thermosiphon circuit 100 is changed.
  • the plurality of first thermosiphon circuits 100 are provided in parallel to the plurality of second connection heat exchangers 50 included in the heat source unit 40.
  • the plurality of first thermosiphon circuits 101 and 102 are provided in series to the second connection heat exchanger 50 provided in the heat source unit 40.
  • the connection heat exchanger 30 a included in the predetermined first thermosiphon circuit 101 is in thermal contact with the second connection heat exchanger 50 included in the heat source unit 40.
  • connection heat exchanger 30b included in the predetermined first thermosiphon circuit 101 and the connection heat exchanger 30c included in the other first thermosiphon circuit 102 are in thermal contact to configure a thermal circuit. ing. That is, the battery temperature control device 1 can adopt various circuit configurations using thermal contact.
  • the shape of the components when referring to a positional relationship or the like, except in particular clearly the case and principle specific shape, etc. If to be limited to the positional relationship or the like, the shape, It is not limited to the positional relationship and the like.
  • the battery temperature control device 1 for adjusting the temperature of the battery 2 mounted on the vehicle has been described, but the battery 2 targeted by the battery temperature control device 1 is not limited to one mounted on the vehicle .
  • the battery temperature control device 1 may control the temperature of the large battery 2 installed in stationary equipment or the like.
  • the battery temperature control device 1 can enhance the assemblability of the battery temperature control device 1 and the battery 2 with respect to stationary equipment and the like, and the maintainability of the battery temperature control device 1 and the battery 2 at the time of use.
  • the battery temperature control apparatus for controlling the temperature of the battery includes a battery heat exchanger, piping, a connection heat exchanger, and a heat source unit. .
  • the battery heat exchanger performs heat exchange between the battery and the heat medium.
  • the piping is connected to the battery heat exchanger, and the heat medium flows.
  • the connection heat exchanger is configured to allow the heat medium to flow through the battery heat exchanger and the piping, and has a first thermal contact surface formed along the direction of gravity.
  • the heat source unit is configured to be attachable to and detachable from the connection heat exchanger, and has a second thermal contact surface that is in direct thermal contact with the first thermal contact surface or in indirect thermal contact via a thermal conduction member. And a heat source part can cool or heat the heat carrier which flows through a connection heat exchanger in the state where the 1st thermal contact side and the 2nd thermal contact side were in thermal contact.
  • the pipe has a liquid passage and a gas passage.
  • the liquid passage includes an outlet / inlet provided below the liquid surface of the heat medium in the battery heat exchanger, and an outlet / inlet provided below the liquid surface of the heat medium in the connected heat exchanger.
  • Connect The gas passage connects an outlet / inlet provided above the liquid surface of the heat medium in the battery heat exchanger and an outlet / inlet provided above the liquid surface of the heat medium in the connected heat exchanger.
  • the battery heat exchanger, the piping, and the connection heat exchanger constitute a thermosyphon circuit in which a heat medium circulates.
  • the liquid surface of the heat medium flowing through the thermosyphon circuit is located midway in the flow path inside the battery heat exchanger, and midway in the flow path inside the connected heat exchanger.
  • the battery temperature control device can adjust the temperature of the battery with a configuration having high heat transfer efficiency using the thermosyphon circuit.
  • the liquid surface of the heat medium is located midway in the flow path inside the battery heat exchanger and located midway in the flow path inside the connection heat exchanger It is possible to both cool and warm up the battery. Specifically, when the battery generates heat, the heat medium evaporated in the battery heat exchanger flows from the gas passage to the connection heat exchanger. When cold heat is supplied from the heat source unit to the connection heat exchanger, the heat medium of the connection heat exchanger condenses and flows from the liquid passage to the battery heat exchanger. Thereby, the battery temperature control device can cool the battery.
  • the heat medium evaporated in the connection heat exchanger flows from the gas passage to the battery heat exchanger.
  • the heat medium condensed by the battery heat exchanger flows from the liquid passage to the connection heat exchanger.
  • the heat transfer unit further includes a heat transfer unit that conducts heat with the heat medium. According to this, heat is transmitted via the heat transfer portion between the heat medium of the liquid phase inside the connection heat exchanger and the heat medium of the gas phase. Therefore, the heat transfer from the heat source unit to the connection heat exchanger is improved. Therefore, the battery temperature control device can increase the cooling capacity and the warm-up capability of the battery.
  • the heat transfer portion is provided on the opposite side of the first thermal contact surface to the second thermal contact surface in the connection heat exchanger. According to this, the heat transfer portion is not affected by the heat transfer between the first thermal contact surface and the second thermal contact surface, and the heat medium of the liquid phase and the heat of the gas phase flowing inside the connection heat exchanger It is possible to conduct heat transfer with the medium.
  • the thickness of the portion extending from the first thermal contact surface to the opposite side to the second thermal contact surface is thinner than the thickness of the portion forming the first thermal contact surface It is formed to be thick. According to this, the heat transfer portion is not affected by the heat transfer between the first thermal contact surface and the second thermal contact surface, and the heat medium of the liquid phase and the heat of the gas phase flowing inside the connection heat exchanger It is possible to conduct heat transfer with the medium.
  • the battery temperature control apparatus further includes a Peltier element provided between the first thermal contact surface and the second thermal contact surface.
  • a Peltier element provided between the first thermal contact surface and the second thermal contact surface.
  • the heat medium is a first heat medium
  • the pipe is a first pipe
  • the connection heat exchanger is a first connection heat exchanger.
  • the heat source unit includes a second connection heat exchanger, a second pipe, and a radiator.
  • the second connection heat exchanger exchanges heat between the first heat medium and the second heat medium via the second heat contact surface.
  • the second pipe is connected to the second connection heat exchanger, and the second heat medium flows.
  • the radiator is configured such that the second heat medium flows through the second connection heat exchanger and the second pipe, and the heat exchange between the external heat medium and the second heat medium dissipates the heat of the second heat medium.
  • the heat source section is configured by the second thermosiphon circuit or the liquid circuit having the second connection heat exchanger, the second pipe, and the radiator. Therefore, the heat generation of the battery is transported in the order of the battery heat exchanger, the first piping, the first connection heat exchanger, the second connection heat exchanger, the second piping, and the radiator, and the heat is dissipated by the radiator. Therefore, this battery temperature control device can cool the battery.
  • the heat source unit further includes a heating unit connected to the second pipe and configured to heat the second heat medium. According to this, it is possible to supply heat from the heat source unit to the battery via the connection heat exchanger and the battery heat exchanger by the second heat medium heated by the heating unit. Therefore, this battery temperature control apparatus can warm up the battery.

Abstract

A battery heat exchanger (10) exchanges heat between a battery (2) and a heat medium. A tube (20) is connected to the battery heat exchanger (10) and the heat medium flows through the tube. A connection heat exchanger (30) is configured such that the heat medium flows through the battery heat exchanger (10) and the tube (20), and the connection heat exchanger (30) has a first thermal contact surface (35) formed along the direction of gravity. The heat source unit (40) is configured to be detachable from the connection heat exchanger (30) and has a second thermal contact surface (55) which thermally contacts the first thermal contact surface (35) directly, or indirectly through a heat transmission member (41). In a state of thermal contact between the first thermal contact surface (35) and the second thermal contact surface (55), the heat source unit (40) can cool or heat the heat medium flowing through the connection heat exchanger (30).

