WO2019054076A1 - Device temperature adjustment apparatus - Google Patents

Device temperature adjustment apparatus Download PDF

Info

Publication number
WO2019054076A1
WO2019054076A1 PCT/JP2018/029095 JP2018029095W WO2019054076A1 WO 2019054076 A1 WO2019054076 A1 WO 2019054076A1 JP 2018029095 W JP2018029095 W JP 2018029095W WO 2019054076 A1 WO2019054076 A1 WO 2019054076A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas phase
passage
working fluid
connection portion
phase passage
Prior art date
Application number
PCT/JP2018/029095
Other languages
French (fr)
Japanese (ja)
Inventor
功嗣 三浦
康光 大見
義則 毅
竹内 雅之
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018137127A external-priority patent/JP6784281B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201880046989.6A priority Critical patent/CN110892225B/en
Publication of WO2019054076A1 publication Critical patent/WO2019054076A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D9/00Devices not associated with refrigerating machinery and not covered by groups F25D1/00 - F25D7/00; Combinations of devices covered by two or more of the groups F25D1/00 - F25D7/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a device temperature control apparatus that adjusts the temperature of a target device.
  • An apparatus temperature control device described in Patent Document 1 includes: a heat exchanger for equipment which performs heat exchange between a battery as a target equipment and a working fluid; and a condenser disposed above the heat exchanger for equipment in the direction of gravity. A gas phase passage and a liquid phase passage connecting the heat exchanger for the equipment and the condenser are provided.
  • the device temperature control device includes a heating member capable of heating the working fluid inside the device heat exchanger.
  • the device temperature control device described in Patent Document 1 when the battery is cooled, the working fluid inside the device heat exchanger absorbs heat from the battery, evaporates, and flows into the condenser through the gas phase passage. The liquid phase working fluid condensed by the condenser flows through the liquid phase passage into the equipment heat exchanger. As described above, the device temperature control device is configured to cool the battery by the phase change of the working fluid circulating in the thermosyphon circuit.
  • thermo-siphon-type device temperature control apparatus As described in Patent Document 1. That is, as shown in FIG. 42, when the device temperature control device 100 is mounted on a vehicle or the like, the device temperature control device 100 may tilt as well as the vehicle. In the state shown in FIG. 42, in the heat exchanger 110 for the device included in the device temperature control apparatus 100, the connection portion 201 connected to the heat exchanger 110 for the device in the gas phase passage 200 is on the lower side in the gravity direction. It is inclined. Therefore, the liquid level FL of the working fluid in the liquid phase in the heat exchanger 110 for equipment is located above the connection portion 201 of the gas phase passage 200. That is, the connection portion 201 of the gas phase passage 200 is submerged in the liquid phase working fluid.
  • the working fluid evaporated in the device heat exchanger 110 at the time of heat generation of the battery does not flow to the gas phase passage 200 and is accumulated in the upper space 120 in the device heat exchanger 110. Therefore, the working fluid does not circulate in the thermosyphon circuit configured by the device heat exchanger 110, the gas phase passage 200, the condenser 500, and the liquid phase passage 550, and the device temperature controller 100 can not cool the battery.
  • the target device that the device temperature adjustment device 100 performs temperature adjustment can be a battery pack mounted on an electric vehicle such as an electric vehicle or a hybrid vehicle.
  • the battery pack is constituted by a large number of battery cells, and is disposed under the floor of the electric vehicle, so that the size in the horizontal direction is large. Therefore, the length in the horizontal direction of the heat exchanger 110 for the device also increases along with the battery pack. Therefore, even when the inclination angle of the electric powered vehicle is small, the connection portion 210 of the gas phase passage 200 is likely to be submerged in the liquid phase working fluid. That is, when the target device is the battery pack of the electric vehicle, the influence of the inclination of the electric vehicle on the battery cooling capacity of the device temperature control apparatus 100 is large.
  • An object of the present disclosure is to provide a device temperature control device capable of performing temperature control of a target device even when the device is inclined.
  • an apparatus temperature control apparatus that adjusts a temperature of a target device by a phase change between a liquid phase and a gas phase of a working fluid
  • a device temperature control unit having one or more device heat exchangers configured to be able to exchange heat between the target device and the working fluid so that the working fluid evaporates when the target device is cooled;
  • a condenser which dissipates the gas phase working fluid and drains the condensed liquid phase working fluid;
  • a plurality of gas phase passages for flowing a gas phase working fluid between the equipment temperature control unit and the condenser;
  • the first connection portion in which the first gas phase passage is connected to the device temperature adjustment unit among the plurality of gas phase passages and the second connection portion in which the second gas phase passage is connected to the device temperature adjustment portion are horizontally separated Located in the
  • the working fluid evaporated in the heat exchanger for equipment included in the equipment temperature control unit is transferred from the first connection or the second connection located at the upper side in the gravity direction to at least the first gas phase passage or the second gas phase passage. It flows to one side and flows into the condenser.
  • the working fluid condensed by the condenser flows through the liquid phase passage and flows into the heat exchanger for equipment.
  • an apparatus temperature control apparatus for adjusting a temperature of a target device by a phase change between a liquid phase and a gas phase of a working fluid
  • a plurality of device heat exchangers configured to be able to exchange heat between the target device and the working fluid so that the working fluid evaporates when the target device is cooled, and a connection passage connecting the plurality of device heat exchangers
  • a device temperature control unit A condenser which dissipates the gas phase working fluid and drains the condensed liquid phase working fluid;
  • a liquid phase passage for flowing a liquid phase working fluid between the plurality of equipment heat exchangers and the condenser;
  • a plurality of gas phase passages for flowing a gas phase working fluid between the plurality of equipment heat exchangers and the condenser;
  • the first connection portion in which the first gas phase passage is connected to the device temperature adjustment unit among the plurality of gas phase passages and the second connection portion in which the second gas phase passage is connected to the device temperature adjustment portion are horizontally separated It is located in the same
  • the working fluid evaporated in the plurality of equipment heat exchangers included in the equipment temperature control unit is transferred from the first connection or the second connection located on the upper side in the direction of gravity to the first gas phase passage or the second gas phase passage. Flow through at least one of the two into the condenser.
  • the working fluid condensed by the condenser flows through the liquid phase passage and flows into the plurality of equipment heat exchangers. The circulation of the working fluid allows the device temperature control device to cool the target device even when the plurality of device heat exchangers are inclined.
  • FIG. 1 It is a schematic block diagram of the apparatus temperature control apparatus which concerns on 1st Embodiment. It is a perspective view of the heat exchanger for apparatuses with which an apparatus heat regulation apparatus is equipped, and a battery module. It is sectional drawing of the heat exchanger for apparatuses with which an apparatus temperature control apparatus is equipped, and a battery module. It is explanatory drawing which shows the flow of the working fluid at the time of the battery cooling of an apparatus temperature control apparatus. It is explanatory drawing which shows the flow of the working fluid when an apparatus temperature control apparatus inclines. It is explanatory drawing which shows the flow of the working fluid when an apparatus temperature control apparatus inclines.
  • FIG. 1 It is an enlarged view of XXVIII part of FIG. It is an enlarged view of the XXIX part of FIG.
  • FIG. 37 is an enlarged view of a portion XXXVII of FIG. 36;
  • FIG. 37 is an enlarged view of a portion XXXVIII in FIG.
  • It is a schematic block diagram of the apparatus temperature control apparatus which concerns on 23rd Embodiment.
  • It is an enlarged view of the XL part of FIG.
  • It is an enlarged view of the XLI part of FIG.
  • It is a schematic block diagram of the conventional apparatus temperature control apparatus.
  • the device temperature control device 1 is mounted on an electric vehicle (hereinafter simply referred to as a “vehicle”) such as an electric vehicle, a plug-in hybrid vehicle, or a hybrid vehicle.
  • vehicle such as an electric vehicle, a plug-in hybrid vehicle, or a hybrid vehicle.
  • the device temperature control device 1 of the first embodiment (hereinafter sometimes referred to as “this device 1”) cools or warms up a secondary battery (hereinafter referred to as “battery”) mounted on a vehicle, and the battery temperature To adjust the
  • a large battery 2 installed in a vehicle is mounted under a seat of the vehicle or under a trunk room as a battery pack (i.e., a storage device) in which a plurality of battery modules in which a plurality of battery cells 3 are combined is stored.
  • the power stored in the battery 2 is supplied to the vehicle drive motor via an inverter or the like.
  • the battery 2 generates heat when power is supplied, for example, while the vehicle is traveling.
  • the battery 2 becomes high temperature it not only can not perform sufficient functions but also accelerates deterioration, so it is necessary to limit the output and input so as to reduce self-heating. Therefore, in order to secure the output and input of the battery 2, a cooling device for maintaining the battery 2 at a predetermined temperature or lower is required.
  • the temperature of the battery 2 rises not only while the vehicle is traveling but also while it is parked and the like.
  • the battery 2 is often disposed under the floor of the vehicle, under the trunk room, etc., and although the amount of heat per unit time given to the battery 2 is small, the temperature of the battery 2 gradually rises by leaving for a long time.
  • the life of the battery 2 is shortened. Therefore, it is desired to maintain the temperature of the battery 2 at a predetermined temperature or less even while the vehicle is parked.
  • the battery 2 is configured by a plurality of battery cells 3.
  • the battery 2 when the temperature of each battery cell 3 is uneven, deterioration of the battery cell 3 is biased and the storage performance is lowered.
  • the battery 2 is configured to include a series connection of a plurality of battery cells 3, and the input / output characteristics of the battery 2 are determined in accordance with the characteristics of the battery cell 3 that has deteriorated the most. Therefore, in order to cause the battery 2 to exhibit desired performance over a long period of time, it is important to make the temperature uniform to reduce the temperature variation among the plurality of battery cells 3.
  • air-cooling type cooling means by a blower and cooling means utilizing cold heat of a vapor compression type refrigeration cycle are generally used.
  • the air-cooling type cooling means by the blower since the air-cooling type cooling means by the blower only blows the air in the passenger compartment, the cooling capacity is low. Further, since the air blown by the blower cools the battery 2 with sensible heat of air, the temperature difference between the upstream and the downstream of the air flow becomes large, and temperature variations among the plurality of battery cells 3 can not be sufficiently suppressed.
  • the cooling means utilizing the cold heat of the refrigeration cycle has a high cooling capacity, it is necessary to drive a compressor or the like that consumes a large amount of power while the vehicle is parked. This is not preferable because it causes an increase in power consumption and noise.
  • the device temperature control device 1 of the present embodiment adopts a thermosiphon system in which the temperature of the battery 2 is adjusted by natural circulation of the working fluid without forcibly circulating the working fluid by the compressor.
  • the device temperature control apparatus 1 As shown in FIG. 1, in the device temperature adjusting device 1, the device temperature adjusting unit 10, a plurality of gas phase passages 21, 22, 40, a condenser 50, a liquid phase passage 55 and the like are mutually connected and sealed fluid It is configured as a circuit.
  • the apparatus temperature control apparatus 1 constitutes a loop-type thermosiphon circuit in which a flow path in which a working fluid in a gas phase flows and a flow path in which a working fluid in a liquid phase flows are separated. A predetermined amount of working fluid is enclosed in the thermosiphon circuit in a state where the inside thereof is evacuated.
  • the working fluid for example, fluorocarbon-based refrigerants such as HFO-1234yf or HFC-134a are used.
  • the enclosed amount of the working fluid is adjusted so that the fluid level FL of the working fluid is located midway in the height direction of the heat exchanger for equipment.
  • an example of the height of the fluid level FL of the working fluid is indicated by a dashed dotted line.
  • the upper and lower sides shown with the double arrow of drawing have shown the upper side and lower side of the gravity direction in the state by which the apparatus temperature control apparatus 1 was mounted in the vehicle etc.
  • the device temperature adjusting unit 10 is configured of one heat exchanger 11 for a device.
  • the device heat exchanger 11 has a shape having a longitudinal direction and a short direction when viewed from the gravity direction.
  • the device heat exchanger 11 is configured of a cylindrical upper header tank 111, a cylindrical lower header tank 112, and a heat exchange unit 113.
  • the upper header tank 111 is provided at a position on the equipment heat exchanger 11 above the gravity direction.
  • the lower header tank 112 is provided at a position on the lower side in the direction of gravity of the heat exchanger 11 for equipment.
  • the plurality of heat exchange units 113 have a plurality of tubes which connect the flow passage in the upper header tank 111 and the flow passage in the lower header tank 112.
  • the heat exchange portion 113 may have a plurality of flow paths formed inside a plate-like member.
  • Each component of the device heat exchanger 11 is made of, for example, a metal having high thermal conductivity, such as aluminum or copper.
  • the battery 2 is installed outside the heat exchange unit 113 via the electrically insulating heat conductive sheet 114. While the insulation between the heat exchange part 113 and the battery 2 is secured by the heat conduction sheet 114, the thermal resistance between the heat exchange part 113 and the battery 2 becomes small.
  • the surface 6 opposite to the surface 5 on which the terminal 4 is provided is installed in the heat exchange unit 113 via the heat conduction sheet 114. It is also possible to omit the heat conduction sheet 114 and directly connect the battery 2 and the heat exchange unit 113.
  • the plurality of battery cells 3 constituting the battery 2 are arranged in a direction intersecting the gravity direction.
  • the method of installing the battery 2 is not limited to that shown in FIGS. 1 to 3, and any method may be employed as will be described in the fifteenth and sixteenth embodiments described later.
  • the number, shape, and the like of the battery cells 3 constituting the battery 2 are not limited to those shown in FIGS. 1 to 3, and arbitrary ones can be adopted.
  • the battery 2 can exchange heat with the working fluid inside the heat exchanger 11 for equipment.
  • the working fluid in the liquid phase in the device heat exchanger 11 evaporates.
  • the plurality of battery cells 3 are evenly cooled by the latent heat of vaporization of the working fluid.
  • Outlets 111 a and 111 b are provided on the left and right of the upper header tank 111 in the longitudinal direction of the upper heat exchanger 11 for the device.
  • the lower header tank 112 is provided with an inlet 112 a.
  • the outflow ports 111a and 111b are pipe connection portions for connecting the end portions of the gas pipes constituting the gas phase passages 21, 22 and 40.
  • the inflow port 112 a is a pipe connection portion for connecting an end portion of the liquid pipe constituting the liquid phase passage 55.
  • the plurality of gas phase passages 21, 22, 40 are passages for flowing the working fluid of the gas phase evaporated inside the heat exchanger 11 for an instrument to the condenser 50.
  • the plurality of gas phase passages 21, 22, and 40 are configured to include the first gas phase passage 21, the second gas phase passage 22, and the merging passage 40.
  • One end of the first gas phase passage 21 is connected to an outlet 111 a provided on one side of the upper header tank 111 in the longitudinal direction of the heat exchanger 11 for equipment.
  • the end at which the first gas phase passage 21 is connected to the heat exchanger 11 for equipment is referred to as a first connection portion 211.
  • One end of the second gas phase passage 22 is connected to an outlet 111 b provided at the other end of the upper header tank 111 in the longitudinal direction of the heat exchanger 11 for equipment.
  • the end at which the second gas phase passage 22 is connected to the heat exchanger 11 for apparatus is referred to as a second connection portion 221.
  • the first connection portion 211 of the first gas phase passage 21 and the second connection portion 221 of the second gas phase passage 22 are provided at horizontally separated positions in one heat exchanger 11 for an apparatus. .
  • the first connection portion 211 of the first gas phase passage 21 and the second connection portion 221 of the second gas phase passage 22 are located longitudinally outside the heat exchange portion 113 of the heat exchanger 11 for equipment.
  • the first connection portion 211 is provided forward of the heat exchange portion 113 in the heat exchanger 11 for the device. Further, the second connection portion 221 is provided on the rear side of the heat exchanger 113 of the heat exchanger 11 for the device. That is, the first connection portion 211 and the second connection portion 221 are provided at places separated in the vehicle longitudinal direction.
  • the first gas phase passage 21 has a portion 21 a extending from the first connection portion 211 to the front of the vehicle.
  • the second gas phase passage 22 has a portion 22 a extending from the second connection portion 221 to the rear of the vehicle.
  • the first gas phase passage 21 may extend upward from the first connection portion 211, or may extend upward and obliquely forward.
  • the second gas phase passage 22 may extend upward from the second connection portion 221, or may extend upward and obliquely rearward.
  • the following can be said as an effect of the first gas phase passage 21 having a portion 21 a extending from the first connection portion 211 to the front of the vehicle. That is, as shown in FIG. 5, a portion 21 a of the first gas phase passage 21 extending forward of the vehicle from the first connection portion 211 is a pipe for coping with the inclination when the position of the condenser 50 rises.
  • the heat exchange portion 113 of the heat exchanger 11 for equipment is inclined as shown in FIG.
  • the first gas phase passage 21 does not relatively lower. Therefore, at the time of inclination, the gas phase refrigerant evaporated in the heat exchange unit 113 is easily introduced to the first gas phase passage 21.
  • the following can be said as an effect of the second gas phase passage 22 having the portion 22a extending from the second connection portion 221 to the rear of the vehicle. That is, as shown in FIG. 6, a portion 22 a of the second gas phase passage 22 extending rearward from the second connection portion 221 is a pipe for dealing with the inclination when the position of the condenser 50 is lowered.
  • the heat exchange portion 113 of the heat exchanger 11 for equipment is inclined as shown in FIG.
  • the second gas phase passage 22 does not relatively lower. Therefore, at the time of inclination, the gas phase refrigerant evaporated in the heat exchange unit 113 is easily introduced to the second gas phase passage 22.
  • the end of the first gas phase passage 21 on the opposite side to the heat exchanger 11 for the device and the end of the second gas phase passage 22 on the opposite side to the heat exchanger 11 for the device are the junction 30 Connected by A junction passage 40 is connected between the junction 30 and the condenser 50.
  • the merging portion 30 is provided on the upper side in the gravity direction than the first connection portion 211 and the second connection portion 221.
  • the working fluid flowing through the first gas phase passage 21 and the working fluid flowing through the second gas phase passage 22 merge at the junction 30.
  • the working fluid merged at the merging portion 30 flows to the condenser 50 through the merging passage 40.
  • Condenser 50 is arranged above the heat exchanger 11 for equipment in the direction of gravity.
  • the condenser 50 is a heat exchanger for exchanging heat between the gas phase working fluid that has flowed into the interior of the condenser 50 through the gas phase passages 21, 22 and 40 and a predetermined heat receiving medium.
  • the predetermined heat receiving medium performing heat exchange with the working fluid flowing through the condenser 50 may employ various heat mediums, such as refrigerant circulating in a refrigeration cycle, cooling water circulating in a cooling water circuit, or air, for example. It is possible.
  • the condenser 50 when air is employed as a predetermined heat receiving medium which exchanges heat with the working fluid flowing through the condenser 50, the condenser 50 can be a working fluid of air or running air blown by a fan (not shown) and a gas phase working fluid. It is comprised as an air-cooled heat exchanger which carries out heat exchange. In that case, the gas phase working fluid flowing through the condenser 50 condenses by releasing heat to the air passing through the condenser 50.
  • the condenser 50 is generally provided in an engine room in front of the vehicle.
  • the condenser 50 is not limited to the position above the liquid level FL of the working fluid as shown in the drawing, and may be provided at a position straddling the liquid level FL of the working fluid in the height direction.
  • the liquid phase passage 55 is a passage for causing the working fluid of the liquid phase condensed inside the condenser 50 to flow to the heat exchanger 11 for the device.
  • the end of the liquid phase passage 55 opposite to the condenser 50 is connected to the inlet 112 a provided in the lower header tank 112 of the heat exchanger 11 for equipment.
  • the working fluid that has been condensed in the condenser 50 and becomes a liquid phase flows down the liquid phase passage 55 by its own weight and flows into the heat exchanger 11 for equipment.
  • the gas phase passages 21, 22, 40 and the liquid phase passage 55 are names for convenience, and do not mean a passage through which only the gas phase or liquid phase working fluid flows. That is, working fluid of both the gas phase and the liquid phase may flow through any of the gas phase passages 21, 22, 40 and the liquid phase passage 55. Further, the shapes and the like of the gas phase passages 21, 22, 40 and the liquid phase passage 55 can be appropriately changed in consideration of the mountability to the vehicle.
  • FIG. 4 shows the case where the device temperature adjustment unit 10 is in the horizontal state.
  • the enclosed amount of the working fluid is such that the fluid level FL of the working fluid is in the height direction of the heat exchange unit 113 when the device temperature adjustment device 1 is in the non-operating state and the device temperature adjustment unit 10 is in the horizontal state. It is adjusted to be located in the middle of. Further, the amount of the working fluid enclosed is such that when the device temperature adjustment device 1 is in the non-operating state and the device temperature adjustment unit 10 is in the horizontal state, the first connection portion 211 and the second connection portion 221 are the liquid level FL of the working fluid. It is adjusted to be on the upper side.
  • the condenser 50 When the device temperature adjustment device 1 is activated to cool the battery 2, the condenser 50 performs heat exchange between the working fluid in the gas phase and the predetermined heat receiving medium. Specifically, when the vehicle is at a stop, a fan (not shown) for blowing air to the condenser 50 is driven, and the air is blown by the fan. In addition, since driving
  • the working fluid in the liquid phase condensed by the condenser 50 flows through the liquid phase passage 55 by its own weight and flows into the lower header tank 112 of the heat exchanger 11 for the device from the inlet.
  • the working fluid that has flowed into the lower header tank 112 is divided into a plurality of flow paths of the heat exchange unit 113.
  • the enclosed amount of the working fluid is adjusted such that the fluid level FL of the working fluid is positioned halfway in the heat exchange unit 113 when the device temperature adjustment unit 10 is in the horizontal state. Therefore, the first connection portion 211 and the second connection portion 221 are located above the liquid level FL of the working fluid in the device temperature adjustment unit 10.
  • the working fluid in the liquid phase flowing through the plurality of flow paths of the heat exchange portion 113 evaporates by heat exchange with the battery 2.
  • the battery 2 is cooled by the latent heat of vaporization of the working fluid.
  • the working fluid that has become a gas phase joins at the upper header tank 111.
  • the working fluid of the gas phase is separated from the first connection portion 211 and the second connection portion 221 respectively connected to one and the other in the longitudinal direction of the upper header tank 111, the first gas phase passage 21 and the second gas phase passage. 22 and the merging passage 40 to the condenser 50.
  • the flow of the working fluid at the time of cooling of the battery 2 is as follows: condenser 50 ⁇ liquid phase passage 55 ⁇ lower header tank 112 ⁇ heat exchange unit 113 ⁇ upper header tank 111 ⁇ first gas phase passage 21, second air Phase passage 22 ⁇ merging passage 40 ⁇ condenser 50 in this order. That is, a loop-like flow path including the heat exchanger 11 for the device and the condenser 50 is formed.
  • the liquid level FL of the working fluid is on the upper side of one of the first connection portion 211 or the second connection portion 221 when the device temperature adjustment unit 10 is inclined at a predetermined angle, and the first connection portion 211 Alternatively, it is adjusted to be below the other side of the second connection portion 221. Further, the enclosed amount of the working fluid is adjusted such that the fluid level FL of the working fluid is located below the merging portion 30 when the device temperature adjusting unit 10 is inclined at a predetermined angle.
  • standard for adjusting the enclosed amount of a working fluid is suitably set according to the use environment of the vehicle by which the apparatus temperature control apparatus 1 is mounted.
  • the predetermined angle is set, for example, as 25 degrees.
  • the predetermined angle may be set appropriately, for example, between 5 ° and 25 °.
  • the device temperature control device 1 be configured to correspond to the inclination in the front-rear direction of the vehicle than in the left-right direction of the vehicle. While the vehicle in motion is likely to be maintained for a long period of time in the longitudinal direction of the vehicle as when climbing a hill, the lateral direction of the vehicle is not maintained for a long period of time.
  • the need for the device temperature control apparatus 1 to cope with the direction of the vehicle is high.
  • the device temperature control device 1 is also effective with respect to the inertial force acting on the vehicle. At this time, in a scene such as acceleration and deceleration, the state in which the inertial force acts in the longitudinal direction of the vehicle is likely to be maintained for a long time. On the other hand, the state in which the inertial force is applied in the lateral direction of the vehicle by a curve or the like is not maintained for a long time. The need for the device temperature adjustment device 1 to be coped with in the longitudinal direction of the vehicle is high.
  • FIG. 5 shows a state where the condenser 50 side of the heat exchanger 11 for equipment is inclined upward.
  • the front of the vehicle is inclined upward.
  • the first connection portion 211 of the first gas phase passage 21 connected to one of the longitudinal direction of the upper header tank 111 is above the liquid level FL of the working fluid, and is connected to the other longitudinal direction of the upper header tank 111
  • the second connection portion 221 of the second gas phase passage 22 is located below the fluid level FL of the working fluid.
  • the working fluid in the liquid phase condensed by the condenser 50 flows through the liquid phase passage 55 for heat exchange for the device Flows into the lower header tank 112 of the vessel 11.
  • the working fluid having flowed into the lower header tank 112 is divided into a plurality of flow paths of the heat exchange unit 113 and is evaporated by heat exchange with the battery 2.
  • the working fluid of the gas phase evaporated in the heat exchange unit 113 passes through the first connection portion 211 above the liquid level FL of the working fluid, passes through the first gas phase passage 21 and the merging passage 40, and condenses. Flow to the vessel 50.
  • FIG. 6 shows a state in which the condenser 50 side of the heat exchanger 11 for equipment is inclined downward.
  • the first connection portion 211 of the first gas phase passage 21 connected to one of the upper header tank 111 in the longitudinal direction is below the fluid level FL of the working fluid, and in the other longitudinal direction of the upper header tank 111
  • the second connection portion 221 of the second gas phase passage 22 to be connected is above the fluid level FL of the working fluid.
  • the working fluid in the liquid phase condensed by the condenser 50 flows through the liquid phase passage 55. It flows and flows into the lower header tank 112 of the heat exchanger 11 for equipment.
  • the working fluid having flowed into the lower header tank 112 is divided into a plurality of flow paths of the heat exchange unit 113 and is evaporated by heat exchange with the battery 2.
  • the working fluid of the vapor phase evaporated in the heat exchange unit 113 passes through the second connection portion 221 above the liquid level FL of the working fluid, passes through the second vapor phase passage 22 and the merging passage 40, and condenses. Flow to the vessel 50.
  • the battery 2 can be cooled even when the device heat exchanger 11 is inclined to either side in the longitudinal direction.
  • the fluid level FL of the working fluid will be described in detail.
  • the liquid level changes up and down somewhat depending on the pressure balance at the time of evaporation.
  • the enclosed amount of the working fluid is adjusted such that the first connection portion 211 and the second connection portion 221 are located above the liquid surface of the working fluid. If the fluid level of the working fluid is not adjusted as such, the working fluid in the gas phase can not stably escape and performance can not be ensured, or only if the fluid level moves a little lower. Performance can not be secured stably because the working fluid of
  • the liquid surface is stationary when evaporation of the apparatus temperature control unit 10 does not occur and condensation does not occur in the condenser 50 when the apparatus 1 is not in operation.
  • the condenser 50 is operated by a cold heat source to operate the device 1. Even if supplied, there is no path through which the gas phase working fluid evaporated in the device temperature control unit 10 is released. That is, stable operation of the device 1 can not be started.
  • the working fluid is vaporized in the apparatus temperature adjusting unit 10 to be a gas phase, and the working fluid in the gas phase is condensed in the condenser 50 to be a working fluid in a liquid phase, and the working fluid in the liquid phase is a fluid phase passage Collect.
  • the liquid level difference between the device temperature adjustment unit 10 and the liquid phase passage 55 acts as a driving source.
  • a part of the liquid-phase refrigerant of the device temperature adjustment unit 10 moves to the liquid-phase passage 55 via the condenser 50 after evaporation, thereby generating a liquid level difference and circulating the working fluid.
  • the liquid level in operation and the liquid level in non-operation are compared.
  • the present apparatus 1 since the present apparatus 1 operates by moving to the liquid phase passage 55 via the condenser 50 after evaporation of a part of the liquid phase refrigerant of the device temperature adjustment unit 10, the device temperature adjustment unit 10 does not The working fluid level and working fluid level are higher in the non-working fluid level.
  • the liquid level at the time of operation slightly rises and falls due to pressure balance, the liquid level at the time of operation temporarily rises higher than the liquid level at the time of non-operation, but generally the liquid level at the time of non-operation And it can be considered that the liquid level at the time of operation is higher than the liquid level at the time of non-operation.
  • the device temperature control apparatus 1 of the first embodiment described above has the following effects.
  • the connection portion 221 is located at a position distant in the horizontal direction. Thereby, when the heat exchanger 11 for apparatuses inclines, one side of the 1st connection part 211 and the 2nd connection part 221 is located above gravity direction, and the other of the 1st connection part 211 and the 2nd connection part 221 is gravity. It is located below the direction.
  • the working fluid evaporated in the device heat exchanger 11 is at least one of the first connection portion 211 or the second connection portion 221 located on the upper side in the direction of gravity to at least one of the first gas phase passage 21 or the second gas phase passage 22.
  • the working fluid condensed by the condenser 50 flows through the liquid phase passage 55 and flows into the heat exchanger 11 for equipment.
  • Such circulation of the working fluid enables the device temperature adjusting device 1 to cool the battery 2 even when the device heat exchanger 11 is inclined to either side in the longitudinal direction.
  • the enclosed amount of the working fluid is such that the fluid level FL of the working fluid is the heat for the device when the device temperature adjustment device 1 is in the non-operating state and the device heat exchanger 11 is in the horizontal state. It is adjusted to be located in the middle of the exchanger 11. Further, the amount of the working fluid enclosed is determined by the first connection portion 211 and the second connection portion 221 when the device temperature adjustment device 1 is in the non-operating state and the device heat exchanger 11 is in the horizontal state. It is adjusted to be positioned above the plane FL. As a result, the degassing property of the first connection portion 211 or the second connection portion 221 is improved.
  • the device temperature control apparatus 1 can improve the cooling performance of the battery 2 by improving the circulation of the working fluid of the thermosiphon circuit.
  • the amount of enclosed working fluid is one of the first connection portion 211 or the second connection portion 221 of the liquid surface FL of the working fluid. It is adjusted so that it may be above the other of the 1st connection part 211 or the other side of the 2nd connection part 221.
  • the 1st connection part 211 or the 2nd side of the side which the working fluid evaporated inside the heat exchanger 11 for apparatuses is not immersed in the working fluid of a liquid phase It flows from the connection part 221 to the first gas phase passage 21 or the second gas phase passage 22. Therefore, the device temperature control apparatus 1 can improve the cooling performance of the battery 2 by improving the circulation of the working fluid of the thermosiphon circuit.
  • the device temperature adjusting device 1 further includes the merging portion 30 and the merging passage 40.
  • the merging portion 30 is provided on the upper side in the gravity direction than the first connection portion 211 and the second connection portion 221.
  • the merging passage 40 causes the working fluid in the gas phase to flow between the merging portion 30 and the condenser 50.
  • the device temperature control device 1 is configured to connect between the merging portion 30 and the condenser 50 by the merging passage 40 so that all of the space between the device heat exchanger 11 and the condenser 50 can be obtained.
  • the number of pipes can be reduced as compared with the configuration in which the first gas phase passage and the second gas phase passage are connected.
  • the merging portion 30 can improve the cooling performance of the battery 2 by improving the circulation of the working fluid of the thermosiphon circuit.
  • the enclosed amount of the working fluid is adjusted so that the fluid level FL of the working fluid is below the merging portion 30 when the heat exchanger 11 for equipment is inclined at a predetermined angle. There is. Thereby, when the heat exchanger 11 for apparatuses inclines, it can suppress that the junction part 30 liquid-sinks.
  • the first connection portion 211 and the second connection portion 221 are provided at positions separated in the horizontal direction of the single device heat exchanger 11.
  • the working fluid evaporated in the heat exchanger 11 for apparatus is a 1st gaseous phase from the 1st connection part 211 or the 2nd connection part 221 located in the gravity direction upper side. It flows through the passage 21 or the second gas phase passage 22 and the like and flows into the condenser 50. Therefore, the device temperature adjusting device 1 can cool the battery 2 even when the device heat exchanger 11 is inclined.
  • the first connection portion 211 and the second connection portion 221 are provided longitudinally outside of the heat exchange portion 113 in the heat exchanger 11 for the device.
  • the 1st connection part 211 and the 2nd connection part 221 are provided in the position where it separated greatly in the horizontal direction. Therefore, even when the heat exchanger 11 for equipment is greatly inclined, the working fluid of the vapor phase evaporated in the heat exchanger 11 for equipment is transmitted from the first connection portion 211 or the second connection portion 221 to the first gas phase passage 21 or It is possible to discharge to the second gas phase passage 22.
  • Modification 1 A first modification to the first embodiment will be described with reference to FIG.
  • the modification 1 is the same as the first embodiment except that the amount of the working fluid sealed in the thermosyphon circuit of the device temperature control apparatus 1 is changed with respect to the first embodiment. Only the differences from the first embodiment will be described.
  • FIG. 7 shows a state in which the device temperature control device 1 is inclined at a predetermined angle.
  • the enclosed amount of the working fluid is the first gas phase passage 21 and the second gas phase passage 21 even when the device temperature adjustment unit 10 is in the horizontal state and when the device temperature adjustment unit 10 is inclined at a predetermined angle.
  • the fluid level FL of the working fluid is adjusted to be located midway in the gas phase passage 22. Further, the amount of the working fluid enclosed is the level of the working fluid below the merging portion 30 even when the device temperature adjusting unit 10 is in the horizontal state and when the device temperature adjusting unit 10 is inclined at a predetermined angle. It is adjusted to be FL.
  • the working fluid in the liquid phase condensed in the condenser 50 flows through the liquid phase passage 55 and flows into the lower header tank 112 of the heat exchanger 11 for equipment.
  • the working fluid having flowed into the lower header tank 112 is divided into a plurality of flow paths of the heat exchange unit 113 and is evaporated by heat exchange with the battery 2.
  • the second connection portion 221 of the second gas phase passage 22 is located above the first connection portion 211 of the first gas phase passage 21.
  • the working fluid in the vapor phase evaporated in the heat exchange portion 113 flows through the upper header tank 111 to the second connection portion 221 side, and from the second connection portion 221 through the second vapor phase passage 22 and the merging passage 40, condenses Flow to the vessel 50.
  • the piping constituting the second gas phase passage 22 has a layout in which the inclination in the vertical direction is gentle within the limitation of the vehicle mounting space.
  • the piping has a layout in which the height increases toward the merging portion 30.
  • Modification 2 A second modification to the first embodiment will be described with reference to FIG. The second modification is also the same as the first embodiment except that the amount of the working fluid sealed in the thermosiphon circuit of the device temperature control apparatus 1 is changed with respect to the first embodiment.
  • FIG. 8 shows a state in which the device temperature control device 1 is inclined at a predetermined angle.
  • the fluid level FL of the working fluid is located above the merging portion 30 and in the middle of the merging passage 40. That is, the merging portion 30 is submerged in the working fluid in the liquid phase.
  • the working fluid evaporated by the heat exchange with the battery 2 in the heat exchange unit 113 of the heat exchanger 11 for equipment is the first gas phase passage 21, the second gas phase passage 22, and the merging. It may be difficult to pass through the section 30. Therefore, as shown by the broken line P2 in FIG.
  • the piping constituting the first gas phase passage 21 or the second gas phase passage 22 should have a layout in which the inclination in the vertical direction is gentle within the limitation of the vehicle mounting space. Is preferred. Furthermore, it is further preferable that the piping has a layout in which the height increases toward the merging portion 30.
  • the second embodiment will be described with reference to FIG.
  • the second embodiment is the same as the first embodiment except that part of the configuration of the second gas phase passage 22 and the enclosed amount of the working fluid are changed with respect to the first embodiment. .
  • FIG. 9 shows a state in which the device temperature control device 1 is inclined at a predetermined angle.
  • the vertical distance between the upper header tank 111 and the second gas phase passage 22 of the heat exchanger 11 for equipment is the upper header tank 111 and the second gas phase passage 22 described in the first embodiment. It is larger than the vertical distance with
  • the enclosed amount of the working fluid is such that the second gas phase passage 22 is horizontal even when the device temperature adjustment unit 10 is in the horizontal state and when the device temperature adjustment unit 10 is inclined at a predetermined angle.
  • the fluid level FL of the working fluid is adjusted to be located below the extended portion.
  • the amount of the working fluid enclosed is the first gas phase passage 21 also when the device temperature adjustment unit 10 is in the horizontal state and when the device temperature adjustment unit 10 is inclined at a predetermined angle.
  • the fluid level FL of the working fluid is adjusted to be located in the middle of the second gas phase passage 22. Further, the amount of the working fluid enclosed is the level of the working fluid below the merging portion 30 even when the device temperature adjusting unit 10 is in the horizontal state and when the device temperature adjusting unit 10 is inclined at a predetermined angle. It is adjusted to be FL.
  • the working fluid in the liquid phase condensed in the condenser 50 flows through the liquid phase passage 55 and flows into the lower header tank 112 of the heat exchanger 11 for equipment.
  • the working fluid having flowed into the lower header tank 112 is divided into a plurality of flow paths of the heat exchange unit 113 and is evaporated by heat exchange with the battery 2.
  • the second connection portion 221 of the second gas phase passage 22 is located above the first connection portion 211 of the first gas phase passage 21.
  • the working fluid in the vapor phase evaporated in the heat exchange portion 113 flows through the upper header tank 111 to the second connection portion 221 side, and from the second connection portion 221 through the second vapor phase passage 22 and the merging passage 40, condenses Flow to the vessel 50.
  • the working fluid evaporated in the device heat exchanger 11 is at least one of the first connection portion 211 or the second connection portion 221 located on the upper side in the direction of gravity to at least one of the first gas phase passage 21 or the second gas phase passage 22.
  • the device temperature adjusting device 1 can cool the battery 2 even when the device heat exchanger 11 is inclined to either side in the longitudinal direction.
  • FIG. 10 shows a state in which the device temperature control device 1 is inclined at a predetermined angle.
  • the fluid level FL of the working fluid is located above the merging portion 30 and in the middle of the merging passage 40. That is, the merging portion 30 is submerged in the working fluid in the liquid phase.
  • the working fluid evaporated by the heat exchange with the battery 2 in the heat exchange unit 113 of the heat exchanger 11 for equipment is the first gas phase passage 21, the second gas phase passage 22, and the merging. It may be difficult to pass through the section 30. Therefore, as shown by the broken line P3 in FIG.
  • the piping constituting the first gas phase passage 21 or the second gas phase passage 22 should have a layout in which the inclination in the vertical direction is gentle within the limitation of the vehicle mounting space. Is preferred. Furthermore, it is further preferable that the piping has a layout in which the height increases toward the merging portion 30.
  • the third embodiment will be described with reference to FIG.
  • the third embodiment is the same as the first embodiment except that parts of the configurations of the first gas phase passage 21 and the second gas phase passage 22 are modified with respect to the first embodiment. .
  • the first connection portion 211 of the first gas phase passage 21 and the second connection portion 221 of the second gas phase passage 22 are connected to the middle of the upper header tank 111, respectively. Also in the third embodiment, the first connection portion 211 of the first gas phase passage 21 and the second connection portion 221 of the second gas phase passage 22 are separated in the horizontal direction of the single device heat exchanger 11. It is located in the Therefore, the device temperature adjusting device 1 can cool the battery 2 even when the device heat exchanger 11 is inclined to either side in the longitudinal direction.
  • the fourth embodiment will be described with reference to FIG.
  • the fourth embodiment is the same as the third embodiment except that a gas phase passage is added to the third embodiment.
  • the plurality of gas passages are configured to include the first gas passage 21, the second gas passage 22, the third gas passage 23, and the merging passage 40.
  • the first connection portion 211 of the first gas phase passage 21, the second connection portion 221 of the second gas phase passage 22, and the third connection portion 231 of the third gas phase passage 23 are all heat exchangers 11 for equipment. Is connected to the middle of the upper header tank 111.
  • the end of the first gas phase passage 21 on the opposite side to the heat exchanger 11 for equipment and the end of the third gas phase passage 23 on the opposite side of the heat exchanger 11 for equipment are the first junction It is connected by a section 31.
  • the end of the second gas phase passage 22 opposite to the heat exchanger 11 for the device and the end of the first gas phase passage 21 opposite to the heat exchanger 11 for the device are joined second It is connected by the part 32.
  • the number of gas phase passages and the number of junctions are not limited, and can be set arbitrarily according to the layout on the vehicle.
  • the first connection portion 211 of the first gas phase passage 21, the second connection portion 221 of the second gas phase passage 22, and the third connection portion 231 of the third gas phase passage 23 Among the heat exchangers 11 for one apparatus, it is provided in the position away to the horizontal direction. Therefore, the device temperature adjusting device 1 can cool the battery 2 even when the device heat exchanger 11 is inclined to either side in the longitudinal direction.
  • the device temperature adjusting unit 10 provided in the device temperature adjusting device 1 is configured of a plurality of device heat exchangers.
  • the device temperature adjustment unit 10 can be stored together with the battery 2 in the case of the battery pack.
  • FIGS. 13 to 22, which are referred to in the description of the fifth to fourteenth embodiments the illustration of the condenser is omitted. Further, the range of the device temperature adjustment unit 10 is indicated by a broken line.
  • the device temperature adjustment unit 10 is configured by the first device heat exchanger 11 and the second device heat exchanger 12.
  • the first device heat exchanger 11 and the second device heat exchanger 12 are provided at horizontally separated positions.
  • the enclosed amount of the working fluid is adjusted so that the liquid level of the working fluid is positioned in the middle of the heat exchange unit when the device temperature adjustment unit 10 is in the horizontal state. It is done. Therefore, the first connection portion 211 and the second connection portion 221 are provided at a portion above the liquid surface of the working fluid in the first device heat exchanger 11 and among the second device heat exchanger 12 It is provided at a position above the liquid surface of the working fluid.
  • the first gas phase passage 21 and the second gas phase passage 22 merge at the merging portion 30.
  • a junction passage 40 is connected between the junction 30 and the condenser.
  • the first gas phase passage 21 branches from the merging portion 30 to one first gas phase passage 21c and the other first gas phase passage 21d via the branch portion 21b.
  • the first connection portion 211 a of one first gas phase passage 21 c is connected to a portion on the vehicle front side in the upper header tank 111 of the first device heat exchanger 11.
  • the first connection portion 211 b of the other first gas phase passage 21 d is connected to a portion on the vehicle front side of the upper header tank 121 of the second device heat exchanger 12.
  • the second gas phase passage 22 branches from the merging portion 30 to one second gas phase passage 22c and the other second gas phase passage 22d via the branch portion 22b.
  • the second connection portion 221 a of the one second gas phase passage 22 c is connected to a portion on the vehicle rear side of the upper header tank 111 of the first device heat exchanger 11.
  • the second connection portion 221 b of the other second gas phase passage 22 d is connected to a portion on the vehicle rear side of the upper header tank 121 of the second device heat exchanger 12.
  • the first gas phase passages 21c and 21d and the second gas phase passages 22c and 22d also function as a connecting passage for connecting the first device heat exchanger 11 and the second device heat exchanger 12 There is.
  • the lower header tank 112 of the first device heat exchanger 11 and the lower header tank 122 of the second device heat exchanger 12 are connected by a liquid phase passage 55.
  • the device temperature adjustment unit 10 when the device temperature adjustment unit 10 is inclined in the longitudinal direction of the vehicle, one of the first connection portion 211 and the second connection portion 221 is located on the upper side in the gravity direction, and the other is located on the lower side in the gravity direction. Do. Therefore, the working fluid evaporated in the plurality of device heat exchangers 11 and 12 is transferred from the first connection portion 211 or the second connection portion 221 located on the upper side in the gravity direction to the first gas phase passage 21 or the first 2 flow in the gas phase passage 22 and enter the condenser. The working fluid condensed by the condenser flows through the liquid phase passage 55 and flows into the plurality of equipment heat exchangers 11 and 12. With the circulation of the working fluid, the device temperature adjusting device 1 of the fifth embodiment can cool the battery 2 even when the plurality of device heat exchangers 11 and 12 are inclined.
  • the sixth embodiment will be described with reference to FIG.
  • the sixth embodiment is a modification of the fifth embodiment in which a part of the configuration of the gas phase passage is changed.
  • the first gas phase passage 21 branches from the merging portion 30 via the branch portion 21b to one first gas phase passage 21c and the other first gas phase passage 21d.
  • the first connection portion 211 a of one first gas phase passage 21 c is connected to a portion on the vehicle front side in the upper header tank 111 of the first device heat exchanger 11.
  • the first connection portion 211 b of the other first gas phase passage 21 d is connected to a portion on the vehicle front side of the upper header tank 121 of the second device heat exchanger 12.
  • the second gas phase passage 22 branches from the junction 30 to one second gas phase passage 22c and the other second gas phase passage 22d.
  • the second connection portion 221 a of the one second gas phase passage 22 c is connected to a portion on the vehicle rear side of the upper header tank 111 of the first device heat exchanger 11.
  • the second connection portion 221 b of the other second gas phase passage 22 d is connected to a portion on the vehicle rear side of the upper header tank 121 of the second device heat exchanger 12.
  • the sixth embodiment can also achieve the same function and effect as those of the first to fifth embodiments.
  • Seventh Embodiment A seventh embodiment will be described with reference to FIG.
  • the seventh embodiment is a modification of the fifth embodiment in which part of the configuration of the gas phase passage is changed.
  • the first gas phase passage 21 branches from the merging portion 30 via the branch portion 21b to one first gas phase passage 21c and the other first gas phase passage 21d.
  • the first connection portion 211 a of one first gas phase passage 21 c is connected to a portion on the vehicle front side in the upper header tank 111 of the first device heat exchanger 11.
  • the first connection portion 211 b of the other first gas phase passage 21 d is connected to a portion on the vehicle front side of the upper header tank 121 of the second device heat exchanger 12.
  • the second gas phase passage 22 branches from the merging portion 30 to one second gas phase passage 22c and the other second gas phase passage 22d via the branch portion 22b.
  • the second connection portion 221 a of the one second gas phase passage 22 c is connected to a portion on the vehicle rear side of the upper header tank 111 of the first device heat exchanger 11.
  • the second connection portion 221 b of the other second gas phase passage 22 d is connected to a portion on the vehicle rear side of the upper header tank 121 of the second device heat exchanger 12.
  • the seventh embodiment can also achieve the same function and effect as those of the first to sixth embodiments.
  • the eighth embodiment will be described with reference to FIG.
  • the eighth embodiment is different from the fifth embodiment in the arrangement of the plurality of device heat exchangers 11 and 12 constituting the device temperature adjusting unit 10.
  • the plurality of device heat exchangers 11 and 12 are arranged such that the longitudinal direction is along the vehicle width direction.
  • the plurality of heat exchangers 11 and 12 for equipment are arranged side by side in the vehicle longitudinal direction.
  • one disposed on the front side of the vehicle is referred to as a heat exchanger 11 for first equipment, and one disposed on the rear side of the vehicle is a heat exchanger 12 for second equipment. I will call it.
  • the first gas phase passage 21 connects the junction 30 and the first device heat exchanger 11.
  • the first connection portion 211 of the first gas phase passage 21 is connected to the upper header tank 111 of the first device heat exchanger 11 disposed on the front side of the vehicle.
  • the first gas phase passage 21 has a portion 21 a extending from the first connection portion 211 to the front of the vehicle.
  • the second gas phase passage 22 connects the junction 30 and the second device heat exchanger 12.
  • the second connection portion 221 of the second gas phase passage 22 is connected to the upper header tank 121 of the heat exchanger 12 for the second device disposed on the rear side of the vehicle.
  • the first gas phase passage 21 and the second gas phase passage 22 merge at a merging portion 30.
  • a junction passage 40 is connected between the junction 30 and the condenser.
  • the device temperature adjusting unit 10 includes the plurality of device heat exchangers 11 and 12 provided at positions separated in the vehicle longitudinal direction, and the connection passage 61.
  • the connection passage 61 connects the first connection portion 211 provided in the first device heat exchanger 11 and the second connection portion 221 provided in the second device heat exchanger 12.
  • the eighth embodiment when the device temperature adjustment unit 10 is inclined in the longitudinal direction of the vehicle, one of the first connection portion 211 and the second connection portion 221 is located on the upper side in the gravity direction, and the other is located on the lower side in the gravity direction. . Therefore, the working fluid evaporated in the plurality of device heat exchangers 11 and 12 is transferred from the first connection portion 211 or the second connection portion 221 located on the upper side in the direction of gravity via the connection passage 61 to the first gas phase passage 21. Or flows through at least one of the second gas phase passages 22 and flows into the condenser. The working fluid condensed by the condenser flows through the liquid phase passage 55 and flows into the plurality of equipment heat exchangers 11 and 12. Therefore, the eighth embodiment can also achieve the same function and effect as those of the first to seventh embodiments.
  • the ninth embodiment will be described with reference to FIG.
  • the ninth embodiment is different from the eighth embodiment in that the number of heat exchangers for equipment and the like are changed.
  • the device temperature adjustment unit 10 is configured by three or more device heat exchangers 11, 12, 13 and a connection passage 61.
  • the device heat exchanger disposed at the foremost part in the direction in which the plurality of device heat exchangers 11, 12, 13 are arranged is called the first device heat exchanger 11, and is disposed at the rearmost part The device heat exchanger is called a second device heat exchanger 12.
  • the plurality of device heat exchangers disposed between the first device heat exchanger 11 and the second device heat exchanger 12 are all referred to as a third device heat exchanger 13.
  • connection passage 61 connects one ends of the upper header tanks 111, 121, and 131 of the heat exchangers 11, 12, and 13 for the first to third devices.
  • the connection passage 61 includes a first connection portion 211 provided in the first device heat exchanger 11, a second connection portion 221 provided in the second device heat exchanger 12, and a third The 3rd connection part 231 provided in the heat exchanger 13 for apparatuses is connected.
  • the first connection portion 211 connecting the first gas phase passage 21 to the device temperature adjustment unit 10 is connected to the upper header tank 111 of the first device heat exchanger 11 disposed on the vehicle front side. doing.
  • the first gas phase passage 21 has a portion 21 a extending from the first connection portion 211 to the front of the vehicle.
  • a second connection portion 221 connected to the device temperature adjustment unit 10 by the second gas phase passage 22 is connected to the upper header tank 121 of the second device heat exchanger 12 disposed on the rear side of the vehicle. That is, the first connection portion 211 and the second connection portion 221 are provided at positions far away from each other in the horizontal direction.
  • the first gas phase passage 21 and the second gas phase passage 22 merge at the merging portion 30.
  • a junction passage 40 is connected between the junction 30 and the condenser.
  • the ninth embodiment when the device temperature adjustment unit 10 is inclined in the longitudinal direction of the vehicle, one of the first connection portion 211 and the second connection portion 221 is located on the upper side in the gravity direction, and the other is located on the lower side in the gravity direction. . Therefore, the working fluid evaporated in the plurality of heat exchangers 11, 12 and 13 for equipment is transferred to the first gas phase from the first connection portion 211 or the second connection portion 221 located on the upper side in the direction of gravity via the connection passage 61. It flows through at least one of the passage 21 and the second gas phase passage 22 and flows into the condenser. The working fluid condensed by the condenser flows through the liquid phase passage 55 and flows into the plurality of equipment heat exchangers 11, 12, 13. Therefore, the ninth embodiment can also achieve the same function and effect as those of the first to eighth embodiments.
  • Tenth Embodiment A tenth embodiment will be described with reference to FIG.
  • the tenth embodiment is a modification of the eighth embodiment, in which parts of the configurations of the gas phase passage and the connection passage are changed.
  • connection passage includes a first connection passage 61 and a second connection passage 62.
  • the first connection passage 61 is an end on the right side in the vehicle width direction of the upper header tank 111 of the first device heat exchanger 11 and an end on the right side in the vehicle width direction of the upper header tank 121 of the second device heat exchanger 12. And are connected.
  • the second connection passage 62 is a left end of the upper header tank 111 of the first device heat exchanger 11 in the vehicle width direction and an end of the left header of the upper header tank 121 of the second device heat exchanger 12 in the vehicle width direction. And are connected.
  • the first gas phase passage 21 is configured to include the first gas phase passage 21e on the right side in the vehicle width direction and the first gas phase passage 21f on the left side in the vehicle width direction.
  • the first gas phase passage 21e on the right side in the vehicle width direction connects the first junction 31 and the first-apparatus heat exchanger 11 disposed on the front side of the vehicle.
  • the first connection portion 211 a of the first gas phase passage 21 e on the right side in the vehicle width direction is connected to a portion on the right side in the vehicle width direction of the upper header tank 111 of the heat exchanger 11 for the first device.
  • the first gas phase passage 21 f on the left side in the vehicle width direction connects the second junction 32 and the first-apparatus heat exchanger 11 disposed on the front side of the vehicle.
  • the first connection portion 211 b of the first gas phase passage 21 f on the left side in the vehicle width direction is connected to a portion on the left side in the vehicle width direction of the upper header tank 111 of the heat exchanger 11 for the first device.
  • the second gas phase passage 22 is configured to include a second gas phase passage 22e on the right side in the vehicle width direction and a second gas phase passage 22f on the left side in the vehicle width direction.
  • the second gas phase passage 22e on the right side in the vehicle width direction connects the first junction 31 and the second-apparatus heat exchanger 12 disposed on the rear side of the vehicle.
  • the second connection portion 211 a of the second gas phase passage 22 e on the right side in the vehicle width direction is connected to a portion on the right side in the vehicle width direction of the upper header tank 121 of the second device heat exchanger 12.
  • the second gas phase passage 22 f on the left side in the vehicle width direction connects the second junction 32 and the first-apparatus heat exchanger 12 disposed on the rear side of the vehicle.
  • the second connection portion 221 b of the second gas phase passage 22 f on the left side in the vehicle width direction is connected to a portion on the left side in the vehicle width direction of the upper header tank 121 of the second device heat exchanger 12.
  • the first merging portion 31 and the second merging portion 32 are connected by a first merging passage 41.
  • the middle of the first combined passage 41 and the condenser are connected by a second combined passage 42.
  • first lower connection passage 71 one end of the lower header tank 112 of the first device heat exchanger 11 and one end of the lower header tank 122 of the second device heat exchanger 12 are connected by a first lower connection passage 71.
  • second lower connection passage 72 The other end of the lower header tank 112 of the first device heat exchanger 11 and the other end of the lower header tank 122 of the second device heat exchanger 12 are connected by a second lower connection passage 72.
  • the liquid phase passage 55 branches midway and is connected to the first lower connection passage 71 and the second lower connection passage 72.
  • one of the first connection portions 211a and 211b or the second connection portions 221a and 221b is located on the upper side in the gravity direction, and the other is lower in the gravity direction. Located on the side.
  • the tenth embodiment when the device temperature adjustment unit 10 is inclined in the vehicle width direction, one of the connection portions 211a and 221a on the right side of the vehicle or the connection portions 211b and 221b on the left side of the vehicle is located above the gravity direction Is located below the direction of gravity. Therefore, the tenth embodiment can also achieve the same effects as those of the first to ninth embodiments. Furthermore, in the tenth embodiment, the first connection parts 211a and 211b and the second connection parts 221a and 221b are respectively provided at the four corners of the device temperature adjustment part 10, so that the front, rear, left, and right directions of the vehicle can be obtained. It is possible to cope with the inclination of
  • the eleventh embodiment will be described with reference to FIG.
  • the eleventh embodiment is different from the tenth embodiment in that the number of heat exchangers 11 for equipment and the like are changed.
  • the device temperature adjustment unit 10 is configured of three or more device heat exchangers and connection passages 61 and 62.
  • the heat exchanger for equipment disposed at the forefront of the direction in which the plurality of heat exchangers 11, 12 and 13 for equipment are arranged is called the first equipment heat exchanger 11, and The device heat exchanger to be disposed is referred to as a second device heat exchanger 12.
  • the plurality of device heat exchangers disposed between the first device heat exchanger 11 and the second device heat exchanger 12 are all referred to as a third device heat exchanger 13.
  • the first connection passage 61 connects end portions of the upper header tanks 111, 121, and 131 on the right side in the vehicle width direction of the heat exchangers 11, 12, and 13 for the first to third devices.
  • the second connection passage 62 connects end portions on the left side in the vehicle width direction of the upper header tanks 111, 121, and 131 of the heat exchangers 11, 12, and 13 for the first to third devices.
  • the first gas phase passage 21 is configured to include the first gas phase passage 21e on the right side in the vehicle width direction and the first gas phase passage 21f on the left side in the vehicle width direction.
  • the first gas phase passage 21e on the right side in the vehicle width direction connects the first junction 31 and the first-apparatus heat exchanger 11 disposed on the front side of the vehicle.
  • the first connection portion 211 a of the first gas phase passage 21 e on the right side in the vehicle width direction is connected to a portion on the right side in the vehicle width direction of the upper header tank 111 of the heat exchanger 11 for the first device.
  • the first gas phase passage 21 f on the left side in the vehicle width direction connects the second junction 32 and the first-apparatus heat exchanger 11 disposed on the front side of the vehicle.
  • the first connection portion 211 b of the first gas phase passage 21 f on the left side in the vehicle width direction is connected to a portion on the left side in the vehicle width direction of the upper header tank 111 of the heat exchanger 11 for the first device.
  • the second gas phase passage 22 is configured to include a second gas phase passage 22e on the right side in the vehicle width direction and a second gas phase passage 22f on the left side in the vehicle width direction.
  • the second gas phase passage 22e on the right side in the vehicle width direction connects the first junction 31 and the second-apparatus heat exchanger 12 disposed on the rear side of the vehicle.
  • the second connection portion 211a of the second gas phase passage 22e on the right side in the vehicle width direction is connected to a portion on the right side in the vehicle width direction of the upper header tank 121 of the heat exchanger 12 for the second device.
  • the second gas phase passage 22 f on the left side in the vehicle width direction connects the second junction 32 and the first-apparatus heat exchanger 12 disposed on the rear side of the vehicle.
  • the second connection portion 221 b of the second gas phase passage 22 f on the left side in the vehicle width direction is connected to a portion on the left side in the vehicle width direction of the upper header tank 121 of the second device heat exchanger 12. Therefore, the first connection parts 211a and 211b and the second connection parts 221a and 221b are provided as far as possible in the longitudinal direction of the vehicle in the direction in which the plurality of heat exchangers 11, 12 and 13 for equipment are arranged. .
  • the first merging portion 31 and the second merging portion 32 are connected by a first merging passage 41.
  • the middle of the first combined passage 41 and the condenser are connected by a second combined passage 42.
  • the end portions on the right side in the vehicle width direction of the lower header tanks 112, 122 and 132 of the heat exchangers 11, 12 and 13 for the first to third devices are connected by the first lower connection passage 71. End portions on the left side in the vehicle width direction of the lower header tanks 112, 122 and 132 of the heat exchangers 11, 12 and 13 for the first to third devices are connected by a second lower connection passage 72.
  • the liquid phase passage 55 branches midway and is connected to the first lower connection passage 71 and the second lower connection passage 72.
  • the eleventh embodiment can also achieve the same function / effect as the first to tenth embodiments. Furthermore, also in the eleventh embodiment, the first and second connection portions 211a, 211b, 211a and 221b of the first and second gas phase passages 21 and 22 are provided at the four corners of the device temperature adjustment unit 10, respectively. Thus, it is possible to cope with the inclination in any of the front, rear, left, and right directions of the vehicle.
  • Twelfth embodiment A twelfth embodiment will be described with reference to FIG.
  • the twelfth embodiment is different from the eighth embodiment etc. in the direction in which the plurality of device heat exchangers 11 and 12 are arranged.
  • the plurality of device heat exchangers 11 and 12 are aligned in the longitudinal direction of the device heat exchangers 11 and 12. Further, the plurality of device heat exchangers 11 and 12 are disposed along the longitudinal direction of the vehicle.
  • the connection passage 61 is an end portion on the vehicle rear side of the upper header tank 111 of the first device heat exchanger 11 and an end portion on the vehicle front side of the upper header tank 121 of the second device heat exchanger 12. Are linked.
  • the first gas phase passage 21 connects the merging portion 30 and the first-apparatus heat exchanger 11 disposed on the front side of the vehicle.
  • the first connection portion 211 of the first gas phase passage 21 is provided at an end of the upper header tank 111 of the first device heat exchanger 11 on the front side of the vehicle.
  • the second gas phase passage 22 connects the merging portion 30 and the second-apparatus heat exchanger 12 disposed on the rear side of the vehicle.
  • the second connection portion 221 of the second gas phase passage 22 is provided at an end portion of the upper header tank 121 of the second device heat exchanger 12 on the vehicle rear side. Therefore, the first connection portion 211 and the second connection portion 221 are provided as far as possible in the longitudinal direction of the vehicle in the direction in which the heat exchangers 11 and 12 for equipment are arranged.
  • the third gas phase passage 23 connects the end portion on the vehicle rear side of the upper header tank 111 of the first equipment heat exchanger 11 and the second gas phase passage 22.
  • the third gas phase passage 23 may be omitted.
  • a junction passage 40 is connected between the junction 30 and the condenser.
  • the other end of the lower header tank 112 of the first device heat exchanger 11 and one end of the lower header tank 122 of the second device heat exchanger 12 are connected by the lower connection passage 70.
  • the liquid phase passage 55 is connected to one end of the lower header tank 112 of the first device heat exchanger 11.
  • the twelfth embodiment when the device temperature adjustment unit 10 is inclined to the first device heat exchanger 11 side or the second device heat exchanger 12 side, one of the first connection portion 211 and the second connection portion 221 is It is located on the upper side in the direction of gravity, and the other is located on the lower side in the direction of gravity. Therefore, the twelfth embodiment can also achieve the same effects as those of the first to eleventh embodiments.
  • the thirteenth embodiment is the one in which the number, arrangement, and the like of the heat exchangers for equipment are changed with respect to the eighth embodiment and the like.
  • the device temperature adjustment unit 10 is configured by four device heat exchangers 11 to 14 and a connection passage 61.
  • the heat exchangers for two equipment disposed on the front side of the vehicle are the heat exchanger 11 for the first equipment, the heat exchanger for the second equipment Call it 12
  • the two device heat exchangers disposed on the rear side of the vehicle are referred to as a third device heat exchanger 13 and a fourth device heat exchanger 14.
  • a portion 21a extending from the merging portion 30 is branched into one first gas phase passage 21c and the other first gas phase passage 21d via the branch portion 21b.
  • the first connection portion 211 a of the one first gas phase passage 21 c is connected to the upper header tank 111 of the first device heat exchanger 11.
  • the first connection portion 211 b of the other first gas phase passage 21 d is connected to the upper header tank 121 of the second device heat exchanger 12.
  • the second gas phase passage 22 branches from the merging portion 30 to one second gas phase passage 22c and the other second gas phase passage 22d via the branch portion 22b.
  • the second connection portion 221 a of one second gas phase passage 22 c is connected to the upper header tank 131 of the third device heat exchanger 13.
  • the second connection portion 221 b of the other second gas phase passage 22 d is connected to the upper header tank 141 of the fourth device heat exchanger 14.
  • connection passage 61 connects the branch portion 21 b of the first gas phase passage 21 and the branch portion 22 b of the second gas phase passage 22.
  • the liquid phase passage 55 is connected to the lower header tanks 112, 122, 132, 142 of the heat exchangers 11 to 14 for the first to fourth devices.
  • the thirteenth embodiment when the device temperature adjustment unit 10 is inclined to the first device heat exchanger 11 side or the third device heat exchanger 13 side, the first connection portions 211a and 211b and the second connection portion 221a, One of 221 b is located on the upper side in the gravity direction, and the other is located on the lower side in the gravity direction. Therefore, the thirteenth embodiment can also achieve the same function and effect as those of the first to twelfth embodiments.
  • the fourteenth embodiment is different from the thirteenth embodiment etc. in the direction in which the plurality of heat exchangers 11 to 14 for equipment are arranged.
  • the device temperature adjustment unit 10 is configured by four device heat exchangers 11 to 14.
  • the plurality of device heat exchangers 11 to 14 are arranged such that the longitudinal direction is along the longitudinal direction of the vehicle.
  • the two apparatus heat exchangers disposed on the front side of the vehicle are the first apparatus heat exchanger 11 and the second apparatus heat exchanger. Call it 12
  • the two device heat exchangers disposed on the rear side of the vehicle are referred to as a third device heat exchanger 13 and a fourth device heat exchanger 14.
  • the first gas phase passage 21 connects the junction 30 and a portion on the vehicle front side among the heat exchangers 11 to 14 for the first to fourth devices.
  • a portion 21a extending from the merging portion 30 is branched into three first gas phase passages 21c, 21d and 21e via a branch portion 21b.
  • the first connection portion 211 a of the one first gas phase passage 21 c is connected to a portion on the vehicle front side of the upper header tank 111 of the first device heat exchanger 11.
  • the first connection portion 211 b of the other first gas phase passage 21 d is connected to a portion on the vehicle front side of the upper header tank 121 of the second device heat exchanger 12.
  • Still another first gas phase passage 21 e is branched into two first gas phase passages 21 g and 21 h via a branch portion 21 f.
  • the first connection portion 211 c of the one first gas phase passage 21 g is connected to a portion on the vehicle front side of the upper header tank 121 of the third device heat exchanger 13.
  • the first connection portion 211 d of the other first gas phase passage 21 h is connected to a portion of the upper header tank 141 of the fourth device heat exchanger 14 on the front side of the vehicle.
  • the second gas phase passage 21 connects the merging portion 30 and the portion on the vehicle rear side among the heat exchangers 11 to 14 for the first to fourth devices.
  • a portion 22a extending from the merging portion 30 is branched into three second gas phase passages 22c, 22d and 22e via a branch portion 22b.
  • the second connection portion 221 a of the one second gas phase passage 22 c is connected to a portion on the vehicle rear side of the upper header tank 111 of the first device heat exchanger 11.
  • the second connection portion 221 b of another second gas phase passage 22 d is connected to a portion on the vehicle rear side of the upper header tank 121 of the second device heat exchanger 12.
  • Still another second gas phase passage 22e branches into two second gas phase passages 22g and 22h via a branch portion 22f.
  • the second connection portion 221 c of the one second gas phase passage 22 g is connected to a portion on the vehicle rear side of the upper header tank 131 of the third device heat exchanger 13.
  • the second connection portion 221 d of another second gas phase passage 22 h is connected to a portion on the vehicle rear side of the upper header tank 141 of the fourth device heat exchanger 14.
  • the first gas phase passage 21 and the second gas phase passage 22 are connected at the junction 30.
  • the junction 30 and the condenser are connected by a junction passage 40.
  • the liquid phase passage 55 is connected to the lower header tanks 112, 122, 132, 142 of the heat exchangers 11 to 14 for the first to fourth devices.
  • the fourteenth embodiment when the device temperature adjustment unit 10 is inclined in any direction, either the first connection portion 211 or the second connection portion 221 is located on the upper side in the gravity direction. Therefore, the fourteenth embodiment can also achieve the same function and effect as those of the first to thirteenth embodiments.
  • the fifteenth embodiment will be described with reference to FIG.
  • the fifteenth embodiment describes an example of a method of installing the battery 2 in the device heat exchanger 11.
  • the battery 2 is installed such that the surface 5 provided with the terminal 4 faces upward in the direction of gravity.
  • a surface perpendicular to the surface 5 on which the terminal 4 is provided is installed in the heat exchange portion 113 via the heat conductive sheet 114.
  • the installation method of the battery 2 can be set arbitrarily.
  • the sixteenth embodiment will be described with reference to FIG.
  • the sixteenth embodiment describes an example of a method of installing the device heat exchanger 11 and the battery 2.
  • a plurality of device heat exchangers 11 are installed so as to sandwich both sides of the battery 2. Therefore, the area of the battery 2 in thermal contact with the heat exchange unit 113 via the heat conduction sheet 114 is increased. Therefore, according to the device heat exchanger 11 and the method of installing the battery 2 of the sixteenth embodiment, it is possible to enhance the cooling capacity of the battery 2.
  • a seventeenth embodiment will be described with reference to FIGS. 25 and 26.
  • the seventeenth embodiment describes an example of the arrangement of the first gas phase passage 21 and the second gas phase passage 22.
  • the second gas phase passage 22 extends along the upper header tank 111 so as to be in contact with or adjacent to the upper header tank 111, and further extends along the first gas phase passage 21. It extends in contact with or adjacent to the passage 21.
  • a portion of the first gas phase passage 21 and at least a portion of the second gas phase passage 22 constitute a parallel portion 25 extending in a state of being in contact with or adjacent to each other.
  • the upper header tank 111 and a part of the second gas phase passage 22 also constitute a parallel portion 251 extending in a state of being in contact with or adjacent to each other. As a result, the area occupied by the first gas phase passage 21 and the second gas phase passage 22 is reduced. Further, it is also possible to assemble the first gas phase passage 21 and the second gas phase passage 22 together to a vehicle or the like. For example, it is possible to attach the gas pipe that constitutes the first gas phase passage 21 and the gas pipe that constitutes the second gas phase passage 22 to the vehicle body using a common mounting bracket. Alternatively, it is also possible to form two flow paths in one piping member, set one flow path as the first gas phase passage 21, and set the other flow path as the second gas phase passage 22. Therefore, the device temperature control device 1 can improve the mountability to the vehicle or the like and the assemblability.
  • the eighteenth embodiment also describes an example of the arrangement of the first gas phase passage 21 and the second gas phase passage 22.
  • the pipe constituting the second gas phase passage 22 is provided inside the upper header tank 111, and is further provided inside the pipe constituting the first gas phase passage 21.
  • a portion of the first gas phase passage 21 and at least a portion of the second gas phase passage 22 form a double piping structure 26 in which the other piping is provided inside the one piping.
  • the upper header tank 111 and part of the second gas phase passage 22 also have a double piping structure 261 in which the second gas phase passage 22 is provided inside the upper header tank 111.
  • the device temperature control device 1 can improve the mountability to the vehicle or the like and the assemblability.
  • the flow passage area adjustment valve 80 is provided in the gas phase passage.
  • the flow passage area adjustment valve 80 is a member that regulates the flow of the working fluid in the liquid phase from the connection side of the gas phase passage to the merging portion 30 side.
  • the flow passage area adjustment valve 80 is provided in the first gas phase passage 21.
  • the flow path area adjustment valve 80 regulates the flow of the working fluid in the liquid phase from the first connection portion 211 side of the first gas phase passage 21 to the merging portion 30 side.