Description

電池温調装置Battery temperature controller 関連出願への相互参照CROSS-REFERENCE TO RELATED APPLICATIONS
 本出願は、2017年8月24日に出願された日本特許出願番号2017-161260号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2017-161260 filed on Aug. 24, 2017, the contents of which are incorporated herein by reference.
 本開示は、電池の温度を調節する電池温調装置に関するものである。 The present disclosure relates to a battery temperature control device that adjusts the temperature of a battery.
 従来、車両または定置設備等に設置された電池を冷却または暖機する技術が検討されている。 Conventionally, a technique for cooling or warming up a battery installed in a vehicle or stationary equipment or the like has been considered.
 特許文献1に記載の電池温調装置は、サーモサイフォン回路により車両に設置された電池の温度を調整するものである。この電池温調装置は、電池に固定された電池用熱交換器と、その電池用熱交換器の上方に設けられた凝縮器とが2本の配管により接続され、その中に作動流体としての熱媒体が封入された構成である。 The battery temperature control device described in Patent Document 1 adjusts the temperature of a battery installed in a vehicle by a thermosiphon circuit. In this battery temperature control apparatus, a heat exchanger for a battery fixed to a battery and a condenser provided above the heat exchanger for a battery are connected by two pipes, in which a working fluid is provided. The heat medium is sealed.
 この電池温調装置は、電池が発熱すると、電池用熱交換器の内側の熱媒体が電池から吸熱して蒸発し、一方の配管を通って凝縮器に流入する。凝縮器は、その気相の熱媒体を、外部の熱媒体との熱交換により凝縮させる。凝縮器で凝縮した液相の熱媒体は、自重により他方の配管内を流下して電池用熱交換器に流入する。このように、この電池温調装置は、サーモサイフォン回路に熱媒体を自然循環させ、電池用熱交換器の内側で熱媒体が沸騰蒸発するときの気化熱により電池を冷却するものである。 In this battery temperature control device, when the battery generates heat, the heat medium inside the battery heat exchanger absorbs heat from the battery, evaporates, and flows into the condenser through one pipe. The condenser condenses the heat medium in the gas phase by heat exchange with an external heat medium. The heat medium of the liquid phase condensed by the condenser flows down the inside of the other pipe by its own weight and flows into the battery heat exchanger. As described above, this battery temperature control device naturally circulates the heat medium in the thermosyphon circuit, and cools the battery by heat of vaporization when the heat medium is boiled and evaporated inside the heat exchanger for the battery.
 また、この電池温調装置は、電池用熱交換器の内側に、熱媒体を加熱することの可能な加熱部を備えている。電池温調装置は、電池の暖機時に、加熱部により熱媒体を加熱する。加熱された熱媒体は、電池用熱交換器の内側で気化した後、電池に放熱することで、凝縮する。このように、電池温調装置は、電池用熱交換器の内側での熱媒体の相変化により電池を加熱することも可能である。 Moreover, this battery temperature control apparatus is equipped with the heating part which can heat a heat carrier inside the heat exchanger for batteries. The battery temperature control device heats the heat medium by the heating unit when the battery is warmed up. The heated heat medium evaporates inside the battery heat exchanger and then condenses by radiating heat to the battery. As described above, the battery temperature control device can also heat the battery by phase change of the heat medium inside the battery heat exchanger.
特許第5942943号公報Patent No. 5942943 gazette
 発明者らは、特許文献1のような車両等に搭載される電池温調装置に関し、次のような課題を見出した。すなわち、図17に示すように、車両等に設置される大型の電池2は、複数の電池セル3が組み合わされた電池モジュール4が複数格納された電池パック5として、車両の座席下またはトランクルームの下などに搭載される。その電池パック5に格納される電池モジュール4に対し、電池温調装置700が備える電池用熱交換器710は、図示していない粘着性の放熱シート等により接着される。電池用熱交換器710が接着された複数の電池モジュール4は、隙間が殆どない状態で電池パック5のケース内に格納される。一方、電池温調装置700が備える凝縮器770、780は、車両のエンジンルームなどに配置される。そのため、電池用熱交換器710と凝縮器770、780とを接続する配管720は、車体の各部を複雑に取り回されることとなる。このような構成において、車両等に電池温調装置700を設置する際、電池パック5に格納された電池用熱交換器710と、車体の各部を取り回された配管720とをねじ790等により接続する作業が必要になる。そして、そのように構成されたサーモサイフォン回路を真空引きし、そこに熱媒体を充填する作業が必要となる。 The inventors have found the following problems regarding the battery temperature control device mounted on a vehicle as described in Patent Document 1 or the like. That is, as shown in FIG. 17, a large battery 2 installed in a vehicle or the like is used as a battery pack 5 in which a plurality of battery modules 4 in which a plurality of battery cells 3 are combined is stored. It is mounted at the bottom etc. The battery heat exchanger 710 provided in the battery temperature adjustment device 700 is adhered to the battery module 4 stored in the battery pack 5 by an adhesive heat-dissipation sheet or the like (not shown). The plurality of battery modules 4 to which the battery heat exchanger 710 is adhered are stored in the case of the battery pack 5 with almost no gap. On the other hand, the condensers 770 and 780 included in the battery temperature control device 700 are disposed in the engine room of the vehicle or the like. Therefore, the piping 720 connecting the battery heat exchanger 710 and the condensers 770 and 780 will be complicatedly routed around each part of the vehicle body. In such a configuration, when installing the battery temperature control device 700 in a vehicle or the like, the battery heat exchanger 710 stored in the battery pack 5 and the piping 720 around each part of the vehicle body are separated by the screw 790 or the like. It is necessary to work to connect. Then, it is necessary to evacuate the thermosiphon circuit configured as described above and fill the heat medium there.
 また、車両等に設置された電池2のメンテナンスを行う際には、車両から電池パック5を取り外した後に、電池セル3の交換または点検作業を行わなければならない。具体的に、電池セル3の交換または点検前には、サーモサイフォン回路から熱媒体の抜き取り作業→電池用熱交換器710と配管720との分解作業→車体から電池パック5の取り外し作業→電池用熱交換器710と電池モジュール4との分離作業などが必要となる。また、電池セル3の交換または点検後には、電池用熱交換器710と電池モジュール4との接続作業→車体への電池パック5の取り付け作業→電池用熱交換器710と配管720との接続作業→サーモサイフォン回路の真空引き作業→熱媒体の充填作業などが必要となる。したがって、車両等への電池温調装置700の設置、および、車両等に設置された電池2のメンテナンスには、非常に大きな時間と手間を要する。 Moreover, when performing maintenance of the battery 2 installed in a vehicle etc., after removing the battery pack 5 from a vehicle, it is necessary to perform replacement | exchange of the battery cell 3, or inspection work. Specifically, before replacement or inspection of the battery cell 3, removal of the heat medium from the thermosyphon circuit → disassembly of the battery heat exchanger 710 and the pipe 720 → removal of the battery pack 5 from the vehicle body → for the battery A separation operation between the heat exchanger 710 and the battery module 4 is required. In addition, after replacement or inspection of battery cell 3, connection work of battery heat exchanger 710 and battery module 4 work of attachment of battery pack 5 to vehicle body work of connection of battery heat exchanger 710 and piping 720 → It is necessary to evacuate the thermosyphon circuit → fill the heat medium. Therefore, installation of the battery temperature control apparatus 700 in a vehicle etc., and maintenance of the battery 2 installed in the vehicle etc. require very big time and effort.
 なお、上記課題では、電池が車両に搭載される場合について説明したが、本開示の電池温調装置が温度調整の対象とする電池は、車両に搭載されるものに限らない。例えば、定置設備等に設置される大型の電池についても、組付け時およびメンテナンス時には、同様の課題がある。したがって、本開示の電池温調装置は、車両に搭載される電池に限らず、定置設備等に設置される電池も対象としている。 In addition, although the case where a battery is mounted in a vehicle was demonstrated by the said subject, the battery which the battery temperature control apparatus of this indication makes temperature adjustment object is not restricted to what is mounted in a vehicle. For example, even with a large battery installed in stationary equipment and the like, there are similar problems at the time of assembly and maintenance. Therefore, the battery temperature control device of the present disclosure is not limited to the battery mounted on the vehicle, but also covers the battery installed in stationary equipment and the like.
 本開示は、組付け性およびメンテナンス性を高めることの可能な電池温調装置を提供することを目的とする。 An object of the present disclosure is to provide a battery temperature control device capable of enhancing assemblability and maintainability.
 本開示の1つの観点によれば、
 電池の温度を調節する電池温調装置であって、
 電池と熱媒体との熱交換を行う電池用熱交換器と、
 電池用熱交換器に接続され、熱媒体が流れる配管と、
 電池用熱交換器と配管を通じて熱媒体が流れるように構成され、重力方向に沿うように形成される第1熱接触面を有する接続熱交換器と、
 接続熱交換器に対し着脱可能に構成され、第1熱接触面に直接接触または熱伝導部材を介して間接的に熱接触する第2熱接触面を有し、第1熱接触面と第2熱接触面とが熱接触した状態で接続熱交換器を流れる熱媒体を冷却または加熱することの可能な熱源部と、を備える。
According to one aspect of the present disclosure,
A battery temperature control device for controlling the temperature of the battery,
A battery heat exchanger that exchanges heat between the battery and the heat medium;
Piping connected to the battery heat exchanger and through which the heat medium flows;
A connection heat exchanger configured to flow a heat medium through the battery heat exchanger and the piping and having a first thermal contact surface formed along the direction of gravity;
It has a second thermal contact surface configured to be attachable to and detachable from the connection heat exchanger and in direct thermal contact with the first thermal contact surface or indirectly through the thermal conduction member, and the first thermal contact surface and the second thermal contact surface And a heat source portion capable of cooling or heating the heat medium flowing through the connection heat exchanger in a state of thermal contact with the thermal contact surface.
 これによれば、車両または定置設備等の製造時において、電池に電池用熱交換器、配管および接続熱交換器を設置する作業と、車両または定置設備等に熱源部を設置する作業とを別工程で行うことが可能である。そして、接続熱交換器の第1熱接触面と熱源部の第2熱接触面とを直接接触または熱伝導部材を介して間接的に熱接触させることで、1つの熱回路としての電池温調装置を構成することが可能である。 According to this, at the time of production of a vehicle or stationary equipment, the work of installing the battery heat exchanger, piping and connection heat exchanger in the battery and the work of installing the heat source unit in the vehicle or stationary equipment etc. It is possible to carry out in the process. Then, the first thermal contact surface of the connection heat exchanger and the second thermal contact surface of the heat source unit are brought into direct thermal contact or indirect thermal contact via the thermal conduction member, thereby adjusting the battery temperature as one thermal circuit. It is possible to configure the device.
 また、車両または定置設備等に設置された電池用熱交換器または電池のメンテナンスを行う際、接続熱交換器と熱源部とを分離すれば、電池と電池用熱交換器と配管と接続熱交換器を一緒に、車両または定置設備等から取り外すことが可能である。そのため、車両または定置設備等における熱源部の配管の取り回しなどが複雑な構成である場合でも、電池用熱交換器等に対する熱媒体の抜き取り作業および再充填作業を行うことなく、電池用熱交換器または電池のメンテナンスを短時間で容易に行うことが可能である。したがって、この電池温調装置は、車両または定置設備等に対する電池温調装置および電池の組付け性と、使用時における電池温調装置および電池のメンテナンス性を高めることができる。 In addition, when maintaining the battery heat exchanger or the battery installed in the vehicle or stationary equipment, if the connection heat exchanger and the heat source unit are separated, the battery, the battery heat exchanger, the piping, and the connection heat exchange are performed. The devices can be removed together from the vehicle or stationary equipment etc. Therefore, even if the arrangement of the piping of the heat source unit in a vehicle or stationary equipment etc. has a complicated configuration, the heat exchanger for battery can be carried out without performing the work of extracting the heat medium to the heat exchanger for battery etc. Alternatively, battery maintenance can be easily performed in a short time. Therefore, this battery temperature control device can enhance the assemblability of the battery temperature control device and the battery with respect to the vehicle or stationary equipment and the like, and the maintainability of the battery temperature control device and the battery at the time of use.
 なお、上記各構成に付した括弧内の符号は、後述する実施形態に記載する具体的構成との対応関係の一例を示したものである。 In addition, the code | symbol in the parenthesis attached | subjected to each said structure shows an example of the correspondence with the specific structure described in embodiment mentioned later.
第1実施形態に係る電池温調装置の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the battery temperature control apparatus which concerns on 1st Embodiment. 図1の電池温調装置の部分拡大図である。It is the elements on larger scale of the battery temperature control apparatus of FIG. 第1実施形態に係る電池温調装置の回路構成図である。It is a circuit block diagram of the battery temperature control apparatus which concerns on 1st Embodiment. 第2実施形態の電池用熱交換器の部分的な斜視図である。It is a partial perspective view of the heat exchanger for batteries of 2nd Embodiment. 図4のV-V線の断面図である。FIG. 5 is a cross-sectional view taken along line VV of FIG. 4; 第3実施形態の電池用熱交換器の部分的な斜視図である。It is a partial perspective view of the heat exchanger for batteries of 3rd Embodiment. 図6のVII-VII線の断面図である。FIG. 7 is a cross-sectional view taken along line VII-VII of FIG. 第4実施形態の電池用熱交換器の部分的な斜視図である。It is a partial perspective view of the heat exchanger for batteries of 4th Embodiment. 図8のIX-IX線の断面図である。FIG. 9 is a cross-sectional view taken along line IX-IX in FIG. 第5実施形態に係る電池温調装置の回路構成図である。It is a circuit block diagram of the battery temperature control apparatus which concerns on 5th Embodiment. 第6実施形態に係る電池温調装置の回路構成図である。It is a circuit block diagram of the battery temperature control apparatus which concerns on 6th Embodiment. 第7実施形態に係る電池温調装置の回路構成図である。It is a circuit block diagram of the battery temperature control apparatus which concerns on 7th Embodiment. 第8実施形態に係る電池温調装置の回路構成図である。It is a circuit block diagram of the battery temperature control apparatus which concerns on 8th Embodiment. 第9実施形態に係る電池温調装置の回路構成図である。It is a circuit block diagram of the battery temperature control apparatus which concerns on 9th Embodiment. 第10実施形態に係る電池温調装置の回路構成図である。It is a circuit block diagram of the battery temperature control apparatus which concerns on 10th Embodiment. 第11実施形態に係る電池温調装置の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the battery temperature control apparatus which concerns on 11th Embodiment. 比較例の電池温調装置の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the battery temperature control apparatus of a comparative example.
 以下、本開示の実施形態について図を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, parts that are the same as or equivalent to each other will be described with the same reference numerals.
 (第1実施形態)
 第1実施形態について、図1~図3を参照して説明する。第1実施形態の電池温調装置1は、電気自動車やハイブリッド車などの電動車両(以下、単に「車両」という)に搭載されるものである。第1実施形態の電池温調装置1は、車両に搭載される二次電池(以下、「電池2」という)を冷却する冷却装置として機能する。
First Embodiment
The first embodiment will be described with reference to FIGS. 1 to 3. The battery temperature control device 1 of the first embodiment is mounted on an electric vehicle such as an electric vehicle or a hybrid vehicle (hereinafter, simply referred to as a “vehicle”). The battery temperature control device 1 of the first embodiment functions as a cooling device for cooling a secondary battery (hereinafter referred to as “battery 2”) mounted on a vehicle.
 まず、電池温調装置1が冷却する対象機器としての電池2について説明する。車両に設置される大型の電池2は、複数の電池セル3が組み合わされた電池モジュール4が複数格納された電池パック5(すなわち蓄電装置)として、車両の座席下またはトランクルームの下などに搭載される。電池2に蓄えた電力は、インバータなどを介して車両走行用モータに供給される。電池2は車両走行中など充放電時に自己発熱する。電池2は高温になると、十分な機能を発揮できないだけでなく、劣化や破損を招くので、電池2を一定温度以下に維持するための冷却装置が必要となる。 First, the battery 2 as a target device to be cooled by the battery temperature control device 1 will be described. A large battery 2 installed in a vehicle is mounted under a seat of a vehicle or under a trunk room as a battery pack 5 (i.e., a storage device) in which a plurality of battery modules 4 in which a plurality of battery cells 3 are combined is stored. Ru. The power stored in the battery 2 is supplied to the vehicle drive motor via an inverter or the like. The battery 2 generates heat when charging and discharging, for example, while the vehicle is traveling. When the temperature of the battery 2 becomes high, it not only can not exert sufficient functions but also causes deterioration or breakage, so a cooling device for maintaining the battery 2 at a certain temperature or lower is required.
 また、夏季などの外気温が高い季節では、車両走行中だけでなく、駐車放置中などにも電池2の温度は上昇する。また、電池2は車両の床下やトランクルーム下などに配置されることが多く、電池2に与えられる単位時間当たりの熱量は小さいものの、長時間の放置により電池2の温度は徐々に上昇する。電池2を高温状態で放置すると電池2の寿命が短くなるので、車両の放置中も電池2を冷却するなど電池2の温度を低温に維持することが望まれている。 In addition, in a season where the outside air temperature is high such as summer, the temperature of the battery 2 rises not only while the vehicle is traveling but also while it is parked and the like. Also, the battery 2 is often disposed under the floor of the vehicle, under the trunk room, etc., and although the amount of heat per unit time given to the battery 2 is small, the temperature of the battery 2 gradually rises by leaving for a long time. When the battery 2 is left in a high temperature state, the life of the battery 2 is shortened. Therefore, it is desirable to maintain the temperature of the battery 2 at a low temperature, such as cooling the battery 2 while the vehicle is left.
 さらに、電池2は、複数の電池セル3を含む電池モジュール4として構成されているが、各電池セル3の温度にばらつきがあると電池セル3の劣化に偏りが生じ、電池2の蓄電性能が低下してしまう。これは、最も劣化した電池セル3の特性に合わせて蓄電装置の入出力特性が決まることによる。そのため、長期間にわたって電池2に所望の性能を発揮させるためには、複数の電池セル3の相互間の温度ばらつきを低減させる均温化が重要となる。 Furthermore, although battery 2 is configured as battery module 4 including a plurality of battery cells 3, if there is variation in the temperature of each battery cell 3, bias occurs in the deterioration of battery cell 3, and the storage performance of battery 2 It will decrease. This is because the input / output characteristics of the power storage device are determined in accordance with the characteristics of the battery cell 3 that has deteriorated the most. Therefore, in order to cause the battery 2 to exhibit desired performance over a long period of time, it is important to make the temperature uniform to reduce the temperature variation among the plurality of battery cells 3.
 また、一般に、電池2を冷却する他の冷却装置として、ブロワによる送風方式が採用されることがある。しかし、ブロワは車室内の空気を送風するだけなので、冷却能力は低い。また、ブロワによる送風では空気の顕熱で電池2を冷却するので、空気流れの上流と下流との間で温度差が大きくなり、複数の電池セル3同士の温度ばらつきを十分に抑制できない。このような背景から、第1実施形態の電池温調装置1は、熱媒体の自然循環によって電池2の温度を調整するサーモサイフォン方式を採用している。 Also, in general, as another cooling device for cooling the battery 2, a blower system using a blower may be adopted. However, since the blower only blows the air in the passenger compartment, the cooling capacity is low. Further, since the battery 2 is cooled by the sensible heat of the air in the blowing by the blower, the temperature difference between the upstream and the downstream of the air flow becomes large, and the temperature variation between the plurality of battery cells 3 can not be sufficiently suppressed. From such a background, the battery temperature control device 1 of the first embodiment adopts a thermo-siphon system in which the temperature of the battery 2 is adjusted by natural circulation of the heat medium.
 次に、電池温調装置1の構成について説明する。電池温調装置1は、電池用熱交換器10と配管20と接続熱交換器30と熱源部40を備えている。第1実施形態の電池温調装置1が備える電池用熱交換器10と配管20と接続熱交換器30は、第1のサーモサイフォン回路100を構成している。第1のサーモサイフォン回路100は、電池パック5側に設けられている。以下の説明では、第1のサーモサイフォン回路100を構成する配管20を第1配管20と称し、第1のサーモサイフォン回路100を構成する接続熱交換器30を第1接続熱交換器30と称する。また、第1のサーモサイフォン回路100を流れる熱媒体を第1熱媒体と称する。第1熱媒体には、例えば、HFO-1234yfまたはHFC-134aなどのフロン系の作動流体が用いられる。 Next, the configuration of the battery temperature control device 1 will be described. The battery temperature adjustment device 1 includes a battery heat exchanger 10, a pipe 20, a connection heat exchanger 30, and a heat source unit 40. The battery heat exchanger 10, the pipe 20, and the connection heat exchanger 30 included in the battery temperature control device 1 according to the first embodiment constitute a first thermosyphon circuit 100. The first thermosiphon circuit 100 is provided on the battery pack 5 side. In the following description, the pipe 20 constituting the first thermosiphon circuit 100 is referred to as a first pipe 20, and the connection heat exchanger 30 constituting the first thermosiphon circuit 100 is referred to as a first connection heat exchanger 30. . Further, the heat medium flowing through the first thermosiphon circuit 100 is referred to as a first heat medium. For example, a fluorocarbon working fluid such as HFO-1234yf or HFC-134a is used as the first heat medium.
 電池用熱交換器10は、上ヘッダタンク11、下ヘッダタンク12、および、その上ヘッダタンク11と下ヘッダタンク12とを連通する複数のチューブ13を有している。第1のサーモサイフォン回路100を循環する第1熱媒体の液面FL1は、電池用熱交換器10のチューブ13の内側の流路の途中に位置している。電池用熱交換器10は、電池モジュール4に対し、粘着性を有する放熱シート等により接着されている。そのため、電池用熱交換器10は、電池2と第1熱媒体との熱交換を行うことが可能である。なお、電池用熱交換器10が接着された複数の電池モジュール4は、隙間が殆どない状態で電池パック5のケース内に格納される。 The battery heat exchanger 10 includes an upper header tank 11, a lower header tank 12, and a plurality of tubes 13 communicating the upper header tank 11 with the lower header tank 12. The liquid surface FL1 of the first heat medium circulating in the first thermosyphon circuit 100 is located in the middle of the flow path inside the tube 13 of the battery heat exchanger 10. The battery heat exchanger 10 is bonded to the battery module 4 by a heat-radiating sheet or the like having adhesiveness. Therefore, the battery heat exchanger 10 can perform heat exchange between the battery 2 and the first heat medium. The plurality of battery modules 4 to which the battery heat exchanger 10 is adhered are stored in the case of the battery pack 5 with almost no gap.
 第1接続熱交換器30も、上ヘッダタンク31、下ヘッダタンク32、および、その上ヘッダタンク31と下ヘッダタンク32とを連通する複数のチューブ33を有している。第1のサーモサイフォン回路100を循環する第1熱媒体の液面FL2は、第1接続熱交換器30のチューブ33の内側の流路の途中に位置している。第1接続熱交換器30は、第1熱接触面35を有している。図1および図2では、第1熱接触面35の範囲を分かりやすく示すため、断面ではないが、第1熱接触面35にハッチングを付している。第1熱接触面35は、重力方向に沿うように形成されている。なお、「重力方向に沿う」とは、第1熱接触面35が重力方向に平行に形成されていることに加え、第1熱接触面35が重力方向に対して30°程度傾いている状態も含むことを意味している。第1熱接触面35には、後述する熱源部40が有する第2熱接触面55が、直接接触するか、または、熱伝導部材41を介して間接的に熱接触する。 The first connection heat exchanger 30 also has an upper header tank 31, a lower header tank 32, and a plurality of tubes 33 communicating the upper header tank 31 and the lower header tank 32 with each other. The liquid surface FL2 of the first heat medium circulating in the first thermosyphon circuit 100 is located in the middle of the flow path inside the tube 33 of the first connection heat exchanger 30. The first connection heat exchanger 30 has a first thermal contact surface 35. In FIG. 1 and FIG. 2, in order to show the range of the 1st thermal contact surface 35 intelligibly, although it is not a cross section, the 1st thermal contact surface 35 is hatched. The first thermal contact surface 35 is formed along the direction of gravity. Note that “along the direction of gravity” means that the first thermal contact surface 35 is inclined by about 30 ° with respect to the direction of gravity, in addition to the fact that the first thermal contact surface 35 is formed parallel to the direction of gravity. Is also meant to be included. The first thermal contact surface 35 is in direct contact with the second thermal contact surface 55 of the heat source unit 40 described later, or indirectly in thermal contact via the thermal conduction member 41.
 第1配管20は、第1液体通路21および第1気体通路22を有している。第1液体通路21は、電池用熱交換器10の下ヘッダタンク12に設けられた流出入口121と、第1接続熱交換器30の下ヘッダタンク32に設けられた流出入口321とを接続している。すなわち、第1液体通路21は、電池用熱交換器10のうちで熱媒体の液面FL1より下側に設けられた流出入口121と、第1接続熱交換器30のうちで熱媒体の液面FL2より下側に設けられた流出入口321とを接続している。第1気体通路22は、電池用熱交換器10の上ヘッダタンク11に設けられた流出入口111と、第1接続熱交換器30の上ヘッダタンク31に設けられた流出入口311とを接続している。すなわち、第1気体通路22は、電池用熱交換器10のうちで熱媒体の液面FL1より上側に設けられた流出入口111と、第1接続熱交換器30のうちで熱媒体の液面FL2より上側に設けられた流出入口311とを接続している。これにより、電池用熱交換器10、第1接続熱交換器30、第1液体通路21および第1気体通路22は、第1熱媒体が循環する第1のサーモサイフォン回路100を構成する。第1のサーモサイフォン回路100は、電池2と共に車体に対して着脱可能に設けられている。 The first pipe 20 has a first liquid passage 21 and a first gas passage 22. The first liquid passage 21 connects the outlet / inlet 121 provided in the lower header tank 12 of the battery heat exchanger 10 with the outlet / inlet 321 provided in the lower header tank 32 of the first connection heat exchanger 30. ing. That is, the first liquid passage 21 is the liquid inlet / outlet 121 provided below the liquid surface FL1 of the heat medium in the battery heat exchanger 10, and the liquid of the heat medium in the first connection heat exchanger 30. It connects with the outflow inlet 321 provided below the plane FL2. The first gas passage 22 connects the outlet / inlet 111 provided in the upper header tank 11 of the battery heat exchanger 10 and the outlet / inlet 311 provided in the upper header tank 31 of the first connection heat exchanger 30. ing. That is, the first gas passage 22 is provided at the outflow / inflow port 111 provided above the liquid surface FL1 of the heat medium in the battery heat exchanger 10, and the liquid surface of the heat medium in the first connection heat exchanger 30. It connects with the outflow inlet 311 provided above FL2. Thus, the battery heat exchanger 10, the first connection heat exchanger 30, the first liquid passage 21 and the first gas passage 22 constitute a first thermosiphon circuit 100 in which the first heat medium circulates. The first thermosiphon circuit 100 is detachably provided to the vehicle body together with the battery 2.
 一方、第1実施形態の電池温調装置1が備える熱源部40は、第2接続熱交換器50、第2配管60および放熱器70、80を有している。熱源部40が有する第2接続熱交換器50と第2配管60と放熱器70、80は、第2のサーモサイフォン回路200を構成している。第2のサーモサイフォン回路200は、車体の各部に亘って設けられている。以下の説明では、第2のサーモサイフォン回路200を流れる熱媒体を第2熱媒体と称する。第1のサーモサイフォン回路100を流れる第1熱媒体と、第2のサーモサイフォン回路200を流れる第2熱媒体とは、互いに混ざり合うことがないので、同一の熱媒体であってもよく、または、異なる熱媒体であってもよい。 On the other hand, the heat source unit 40 provided in the battery temperature adjustment device 1 of the first embodiment includes the second connection heat exchanger 50, the second pipe 60, and the radiators 70, 80. The second connection heat exchanger 50, the second pipe 60, and the radiators 70, 80 of the heat source unit 40 constitute a second thermosiphon circuit 200. The second thermosiphon circuit 200 is provided across each part of the vehicle body. In the following description, the heat medium flowing through the second thermosiphon circuit 200 is referred to as a second heat medium. The first heat medium flowing through the first thermosiphon circuit 100 and the second heat medium flowing through the second thermosiphon circuit 200 may be the same heat medium because they do not mix with each other, or And may be different heat transfer media.
 第2接続熱交換器50も、上ヘッダタンク51、下ヘッダタンク52、および、その上ヘッダタンク51と下ヘッダタンク52とを連通する複数のチューブ53を有している。第2のサーモサイフォン回路200を循環する第2熱媒体の液面FL3は、第2接続熱交換器50のチューブ53の内側の流路の途中に位置している。第2接続熱交換器50は、第2熱接触面55を有している。第2熱接触面55も、重力方向に沿うように形成されている。上述した第1接続熱交換器30と第2接続熱交換器50とは、着脱可能に構成されている。具体的には、第1接続熱交換器30と第2接続熱交換器50とは、例えば、ねじ又はクランプ等の固定部材により着脱可能に固定することが可能な構成である。すなわち、車両に電池温調装置1を設置する際、または、車両に設置された電池2のメンテナンスを行う際に、第1接続熱交換器30と第2接続熱交換器50とは、容易に着脱可能な構成である。 The second connection heat exchanger 50 also has an upper header tank 51, a lower header tank 52, and a plurality of tubes 53 communicating the upper header tank 51 with the lower header tank 52. The liquid surface FL3 of the second heat medium circulating in the second thermosiphon circuit 200 is located midway in the flow path inside the tube 53 of the second connection heat exchanger 50. The second connection heat exchanger 50 has a second thermal contact surface 55. The second thermal contact surface 55 is also formed along the direction of gravity. The first connection heat exchanger 30 and the second connection heat exchanger 50 described above are configured to be removable. Specifically, the first connection heat exchanger 30 and the second connection heat exchanger 50 are configured to be detachably fixed, for example, by a fixing member such as a screw or a clamp. That is, when installing the battery temperature control device 1 in a vehicle, or when performing maintenance of the battery 2 installed in the vehicle, the first connection heat exchanger 30 and the second connection heat exchanger 50 can easily be used. It is a removable configuration.
 第1接続熱交換器30と第2接続熱交換器50とが固定されるとき、第1接続熱交換器30が有する第1熱接触面35と第2接続熱交換器50が有する第2熱接触面55とは、直接接触するか、または、熱伝導部材41を介して間接的に熱接触する。これにより、第1のサーモサイフォン回路100を流れる第1熱媒体と、第2のサーモサイフォン回路200を流れる第2熱媒体とは、第1熱接触面35と第2熱接触面55を介して熱交換が行われる。すなわち、この電池温調装置1は、第1のサーモサイフォン回路100と第2のサーモサイフォン回路200との間の熱移動が可能な1つの熱回路を構成するものである。 When the first connection heat exchanger 30 and the second connection heat exchanger 50 are fixed, the first heat contact surface 35 of the first connection heat exchanger 30 and the second heat of the second connection heat exchanger 50 are provided. The contact surface 55 is in direct contact or in indirect thermal contact via the heat conducting member 41. As a result, the first heat medium flowing through the first thermosiphon circuit 100 and the second heat medium flowing through the second thermosiphon circuit 200 pass through the first thermal contact surface 35 and the second thermal contact surface 55. Heat exchange takes place. That is, the battery temperature control device 1 constitutes one thermal circuit capable of heat transfer between the first thermosiphon circuit 100 and the second thermosiphon circuit 200.
 放熱器70、80は、空気放熱器70、および、冷媒放熱器80などから構成されている。空気放熱器70、および、冷媒放熱器80は、車両のエンジンルームなどに設けられている。空気放熱器70は、第2のサーモサイフォン回路200を循環する第2熱媒体と、空気放熱器70を通過する外気との熱交換を行うことで、第2熱媒体の熱を外気に放熱させる熱交換器である。空気放熱器70を通過する外気は、外部の熱媒体の一例である。 The radiators 70 and 80 are composed of an air radiator 70, a refrigerant radiator 80, and the like. The air radiator 70 and the refrigerant radiator 80 are provided in, for example, an engine room of a vehicle. The air radiator 70 performs heat exchange between the second heat medium circulating in the second thermosiphon circuit 200 and the outside air passing through the air radiator 70 to dissipate the heat of the second heat medium to the outside air. It is a heat exchanger. The outside air passing through the air radiator 70 is an example of an external heat medium.
 冷媒放熱器80は、第2のサーモサイフォン回路200を循環する第2熱媒体と、冷凍サイクル85の蒸発器86を流れる低温低圧の冷媒との熱交換を行うことで、第2熱媒体の熱を冷凍サイクル85の冷媒に放熱させる熱交換器である。冷凍サイクル85の冷媒も、外部の熱媒体の一例である。なお、空気放熱器70と冷媒放熱器80は、電池2の発熱状態または車両の走行状態などに応じて使い分けることが可能である。また、冷媒放熱器80に代えて、図示していない液回路を流れる冷却水等の液体と熱媒体との熱交換を行う液冷放熱器により放熱器を構成してもよい。その場合、冷却水等の液体も、外部の熱媒体の一例である。 The refrigerant radiator 80 performs heat exchange between the second heat medium circulating in the second thermosyphon circuit 200 and the low-temperature low-pressure refrigerant flowing through the evaporator 86 of the refrigeration cycle 85 to obtain the heat medium of the second heat medium. Is radiated to the refrigerant of the refrigeration cycle 85. The refrigerant of the refrigeration cycle 85 is also an example of the external heat medium. The air radiator 70 and the refrigerant radiator 80 can be selectively used depending on the heat generation state of the battery 2 or the traveling state of the vehicle. Further, instead of the refrigerant radiator 80, the radiator may be configured by a liquid-cooling radiator that performs heat exchange between a heat medium and a liquid such as cooling water flowing in a liquid circuit (not shown). In that case, a liquid such as cooling water is also an example of the external heat medium.
 第2配管60は、第2液体通路61および第2気体通路62を有している。第2液体通路61は、第2接続熱交換器50の下ヘッダタンク52に設けられた流出入口521と、空気放熱器70の下側に設けられた流出入口71と、冷媒放熱器80の下側に設けられた流出入口81とを接続している。第2気体通路62は、第2接続熱交換器50の上ヘッダタンク51に設けられた流出入口511と、空気放熱器70の上側に設けられた流出入口72と、冷媒放熱器80の上側に設けられた流出入口82とを接続している。すなわち、第2配管60は、電池パック5が設けられた車両の座席下またはトランクルーム下と、空気放熱器70および冷媒放熱器80が設けられるエンジンルーム内との間で、車体の各部を複雑に取り回されることになる。このように、第2接続熱交換器50、放熱器70、80、第2液体通路61および第2気体通路62は、第2熱媒体が循環する第2のサーモサイフォン回路200を構成する。 The second pipe 60 has a second liquid passage 61 and a second gas passage 62. The second liquid passage 61 includes an outlet port 521 provided in the lower header tank 52 of the second connection heat exchanger 50, an outlet port 71 provided on the lower side of the air radiator 70, and a lower portion of the refrigerant radiator 80. It connects with the outflow inlet 81 provided on the side. The second gas passage 62 is disposed on the outlet / inlet 511 provided in the upper header tank 51 of the second connection heat exchanger 50, the outlet / inlet 72 provided above the air radiator 70, and above the refrigerant radiator 80. It is connected with the provided inlet / outlet port 82. That is, the second piping 60 complicates the various parts of the vehicle body between under the seat or trunk room of the vehicle provided with the battery pack 5 and in the engine room where the air radiator 70 and the refrigerant radiator 80 are provided. It will be circumvented. Thus, the second connection heat exchanger 50, the radiators 70, 80, the second liquid passage 61, and the second gas passage 62 constitute a second thermosiphon circuit 200 in which the second heat medium circulates.
 上述した第1実施形態の電池温調装置1は、車両製造時において、車両に対し電池パック5と第1のサーモサイフォン回路100を設置する作業と、車両に対し第2のサーモサイフォン回路200を設置する作業を、それぞれ別工程で行うことが可能である。そして、第1接続熱交換器30の第1熱接触面35と第2接続熱交換器50の第2熱接触面55とを直接接触または熱伝導部材41を介して間接的に熱接触させることで、1つの熱回路としての電池温調装置1を構成することが可能である。 The battery temperature control device 1 according to the first embodiment described above includes the operation of installing the battery pack 5 and the first thermosiphon circuit 100 in the vehicle at the time of manufacturing the vehicle, and the second thermosiphon circuit 200 in the vehicle. It is possible to carry out the installation work in separate steps. Then, the first thermal contact surface 35 of the first connection heat exchanger 30 and the second thermal contact surface 55 of the second connection heat exchanger 50 are in direct thermal contact or indirect thermal contact via the thermal conductive member 41. Thus, it is possible to configure the battery temperature control device 1 as one thermal circuit.
 また、第1実施形態の電池温調装置1は、電池2のメンテナンス時において、第1接続熱交換器30と第2接続熱交換器50とを分離すれば、電池パック5と共に第1のサーモサイフォン回路100を車両から容易に取り外すことが可能である。そして、第1のサーモサイフォン回路100と第2のサーモサイフォン回路200に対する第1、第2熱媒体の抜き取り作業および再充填作業を行うことなく、電池2のメンテナンスを短時間で容易に行うことが可能である。 In addition, if the battery temperature adjustment device 1 of the first embodiment separates the first connection heat exchanger 30 and the second connection heat exchanger 50 at the time of maintenance of the battery 2, the first thermo The siphon circuit 100 can be easily removed from the vehicle. Then, maintenance of the battery 2 can be easily performed in a short time without performing the work of extracting and refilling the first and second heat mediums with respect to the first thermosiphon circuit 100 and the second thermosiphon circuit 200. It is possible.
 図3は、電池温調装置1が電池2を冷却するときの第1のサーモサイフォン回路100の第1熱媒体と、第2のサーモサイフォン回路200の第2熱媒体の動きを示している。図3では、気体の第1、第2熱媒体の動きを破線の矢印で示し、液体の第1、第2熱媒体の動きを実線の矢印で示している。 FIG. 3 shows the movement of the first heat medium of the first thermosyphon circuit 100 and the second heat medium of the second thermosyphon circuit 200 when the battery temperature control device 1 cools the battery 2. In FIG. 3, the movement of the first and second heat transfer media of the gas is indicated by broken arrows, and the movement of the first and second heat transfer media of the liquid is indicated by solid arrows.
 電池2が発熱すると、その熱は電池用熱交換器10内の第1熱媒体に吸熱され、電池用熱交換器10で第1熱媒体が蒸発する。電池用熱交換器10で気体となった第1熱媒体は、電池用熱交換器10から第1気体通路22を通り、第1接続熱交換器30に流入する。すなわち、電池用熱交換器10から第1接続熱交換器30へ第1熱媒体によって熱が輸送される。 When the battery 2 generates heat, the heat is absorbed by the first heat medium in the battery heat exchanger 10, and the first heat medium evaporates in the battery heat exchanger 10. The first heat medium that has become gas in the battery heat exchanger 10 flows from the battery heat exchanger 10 through the first gas passage 22 into the first connection heat exchanger 30. That is, heat is transported from the battery heat exchanger 10 to the first connection heat exchanger 30 by the first heat medium.
 上述したように、第1接続熱交換器30が有する第1熱接触面35と第2接続熱交換器50が有する第2熱接触面55とは、直接接触または熱伝導部材41を介して間接的に熱接触している。そのため、第1接続熱交換器30と第2接続熱交換器50では、第1熱媒体と第2熱媒体との熱交換が行われる。すなわち、第1接続熱交換器30と第2接続熱交換器50との間を熱接触によって熱が輸送される。第1熱媒体の温度より第2熱媒体の温度が低い場合、第1接続熱交換器30内で第1熱媒体は第1、第2熱接触面35、55を介して第2熱媒体に放熱して凝縮する。第1接続熱交換器30で液体となった第1熱媒体は、第1液体通路21を通り、電池用熱交換器10に流入する。 As described above, the first thermal contact surface 35 of the first connection heat exchanger 30 and the second thermal contact surface 55 of the second connection heat exchanger 50 are in direct contact or indirectly through the thermal conduction member 41. In thermal contact. Therefore, in the first connection heat exchanger 30 and the second connection heat exchanger 50, heat exchange between the first heat medium and the second heat medium is performed. That is, heat is transported by thermal contact between the first connection heat exchanger 30 and the second connection heat exchanger 50. When the temperature of the second heat medium is lower than the temperature of the first heat medium, the first heat medium is transferred to the second heat medium via the first and second heat contact surfaces 35 and 55 in the first connection heat exchanger 30. Heat dissipates and condenses. The first heat medium that has become liquid in the first connection heat exchanger 30 flows into the battery heat exchanger 10 through the first liquid passage 21.
 一方、その場合、第2接続熱交換器50内で第2熱媒体は第1、第2熱接触面35、55を介して第1熱媒体から吸熱して蒸発する。第2接続熱交換器50で気体となった第2熱媒体は、第2接続熱交換器50から第2気体通路62を通り、放熱器70、80に流入する。放熱器70、80内で第2熱媒体は、外気、冷凍サイクルの冷媒、または冷却水など、外部の熱媒体に放熱して凝縮する。すなわち、第2接続熱交換器50から放熱器70、80へ第2熱媒体によって熱が輸送され、外部の熱媒体に放熱される。放熱器70、80で液体となった第2熱媒体は、第2液体通路61を流下し、第2接続熱交換器50に流入する。 On the other hand, in that case, in the second connection heat exchanger 50, the second heat medium absorbs heat from the first heat medium via the first and second thermal contact surfaces 35, 55 and evaporates. The second heat medium that has become a gas in the second connection heat exchanger 50 flows from the second connection heat exchanger 50 through the second gas passage 62 into the radiators 70 and 80. In the radiators 70 and 80, the second heat medium dissipates heat to the external heat medium such as the outside air, the refrigerant of the refrigeration cycle, or the cooling water and condenses. That is, heat is transported from the second connection heat exchanger 50 to the radiators 70 and 80 by the second heat medium, and is dissipated to the external heat medium. The second heat medium that has become liquid in the radiators 70 and 80 flows down the second liquid passage 61 and flows into the second connection heat exchanger 50.