  • the flow passage area adjustment valve 80 flows the working fluid flow of the liquid phase from the second connection portion 221 side to the merging portion 30 side. regulate.
  • the flow passage area adjustment valve 80 of the nineteenth embodiment is a solenoid valve driven by a drive signal transmitted from the control device 81.
  • the controller 81 transmits a drive signal to the flow passage area adjusting valve 80 when the inclination of the device temperature adjusting unit 10 is detected by the inclination sensor 82 that detects the inclination of the device temperature adjusting unit 10.
  • the flow passage area adjustment valve 80 causes the flow of the working fluid in the liquid phase from the first connection portion 211 side of the first gas phase passage 21 to the condenser 50 side.
  • FIG. 31 hatching is given to the area
  • the flow of the working fluid in the liquid phase is restricted by the flow path area adjustment valve 80, so that the merging portion 30 is prevented from being submerged. Therefore, the flow of the working fluid in the gas phase from the second gas phase passage 22 toward the merging passage 40 via the merging portion 30 is secured. Therefore, the equipment temperature control apparatus 1 can improve the mounting property to a vehicle etc. by lowering
  • the device temperature control device 1 when the device temperature adjustment device 1 is inclined, the flow of the working fluid in the liquid phase is regulated by the flow passage area adjustment valve 80, so that the liquid flowing out from the device heat exchanger 11 to the first gas phase passage 21 The amount of phase working fluid is reduced.
  • the device temperature control device 1 when the device temperature control device 1 is inclined, the reduction of the working fluid in the liquid phase inside the device heat exchanger 11 is suppressed. Therefore, the device temperature control device 1 can improve the cooling performance of the battery 2 and can suppress the temperature distribution of the battery cells 3 from becoming large.
  • the flow passage area adjustment valve 80 of the nineteenth embodiment operates in accordance with a control signal of the control device 81 when the inclination of the device temperature adjustment device 1 is detected by the inclination sensor 82. Therefore, the flow passage area adjusting valve 80 reliably operates in accordance with the inclination of the device temperature adjusting device 1. Therefore, the flow passage area adjustment valve 80 can reliably restrict the flow of the working fluid in the liquid phase from the connection side of the gas phase passage to the merging portion 30 side.
  • the twentieth embodiment is a modification of the flow passage area adjustment valve described in the nineteenth embodiment.
  • the flow passage area adjustment valve 83 of the twentieth embodiment has a valve seat 84 and a valve body 85.
  • the valve seat 84 is provided on the inner wall of the gas phase passage 21.
  • the valve body 85 is a ball valve disposed in a flow path closer to the connection portion than the valve seat 84. The ball valve disengages from the valve seat 84 when the connection portion 211 of the gas phase passage 21 is lower than the valve seat 84 in the gravity direction. Further, as shown in FIG.
  • the flow passage area adjustment valve 86 of the twenty-first embodiment also has a valve seat 87 and a valve body 88.
  • the valve seat 87 is provided on the inner wall of the gas phase passage.
  • the valve body 88 is a float valve formed of a material whose mass is smaller than that of the liquid phase working fluid. As shown in FIG. 34, the float valve is separated from the valve seat 87 by its own weight when the gas phase working fluid flows in the gas phase passage 21. Further, as shown in FIG. 35, the float valve is seated on the valve seat 87 by buoyancy when the working fluid in the liquid phase flows in the gas phase passage 21. In addition, in FIG. 35, the hatching of the broken line is attached to the area
  • the flow path area adjustment valve 86 can regulate the flow of the working fluid in the liquid phase from the connection portion 211 side of the gas phase passage 21 to the merging portion 30 side. Therefore, in the twenty-first embodiment, the structure of the flow passage area adjustment valve 86 can be simplified.
  • first gas phase passage 21 and the second gas phase passage 22 extend in an abutting or adjacent state. Further, the connection passage 61 and the second gas phase passage 22 also extend in an abutting or adjacent state.
  • the first gas phase passage 21 and the second gas phase passage 22 constitute parallel portions 25 extending in a state of being in contact with or adjacent to each other. Further, the connection passage 61 and the second gas phase passage 22 also constitute parallel portions 251 extending in a state of being in contact with or adjacent to each other. As a result, the area occupied by the first gas phase passage 21, the second gas phase passage 22, and the connection passage 61 is reduced. Further, it is also possible to assemble the first gas phase passage 21, the second gas phase passage 22, and the connection passage 61 together to a vehicle or the like.
  • the device temperature control apparatus 1 can improve the mounting property to a vehicle etc., and an attachment property.
  • the pipe constituting the second gas phase passage 22 is provided inside the pipe constituting the first gas phase passage 21 and the connection passage 61.
  • the first gas phase passage 21, the connection passage 61 and the second gas phase passage 22 form a double piping structure 26 in which the other piping is provided inside one piping.
  • the area occupied by the first gas phase passage 21, the connection passage 61 and the second gas phase passage 22 is reduced.
  • the shape of the components when referring to a positional relationship or the like, except in particular clearly the case and principle specific shape, etc. If to be limited to the positional relationship or the like, the shape, It is not limited to the positional relationship and the like.
  • the battery 2 has been described as an example of the target device whose temperature is adjusted by the device temperature adjustment device 1.
  • the target device whose temperature is adjusted by the device temperature adjustment device 1 may be another device that requires cooling or warming up, such as a motor, an inverter, or a charger.
  • the device temperature control device 1 may have a function of warming up the target device.
  • the working fluid heated and evaporated by the heating mechanism flows from the outlet to the heat exchanger for equipment through the gas phase passage.
  • the working fluid which dissipates heat and condenses to the battery 2 in the heat exchanger for equipment flows from the inflow portion to the heating mechanism through the liquid phase passage due to the head difference. By circulating such a working fluid, the device temperature control apparatus 1 can warm up the target device.
  • the working fluid may employ other fluids such as propane and carbon dioxide, for example.
  • the plurality of gas phase passages 21 and 22 are connected by the junction 30, and the junction 30 and the condenser 50 are connected by the junction 40.
  • the apparatus temperature adjusting unit 10 and the condenser 50 may be connected by a plurality of gas phase passages 21 and 22 without providing the merging portion 30 and the merging passage 40. .
  • the enclosed amount of the working fluid is adjusted so that the fluid level FL of the working fluid is located in the middle of the heat exchanger 11 for the device when the device temperature adjusting unit 10 is in the horizontal state.
  • the amount of the working fluid enclosed may be adjusted so that the fluid level FL of the working fluid is located in the middle of the gas phase passage. Good.
  • the device temperature control unit includes one or more device heat exchangers configured to allow heat exchange between the target device and the working fluid so that the working fluid evaporates when the target device is cooled.
  • the condenser dissipates the gas phase working fluid and causes the condensed liquid phase working fluid to flow out.
  • the liquid phase passage allows the working fluid in the liquid phase to flow between the condenser and the device temperature control unit.
  • the plurality of gas phase passages allow the gas phase working fluid to flow between the device temperature control unit and the condenser.
  • the first connection portion in which the first gas phase passage is connected to the device temperature adjustment unit among the plurality of gas phase passages and the second connection portion in which the second gas phase passage is connected to the device temperature adjustment portion are horizontally separated Located in the
  • the device temperature control device is mounted on a vehicle, and the first connection portion and the second connection portion are located at places separated in the vehicle longitudinal direction. According to this, the device temperature control device corresponds to the inclination in the longitudinal direction of the vehicle.
  • the inclination in the longitudinal direction of the vehicle is likely to be maintained for a long time, as when climbing a vehicle. Further, as in a scene such as acceleration and deceleration, a state in which an inertial force in the longitudinal direction of the vehicle acts is likely to be maintained for a long time.
  • the device temperature controller can operate continuously in such a scene, and the battery can be continuously cooled.
  • the device temperature control apparatus can improve the cooling performance of the target device by improving the circulation of the working fluid of the thermosiphon circuit.
  • the liquid level of the working fluid is on the upper side of one of the first connection portion or the second connection portion, and the first connection portion or the second connection is The amount of working fluid enclosed is adjusted so that it is under the other of the parts.
  • the working fluid evaporated in the device heat exchanger is transferred from the first connection portion or the second connection portion located above the liquid level to the first gas phase passage or It flows into the second gas phase passage. Therefore, the device temperature control apparatus can improve the cooling performance of the target device by improving the circulation of the working fluid of the thermosiphon circuit.
  • the gas phase passage includes the junction and the junction.
  • the merging portion merges the working fluid flowing in the first gas phase passage with the working fluid flowing in the second gas phase passage.
  • the merging passage allows the gas phase working fluid to flow between the merging portion and the condenser.
  • the merging portion is provided on the upper side in the gravity direction than the first connection portion and the second connection portion.
  • the device temperature control apparatus is configured to connect between the merging portion and the condenser by the merging passage, so that all of the device temperature adjusting portion and the condenser are connected by the plurality of gas phase passages. The number of pipes can be reduced compared to the configuration described above.
  • the device temperature control apparatus can improve the cooling performance of the target device by improving the circulation of the working fluid of the thermosiphon circuit.
  • the enclosed amount of the working fluid is adjusted such that the fluid level of the working fluid is below the merging portion. According to this, when the device temperature adjustment unit is inclined, it is possible to prevent the junction from being submerged.
  • the first connection portion and the second connection portion are provided at positions separated in the horizontal direction of one device heat exchanger. According to this, when the heat exchanger for equipment is inclined, the working fluid evaporated in the heat exchanger for equipment is transferred from the first connection portion or the second connection portion located on the upper side in the gravity direction to the first gas phase passage or It flows through the second gas phase passage and flows into the condenser. Therefore, the device temperature adjusting device can cool the target device even when the device temperature adjusting unit is inclined.
  • the device heat exchanger has a shape having a longitudinal direction and a short direction as viewed from the direction of gravity, and is in direct thermal contact with the target device or indirectly through the heat conducting member. It has a heat exchange part.
  • the first connection portion and the second connection portion are provided at positions longitudinally outside the heat exchange portion in the device heat exchanger. According to this, in one heat exchanger for apparatus, the first connection portion and the second connection portion are provided at positions largely separated in the horizontal direction. Therefore, even when the heat exchanger for equipment is greatly inclined, the working fluid of the gas phase evaporated in the heat exchanger for equipment is transferred from the first connection portion or the second connection portion to the first gas phase passage or the second gas phase passage It is possible to
  • the first connection portion is provided at a position forward of the heat exchange portion of the heat exchanger for the device.
  • the second connection portion is provided at a position on the vehicle rear side of the heat exchange portion in the device heat exchanger.
  • the first gas phase passage has a portion extending upward or forward of the vehicle from the first connection portion, and the second gas phase passage has a portion extending upward or rearward of the vehicle from the second connection portion.
  • the gas phase refrigerant evaporated in the heat exchange part of the heat exchanger for equipment becomes easy to be led to the first gas phase passage.
  • the second gas phase passage is inclined so that the portion extending upward or forward from the second connection portion is upward, the second gas phase passage is relative to the heat exchange portion of the heat exchanger for equipment It does not go down. Therefore, at the time of such inclination, the gas phase refrigerant evaporated in the heat exchange part of the heat exchanger for equipment becomes easy to be led to the second gas phase passage.
  • the device temperature adjusting unit is provided in any one of the plurality of device heat exchangers and the plurality of device heat exchangers provided at positions separated in the vehicle longitudinal direction. It has the connection passage which connects 1st connection part and 2nd connection part. According to this, when the several apparatus heat exchanger which an apparatus temperature adjustment part inclines, one side of a 1st connection part and a 2nd connection part is located in a gravity direction upper side, and a 1st connection part and a 2nd connection The other of the parts is located below the direction of gravity.
  • the working fluid evaporated in the plurality of equipment heat exchangers passes the first gas phase passage or the second gas phase passage from the first connection portion or the second connection portion located on the upper side in the gravity direction via the connection passage. Flow into the condenser. Therefore, the device temperature adjusting device can cool the target device even when the plurality of device heat exchangers are inclined.
  • the first connection portion is provided to a predetermined device heat exchanger disposed on the vehicle front side among the plurality of device heat exchangers.
  • the second connection portion is provided to another device heat exchanger disposed on the rear side of the vehicle among the plurality of device heat exchangers.
  • the first gas phase passage has a portion extending upward or forward of the vehicle from the first connection portion.
  • the second gas phase passage has a portion extending upward or rearward of the vehicle from the second connection portion.
  • the first gas phase passage or the second gas phase passage and the connection passage constitute a parallel portion extending in a state of being in contact with or adjacent to each other. According to this, the area occupied by the first gas phase passage or the second gas phase passage and the connection passage becomes smaller.
  • this apparatus temperature control apparatus can improve the mounting property to a vehicle etc., and an attachment property.
  • At least a portion of the first gas phase passage and at least a portion of the second gas phase passage form parallel portions extending in a state of being in contact with or adjacent to each other. According to this, the area occupied by the first gas phase passage and the second gas phase passage becomes smaller. In addition, it is also possible to assemble the first gas phase passage and the second gas phase passage together to a vehicle or the like. Therefore, this apparatus temperature control apparatus can improve the mounting property to a vehicle etc., and an attachment property.
  • the fourteenth aspect at least a part of the first gas phase passage or the second gas phase passage and the connection passage have a double pipe structure in which the other pipe is provided inside the one pipe. . According to this, the area occupied by the first gas phase passage or the second gas phase passage and the connection passage becomes smaller. Moreover, it is also possible to assemble
  • At least a portion of the first gas phase passage and at least a portion of the second gas phase passage have a double piping structure in which the other piping is provided inside the one piping. . According to this, the area occupied by the first gas phase passage and the second gas phase passage becomes smaller. Moreover, it is also possible to assemble
  • the device temperature adjusting device is provided in the first gas phase passage or the second gas phase passage, and the flow of the working fluid in the liquid phase from the connection portion side of the gas phase passage to the merging portion side It has a flow path area adjustment valve that regulates. According to this, when the device temperature adjustment unit is inclined, the flow of the working fluid in the liquid phase from the connection portion side of the first connection portion and the second connection portion located on the lower side in the gravity direction is restricted. As a result, the junction is prevented from being submerged. Therefore, the flow of the working fluid of the gaseous phase which goes to a confluence passage via a confluence part from the connection part side located in gravity direction upper side among the 1st connection part and the 2nd connection part is secured.
  • the equipment temperature control apparatus can improve the mounting property to a vehicle etc. by lowering the position of the junction.
  • the working fluid in the liquid phase flowing from the connection portion located on the lower side in the direction of gravity of the first connection portion and the second connection portion to the gas phase passage is a flow passage area adjustment valve. Flow is regulated. Therefore, when the device temperature control unit is inclined, it is possible to reduce the amount of liquid working fluid flowing from the device heat exchanger to the gas phase passage. Therefore, since the decrease in the working fluid in the liquid phase of the heat exchanger for equipment is suppressed, the equipment temperature control apparatus can improve the cooling performance of the target equipment.
  • the device temperature adjusting device further includes a tilt sensor that detects the tilt of the device temperature adjusting unit.
  • the flow passage area adjustment valve regulates the flow of the working fluid in the liquid phase from the connection side of the gas phase passage to the condenser side. According to this, since the flow passage area adjustment valve operates corresponding to the inclination of the device temperature adjustment unit, the flow passage area adjustment valve operates the working fluid of the liquid phase from the connection portion side of the gas phase passage to the merging portion side Flow can be reliably regulated.
  • the flow passage area adjustment valve has a valve seat and a valve body.
  • the valve seat is provided on the inner wall of the gas phase passage.
  • the valve element is seated on the valve seat by its own weight when the connection of the gas phase passage is above the valve seat in the direction of gravity, and from the valve seat when the connection of the gas phase passage is below the valve seat in the direction of gravity Take a break. According to this, the configuration of the flow passage area adjustment valve can be simplified.
  • the flow passage area adjustment valve has a valve seat and a valve body.
  • the valve seat is provided on the inner wall of the gas phase passage.
  • the valve body floats on the valve seat when the liquid phase working fluid flows in the gas phase passage, and leaves the valve seat when the gas phase working fluid flows in the gas phase passage. According to this, the configuration of the flow passage area adjustment valve can be simplified.
  • a passage and a connection passage are provided.
  • the device temperature control unit has a plurality of device heat exchangers and a connection passage.
  • the plurality of device heat exchangers are configured to be able to exchange heat between the target device and the working fluid so that the working fluid evaporates when the target device is cooled.
  • the connection passage connects the plurality of device heat exchangers to each other.
  • the condenser dissipates the gas phase working fluid and causes the condensed liquid phase working fluid to flow out.
  • the liquid phase passage causes the working fluid in the liquid phase to flow between the plurality of instrument heat exchangers and the condenser.
  • the plurality of gas phase passages allow the gas phase working fluid to flow between the plurality of equipment heat exchangers and the condenser.
  • the first connection portion in which the first gas phase passage is connected to the device temperature adjustment unit among the plurality of gas phase passages and the second connection portion in which the second gas phase passage is connected to the device temperature adjustment portion are horizontally separated Located in the The first connection portion and the second connection portion may be provided in separate device heat exchangers, or may be provided in the same device heat exchanger.
  • the working fluid evaporated in the plurality of equipment heat exchangers flows from at least one of the first gas phase passage and the second gas phase passage from the first connection portion or the second connection portion located on the upper side in the direction of gravity. It flows into the condenser.
  • the working fluid condensed by the condenser flows through the liquid phase passage and flows into the plurality of equipment heat exchangers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

In the present invention a device temperature adjustment unit (10) has one or more device heat exchangers (11-14) configured so as to be capable of exchanging heat between a subject device and a working fluid such that the working fluid evaporates during cooling of the subject device. A condenser (50) causes the gas-phase working fluid to dissipate heat, and thereby discharges condensed liquid-phase working fluid. A liquid-phase passage (55) allows the liquid-phase working fluid to flow between the condenser (50) and the device temperature adjustment unit (10). A plurality of gas-phase passages (21-24, 30-32, and 40-42) allow the gas-phase working fluid to flow between the device temperature adjustment unit (10) and the condenser (50). A first connection part (211), which is for connecting the device temperature adjustment unit (10) to a first gas-phase passage (21) among the plurality of gas-phase passages, and a second connection part (221), which is for connecting device temperature adjustment unit (10) to a second gas-phase passage (22) among the plurality of gas-phase passages, are positioned at locations separated from each other in a horizontal direction.

Description

機器温調装置Equipment temperature controller 関連出願への相互参照CROSS-REFERENCE TO RELATED APPLICATIONS
 本出願は、2017年9月13日に出願された日本特許出願番号2017-176038号と、2018年7月20日に出願された日本特許出願番号2018-137127号とに基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2017-176038 filed on September 13, 2017, and Japanese Patent Application No. 2018-137127 filed on July 20, 2018, which are incorporated herein by reference. The contents of the description are incorporated by reference.
 本開示は、対象機器の温度を調整する機器温調装置に関するものである。 The present disclosure relates to a device temperature control apparatus that adjusts the temperature of a target device.
 従来、ループ型のサーモサイフォン方式により、対象機器の温度を調整する機器温調装置が知られている。
 特許文献1に記載の機器温調装置は、対象機器としての電池と作動流体とを熱交換させる機器用熱交換器と、その機器用熱交換器より重力方向上側に配置された凝縮器と、機器用熱交換器と凝縮器とを接続する気相通路および液相通路を備えている。また、この機器温調装置は、機器用熱交換器の内側に、作動流体を加熱することの可能な加熱部材を備えている。
BACKGROUND Conventionally, there has been known a device temperature control device that adjusts the temperature of a target device by a loop thermosiphon method.
An apparatus temperature control device described in Patent Document 1 includes: a heat exchanger for equipment which performs heat exchange between a battery as a target equipment and a working fluid; and a condenser disposed above the heat exchanger for equipment in the direction of gravity. A gas phase passage and a liquid phase passage connecting the heat exchanger for the equipment and the condenser are provided. In addition, the device temperature control device includes a heating member capable of heating the working fluid inside the device heat exchanger.
 特許文献1に記載の機器温調装置は、電池の冷却時に、機器用熱交換器の内側の作動流体が電池から吸熱して蒸発し、気相通路を通って凝縮器に流入する。凝縮器で凝縮した液相の作動流体は、液相通路を通り機器用熱交換器に流入する。このように、機器温調装置は、サーモサイフォン回路を循環する作動流体の相変化により電池を冷却する構成となっている。 In the device temperature control device described in Patent Document 1, when the battery is cooled, the working fluid inside the device heat exchanger absorbs heat from the battery, evaporates, and flows into the condenser through the gas phase passage. The liquid phase working fluid condensed by the condenser flows through the liquid phase passage into the equipment heat exchanger. As described above, the device temperature control device is configured to cool the battery by the phase change of the working fluid circulating in the thermosyphon circuit.
特開2015-41418号公報Japanese Patent Application Laid-Open No. 2015-41418
 発明者らは、特許文献1に記載されるようなサーモサイフォン式の機器温調装置に関し、次のような課題を見出した。すなわち、図42に示すように、車両等に機器温調装置100が搭載される場合、車両と共に機器温調装置100も傾斜することがある。図42に示した状態では、機器温調装置100が備える機器用熱交換器110は、気相通路200のうち機器用熱交換器110に接続する接続部201が重力方向下側となるように傾いている。そのため、機器用熱交換器110内の液相の作動流体の液面FLは、気相通路200の接続部201よりも上方に位置している。すなわち、気相通路200の接続部201は、液相の作動流体に液没している。この場合、電池の発熱時に機器用熱交換器110内で蒸発した作動流体は、気相通路200に流れることなく、機器用熱交換器110内の上部空間120に溜まってしまう。したがって、機器用熱交換器110、気相通路200、凝縮器500および液相通路550により構成されるサーモサイフォン回路を作動流体が循環しなくなり、機器温調装置100は電池の冷却ができなくなる。 The inventors have found the following problems regarding the thermo-siphon-type device temperature control apparatus as described in Patent Document 1. That is, as shown in FIG. 42, when the device temperature control device 100 is mounted on a vehicle or the like, the device temperature control device 100 may tilt as well as the vehicle. In the state shown in FIG. 42, in the heat exchanger 110 for the device included in the device temperature control apparatus 100, the connection portion 201 connected to the heat exchanger 110 for the device in the gas phase passage 200 is on the lower side in the gravity direction. It is inclined. Therefore, the liquid level FL of the working fluid in the liquid phase in the heat exchanger 110 for equipment is located above the connection portion 201 of the gas phase passage 200. That is, the connection portion 201 of the gas phase passage 200 is submerged in the liquid phase working fluid. In this case, the working fluid evaporated in the device heat exchanger 110 at the time of heat generation of the battery does not flow to the gas phase passage 200 and is accumulated in the upper space 120 in the device heat exchanger 110. Therefore, the working fluid does not circulate in the thermosyphon circuit configured by the device heat exchanger 110, the gas phase passage 200, the condenser 500, and the liquid phase passage 550, and the device temperature controller 100 can not cool the battery.
 なお、機器温調装置100が温度調整を行う対象機器は、電気自動車またはハイブリッド車などの電動車両に搭載される電池パックとすることが可能である。その場合、電池パックは多数の電池セルにより構成され、電動車両の床下などに配置されることから、水平方向の体格が大きいものとなる。そのため、電池パックと共に、機器用熱交換器110の水平方向の長さも長くなる。したがって、電動車両の傾斜角度が小さい場合でも、気相通路200の接続部210が液相の作動流体に液没する可能性が高くなる。すなわち、対象機器が電動車両の電池パックである場合、電動車両の傾斜が機器温調装置100の電池冷却能力に与える影響が大きいものとなる。 The target device that the device temperature adjustment device 100 performs temperature adjustment can be a battery pack mounted on an electric vehicle such as an electric vehicle or a hybrid vehicle. In that case, the battery pack is constituted by a large number of battery cells, and is disposed under the floor of the electric vehicle, so that the size in the horizontal direction is large. Therefore, the length in the horizontal direction of the heat exchanger 110 for the device also increases along with the battery pack. Therefore, even when the inclination angle of the electric powered vehicle is small, the connection portion 210 of the gas phase passage 200 is likely to be submerged in the liquid phase working fluid. That is, when the target device is the battery pack of the electric vehicle, the influence of the inclination of the electric vehicle on the battery cooling capacity of the device temperature control apparatus 100 is large.
 本開示は、装置が傾斜した場合でも対象機器の温度調整を行うことができる機器温調装置を提供することを目的とする。 An object of the present disclosure is to provide a device temperature control device capable of performing temperature control of a target device even when the device is inclined.
 本開示の1つの観点によれば、作動流体の液相と気相との相変化により対象機器の温度を調整する機器温調装置であって、
 対象機器の冷却時に作動流体が蒸発するように対象機器と作動流体とが熱交換可能に構成された1つまたは複数の機器用熱交換器を有する機器温度調整部と、
 気相の作動流体を放熱させ、凝縮した液相の作動流体を流出させる凝縮器と、
 凝縮器と機器温度調整部との間に液相の作動流体を流す液相通路と、
 機器温度調整部と凝縮器との間に気相の作動流体を流す複数の気相通路と、を備え、
 複数の気相通路のうち第1気相通路が機器温度調整部に接続する第1接続部と、第2気相通路が機器温度調整部に接続する第2接続部とは、水平方向に離れた場所に位置している。
According to one aspect of the present disclosure, there is provided an apparatus temperature control apparatus that adjusts a temperature of a target device by a phase change between a liquid phase and a gas phase of a working fluid,
A device temperature control unit having one or more device heat exchangers configured to be able to exchange heat between the target device and the working fluid so that the working fluid evaporates when the target device is cooled;
A condenser which dissipates the gas phase working fluid and drains the condensed liquid phase working fluid;
A liquid phase passage for flowing a liquid phase working fluid between the condenser and the device temperature control unit;
A plurality of gas phase passages for flowing a gas phase working fluid between the equipment temperature control unit and the condenser;
The first connection portion in which the first gas phase passage is connected to the device temperature adjustment unit among the plurality of gas phase passages and the second connection portion in which the second gas phase passage is connected to the device temperature adjustment portion are horizontally separated Located in the
 これによれば、機器温度調整部が傾斜した場合、第1接続部と第2接続部の一方が重力方向上側に位置し、第1接続部と第2接続部の他方が重力方向下側に位置する。そのため、機器温度調整部が有する機器用熱交換器内で蒸発した作動流体は、重力方向上側に位置する第1接続部または第2接続部から第1気相通路または第2気相通路の少なくとも一方を流れ、凝縮器に流入する。凝縮器で凝縮した作動流体は、液相通路を流れ、機器用熱交換器に流入する。このような作動流体の循環により、機器温調装置は、機器温度調整部が傾斜した場合でも、対象機器を冷却することが可能である。 According to this, when the device temperature adjustment unit is inclined, one of the first connection portion and the second connection portion is located on the upper side in the gravity direction, and the other of the first connection portion and the second connection portion is on the lower side in the gravity direction. To position. Therefore, the working fluid evaporated in the heat exchanger for equipment included in the equipment temperature control unit is transferred from the first connection or the second connection located at the upper side in the gravity direction to at least the first gas phase passage or the second gas phase passage. It flows to one side and flows into the condenser. The working fluid condensed by the condenser flows through the liquid phase passage and flows into the heat exchanger for equipment. Such circulation of the working fluid enables the device temperature control device to cool the target device even when the device temperature control unit is inclined.
 また、別の観点によれば、作動流体の液相と気相との相変化により対象機器の温度を調整する機器温調装置であって、
 対象機器の冷却時に作動流体が蒸発するように対象機器と作動流体とが熱交換可能に構成された複数の機器用熱交換器、および、複数の機器用熱交換器同士を連結する連結通路を有する機器温度調整部と、
 気相の作動流体を放熱させ、凝縮した液相の作動流体を流出させる凝縮器と、
 複数の機器用熱交換器と凝縮器との間に液相の作動流体を流す液相通路と、
 複数の機器用熱交換器と凝縮器との間に気相の作動流体を流す複数の気相通路と、を備え、
 複数の気相通路のうち第1気相通路が機器温度調整部に接続する第1接続部と、第2気相通路が機器温度調整部に接続する第2接続部とは、水平方向に離れた場所に位置し、それぞれ別々の機器用熱交換器に設けられるか、または、同一の機器用熱交換器に設けられている。
According to another aspect, there is provided an apparatus temperature control apparatus for adjusting a temperature of a target device by a phase change between a liquid phase and a gas phase of a working fluid,
A plurality of device heat exchangers configured to be able to exchange heat between the target device and the working fluid so that the working fluid evaporates when the target device is cooled, and a connection passage connecting the plurality of device heat exchangers A device temperature control unit,
A condenser which dissipates the gas phase working fluid and drains the condensed liquid phase working fluid;
A liquid phase passage for flowing a liquid phase working fluid between the plurality of equipment heat exchangers and the condenser;
A plurality of gas phase passages for flowing a gas phase working fluid between the plurality of equipment heat exchangers and the condenser;
The first connection portion in which the first gas phase passage is connected to the device temperature adjustment unit among the plurality of gas phase passages and the second connection portion in which the second gas phase passage is connected to the device temperature adjustment portion are horizontally separated It is located in the same place and is provided in each separate heat exchanger for equipment, or is provided in the same heat exchanger for equipment.
 これによれば、機器温度調整部が傾斜した場合、第1接続部と第2接続部の一方が重力方向上側に位置し、第1接続部と第2接続部の他方が重力方向下側に位置する。そのため、機器温度調整部が有する複数の機器用熱交換器内で蒸発した作動流体は、重力方向上側に位置する第1接続部または第2接続部から第1気相通路または第2気相通路の少なくとも一方を流れ、凝縮器に流入する。凝縮器で凝縮した作動流体は、液相通路を流れ、複数の機器用熱交換器に流入する。このような作動流体の循環により、機器温調装置は、複数の機器用熱交換器が傾斜した場合でも、対象機器を冷却することが可能である。 According to this, when the device temperature adjustment unit is inclined, one of the first connection portion and the second connection portion is located on the upper side in the gravity direction, and the other of the first connection portion and the second connection portion is on the lower side in the gravity direction. To position. Therefore, the working fluid evaporated in the plurality of equipment heat exchangers included in the equipment temperature control unit is transferred from the first connection or the second connection located on the upper side in the direction of gravity to the first gas phase passage or the second gas phase passage. Flow through at least one of the two into the condenser. The working fluid condensed by the condenser flows through the liquid phase passage and flows into the plurality of equipment heat exchangers. The circulation of the working fluid allows the device temperature control device to cool the target device even when the plurality of device heat exchangers are inclined.
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 The reference numerals in parentheses attached to each component, etc., shows an example of a relationship of the specific component such as described in the following embodiments and their components, and the like.
第1実施形態に係る機器温調装置の概略構成図である。It is a schematic block diagram of the apparatus temperature control apparatus which concerns on 1st Embodiment. 機器温調装置が備える機器用熱交換器と電池モジュールの斜視図である。It is a perspective view of the heat exchanger for apparatuses with which an apparatus heat regulation apparatus is equipped, and a battery module. 機器温調装置が備える機器用熱交換器と電池モジュールの断面図である。It is sectional drawing of the heat exchanger for apparatuses with which an apparatus temperature control apparatus is equipped, and a battery module. 機器温調装置の電池冷却時における作動流体の流れを示す説明図である。It is explanatory drawing which shows the flow of the working fluid at the time of the battery cooling of an apparatus temperature control apparatus. 機器温調装置が傾斜した場合の作動流体の流れを示す説明図である。It is explanatory drawing which shows the flow of the working fluid when an apparatus temperature control apparatus inclines. 機器温調装置が傾斜した場合の作動流体の流れを示す説明図である。It is explanatory drawing which shows the flow of the working fluid when an apparatus temperature control apparatus inclines. 第1実施形態に対する変形例1として、作動流体の封入量を変えた状態を示す概略構成図である。It is a schematic block diagram which shows the state which changed the enclosed quantity of the working fluid as the modification 1 with respect to 1st Embodiment. 第1実施形態に対する変形例2として、作動流体の封入量を変えた状態を示す概略構成図である。It is a schematic block diagram which shows the state which changed the enclosed quantity of the working fluid as the modification 2 with respect to 1st Embodiment. 第2実施形態に係る機器温調装置の概略構成図である。It is a schematic block diagram of the apparatus temperature control apparatus which concerns on 2nd Embodiment. 第2実施形態に対する変形例3として、作動流体の封入量を変えた状態を示す概略構成図である。It is a schematic block diagram which shows the state which changed the enclosed quantity of the working fluid as the modification 3 with respect to 2nd Embodiment. 第3実施形態に係る機器温調装置の概略構成図である。It is a schematic block diagram of the apparatus temperature control apparatus which concerns on 3rd Embodiment. 第4実施形態に係る機器温調装置の概略構成図である。It is a schematic block diagram of the apparatus temperature control apparatus which concerns on 4th Embodiment. 第5実施形態に係る機器温調装置の斜視図である。It is a perspective view of the apparatus temperature control apparatus which concerns on 5th Embodiment. 第6実施形態に係る機器温調装置の斜視図である。It is a perspective view of the apparatus temperature control apparatus which concerns on 6th Embodiment. 第7実施形態に係る機器温調装置の斜視図である。It is a perspective view of the apparatus temperature control apparatus which concerns on 7th Embodiment. 第8実施形態に係る機器温調装置の斜視図である。It is a perspective view of the apparatus temperature control apparatus which concerns on 8th Embodiment. 第9実施形態に係る機器温調装置の斜視図である。It is a perspective view of the apparatus temperature control apparatus which concerns on 9th Embodiment. 第10実施形態に係る機器温調装置の斜視図である。It is a perspective view of the apparatus temperature control apparatus which concerns on 10th Embodiment. 第11実施形態に係る機器温調装置の斜視図である。It is a perspective view of the apparatus temperature control apparatus which concerns on 11th Embodiment. 第12実施形態に係る機器温調装置の斜視図である。It is a perspective view of the apparatus temperature control apparatus which concerns on 12th Embodiment. 第13実施形態に係る機器温調装置の斜視図である。It is a perspective view of the apparatus temperature control apparatus which concerns on 13th Embodiment. 第14実施形態に係る機器温調装置の斜視図である。It is a perspective view of the apparatus temperature control apparatus which concerns on 14th Embodiment. 第15実施形態に係る機器温調装置が備える機器用熱交換器と電池モジュールの斜視図である。It is a perspective view of the heat exchanger for apparatuses with which the apparatus temperature control apparatus which concerns on 15th Embodiment is equipped, and a battery module. 第16実施形態に係る機器温調装置が備える機器用熱交換器と電池モジュールの斜視図である。It is a perspective view of the heat exchanger for apparatuses with which the apparatus temperature control apparatus which concerns on 16th Embodiment is equipped, and a battery module. 第17実施形態に係る機器温調装置の概略構成図である。It is a schematic block diagram of the apparatus temperature control apparatus which concerns on 17th Embodiment. 図25のXXVI部分の拡大図である。It is an enlarged view of XXVI part of FIG. 第18実施形態に係る機器温調装置の概略構成図である。It is a schematic block diagram of the apparatus temperature control apparatus which concerns on 18th Embodiment. 図27のXXVIII部分の拡大図である。It is an enlarged view of XXVIII part of FIG. 図27のXXIX部分の拡大図である。It is an enlarged view of the XXIX part of FIG. 第19実施形態に係る機器温調装置の概略構成図である。It is a schematic block diagram of the apparatus temperature control apparatus which concerns on 19th Embodiment. 第19実施形態に係る機器温調装置の概略構成図である。It is a schematic block diagram of the apparatus temperature control apparatus which concerns on 19th Embodiment. 第20実施形態に係る機器温調装置が備える流路面積調整弁の断面図である。It is sectional drawing of the flow-path area adjustment valve with which the apparatus temperature control apparatus which concerns on 20th Embodiment is provided. 第20実施形態に係る機器温調装置が備える流路面積調整弁の断面図である。It is sectional drawing of the flow-path area adjustment valve with which the apparatus temperature control apparatus which concerns on 20th Embodiment is provided. 第21実施形態に係る機器温調装置が備える流路面積調整弁の断面図である。It is sectional drawing of the flow-path area adjustment valve with which the apparatus temperature control apparatus which concerns on 21st Embodiment is equipped. 第21実施形態に係る機器温調装置が備える流路面積調整弁の断面図である。It is sectional drawing of the flow-path area adjustment valve with which the apparatus temperature control apparatus which concerns on 21st Embodiment is equipped. 第22実施形態に係る機器温調装置の概略構成図である。It is a schematic block diagram of the apparatus temperature control apparatus which concerns on 22nd Embodiment. 図36のXXXVII部分の拡大図である。FIG. 37 is an enlarged view of a portion XXXVII of FIG. 36; 図36のXXXVIII部分の拡大図である。FIG. 37 is an enlarged view of a portion XXXVIII in FIG. 第23実施形態に係る機器温調装置の概略構成図である。It is a schematic block diagram of the apparatus temperature control apparatus which concerns on 23rd Embodiment. 図39のXL部分の拡大図である。It is an enlarged view of the XL part of FIG. 図39のXLI部分の拡大図である。It is an enlarged view of the XLI part of FIG. 従来の機器温調装置の概略構成図である。It is a schematic block diagram of the conventional apparatus temperature control apparatus.