 このようにして、電池2から生じた熱は、電池用熱交換器10、第1接続熱交換器30、第2接続熱交換器50、放熱器70、80の順に輸送された後、外部の熱媒体に放熱される。これにより、第1実施形態の電池温調装置1は、車両に搭載される電池2を冷却することが可能である。 Thus, the heat generated from the battery 2 is transported from the battery heat exchanger 10, the first connection heat exchanger 30, the second connection heat exchanger 50, and the radiators 70, 80 in this order, and then the external heat Heat is dissipated to the heat medium. Thereby, the battery temperature control device 1 of the first embodiment can cool the battery 2 mounted on the vehicle.
 以上説明した第1実施形態の電池温調装置1は、次の作用効果を奏するものである。
 (1)第1実施形態の電池温調装置1は、第1のサーモサイフォン回路100を構成する電池用熱交換器10、第1配管20および第1接続熱交換器30と、第2のサーモサイフォン回路200を構成する熱源部40とを備えている。第1接続熱交換器30と、熱源部40が備える第2接続熱交換器50とは、着脱可能に構成されている。そして、第1接続熱交換器30が有する第1熱接触面35と、第2接続熱交換器50が有する第2熱接触面55とは、重力方向に沿うように形成され、直接接触または熱伝導部材41を介して間接的に熱接触する構成である。
The battery temperature control device 1 according to the first embodiment described above has the following effects.
(1) The battery temperature control device 1 according to the first embodiment includes the battery heat exchanger 10, the first pipe 20, and the first connection heat exchanger 30, which constitute the first thermosiphon circuit 100, and the second thermo And a heat source unit 40 constituting the siphon circuit 200. The 1st connection heat exchanger 30 and the 2nd connection heat exchanger 50 with which the heat source part 40 is provided are comprised so that attachment or detachment is possible. And the 1st thermal contact surface 35 which the 1st connection heat exchanger 30 has, and the 2nd thermal contact surface 55 which the 2nd connection heat exchanger 50 has are formed along the direction of gravity, and are directly contacted or heat The thermal contact is made indirectly via the conductive member 41.
 これによれば、車両製造時において、電池2に電池用熱交換器10、第1配管20および第1接続熱交換器30を設置する作業と、車体に熱源部40を設置する作業とを別工程で行うことが可能である。そして、第1接続熱交換器30の第1熱接触面35と、熱源部40を構成する第2接続熱交換器50の第2熱接触面55とを直接接触または熱伝導部材41を介して間接的に熱接触させることで、1つの熱回路としての電池温調装置1を構成することができる。 According to this, at the time of manufacturing the vehicle, the operation of installing the battery heat exchanger 10, the first pipe 20 and the first connection heat exchanger 30 in the battery 2 and the operation of installing the heat source section 40 in the vehicle body are different. It is possible to carry out in the process. Then, the first thermal contact surface 35 of the first connection heat exchanger 30 and the second thermal contact surface 55 of the second connection heat exchanger 50 constituting the heat source unit 40 are in direct contact or via the thermal conduction member 41. By indirect thermal contact, the battery temperature control device 1 as one thermal circuit can be configured.
 また、電池2のメンテナンス時において、車体に熱源部40の第2配管60が複雑に取り回されている場合でも、第1接続熱交換器30と第2接続熱交換器50を分離すれば、電池2と第1のサーモサイフォン回路100を一緒に車両から取り外すことが可能である。そのため、第1のサーモサイフォン回路100および第2のサーモサイフォン回路200に対する第1、第2熱媒体の抜き取り作業および再充填作業を行うことなく、電池2のメンテナンスを短時間で容易に行うことが可能である。したがって、この電池温調装置1は、車両製造時における電池温調装置1の組付け性と、車両使用時における電池2のメンテナンス性を高めることができる。 In addition, even when the second piping 60 of the heat source unit 40 is intricately wound around the vehicle body at the time of maintenance of the battery 2, if the first connection heat exchanger 30 and the second connection heat exchanger 50 are separated, It is possible to remove the battery 2 and the first thermosiphon circuit 100 together from the vehicle. Therefore, the battery 2 can be easily maintained in a short time without performing the work of extracting and refilling the first and second heat mediums with respect to the first thermosiphon circuit 100 and the second thermosiphon circuit 200. It is possible. Therefore, the battery temperature control device 1 can enhance the assemblability of the battery temperature control device 1 at the time of manufacturing the vehicle and the maintainability of the battery 2 at the time of use of the vehicle.
 (2)第1実施形態では、第1のサーモサイフォン回路100を流れる第1熱媒体の液面FL1、FL2は、電池用熱交換器10の内側の流路の途中に位置し、且つ、第1接続熱交換器30の内側の流路の途中に位置している。これによれば、電池2の冷却時に、熱源部40から第1接続熱交換器30に冷熱が供給されると、電池用熱交換器10で蒸発した第1熱媒体は、第1気体通路22から第1接続熱交換器30に流れる。そして、第1接続熱交換器30で凝縮した第1熱媒体は、第1液体通路21から電池用熱交換器10に流れる。したがって、この電池温調装置1は、第1熱媒体を循環させ、電池2を冷却することが可能である。なお、電池温調装置1は、熱源部40から第1接続熱交換器30に温熱を供給する構成とすれば、第1接続熱交換器30の内側で蒸発した第1熱媒体は、第1気体通路22から電池用熱交換器10に流れる。そして、電池用熱交換器10で凝縮した第1熱媒体は、第1液体通路21から第1接続熱交換器30に流れる。したがって、この電池温調装置1は、第1熱媒体を循環させ、電池2を暖機することが可能である。なお、電池2を暖機する構成については、後述する第9および第10実施形態で説明する。 (2) In the first embodiment, the liquid surfaces FL1 and FL2 of the first heat medium flowing through the first thermosiphon circuit 100 are located in the middle of the flow path inside the battery heat exchanger 10, and It is located in the middle of the flow path inside the 1-connected heat exchanger 30. According to this, when cold heat is supplied from the heat source unit 40 to the first connection heat exchanger 30 during cooling of the battery 2, the first heat medium evaporated in the battery heat exchanger 10 is the first gas passage 22. Flow to the first connection heat exchanger 30. Then, the first heat medium condensed in the first connection heat exchanger 30 flows from the first liquid passage 21 to the battery heat exchanger 10. Therefore, the battery temperature control device 1 can cool the battery 2 by circulating the first heat medium. If the battery temperature adjustment device 1 is configured to supply heat from the heat source unit 40 to the first connection heat exchanger 30, the first heat medium evaporated inside the first connection heat exchanger 30 is the first heat medium. It flows from the gas passage 22 to the battery heat exchanger 10. Then, the first heat medium condensed in the battery heat exchanger 10 flows from the first liquid passage 21 to the first connection heat exchanger 30. Therefore, the battery temperature control device 1 can warm the battery 2 by circulating the first heat medium. The configuration for warming up the battery 2 will be described in the ninth and tenth embodiments described later.
 (第2実施形態)
 第2実施形態について図4および図5を参照して説明する。第2実施形態は、第1実施形態に対して第1接続熱交換器30の構成を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。なお、図4では、第1接続熱交換器30の上ヘッダタンク31と下ヘッダタンク32を省略している。
Second Embodiment
The second embodiment will be described with reference to FIGS. 4 and 5. The second embodiment is the same as the first embodiment except that the configuration of the first connection heat exchanger 30 is modified with respect to the first embodiment, and therefore, parts different from the first embodiment Only explain. In FIG. 4, the upper header tank 31 and the lower header tank 32 of the first connection heat exchanger 30 are omitted.
 第2実施形態の第1接続熱交換器30は、チューブ33とチューブ33との間に、伝熱部36を備えている。また、第1接続熱交換器30は、チューブ33の内側の流路に、インナーフィン34を備えている。インナーフィン34は、重力方向に延びている。伝熱部36も、重力方向に延びている。伝熱部36は、例えばアルミニウムなど、熱伝導性の良好な厚肉材料で形成された部材である。なお、伝熱部36は、厚肉材料で形成することに代えて、ヒートパイプで構成してもよい。 The first connection heat exchanger 30 of the second embodiment includes a heat transfer portion 36 between the tube 33 and the tube 33. In addition, the first connection heat exchanger 30 includes an inner fin 34 in the flow passage inside the tube 33. The inner fins 34 extend in the direction of gravity. The heat transfer portion 36 also extends in the gravity direction. The heat transfer portion 36 is a member formed of a thick material having good thermal conductivity, such as aluminum. The heat transfer portion 36 may be formed of a heat pipe instead of being formed of a thick material.
 伝熱部36は、第1接続熱交換器30のチューブ33の内側の流路を流れる第1熱媒体の液面FL2を跨ぐように、チューブ33に沿って重力方向に延びている。伝熱部36は、第1接続熱交換器30のチューブ33の内側を流れる液相の第1熱媒体と、気相の第1熱媒体との熱伝導を行う機能を有している。すなわち、伝熱部36を介して、第1接続熱交換器30の内側の液相の第1熱媒体と、気相の第1熱媒体の熱移動が効率よく行われる。そのため、熱源部40から第1接続熱交換器30への熱の伝達効率が良くなる。 The heat transfer portion 36 extends in the gravity direction along the tube 33 so as to straddle the liquid surface FL2 of the first heat medium flowing in the flow passage inside the tube 33 of the first connection heat exchanger 30. The heat transfer section 36 has a function of performing heat conduction between the liquid phase first heat medium flowing inside the tube 33 of the first connection heat exchanger 30 and the gas phase first heat medium. That is, the heat transfer between the liquid phase first heat medium and the gas phase first heat medium inside the first connection heat exchanger 30 is efficiently performed via the heat transfer section 36. Therefore, the heat transfer efficiency from the heat source unit 40 to the first connection heat exchanger 30 is improved.
 また、伝熱部36は、第1接続熱交換器30のうち、第1熱接触面35に対して第2熱接触面55とは反対側に設けられている。これにより、伝熱部36は、第1熱接触面35と第2熱接触面55との間の熱移動を妨げることなく、第1接続熱交換器30のチューブ33の内側を流れる液相の第1熱媒体と、気相の第1熱媒体との熱伝導を行うことが可能である。したがって、第2実施形態の電池温調装置1は、伝熱部36を備えることにより、電池2の冷却能力および暖機能力を高めることができる。 Further, the heat transfer portion 36 is provided on the opposite side of the first thermal contact surface 35 to the second thermal contact surface 55 in the first connection heat exchanger 30. Thus, the heat transfer portion 36 does not impede the heat transfer between the first thermal contact surface 35 and the second thermal contact surface 55, and the liquid phase of the liquid phase flowing inside the tube 33 of the first connection heat exchanger 30. It is possible to conduct heat conduction between the first heat carrier and the gas phase first heat carrier. Therefore, the battery temperature control device 1 of the second embodiment can enhance the cooling capacity and the warming function of the battery 2 by including the heat transfer portion 36.
 なお、上述した伝熱部36は、第1接続熱交換器30に設けることに限らず、第2接続熱交換器50に設けてもよい。このことは、後述する第3および第4実施形態でも同じである。 In addition, the heat transfer part 36 mentioned above may be provided not only in the 1st connection heat exchanger 30 but in the 2nd connection heat exchanger 50. This is the same in the third and fourth embodiments described later.
 (第3実施形態)
 第3実施形態について図6および図7を参照して説明する。第3実施形態は、第2実施形態に対して第1接続熱交換器30の構成を変更したものであり、その他については第2実施形態と同様であるため、第2実施形態と異なる部分についてのみ説明する。なお、図6でも、第1接続熱交換器30の上ヘッダタンク31と下ヘッダタンク32を省略している。
Third Embodiment
A third embodiment will be described with reference to FIGS. 6 and 7. The third embodiment is the same as the second embodiment except that the configuration of the first connection heat exchanger 30 is modified with respect to the second embodiment, and therefore parts different from the second embodiment Only explain. Also in FIG. 6, the upper header tank 31 and the lower header tank 32 of the first connection heat exchanger 30 are omitted.
 第3実施形態では、第1接続熱交換器30のチューブ33を形成する部材自体が伝熱部36を構成している。チューブ33と伝熱部36は共に、例えばアルミニウムなど、熱伝導性の良好な厚肉材料で形成された部材である。伝熱部36を介して、第1接続熱交換器30の内側の液相の第1熱媒体と、気相の第1熱媒体の熱移動が効率よく行われる。そのため、熱源部40から第1接続熱交換器30への熱の伝達効率が良くなる。 In the third embodiment, the member itself forming the tube 33 of the first connection heat exchanger 30 constitutes the heat transfer portion 36. The tube 33 and the heat transfer section 36 are both members made of a thick material having good thermal conductivity, such as aluminum. The heat transfer of the liquid phase first heat medium and the gas phase first heat medium inside the first connection heat exchanger 30 is efficiently performed via the heat transfer section 36. Therefore, the heat transfer efficiency from the heat source unit 40 to the first connection heat exchanger 30 is improved.
 また、伝熱部36は、第1熱接触面35を形成する部位の厚みT1より、第1熱接触面35から第2熱接触面55とは反対側に延びる部位の厚みT2の方が肉厚となるように形成されている。これにより、伝熱部36は、第1熱接触面35と第2熱接触面55との間の熱移動を妨げることなく、第1接続熱交換器30のチューブ33の内側を流れる液相の第1熱媒体と、気相の第1熱媒体との熱伝導を行うことが可能である。したがって、第3実施形態の電池温調装置1は、伝熱部36を備えることにより、電池2の冷却能力および暖機能力を高めることができる。 Further, in the heat transfer portion 36, the thickness T2 of the portion extending from the first thermal contact surface 35 to the opposite side to the second thermal contact surface 55 is thinner than the thickness T1 of the portion forming the first thermal contact surface 35. It is formed to be thick. Thus, the heat transfer portion 36 does not impede the heat transfer between the first thermal contact surface 35 and the second thermal contact surface 55, and the liquid phase of the liquid phase flowing inside the tube 33 of the first connection heat exchanger 30. It is possible to conduct heat conduction between the first heat carrier and the gas phase first heat carrier. Therefore, the battery temperature control device 1 of the third embodiment can enhance the cooling capacity and the warm-up function of the battery 2 by including the heat transfer portion 36.
 (第4実施形態)
 第4実施形態について図8および図9を参照して説明する。第4実施形態は、第2および第3実施形態に対して第1接続熱交換器30の構成を変更したものであり、その他については第2および第3実施形態と同様であるため、第2および第3実施形態と異なる部分についてのみ説明する。なお、図8でも、第1接続熱交換器30の上ヘッダタンク31と下ヘッダタンク32を省略している。
Fourth Embodiment
A fourth embodiment will be described with reference to FIGS. 8 and 9. The fourth embodiment is the same as the second and third embodiments except that the configuration of the first connection heat exchanger 30 is modified with respect to the second and third embodiments. And, only portions different from the third embodiment will be described. Also in FIG. 8, the upper header tank 31 and the lower header tank 32 of the first connection heat exchanger 30 are omitted.
 第4実施形態でも、第1接続熱交換器30のチューブ33を形成する部材自体が伝熱部36を構成している。伝熱部36は、例えばアルミニウムなど、熱伝導性の良好な厚肉材料で形成された部材である。伝熱部36は、第1接続熱交換器30のうち、第1熱接触面35を形成する部位と、その部位に対してチューブ33の内側の流路を挟んで第1熱接触面35とは反対側の部位に設けられている。伝熱部36を介して、第1接続熱交換器30の内側の液相の第1熱媒体と、気相の第1熱媒体の熱移動が効率よく行われる。そのため、熱源部40から第1接続熱交換器30への熱の伝達効率が良くなる。したがって、第4実施形態の電池温調装置1も、伝熱部36を備えることにより、電池2の冷却能力および暖機能力を高めることができる。 Also in the fourth embodiment, the member itself forming the tube 33 of the first connection heat exchanger 30 constitutes the heat transfer portion 36. The heat transfer portion 36 is a member formed of a thick material having good thermal conductivity, such as aluminum. The heat transfer portion 36 includes a portion of the first connection heat exchanger 30 which forms the first thermal contact surface 35, and the first thermal contact surface 35 with the flow passage inside the tube 33 with respect to the portion. Is provided at the opposite site. The heat transfer of the liquid phase first heat medium and the gas phase first heat medium inside the first connection heat exchanger 30 is efficiently performed via the heat transfer section 36. Therefore, the heat transfer efficiency from the heat source unit 40 to the first connection heat exchanger 30 is improved. Therefore, the battery temperature control device 1 of the fourth embodiment can also enhance the cooling capacity and the warming function of the battery 2 by including the heat transfer portion 36.
 (第5実施形態)
 第5実施形態について図10を参照して説明する。なお、図10では、第1熱接触面35と第2熱接触面55とが離れた状態を記載している。ただし、第5実施形態においても、第1実施形態等と同様に、第1熱接触面35と第2熱接触面55とは直接接触または熱伝導部材41を介して間接的に熱接触することで1つの熱回路としての電池温調装置1を構成するものである。このことは、後述する実施形態で参照する図11~図16でも同じである。
Fifth Embodiment
The fifth embodiment will be described with reference to FIG. In FIG. 10, the state in which the first thermal contact surface 35 and the second thermal contact surface 55 are separated is described. However, also in the fifth embodiment, as in the first embodiment and the like, the first thermal contact surface 35 and the second thermal contact surface 55 are in direct thermal contact or indirect thermal contact via the thermal conductive member 41. The battery temperature control device 1 is configured as one thermal circuit. The same applies to FIGS. 11 to 16 referred to in the embodiments to be described later.
 第5実施形態では、電池温調装置1が備える電池用熱交換器10と第1配管20と第1接続熱交換器30と第1ポンプ25は、第1の液回路300を構成している。第1の液回路300は、電池2と共に車体に対して着脱可能に設けられている。第1の液回路300には、第1熱媒体が充填されている。第1熱媒体には、水または油などの液体が用いられる。 In the fifth embodiment, the battery heat exchanger 10, the first pipe 20, the first connection heat exchanger 30, and the first pump 25 included in the battery temperature adjustment device 1 constitute a first liquid circuit 300. . The first liquid circuit 300 is detachably provided to the vehicle body together with the battery 2. The first fluid circuit 300 is filled with a first heat medium. As the first heat medium, a liquid such as water or oil is used.
 電池用熱交換器10は、電池モジュール4に対し、粘着性を有する放熱シート等により接着されている。そのため、電池用熱交換器10は、電池2と第1熱媒体との熱交換を行うことが可能である。第1接続熱交換器30は、重力方向に沿うように形成される第1熱接触面35を有している。第1熱接触面35には、熱源部40が有する第2熱接触面55が、直接接触するか、または、熱伝導部材41を介して間接的に熱接触する。第1配管20は、第1往路23および第1復路24を有している。第1往路23は、電池用熱交換器10の下方に設けられた流出入口121と、第1接続熱交換器30の下方に設けられた流出入口321とを接続している。第1復路24は、電池用熱交換器10の上方に設けられた流出入口111と、第1接続熱交換器30の上方に設けられた流出入口311とを接続している。第1往路23または第1復路24には、第1ポンプ25が設けられている。第1ポンプ25が駆動すると、第1の液回路300に第1熱媒体が循環する。 The battery heat exchanger 10 is bonded to the battery module 4 by a heat-radiating sheet or the like having adhesiveness. Therefore, the battery heat exchanger 10 can perform heat exchange between the battery 2 and the first heat medium. The first connection heat exchanger 30 has a first thermal contact surface 35 formed along the direction of gravity. The second thermal contact surface 55 of the heat source portion 40 is in direct contact with the first thermal contact surface 35 or indirectly in thermal contact via the thermal conduction member 41. The first pipe 20 has a first outward path 23 and a first return path 24. The first forward path 23 connects the outlet / inlet 121 provided below the battery heat exchanger 10 and the outlet / inlet 321 provided below the first connection heat exchanger 30. The first return path 24 connects the outlet / inlet 111 provided above the battery heat exchanger 10 and the outlet / inlet 311 provided above the first connection heat exchanger 30. A first pump 25 is provided in the first forward path 23 or the first return path 24. When the first pump 25 is driven, the first heat medium circulates in the first liquid circuit 300.
 一方、第5実施形態の電池温調装置1が備える熱源部40は、第2接続熱交換器50、第2配管60、放熱器70、80、第2ポンプ65およびリザーブタンク66により、第2の液回路400を構成している。第2の液回路400は、車体の各部に亘って設けられている。第2の液回路400には、第2熱媒体が充填されている。第2熱媒体には、水または油などの液体が用いられる。第1の液回路300を流れる第1熱媒体と、第2の液回路400を流れる第2熱媒体とは、互いに混ざり合うことがないので、同一の熱媒体であってもよく、または、異なる熱媒体であってもよい。 On the other hand, the heat source section 40 provided in the battery temperature adjustment device 1 of the fifth embodiment is a second heat exchanger 50, a second pipe 60, radiators 70, 80, a second pump 65, and a reserve tank 66. The liquid circuit 400 of FIG. The second fluid circuit 400 is provided across each part of the vehicle body. The second fluid circuit 400 is filled with a second heat medium. As the second heat medium, a liquid such as water or oil is used. The first heat medium flowing in the first liquid circuit 300 and the second heat medium flowing in the second liquid circuit 400 may not be mixed with each other, and therefore may be the same heat medium or different. It may be a heat medium.
 第2接続熱交換器50は、第2熱接触面55を有している。第2熱接触面55も、重力方向に沿うように形成されている。第1接続熱交換器30と第2接続熱交換器50とは、上述した第1実施形態と同様に、着脱可能に構成されている。すなわち、車両に電池温調装置1を設置する際、または、車両に設置された電池2のメンテナンスを行う際に、第1接続熱交換器30と第2接続熱交換器50とは、容易に着脱可能な構成である。 The second connection heat exchanger 50 has a second thermal contact surface 55. The second thermal contact surface 55 is also formed along the direction of gravity. The first connection heat exchanger 30 and the second connection heat exchanger 50 are configured to be removable, as in the first embodiment described above. That is, when installing the battery temperature control device 1 in a vehicle, or when performing maintenance of the battery 2 installed in the vehicle, the first connection heat exchanger 30 and the second connection heat exchanger 50 can easily be used. It is a removable configuration.
 第1接続熱交換器30と第2接続熱交換器50とが固定されるとき、第1接続熱交換器30が有する第1熱接触面35と第2接続熱交換器50が有する第2熱接触面55とは、直接接触するか、または、熱伝導部材41を介して間接的に熱接触する。これにより、第1の液回路300を流れる第1熱媒体と、第2の液回路400を流れる第2熱媒体とは、第1熱接触面35と第2熱接触面55を介して熱交換が行われる。すなわち、第5実施形態の電池温調装置1も、第1の液回路300と第2の液回路400との間の熱移動が可能な1つの熱回路を構成するものである。 When the first connection heat exchanger 30 and the second connection heat exchanger 50 are fixed, the first heat contact surface 35 of the first connection heat exchanger 30 and the second heat of the second connection heat exchanger 50 are provided. The contact surface 55 is in direct contact or in indirect thermal contact via the heat conducting member 41. Thus, the first heat medium flowing in the first liquid circuit 300 and the second heat medium flowing in the second liquid circuit 400 exchange heat via the first thermal contact surface 35 and the second thermal contact surface 55. Is done. That is, the battery temperature control apparatus 1 of the fifth embodiment also constitutes one thermal circuit capable of heat transfer between the first liquid circuit 300 and the second liquid circuit 400.
 空気放熱器70は、車両のエンジンルームなどに設けられている。空気放熱器70は、第2の液回路400を循環する第2熱媒体と、空気放熱器70を通過する外気との熱交換を行うことで、第2熱媒体の熱を外気に放熱させる熱交換器である。空気放熱器70を通過する外気は、外部の熱媒体の一例である。 The air radiator 70 is provided in an engine room or the like of the vehicle. The air radiator 70 performs heat exchange between the second heat medium circulating in the second liquid circuit 400 and the outside air passing through the air radiator 70 to dissipate the heat of the second heat medium to the outside air. It is an exchanger. The outside air passing through the air radiator 70 is an example of an external heat medium.
 冷媒放熱器80は、冷凍サイクル85の蒸発器86から冷熱を供給される構成である。その場合、冷凍サイクル85を流れる冷媒は、外部の熱媒体の一例である。また、冷媒放熱器80に代えて、図示していない液回路を流れる冷却水等の液体と熱交換を行う液冷放熱器により放熱器を構成してもよい。その場合、冷却水等の液体も、外部の熱媒体の一例である。 The refrigerant radiator 80 is configured to be supplied with cold heat from the evaporator 86 of the refrigeration cycle 85. In that case, the refrigerant flowing through the refrigeration cycle 85 is an example of an external heat medium. Further, instead of the refrigerant radiator 80, the radiator may be configured by a liquid cooling radiator that exchanges heat with a liquid such as cooling water flowing in a liquid circuit (not shown). In that case, a liquid such as cooling water is also an example of the external heat medium.
 第2配管60は、第2往路63および第2復路64を有している。第2往路63は、第2接続熱交換器50の下方に設けられた流出入口521と、空気放熱器70の下側に設けられた流出入口71と、冷媒放熱器80の下側に設けられた流出入口81とを接続している。第2復路64は、第2接続熱交換器50の上方に設けられた流出入口511と、空気放熱器70の上側に設けられた流出入口72と、冷媒放熱器80の上側に設けられた流出入口82とを接続している。したがって、第2配管60は、電池パック5が設けられた車両の座席下またはトランクルーム下と、空気放熱器70および冷媒放熱器80が設けられるエンジンルーム内との間で、車体の各部を複雑に取り回されることになる。第2往路63または第2復路64には、第2ポンプ65が設けられている。第2ポンプ65が駆動すると、第2の液回路400に第2熱媒体が循環する。 The second pipe 60 has a second outward path 63 and a second return path 64. The second forward path 63 is provided at the lower side of the refrigerant radiator 80, an outlet port 521 provided below the second connection heat exchanger 50, an outlet port 71 provided below the air radiator 70, and the refrigerant radiator 80. And the outlet port 81. The second return path 64 has an outlet / inlet 511 provided above the second connection heat exchanger 50, an outlet / inlet 72 provided above the air radiator 70, and an outlet provided above the refrigerant radiator 80. It is connected with the entrance 82. Therefore, the second piping 60 complicates each part of the vehicle body between under the seat or trunk room of the vehicle provided with the battery pack 5 and in the engine room where the air radiator 70 and the refrigerant radiator 80 are provided. It will be circumvented. A second pump 65 is provided in the second outward path 63 or the second return path 64. When the second pump 65 is driven, the second heat medium circulates in the second fluid circuit 400.
 上述した第5実施形態の電池温調装置1は、第1実施形態と同様に、車両製造時において、車両に対し電池パック5と第1の液回路300を設置する作業と、車両に対し第2の液回路400を設置する作業を、それぞれ別工程で行うことが可能である。そして、第1接続熱交換器30の第1熱接触面35と第2接続熱交換器50の第2熱接触面55とを直接接触または熱伝導部材41を介して間接的に熱接触させることで、1つの熱回路としての電池温調装置1を構成することが可能である。 Similar to the first embodiment, the battery temperature adjustment device 1 according to the fifth embodiment described above installs the battery pack 5 and the first liquid circuit 300 in the vehicle when the vehicle is manufactured, and It is possible to perform the work of installing the two liquid circuits 400 in separate steps. Then, the first thermal contact surface 35 of the first connection heat exchanger 30 and the second thermal contact surface 55 of the second connection heat exchanger 50 are in direct thermal contact or indirect thermal contact via the thermal conductive member 41. Thus, it is possible to configure the battery temperature control device 1 as one thermal circuit.
 また、第5実施形態の電池温調装置1は、第1実施形態と同様に、電池2のメンテナンス時において、第1接続熱交換器30と第2接続熱交換器50とを分離すれば、電池パック5と第1の液回路300を一緒に車両から取り外すことが可能である。そのため、第1の液回路300と第2の液回路400に対する第1、第2熱媒体の抜き取り作業および再充填作業を行うことなく、電池2のメンテナンスを短時間で容易に行うことが可能である。 Further, as in the first embodiment, the battery temperature adjustment device 1 of the fifth embodiment separates the first connection heat exchanger 30 and the second connection heat exchanger 50 at the time of maintenance of the battery 2, It is possible to remove the battery pack 5 and the first fluid circuit 300 together from the vehicle. Therefore, the battery 2 can be easily maintained in a short time without performing the first and second heat medium extraction and refilling operations for the first and second liquid circuits 300 and 400. is there.
 図10では、電池温調装置1が電池2を冷却するときの第1の液回路300の第1熱媒体の動きと、第2の液回路400の第2熱媒体の動きを実線の矢印で示している。電池温調装置1が電池2を冷却するとき、第1ポンプ25と第2ポンプ65とが駆動される。これにより、第1の液回路300を第1熱媒体が循環し、第2の液回路400を第2熱媒体が循環する。 In FIG. 10, the movement of the first heat medium of the first liquid circuit 300 and the movement of the second heat medium of the second liquid circuit 400 when the battery temperature control device 1 cools the battery 2 are indicated by solid arrows. It shows. When the battery temperature control device 1 cools the battery 2, the first pump 25 and the second pump 65 are driven. As a result, the first heat medium circulates in the first liquid circuit 300, and the second heat medium circulates in the second liquid circuit 400.
 電池2が発熱した熱は、電池用熱交換器10内の第1熱媒体に吸熱される。電池用熱交換器10で加熱された第1熱媒体は、第1復路24を通り、第1接続熱交換器30に流入する。第1接続熱交換器30と第2接続熱交換器50では、第1熱媒体と第2熱媒体との熱交換が行われる。すなわち、第1接続熱交換器30と第2接続熱交換器50との間を熱接触によって熱が輸送される。第1熱媒体の温度より第2熱媒体の温度が低い場合、第1接続熱交換器30内で第1熱媒体は第1、第2熱接触面35、55を介して第2熱媒体に放熱する。第1接続熱交換器30で冷却された第1熱媒体は、第1往路23と第1ポンプ25を通って電池用熱交換器10に流入する。 The heat generated by the battery 2 is absorbed by the first heat medium in the battery heat exchanger 10. The first heat medium heated by the battery heat exchanger 10 flows into the first connection heat exchanger 30 through the first return path 24. In the first connection heat exchanger 30 and the second connection heat exchanger 50, heat exchange between the first heat medium and the second heat medium is performed. That is, heat is transported by thermal contact between the first connection heat exchanger 30 and the second connection heat exchanger 50. When the temperature of the second heat medium is lower than the temperature of the first heat medium, the first heat medium is transferred to the second heat medium via the first and second heat contact surfaces 35 and 55 in the first connection heat exchanger 30. Heat is released. The first heat medium cooled by the first connection heat exchanger 30 flows into the battery heat exchanger 10 through the first forward path 23 and the first pump 25.
 一方、第2接続熱交換器50内で第2熱媒体は第1、第2熱接触面35、55を介して第1熱媒体から吸熱する。第2接続熱交換器50で加熱された第2熱媒体は、第2復路64を通り、放熱器70、80に流入する。放熱器70、80内で第2熱媒体は、外気または冷媒など、外部の熱媒体に放熱する。放熱器70、80で冷却された第2熱媒体は、第2往路63と第2ポンプ65を通って第2接続熱交換器50に流入する。 On the other hand, in the second connection heat exchanger 50, the second heat medium absorbs heat from the first heat medium via the first and second thermal contact surfaces 35, 55. The second heat medium heated by the second connection heat exchanger 50 passes through the second return path 64 and flows into the radiators 70, 80. In the radiators 70 and 80, the second heat medium dissipates heat to an external heat medium such as ambient air or a refrigerant. The second heat medium cooled by the radiators 70 and 80 flows into the second connection heat exchanger 50 through the second outward path 63 and the second pump 65.
 このようにして、電池2から生じた熱は、電池用熱交換器10、第1接続熱交換器30、第2接続熱交換器50、放熱器70、80の順に輸送された後、外部の熱媒体に放熱される。これにより、第5実施形態の電池温調装置1も、車両に搭載される電池2を冷却することが可能である。以上説明した第5実施形態の電池温調装置1は、第1実施形態等と同様の作用効果を奏することができる。 Thus, the heat generated from the battery 2 is transported from the battery heat exchanger 10, the first connection heat exchanger 30, the second connection heat exchanger 50, and the radiators 70, 80 in this order, and then the external heat Heat is dissipated to the heat medium. Thus, the battery temperature control device 1 of the fifth embodiment can also cool the battery 2 mounted on the vehicle. The battery temperature adjusting device 1 of the fifth embodiment described above can exhibit the same effects as those of the first embodiment and the like.
 (第6実施形態)
 第6実施形態について図11を参照して説明する。第6実施形態は、第5実施形態に対して、第1接続熱交換器30と第2接続熱交換器50の間に、ペルチェ素子90を備えたものである。すなわち、第6実施形態では、第1の液回路300を流れる第1熱媒体と、第2の液回路400を流れる第2熱媒体とは、ペルチェ素子90を介して熱移動が行われる。
Sixth Embodiment
A sixth embodiment will be described with reference to FIG. In the sixth embodiment, a Peltier element 90 is provided between the first connection heat exchanger 30 and the second connection heat exchanger 50 in the fifth embodiment. That is, in the sixth embodiment, heat transfer is performed between the first heat medium flowing in the first liquid circuit 300 and the second heat medium flowing in the second liquid circuit 400 via the Peltier element 90.
 電池2の冷却時、ペルチェ素子90は、ペルチェ素子90のうち第1熱接触面35側の面91が冷却面となり、ペルチェ素子90のうち第2熱接触面55側の面92が放熱面となる。これにより、熱源部40から第1接続熱交換器30に冷熱を供給する場合、熱源部40の第2熱接触面55の温度を、ペルチェ素子90でより低い温度にして、第1熱接触面35に供給することが可能である。具体的には、第2熱接触面55の温度≧ペルチェ素子90のうち第2熱接触面55側の面92の温度>ペルチェ素子90のうち第1熱接触面35側の面91の温度となる。そのため、例えば熱源部40が外気温に応じた冷熱を第2接続熱交換器50から第1接続熱交換器30に供給する構成である場合、ペルチェ素子90を介することにより、第1接続熱交換器30に対し、外気温よりも低い所望の温度の冷熱を供給することができる。以上説明した第6実施形態の電池温調装置1も、第1実施形態等と同様の作用効果を奏することができる。 At the time of cooling of the battery 2, in the Peltier device 90, the surface 91 on the first thermal contact surface 35 side of the Peltier device 90 is a cooling surface, and the surface 92 on the second thermal contact surface 55 of the Peltier element 90 is a heat dissipation surface Become. Thereby, when supplying heat from the heat source unit 40 to the first connection heat exchanger 30, the temperature of the second thermal contact surface 55 of the heat source unit 40 is made lower by the Peltier element 90, and the first thermal contact surface It is possible to supply 35. Specifically, the temperature of the second thermal contact surface 55 温度 the temperature of the surface 92 on the second thermal contact surface 55 of the Peltier element 90> the temperature of the surface 91 on the first thermal contact surface 35 of the Peltier element 90 Become. Therefore, for example, when the heat source unit 40 is configured to supply cold heat corresponding to the outside air temperature from the second connection heat exchanger 50 to the first connection heat exchanger 30, the first connection heat exchange is performed via the Peltier element 90. Cold heat of a desired temperature lower than the outside air temperature can be supplied to the vessel 30. The battery temperature control apparatus 1 of the sixth embodiment described above can also achieve the same function and effect as those of the first embodiment and the like.
 (第7実施形態)
 第7実施形態について図12を参照して説明する。第7実施形態は、第1実施形態に対して、第1接続熱交換器30と第2接続熱交換器50の間に、ペルチェ素子90を備えたものである。すなわち、第7実施形態では、第1のサーモサイフォン回路100を流れる第1熱媒体と、第2のサーモサイフォン回路200を流れる第2熱媒体とは、ペルチェ素子90を介して熱移動が行われる。ペルチェ素子90の機能については、第6実施形態で説明したことと同様である。したがって、第7実施形態の電池温調装置1も、第1実施形態等と同様の作用効果を奏することができる。
Seventh Embodiment
A seventh embodiment will be described with reference to FIG. According to the seventh embodiment, a Peltier element 90 is provided between the first connection heat exchanger 30 and the second connection heat exchanger 50 in the first embodiment. That is, in the seventh embodiment, heat transfer is performed via the Peltier element 90 between the first heat medium flowing through the first thermosiphon circuit 100 and the second heat medium flowing through the second thermosiphon circuit 200. . The function of the Peltier device 90 is the same as that described in the sixth embodiment. Therefore, the battery temperature control apparatus 1 of the seventh embodiment can also achieve the same function and effect as those of the first embodiment and the like.
 (第8実施形態)
 第8実施形態について図13を参照して説明する。第8実施形態は、第6および第7実施形態の組み合わせである。第8実施形態でも、第1接続熱交換器30と第2接続熱交換器50の間に、ペルチェ素子90を備えている。すなわち、第7実施形態では、第1のサーモサイフォン回路100を流れる第1熱媒体と、第2の液回路400を流れる第2熱媒体とは、ペルチェ素子90を介して熱移動が行われる。第8実施形態の電池温調装置1も、第1実施形態等と同様の作用効果を奏することができる。
Eighth Embodiment
The eighth embodiment will be described with reference to FIG. The eighth embodiment is a combination of the sixth and seventh embodiments. Also in the eighth embodiment, the Peltier element 90 is provided between the first connection heat exchanger 30 and the second connection heat exchanger 50. That is, in the seventh embodiment, heat transfer is performed between the first heat medium flowing in the first thermosiphon circuit 100 and the second heat medium flowing in the second liquid circuit 400 via the Peltier element 90. The battery temperature control device 1 of the eighth embodiment can also achieve the same effects as those of the first embodiment and the like.
 なお、図示していないが、第6および第7実施形態の組み合わせの実施形態として、第1の液回路300を流れる第1熱媒体と、第2のサーモサイフォン回路200を流れる第2熱媒体とが、ペルチェ素子90を介して熱移動が行われるように構成してもよい。 Although not shown, as an embodiment of a combination of the sixth and seventh embodiments, a first heat medium flowing in the first liquid circuit 300 and a second heat medium flowing in the second thermosiphon circuit 200 However, heat transfer may be performed via the Peltier element 90.
 (第9実施形態)
 第9実施形態について図14を参照して説明する。第9実施形態は、第1実施形態に対し、第2のサーモサイフォン回路200に加熱部45と流路切替弁46を設けたものである。加熱部45は、第2のサーモサイフォン回路200を流れる第2熱媒体を加熱することが可能な装置である。なお、図示していないが、第2接続熱交換器50に対し、加熱部45が設けられる第2配管60と、放熱器70、80が設けられる第2配管60とを別々に接続する構成とすれば、流路切替弁46を省略することが可能である。
The ninth embodiment
A ninth embodiment will be described with reference to FIG. In the ninth embodiment, a heating unit 45 and a flow path switching valve 46 are provided to the second thermosiphon circuit 200, as compared with the first embodiment. The heating unit 45 is a device capable of heating the second heat medium flowing through the second thermosiphon circuit 200. Although not shown, the second connection heat exchanger 50 is separately connected to the second pipe 60 provided with the heating unit 45 and the second pipe 60 provided with the radiators 70 and 80. If this is done, it is possible to omit the flow path switching valve 46.
 図14は、電池温調装置1が電池2を暖機するときの第1のサーモサイフォン回路100の第1熱媒体と、第2のサーモサイフォン回路200の第2熱媒体の動きを破線と実線の矢印で示している。電池温調装置1が電池2を暖機するとき、加熱部45が駆動される。また、流路切替弁46により流路が切り替えられ、第2熱媒体は、加熱部45と第2接続熱交換器50との間を、放熱器70、80を介することなく循環する。 FIG. 14 shows the movement of the first heat medium of the first thermosyphon circuit 100 and the second heat medium of the second thermosyphon circuit 200 when the battery temperature control device 1 warms up the battery 2 as a broken line and a solid line Shown by the arrow. When the battery temperature adjusting device 1 warms up the battery 2, the heating unit 45 is driven. Further, the flow path is switched by the flow path switching valve 46, and the second heat medium circulates between the heating unit 45 and the second connection heat exchanger 50 without passing through the radiators 70 and 80.
 加熱部45が第2熱媒体を加熱すると、蒸発して気体となった第2熱媒体は、加熱部45から第2接続熱交換器50に流入する。すなわち、加熱部45から第2接続熱交換器50へ第2熱媒体によって熱が輸送される。第2接続熱交換器50と第1接続熱交換器30では、第2熱接触面55と第1熱接触面35を介して、第2熱媒体と第1熱媒体との熱交換が行われる。第2熱媒体の温度より第1熱媒体の温度が低い場合、第2接続熱交換器50内で第2熱媒体は第1、第2熱接触面35、55を介して第1熱媒体に放熱して凝縮する。第2接続熱交換器50で液体となった第2熱媒体は、再び加熱部45に流入する。 When the heating unit 45 heats the second heat medium, the second heat medium that has evaporated into a gas flows from the heating unit 45 into the second connection heat exchanger 50. That is, heat is transported from the heating unit 45 to the second connection heat exchanger 50 by the second heat medium. In the second connection heat exchanger 50 and the first connection heat exchanger 30, heat exchange between the second heat medium and the first heat medium is performed via the second heat contact surface 55 and the first heat contact surface 35. . When the temperature of the first heat medium is lower than the temperature of the second heat medium, the second heat medium is transferred to the first heat medium via the first and second heat contact surfaces 35 and 55 in the second connection heat exchanger 50. Heat dissipates and condenses. The second heat medium that has become liquid in the second connection heat exchanger 50 flows into the heating unit 45 again.