 以下、本開示の実施形態について図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付し、その説明を省略する。また、各実施形態の説明において、第1、第2、第3などの用語は、説明の便宜上のものであり、各構成部材の数、配置、形状などを限定するものではない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, parts identical or equivalent to each other are given the same reference numerals, and descriptions thereof will be omitted. Further, in the description of each embodiment, the terms first, second, third, and the like are for convenience of description, and the number, arrangement, shape, and the like of the respective constituent members are not limited.
 (第1実施形態)
 第1実施形態について、図1~図6を参照して説明する。第1実施形態の機器温調装置1は、電気自動車、プラグインハイブリッド車またはハイブリッド車などの電動車両(以下、単に「車両」という)に搭載される。第1実施形態の機器温調装置1(以下「本装置1」ということがある)は、車両に搭載される二次電池(以下、「電池」という)を冷却または暖機し、電池の温度を調節するものである。
First Embodiment
The first embodiment will be described with reference to FIGS. 1 to 6. The device temperature control device 1 according to the first embodiment is mounted on an electric vehicle (hereinafter simply referred to as a “vehicle”) such as an electric vehicle, a plug-in hybrid vehicle, or a hybrid vehicle. The device temperature control device 1 of the first embodiment (hereinafter sometimes referred to as “this device 1”) cools or warms up a secondary battery (hereinafter referred to as “battery”) mounted on a vehicle, and the battery temperature To adjust the
 まず、機器温調装置1が温度調整を行う対象機器としての電池2について説明する。車両に設置される大型の電池2は、複数の電池セル3が組み合わされた電池モジュールが複数格納された電池パック(すなわち蓄電装置)として、車両の座席下またはトランクルームの下などに搭載される。電池2に蓄えた電力は、インバータなどを介して車両走行用モータに供給される。電池2は車両走行中などに電力供給等を行うと自己発熱する。電池2は高温になると、十分な機能を発揮できないだけでなく、劣化が促進されることから、自己発熱が少なくなるように出力および入力を制限する必要がある。そのため、電池2の出力および入力を確保するためには、電池2を所定の温度以下に維持するための冷却装置が必要となる。 First, the battery 2 as a target device with which the device temperature control device 1 performs temperature control will be described. A large battery 2 installed in a vehicle is mounted under a seat of the vehicle or under a trunk room as a battery pack (i.e., a storage device) in which a plurality of battery modules in which a plurality of battery cells 3 are combined is stored. The power stored in the battery 2 is supplied to the vehicle drive motor via an inverter or the like. The battery 2 generates heat when power is supplied, for example, while the vehicle is traveling. When the battery 2 becomes high temperature, it not only can not perform sufficient functions but also accelerates deterioration, so it is necessary to limit the output and input so as to reduce self-heating. Therefore, in order to secure the output and input of the battery 2, a cooling device for maintaining the battery 2 at a predetermined temperature or lower is required.
 また、夏季などの外気温が高い季節では、車両走行中だけでなく、駐車放置中などにも電池2の温度は上昇する。また、電池2は車両の床下やトランクルーム下などに配置されることが多く、電池2に与えられる単位時間当たりの熱量は小さいものの、長時間の放置により電池2の温度は徐々に上昇する。電池2を高温状態で放置すると電池2の寿命が短くなるので、車両の駐車中等にも電池2の温度を所定の温度以下に維持することが望まれている。 In addition, in a season where the outside air temperature is high such as summer, the temperature of the battery 2 rises not only while the vehicle is traveling but also while it is parked and the like. Also, the battery 2 is often disposed under the floor of the vehicle, under the trunk room, etc., and although the amount of heat per unit time given to the battery 2 is small, the temperature of the battery 2 gradually rises by leaving for a long time. When the battery 2 is left in a high temperature state, the life of the battery 2 is shortened. Therefore, it is desired to maintain the temperature of the battery 2 at a predetermined temperature or less even while the vehicle is parked.
 さらに、電池2は、複数の電池セル3により構成されている。電池2は、各電池セル3の温度にばらつきがあると電池セル3の劣化に偏りが生じ、蓄電性能が低下してしまう。これは、電池2が複数の電池セル3の直列接続体を含んで構成されていることで、最も劣化した電池セル3の特性に合わせて電池2の入出力特性が決まるからである。そのため、長期間にわたって電池2に所望の性能を発揮させるためには、複数の電池セル3の相互間の温度ばらつきを低減させる均温化が重要となる。 Furthermore, the battery 2 is configured by a plurality of battery cells 3. In the battery 2, when the temperature of each battery cell 3 is uneven, deterioration of the battery cell 3 is biased and the storage performance is lowered. This is because the battery 2 is configured to include a series connection of a plurality of battery cells 3, and the input / output characteristics of the battery 2 are determined in accordance with the characteristics of the battery cell 3 that has deteriorated the most. Therefore, in order to cause the battery 2 to exhibit desired performance over a long period of time, it is important to make the temperature uniform to reduce the temperature variation among the plurality of battery cells 3.
 また、一般に、電池2を冷却する他の冷却装置として、送風機による空冷式の冷却手段、蒸気圧縮式の冷凍サイクルの冷熱を利用した冷却手段が一般的である。しかし、送風機による空冷式の冷却手段は、車室内の空気を送風するだけなので、冷却能力は低い。また、送風機による送風は、空気の顕熱で電池2を冷却するので、空気流れの上流と下流との間で温度差が大きくなり、複数の電池セル3同士の温度ばらつきを十分に抑制できない。また、冷凍サイクルの冷熱を利用した冷却手段は、冷却能力は高いものの、車両の駐車中に、電力消費量の多いコンプレッサ等を駆動させることが必要となる。このことは、電力消費量の増大、騒音の増大等を招くことになるため好ましくない。 In general, as other cooling devices for cooling the battery 2, air-cooling type cooling means by a blower and cooling means utilizing cold heat of a vapor compression type refrigeration cycle are generally used. However, since the air-cooling type cooling means by the blower only blows the air in the passenger compartment, the cooling capacity is low. Further, since the air blown by the blower cools the battery 2 with sensible heat of air, the temperature difference between the upstream and the downstream of the air flow becomes large, and temperature variations among the plurality of battery cells 3 can not be sufficiently suppressed. Further, although the cooling means utilizing the cold heat of the refrigeration cycle has a high cooling capacity, it is necessary to drive a compressor or the like that consumes a large amount of power while the vehicle is parked. This is not preferable because it causes an increase in power consumption and noise.
 そこで、本実施形態の機器温調装置1は、作動流体をコンプレッサにより強制循環させることなく、作動流体の自然循環によって電池2の温度を調整するサーモサイフォン方式を採用している。 Therefore, the device temperature control device 1 of the present embodiment adopts a thermosiphon system in which the temperature of the battery 2 is adjusted by natural circulation of the working fluid without forcibly circulating the working fluid by the compressor.
 次に、機器温調装置1の構成について説明する。図1に示すように、機器温調装置1は、機器温度調整部10、複数の気相通路21、22、40、凝縮器50、および液相通路55などが互いに接続され、密閉された流体回路として構成されている。機器温調装置1は、気相の作動流体が流れる流路と液相の作動流体が流れる流路とが分離されたループ型のサーモサイフォン回路を構成している。サーモサイフォン回路には、その内部が真空排気された状態で、所定量の作動流体が封入されている。作動流体として、例えば、HFO-1234yfまたはHFC-134aなどのフロン系冷媒が用いられる。作動流体の封入量は、機器用熱交換器の高さ方向の途中に作動流体の液面FLが位置するように調整されている。図面では、作動流体の液面FLの高さの一例を、一点鎖線で示している。なお、図面の両矢印で示す上、下は、車両等に機器温調装置1が搭載された状態における重力方向の上側と下側を示している。 Next, the configuration of the device temperature control apparatus 1 will be described. As shown in FIG. 1, in the device temperature adjusting device 1, the device temperature adjusting unit 10, a plurality of gas phase passages 21, 22, 40, a condenser 50, a liquid phase passage 55 and the like are mutually connected and sealed fluid It is configured as a circuit. The apparatus temperature control apparatus 1 constitutes a loop-type thermosiphon circuit in which a flow path in which a working fluid in a gas phase flows and a flow path in which a working fluid in a liquid phase flows are separated. A predetermined amount of working fluid is enclosed in the thermosiphon circuit in a state where the inside thereof is evacuated. As the working fluid, for example, fluorocarbon-based refrigerants such as HFO-1234yf or HFC-134a are used. The enclosed amount of the working fluid is adjusted so that the fluid level FL of the working fluid is located midway in the height direction of the heat exchanger for equipment. In the drawings, an example of the height of the fluid level FL of the working fluid is indicated by a dashed dotted line. In addition, the upper and lower sides shown with the double arrow of drawing have shown the upper side and lower side of the gravity direction in the state by which the apparatus temperature control apparatus 1 was mounted in the vehicle etc. FIG.
 図1~図3に示すように、第1実施形態の機器温度調整部10は、1つの機器用熱交換器11により構成されている。機器用熱交換器11は、重力方向から視て長手方向と短手方向を有する形状である。機器用熱交換器11は、筒状の上ヘッダタンク111と、筒状の下ヘッダタンク112と、熱交換部113により構成されている。上ヘッダタンク111は、機器用熱交換器11のうち重力方向上側となる位置に設けられる。下ヘッダタンク112は、機器用熱交換器11のうち重力方向下側となる位置に設けられる。複数の熱交換部113は、上ヘッダタンク111内の流路と下ヘッダタンク112内の流路とを連通する複数のチューブを有している。熱交換部113は、板状の部材の内側に複数の流路を形成したものとしてもよい。機器用熱交換器11の各構成部材は、例えばアルミニウム、銅等の熱伝導性の高い金属から形成されている。なお、機器用熱交換器11の各構成部材は、金属以外の熱伝導性の高い材料により構成することも可能である。 As shown in FIGS. 1 to 3, the device temperature adjusting unit 10 according to the first embodiment is configured of one heat exchanger 11 for a device. The device heat exchanger 11 has a shape having a longitudinal direction and a short direction when viewed from the gravity direction. The device heat exchanger 11 is configured of a cylindrical upper header tank 111, a cylindrical lower header tank 112, and a heat exchange unit 113. The upper header tank 111 is provided at a position on the equipment heat exchanger 11 above the gravity direction. The lower header tank 112 is provided at a position on the lower side in the direction of gravity of the heat exchanger 11 for equipment. The plurality of heat exchange units 113 have a plurality of tubes which connect the flow passage in the upper header tank 111 and the flow passage in the lower header tank 112. The heat exchange portion 113 may have a plurality of flow paths formed inside a plate-like member. Each component of the device heat exchanger 11 is made of, for example, a metal having high thermal conductivity, such as aluminum or copper. In addition, it is also possible to comprise each structural member of the heat exchanger 11 for apparatuses with materials with high heat conductivity other than a metal.
 熱交換部113の外側には、電気絶縁性の熱伝導シート114を介して、電池2が設置される。熱伝導シート114により、熱交換部113と電池2との間の絶縁が保障されると共に、熱交換部113と電池2との間の熱抵抗が小さいものとなる。本実施形態では、電池2は、端子4が設けられた面5とは反対側の面6が、熱伝導シート114を介して、熱交換部113に設置されている。なお、熱伝導シート114を省略して、電池2と熱交換部113とを直接接続することも可能である。 The battery 2 is installed outside the heat exchange unit 113 via the electrically insulating heat conductive sheet 114. While the insulation between the heat exchange part 113 and the battery 2 is secured by the heat conduction sheet 114, the thermal resistance between the heat exchange part 113 and the battery 2 becomes small. In the present embodiment, in the battery 2, the surface 6 opposite to the surface 5 on which the terminal 4 is provided is installed in the heat exchange unit 113 via the heat conduction sheet 114. It is also possible to omit the heat conduction sheet 114 and directly connect the battery 2 and the heat exchange unit 113.
 電池2を構成する複数の電池セル3は、重力方向に交差する方向に並べられている。なお、電池2の設置方法は、図1~図3に示したものに限らず、後述する第15および第16実施形態で説明するように、任意の設置方法を採用することができる。なお、電池2を構成する各電池セル3の個数、形状なども、図1~図3に示したものに限らず、任意のものを採用することができる。 The plurality of battery cells 3 constituting the battery 2 are arranged in a direction intersecting the gravity direction. The method of installing the battery 2 is not limited to that shown in FIGS. 1 to 3, and any method may be employed as will be described in the fifteenth and sixteenth embodiments described later. The number, shape, and the like of the battery cells 3 constituting the battery 2 are not limited to those shown in FIGS. 1 to 3, and arbitrary ones can be adopted.
 電池2は、機器用熱交換器11の内側の作動流体と熱交換可能である。電池2が発熱すると、機器用熱交換器11内の液相の作動流体が蒸発する。これにより、複数の電池セル3は、作動流体の蒸発潜熱により均等に冷却される。 The battery 2 can exchange heat with the working fluid inside the heat exchanger 11 for equipment. When the battery 2 generates heat, the working fluid in the liquid phase in the device heat exchanger 11 evaporates. Thereby, the plurality of battery cells 3 are evenly cooled by the latent heat of vaporization of the working fluid.
 機器用熱交換器11の上ヘッダタンク111の長手方向左右にはそれぞれ流出口111a、111bが設けられている。下ヘッダタンク112には流入口112aが設けられている。流出口111a、111bは、気相通路21、22、40を構成するガス配管の端部を接続するための配管接続部である。流入口112aは、液相通路55を構成する液配管の端部を接続するための配管接続部である。 Outlets 111 a and 111 b are provided on the left and right of the upper header tank 111 in the longitudinal direction of the upper heat exchanger 11 for the device. The lower header tank 112 is provided with an inlet 112 a. The outflow ports 111a and 111b are pipe connection portions for connecting the end portions of the gas pipes constituting the gas phase passages 21, 22 and 40. The inflow port 112 a is a pipe connection portion for connecting an end portion of the liquid pipe constituting the liquid phase passage 55.
 複数の気相通路21、22、40は、機器用熱交換器11の内側で蒸発した気相の作動流体を凝縮器50に流すための通路である。本実施形態では、複数の気相通路21、22、40は、第1気相通路21、第2気相通路22および合流通路40を含んで構成されている。第1気相通路21の一方の端部は、機器用熱交換器11の上ヘッダタンク111の長手方向の一方に設けられた流出口111aに接続されている。第1気相通路21が機器用熱交換器11に接続する端部を、第1接続部211と称する。第2気相通路22の一方の端部は、機器用熱交換器11の上ヘッダタンク111の長手方向の他方に設けられた流出口111bに接続されている。第2気相通路22が機器用熱交換器11に接続する端部を、第2接続部221と称する。第1気相通路21の第1接続部211と、第2気相通路22の第2接続部221とは、1つの機器用熱交換器11のうち水平方向に離れた位置に設けられている。詳細には、第1気相通路21の第1接続部211と、第2気相通路22の第2接続部221は、機器用熱交換器11のうち熱交換部113より長手方向外側の位置に設けられている。 The plurality of gas phase passages 21, 22, 40 are passages for flowing the working fluid of the gas phase evaporated inside the heat exchanger 11 for an instrument to the condenser 50. In the present embodiment, the plurality of gas phase passages 21, 22, and 40 are configured to include the first gas phase passage 21, the second gas phase passage 22, and the merging passage 40. One end of the first gas phase passage 21 is connected to an outlet 111 a provided on one side of the upper header tank 111 in the longitudinal direction of the heat exchanger 11 for equipment. The end at which the first gas phase passage 21 is connected to the heat exchanger 11 for equipment is referred to as a first connection portion 211. One end of the second gas phase passage 22 is connected to an outlet 111 b provided at the other end of the upper header tank 111 in the longitudinal direction of the heat exchanger 11 for equipment. The end at which the second gas phase passage 22 is connected to the heat exchanger 11 for apparatus is referred to as a second connection portion 221. The first connection portion 211 of the first gas phase passage 21 and the second connection portion 221 of the second gas phase passage 22 are provided at horizontally separated positions in one heat exchanger 11 for an apparatus. . In detail, the first connection portion 211 of the first gas phase passage 21 and the second connection portion 221 of the second gas phase passage 22 are located longitudinally outside the heat exchange portion 113 of the heat exchanger 11 for equipment. Provided in
 なお、第1接続部211は、機器用熱交換器11のうち熱交換部113より車両前方側に設けられている。また、第2接続部221は、機器用熱交換器11のうち熱交換部113より車両後方側に設けられている。すなわち、第1接続部211と第2接続部221とは、車両前後方向に離れた場所に設けられている。そして、第1気相通路21は、第1接続部211から車両前方へ延びる部位21aを有している。第2気相通路22は、第2接続部221から車両後方へ延びる部位22aを有している。なお、第1気相通路21は、第1接続部211から上方へ延びていてもよく、または、上方且つ斜め前方へ延びていてもよい。また、第2気相通路22は、第2接続部221から上方へ延びていてもよく、または、上方且つ斜め後方へ延びていてもよい。 The first connection portion 211 is provided forward of the heat exchange portion 113 in the heat exchanger 11 for the device. Further, the second connection portion 221 is provided on the rear side of the heat exchanger 113 of the heat exchanger 11 for the device. That is, the first connection portion 211 and the second connection portion 221 are provided at places separated in the vehicle longitudinal direction. The first gas phase passage 21 has a portion 21 a extending from the first connection portion 211 to the front of the vehicle. The second gas phase passage 22 has a portion 22 a extending from the second connection portion 221 to the rear of the vehicle. The first gas phase passage 21 may extend upward from the first connection portion 211, or may extend upward and obliquely forward. In addition, the second gas phase passage 22 may extend upward from the second connection portion 221, or may extend upward and obliquely rearward.
 第1気相通路21が第1接続部211から車両前方へ延びる部位21aを有していることの効果として、次のことが言える。すなわち、図5に示すように、第1気相通路21のうち第1接続部211から車両前方へ延びる部位21aは、凝縮器50の位置が上がる場合の傾斜に対応するための配管である。ここで、第1気相通路21のうち第1接続部211から車両前方へ延びる部位21aがあることで、図5のように傾斜した場合において、機器用熱交換器11の熱交換部113よりも第1気相通路21が相対的に下がらない。よって、傾斜時において、熱交換部113で蒸発した気相冷媒が、第1気相通路21に導かれやすくなる。 The following can be said as an effect of the first gas phase passage 21 having a portion 21 a extending from the first connection portion 211 to the front of the vehicle. That is, as shown in FIG. 5, a portion 21 a of the first gas phase passage 21 extending forward of the vehicle from the first connection portion 211 is a pipe for coping with the inclination when the position of the condenser 50 rises. Here, since there is a portion 21a of the first gas phase passage 21 extending from the first connection portion 211 to the front of the vehicle, the heat exchange portion 113 of the heat exchanger 11 for equipment is inclined as shown in FIG. Also, the first gas phase passage 21 does not relatively lower. Therefore, at the time of inclination, the gas phase refrigerant evaporated in the heat exchange unit 113 is easily introduced to the first gas phase passage 21.
 また、第2気相通路22が第2接続部221から車両後方へ延びる部位22aを有していることの効果として、次のことが言える。すなわち、図6に示すように、第2気相通路22のうち第2接続部221から車両後方へ延びる部位22aは、凝縮器50の位置が下がる場合の傾斜に対応するための配管である。ここで、第2気相通路22のうち第2接続部221から車両後方へ延びる部位22aがあることで、図6のように傾斜した場合において、機器用熱交換器11の熱交換部113よりも第2気相通路22が相対的に下がらない。よって、傾斜時において、熱交換部113で蒸発した気相冷媒が、第2気相通路22に導かれやすくなる。 Further, the following can be said as an effect of the second gas phase passage 22 having the portion 22a extending from the second connection portion 221 to the rear of the vehicle. That is, as shown in FIG. 6, a portion 22 a of the second gas phase passage 22 extending rearward from the second connection portion 221 is a pipe for dealing with the inclination when the position of the condenser 50 is lowered. Here, since there is a portion 22a of the second gas phase passage 22 extending from the second connection portion 221 to the rear of the vehicle, the heat exchange portion 113 of the heat exchanger 11 for equipment is inclined as shown in FIG. Also, the second gas phase passage 22 does not relatively lower. Therefore, at the time of inclination, the gas phase refrigerant evaporated in the heat exchange unit 113 is easily introduced to the second gas phase passage 22.
 第1気相通路21のうち機器用熱交換器11とは反対側の端部と、第2気相通路22のうち機器用熱交換器11とは反対側の端部とは、合流部30で接続されている。合流部30と凝縮器50との間を、合流通路40が接続している。合流部30は、第1接続部211および第2接続部221よりも重力方向上側に設けられている。第1気相通路21を流れる作動流体と第2気相通路22を流れる作動流体とは、合流部30で合流する。合流部30で合流した作動流体は、合流通路40を通って凝縮器50に流れる。 The end of the first gas phase passage 21 on the opposite side to the heat exchanger 11 for the device and the end of the second gas phase passage 22 on the opposite side to the heat exchanger 11 for the device are the junction 30 Connected by A junction passage 40 is connected between the junction 30 and the condenser 50. The merging portion 30 is provided on the upper side in the gravity direction than the first connection portion 211 and the second connection portion 221. The working fluid flowing through the first gas phase passage 21 and the working fluid flowing through the second gas phase passage 22 merge at the junction 30. The working fluid merged at the merging portion 30 flows to the condenser 50 through the merging passage 40.
 凝縮器50は、機器用熱交換器11より重力方向上側に配置されている。凝縮器50は、気相通路21、22、40を通って凝縮器50の内側に流入した気相の作動流体と、所定の受熱媒体とを熱交換させるための熱交換器である。凝縮器50を流れる作動流体と熱交換を行う所定の受熱媒体は、例えば冷凍サイクルを循環する冷媒、または、冷却水回路を循環する冷却水、または空気など、種々の熱媒体を採用することが可能である。例えば、凝縮器50を流れる作動流体と熱交換を行う所定の受熱媒体として空気を採用した場合、凝縮器50は、図示していないファンにより送風される空気または走行風と、気相の作動流体とを熱交換させる空冷式の熱交換器として構成される。その場合、凝縮器50を流れる気相の作動流体は、その凝縮器50を通過する空気に放熱することで凝縮する。なお、凝縮器50は、一般に、車両の前方のエンジンルーム内に設けられる。 Condenser 50 is arranged above the heat exchanger 11 for equipment in the direction of gravity. The condenser 50 is a heat exchanger for exchanging heat between the gas phase working fluid that has flowed into the interior of the condenser 50 through the gas phase passages 21, 22 and 40 and a predetermined heat receiving medium. The predetermined heat receiving medium performing heat exchange with the working fluid flowing through the condenser 50 may employ various heat mediums, such as refrigerant circulating in a refrigeration cycle, cooling water circulating in a cooling water circuit, or air, for example. It is possible. For example, when air is employed as a predetermined heat receiving medium which exchanges heat with the working fluid flowing through the condenser 50, the condenser 50 can be a working fluid of air or running air blown by a fan (not shown) and a gas phase working fluid. It is comprised as an air-cooled heat exchanger which carries out heat exchange. In that case, the gas phase working fluid flowing through the condenser 50 condenses by releasing heat to the air passing through the condenser 50. The condenser 50 is generally provided in an engine room in front of the vehicle.
 なお、凝縮器50は、図面に表わされたような作動流体の液面FLより上方の位置に限らず、作動流体の液面FLを高さ方向に跨ぐ位置に設けられていてもよい。 The condenser 50 is not limited to the position above the liquid level FL of the working fluid as shown in the drawing, and may be provided at a position straddling the liquid level FL of the working fluid in the height direction.
 液相通路55は、凝縮器50の内側で凝縮した液相の作動流体を機器用熱交換器11に流すための通路である。液相通路55のうち凝縮器50とは反対側の端部は、機器用熱交換器11の下ヘッダタンク112に設けられた流入口112aに接続されている。これにより、凝縮器50で凝縮して液相となった作動流体は、自重により液相通路55を流下し、機器用熱交換器11に流入する。 The liquid phase passage 55 is a passage for causing the working fluid of the liquid phase condensed inside the condenser 50 to flow to the heat exchanger 11 for the device. The end of the liquid phase passage 55 opposite to the condenser 50 is connected to the inlet 112 a provided in the lower header tank 112 of the heat exchanger 11 for equipment. As a result, the working fluid that has been condensed in the condenser 50 and becomes a liquid phase flows down the liquid phase passage 55 by its own weight and flows into the heat exchanger 11 for equipment.
 なお、気相通路21、22、40と液相通路55は、便宜上の呼び名であり、気相または液相の作動流体のみが流れる通路という意味ではない。すなわち、気相通路21、22、40と液相通路55のいずれにも、気相と液相の両方の作動流体が流れることがある。また、気相通路21、22、40と液相通路55の形状等は、車両への搭載性を考慮して適宜変更可能である。 The gas phase passages 21, 22, 40 and the liquid phase passage 55 are names for convenience, and do not mean a passage through which only the gas phase or liquid phase working fluid flows. That is, working fluid of both the gas phase and the liquid phase may flow through any of the gas phase passages 21, 22, 40 and the liquid phase passage 55. Further, the shapes and the like of the gas phase passages 21, 22, 40 and the liquid phase passage 55 can be appropriately changed in consideration of the mountability to the vehicle.
 続いて、機器温調装置1が電池2の冷却を行うときの作動流体の流れについて説明する。
<水平状態>
 図4は、機器温度調整部10が水平状態にある場合を示している。本実施形態では、作動流体の封入量は、機器温調装置1が非作動状態で機器温度調整部10が水平状態にある場合に、作動流体の液面FLが熱交換部113の高さ方向の途中に位置するように調整されている。また、作動流体の封入量は、機器温調装置1が非作動状態で機器温度調整部10が水平状態にある場合に、第1接続部211と第2接続部221が作動流体の液面FLより上側にあるように調整されている。
Subsequently, the flow of the working fluid when the device temperature control device 1 cools the battery 2 will be described.
<Horizontal state>
FIG. 4 shows the case where the device temperature adjustment unit 10 is in the horizontal state. In the present embodiment, the enclosed amount of the working fluid is such that the fluid level FL of the working fluid is in the height direction of the heat exchange unit 113 when the device temperature adjustment device 1 is in the non-operating state and the device temperature adjustment unit 10 is in the horizontal state. It is adjusted to be located in the middle of. Further, the amount of the working fluid enclosed is such that when the device temperature adjustment device 1 is in the non-operating state and the device temperature adjustment unit 10 is in the horizontal state, the first connection portion 211 and the second connection portion 221 are the liquid level FL of the working fluid. It is adjusted to be on the upper side.
 機器温調装置1が作動状態となり、電池2を冷却する時、凝縮器50では、気相の作動流体と所定の受熱媒体との熱交換が行われる。具体的には、車両が停車中の時には、凝縮器50に送風するための図示しないファンが駆動され、ファンによる送風が行われる。なお、車両が走行中の場合は、走行風が凝縮器50に流れるため、ファンの駆動は必要ない。或いは、凝縮器50を流れる作動流体と熱交換を行うための図示しない冷凍サイクルの圧縮機が駆動され、その冷凍サイクルを冷媒が循環する。または、凝縮器50を流れる作動流体と熱交換を行うための図示しない冷却水回路のポンプが駆動され、その冷却水回路を冷却水が循環する。 When the device temperature adjustment device 1 is activated to cool the battery 2, the condenser 50 performs heat exchange between the working fluid in the gas phase and the predetermined heat receiving medium. Specifically, when the vehicle is at a stop, a fan (not shown) for blowing air to the condenser 50 is driven, and the air is blown by the fan. In addition, since driving | running wind flows into the condenser 50 when a vehicle is drive | working, the drive of a fan is unnecessary. Alternatively, a compressor of a not-shown refrigeration cycle for performing heat exchange with the working fluid flowing through the condenser 50 is driven, and the refrigerant circulates in the refrigeration cycle. Alternatively, a pump of a cooling water circuit (not shown) for exchanging heat with the working fluid flowing through the condenser 50 is driven, and the cooling water circulates in the cooling water circuit.
 これにより、凝縮器50で凝縮した液相の作動流体は、自重により液相通路55を流れ、流入口から機器用熱交換器11の下ヘッダタンク112に流入する。下ヘッダタンク112に流入した作動流体は、熱交換部113が有する複数の流路に分流する。ここで、本実施形態では、作動流体の封入量は、機器温度調整部10が水平状態にある場合に作動流体の液面FLが熱交換部113の途中に位置するように調整されている。したがって、第1接続部211と第2接続部221は、機器温度調整部10のうち作動流体の液面FLより上側に位置している。 Thereby, the working fluid in the liquid phase condensed by the condenser 50 flows through the liquid phase passage 55 by its own weight and flows into the lower header tank 112 of the heat exchanger 11 for the device from the inlet. The working fluid that has flowed into the lower header tank 112 is divided into a plurality of flow paths of the heat exchange unit 113. Here, in the present embodiment, the enclosed amount of the working fluid is adjusted such that the fluid level FL of the working fluid is positioned halfway in the heat exchange unit 113 when the device temperature adjustment unit 10 is in the horizontal state. Therefore, the first connection portion 211 and the second connection portion 221 are located above the liquid level FL of the working fluid in the device temperature adjustment unit 10.
 熱交換部113が有する複数の流路を流れる液相の作動流体は、電池2と熱交換することにより蒸発する。この過程で電池2は、作動流体の蒸発潜熱により冷却される。その後、気相となった作動流体は上ヘッダタンク111で合流する。そして、その気相の作動流体は、上ヘッダタンク111の長手方向の一方と他方にそれぞれ接続する第1接続部211および第2接続部221から、第1気相通路21、第2気相通路22および合流通路40を通り、凝縮器50に流れる。 The working fluid in the liquid phase flowing through the plurality of flow paths of the heat exchange portion 113 evaporates by heat exchange with the battery 2. In this process, the battery 2 is cooled by the latent heat of vaporization of the working fluid. Thereafter, the working fluid that has become a gas phase joins at the upper header tank 111. Then, the working fluid of the gas phase is separated from the first connection portion 211 and the second connection portion 221 respectively connected to one and the other in the longitudinal direction of the upper header tank 111, the first gas phase passage 21 and the second gas phase passage. 22 and the merging passage 40 to the condenser 50.
 上述の通り、電池2の冷却時の作動流体の流れは、凝縮器50→液相通路55→下ヘッダタンク112→熱交換部113→上ヘッダタンク111→第1気相通路21、第2気相通路22→合流通路40→凝縮器50の順となる。すなわち、機器用熱交換器11と凝縮器50を含むループ状の流路が形成される。 As described above, the flow of the working fluid at the time of cooling of the battery 2 is as follows: condenser 50 → liquid phase passage 55 → lower header tank 112 → heat exchange unit 113 → upper header tank 111 → first gas phase passage 21, second air Phase passage 22 → merging passage 40 → condenser 50 in this order. That is, a loop-like flow path including the heat exchanger 11 for the device and the condenser 50 is formed.
 <傾斜状態>
 次に、機器温調装置1が傾斜状態にある場合について説明する。図5および図6は、機器温調装置1が所定角度に傾斜した状態を示している。作動流体の封入量は、機器温度調整部10が所定角度に傾斜した場合に作動流体の液面FLが第1接続部211または第2接続部221の一方の上側にあり、第1接続部211または第2接続部221の他方の下側にあるように調整されている。また、作動流体の封入量は、機器温度調整部10が所定角度に傾斜した状態にある場合に合流部30より下側に作動流体の液面FLがあるように調整されている。
<Inclination state>
Next, the case where the device temperature control device 1 is in the inclined state will be described. 5 and 6 show a state in which the device temperature control device 1 is inclined at a predetermined angle. As for the enclosed amount of the working fluid, the liquid level FL of the working fluid is on the upper side of one of the first connection portion 211 or the second connection portion 221 when the device temperature adjustment unit 10 is inclined at a predetermined angle, and the first connection portion 211 Alternatively, it is adjusted to be below the other side of the second connection portion 221. Further, the enclosed amount of the working fluid is adjusted such that the fluid level FL of the working fluid is located below the merging portion 30 when the device temperature adjusting unit 10 is inclined at a predetermined angle.
 なお、作動流体の封入量を調整するための基準となる所定角度は、機器温調装置1が搭載される車両の使用環境などに応じて適宜設定される。本実施形態では、所定角度は、例えば25°として設定されている。なお、所定角度は、例えば5°~25°の間で適宜設定することも可能である。ところで、機器温調装置1は、車両の左右方向よりも、車両の前後方向の傾斜に対応する構成とすることが望ましい。走行中の車両は、登坂中のように車両前後方向の傾きが長い間維持されやすい一方、車両左右方向の傾きは長い間維持されない。そのため、車両前後方向の方が、機器温調装置1が対応する必要性が高い。加えて、機器温調装置1は車両に作用する慣性力に関しても効果がある。この際、加速、減速のようなシーンにおいて車両前後方向に慣性力が作用した状態は長い間維持されやすい。これに対し、カーブ等によって車両左右方向に慣性力が作用した状態は、長い間維持されない。車両前後方向の方が、機器温調装置1が対応する必要性が高い。 In addition, the predetermined angle used as the reference | standard for adjusting the enclosed amount of a working fluid is suitably set according to the use environment of the vehicle by which the apparatus temperature control apparatus 1 is mounted. In the present embodiment, the predetermined angle is set, for example, as 25 degrees. The predetermined angle may be set appropriately, for example, between 5 ° and 25 °. By the way, it is desirable that the device temperature control device 1 be configured to correspond to the inclination in the front-rear direction of the vehicle than in the left-right direction of the vehicle. While the vehicle in motion is likely to be maintained for a long period of time in the longitudinal direction of the vehicle as when climbing a hill, the lateral direction of the vehicle is not maintained for a long period of time. Therefore, the need for the device temperature control apparatus 1 to cope with the direction of the vehicle is high. In addition, the device temperature control device 1 is also effective with respect to the inertial force acting on the vehicle. At this time, in a scene such as acceleration and deceleration, the state in which the inertial force acts in the longitudinal direction of the vehicle is likely to be maintained for a long time. On the other hand, the state in which the inertial force is applied in the lateral direction of the vehicle by a curve or the like is not maintained for a long time. The need for the device temperature adjustment device 1 to be coped with in the longitudinal direction of the vehicle is high.