 一方、第1接続熱交換器30内で第1熱媒体は第1、第2熱接触面35、55を介して第2熱媒体から吸熱して蒸発する。第1接続熱交換器30で気体となった第1熱媒体は、第1接続熱交換器30から第1気体通路22を通り、電池用熱交換器10に流入する。電池用熱交換器10で第1熱媒体は、電池2に放熱して凝縮する。すなわち、電池用熱交換器10から電池2へ第1熱媒体によって熱が輸送され、電池2が暖機される。電池用熱交換器10で液体となった第1熱媒体は、第1液体通路21から再び第1接続熱交換器30に流入する。このようにして、加熱部45から生じた熱は、第2接続熱交換器50、第1接続熱交換器30、電池用熱交換器10、電池2の順に輸送される。 On the other hand, in the first connection heat exchanger 30, the first heat medium absorbs heat from the second heat medium via the first and second thermal contact surfaces 35, 55 and evaporates. The first heat medium that has become a gas in the first connection heat exchanger 30 flows from the first connection heat exchanger 30 through the first gas passage 22 into the battery heat exchanger 10. In the battery heat exchanger 10, the first heat medium releases heat to the battery 2 and condenses. That is, heat is transported from the battery heat exchanger 10 to the battery 2 by the first heat medium, and the battery 2 is warmed up. The first heat medium that has become liquid in the battery heat exchanger 10 flows into the first connection heat exchanger 30 again from the first liquid passage 21. Thus, the heat generated from the heating unit 45 is transported in the order of the second connection heat exchanger 50, the first connection heat exchanger 30, the battery heat exchanger 10, and the battery 2.
 第9実施形態の電池温調装置1は、熱源部40が備える第2接続熱交換器50から第1接続熱交換器30に温熱を供給することで、第1のサーモサイフォン回路100に第1熱媒体を循環させ、電池2を暖機することが可能である。 The battery temperature adjustment device 1 according to the ninth embodiment supplies the first heat to the first connection heat exchanger 30 from the second connection heat exchanger 50 provided in the heat source unit 40, thereby providing the first thermosiphon circuit 100 with the first temperature. The heat medium can be circulated to warm up the battery 2.
 なお、図示していないが、第1熱接触面35と第2熱接触面55との間にペルチェ素子90を配置してもよい。これにより、熱源部40が備える第2接続熱交換器50から第1接続熱交換器30に温熱を供給する場合、熱源部40の第2熱接触面55の温度をペルチェ素子90でより高い温度として、第1熱接触面35に供給することができる。 Although not shown, the Peltier element 90 may be disposed between the first thermal contact surface 35 and the second thermal contact surface 55. Thereby, when supplying heat from the second connection heat exchanger 50 included in the heat source unit 40 to the first connection heat exchanger 30, the temperature of the second thermal contact surface 55 of the heat source unit 40 is higher by the Peltier element 90 Can be supplied to the first thermal contact surface 35.
 (第10実施形態)
 第10実施形態について図15を参照して説明する。第10実施形態は、第8実施形態に対し、第2のサーモサイフォン回路200に加熱部45と流路切替弁46を設けたものである。図15では、電池温調装置1が電池2を暖機するときの第1のサーモサイフォン回路100の第1熱媒体の動きを実線と破線の矢印で示し、第2の液回路400の第2熱媒体の動きを実線の矢印で示している。電池温調装置1が電池2を暖機するとき、加熱部45とポンプ65が駆動される。また、流路切替弁46により流路が切り替えられ、第2熱媒体は、加熱部45と第2接続熱交換器50との間を、放熱器70、80を介することなく循環する。
Tenth Embodiment
A tenth embodiment will be described with reference to FIG. In the tenth embodiment, a heating unit 45 and a flow path switching valve 46 are provided in the second thermosiphon circuit 200 in the eighth embodiment. In FIG. 15, the movement of the first heat medium of the first thermosiphon circuit 100 when the battery temperature control device 1 warms up the battery 2 is indicated by a solid line and a broken arrow, and the second liquid circuit 400 The movement of the heat medium is indicated by solid arrows. When the battery temperature control device 1 warms up the battery 2, the heating unit 45 and the pump 65 are driven. Further, the flow path is switched by the flow path switching valve 46, and the second heat medium circulates between the heating unit 45 and the second connection heat exchanger 50 without passing through the radiators 70 and 80.
 加熱部45により加熱された第2熱媒体は、加熱部45から第2接続熱交換器50に流入する。第2熱媒体の温度より第1熱媒体の温度が低い場合、第2接続熱交換器50内で第2熱媒体は第1、第2熱接触面35、55を介して第1熱媒体に放熱する。第2接続熱交換器50で放熱して冷えた第2熱媒体は、再び加熱部45に流入する。第1のサーモサイフォン回路100の第1熱媒体の動きは、第9実施形態で説明した第1熱媒体の動きと同じである。第10実施形態の電池温調装置1も、第9実施形態と同様の作用効果を奏することができる。 The second heat medium heated by the heating unit 45 flows from the heating unit 45 into the second connection heat exchanger 50. When the temperature of the first heat medium is lower than the temperature of the second heat medium, the second heat medium is transferred to the first heat medium via the first and second heat contact surfaces 35 and 55 in the second connection heat exchanger 50. Heat is released. The second heat medium that has dissipated and cooled in the second connection heat exchanger 50 flows into the heating unit 45 again. The movement of the first heat medium of the first thermosiphon circuit 100 is the same as the movement of the first heat medium described in the ninth embodiment. The battery temperature control apparatus 1 of the tenth embodiment can also achieve the same function and effect as those of the ninth embodiment.
 (第11実施形態)
 第11実施形態について図16を参照して説明する。第11実施形態は、第1実施形態に対し、第1のサーモサイフォン回路100の構成の一部を変更したものである。上述した第1実施形態では、複数の第1のサーモサイフォン回路100が、熱源部40が備える複数の第2接続熱交換器50に対し並列に設けられるものであった。それに対し、第11実施形態では、複数の第1のサーモサイフォン回路101、102が、熱源部40が備える第2接続熱交換器50に対し直列に設けられている。具体的には、熱源部40が備える第2接続熱交換器50に対し所定の第1のサーモサイフォン回路101が備える接続熱交換器30aが熱接触している。そして、所定の第1のサーモサイフォン回路101が備える別の接続熱交換器30bと、別の第1のサーモサイフォン回路102が備える接続熱交換器30cが熱接触することで、熱回路を構成している。すなわち、電池温調装置1は、熱接触を利用した種々の回路構成を採用することが可能である。
Eleventh Embodiment
An eleventh embodiment will be described with reference to FIG. The eleventh embodiment is a modification of the first embodiment in which part of the configuration of the first thermosiphon circuit 100 is changed. In the first embodiment described above, the plurality of first thermosiphon circuits 100 are provided in parallel to the plurality of second connection heat exchangers 50 included in the heat source unit 40. On the other hand, in the eleventh embodiment, the plurality of first thermosiphon circuits 101 and 102 are provided in series to the second connection heat exchanger 50 provided in the heat source unit 40. Specifically, the connection heat exchanger 30 a included in the predetermined first thermosiphon circuit 101 is in thermal contact with the second connection heat exchanger 50 included in the heat source unit 40. Then, the other connection heat exchanger 30b included in the predetermined first thermosiphon circuit 101 and the connection heat exchanger 30c included in the other first thermosiphon circuit 102 are in thermal contact to configure a thermal circuit. ing. That is, the battery temperature control device 1 can adopt various circuit configurations using thermal contact.
 (他の実施形態)
 本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。
(Other embodiments)
The present disclosure is not limited to the embodiments described above, and can be modified as appropriate. Further, the above embodiments are not irrelevant to each other, combination unless obviously impossible, can be appropriately combined. In each of the above embodiments, the elements constituting the embodiments, unless such case considered if explicitly and in principle clearly essential to be essential, it is not necessarily indispensable needless to say Yes. Further, in the above embodiments, when numerical values such as the number, numerical value, amount, range, etc. of constituent elements of the embodiment are mentioned, it is clearly indicated that they are particularly essential and clearly limited to a specific number in principle. It is not limited to the specific number except when it is done. In each of the above embodiments, the shape of the components, when referring to a positional relationship or the like, except in particular clearly the case and principle specific shape, etc. If to be limited to the positional relationship or the like, the shape, It is not limited to the positional relationship and the like.
 上記各実施形態では、車両に搭載される電池2の温度を調整する電池温調装置1について説明したが、電池温調装置1が対象とする電池2は、車両に搭載されるものに限らない。例えば、電池温調装置1は、定置設備等に設置される大型の電池2の温度を調整するものとしてもよい。その場合にも、電池温調装置1は、定置設備等に対する電池温調装置1および電池2の組付け性と、使用時における電池温調装置1および電池2のメンテナンス性を高めることができる。 In each of the above embodiments, the battery temperature control device 1 for adjusting the temperature of the battery 2 mounted on the vehicle has been described, but the battery 2 targeted by the battery temperature control device 1 is not limited to one mounted on the vehicle . For example, the battery temperature control device 1 may control the temperature of the large battery 2 installed in stationary equipment or the like. Also in that case, the battery temperature control device 1 can enhance the assemblability of the battery temperature control device 1 and the battery 2 with respect to stationary equipment and the like, and the maintainability of the battery temperature control device 1 and the battery 2 at the time of use.
 (まとめ)
 上述の実施形態の一部または全部で示された第1の観点によれば、電池の温度を調節する電池温調装置は、電池用熱交換器、配管、接続熱交換器および熱源部を備える。電池用熱交換器は、電池と熱媒体との熱交換を行うものである。配管は、電池用熱交換器に接続され、熱媒体が流れる。接続熱交換器は、電池用熱交換器と配管を通じて熱媒体が流れるように構成され、重力方向に沿うように形成される第1熱接触面を有する。熱源部は、接続熱交換器に対し着脱可能に構成され、第1熱接触面に直接接触または熱伝導部材を介して間接的に熱接触する第2熱接触面を有している。そして、熱源部は、第1熱接触面と第2熱接触面とが熱接触した状態で接続熱交換器を流れる熱媒体を冷却または加熱することが可能である。
(Summary)
According to a first aspect of the present invention described in part or all of the above-described embodiments, the battery temperature control apparatus for controlling the temperature of the battery includes a battery heat exchanger, piping, a connection heat exchanger, and a heat source unit. . The battery heat exchanger performs heat exchange between the battery and the heat medium. The piping is connected to the battery heat exchanger, and the heat medium flows. The connection heat exchanger is configured to allow the heat medium to flow through the battery heat exchanger and the piping, and has a first thermal contact surface formed along the direction of gravity. The heat source unit is configured to be attachable to and detachable from the connection heat exchanger, and has a second thermal contact surface that is in direct thermal contact with the first thermal contact surface or in indirect thermal contact via a thermal conduction member. And a heat source part can cool or heat the heat carrier which flows through a connection heat exchanger in the state where the 1st thermal contact side and the 2nd thermal contact side were in thermal contact.
 第2の観点によれば、配管は、液体通路と気体通路とを有する。液体通路は、電池用熱交換器のうちで熱媒体の液面より下側に設けられた流出入口と、接続熱交換器のうちで熱媒体の液面より下側に設けられた流出入口とを接続する。気体通路は、電池用熱交換器のうちで熱媒体の液面より上側に設けられた流出入口と、接続熱交換器のうちで熱媒体の液面より上側に設けられた流出入口とを接続する。電池用熱交換器と配管と接続熱交換器は、熱媒体が循環するサーモサイフォン回路を構成している。サーモサイフォン回路を流れる熱媒体の液面は、電池用熱交換器の内側の流路の途中に位置し、且つ、接続熱交換器の内側の流路の途中に位置している。 According to a second aspect, the pipe has a liquid passage and a gas passage. The liquid passage includes an outlet / inlet provided below the liquid surface of the heat medium in the battery heat exchanger, and an outlet / inlet provided below the liquid surface of the heat medium in the connected heat exchanger. Connect The gas passage connects an outlet / inlet provided above the liquid surface of the heat medium in the battery heat exchanger and an outlet / inlet provided above the liquid surface of the heat medium in the connected heat exchanger. Do. The battery heat exchanger, the piping, and the connection heat exchanger constitute a thermosyphon circuit in which a heat medium circulates. The liquid surface of the heat medium flowing through the thermosyphon circuit is located midway in the flow path inside the battery heat exchanger, and midway in the flow path inside the connected heat exchanger.
 これによれば、電池温調装置は、サーモサイフォン回路を用いた熱輸送効率の高い構成で、電池の温度を調整することができる。また、電池温調装置は、熱媒体の液面が、電池用熱交換器の内側の流路の途中に位置し、且つ、接続熱交換器の内側の流路の途中に位置していることで、電池の冷却と暖機の両方を行うことが可能である。具体的には、電池が発熱すると、電池用熱交換器で蒸発した熱媒体は、気体通路から接続熱交換器に流れる。熱源部から接続熱交換器に冷熱が供給されると、接続熱交換器の熱媒体が凝縮し、液体通路から電池用熱交換器に流れる。これにより、電池温調装置は、電池を冷却することが可能である。一方、熱源部から接続熱交換器に温熱が供給されると、接続熱交換器で蒸発した熱媒体は、気体通路から電池用熱交換器に流れる。電池用熱交換器で凝縮した熱媒体は、液体通路から接続熱交換器に流れる。これにより、電池温調装置は、電池を暖機することが可能である。 According to this, the battery temperature control device can adjust the temperature of the battery with a configuration having high heat transfer efficiency using the thermosyphon circuit. Further, in the battery temperature control apparatus, the liquid surface of the heat medium is located midway in the flow path inside the battery heat exchanger and located midway in the flow path inside the connection heat exchanger It is possible to both cool and warm up the battery. Specifically, when the battery generates heat, the heat medium evaporated in the battery heat exchanger flows from the gas passage to the connection heat exchanger. When cold heat is supplied from the heat source unit to the connection heat exchanger, the heat medium of the connection heat exchanger condenses and flows from the liquid passage to the battery heat exchanger. Thereby, the battery temperature control device can cool the battery. On the other hand, when heat is supplied from the heat source unit to the connection heat exchanger, the heat medium evaporated in the connection heat exchanger flows from the gas passage to the battery heat exchanger. The heat medium condensed by the battery heat exchanger flows from the liquid passage to the connection heat exchanger. Thereby, the battery temperature control apparatus can warm up the battery.
 第3の観点によれば、接続熱交換器の内側の流路を流れる熱媒体の液面を跨ぐように重力方向に延び、接続熱交換器の内側を流れる液相の熱媒体と気相の熱媒体との熱伝導を行う伝熱部をさらに備える。これによれば、接続熱交換器の内側の液相の熱媒体と気相の熱媒体との間で、伝熱部を介して熱が伝わる。そのため、熱源部から接続熱交換器への伝熱が良くなる。したがって、電池温調装置は、電池の冷却能力および暖機能力を高めることができる。 According to the third aspect, the heat medium extending in the direction of gravity straddles the liquid surface of the heat medium flowing in the flow passage inside the connection heat exchanger, and the heat medium in the liquid phase and the gas phase flow in the inside of the connection heat exchanger The heat transfer unit further includes a heat transfer unit that conducts heat with the heat medium. According to this, heat is transmitted via the heat transfer portion between the heat medium of the liquid phase inside the connection heat exchanger and the heat medium of the gas phase. Therefore, the heat transfer from the heat source unit to the connection heat exchanger is improved. Therefore, the battery temperature control device can increase the cooling capacity and the warm-up capability of the battery.
 第4の観点によれば、伝熱部は、接続熱交換器のうち、第1熱接触面に対して第2熱接触面とは反対側に設けられる。これによれば、伝熱部は、第1熱接触面と第2熱接触面との間の熱移動を妨げることなく、接続熱交換器の内側を流れる液相の熱媒体と気相の熱媒体との熱伝導を行うことが可能である。 According to the fourth aspect, the heat transfer portion is provided on the opposite side of the first thermal contact surface to the second thermal contact surface in the connection heat exchanger. According to this, the heat transfer portion is not affected by the heat transfer between the first thermal contact surface and the second thermal contact surface, and the heat medium of the liquid phase and the heat of the gas phase flowing inside the connection heat exchanger It is possible to conduct heat transfer with the medium.
 第5の観点によれば、伝熱部は、第1熱接触面を形成する部位の厚みより、第1熱接触面から第2熱接触面とは反対側に延びる部位の厚みの方が肉厚となるように形成されている。これによれば、伝熱部は、第1熱接触面と第2熱接触面との間の熱移動を妨げることなく、接続熱交換器の内側を流れる液相の熱媒体と気相の熱媒体との熱伝導を行うことが可能である。 According to the fifth aspect, in the heat transfer portion, the thickness of the portion extending from the first thermal contact surface to the opposite side to the second thermal contact surface is thinner than the thickness of the portion forming the first thermal contact surface It is formed to be thick. According to this, the heat transfer portion is not affected by the heat transfer between the first thermal contact surface and the second thermal contact surface, and the heat medium of the liquid phase and the heat of the gas phase flowing inside the connection heat exchanger It is possible to conduct heat transfer with the medium.
 第6の観点によれば、電池温調装置は、第1熱接触面と第2熱接触面との間に設けられるペルチェ素子をさらに備える。これによれば、熱源部から接続熱交換器に冷熱を供給する場合、熱源部の第2熱接触面の温度をペルチェ素子でより低い温度として、第1熱接触面に供給することが可能である。また、熱源部から接続熱交換器に温熱を供給する場合、熱源部の第2熱接触面の温度をペルチェ素子でより高い温度として、第1熱接触面に供給することも可能である。 According to a sixth aspect, the battery temperature control apparatus further includes a Peltier element provided between the first thermal contact surface and the second thermal contact surface. According to this, when cold heat is supplied from the heat source unit to the connection heat exchanger, it is possible to supply the temperature of the second thermal contact surface of the heat source unit as the lower temperature by the Peltier element to the first thermal contact surface is there. Moreover, when supplying heat from the heat source unit to the connection heat exchanger, it is also possible to supply the temperature of the second heat contact surface of the heat source unit as the higher temperature by the Peltier element to the first heat contact surface.
 第7の観点によれば、前記熱媒体を第1熱媒体、前記配管を第1配管、前記接続熱交換器を第1接続熱交換器とする。熱源部は、第2接続熱交換器、第2配管および放熱器を有する。第2接続熱交換器は、第2熱接触面を介して第1熱媒体と第2熱媒体との熱交換を行う。第2配管は、第2接続熱交換器に接続され、第2熱媒体が流れる。放熱器は、第2接続熱交換器と第2配管を通じて第2熱媒体が流れるように構成され、外部の熱媒体と第2熱媒体との熱交換により、第2熱媒体を放熱させる。 According to the seventh aspect, the heat medium is a first heat medium, the pipe is a first pipe, and the connection heat exchanger is a first connection heat exchanger. The heat source unit includes a second connection heat exchanger, a second pipe, and a radiator. The second connection heat exchanger exchanges heat between the first heat medium and the second heat medium via the second heat contact surface. The second pipe is connected to the second connection heat exchanger, and the second heat medium flows. The radiator is configured such that the second heat medium flows through the second connection heat exchanger and the second pipe, and the heat exchange between the external heat medium and the second heat medium dissipates the heat of the second heat medium.
 これによれば、第2接続熱交換器、第2配管および放熱器を有する第2のサーモサイフォン回路または液回路等により熱源部が構成される。そのため、電池の発熱は、電池用熱交換器、第1配管、第1接続熱交換器、第2接続熱交換器、第2配管、放熱器の順に輸送され、放熱器で放熱される。したがって、この電池温調装置は、電池を冷却することができる。 According to this, the heat source section is configured by the second thermosiphon circuit or the liquid circuit having the second connection heat exchanger, the second pipe, and the radiator. Therefore, the heat generation of the battery is transported in the order of the battery heat exchanger, the first piping, the first connection heat exchanger, the second connection heat exchanger, the second piping, and the radiator, and the heat is dissipated by the radiator. Therefore, this battery temperature control device can cool the battery.
 第8の観点によれば、熱源部は、第2配管に接続され、第2熱媒体を加熱する加熱部をさらに有する。これによれば、加熱部で加熱された第2熱媒体により、熱源部から接続熱交換器および電池用熱交換器を介して電池に温熱を供給することが可能である。したがって、この電池温調装置は、電池を暖機することができる。 According to the eighth aspect, the heat source unit further includes a heating unit connected to the second pipe and configured to heat the second heat medium. According to this, it is possible to supply heat from the heat source unit to the battery via the connection heat exchanger and the battery heat exchanger by the second heat medium heated by the heating unit. Therefore, this battery temperature control apparatus can warm up the battery.

Claims (8)

  1.  電池(2)の温度を調節する電池温調装置であって、
     前記電池と熱媒体との熱交換を行う電池用熱交換器(10)と、
     前記電池用熱交換器に接続され、熱媒体が流れる配管(20)と、
     前記電池用熱交換器と前記配管を通じて熱媒体が流れるように構成され、重力方向に沿うように形成される第1熱接触面(35)を有する接続熱交換器(30)と、
     前記接続熱交換器に対し着脱可能に構成され、前記第1熱接触面に直接接触または熱伝導部材(41)を介して間接的に熱接触する第2熱接触面(55)を有し、前記第1熱接触面と前記第2熱接触面とが熱接触した状態で前記接続熱交換器を流れる熱媒体を冷却または加熱することの可能な熱源部(40)と、を備える電池温調装置。
    A battery temperature control device for controlling the temperature of the battery (2),
    A battery heat exchanger (10) for exchanging heat between the battery and a heat medium;
    Piping (20) connected to the battery heat exchanger and through which a heat medium flows;
    A connection heat exchanger (30) configured to flow a heat medium through the battery heat exchanger and the pipe and having a first thermal contact surface (35) formed along the direction of gravity;
    It has a second thermal contact surface (55) configured to be detachable from the connection heat exchanger, and in direct thermal contact with the first thermal contact surface or indirect thermal contact via a thermal conduction member (41), A heat source portion (40) capable of cooling or heating a heat medium flowing in the connection heat exchanger in a state where the first heat contact surface and the second heat contact surface are in thermal contact with each other apparatus.
  2.  前記配管は、
     前記電池用熱交換器のうちで熱媒体の液面より下側に設けられた流出入口(121)と、前記接続熱交換器のうちで熱媒体の液面より下側に設けられた流出入口(321)とを接続する液体通路(21)と、
     前記電池用熱交換器のうちで熱媒体の液面より上側に設けられた流出入口(111)と、前記接続熱交換器のうちで熱媒体の液面より上側に設けられた流出入口(311)とを接続する気体通路(22)と、を有するものであり、
     前記電池用熱交換器と前記配管と前記接続熱交換器は、熱媒体が循環するサーモサイフォン回路(100)を構成しており、
     前記サーモサイフォン回路を流れる熱媒体の液面(FL1、FL2)は、前記電池用熱交換器の内側の流路の途中に位置し、且つ、前記接続熱交換器の内側の流路の途中に位置している、請求項1に記載の電池温調装置。
    The piping is
    Outflow inlet (121) provided below the liquid surface of the heat medium among the heat exchangers for batteries, and outflow inlet provided below the liquid surface of the heat medium among the connection heat exchangers A fluid passage (21) connecting to (321),
    The outlet / inlet (111) provided above the liquid surface of the heat medium in the battery heat exchanger, and the outlet / inlet (311) provided above the liquid surface of the heat medium in the connected heat exchanger. And a gas passage (22) connecting the
    The battery heat exchanger, the pipe, and the connection heat exchanger constitute a thermosyphon circuit (100) in which a heat medium circulates,
    The liquid level (FL1, FL2) of the heat medium flowing through the thermosyphon circuit is located midway in the flow path inside the battery heat exchanger, and midway in the flow path inside the connection heat exchanger The battery temperature control device according to claim 1, which is located.
  3.  前記接続熱交換器の内側の流路を流れる熱媒体の液面を跨ぐように重力方向に延び、前記接続熱交換器の内側を流れる液相の熱媒体と気相の熱媒体との熱伝導を行う伝熱部(36)をさらに備える、請求項1または2に記載の電池温調装置。 The heat transfer between the heat medium in the liquid phase and the heat medium in the gas phase extending in the direction of gravity so as to straddle the liquid surface of the heat medium flowing in the flow path inside the connection heat exchanger and flowing inside the connection heat exchanger The battery heat regulation apparatus of Claim 1 or 2 further provided with the heat-transfer part (36) which does.
  4.  前記伝熱部は、前記接続熱交換器のうち、前記第1熱接触面に対して前記第2熱接触面とは反対側に設けられる、請求項3に記載の電池温調装置。 The battery heat regulation system according to claim 3 with which said heat transfer part is provided in the side opposite to said 2nd thermal contact side to said 1st thermal contact side among said connection heat exchangers.
  5.  前記伝熱部は、前記第1熱接触面を形成する部位の厚み(T1)より、前記第1熱接触面から前記第2熱接触面とは反対側に延びる部位の厚み(T2)の方が肉厚となるように形成されている、請求項3または4に記載の電池温調装置。 The heat transfer portion is a portion (T2) of a portion extending from the first thermal contact surface to the opposite side to the second thermal contact surface from a thickness (T1) of a portion forming the first thermal contact surface The battery temperature control device according to claim 3 or 4, wherein the wall thickness is formed.
  6.  前記第1熱接触面と前記第2熱接触面との間に設けられるペルチェ素子(90)をさらに備える、請求項1ないし5のいずれか1つに記載の電池温調装置。 The battery temperature control device according to any one of claims 1 to 5, further comprising a Peltier element (90) provided between the first thermal contact surface and the second thermal contact surface.
  7.  前記熱媒体を第1熱媒体、前記配管を第1配管、前記接続熱交換器を第1接続熱交換器としたとき、
     前記熱源部は、
     前記第2熱接触面を介して第1熱媒体と第2熱媒体との熱交換を行う第2接続熱交換器(50)と、
     前記第2接続熱交換器に接続され、第2熱媒体が流れる第2配管(60)と、
     前記第2接続熱交換器と前記第2配管を通じて第2熱媒体が流れるように構成され、外部の熱媒体と第2熱媒体との熱交換により、第2熱媒体を放熱させる放熱器(70、80)と、を有する、請求項1ないし6のいずれか1つに記載の電池温調装置。
    When the heat medium is a first heat medium, the pipe is a first pipe, and the connection heat exchanger is a first connection heat exchanger,
    The heat source unit is
    A second connection heat exchanger (50) performing heat exchange between the first heat medium and the second heat medium via the second heat contact surface;
    A second pipe (60) connected to the second connection heat exchanger and through which a second heat medium flows;
    A radiator (70) configured to allow the second heat medium to flow through the second connection heat exchanger and the second pipe, and to dissipate the second heat medium by heat exchange between an external heat medium and the second heat medium. , 80), and the battery temperature control apparatus according to any one of claims 1 to 6.
  8.  前記熱源部は、前記第2配管に接続され、第2熱媒体を加熱する加熱部(45)をさらに有する、請求項7に記載の電池温調装置。 The battery temperature control device according to claim 7, wherein the heat source unit further includes a heating unit (45) connected to the second pipe and configured to heat the second heat medium.
PCT/JP2018/028139 2017-08-24 2018-07-26 Battery temperature regulator WO2019039187A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-161260 2017-08-24
JP2017161260A JP2019040730A (en) 2017-08-24 2017-08-24 Battery temperature adjustment device