 図5は、機器用熱交換器11の凝縮器50側が上方となるように傾斜した状態を示している。この状態は、例えば凝縮器50が車両前方に設置されている場合、車両前方が上方となるように傾斜した状態である。このとき、上ヘッダタンク111の長手方向の一方に接続する第1気相通路21の第1接続部211が作動流体の液面FLより上にあり、上ヘッダタンク111の長手方向の他方に接続する第2気相通路22の第2接続部221が作動流体の液面FLより下にある。 FIG. 5 shows a state where the condenser 50 side of the heat exchanger 11 for equipment is inclined upward. In this state, for example, when the condenser 50 is installed in front of the vehicle, the front of the vehicle is inclined upward. At this time, the first connection portion 211 of the first gas phase passage 21 connected to one of the longitudinal direction of the upper header tank 111 is above the liquid level FL of the working fluid, and is connected to the other longitudinal direction of the upper header tank 111 The second connection portion 221 of the second gas phase passage 22 is located below the fluid level FL of the working fluid.
 機器温調装置1が作動状態となり、電池2を冷却する時、図5の矢印に示すように、凝縮器50で凝縮した液相の作動流体は、液相通路55を流れて機器用熱交換器11の下ヘッダタンク112に流入する。下ヘッダタンク112に流入した作動流体は、熱交換部113が有する複数の流路に分流し、電池2との熱交換により蒸発する。図5の場合、熱交換部113で蒸発した気相の作動流体は、作動流体の液面FLよりも上にある第1接続部211から第1気相通路21および合流通路40を通り、凝縮器50に流れる。 When the device temperature controller 1 is activated to cool the battery 2, as shown by the arrows in FIG. 5, the working fluid in the liquid phase condensed by the condenser 50 flows through the liquid phase passage 55 for heat exchange for the device Flows into the lower header tank 112 of the vessel 11. The working fluid having flowed into the lower header tank 112 is divided into a plurality of flow paths of the heat exchange unit 113 and is evaporated by heat exchange with the battery 2. In the case of FIG. 5, the working fluid of the gas phase evaporated in the heat exchange unit 113 passes through the first connection portion 211 above the liquid level FL of the working fluid, passes through the first gas phase passage 21 and the merging passage 40, and condenses. Flow to the vessel 50.
 一方、図6は、機器用熱交換器11の凝縮器50側が下方となるように傾斜した状態を示している。この状態で、上ヘッダタンク111の長手方向の一方に接続する第1気相通路21の第1接続部211が作動流体の液面FLより下にあり、上ヘッダタンク111の長手方向の他方に接続する第2気相通路22の第2接続部221が作動流体の液面FLより上にある。 On the other hand, FIG. 6 shows a state in which the condenser 50 side of the heat exchanger 11 for equipment is inclined downward. In this state, the first connection portion 211 of the first gas phase passage 21 connected to one of the upper header tank 111 in the longitudinal direction is below the fluid level FL of the working fluid, and in the other longitudinal direction of the upper header tank 111 The second connection portion 221 of the second gas phase passage 22 to be connected is above the fluid level FL of the working fluid.
 機器温調装置1が作動状態となり、電池2を冷却する時、図6の矢印に示すように、電池2の冷却時、凝縮器50で凝縮した液相の作動流体は、液相通路55を流れて機器用熱交換器11の下ヘッダタンク112に流入する。下ヘッダタンク112に流入した作動流体は、熱交換部113が有する複数の流路に分流し、電池2との熱交換により蒸発する。図6の場合、熱交換部113で蒸発した気相の作動流体は、作動流体の液面FLよりも上にある第2接続部221から第2気相通路22および合流通路40を通り、凝縮器50に流れる。このように、第1実施形態では、機器用熱交換器11が長手方向のどちらの側に傾斜した場合でも、電池2の冷却を行うことが可能である。 When the device temperature controller 1 is activated to cool the battery 2, as shown by the arrows in FIG. 6, when the battery 2 is cooled, the working fluid in the liquid phase condensed by the condenser 50 flows through the liquid phase passage 55. It flows and flows into the lower header tank 112 of the heat exchanger 11 for equipment. The working fluid having flowed into the lower header tank 112 is divided into a plurality of flow paths of the heat exchange unit 113 and is evaporated by heat exchange with the battery 2. In the case of FIG. 6, the working fluid of the vapor phase evaporated in the heat exchange unit 113 passes through the second connection portion 221 above the liquid level FL of the working fluid, passes through the second vapor phase passage 22 and the merging passage 40, and condenses. Flow to the vessel 50. As described above, in the first embodiment, the battery 2 can be cooled even when the device heat exchanger 11 is inclined to either side in the longitudinal direction.
 次に、作動流体の液面FLに関し、詳細に説明する。
 本装置1の作動時すなわち機器温度調整部10にて蒸発が発生し、凝縮器50で凝縮が発生している場合、液面は蒸発時の圧力バランスにより多少上下に変化する。上述のように、本実施形態では、第1接続部211と第2接続部221が作動流体の液面より上側に位置するように、作動流体の封入量が調整されている。仮に、作動流体の液面が、そのように調整されていないと、気相の作動流体が安定的に抜けないため性能が確保できない、あるいは液面が多少下へ移動したした場合のみしか気相の作動流体が抜けないため性能が安定的に確保できない。
Next, the fluid level FL of the working fluid will be described in detail.
At the time of operation of the present apparatus 1, that is, when evaporation occurs in the device temperature control unit 10 and condensation occurs in the condenser 50, the liquid level changes up and down somewhat depending on the pressure balance at the time of evaporation. As described above, in the present embodiment, the enclosed amount of the working fluid is adjusted such that the first connection portion 211 and the second connection portion 221 are located above the liquid surface of the working fluid. If the fluid level of the working fluid is not adjusted as such, the working fluid in the gas phase can not stably escape and performance can not be ensured, or only if the fluid level moves a little lower. Performance can not be secured stably because the working fluid of
 本装置1の非作動時すなわち機器温度調整部10にて蒸発が発生せず、また凝縮器50で凝縮が発生しない場合、液面は静止している。この状態で、仮に、第1接続部211と第2接続部221が作動流体の液面より上側に位置するという関係を満たさない場合、本装置1を作動させるために凝縮器50に冷熱源を供給しても、機器温度調整部10にて蒸発した気相の作動流体が抜けだす経路がない。すなわち、本装置1の安定的な作動が開始できない。 The liquid surface is stationary when evaporation of the apparatus temperature control unit 10 does not occur and condensation does not occur in the condenser 50 when the apparatus 1 is not in operation. In this state, if the relationship that the first connection portion 211 and the second connection portion 221 are located above the liquid level of the working fluid is not satisfied, the condenser 50 is operated by a cold heat source to operate the device 1. Even if supplied, there is no path through which the gas phase working fluid evaporated in the device temperature control unit 10 is released. That is, stable operation of the device 1 can not be started.
 ここで、本装置1の作動原理を説明する。機器温度調整部10にて作動流体は蒸発することで気相となり、その気相の作動流体が凝縮器50で凝縮することで液相の作動流体となり、その液相の作動流体が液相通路にたまる。この際、機器温度調整部10と液相通路55との液面差が駆動源となり作動している。換言すると、機器温度調整部10の液相冷媒の一部が蒸発後に凝縮器50を介して液相通路55に移動することで、液面差が発生し、作動流体が循環している。 Here, the operation principle of the device 1 will be described. The working fluid is vaporized in the apparatus temperature adjusting unit 10 to be a gas phase, and the working fluid in the gas phase is condensed in the condenser 50 to be a working fluid in a liquid phase, and the working fluid in the liquid phase is a fluid phase passage Collect. At this time, the liquid level difference between the device temperature adjustment unit 10 and the liquid phase passage 55 acts as a driving source. In other words, a part of the liquid-phase refrigerant of the device temperature adjustment unit 10 moves to the liquid-phase passage 55 via the condenser 50 after evaporation, thereby generating a liquid level difference and circulating the working fluid.
 つぎに、作動時の液面と非作動時の液面を比較する。上記のように、機器温度調整部10の液相冷媒の一部が蒸発後に凝縮器50を介して液相通路55に移動することで本装置1は作動するため、機器温度調整部10において非作動時の液面と作動時の液面は、非作動時の液面の方が高い。圧力バランスにより作動時の液面が多少上下することで、一時的に非作動時の液面よりも作動時の液面が高くなる事象が発生するが、一般的には非作動時の液面と作動時の液面は、非作動時の液面の方が高いとみなせる。 Next, the liquid level in operation and the liquid level in non-operation are compared. As described above, since the present apparatus 1 operates by moving to the liquid phase passage 55 via the condenser 50 after evaporation of a part of the liquid phase refrigerant of the device temperature adjustment unit 10, the device temperature adjustment unit 10 does not The working fluid level and working fluid level are higher in the non-working fluid level. Although the liquid level at the time of operation slightly rises and falls due to pressure balance, the liquid level at the time of operation temporarily rises higher than the liquid level at the time of non-operation, but generally the liquid level at the time of non-operation And it can be considered that the liquid level at the time of operation is higher than the liquid level at the time of non-operation.
 以上のことから、第1接続部211と第2接続部221が作動流体の液面より上側に位置するという関係に関して、本装置1の非作動時の液面においてその関係を満たしていれば、本装置1のほぼすべての状況において冷却性能を確保することができる。 From the above, regarding the relationship that the first connection portion 211 and the second connection portion 221 are located above the liquid level of the working fluid, if the liquid level at the time of non-operation of the device 1 satisfies the relation, Cooling performance can be ensured in almost all situations of the present apparatus 1.
 以上説明した第1実施形態の機器温調装置1は、次の作用効果を奏する。
 (1)第1実施形態では、第1気相通路21が機器用熱交換器11に接続する第1接続部211と、第2気相通路22が機器用熱交換器11に接続する第2接続部221とは、水平方向に離れた場所に位置している。これにより、機器用熱交換器11が傾斜した場合、第1接続部211と第2接続部221の一方が重力方向上側に位置し、第1接続部211と第2接続部221の他方が重力方向下側に位置する。そのため、機器用熱交換器11内で蒸発した作動流体は、重力方向上側に位置する第1接続部211または第2接続部221から第1気相通路21または第2気相通路22の少なくとも一方を流れ、凝縮器50に流入する。凝縮器50で凝縮した作動流体は、液相通路55を流れ、機器用熱交換器11に流入する。このような作動流体の循環により、機器温調装置1は、機器用熱交換器11が長手方向のどちらの側に傾斜した場合でも、電池2を冷却することが可能である。
The device temperature control apparatus 1 of the first embodiment described above has the following effects.
(1) In the first embodiment, the first connection portion 211 in which the first gas phase passage 21 is connected to the heat exchanger 11 for the device, and the second in which the second gas phase passage 22 is connected to the heat exchanger 11 for the device The connection portion 221 is located at a position distant in the horizontal direction. Thereby, when the heat exchanger 11 for apparatuses inclines, one side of the 1st connection part 211 and the 2nd connection part 221 is located above gravity direction, and the other of the 1st connection part 211 and the 2nd connection part 221 is gravity. It is located below the direction. Therefore, the working fluid evaporated in the device heat exchanger 11 is at least one of the first connection portion 211 or the second connection portion 221 located on the upper side in the direction of gravity to at least one of the first gas phase passage 21 or the second gas phase passage 22. Flow to the condenser 50. The working fluid condensed by the condenser 50 flows through the liquid phase passage 55 and flows into the heat exchanger 11 for equipment. Such circulation of the working fluid enables the device temperature adjusting device 1 to cool the battery 2 even when the device heat exchanger 11 is inclined to either side in the longitudinal direction.
 (2)第1実施形態では、作動流体の封入量は、機器温調装置1が非作動状態で機器用熱交換器11が水平状態にある場合に、作動流体の液面FLが機器用熱交換器11の途中に位置するように調整されている。また、作動流体の封入量は、機器温調装置1が非作動状態で機器用熱交換器11が水平状態にある場合に、第1接続部211と第2接続部221が、作動流体の液面FLより上側に位置するように調整されている。これにより、第1接続部211または第2接続部221のガス抜け性が良くなる。すなわち、機器用熱交換器11から第1接続部211または第2接続部221を経由して第1気相通路21または第2気相通路22に流れる気相の作動流体の圧力損失が低減される。したがって、機器温調装置1は、サーモサイフォン回路の作動流体の循環を良くすることで、電池2の冷却性能を向上することができる。 (2) In the first embodiment, the enclosed amount of the working fluid is such that the fluid level FL of the working fluid is the heat for the device when the device temperature adjustment device 1 is in the non-operating state and the device heat exchanger 11 is in the horizontal state. It is adjusted to be located in the middle of the exchanger 11. Further, the amount of the working fluid enclosed is determined by the first connection portion 211 and the second connection portion 221 when the device temperature adjustment device 1 is in the non-operating state and the device heat exchanger 11 is in the horizontal state. It is adjusted to be positioned above the plane FL. As a result, the degassing property of the first connection portion 211 or the second connection portion 221 is improved. That is, the pressure loss of the working fluid in the gas phase flowing from the heat exchanger 11 for equipment to the first gas phase passage 21 or the second gas phase passage 22 via the first connection portion 211 or the second connection portion 221 is reduced. Ru. Therefore, the device temperature control apparatus 1 can improve the cooling performance of the battery 2 by improving the circulation of the working fluid of the thermosiphon circuit.
 (3)第1実施形態では作動流体の封入量は、機器用熱交換器11が所定角度に傾斜した場合に、作動流体の液面FLが第1接続部211又は第2接続部221の一方の上側にあり、第1接続部211又は第2接続部221の他方の下側にあるように調整されている。これにより、機器用熱交換器11が傾斜した場合、機器用熱交換器11の内側で蒸発した作動流体は、液相の作動流体に液没していない側の第1接続部211または第2接続部221から第1気相通路21または第2気相通路22に流れる。したがって、機器温調装置1は、サーモサイフォン回路の作動流体の循環を良くすることで、電池2の冷却性能を向上することができる。 (3) In the first embodiment, when the heat exchanger 11 for equipment is inclined at a predetermined angle, the amount of enclosed working fluid is one of the first connection portion 211 or the second connection portion 221 of the liquid surface FL of the working fluid. It is adjusted so that it may be above the other of the 1st connection part 211 or the other side of the 2nd connection part 221. Thereby, when the heat exchanger 11 for apparatus inclines, the 1st connection part 211 or the 2nd side of the side which the working fluid evaporated inside the heat exchanger 11 for apparatuses is not immersed in the working fluid of a liquid phase It flows from the connection part 221 to the first gas phase passage 21 or the second gas phase passage 22. Therefore, the device temperature control apparatus 1 can improve the cooling performance of the battery 2 by improving the circulation of the working fluid of the thermosiphon circuit.
 (4)第1実施形態では、機器温調装置1は、合流部30と合流通路40をさらに備える。合流部30は、第1接続部211および第2接続部221よりも重力方向上側に設けられる。合流通路40は、合流部30と凝縮器50との間に気相の作動流体を流す。これによれば、機器温調装置1は、合流部30と凝縮器50との間を合流通路40で接続する構成とすることで、機器用熱交換器11と凝縮器50との間を全て第1気相通路と第2気相通路で接続する構成に比べて、配管の数を少なくすることができる。 (4) In the first embodiment, the device temperature adjusting device 1 further includes the merging portion 30 and the merging passage 40. The merging portion 30 is provided on the upper side in the gravity direction than the first connection portion 211 and the second connection portion 221. The merging passage 40 causes the working fluid in the gas phase to flow between the merging portion 30 and the condenser 50. According to this, the device temperature control device 1 is configured to connect between the merging portion 30 and the condenser 50 by the merging passage 40 so that all of the space between the device heat exchanger 11 and the condenser 50 can be obtained. The number of pipes can be reduced as compared with the configuration in which the first gas phase passage and the second gas phase passage are connected.
 また、第1接続部211および第2接続部221よりも重力方向上側に合流部30を設けることで、機器用熱交換器11が傾斜した場合に合流部30が液没することを抑制することができる。仮に、合流部30が液没すると、機器用熱交換器11が傾斜した場合、第1気相通路21または第2気相通路22を流れる気相の作動流体は、合流部30を通過することが困難になることがある。これに対し、機器用熱交換器11が傾斜した場合に合流部30が液没していなければ、第1気相通路21または第2気相通路22を流れる気相の作動流体は、合流部30を容易に通過し、凝縮器50に流れる。したがって、機器温調装置1は、サーモサイフォン回路の作動流体の循環を良くすることで、電池2の冷却性能を向上することができる。 Further, by providing the merging portion 30 above the first connection portion 211 and the second connection portion 221 in the direction of gravity, it is possible to prevent the merging portion 30 from being submerged if the heat exchanger 11 for equipment is inclined. Can. Temporarily, if the junction part 30 is submerged, if the heat exchanger 11 for equipment inclines, the working fluid of the gaseous phase flowing through the first gas phase passage 21 or the second gas phase passage 22 passes through the junction 30 Can be difficult. On the other hand, when the heat exchanger 11 for equipment is inclined, if the merging portion 30 is not submerged, the working fluid of the gas phase flowing through the first gas phase passage 21 or the second gas phase passage 22 is the merging portion It easily passes 30 and flows to the condenser 50. Therefore, the device temperature control apparatus 1 can improve the cooling performance of the battery 2 by improving the circulation of the working fluid of the thermosiphon circuit.
 (5)第1実施形態では、作動流体の封入量は、機器用熱交換器11が所定角度に傾斜した場合に合流部30より下側に作動流体の液面FLがあるように調整されている。これにより、機器用熱交換器11が傾斜した場合に合流部30が液没することを抑制することができる。 (5) In the first embodiment, the enclosed amount of the working fluid is adjusted so that the fluid level FL of the working fluid is below the merging portion 30 when the heat exchanger 11 for equipment is inclined at a predetermined angle. There is. Thereby, when the heat exchanger 11 for apparatuses inclines, it can suppress that the junction part 30 liquid-sinks.
 (6)第1実施形態では、第1接続部211と第2接続部221は、1つの機器用熱交換器11のうち水平方向に離れた位置に設けられている。これにより、機器用熱交換器11が傾斜した場合、機器用熱交換器11内で蒸発した作動流体は、重力方向上側に位置する第1接続部211または第2接続部221から第1気相通路21または第2気相通路22などを流れ、凝縮器50に流入する。したがって、機器温調装置1は、機器用熱交換器11が傾斜した場合でも、電池2を冷却することが可能である。 (6) In the first embodiment, the first connection portion 211 and the second connection portion 221 are provided at positions separated in the horizontal direction of the single device heat exchanger 11. Thereby, when the heat exchanger 11 for apparatus inclines, the working fluid evaporated in the heat exchanger 11 for apparatus is a 1st gaseous phase from the 1st connection part 211 or the 2nd connection part 221 located in the gravity direction upper side. It flows through the passage 21 or the second gas phase passage 22 and the like and flows into the condenser 50. Therefore, the device temperature adjusting device 1 can cool the battery 2 even when the device heat exchanger 11 is inclined.
 (7)第1実施形態では、第1接続部211と第2接続部221は、機器用熱交換器11のうち熱交換部113より長手方向外側に設けられている。これにより、1つの機器用熱交換器11の中で、第1接続部211と第2接続部221が水平方向に大きく離れた位置に設けられる。そのため、機器用熱交換器11が大きく傾斜した場合でも、機器用熱交換器11内で蒸発した気相の作動流体を第1接続部211または第2接続部221から第1気相通路21または第2気相通路22に排出することが可能である。 (7) In the first embodiment, the first connection portion 211 and the second connection portion 221 are provided longitudinally outside of the heat exchange portion 113 in the heat exchanger 11 for the device. Thereby, in one heat exchanger 11 for apparatus, the 1st connection part 211 and the 2nd connection part 221 are provided in the position where it separated greatly in the horizontal direction. Therefore, even when the heat exchanger 11 for equipment is greatly inclined, the working fluid of the vapor phase evaporated in the heat exchanger 11 for equipment is transmitted from the first connection portion 211 or the second connection portion 221 to the first gas phase passage 21 or It is possible to discharge to the second gas phase passage 22.
 (変形例1)
 第1実施形態に対する変形例1について、図7を参照して説明する。変形例1は、第1実施形態に対して、機器温調装置1のサーモサイフォン回路に封入する作動流体の封入量を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Modification 1)
A first modification to the first embodiment will be described with reference to FIG. The modification 1 is the same as the first embodiment except that the amount of the working fluid sealed in the thermosyphon circuit of the device temperature control apparatus 1 is changed with respect to the first embodiment. Only the differences from the first embodiment will be described.
 図7は、機器温調装置1が所定角度に傾斜した状態を示している。変形例1では、作動流体の封入量は、機器温度調整部10が水平状態にある場合、および、機器温度調整部10が所定角度に傾斜した場合にも、第1気相通路21および第2気相通路22の途中に作動流体の液面FLが位置するように調整されている。また、作動流体の封入量は、機器温度調整部10が水平状態にある場合、および、機器温度調整部10が所定角度に傾斜した場合にも、合流部30より下側に作動流体の液面FLがあるように調整されている。 FIG. 7 shows a state in which the device temperature control device 1 is inclined at a predetermined angle. In the first modification, the enclosed amount of the working fluid is the first gas phase passage 21 and the second gas phase passage 21 even when the device temperature adjustment unit 10 is in the horizontal state and when the device temperature adjustment unit 10 is inclined at a predetermined angle. The fluid level FL of the working fluid is adjusted to be located midway in the gas phase passage 22. Further, the amount of the working fluid enclosed is the level of the working fluid below the merging portion 30 even when the device temperature adjusting unit 10 is in the horizontal state and when the device temperature adjusting unit 10 is inclined at a predetermined angle. It is adjusted to be FL.
 電池2の冷却時、凝縮器50で凝縮した液相の作動流体は、液相通路55を流れて機器用熱交換器11の下ヘッダタンク112に流入する。下ヘッダタンク112に流入した作動流体は、熱交換部113が有する複数の流路に分流し、電池2との熱交換により蒸発する。図7では、第1気相通路21の第1接続部211よりも第2気相通路22の第2接続部221が上方に位置している。そのため、熱交換部113で蒸発した気相の作動流体は、上ヘッダタンク111を第2接続部221側に流れ、第2接続部221から第2気相通路22および合流通路40を通り、凝縮器50に流れる。なお、第2気相通路22を構成する配管の取り回し方によっては、第2気相通路22の途中に作動流体の液溜まりができることが考えられる。そのため、図7の破線P1に示すように、第2気相通路22を構成する配管は、車両搭載スペースの制限の中で上下方向の傾斜が緩やかなレイアウトにすることが好ましい。さらには、その配管は合流部30に向かって高さが増加していくようなレイアウトであると、なお良い。 When the battery 2 is cooled, the working fluid in the liquid phase condensed in the condenser 50 flows through the liquid phase passage 55 and flows into the lower header tank 112 of the heat exchanger 11 for equipment. The working fluid having flowed into the lower header tank 112 is divided into a plurality of flow paths of the heat exchange unit 113 and is evaporated by heat exchange with the battery 2. In FIG. 7, the second connection portion 221 of the second gas phase passage 22 is located above the first connection portion 211 of the first gas phase passage 21. Therefore, the working fluid in the vapor phase evaporated in the heat exchange portion 113 flows through the upper header tank 111 to the second connection portion 221 side, and from the second connection portion 221 through the second vapor phase passage 22 and the merging passage 40, condenses Flow to the vessel 50. Note that depending on the way of piping that constitutes the second gas phase passage 22, it is conceivable that liquid working fluid can be collected in the middle of the second gas phase passage 22. Therefore, as shown by the broken line P1 in FIG. 7, it is preferable that the piping constituting the second gas phase passage 22 has a layout in which the inclination in the vertical direction is gentle within the limitation of the vehicle mounting space. Furthermore, it is further preferable that the piping has a layout in which the height increases toward the merging portion 30.
 (変形例2)
 第1実施形態に対する変形例2について、図8を参照して説明する。変形例2も、第1実施形態に対して、機器温調装置1のサーモサイフォン回路に封入する作動流体の封入量を変更したものであり、その他については第1実施形態と同様である。
(Modification 2)
A second modification to the first embodiment will be described with reference to FIG. The second modification is also the same as the first embodiment except that the amount of the working fluid sealed in the thermosiphon circuit of the device temperature control apparatus 1 is changed with respect to the first embodiment.
 図8は、機器温調装置1が所定角度に傾斜した状態を示している。変形例2では、作動流体の液面FLは、合流部30より上側で、且つ、合流通路40の途中に位置している。すなわち、合流部30は、液相の作動流体に液没している。この場合、電池2の冷却時、機器用熱交換器11の熱交換部113で、電池2との熱交換により蒸発した作動流体は、第1気相通路21、第2気相通路22および合流部30を通過することが困難になることが考えられる。そのため、図8の破線P2に示すように、第1気相通路21または第2気相通路22を構成する配管は、車両搭載スペースの制限の中で上下方向の傾斜が緩やかなレイアウトにすることが好ましい。さらには、その配管は合流部30に向かって高さが増加していくようなレイアウトであると、なお良い。 FIG. 8 shows a state in which the device temperature control device 1 is inclined at a predetermined angle. In the second modification, the fluid level FL of the working fluid is located above the merging portion 30 and in the middle of the merging passage 40. That is, the merging portion 30 is submerged in the working fluid in the liquid phase. In this case, when the battery 2 is cooled, the working fluid evaporated by the heat exchange with the battery 2 in the heat exchange unit 113 of the heat exchanger 11 for equipment is the first gas phase passage 21, the second gas phase passage 22, and the merging. It may be difficult to pass through the section 30. Therefore, as shown by the broken line P2 in FIG. 8, the piping constituting the first gas phase passage 21 or the second gas phase passage 22 should have a layout in which the inclination in the vertical direction is gentle within the limitation of the vehicle mounting space. Is preferred. Furthermore, it is further preferable that the piping has a layout in which the height increases toward the merging portion 30.
 (第2実施形態)
 第2実施形態について、図9を参照して説明する。第2実施形態は、第1実施形態に対して、第2気相通路22の構成の一部と、作動流体の封入量を変更したものであり、その他については第1実施形態と同様である。
Second Embodiment
The second embodiment will be described with reference to FIG. The second embodiment is the same as the first embodiment except that part of the configuration of the second gas phase passage 22 and the enclosed amount of the working fluid are changed with respect to the first embodiment. .
 図9は、機器温調装置1が所定角度に傾斜した状態を示している。第2実施形態では、機器用熱交換器11の上ヘッダタンク111と第2気相通路22との上下方向の距離が、第1実施形態で表した上ヘッダタンク111と第2気相通路22との上下方向の距離よりも大きくなっている。 FIG. 9 shows a state in which the device temperature control device 1 is inclined at a predetermined angle. In the second embodiment, the vertical distance between the upper header tank 111 and the second gas phase passage 22 of the heat exchanger 11 for equipment is the upper header tank 111 and the second gas phase passage 22 described in the first embodiment. It is larger than the vertical distance with
 第2実施形態では、作動流体の封入量は、機器温度調整部10が水平状態にある場合、および、機器温度調整部10が所定角度に傾斜した場合にも、第2気相通路22が水平に延びる部位よりも下に作動流体の液面FLが位置するように調整されている。 In the second embodiment, the enclosed amount of the working fluid is such that the second gas phase passage 22 is horizontal even when the device temperature adjustment unit 10 is in the horizontal state and when the device temperature adjustment unit 10 is inclined at a predetermined angle. The fluid level FL of the working fluid is adjusted to be located below the extended portion.
 また、第2実施形態では、作動流体の封入量は、機器温度調整部10が水平状態にある場合、および、機器温度調整部10が所定角度に傾斜した場合にも、第1気相通路21および第2気相通路22の途中に作動流体の液面FLが位置するように調整されている。また、作動流体の封入量は、機器温度調整部10が水平状態にある場合、および、機器温度調整部10が所定角度に傾斜した場合にも、合流部30より下側に作動流体の液面FLがあるように調整されている。 In the second embodiment, the amount of the working fluid enclosed is the first gas phase passage 21 also when the device temperature adjustment unit 10 is in the horizontal state and when the device temperature adjustment unit 10 is inclined at a predetermined angle. The fluid level FL of the working fluid is adjusted to be located in the middle of the second gas phase passage 22. Further, the amount of the working fluid enclosed is the level of the working fluid below the merging portion 30 even when the device temperature adjusting unit 10 is in the horizontal state and when the device temperature adjusting unit 10 is inclined at a predetermined angle. It is adjusted to be FL.
 電池2の冷却時、凝縮器50で凝縮した液相の作動流体は、液相通路55を流れて機器用熱交換器11の下ヘッダタンク112に流入する。下ヘッダタンク112に流入した作動流体は、熱交換部113が有する複数の流路に分流し、電池2との熱交換により蒸発する。図9では、第1気相通路21の第1接続部211よりも第2気相通路22の第2接続部221が上方に位置している。そのため、熱交換部113で蒸発した気相の作動流体は、上ヘッダタンク111を第2接続部221側に流れ、第2接続部221から第2気相通路22および合流通路40を通り、凝縮器50に流れる。 When the battery 2 is cooled, the working fluid in the liquid phase condensed in the condenser 50 flows through the liquid phase passage 55 and flows into the lower header tank 112 of the heat exchanger 11 for equipment. The working fluid having flowed into the lower header tank 112 is divided into a plurality of flow paths of the heat exchange unit 113 and is evaporated by heat exchange with the battery 2. In FIG. 9, the second connection portion 221 of the second gas phase passage 22 is located above the first connection portion 211 of the first gas phase passage 21. Therefore, the working fluid in the vapor phase evaporated in the heat exchange portion 113 flows through the upper header tank 111 to the second connection portion 221 side, and from the second connection portion 221 through the second vapor phase passage 22 and the merging passage 40, condenses Flow to the vessel 50.
 第2実施形態においても、機器用熱交換器11が傾斜した場合、第1接続部211と第2接続部221の一方が重力方向上側に位置し、第1接続部211と第2接続部221の他方が重力方向下側に位置する。そのため、機器用熱交換器11内で蒸発した作動流体は、重力方向上側に位置する第1接続部211または第2接続部221から第1気相通路21または第2気相通路22の少なくとも一方を流れ、凝縮器50に流入する。したがって、機器温調装置1は、機器用熱交換器11が長手方向のどちらの側に傾斜した場合でも、電池2を冷却することが可能である。 Also in the second embodiment, when the device heat exchanger 11 is inclined, one of the first connection portion 211 and the second connection portion 221 is located on the upper side in the gravity direction, and the first connection portion 211 and the second connection portion 221 The other is located below the direction of gravity. Therefore, the working fluid evaporated in the device heat exchanger 11 is at least one of the first connection portion 211 or the second connection portion 221 located on the upper side in the direction of gravity to at least one of the first gas phase passage 21 or the second gas phase passage 22. Flow to the condenser 50. Therefore, the device temperature adjusting device 1 can cool the battery 2 even when the device heat exchanger 11 is inclined to either side in the longitudinal direction.
 (変形例3)
 第2実施形態に対する変形例3について、図10を参照して説明する。変形例3は、第2実施形態に対して、作動流体の封入量を変更したものであり、その他については第2実施形態と同様である。
(Modification 3)
A third modification to the second embodiment will be described with reference to FIG. The third modification is the same as the second embodiment except that the amount of the working fluid enclosed is changed with respect to the second embodiment.
 図10は、機器温調装置1が所定角度に傾斜した状態を示している。変形例3では、作動流体の液面FLは、合流部30より上側で、且つ、合流通路40の途中に位置している。すなわち、合流部30は、液相の作動流体に液没している。この場合、電池2の冷却時、機器用熱交換器11の熱交換部113で、電池2との熱交換により蒸発した作動流体は、第1気相通路21、第2気相通路22および合流部30を通過することが困難になることが考えられる。そのため、図10の破線P3に示すように、第1気相通路21または第2気相通路22を構成する配管は、車両搭載スペースの制限の中で上下方向の傾斜が緩やかなレイアウトにすることが好ましい。さらには、その配管は合流部30に向かって高さが増加していくようなレイアウトであると、なお良い。 FIG. 10 shows a state in which the device temperature control device 1 is inclined at a predetermined angle. In the third modification, the fluid level FL of the working fluid is located above the merging portion 30 and in the middle of the merging passage 40. That is, the merging portion 30 is submerged in the working fluid in the liquid phase. In this case, when the battery 2 is cooled, the working fluid evaporated by the heat exchange with the battery 2 in the heat exchange unit 113 of the heat exchanger 11 for equipment is the first gas phase passage 21, the second gas phase passage 22, and the merging. It may be difficult to pass through the section 30. Therefore, as shown by the broken line P3 in FIG. 10, the piping constituting the first gas phase passage 21 or the second gas phase passage 22 should have a layout in which the inclination in the vertical direction is gentle within the limitation of the vehicle mounting space. Is preferred. Furthermore, it is further preferable that the piping has a layout in which the height increases toward the merging portion 30.
 (第3実施形態)
 第3実施形態について、図11を参照して説明する。第3実施形態は、第1実施形態に対して、第1気相通路21と第2気相通路22の構成の一部を変更したものであり、その他については第1実施形態と同様である。
Third Embodiment
The third embodiment will be described with reference to FIG. The third embodiment is the same as the first embodiment except that parts of the configurations of the first gas phase passage 21 and the second gas phase passage 22 are modified with respect to the first embodiment. .
 第3実施形態では、第1気相通路21の第1接続部211と、第2気相通路22の第2接続部221は、それぞれ上ヘッダタンク111の途中に接続されている。第3実施形態においても、第1気相通路21の第1接続部211と、第2気相通路22の第2接続部221とは、1つの機器用熱交換器11のうち水平方向に離れた位置に設けられている。したがって、機器温調装置1は、機器用熱交換器11が長手方向のどちらの側に傾斜した場合でも、電池2を冷却することが可能である。 In the third embodiment, the first connection portion 211 of the first gas phase passage 21 and the second connection portion 221 of the second gas phase passage 22 are connected to the middle of the upper header tank 111, respectively. Also in the third embodiment, the first connection portion 211 of the first gas phase passage 21 and the second connection portion 221 of the second gas phase passage 22 are separated in the horizontal direction of the single device heat exchanger 11. It is located in the Therefore, the device temperature adjusting device 1 can cool the battery 2 even when the device heat exchanger 11 is inclined to either side in the longitudinal direction.
 (第4実施形態)
 第4実施形態について、図12を参照して説明する。第4実施形態は、第3実施形態に対して、気相通路を追加したものであり、その他については第3実施形態と同様である。
Fourth Embodiment
The fourth embodiment will be described with reference to FIG. The fourth embodiment is the same as the third embodiment except that a gas phase passage is added to the third embodiment.