Publications (1)

Publication Number Publication Date
WO2019039187A1 true WO2019039187A1 (en) 2019-02-28

Family

ID=65438773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028139 WO2019039187A1 (en) 2017-08-24 2018-07-26 Battery temperature regulator

Country Status (2)

Country Link
JP (1) JP2019040730A (en)
WO (1) WO2019039187A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021074263A1 (en) * 2019-10-17 2021-04-22 Kautex Textron Gmbh & Co. Kg Cooling device for a traction battery of a vehicle
CN113314783A (en) * 2021-05-28 2021-08-27 中国地质大学(北京) Electric automobile battery temperature management system based on composite phase change material and liquid cooling are mixed

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020184430A (en) * 2019-04-26 2020-11-12 トヨタ自動車株式会社 Cooling unit
CN111900512B (en) * 2019-05-05 2023-06-23 浙江三花汽车零部件有限公司 Battery component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010079403A (en) * 2008-09-24 2010-04-08 Hitachi Ltd Cooling system for electronic equipment
JP2012224301A (en) * 2011-04-22 2012-11-15 Denso Corp Cogeneration device
JP2013157295A (en) * 2012-02-01 2013-08-15 Toyota Industries Corp Battery temperature adjustment device
JP2015041418A (en) * 2013-08-20 2015-03-02 トヨタ自動車株式会社 Battery temperature adjusting device
JP2016186900A (en) * 2015-03-27 2016-10-27 株式会社フジクラ Lithium ion secondary battery device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010079403A (en) * 2008-09-24 2010-04-08 Hitachi Ltd Cooling system for electronic equipment
JP2012224301A (en) * 2011-04-22 2012-11-15 Denso Corp Cogeneration device
JP2013157295A (en) * 2012-02-01 2013-08-15 Toyota Industries Corp Battery temperature adjustment device
JP2015041418A (en) * 2013-08-20 2015-03-02 トヨタ自動車株式会社 Battery temperature adjusting device
JP2016186900A (en) * 2015-03-27 2016-10-27 株式会社フジクラ Lithium ion secondary battery device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021074263A1 (en) * 2019-10-17 2021-04-22 Kautex Textron Gmbh & Co. Kg Cooling device for a traction battery of a vehicle
CN114641888A (en) * 2019-10-17 2022-06-17 考特克斯·特克斯罗恩有限公司及两合公司 Cooling device for traction battery of vehicle
CN114641888B (en) * 2019-10-17 2023-12-29 考特克斯·特克斯罗恩有限公司及两合公司 Cooling device for traction battery of vehicle
CN113314783A (en) * 2021-05-28 2021-08-27 中国地质大学(北京) Electric automobile battery temperature management system based on composite phase change material and liquid cooling are mixed

Also Published As

Publication number Publication date
JP2019040730A (en) 2019-03-14

Similar Documents

Publication Publication Date Title
WO2019039187A1 (en) Battery temperature regulator
JP6879122B2 (en) Battery temperature controller
JP6604442B2 (en) Equipment temperature controller
JP5757502B2 (en) Battery temperature control unit and battery temperature control device
WO2016133145A1 (en) Battery temperature control device and battery temperature control system
KR20110089317A (en) Battery module
JP6693480B2 (en) Terminal cooling device
JP2012214106A (en) Air conditioning system for vehicle
CN108470959A (en) A kind of power battery pack heat management assembly
EP2518424B1 (en) Thermoelectric heat exchanger capable of providing two different discharge temperatures
JP2019196840A (en) Device temperature regulator
JP5786132B2 (en) Electric car
US20120222429A1 (en) Vehicle air conditioner
KR20090080184A (en) A Heat Exchanger using Thermoelectric Modules and A Method for Controlling the Thermoelectric Modules
JP4396351B2 (en) Thermoelectric generator
JP6612364B2 (en) Thermal management system for electric vehicles
JP3539274B2 (en) Cooling structure of antenna device
WO2019054076A1 (en) Device temperature adjustment apparatus
JP2015116910A (en) Heat exchange system
KR20120088578A (en) Air-conditioning core
JP2018031557A (en) Cooling device and electric equipment mounting the same, and electric car
JP2019086275A (en) Equipment temperature controller
JP2010206892A (en) Device for cooling inverter
CN216750052U (en) Thermal management device and battery thermal management system
JP2013024478A (en) Cooling device, electronic equipment and electric vehicle with cooling device mounted thereon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18848775

Country of ref document: EP

Kind code of ref document: A1