 第4実施形態では、複数の気相通路は、第1気相通路21、第2気相通路22、第3気相通路23、および合流通路40を含んで構成されている。第1気相通路21の第1接続部211と、第2気相通路22の第2接続部221と、第3気相通路23の第3接続部231は、いずれも機器用熱交換器11の上ヘッダタンク111の途中に接続されている。第1気相通路21のうち機器用熱交換器11とは反対側の端部と、第3気相通路23のうち機器用熱交換器11とは反対側の端部とは、第1合流部31で接続されている。第2気相通路22のうち機器用熱交換器11とは反対側の端部と、第1気相通路21のうち機器用熱交換器11とは反対側の端部とは、第2合流部32で接続されている。このように、気相通路の数や合流部の数に制限はなく、車両搭載上のレイアウトに応じて任意に設定することが可能である。 In the fourth embodiment, the plurality of gas passages are configured to include the first gas passage 21, the second gas passage 22, the third gas passage 23, and the merging passage 40. The first connection portion 211 of the first gas phase passage 21, the second connection portion 221 of the second gas phase passage 22, and the third connection portion 231 of the third gas phase passage 23 are all heat exchangers 11 for equipment. Is connected to the middle of the upper header tank 111. The end of the first gas phase passage 21 on the opposite side to the heat exchanger 11 for equipment and the end of the third gas phase passage 23 on the opposite side of the heat exchanger 11 for equipment are the first junction It is connected by a section 31. The end of the second gas phase passage 22 opposite to the heat exchanger 11 for the device and the end of the first gas phase passage 21 opposite to the heat exchanger 11 for the device are joined second It is connected by the part 32. As described above, the number of gas phase passages and the number of junctions are not limited, and can be set arbitrarily according to the layout on the vehicle.
 第4実施形態においても、第1気相通路21の第1接続部211と、第2気相通路22の第2接続部221と、第3気相通路23の第3接続部231とは、1つの機器用熱交換器11のうち水平方向に離れた位置に設けられている。したがって、機器温調装置1は、機器用熱交換器11が長手方向のどちらの側に傾斜した場合でも、電池2を冷却することが可能である。 Also in the fourth embodiment, the first connection portion 211 of the first gas phase passage 21, the second connection portion 221 of the second gas phase passage 22, and the third connection portion 231 of the third gas phase passage 23 Among the heat exchangers 11 for one apparatus, it is provided in the position away to the horizontal direction. Therefore, the device temperature adjusting device 1 can cool the battery 2 even when the device heat exchanger 11 is inclined to either side in the longitudinal direction.
 (第5実施形態)
 第5実施形態について、図13を参照して説明する。以下に説明する第5~第14実施形態では、機器温調装置1が備える機器温度調整部10は、複数の機器用熱交換器により構成されている。機器温度調整部10は、電池2と共に電池パックのケース内に格納可能である。なお、第5~第14実施形態の説明で参照する図13~図22では、凝縮器の図示を省略している。また、機器温度調整部10の範囲を破線で示している。
Fifth Embodiment
The fifth embodiment will be described with reference to FIG. In the fifth to fourteenth embodiments described below, the device temperature adjusting unit 10 provided in the device temperature adjusting device 1 is configured of a plurality of device heat exchangers. The device temperature adjustment unit 10 can be stored together with the battery 2 in the case of the battery pack. In FIGS. 13 to 22, which are referred to in the description of the fifth to fourteenth embodiments, the illustration of the condenser is omitted. Further, the range of the device temperature adjustment unit 10 is indicated by a broken line.
 第5実施形態では、機器温度調整部10は、第1機器用熱交換器11と第2機器用熱交換器12により構成されている。第1機器用熱交換器11と第2機器用熱交換器12は、水平方向に離れた位置に設けられている。なお、図示していないが、第5実施形態では、作動流体の封入量は、機器温度調整部10が水平状態にある場合に作動流体の液面が熱交換部の途中に位置するように調整されている。そのため、第1接続部211と第2接続部221は、第1機器用熱交換器11のうち作動流体の液面より上側の部位に設けられており、第2機器用熱交換器12のうち作動流体の液面より上側の部位に設けられている。 In the fifth embodiment, the device temperature adjustment unit 10 is configured by the first device heat exchanger 11 and the second device heat exchanger 12. The first device heat exchanger 11 and the second device heat exchanger 12 are provided at horizontally separated positions. Although not illustrated, in the fifth embodiment, the enclosed amount of the working fluid is adjusted so that the liquid level of the working fluid is positioned in the middle of the heat exchange unit when the device temperature adjustment unit 10 is in the horizontal state. It is done. Therefore, the first connection portion 211 and the second connection portion 221 are provided at a portion above the liquid surface of the working fluid in the first device heat exchanger 11 and among the second device heat exchanger 12 It is provided at a position above the liquid surface of the working fluid.
 第5実施形態では、第1気相通路21と第2気相通路22は合流部30で合流している。合流部30と凝縮器との間を合流通路40が接続している。第1気相通路21は、合流部30から分岐部21bを介して一方の第1気相通路21cと他方の第1気相通路21dに分岐している。一方の第1気相通路21cの第1接続部211aは、第1機器用熱交換器11の上ヘッダタンク111のうち車両前方側の部位に接続している。他方の第1気相通路21dの第1接続部211bは、第2機器用熱交換器12の上ヘッダタンク121のうち車両前方側の部位に接続している。 In the fifth embodiment, the first gas phase passage 21 and the second gas phase passage 22 merge at the merging portion 30. A junction passage 40 is connected between the junction 30 and the condenser. The first gas phase passage 21 branches from the merging portion 30 to one first gas phase passage 21c and the other first gas phase passage 21d via the branch portion 21b. The first connection portion 211 a of one first gas phase passage 21 c is connected to a portion on the vehicle front side in the upper header tank 111 of the first device heat exchanger 11. The first connection portion 211 b of the other first gas phase passage 21 d is connected to a portion on the vehicle front side of the upper header tank 121 of the second device heat exchanger 12.
 第2気相通路22は、合流部30から分岐部22bを介して一方の第2気相通路22cと他方の第2気相通路22dに分岐している。一方の第2気相通路22cの第2接続部221aは、第1機器用熱交換器11の上ヘッダタンク111のうち車両後方側の部位に接続している。他方の第2気相通路22dの第2接続部221bは、第2機器用熱交換器12の上ヘッダタンク121のうち車両後方側の部位に接続している。 The second gas phase passage 22 branches from the merging portion 30 to one second gas phase passage 22c and the other second gas phase passage 22d via the branch portion 22b. The second connection portion 221 a of the one second gas phase passage 22 c is connected to a portion on the vehicle rear side of the upper header tank 111 of the first device heat exchanger 11. The second connection portion 221 b of the other second gas phase passage 22 d is connected to a portion on the vehicle rear side of the upper header tank 121 of the second device heat exchanger 12.
 なお、第1気相通路21c、21dと、第2気相通路22c、22dは、第1機器用熱交換器11と第2機器用熱交換器12とを連結する連結通路としても機能している。第1機器用熱交換器11の下ヘッダタンク112と第2機器用熱交換器12の下ヘッダタンク122とは、液相通路55により連結されている。 The first gas phase passages 21c and 21d and the second gas phase passages 22c and 22d also function as a connecting passage for connecting the first device heat exchanger 11 and the second device heat exchanger 12 There is. The lower header tank 112 of the first device heat exchanger 11 and the lower header tank 122 of the second device heat exchanger 12 are connected by a liquid phase passage 55.
 第5実施形態においても、機器温度調整部10が車両前後方向に傾斜した場合、第1接続部211と第2接続部221の一方が重力方向上側に位置し、他方が重力方向下側に位置する。そのため、複数の機器用熱交換器11、12内で蒸発した作動流体は、重力方向上側に位置する第1接続部211または第2接続部221のいずれか一方から第1気相通路21または第2気相通路22を流れ、凝縮器に流入する。凝縮器で凝縮した作動流体は、液相通路55を流れ、複数の機器用熱交換器11、12に流入する。このような作動流体の循環により、第5実施形態の機器温調装置1は、複数の機器用熱交換器11、12が傾斜した場合でも、電池2を冷却することが可能である。 Also in the fifth embodiment, when the device temperature adjustment unit 10 is inclined in the longitudinal direction of the vehicle, one of the first connection portion 211 and the second connection portion 221 is located on the upper side in the gravity direction, and the other is located on the lower side in the gravity direction. Do. Therefore, the working fluid evaporated in the plurality of device heat exchangers 11 and 12 is transferred from the first connection portion 211 or the second connection portion 221 located on the upper side in the gravity direction to the first gas phase passage 21 or the first 2 flow in the gas phase passage 22 and enter the condenser. The working fluid condensed by the condenser flows through the liquid phase passage 55 and flows into the plurality of equipment heat exchangers 11 and 12. With the circulation of the working fluid, the device temperature adjusting device 1 of the fifth embodiment can cool the battery 2 even when the plurality of device heat exchangers 11 and 12 are inclined.
 (第6実施形態)
 第6実施形態について、図14を参照して説明する。第6実施形態は、第5実施形態に対し、気相通路の構成の一部を変更したものである。
Sixth Embodiment
The sixth embodiment will be described with reference to FIG. The sixth embodiment is a modification of the fifth embodiment in which a part of the configuration of the gas phase passage is changed.
 第6実施形態でも、第1気相通路21は、合流部30から分岐部21bを介して一方の第1気相通路21cと他方の第1気相通路21dに分岐している。一方の第1気相通路21cの第1接続部211aは、第1機器用熱交換器11の上ヘッダタンク111のうち車両前方側の部位に接続している。他方の第1気相通路21dの第1接続部211bは、第2機器用熱交換器12の上ヘッダタンク121のうち車両前方側の部位に接続している。 Also in the sixth embodiment, the first gas phase passage 21 branches from the merging portion 30 via the branch portion 21b to one first gas phase passage 21c and the other first gas phase passage 21d. The first connection portion 211 a of one first gas phase passage 21 c is connected to a portion on the vehicle front side in the upper header tank 111 of the first device heat exchanger 11. The first connection portion 211 b of the other first gas phase passage 21 d is connected to a portion on the vehicle front side of the upper header tank 121 of the second device heat exchanger 12.
 一方、第6実施形態では、第2気相通路22は、合流部30から一方の第2気相通路22cと他方の第2気相通路22dに分岐している。一方の第2気相通路22cの第2接続部221aは、第1機器用熱交換器11の上ヘッダタンク111のうち車両後方側の部位に接続している。他方の第2気相通路22dの第2接続部221bは、第2機器用熱交換器12の上ヘッダタンク121のうち車両後方側の部位に接続している。 On the other hand, in the sixth embodiment, the second gas phase passage 22 branches from the junction 30 to one second gas phase passage 22c and the other second gas phase passage 22d. The second connection portion 221 a of the one second gas phase passage 22 c is connected to a portion on the vehicle rear side of the upper header tank 111 of the first device heat exchanger 11. The second connection portion 221 b of the other second gas phase passage 22 d is connected to a portion on the vehicle rear side of the upper header tank 121 of the second device heat exchanger 12.
 第6実施形態も、第1~第5実施形態と同様の作用効果を奏することができる。 The sixth embodiment can also achieve the same function and effect as those of the first to fifth embodiments.
 (第7実施形態)
 第7実施形態について、図15を参照して説明する。第7実施形態は、第5実施形態に対し、気相通路の構成の一部を変更したものである。
Seventh Embodiment
A seventh embodiment will be described with reference to FIG. The seventh embodiment is a modification of the fifth embodiment in which part of the configuration of the gas phase passage is changed.
 第7実施形態でも、第1気相通路21は、合流部30から分岐部21bを介して一方の第1気相通路21cと他方の第1気相通路21dに分岐している。一方の第1気相通路21cの第1接続部211aは、第1機器用熱交換器11の上ヘッダタンク111のうち車両前方側の部位に接続している。他方の第1気相通路21dの第1接続部211bは、第2機器用熱交換器12の上ヘッダタンク121のうち車両前方側の部位に接続している。 Also in the seventh embodiment, the first gas phase passage 21 branches from the merging portion 30 via the branch portion 21b to one first gas phase passage 21c and the other first gas phase passage 21d. The first connection portion 211 a of one first gas phase passage 21 c is connected to a portion on the vehicle front side in the upper header tank 111 of the first device heat exchanger 11. The first connection portion 211 b of the other first gas phase passage 21 d is connected to a portion on the vehicle front side of the upper header tank 121 of the second device heat exchanger 12.
 第2気相通路22は、合流部30から分岐部22bを介して一方の第2気相通路22cと他方の第2気相通路22dに分岐している。一方の第2気相通路22cの第2接続部221aは、第1機器用熱交換器11の上ヘッダタンク111のうち車両後方側の部位に接続している。他方の第2気相通路22dの第2接続部221bは、第2機器用熱交換器12の上ヘッダタンク121のうち車両後方側の部位に接続している。 The second gas phase passage 22 branches from the merging portion 30 to one second gas phase passage 22c and the other second gas phase passage 22d via the branch portion 22b. The second connection portion 221 a of the one second gas phase passage 22 c is connected to a portion on the vehicle rear side of the upper header tank 111 of the first device heat exchanger 11. The second connection portion 221 b of the other second gas phase passage 22 d is connected to a portion on the vehicle rear side of the upper header tank 121 of the second device heat exchanger 12.
 第7実施形態も、第1~第6実施形態と同様の作用効果を奏することができる。 The seventh embodiment can also achieve the same function and effect as those of the first to sixth embodiments.
 (第8実施形態)
 第8実施形態について、図16を参照して説明する。第8実施形態は、第5実施形態に対し、機器温度調整部10を構成する複数の機器用熱交換器11、12の配置が異なっている。複数の機器用熱交換器11、12はいずれも長手方向が車幅方向に沿うように配置されている。そして、複数の機器用熱交換器11、12は、車両前後方向に並ぶように配置されている。複数の機器用熱交換器11、12のうち、車両前方側に配置されたものを第1機器用熱交換器11と呼び、車両後方側に配置されたものを第2機器用熱交換器12と呼ぶこととする。
Eighth Embodiment
The eighth embodiment will be described with reference to FIG. The eighth embodiment is different from the fifth embodiment in the arrangement of the plurality of device heat exchangers 11 and 12 constituting the device temperature adjusting unit 10. The plurality of device heat exchangers 11 and 12 are arranged such that the longitudinal direction is along the vehicle width direction. The plurality of heat exchangers 11 and 12 for equipment are arranged side by side in the vehicle longitudinal direction. Among the plurality of heat exchangers 11 and 12 for equipment, one disposed on the front side of the vehicle is referred to as a heat exchanger 11 for first equipment, and one disposed on the rear side of the vehicle is a heat exchanger 12 for second equipment. I will call it.
 第8実施形態では、第1気相通路21は、合流部30と第1機器用熱交換器11とを接続している。第1気相通路21の第1接続部211は、車両前方側に配置された第1機器用熱交換器11の上ヘッダタンク111に接続している。なお、第1気相通路21は、第1接続部211から車両前方へ延びる部位21aを有している。 In the eighth embodiment, the first gas phase passage 21 connects the junction 30 and the first device heat exchanger 11. The first connection portion 211 of the first gas phase passage 21 is connected to the upper header tank 111 of the first device heat exchanger 11 disposed on the front side of the vehicle. The first gas phase passage 21 has a portion 21 a extending from the first connection portion 211 to the front of the vehicle.
 第2気相通路22は、合流部30と第2機器用熱交換器12とを接続している。第2気相通路22の第2接続部221は、車両後方側に配置された第2機器用熱交換器12の上ヘッダタンク121に接続している。第1気相通路21と第2気相通路22は、合流部30で合流している。合流部30と凝縮器との間を合流通路40が接続している。 The second gas phase passage 22 connects the junction 30 and the second device heat exchanger 12. The second connection portion 221 of the second gas phase passage 22 is connected to the upper header tank 121 of the heat exchanger 12 for the second device disposed on the rear side of the vehicle. The first gas phase passage 21 and the second gas phase passage 22 merge at a merging portion 30. A junction passage 40 is connected between the junction 30 and the condenser.
 また、第8実施形態では、機器温度調整部10は、車両前後方向に離れた位置に設けられる複数の機器用熱交換器11、12、および、連結通路61を有している。連結通路61は、第1機器用熱交換器11に設けられた第1接続部211と、第2機器用熱交換器12に設けられた第2接続部221を連結している。 Further, in the eighth embodiment, the device temperature adjusting unit 10 includes the plurality of device heat exchangers 11 and 12 provided at positions separated in the vehicle longitudinal direction, and the connection passage 61. The connection passage 61 connects the first connection portion 211 provided in the first device heat exchanger 11 and the second connection portion 221 provided in the second device heat exchanger 12.
 第8実施形態では、機器温度調整部10が車両前後方向に傾斜した場合、第1接続部211と第2接続部221の一方が重力方向上側に位置し、他方が重力方向下側に位置する。そのため、複数の機器用熱交換器11、12内で蒸発した作動流体は、連結通路61を介して重力方向上側に位置する第1接続部211または第2接続部221から第1気相通路21または第2気相通路22の少なくとも一方を流れ、凝縮器に流入する。凝縮器で凝縮した作動流体は、液相通路55を流れ、複数の機器用熱交換器11、12に流入する。したがって、第8実施形態も、第1~第7実施形態と同様の作用効果を奏することができる。 In the eighth embodiment, when the device temperature adjustment unit 10 is inclined in the longitudinal direction of the vehicle, one of the first connection portion 211 and the second connection portion 221 is located on the upper side in the gravity direction, and the other is located on the lower side in the gravity direction. . Therefore, the working fluid evaporated in the plurality of device heat exchangers 11 and 12 is transferred from the first connection portion 211 or the second connection portion 221 located on the upper side in the direction of gravity via the connection passage 61 to the first gas phase passage 21. Or flows through at least one of the second gas phase passages 22 and flows into the condenser. The working fluid condensed by the condenser flows through the liquid phase passage 55 and flows into the plurality of equipment heat exchangers 11 and 12. Therefore, the eighth embodiment can also achieve the same function and effect as those of the first to seventh embodiments.
 (第9実施形態)
 第9実施形態について、図17を参照して説明する。第9実施形態は、第8実施形態に対し、機器用熱交換器の数などを変更したものである。
The ninth embodiment
The ninth embodiment will be described with reference to FIG. The ninth embodiment is different from the eighth embodiment in that the number of heat exchangers for equipment and the like are changed.
 第9実施形態では、機器温度調整部10は、3個以上の機器用熱交換器11、12、13と連結通路61により構成されている。第9実施形態でも、複数の機器用熱交換器11、12、13が並ぶ方向の最前部に配置される機器用熱交換器を第1機器用熱交換器11と呼び、最後部に配置される機器用熱交換器を第2機器用熱交換器12と呼ぶ。また、第1機器用熱交換器11と第2機器用熱交換器12の間に配置される複数の機器用熱交換器を全て第3機器用熱交換器13と呼ぶ。 In the ninth embodiment, the device temperature adjustment unit 10 is configured by three or more device heat exchangers 11, 12, 13 and a connection passage 61. Also in the ninth embodiment, the device heat exchanger disposed at the foremost part in the direction in which the plurality of device heat exchangers 11, 12, 13 are arranged is called the first device heat exchanger 11, and is disposed at the rearmost part The device heat exchanger is called a second device heat exchanger 12. Further, the plurality of device heat exchangers disposed between the first device heat exchanger 11 and the second device heat exchanger 12 are all referred to as a third device heat exchanger 13.
 連結通路61は、第1~第3機器用熱交換器11、12、13の上ヘッダタンク111、121、131の一端同士を連結している。具体的には、連結通路61は、第1機器用熱交換器11に設けられた第1接続部211と、第2機器用熱交換器12に設けられた第2接続部221と、第3機器用熱交換器13に設けられた第3接続部231を連結している。 The connection passage 61 connects one ends of the upper header tanks 111, 121, and 131 of the heat exchangers 11, 12, and 13 for the first to third devices. Specifically, the connection passage 61 includes a first connection portion 211 provided in the first device heat exchanger 11, a second connection portion 221 provided in the second device heat exchanger 12, and a third The 3rd connection part 231 provided in the heat exchanger 13 for apparatuses is connected.
 第9実施形態では、第1気相通路21が機器温度調整部10に接続する第1接続部211は、車両前方側に配置された第1機器用熱交換器11の上ヘッダタンク111に接続している。なお、第1気相通路21は、第1接続部211から車両前方へ延びる部位21aを有している。また、第2気相通路22が機器温度調整部10に接続する第2接続部221は、車両後方側に配置された第2機器用熱交換器12の上ヘッダタンク121に接続している。すなわち、第1接続部211と第2接続部221は、互いに水平方向に出来るだけ遠い位置に設けられている。なお、第1気相通路21と第2気相通路22は、合流部30で合流している。合流部30と凝縮器との間を合流通路40が接続している。 In the ninth embodiment, the first connection portion 211 connecting the first gas phase passage 21 to the device temperature adjustment unit 10 is connected to the upper header tank 111 of the first device heat exchanger 11 disposed on the vehicle front side. doing. The first gas phase passage 21 has a portion 21 a extending from the first connection portion 211 to the front of the vehicle. Further, a second connection portion 221 connected to the device temperature adjustment unit 10 by the second gas phase passage 22 is connected to the upper header tank 121 of the second device heat exchanger 12 disposed on the rear side of the vehicle. That is, the first connection portion 211 and the second connection portion 221 are provided at positions far away from each other in the horizontal direction. The first gas phase passage 21 and the second gas phase passage 22 merge at the merging portion 30. A junction passage 40 is connected between the junction 30 and the condenser.
 第9実施形態でも、機器温度調整部10が車両前後方向に傾斜した場合、第1接続部211と第2接続部221の一方が重力方向上側に位置し、他方が重力方向下側に位置する。そのため、複数の機器用熱交換器11、12、13内で蒸発した作動流体は、連結通路61を介して重力方向上側に位置する第1接続部211または第2接続部221から第1気相通路21または第2気相通路22の少なくとも一方を流れ、凝縮器に流入する。凝縮器で凝縮した作動流体は、液相通路55を流れ、複数の機器用熱交換器11、12、13に流入する。したがって、第9実施形態も、第1~第8実施形態と同様の作用効果を奏することができる。 Also in the ninth embodiment, when the device temperature adjustment unit 10 is inclined in the longitudinal direction of the vehicle, one of the first connection portion 211 and the second connection portion 221 is located on the upper side in the gravity direction, and the other is located on the lower side in the gravity direction. . Therefore, the working fluid evaporated in the plurality of heat exchangers 11, 12 and 13 for equipment is transferred to the first gas phase from the first connection portion 211 or the second connection portion 221 located on the upper side in the direction of gravity via the connection passage 61. It flows through at least one of the passage 21 and the second gas phase passage 22 and flows into the condenser. The working fluid condensed by the condenser flows through the liquid phase passage 55 and flows into the plurality of equipment heat exchangers 11, 12, 13. Therefore, the ninth embodiment can also achieve the same function and effect as those of the first to eighth embodiments.
 (第10実施形態)
 第10実施形態について、図18を参照して説明する。第10実施形態は、第8実施形態に対し、気相通路および連結通路の構成の一部を変更したものである。
Tenth Embodiment
A tenth embodiment will be described with reference to FIG. The tenth embodiment is a modification of the eighth embodiment, in which parts of the configurations of the gas phase passage and the connection passage are changed.
 第10実施形態では、連結通路は、第1連結通路61と第2連結通路62を含んでいる。第1連結通路61は、第1機器用熱交換器11の上ヘッダタンク111の車幅方向右側の端部と第2機器用熱交換器12の上ヘッダタンク121の車幅方向右側の端部とを連結している。第2連結通路62は、第1機器用熱交換器11の上ヘッダタンク111の車幅方向左側の端部と第2機器用熱交換器12の上ヘッダタンク121の車幅方向左側の端部とを連結している。 In the tenth embodiment, the connection passage includes a first connection passage 61 and a second connection passage 62. The first connection passage 61 is an end on the right side in the vehicle width direction of the upper header tank 111 of the first device heat exchanger 11 and an end on the right side in the vehicle width direction of the upper header tank 121 of the second device heat exchanger 12. And are connected. The second connection passage 62 is a left end of the upper header tank 111 of the first device heat exchanger 11 in the vehicle width direction and an end of the left header of the upper header tank 121 of the second device heat exchanger 12 in the vehicle width direction. And are connected.
 第10実施形態では、第1気相通路21は、車幅方向右側の第1気相通路21eと車幅方向左側の第1気相通路21fを含んで構成されている。 In the tenth embodiment, the first gas phase passage 21 is configured to include the first gas phase passage 21e on the right side in the vehicle width direction and the first gas phase passage 21f on the left side in the vehicle width direction.
 車幅方向右側の第1気相通路21eは、第1合流部31と、車両前方側に配置された第1機器用熱交換器11とを接続している。車幅方向右側の第1気相通路21eの第1接続部211aは、第1機器用熱交換器11の上ヘッダタンク111のうち車幅方向右側の部位に接続している。 The first gas phase passage 21e on the right side in the vehicle width direction connects the first junction 31 and the first-apparatus heat exchanger 11 disposed on the front side of the vehicle. The first connection portion 211 a of the first gas phase passage 21 e on the right side in the vehicle width direction is connected to a portion on the right side in the vehicle width direction of the upper header tank 111 of the heat exchanger 11 for the first device.
 車幅方向左側の第1気相通路21fは、第2合流部32と、車両前方側に配置された第1機器用熱交換器11とを接続している。車幅方向左側の第1気相通路21fの第1接続部211bは、第1機器用熱交換器11の上ヘッダタンク111のうち車幅方向左側の部位に接続している。 The first gas phase passage 21 f on the left side in the vehicle width direction connects the second junction 32 and the first-apparatus heat exchanger 11 disposed on the front side of the vehicle. The first connection portion 211 b of the first gas phase passage 21 f on the left side in the vehicle width direction is connected to a portion on the left side in the vehicle width direction of the upper header tank 111 of the heat exchanger 11 for the first device.
 第2気相通路22は、車幅方向右側の第2気相通路22eと車幅方向左側の第2気相通路22fを含んで構成されている。 The second gas phase passage 22 is configured to include a second gas phase passage 22e on the right side in the vehicle width direction and a second gas phase passage 22f on the left side in the vehicle width direction.
 車幅方向右側の第2気相通路22eは、第1合流部31と、車両後方側に配置された第2機器用熱交換器12とを接続している。車幅方向右側の第2気相通路22eの第2接続部211aは、第2機器用熱交換器12の上ヘッダタンク121のうち車幅方向右側の部位に接続している。 The second gas phase passage 22e on the right side in the vehicle width direction connects the first junction 31 and the second-apparatus heat exchanger 12 disposed on the rear side of the vehicle. The second connection portion 211 a of the second gas phase passage 22 e on the right side in the vehicle width direction is connected to a portion on the right side in the vehicle width direction of the upper header tank 121 of the second device heat exchanger 12.
 車幅方向左側の第2気相通路22fは、第2合流部32と、車両後方側に配置された第1機器用熱交換器12とを接続している。車幅方向左側の第2気相通路22fの第2接続部221bは、第2機器用熱交換器12の上ヘッダタンク121のうち車幅方向左側の部位に接続している。 The second gas phase passage 22 f on the left side in the vehicle width direction connects the second junction 32 and the first-apparatus heat exchanger 12 disposed on the rear side of the vehicle. The second connection portion 221 b of the second gas phase passage 22 f on the left side in the vehicle width direction is connected to a portion on the left side in the vehicle width direction of the upper header tank 121 of the second device heat exchanger 12.
 車幅方向右側の第1気相通路21eと第2気相通路22eは第1合流部31で合流している。車幅方向左側の第1気相通路21fと第2気相通路22fは第2合流部32で合流している。第1合流部31と第2合流部32とは、第1合流通路41により接続されている。第1合流通路41の途中と凝縮器とは、第2合流通路42により接続されている。 The first gas phase passage 21 e and the second gas phase passage 22 e on the right side in the vehicle width direction merge at the first joining portion 31. The first gas phase passage 21 f and the second gas phase passage 22 f on the left side in the vehicle width direction merge at the second joining portion 32. The first merging portion 31 and the second merging portion 32 are connected by a first merging passage 41. The middle of the first combined passage 41 and the condenser are connected by a second combined passage 42.
 なお、第1機器用熱交換器11の下ヘッダタンク112の一端と第2機器用熱交換器12の下ヘッダタンク122の一端とは、第1下連結通路71により連結されている。第1機器用熱交換器11の下ヘッダタンク112の他端と第2機器用熱交換器12の下ヘッダタンク122の他端とは、第2下連結通路72により連結されている。液相通路55は途中で分岐し、第1下連結通路71および第2下連結通路72に接続されている。 Note that one end of the lower header tank 112 of the first device heat exchanger 11 and one end of the lower header tank 122 of the second device heat exchanger 12 are connected by a first lower connection passage 71. The other end of the lower header tank 112 of the first device heat exchanger 11 and the other end of the lower header tank 122 of the second device heat exchanger 12 are connected by a second lower connection passage 72. The liquid phase passage 55 branches midway and is connected to the first lower connection passage 71 and the second lower connection passage 72.
 第10実施形態では、機器温度調整部10が車両前後方向に傾斜した場合、第1接続部211a、211bまたは第2接続部221a、221bの一方が重力方向上側に位置し、他方が重力方向下側に位置する。 In the tenth embodiment, when the device temperature adjustment unit 10 is inclined in the longitudinal direction of the vehicle, one of the first connection portions 211a and 211b or the second connection portions 221a and 221b is located on the upper side in the gravity direction, and the other is lower in the gravity direction. Located on the side.
 さらに、第10実施形態では、機器温度調整部10が車幅方向に傾斜した場合、車両右側の接続部211a、221aまたは車両左側の接続部211b、221bの一方が重力方向上側に位置し、他方が重力方向下側に位置する。したがって、第10実施形態も、第1~第9実施形態と同様の作用効果を奏することができる。さらに、第10実施形態は、第1接続部211a、211bと第2接続部221a、221bが、それぞれ、機器温度調整部10の4隅に設けられていることで、車両の前後左右いずれの方向の傾斜にも対応することができる。 Furthermore, in the tenth embodiment, when the device temperature adjustment unit 10 is inclined in the vehicle width direction, one of the connection portions 211a and 221a on the right side of the vehicle or the connection portions 211b and 221b on the left side of the vehicle is located above the gravity direction Is located below the direction of gravity. Therefore, the tenth embodiment can also achieve the same effects as those of the first to ninth embodiments. Furthermore, in the tenth embodiment, the first connection parts 211a and 211b and the second connection parts 221a and 221b are respectively provided at the four corners of the device temperature adjustment part 10, so that the front, rear, left, and right directions of the vehicle can be obtained. It is possible to cope with the inclination of
 (第11実施形態)
 第11実施形態について、図19を参照して説明する。第11実施形態は、第10実施形態に対し、機器用熱交換器11の数などを変更したものである。
Eleventh Embodiment
The eleventh embodiment will be described with reference to FIG. The eleventh embodiment is different from the tenth embodiment in that the number of heat exchangers 11 for equipment and the like are changed.
 第11実施形態では、機器温度調整部10は、3個以上の機器用熱交換器と連結通路61、62により構成されている。第11実施形態の説明では、複数の機器用熱交換器11、12、13が並ぶ方向の最前部に配置される機器用熱交換器を第1機器用熱交換器11と呼び、最後部に配置される機器用熱交換器を第2機器用熱交換器12と呼ぶ。また、第1機器用熱交換器11と第2機器用熱交換器12との間に配置される複数の機器用熱交換器を全て第3機器用熱交換器13と呼ぶ。 In the eleventh embodiment, the device temperature adjustment unit 10 is configured of three or more device heat exchangers and connection passages 61 and 62. In the description of the eleventh embodiment, the heat exchanger for equipment disposed at the forefront of the direction in which the plurality of heat exchangers 11, 12 and 13 for equipment are arranged is called the first equipment heat exchanger 11, and The device heat exchanger to be disposed is referred to as a second device heat exchanger 12. Further, the plurality of device heat exchangers disposed between the first device heat exchanger 11 and the second device heat exchanger 12 are all referred to as a third device heat exchanger 13.
 第1連結通路61は、第1~第3機器用熱交換器11、12、13の上ヘッダタンク111、121、131の車幅方向右側の端部同士を連結している。第2連結通路62は、第1~第3機器用熱交換器11、12、13の上ヘッダタンク111、121、131の車幅方向左側の端部同士を連結している。 The first connection passage 61 connects end portions of the upper header tanks 111, 121, and 131 on the right side in the vehicle width direction of the heat exchangers 11, 12, and 13 for the first to third devices. The second connection passage 62 connects end portions on the left side in the vehicle width direction of the upper header tanks 111, 121, and 131 of the heat exchangers 11, 12, and 13 for the first to third devices.
 第11実施形態でも、第1気相通路21は、車幅方向右側の第1気相通路21eと車幅方向左側の第1気相通路21fを含んで構成されている。 Also in the eleventh embodiment, the first gas phase passage 21 is configured to include the first gas phase passage 21e on the right side in the vehicle width direction and the first gas phase passage 21f on the left side in the vehicle width direction.
 車幅方向右側の第1気相通路21eは、第1合流部31と、車両前方側に配置された第1機器用熱交換器11とを接続している。その車幅方向右側の第1気相通路21eの第1接続部211aは、第1機器用熱交換器11の上ヘッダタンク111のうち車幅方向右側の部位に接続している。 The first gas phase passage 21e on the right side in the vehicle width direction connects the first junction 31 and the first-apparatus heat exchanger 11 disposed on the front side of the vehicle. The first connection portion 211 a of the first gas phase passage 21 e on the right side in the vehicle width direction is connected to a portion on the right side in the vehicle width direction of the upper header tank 111 of the heat exchanger 11 for the first device.
 車幅方向左側の第1気相通路21fは、第2合流部32と、車両前方側に配置された第1機器用熱交換器11とを接続している。その車幅方向左側の第1気相通路21fの第1接続部211bは、第1機器用熱交換器11の上ヘッダタンク111のうち車幅方向左側の部位に接続している。 The first gas phase passage 21 f on the left side in the vehicle width direction connects the second junction 32 and the first-apparatus heat exchanger 11 disposed on the front side of the vehicle. The first connection portion 211 b of the first gas phase passage 21 f on the left side in the vehicle width direction is connected to a portion on the left side in the vehicle width direction of the upper header tank 111 of the heat exchanger 11 for the first device.
 第2気相通路22は、車幅方向右側の第2気相通路22eと車幅方向左側の第2気相通路22fを含んで構成されている。 The second gas phase passage 22 is configured to include a second gas phase passage 22e on the right side in the vehicle width direction and a second gas phase passage 22f on the left side in the vehicle width direction.
 車幅方向右側の第2気相通路22eは、第1合流部31と、車両後方側に配置された第2機器用熱交換器12とを接続している。その車幅方向右側の第2気相通路22eの第2接続部211aは、第2機器用熱交換器12の上ヘッダタンク121のうち車幅方向右側の部位に接続している。 The second gas phase passage 22e on the right side in the vehicle width direction connects the first junction 31 and the second-apparatus heat exchanger 12 disposed on the rear side of the vehicle. The second connection portion 211a of the second gas phase passage 22e on the right side in the vehicle width direction is connected to a portion on the right side in the vehicle width direction of the upper header tank 121 of the heat exchanger 12 for the second device.
 車幅方向左側の第2気相通路22fは、第2合流部32と、車両後方側に配置された第1機器用熱交換器12とを接続している。その車幅方向左側の第2気相通路22fの第2接続部221bは、第2機器用熱交換器12の上ヘッダタンク121のうち車幅方向左側の部位に接続している。したがって、第1接続部211a、211bと第2接続部221a、221bとは、複数の機器用熱交換器11、12、13が並ぶ方向において、車両前後方向に出来るだけ遠い位置に設けられている。 The second gas phase passage 22 f on the left side in the vehicle width direction connects the second junction 32 and the first-apparatus heat exchanger 12 disposed on the rear side of the vehicle. The second connection portion 221 b of the second gas phase passage 22 f on the left side in the vehicle width direction is connected to a portion on the left side in the vehicle width direction of the upper header tank 121 of the second device heat exchanger 12. Therefore, the first connection parts 211a and 211b and the second connection parts 221a and 221b are provided as far as possible in the longitudinal direction of the vehicle in the direction in which the plurality of heat exchangers 11, 12 and 13 for equipment are arranged. .
 車幅方向右側の第1気相通路21eと第2気相通路22eは第1合流部31で合流している。車幅方向左側の第1気相通路21fと第2気相通路22fは第2合流部32で合流している。第1合流部31と第2合流部32とは、第1合流通路41により接続されている。第1合流通路41の途中と凝縮器とは、第2合流通路42により接続されている。 The first gas phase passage 21 e and the second gas phase passage 22 e on the right side in the vehicle width direction merge at the first joining portion 31. The first gas phase passage 21 f and the second gas phase passage 22 f on the left side in the vehicle width direction merge at the second joining portion 32. The first merging portion 31 and the second merging portion 32 are connected by a first merging passage 41. The middle of the first combined passage 41 and the condenser are connected by a second combined passage 42.
 なお、第1~第3機器用熱交換器11、12、13の下ヘッダタンク112、122、132の車幅方向右側の端部同士は、第1下連結通路71により連結されている。第1~第3機器用熱交換器11、12、13の下ヘッダタンク112、122、132の車幅方向左側の端部同士は、第2下連結通路72により連結されている。液相通路55は途中で分岐し、第1下連結通路71および第2下連結通路72に接続されている。 The end portions on the right side in the vehicle width direction of the lower header tanks 112, 122 and 132 of the heat exchangers 11, 12 and 13 for the first to third devices are connected by the first lower connection passage 71. End portions on the left side in the vehicle width direction of the lower header tanks 112, 122 and 132 of the heat exchangers 11, 12 and 13 for the first to third devices are connected by a second lower connection passage 72. The liquid phase passage 55 branches midway and is connected to the first lower connection passage 71 and the second lower connection passage 72.
 第11実施形態も、第1~第10実施形態と同様の作用効果を奏することができる。さらに、第11実施形態も、第1、第2気相通路21、22の第1、第2接続部211a、211b、211a、221bが、それぞれ、機器温度調整部10の4隅に設けられていることで、車両の前後左右いずれの方向の傾斜にも対応することができる。 The eleventh embodiment can also achieve the same function / effect as the first to tenth embodiments. Furthermore, also in the eleventh embodiment, the first and second connection portions 211a, 211b, 211a and 221b of the first and second gas phase passages 21 and 22 are provided at the four corners of the device temperature adjustment unit 10, respectively. Thus, it is possible to cope with the inclination in any of the front, rear, left, and right directions of the vehicle.
 (第12実施形態)
 第12実施形態について、図20を参照して説明する。第12実施形態は、第8実施形態などに対し、複数の機器用熱交換器11、12の並ぶ方向などを変更したものである。
(Twelfth embodiment)
A twelfth embodiment will be described with reference to FIG. The twelfth embodiment is different from the eighth embodiment etc. in the direction in which the plurality of device heat exchangers 11 and 12 are arranged.
 第12実施形態では、複数の機器用熱交換器11、12が、その機器用熱交換器11、12の長手方向に並んでいる。また、複数の機器用熱交換器11、12は、車両前後方向に沿って配置されている。連結通路61は、第1機器用熱交換器11の上ヘッダタンク111のうち車両後方側の端部と、第2機器用熱交換器12の上ヘッダタンク121のうち車両前方側の端部とを連結している。 In the twelfth embodiment, the plurality of device heat exchangers 11 and 12 are aligned in the longitudinal direction of the device heat exchangers 11 and 12. Further, the plurality of device heat exchangers 11 and 12 are disposed along the longitudinal direction of the vehicle. The connection passage 61 is an end portion on the vehicle rear side of the upper header tank 111 of the first device heat exchanger 11 and an end portion on the vehicle front side of the upper header tank 121 of the second device heat exchanger 12. Are linked.
 第12実施形態では、第1気相通路21は、合流部30と、車両前方側に配置された第1機器用熱交換器11とを接続している。その第1気相通路21の第1接続部211は、第1機器用熱交換器11の上ヘッダタンク111のうち車両前方側の端部に設けられている。 In the twelfth embodiment, the first gas phase passage 21 connects the merging portion 30 and the first-apparatus heat exchanger 11 disposed on the front side of the vehicle. The first connection portion 211 of the first gas phase passage 21 is provided at an end of the upper header tank 111 of the first device heat exchanger 11 on the front side of the vehicle.
 第2気相通路22は、合流部30と、車両後方側に配置された第2機器用熱交換器12とを接続している。その第2気相通路22の第2接続部221は、第2機器用熱交換器12の上ヘッダタンク121のうち車両後方側の端部に設けられている。したがって、第1接続部211と第2接続部221とは、複数の機器用熱交換器11、12が並ぶ方向において、車両前後方向に出来るだけ遠い位置に設けられている。なお、第3気相通路23は、第1機器用熱交換器11の上ヘッダタンク111のうち車両後方側の端部と、第2気相通路22とを接続している。この第3気相通路23は、省略してもよい。 The second gas phase passage 22 connects the merging portion 30 and the second-apparatus heat exchanger 12 disposed on the rear side of the vehicle. The second connection portion 221 of the second gas phase passage 22 is provided at an end portion of the upper header tank 121 of the second device heat exchanger 12 on the vehicle rear side. Therefore, the first connection portion 211 and the second connection portion 221 are provided as far as possible in the longitudinal direction of the vehicle in the direction in which the heat exchangers 11 and 12 for equipment are arranged. The third gas phase passage 23 connects the end portion on the vehicle rear side of the upper header tank 111 of the first equipment heat exchanger 11 and the second gas phase passage 22. The third gas phase passage 23 may be omitted.
 第1気相通路21と第2気相通路22は、合流部30で合流している。合流部30と凝縮器との間を合流通路40が接続している。 The first gas phase passage 21 and the second gas phase passage 22 merge at a merging portion 30. A junction passage 40 is connected between the junction 30 and the condenser.
 なお、第1機器用熱交換器11の下ヘッダタンク112の他端と、第2機器用熱交換器12の下ヘッダタンク122の一端は、下連結通路70により連結されている。液相通路55は、第1機器用熱交換器11の下ヘッダタンク112の一端に接続されている。 The other end of the lower header tank 112 of the first device heat exchanger 11 and one end of the lower header tank 122 of the second device heat exchanger 12 are connected by the lower connection passage 70. The liquid phase passage 55 is connected to one end of the lower header tank 112 of the first device heat exchanger 11.
 第12実施形態も、機器温度調整部10が第1機器用熱交換器11側または第2機器用熱交換器12側に傾斜した場合、第1接続部211と第2接続部221の一方が重力方向上側に位置し、他方が重力方向下側に位置する。したがって、第12実施形態も、第1~第11実施形態と同様の作用効果を奏することができる。 Also in the twelfth embodiment, when the device temperature adjustment unit 10 is inclined to the first device heat exchanger 11 side or the second device heat exchanger 12 side, one of the first connection portion 211 and the second connection portion 221 is It is located on the upper side in the direction of gravity, and the other is located on the lower side in the direction of gravity. Therefore, the twelfth embodiment can also achieve the same effects as those of the first to eleventh embodiments.
 (第13実施形態)
 第13実施形態について、図21を参照して説明する。第13実施形態は、第8実施形態などに対し、機器用熱交換器の数および配置などを変更したものである。
(13th Embodiment)
A thirteenth embodiment will be described with reference to FIG. The thirteenth embodiment is the one in which the number, arrangement, and the like of the heat exchangers for equipment are changed with respect to the eighth embodiment and the like.
 第13実施形態では、機器温度調整部10は、4個の機器用熱交換器11~14と連結通路61により構成されている。第13実施形態の説明では、複数の機器用熱交換器のうち、車両前方側に配置される2個の機器用熱交換器を第1機器用熱交換器11、第2機器用熱交換器12と呼ぶ。車両後方側に配置される2個の機器用熱交換器を第3機器用熱交換器13、第4機器用熱交換器14と呼ぶ。 In the thirteenth embodiment, the device temperature adjustment unit 10 is configured by four device heat exchangers 11 to 14 and a connection passage 61. In the thirteenth embodiment, of the plurality of heat exchangers for equipment, the heat exchangers for two equipment disposed on the front side of the vehicle are the heat exchanger 11 for the first equipment, the heat exchanger for the second equipment Call it 12 The two device heat exchangers disposed on the rear side of the vehicle are referred to as a third device heat exchanger 13 and a fourth device heat exchanger 14.
 第13実施形態では、第1気相通路21は、合流部30から延びる部位21aが分岐部21bを介して一方の第1気相通路21cと他方の第1気相通路21dに分岐している。一方の第1気相通路21cの第1接続部211aは、第1機器用熱交換器11の上ヘッダタンク111に接続している。他方の第1気相通路21dの第1接続部211bは、第2機器用熱交換器12の上ヘッダタンク121に接続している。 In the thirteenth embodiment, in the first gas phase passage 21, a portion 21a extending from the merging portion 30 is branched into one first gas phase passage 21c and the other first gas phase passage 21d via the branch portion 21b. . The first connection portion 211 a of the one first gas phase passage 21 c is connected to the upper header tank 111 of the first device heat exchanger 11. The first connection portion 211 b of the other first gas phase passage 21 d is connected to the upper header tank 121 of the second device heat exchanger 12.
 また、第2気相通路22は、合流部30から分岐部22bを介して一方の第2気相通路22cと他方の第2気相通路22dに分岐している。一方の第2気相通路22cの第2接続部221aは、第3機器用熱交換器13の上ヘッダタンク131に接続している。他方の第2気相通路22dの第2接続部221bは、第4機器用熱交換器14の上ヘッダタンク141に接続している。 Further, the second gas phase passage 22 branches from the merging portion 30 to one second gas phase passage 22c and the other second gas phase passage 22d via the branch portion 22b. The second connection portion 221 a of one second gas phase passage 22 c is connected to the upper header tank 131 of the third device heat exchanger 13. The second connection portion 221 b of the other second gas phase passage 22 d is connected to the upper header tank 141 of the fourth device heat exchanger 14.
 連結通路61は、第1気相通路21の分岐部21bと第2気相通路22の分岐部22bとを接続している。 The connection passage 61 connects the branch portion 21 b of the first gas phase passage 21 and the branch portion 22 b of the second gas phase passage 22.
 尚、液相通路55は、第1~第4機器用熱交換器11~14の下ヘッダタンク112、122、132、142に接続されている。 The liquid phase passage 55 is connected to the lower header tanks 112, 122, 132, 142 of the heat exchangers 11 to 14 for the first to fourth devices.
 第13実施形態も、機器温度調整部10が第1機器用熱交換器11側または第3機器用熱交換器13側に傾斜した場合、第1接続部211a、211bと第2接続部221a、221bの一方が重力方向上側に位置し、他方が重力方向下側に位置する。したがって、第13実施形態も、第1~第12実施形態と同様の作用効果を奏することができる。 Also in the thirteenth embodiment, when the device temperature adjustment unit 10 is inclined to the first device heat exchanger 11 side or the third device heat exchanger 13 side, the first connection portions 211a and 211b and the second connection portion 221a, One of 221 b is located on the upper side in the gravity direction, and the other is located on the lower side in the gravity direction. Therefore, the thirteenth embodiment can also achieve the same function and effect as those of the first to twelfth embodiments.
 (第14実施形態)
 第14実施形態について、図22を参照して説明する。第14実施形態は、第13実施形態などに対し、複数の機器用熱交換器11~14が並ぶ方向などを変更したものである。
Fourteenth Embodiment
A fourteenth embodiment will be described with reference to FIG. The fourteenth embodiment is different from the thirteenth embodiment etc. in the direction in which the plurality of heat exchangers 11 to 14 for equipment are arranged.
 第14実施形態でも、機器温度調整部10は、4個の機器用熱交換器11~14により構成されている。複数の機器用熱交換器11~14はいずれも長手方向が車両前後方向に沿うように配置されている。第14実施形態の説明でも、複数の機器用熱交換器のうち、車両前方側に配置される2個の機器用熱交換器を第1機器用熱交換器11、第2機器用熱交換器12と呼ぶ。車両後方側に配置される2個の機器用熱交換器を第3機器用熱交換器13、第4機器用熱交換器14と呼ぶ。 Also in the fourteenth embodiment, the device temperature adjustment unit 10 is configured by four device heat exchangers 11 to 14. The plurality of device heat exchangers 11 to 14 are arranged such that the longitudinal direction is along the longitudinal direction of the vehicle. Also in the description of the fourteenth embodiment, among the plurality of apparatus heat exchangers, the two apparatus heat exchangers disposed on the front side of the vehicle are the first apparatus heat exchanger 11 and the second apparatus heat exchanger. Call it 12 The two device heat exchangers disposed on the rear side of the vehicle are referred to as a third device heat exchanger 13 and a fourth device heat exchanger 14.
 第14実施形態では、第1気相通路21は、合流部30と、第1~第4機器用熱交換器11~14のうち車両前方側の部位とを接続している。第1気相通路21は、合流部30から延びる部位21aが分岐部21bを介して3つの第1気相通路21c、21d、21eに分岐している。その1つの第1気相通路21cの第1接続部211aは、第1機器用熱交換器11の上ヘッダタンク111のうち車両前方側の部位に接続している。別の第1気相通路21dの第1接続部211bは、第2機器用熱交換器12の上ヘッダタンク121のうち車両前方側の部位に接続している。 In the fourteenth embodiment, the first gas phase passage 21 connects the junction 30 and a portion on the vehicle front side among the heat exchangers 11 to 14 for the first to fourth devices. In the first gas phase passage 21, a portion 21a extending from the merging portion 30 is branched into three first gas phase passages 21c, 21d and 21e via a branch portion 21b. The first connection portion 211 a of the one first gas phase passage 21 c is connected to a portion on the vehicle front side of the upper header tank 111 of the first device heat exchanger 11. The first connection portion 211 b of the other first gas phase passage 21 d is connected to a portion on the vehicle front side of the upper header tank 121 of the second device heat exchanger 12.
 さらに別の第1気相通路21eは、分岐部21fを介して2つの第1気相通路21g、21hに分岐している。その1つの第1気相通路21gの第1接続部211cは、第3機器用熱交換器13の上ヘッダタンク121のうち車両前方側の部位に接続している。別の第1気相通路21hの第1接続部211dは、第4機器用熱交換器14の上ヘッダタンク141のうち車両前方側の部位に接続している。 Still another first gas phase passage 21 e is branched into two first gas phase passages 21 g and 21 h via a branch portion 21 f. The first connection portion 211 c of the one first gas phase passage 21 g is connected to a portion on the vehicle front side of the upper header tank 121 of the third device heat exchanger 13. The first connection portion 211 d of the other first gas phase passage 21 h is connected to a portion of the upper header tank 141 of the fourth device heat exchanger 14 on the front side of the vehicle.
 第2気相通路21は、合流部30と、第1~第4機器用熱交換器11~14のうち車両後方側の部位とを接続している。第2気相通路22は、合流部30から延びる部位22aが分岐部22bを介して3つの第2気相通路22c、22d、22eに分岐している。その1つの第2気相通路22cの第2接続部221aは、第1機器用熱交換器11の上ヘッダタンク111のうち車両後方側の部位に接続している。別の第2気相通路22dの第2接続部221bは、第2機器用熱交換器12の上ヘッダタンク121のうち車両後方側の部位に接続している。 The second gas phase passage 21 connects the merging portion 30 and the portion on the vehicle rear side among the heat exchangers 11 to 14 for the first to fourth devices. In the second gas phase passage 22, a portion 22a extending from the merging portion 30 is branched into three second gas phase passages 22c, 22d and 22e via a branch portion 22b. The second connection portion 221 a of the one second gas phase passage 22 c is connected to a portion on the vehicle rear side of the upper header tank 111 of the first device heat exchanger 11. The second connection portion 221 b of another second gas phase passage 22 d is connected to a portion on the vehicle rear side of the upper header tank 121 of the second device heat exchanger 12.
 さらに別の第2気相通路22eは、分岐部22fを介して2つの第2気相通路22g、22hに分岐している。その1つの第2気相通路22gの第2接続部221cは、第3機器用熱交換器13の上ヘッダタンク131のうち車両後方側の部位に接続している。別の第2気相通路22hの第2接続部221dは、第4機器用熱交換器14の上ヘッダタンク141のうち車両後方側の部位に接続している。 Still another second gas phase passage 22e branches into two second gas phase passages 22g and 22h via a branch portion 22f. The second connection portion 221 c of the one second gas phase passage 22 g is connected to a portion on the vehicle rear side of the upper header tank 131 of the third device heat exchanger 13. The second connection portion 221 d of another second gas phase passage 22 h is connected to a portion on the vehicle rear side of the upper header tank 141 of the fourth device heat exchanger 14.
 第1気相通路21と第2気相通路22は、合流部30で接続されている。合流部30と凝縮器とは、合流通路40により接続されている。 The first gas phase passage 21 and the second gas phase passage 22 are connected at the junction 30. The junction 30 and the condenser are connected by a junction passage 40.
 尚、液相通路55は、第1~第4機器用熱交換器11~14の下ヘッダタンク112、122、132、142に接続されている。 The liquid phase passage 55 is connected to the lower header tanks 112, 122, 132, 142 of the heat exchangers 11 to 14 for the first to fourth devices.
 第14実施形態も、機器温度調整部10が前後左右いずれの方向に傾斜した場合、第1接続部211または第2接続部221のいずれかが重力方向上側に位置する。したがって、第14実施形態も、第1~第13実施形態と同様の作用効果を奏することができる。 Also in the fourteenth embodiment, when the device temperature adjustment unit 10 is inclined in any direction, either the first connection portion 211 or the second connection portion 221 is located on the upper side in the gravity direction. Therefore, the fourteenth embodiment can also achieve the same function and effect as those of the first to thirteenth embodiments.
 (第15実施形態)
 第15実施形態について、図23を参照して説明する。第15実施形態は、機器用熱交換器11に対する電池2の設置方法の例を説明するものである。第15実施形態では、電池2は、端子4が設けられた面5が重力方向上側に向くように設置されている。電池2は、端子4が設けられた面5に対して垂直の面が、熱伝導シート114を介して、熱交換部113に設置されている。このように、電池2の設置方法は、任意に設定することが可能である。
(Fifteenth embodiment)
The fifteenth embodiment will be described with reference to FIG. The fifteenth embodiment describes an example of a method of installing the battery 2 in the device heat exchanger 11. In the fifteenth embodiment, the battery 2 is installed such that the surface 5 provided with the terminal 4 faces upward in the direction of gravity. In the battery 2, a surface perpendicular to the surface 5 on which the terminal 4 is provided is installed in the heat exchange portion 113 via the heat conductive sheet 114. Thus, the installation method of the battery 2 can be set arbitrarily.
 (第16実施形態)
 第16実施形態について、図24を参照して説明する。第16実施形態は、機器用熱交換器11と電池2の設置方法の例を説明するものである。第16実施形態では、複数の機器用熱交換器11が電池2の両側を挟むように設置されている。そのため、電池2は、熱伝導シート114を介して熱交換部113に熱接触する面積が大きくなる。したがって、第16実施形態の機器用熱交換器11と電池2の設置方法によれば、電池2の冷却能力を高めることが可能である。
Sixteenth Embodiment
The sixteenth embodiment will be described with reference to FIG. The sixteenth embodiment describes an example of a method of installing the device heat exchanger 11 and the battery 2. In the sixteenth embodiment, a plurality of device heat exchangers 11 are installed so as to sandwich both sides of the battery 2. Therefore, the area of the battery 2 in thermal contact with the heat exchange unit 113 via the heat conduction sheet 114 is increased. Therefore, according to the device heat exchanger 11 and the method of installing the battery 2 of the sixteenth embodiment, it is possible to enhance the cooling capacity of the battery 2.
 (第17実施形態)
 第17実施形態について、図25および図26を参照して説明する。第17実施形態は、第1気相通路21と第2気相通路22の配置の例について説明するものである。第2気相通路22は、上ヘッダタンク111に沿うようにして、上ヘッダタンク111に当接または隣接した状態で延び、さらに、第1気相通路21に沿うようにして、第1気相通路21に当接または隣接した状態で延びている。第1気相通路21の一部と第2気相通路22の少なくとも一部は、互いに当接または隣接した状態で延びる並列部25を構成している。上ヘッダタンク111と第2気相通路22の一部も、互いに当接または隣接した状態で延びる並列部251を構成している。これにより、第1気相通路21と第2気相通路22が占める領域が小さくなる。また、車両等に対し第1気相通路21と第2気相通路22を一緒に組み付けることも可能である。例えば、第1気相通路21を構成するガス配管と、第2気相通路22を構成するガス配管を共通の取付金具を用いて車体に取り付けることが可能である。或いは、1本の配管部材に2つの流路を形成し、その一方の流路を第1気相通路21とし、他方の流路を第2気相通路22とすることも可能である。したがって、この機器温調装置1は、車両等への搭載性および組み付け性を向上することができる。
(Seventeenth embodiment)
A seventeenth embodiment will be described with reference to FIGS. 25 and 26. The seventeenth embodiment describes an example of the arrangement of the first gas phase passage 21 and the second gas phase passage 22. The second gas phase passage 22 extends along the upper header tank 111 so as to be in contact with or adjacent to the upper header tank 111, and further extends along the first gas phase passage 21. It extends in contact with or adjacent to the passage 21. A portion of the first gas phase passage 21 and at least a portion of the second gas phase passage 22 constitute a parallel portion 25 extending in a state of being in contact with or adjacent to each other. The upper header tank 111 and a part of the second gas phase passage 22 also constitute a parallel portion 251 extending in a state of being in contact with or adjacent to each other. As a result, the area occupied by the first gas phase passage 21 and the second gas phase passage 22 is reduced. Further, it is also possible to assemble the first gas phase passage 21 and the second gas phase passage 22 together to a vehicle or the like. For example, it is possible to attach the gas pipe that constitutes the first gas phase passage 21 and the gas pipe that constitutes the second gas phase passage 22 to the vehicle body using a common mounting bracket. Alternatively, it is also possible to form two flow paths in one piping member, set one flow path as the first gas phase passage 21, and set the other flow path as the second gas phase passage 22. Therefore, the device temperature control device 1 can improve the mountability to the vehicle or the like and the assemblability.
 (第18実施形態)
 第18実施形態について、図27~図29を参照して説明する。第18実施形態も、第1気相通路21と第2気相通路22の配置の例について説明するものである。第2気相通路22と構成する配管は、上ヘッダタンク111の内側に設けられ、さらに、第1気相通路21を構成する配管の内側に設けられている。第1気相通路21の一部と第2気相通路22の少なくとも一部は、一方の配管の内側に他方の配管が設けられた二重配管構造26となっている。上ヘッダタンク111と第2気相通路22の一部も、上ヘッダタンク111の内側に第2気相通路22が設けられた二重配管構造261となっている。これにより、第1気相通路21と第2気相通路22が占める領域が小さくなる。また、車両等に対し二重配管構造26となった第1気相通路21と第2気相通路22を一緒に組み付けることも可能である。したがって、この機器温調装置1は、車両等への搭載性および組み付け性を向上することができる。
Eighteenth Embodiment
An eighteenth embodiment will be described with reference to FIGS. 27 to 29. The eighteenth embodiment also describes an example of the arrangement of the first gas phase passage 21 and the second gas phase passage 22. The pipe constituting the second gas phase passage 22 is provided inside the upper header tank 111, and is further provided inside the pipe constituting the first gas phase passage 21. A portion of the first gas phase passage 21 and at least a portion of the second gas phase passage 22 form a double piping structure 26 in which the other piping is provided inside the one piping. The upper header tank 111 and part of the second gas phase passage 22 also have a double piping structure 261 in which the second gas phase passage 22 is provided inside the upper header tank 111. As a result, the area occupied by the first gas phase passage 21 and the second gas phase passage 22 is reduced. Moreover, it is also possible to assemble | attach the 1st gas-phase channel 21 and the 2nd gas-phase channel 22 which became double piping structure 26 with respect to the vehicle etc. together. Therefore, the device temperature control device 1 can improve the mountability to the vehicle or the like and the assemblability.
 (第19実施形態)
 第19実施形態について、図30および図31を参照して説明する。第19実施形態では、気相通路に流路面積調整弁80が設けられている。流路面積調整弁80は、気相通路の接続部側から合流部30側への液相の作動流体の流れを規制する部材である。第19実施形態では、流路面積調整弁80は、第1気相通路21に設けられている。この流路面積調整弁80は、第1気相通路21の第1接続部211側から合流部30側への液相の作動流体の流れを規制する。
Nineteenth Embodiment
A nineteenth embodiment will be described with reference to FIGS. 30 and 31. In the nineteenth embodiment, the flow passage area adjustment valve 80 is provided in the gas phase passage. The flow passage area adjustment valve 80 is a member that regulates the flow of the working fluid in the liquid phase from the connection side of the gas phase passage to the merging portion 30 side. In the nineteenth embodiment, the flow passage area adjustment valve 80 is provided in the first gas phase passage 21. The flow path area adjustment valve 80 regulates the flow of the working fluid in the liquid phase from the first connection portion 211 side of the first gas phase passage 21 to the merging portion 30 side.
 なお、流路面積調整弁80が第2気相通路22に設けられる場合、その流路面積調整弁80は、第2接続部221側から合流部30側への液相の作動流体の流れを規制する。 In the case where the flow passage area adjustment valve 80 is provided in the second gas phase passage 22, the flow passage area adjustment valve 80 flows the working fluid flow of the liquid phase from the second connection portion 221 side to the merging portion 30 side. regulate.
 第19実施形態の流路面積調整弁80は、制御装置81から伝送される駆動信号により駆動する電磁弁である。制御装置81は、機器温度調整部10の傾きを検出する傾きセンサ82により、機器温度調整部10の傾きが検出されると、流路面積調整弁80に対し駆動信号を伝送する。具体的には、図31に示すように、制御装置81は、第2接続部221より第1接続部211が低くなるように機器温調装置1が傾くと、流路面積調整弁80に対し駆動信号を伝送する。流路面積調整弁80に駆動信号が伝送されると、流路面積調整弁80は、第1気相通路21の第1接続部211側から凝縮器50側への液相の作動流体の流れを規制する。図31では、流路面積調整弁80が作動した場合に機器温調装置1が液相の作動流体で満たされる領域にハッチングを付している。図31に示すように、流路面積調整弁80により液相の作動流体の流れが規制されることで、合流部30が液没することが防がれる。そのため、第2気相通路22から合流部30を経由して合流通路40へ向かう気相の作動流体の流れが確保される。したがって、機器温調装置1は、合流部30の位置を下げることで、車両等への搭載性を向上することができる。 The flow passage area adjustment valve 80 of the nineteenth embodiment is a solenoid valve driven by a drive signal transmitted from the control device 81. The controller 81 transmits a drive signal to the flow passage area adjusting valve 80 when the inclination of the device temperature adjusting unit 10 is detected by the inclination sensor 82 that detects the inclination of the device temperature adjusting unit 10. Specifically, as shown in FIG. 31, when the device temperature control apparatus 1 is inclined such that the first connection portion 211 is lower than the second connection portion 221 as shown in FIG. Transmit the drive signal. When the drive signal is transmitted to the flow passage area adjustment valve 80, the flow passage area adjustment valve 80 causes the flow of the working fluid in the liquid phase from the first connection portion 211 side of the first gas phase passage 21 to the condenser 50 side. Regulate. In FIG. 31, hatching is given to the area | region with which the equipment temperature control apparatus 1 is filled with the working fluid of a liquid phase, when the flow-path area adjustment valve 80 operate | moves. As shown in FIG. 31, the flow of the working fluid in the liquid phase is restricted by the flow path area adjustment valve 80, so that the merging portion 30 is prevented from being submerged. Therefore, the flow of the working fluid in the gas phase from the second gas phase passage 22 toward the merging passage 40 via the merging portion 30 is secured. Therefore, the equipment temperature control apparatus 1 can improve the mounting property to a vehicle etc. by lowering | hanging the position of the confluence | merging part 30. FIG.
 また、機器温調装置1が傾いた場合に流路面積調整弁80により液相の作動流体の流れが規制されることで、機器用熱交換器11から第1気相通路21に流出する液相の作動流体の量が少なくなる。機器温調装置1が傾いた場合に機器用熱交換器11の内側の液相の作動流体の減少が抑制される。したがって、機器温調装置1は、電池2の冷却性能を向上すると共に、電池セル3同士の温度分布が大きくなることを抑制することができる。 In addition, when the device temperature adjustment device 1 is inclined, the flow of the working fluid in the liquid phase is regulated by the flow passage area adjustment valve 80, so that the liquid flowing out from the device heat exchanger 11 to the first gas phase passage 21 The amount of phase working fluid is reduced. When the device temperature control device 1 is inclined, the reduction of the working fluid in the liquid phase inside the device heat exchanger 11 is suppressed. Therefore, the device temperature control device 1 can improve the cooling performance of the battery 2 and can suppress the temperature distribution of the battery cells 3 from becoming large.
 さらに、第19実施形態の流路面積調整弁80は、傾きセンサ82により機器温調装置1の傾きが検出されると、制御装置81の制御信号に応じて動作する構成である。そのため、この流路面積調整弁80は、機器温調装置1の傾きに対応して確実に動作する。したがって、流路面積調整弁80は、気相通路の接続部側から合流部30側への液相の作動流体の流れを確実に規制することができる。 Furthermore, the flow passage area adjustment valve 80 of the nineteenth embodiment operates in accordance with a control signal of the control device 81 when the inclination of the device temperature adjustment device 1 is detected by the inclination sensor 82. Therefore, the flow passage area adjusting valve 80 reliably operates in accordance with the inclination of the device temperature adjusting device 1. Therefore, the flow passage area adjustment valve 80 can reliably restrict the flow of the working fluid in the liquid phase from the connection side of the gas phase passage to the merging portion 30 side.
 (第20実施形態)
 第20実施形態について、図32および図33を参照して説明する。第20実施形態は、第19実施形態で説明した流路面積調整弁の変形例である。
 第20実施形態の流路面積調整弁83は、弁座84と弁体85を有している。弁座84は、気相通路21の内壁に設けられている。弁体85は、弁座84よりも接続部側の流路に配置されたボール弁である。ボール弁は、気相通路21の接続部211が弁座84より重力方向下側にあるとき、弁座84から離座する。また、図33に示すように、ボール弁は、気相通路21の接続部211が弁座84より重力方向上側にあるとき、自重により弁座84に着座する。この構成によっても、流路面積調整弁83は、気相通路の接続部側より合流部30側が低くなる場合、気相通路の接続部側から合流部30側への液相の作動流体の流れを規制することが可能である。したがって、第20実施形態では、流路面積調整弁83の構成を簡素なものとすることができる。
(Twentieth embodiment)
A twentieth embodiment will be described with reference to FIG. 32 and FIG. The twentieth embodiment is a modification of the flow passage area adjustment valve described in the nineteenth embodiment.
The flow passage area adjustment valve 83 of the twentieth embodiment has a valve seat 84 and a valve body 85. The valve seat 84 is provided on the inner wall of the gas phase passage 21. The valve body 85 is a ball valve disposed in a flow path closer to the connection portion than the valve seat 84. The ball valve disengages from the valve seat 84 when the connection portion 211 of the gas phase passage 21 is lower than the valve seat 84 in the gravity direction. Further, as shown in FIG. 33, when the connection portion 211 of the gas phase passage 21 is above the valve seat 84 in the gravity direction, the ball valve is seated on the valve seat 84 by its own weight. Also according to this configuration, when the flow passage area adjustment valve 83 is lower in the merging portion 30 side than the connection portion side of the gas phase passage, the flow of the working fluid in the liquid phase from the connection portion side of the gas phase passage to the merging portion 30 side It is possible to regulate Therefore, in the twentieth embodiment, the configuration of the flow passage area adjustment valve 83 can be simplified.
 (第21実施形態)
 第21実施形態について、図34および図35を参照して説明する。第21実施形態も、第19実施形態で説明した流路面積調整弁の変形例である。
(Twenty-first embodiment)
A twenty-first embodiment will be described with reference to FIGS. 34 and 35. The twenty-first embodiment is also a modification of the flow passage area adjustment valve described in the nineteenth embodiment.
 第21実施形態の流路面積調整弁86も、弁座87と弁体88を有している。弁座87は、気相通路の内壁に設けられている。弁体88は、液相の作動流体よりも質量が小さい材料で形成されたフロート弁である。図34に示すように、フロート弁は、気相通路21に気相の作動流体が流れるときに自重により弁座87から離座する。また、図35に示すように、フロート弁は、気相通路21に液相の作動流体が流れるときに浮力により弁座87に着座する。なお、図35では、液相の作動流体が充満する領域に破線のハッチングを付している。この構成によっても、流路面積調整弁86は、気相通路21の接続部211側から合流部30側への液相の作動流体の流れを規制することが可能である。したがって、第21実施形態では、流路面積調整弁86の構成を簡素なものとすることができる。 The flow passage area adjustment valve 86 of the twenty-first embodiment also has a valve seat 87 and a valve body 88. The valve seat 87 is provided on the inner wall of the gas phase passage. The valve body 88 is a float valve formed of a material whose mass is smaller than that of the liquid phase working fluid. As shown in FIG. 34, the float valve is separated from the valve seat 87 by its own weight when the gas phase working fluid flows in the gas phase passage 21. Further, as shown in FIG. 35, the float valve is seated on the valve seat 87 by buoyancy when the working fluid in the liquid phase flows in the gas phase passage 21. In addition, in FIG. 35, the hatching of the broken line is attached to the area | region which the working fluid of a liquid phase is full. Also with this configuration, the flow path area adjustment valve 86 can regulate the flow of the working fluid in the liquid phase from the connection portion 211 side of the gas phase passage 21 to the merging portion 30 side. Therefore, in the twenty-first embodiment, the structure of the flow passage area adjustment valve 86 can be simplified.
 (第22実施形態)
 第22実施形態について、図36~図38を参照して説明する。第22実施形態は、第8実施形態と第17実施形態との組み合わせである。
(Twenty-second embodiment)
A twenty-second embodiment will be described with reference to FIGS. 36 to 38. The twenty-second embodiment is a combination of the eighth embodiment and the seventeenth embodiment.
 第22実施形態では、第1気相通路21と第2気相通路22とは、当接または隣接した状態で延びている。また、連結通路61と第2気相通路22も、当接または隣接した状態で延びている。 In the twenty-second embodiment, the first gas phase passage 21 and the second gas phase passage 22 extend in an abutting or adjacent state. Further, the connection passage 61 and the second gas phase passage 22 also extend in an abutting or adjacent state.
 第1気相通路21と第2気相通路22とは、互いに当接または隣接した状態で延びる並列部25を構成している。また、連結通路61と第2気相通路22も、互いに当接または隣接した状態で延びる並列部251を構成している。これにより、第1気相通路21と第2気相通路22と連結通路61が占める領域が小さくなる。また、車両等に対し第1気相通路21と第2気相通路22と連結通路61を一緒に組み付けることも可能である。 The first gas phase passage 21 and the second gas phase passage 22 constitute parallel portions 25 extending in a state of being in contact with or adjacent to each other. Further, the connection passage 61 and the second gas phase passage 22 also constitute parallel portions 251 extending in a state of being in contact with or adjacent to each other. As a result, the area occupied by the first gas phase passage 21, the second gas phase passage 22, and the connection passage 61 is reduced. Further, it is also possible to assemble the first gas phase passage 21, the second gas phase passage 22, and the connection passage 61 together to a vehicle or the like.
 なお、1本の配管部材に2つの流路を形成し、その一方の流路を第1気相通路21または連結通路61とし、他方の流路を第2気相通路22とすることも可能である。これにより、機器温調装置1は、車両等への搭載性および組み付け性を向上することができる。 In addition, it is possible to form two flow paths in one piping member, set one flow path as the first gas phase passage 21 or the connection passage 61, and set the other flow path as the second gas phase passage 22. It is. Thereby, the device temperature control apparatus 1 can improve the mounting property to a vehicle etc., and an attachment property.
 (第23実施形態)
 第23実施形態について、図39~図41を参照して説明する。第23実施形態は、第8実施形態と第18実施形態との組み合わせである。
(Twenty-third embodiment)
A twenty-third embodiment will be described with reference to FIGS. 39 to 41. The twenty-third embodiment is a combination of the eighth and eighteenth embodiments.
 第23実施形態では、第1気相通路21および連結通路61を構成する配管の内側に、第2気相通路22を構成する配管が設けられている。第1気相通路21および連結通路61と第2気相通路22とは、一方の配管の内側に他方の配管が設けられた二重配管構造26となっている。これにより、第1気相通路21と連結通路61と第2気相通路22が占める領域が小さくなる。また、車両等に対し二重配管構造26となった第1気相通路21と連結通路61と第2気相通路22を一緒に組み付けることも可能である。したがって、この機器温調装置1は、車両等への搭載性および組み付け性を向上することができる。 In the twenty-third embodiment, the pipe constituting the second gas phase passage 22 is provided inside the pipe constituting the first gas phase passage 21 and the connection passage 61. The first gas phase passage 21, the connection passage 61 and the second gas phase passage 22 form a double piping structure 26 in which the other piping is provided inside one piping. As a result, the area occupied by the first gas phase passage 21, the connection passage 61 and the second gas phase passage 22 is reduced. In addition, it is also possible to assemble the first gas phase passage 21, the connection passage 61 and the second gas phase passage 22 which have the double piping structure 26 to a vehicle or the like together. Therefore, the device temperature control device 1 can improve the mountability to the vehicle or the like and the assemblability.
 (他の実施形態)
 本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。
(Other embodiments)
The present disclosure is not limited to the embodiments described above, and can be modified as appropriate. Further, the above embodiments are not irrelevant to each other, combination unless obviously impossible, can be appropriately combined. In each of the above embodiments, the elements constituting the embodiments, unless such case considered if explicitly and in principle clearly essential to be essential, it is not necessarily indispensable needless to say Yes. Further, in the above embodiments, when numerical values such as the number, numerical value, amount, range, etc. of constituent elements of the embodiment are mentioned, it is clearly indicated that they are particularly essential and clearly limited to a specific number in principle. It is not limited to the specific number except when it is done. In each of the above embodiments, the shape of the components, when referring to a positional relationship or the like, except in particular clearly the case and principle specific shape, etc. If to be limited to the positional relationship or the like, the shape, It is not limited to the positional relationship and the like.
 (1)上記各実施形態では、機器温調装置1が温度を調整する対象機器として電池2を例にして説明した。これに対し、他の実施形態では、機器温調装置1が温度を調整する対象機器は、例えばモータ、インバータまたは充電器など、冷却または暖機が必要な他の機器でも良い。 (1) In each of the above-described embodiments, the battery 2 has been described as an example of the target device whose temperature is adjusted by the device temperature adjustment device 1. On the other hand, in another embodiment, the target device whose temperature is adjusted by the device temperature adjustment device 1 may be another device that requires cooling or warming up, such as a motor, an inverter, or a charger.
 (2)上記各実施形態では、機器温調装置1が対象機器を冷却する機能を有する構成について説明した。これに対し、他の実施形態では、機器温調装置1は、対象機器を暖機する機能を備えていてもよい。その場合、機器用熱交換器に設けられた流入部と流出部とを接続する気相通路と液相通路の途中に、作動流体を加熱するための加熱機構を設けることが可能である。加熱機構により加熱されて蒸発した作動流体は、気相通路を通り流出部から機器用熱交換器に流入する。機器用熱交換器内で電池2に放熱して凝縮した作動流体は、ヘッド差により流入部から液相通路を通り加熱機構に流入する。このような作動流体の循環により、機器温調装置1は対象機器を暖機することができる。 (2) In the above embodiments, the configuration in which the device temperature control device 1 has a function of cooling the target device has been described. On the other hand, in another embodiment, the device temperature control device 1 may have a function of warming up the target device. In that case, it is possible to provide a heating mechanism for heating the working fluid in the middle of the gas phase passage and the liquid phase passage connecting the inflow portion and the outflow portion provided in the heat exchanger for equipment. The working fluid heated and evaporated by the heating mechanism flows from the outlet to the heat exchanger for equipment through the gas phase passage. The working fluid which dissipates heat and condenses to the battery 2 in the heat exchanger for equipment flows from the inflow portion to the heating mechanism through the liquid phase passage due to the head difference. By circulating such a working fluid, the device temperature control apparatus 1 can warm up the target device.
 (3)上述した実施形態では、作動流体としてフロン系冷媒を採用する例について説明したが、この限りでは無い。作動流体は、例えばプロパン、二酸化炭素等の他の流体を採用してもよい。 (3) In the above-mentioned embodiment, although the example which employ | adopts a fluorocarbon system refrigerant | coolant was demonstrated as working fluid, it is not this limitation. The working fluid may employ other fluids such as propane and carbon dioxide, for example.
 (4)上述した実施形態では、複数の気相通路21、22を合流部30で接続し、合流部30と凝縮器50との間を合流通路40で接続する構成とした。これに対し、他の実施形態では、合流部30と合流通路40を設けることなく、機器温度調整部10と凝縮器50との間を複数の気相通路21、22により接続する構成としてもよい。 (4) In the above-described embodiment, the plurality of gas phase passages 21 and 22 are connected by the junction 30, and the junction 30 and the condenser 50 are connected by the junction 40. On the other hand, in another embodiment, the apparatus temperature adjusting unit 10 and the condenser 50 may be connected by a plurality of gas phase passages 21 and 22 without providing the merging portion 30 and the merging passage 40. .
 (5)上述した実施形態では、機器温度調整部10が水平状態にある場合、作動流体の液面FLが機器用熱交換器11の途中に位置するように、作動流体の封入量を調整した。これに対し、他の実施形態では、機器温度調整部10が水平状態にある場合、作動流体の液面FLが気相通路の途中に位置するように、作動流体の封入量を調整してもよい。 (5) In the embodiment described above, the enclosed amount of the working fluid is adjusted so that the fluid level FL of the working fluid is located in the middle of the heat exchanger 11 for the device when the device temperature adjusting unit 10 is in the horizontal state. . On the other hand, in another embodiment, when the device temperature control unit 10 is in the horizontal state, the amount of the working fluid enclosed may be adjusted so that the fluid level FL of the working fluid is located in the middle of the gas phase passage. Good.
 (まとめ)
 上述の実施形態の一部または全部で示された第1の観点によれば、作動流体の液相と気相との相変化により対象機器の温度を調整する機器温調装置は、機器温度調整部、凝縮器、液相通路、および複数の気相通路を備える。機器温度調整部は、対象機器の冷却時に作動流体が蒸発するように対象機器と作動流体とが熱交換可能に構成された1つまたは複数の機器用熱交換器を有する。凝縮器は、気相の作動流体を放熱させ、凝縮した液相の作動流体を流出させる。液相通路は、凝縮器と機器温度調整部との間に液相の作動流体を流す。複数の気相通路は、機器温度調整部と凝縮器との間に気相の作動流体を流す。複数の気相通路のうち第1気相通路が機器温度調整部に接続する第1接続部と、第2気相通路が機器温度調整部に接続する第2接続部とは、水平方向に離れた場所に位置している。
(Summary)
According to a first aspect of the present invention described in part or all of the above-described embodiments, an apparatus temperature control apparatus for adjusting the temperature of a target apparatus by phase change between a liquid phase and a gas phase of a working fluid includes: , A condenser, a liquid phase passage, and a plurality of gas phase passages. The device temperature control unit includes one or more device heat exchangers configured to allow heat exchange between the target device and the working fluid so that the working fluid evaporates when the target device is cooled. The condenser dissipates the gas phase working fluid and causes the condensed liquid phase working fluid to flow out. The liquid phase passage allows the working fluid in the liquid phase to flow between the condenser and the device temperature control unit. The plurality of gas phase passages allow the gas phase working fluid to flow between the device temperature control unit and the condenser. The first connection portion in which the first gas phase passage is connected to the device temperature adjustment unit among the plurality of gas phase passages and the second connection portion in which the second gas phase passage is connected to the device temperature adjustment portion are horizontally separated Located in the
 第2の観点によれば、機器温調装置は、車両に搭載されるものであり、第1接続部と第2接続部とは、車両前後方向に離れた場所に位置している。
 これによれば、機器温調装置は、車両前後方向の傾きに対応したものとなる。車両の登坂時のように車両の前後方向の傾きは、長い間維持されやすい。また、加速、減速といったシーンのように、車両前後方向の慣性力が作用した状態は長い間維持されやすい。機器温調装置は、そのようなシーンにおいても継続して作動し、電池の冷却を継続して実施することができる。
According to the second aspect, the device temperature control device is mounted on a vehicle, and the first connection portion and the second connection portion are located at places separated in the vehicle longitudinal direction.
According to this, the device temperature control device corresponds to the inclination in the longitudinal direction of the vehicle. The inclination in the longitudinal direction of the vehicle is likely to be maintained for a long time, as when climbing a vehicle. Further, as in a scene such as acceleration and deceleration, a state in which an inertial force in the longitudinal direction of the vehicle acts is likely to be maintained for a long time. The device temperature controller can operate continuously in such a scene, and the battery can be continuously cooled.
 第3の観点によれば、機器温度調整部が水平状態にある場合、作動流体の液面が機器用熱交換器の高さ方向の途中に位置し、第1接続部と第2接続部が、機器温度調整部のうち作動流体の液面より上側に位置するように作動流体の封入量が調整されている。
 これによれば、第1接続部または第2接続部のガス抜け性がよくなる。すなわち、機器温度調整部から第1接続部または第2接続部を経由して第1気相通路または第2気相通路に流れる気相の作動流体の圧力損失が低減される。したがって、機器温調装置は、サーモサイフォン回路の作動流体の循環を良くすることで、対象機器の冷却性能を向上することができる。
According to the third aspect, when the device temperature adjustment unit is in the horizontal state, the liquid level of the working fluid is positioned halfway in the height direction of the device heat exchanger, and the first connection portion and the second connection portion are The enclosed amount of the working fluid is adjusted so as to be located above the liquid level of the working fluid in the device temperature control unit.
According to this, the degassing property of the first connection portion or the second connection portion is improved. That is, the pressure loss of the working fluid in the gas phase flowing from the device temperature adjustment unit to the first gas phase passage or the second gas phase passage via the first connection portion or the second connection portion is reduced. Therefore, the device temperature control apparatus can improve the cooling performance of the target device by improving the circulation of the working fluid of the thermosiphon circuit.
 第4の観点によれば、機器温度調整部が所定角度に傾斜した場合、作動流体の液面が第1接続部または第2接続部の一方の上側にあり、第1接続部または第2接続部の他方の下側にあるように、作動流体の封入量が調整されている。
 これによれば、機器温度調整部が傾斜した場合、機器用熱交換器内で蒸発した作動流体は、液面より上に位置する第1接続部または第2接続部から第1気相通路または第2気相通路に流れる。したがって、機器温調装置は、サーモサイフォン回路の作動流体の循環を良くすることで、対象機器の冷却性能を向上することができる。
According to the fourth aspect, when the device temperature adjustment unit is inclined at a predetermined angle, the liquid level of the working fluid is on the upper side of one of the first connection portion or the second connection portion, and the first connection portion or the second connection is The amount of working fluid enclosed is adjusted so that it is under the other of the parts.
According to this, when the device temperature control unit is inclined, the working fluid evaporated in the device heat exchanger is transferred from the first connection portion or the second connection portion located above the liquid level to the first gas phase passage or It flows into the second gas phase passage. Therefore, the device temperature control apparatus can improve the cooling performance of the target device by improving the circulation of the working fluid of the thermosiphon circuit.
 第5の観点によれば、気相通路は、合流部と合流通路を含んで構成されている。合流部は、第1気相通路を流れる作動流体と第2気相通路を流れる作動流体とを合流させる。合流通路は、合流部と凝縮器との間に気相の作動流体を流す。合流部は、第1接続部および第2接続部よりも重力方向上側に設けられる。
 これによれば、機器温調装置は、合流部と凝縮器との間を合流通路で接続する構成とすることで、機器温度調整部と凝縮器との間を全て複数の気相通路で接続する構成に比べて、配管の数を少なくすることができる。
 また、第1接続部および第2接続部よりも重力方向上側に合流部を設けることで、機器温度調整部が傾斜した場合に合流部が液没することを抑制することができる。仮に、合流部が液没すると、機器温度調整部が傾斜した場合、第1気相通路または第2気相通路を流れる気相の作動流体は、合流部を通過することが困難になることがある。これに対し、機器温度調整部が傾斜した場合に合流部が液没していなければ、第1気相通路または第2気相通路を流れる気相の作動流体は、合流部を容易に通過し、凝縮器に流れる。したがって、機器温調装置は、サーモサイフォン回路の作動流体の循環を良くすることで、対象機器の冷却性能を向上することができる。
According to the fifth aspect, the gas phase passage includes the junction and the junction. The merging portion merges the working fluid flowing in the first gas phase passage with the working fluid flowing in the second gas phase passage. The merging passage allows the gas phase working fluid to flow between the merging portion and the condenser. The merging portion is provided on the upper side in the gravity direction than the first connection portion and the second connection portion.
According to this, the device temperature control apparatus is configured to connect between the merging portion and the condenser by the merging passage, so that all of the device temperature adjusting portion and the condenser are connected by the plurality of gas phase passages. The number of pipes can be reduced compared to the configuration described above.
In addition, by providing the merging portion above the first connection portion and the second connection portion in the direction of gravity, it is possible to suppress liquid immersion of the merging portion when the device temperature adjustment portion is inclined. If the junction is submerged, if the device temperature control unit is inclined, it may be difficult for the working fluid in the gas phase flowing in the first gas phase passage or the second gas phase passage to pass through the junction portion is there. On the other hand, if the junction portion is not submerged when the device temperature adjustment portion is inclined, the working fluid in the gas phase flowing through the first gas phase passage or the second gas phase passage easily passes through the junction portion. , Flows to the condenser. Therefore, the device temperature control apparatus can improve the cooling performance of the target device by improving the circulation of the working fluid of the thermosiphon circuit.
 第6の観点によれば、機器温度調整部が所定角度に傾斜した場合、合流部より下側に作動流体の液面があるように、作動流体の封入量が調整されている。
 これによれば、機器温度調整部が傾斜した場合に合流部が液没することを抑制することができる。
According to the sixth aspect, when the device temperature control unit is inclined at a predetermined angle, the enclosed amount of the working fluid is adjusted such that the fluid level of the working fluid is below the merging portion.
According to this, when the device temperature adjustment unit is inclined, it is possible to prevent the junction from being submerged.
 第7の観点によれば、第1接続部と第2接続部は、1つの機器用熱交換器のうち水平方向に離れた位置に設けられている。
 これによれば、機器用熱交換器が傾斜した場合、機器用熱交換器内で蒸発した作動流体は、重力方向上側に位置する第1接続部または第2接続部から第1気相通路または第2気相通路を流れ、凝縮器に流入する。したがって、機器温調装置は、機器温度調整部が傾斜した場合でも、対象機器を冷却することが可能である。
According to the seventh aspect, the first connection portion and the second connection portion are provided at positions separated in the horizontal direction of one device heat exchanger.
According to this, when the heat exchanger for equipment is inclined, the working fluid evaporated in the heat exchanger for equipment is transferred from the first connection portion or the second connection portion located on the upper side in the gravity direction to the first gas phase passage or It flows through the second gas phase passage and flows into the condenser. Therefore, the device temperature adjusting device can cool the target device even when the device temperature adjusting unit is inclined.
 第8の観点によれば、機器用熱交換器は、重力方向から視て長手方向と短手方向を有する形状であり、対象機器に直接接触または熱伝導部材を介して間接的に熱接触する熱交換部を有している。第1接続部と第2接続部は、機器用熱交換器のうち熱交換部より長手方向外側の位置に設けられている。
 これによれば、1つの機器用熱交換器の中で、第1接続部と第2接続部が水平方向に大きく離れた位置に設けられる。そのため、機器用熱交換器が大きく傾斜した場合でも、機器用熱交換器内で蒸発した気相の作動流体を第1接続部または第2接続部から第1気相通路または第2気相通路に排出することが可能である。
According to the eighth aspect, the device heat exchanger has a shape having a longitudinal direction and a short direction as viewed from the direction of gravity, and is in direct thermal contact with the target device or indirectly through the heat conducting member. It has a heat exchange part. The first connection portion and the second connection portion are provided at positions longitudinally outside the heat exchange portion in the device heat exchanger.
According to this, in one heat exchanger for apparatus, the first connection portion and the second connection portion are provided at positions largely separated in the horizontal direction. Therefore, even when the heat exchanger for equipment is greatly inclined, the working fluid of the gas phase evaporated in the heat exchanger for equipment is transferred from the first connection portion or the second connection portion to the first gas phase passage or the second gas phase passage It is possible to
 第9の観点によれば、第1接続部は、機器用熱交換器のうち熱交換部より車両前方側の位置に設けられている。第2接続部は、機器用熱交換器のうち熱交換部より車両後方側の位置に設けられている。そして、第1気相通路は、第1接続部から上方または車両前方へ延びる部位を有し、第2気相通路は、第2接続部から上方または車両後方へ延びる部位を有している。
 これによれば、第1気相通路のうち第1接続部から上方または車両前方へ延びる部位が上方となるように傾斜した場合、機器用熱交換器の熱交換部よりも第1気相通路が相対的に下がらない。よって、そのような傾斜時において、機器用熱交換器の熱交換部で蒸発した気相冷媒が、第1気相通路に導かれやすくなる。
 また、第2気相通路のうち第2接続部から上方または車両前方へ延びる部位が上方となるように傾斜した場合、機器用熱交換器の熱交換部よりも第2気相通路が相対的に下がらない。よって、そのような傾斜時において、機器用熱交換器の熱交換部で蒸発した気相冷媒が、第2気相通路に導かれやすくなる。
According to the ninth aspect, the first connection portion is provided at a position forward of the heat exchange portion of the heat exchanger for the device. The second connection portion is provided at a position on the vehicle rear side of the heat exchange portion in the device heat exchanger. The first gas phase passage has a portion extending upward or forward of the vehicle from the first connection portion, and the second gas phase passage has a portion extending upward or rearward of the vehicle from the second connection portion.
According to this, when the portion extending to the upper side or the front side of the vehicle from the first connection portion in the first gas phase passage is inclined upward, the first gas phase passage is higher than the heat exchange portion of the heat exchanger for equipment Does not go down relatively. Therefore, at the time of such inclination, the gas phase refrigerant evaporated in the heat exchange part of the heat exchanger for equipment becomes easy to be led to the first gas phase passage.
Also, when the second gas phase passage is inclined so that the portion extending upward or forward from the second connection portion is upward, the second gas phase passage is relative to the heat exchange portion of the heat exchanger for equipment It does not go down. Therefore, at the time of such inclination, the gas phase refrigerant evaporated in the heat exchange part of the heat exchanger for equipment becomes easy to be led to the second gas phase passage.
 第10の観点によれば、機器温度調整部は、車両前後方向に離れた位置に設けられる複数の機器用熱交換器、および、複数の機器用熱交換器のうちいずれかに設けられた第1接続部と第2接続部を連結する連結通路を有している。
 これによれば、機器温度調整部が有する複数の機器用熱交換器が傾斜した場合、第1接続部と第2接続部の一方が重力方向上側に位置し、第1接続部と第2接続部の他方が重力方向下側に位置する。そのため、複数の機器用熱交換器内で蒸発した作動流体は、連結通路を介して重力方向上側に位置する第1接続部または第2接続部から第1気相通路または第2気相通路を流れ、凝縮器に流入する。したがって、機器温調装置は、複数の機器用熱交換器が傾斜した場合でも、対象機器を冷却することが可能である。
According to the tenth aspect, the device temperature adjusting unit is provided in any one of the plurality of device heat exchangers and the plurality of device heat exchangers provided at positions separated in the vehicle longitudinal direction. It has the connection passage which connects 1st connection part and 2nd connection part.
According to this, when the several apparatus heat exchanger which an apparatus temperature adjustment part inclines, one side of a 1st connection part and a 2nd connection part is located in a gravity direction upper side, and a 1st connection part and a 2nd connection The other of the parts is located below the direction of gravity. Therefore, the working fluid evaporated in the plurality of equipment heat exchangers passes the first gas phase passage or the second gas phase passage from the first connection portion or the second connection portion located on the upper side in the gravity direction via the connection passage. Flow into the condenser. Therefore, the device temperature adjusting device can cool the target device even when the plurality of device heat exchangers are inclined.
 第11の観点によれば、第1接続部は、複数の機器用熱交換器のうち車両前方側に配置された所定の機器用熱交換器に設けられている。第2接続部は、複数の機器用熱交換器のうち車両後方側に配置された別の機器用熱交換器に設けられている。第1気相通路は、第1接続部から上方または車両前方へ延びる部位を有している。第2気相通路は、第2接続部から上方または車両後方へ延びる部位を有している。
 これによれば、第11の観点も、第9の観点で記載した作用効果と同様の作用効果を奏することが可能である。
According to the eleventh aspect, the first connection portion is provided to a predetermined device heat exchanger disposed on the vehicle front side among the plurality of device heat exchangers. The second connection portion is provided to another device heat exchanger disposed on the rear side of the vehicle among the plurality of device heat exchangers. The first gas phase passage has a portion extending upward or forward of the vehicle from the first connection portion. The second gas phase passage has a portion extending upward or rearward of the vehicle from the second connection portion.
According to this, also in the eleventh aspect, it is possible to exhibit the same operational effects as the operational effects described in the ninth aspect.
 第12の観点によれば、第1気相通路または第2気相通路の少なくとも一部と連結通路とは、互いに当接または隣接した状態で延びる並列部を構成している。
 これによれば、第1気相通路または第2気相通路と連結通路が占める領域が小さくなる。また、車両等に対し第1気相通路または第2気相通路と連結通路を一緒に組み付けることも可能である。したがって、この機器温調装置は、車両等への搭載性および組み付け性を向上することができる。
According to the twelfth aspect, at least a portion of the first gas phase passage or the second gas phase passage and the connection passage constitute a parallel portion extending in a state of being in contact with or adjacent to each other.
According to this, the area occupied by the first gas phase passage or the second gas phase passage and the connection passage becomes smaller. In addition, it is also possible to assemble the first gas phase passage or the second gas phase passage and the connection passage together with a vehicle or the like. Therefore, this apparatus temperature control apparatus can improve the mounting property to a vehicle etc., and an attachment property.
 第13の観点によれば、第1気相通路の少なくとも一部と第2気相通路の少なくとも一部は、互いに当接または隣接した状態で延びる並列部を構成している。
 これによれば、第1気相通路と第2気相通路が占める領域が小さくなる。また、車両等に対し第1気相通路と第2気相通路を一緒に組み付けることも可能である。したがって、この機器温調装置は、車両等への搭載性および組み付け性を向上することができる。
According to the thirteenth aspect, at least a portion of the first gas phase passage and at least a portion of the second gas phase passage form parallel portions extending in a state of being in contact with or adjacent to each other.
According to this, the area occupied by the first gas phase passage and the second gas phase passage becomes smaller. In addition, it is also possible to assemble the first gas phase passage and the second gas phase passage together to a vehicle or the like. Therefore, this apparatus temperature control apparatus can improve the mounting property to a vehicle etc., and an attachment property.
 第14の観点によれば、第1気相通路または第2気相通路の少なくとも一部と連結通路とは、一方の配管の内側に他方の配管が設けられた二重配管構造となっている。
 これによれば、第1気相通路または第2気相通路と連結通路が占める領域が小さくなる。また、車両等に対し二重配管構造となった第1気相通路または第2気相通路と連結通路を一緒に組み付けることも可能である。したがって、この機器温調装置は、車両等への搭載性および組み付け性を向上することができる。
According to the fourteenth aspect, at least a part of the first gas phase passage or the second gas phase passage and the connection passage have a double pipe structure in which the other pipe is provided inside the one pipe. .
According to this, the area occupied by the first gas phase passage or the second gas phase passage and the connection passage becomes smaller. Moreover, it is also possible to assemble | attach the 1st gas phase passage or 2nd gas phase passage and connection path which became a double piping structure with respect to the vehicle etc. together. Therefore, this apparatus temperature control apparatus can improve the mounting property to a vehicle etc., and an attachment property.
 第15の観点によれば、第1気相通路の少なくとも一部と第2気相通路の少なくとも一部は、一方の配管の内側に他方の配管が設けられた二重配管構造となっている。
 これによれば、第1気相通路と第2気相通路が占める領域が小さくなる。また、車両等に対し二重配管構造となった第1気相通路と第2気相通路を一緒に組み付けることも可能である。したがって、この機器温調装置は、車両等への搭載性および組み付け性を向上することができる。
According to the fifteenth aspect, at least a portion of the first gas phase passage and at least a portion of the second gas phase passage have a double piping structure in which the other piping is provided inside the one piping. .
According to this, the area occupied by the first gas phase passage and the second gas phase passage becomes smaller. Moreover, it is also possible to assemble | attach the 1st gas phase passage and 2nd gas phase passage which became a double piping structure with respect to the vehicle etc. together. Therefore, this apparatus temperature control apparatus can improve the mounting property to a vehicle etc., and an attachment property.
 第16の観点によれば、機器温調装置は、第1気相通路または第2気相通路に設けられ、気相通路の接続部側から合流部側への液相の作動流体の流れを規制する流路面積調整弁を備える。
 これによれば、機器温度調整部が傾斜した場合、第1接続部と第2接続部のうち重力方向下側に位置する接続部側から合流部側への液相の作動流体の流れが規制されることで、合流部が液没することが防がれる。そのため、第1接続部と第2接続部のうち重力方向上側に位置する接続部側から合流部を経由して合流通路へ向かう気相の作動流体の流れが確保される。したがって、機器温調装置は、合流部の位置を下げることで、車両等への搭載性を向上することができる。
 また、機器温度調整部が傾斜した場合、第1接続部と第2接続部のうち重力方向下側に位置する接続部から気相通路に流れる液相の作動流体は、流路面積調整弁で流れが規制される。そのため、機器温度調整部が傾斜した場合、機器用熱交換器から気相通路に流れる液相の作動流体の量を少なくすることが可能である。したがって、機器用熱交換器の液相の作動流体の減少が抑制されるので、機器温調装置は、対象機器の冷却性能を向上することができる。
According to the sixteenth aspect, the device temperature adjusting device is provided in the first gas phase passage or the second gas phase passage, and the flow of the working fluid in the liquid phase from the connection portion side of the gas phase passage to the merging portion side It has a flow path area adjustment valve that regulates.
According to this, when the device temperature adjustment unit is inclined, the flow of the working fluid in the liquid phase from the connection portion side of the first connection portion and the second connection portion located on the lower side in the gravity direction is restricted. As a result, the junction is prevented from being submerged. Therefore, the flow of the working fluid of the gaseous phase which goes to a confluence passage via a confluence part from the connection part side located in gravity direction upper side among the 1st connection part and the 2nd connection part is secured. Therefore, the equipment temperature control apparatus can improve the mounting property to a vehicle etc. by lowering the position of the junction.
In addition, when the device temperature adjustment unit is inclined, the working fluid in the liquid phase flowing from the connection portion located on the lower side in the direction of gravity of the first connection portion and the second connection portion to the gas phase passage is a flow passage area adjustment valve. Flow is regulated. Therefore, when the device temperature control unit is inclined, it is possible to reduce the amount of liquid working fluid flowing from the device heat exchanger to the gas phase passage. Therefore, since the decrease in the working fluid in the liquid phase of the heat exchanger for equipment is suppressed, the equipment temperature control apparatus can improve the cooling performance of the target equipment.
 第17の観点によれば、機器温調装置は、機器温度調整部の傾きを検出する傾きセンサをさらに備える。機器温度調整部の傾きが傾きセンサにより検出されたとき、流路面積調整弁は、気相通路の接続部側から凝縮器側への液相の作動流体の流れを規制する。
 これによれば、機器温度調整部の傾きに対応して流路面積調整弁が動作するので、流路面積調整弁は、気相通路の接続部側から合流部側への液相の作動流体の流れを確実に規制することができる。
According to the seventeenth aspect, the device temperature adjusting device further includes a tilt sensor that detects the tilt of the device temperature adjusting unit. When the inclination of the device temperature adjustment unit is detected by the inclination sensor, the flow passage area adjustment valve regulates the flow of the working fluid in the liquid phase from the connection side of the gas phase passage to the condenser side.
According to this, since the flow passage area adjustment valve operates corresponding to the inclination of the device temperature adjustment unit, the flow passage area adjustment valve operates the working fluid of the liquid phase from the connection portion side of the gas phase passage to the merging portion side Flow can be reliably regulated.
 第18の観点によれば、流路面積調整弁は、弁座と弁体を有する。弁座は、気相通路の内壁に設けられる。弁体は、気相通路の接続部が弁座より重力方向上側にあるときに自重により弁座に着座し、その気相通路の接続部が弁座より重力方向下側にあるとき弁座から離座する。これによれば、流路面積調整弁の構成を簡素なものとすることができる。 According to the eighteenth aspect, the flow passage area adjustment valve has a valve seat and a valve body. The valve seat is provided on the inner wall of the gas phase passage. The valve element is seated on the valve seat by its own weight when the connection of the gas phase passage is above the valve seat in the direction of gravity, and from the valve seat when the connection of the gas phase passage is below the valve seat in the direction of gravity Take a break. According to this, the configuration of the flow passage area adjustment valve can be simplified.
 第19の観点によれば、流路面積調整弁は、弁座と弁体を有する。弁座は、気相通路の内壁に設けられる。弁体は、気相通路に液相の作動流体が流れるときに浮力により弁座に着座し、その気相通路に気相の作動流体が流れるときに弁座から離座する。これによれば、流路面積調整弁の構成を簡素なものとすることができる。 According to a nineteenth aspect, the flow passage area adjustment valve has a valve seat and a valve body. The valve seat is provided on the inner wall of the gas phase passage. The valve body floats on the valve seat when the liquid phase working fluid flows in the gas phase passage, and leaves the valve seat when the gas phase working fluid flows in the gas phase passage. According to this, the configuration of the flow passage area adjustment valve can be simplified.
 第20の観点によれば、作動流体の液相と気相との相変化により対象機器の温度を調整する機器温調装置は、機器温度調整部、凝縮器、液相通路、複数の気相通路、および連結通路を備える。機器温度調整部は、複数の機器用熱交換器、および、連結通路を有する。複数の機器用熱交換器は、対象機器の冷却時に作動流体が蒸発するように対象機器と作動流体とが熱交換可能に構成されている。連結通路は、複数の機器用熱交換器同士を連結する。凝縮器は、気相の作動流体を放熱させ、凝縮した液相の作動流体を流出させる。液相通路は、複数の機器用熱交換器と凝縮器との間に液相の作動流体を流す。複数の気相通路は、複数の機器用熱交換器と凝縮器との間に気相の作動流体を流す。複数の気相通路のうち第1気相通路が機器温度調整部に接続する第1接続部と、第2気相通路が機器温度調整部に接続する第2接続部とは、水平方向に離れた場所に位置している。そして、第1接続部と第2接続部とは、それぞれ別々の機器用熱交換器に設けられるか、または、同一の機器用熱交換器に設けられる。 According to the twentieth aspect, the device temperature adjusting device for adjusting the temperature of the target device by the phase change between the liquid phase and the gas phase of the working fluid comprises the device temperature adjusting unit, the condenser, the liquid phase passage, and the plurality of gas phases. A passage and a connection passage are provided. The device temperature control unit has a plurality of device heat exchangers and a connection passage. The plurality of device heat exchangers are configured to be able to exchange heat between the target device and the working fluid so that the working fluid evaporates when the target device is cooled. The connection passage connects the plurality of device heat exchangers to each other. The condenser dissipates the gas phase working fluid and causes the condensed liquid phase working fluid to flow out. The liquid phase passage causes the working fluid in the liquid phase to flow between the plurality of instrument heat exchangers and the condenser. The plurality of gas phase passages allow the gas phase working fluid to flow between the plurality of equipment heat exchangers and the condenser. The first connection portion in which the first gas phase passage is connected to the device temperature adjustment unit among the plurality of gas phase passages and the second connection portion in which the second gas phase passage is connected to the device temperature adjustment portion are horizontally separated Located in the The first connection portion and the second connection portion may be provided in separate device heat exchangers, or may be provided in the same device heat exchanger.
 これによれば、機器温度調整部が傾斜した場合、第1接続部と第2接続部の一方が重力方向上側に位置し、第1接続部と第2接続部の他方が重力方向下側に位置する。そのため、複数の機器用熱交換器内で蒸発した作動流体は、重力方向上側に位置する第1接続部または第2接続部から第1気相通路または第2気相通路の少なくとも一方を流れ、凝縮器に流入する。凝縮器で凝縮した作動流体は、液相通路を流れ、複数の機器用熱交換器に流入する。このような作動流体の循環により、機器温調装置は、機器温度調整部が傾斜した場合でも、対象機器を冷却することが可能である。 According to this, when the device temperature adjustment unit is inclined, one of the first connection portion and the second connection portion is located on the upper side in the gravity direction, and the other of the first connection portion and the second connection portion is on the lower side in the gravity direction. To position. Therefore, the working fluid evaporated in the plurality of equipment heat exchangers flows from at least one of the first gas phase passage and the second gas phase passage from the first connection portion or the second connection portion located on the upper side in the direction of gravity. It flows into the condenser. The working fluid condensed by the condenser flows through the liquid phase passage and flows into the plurality of equipment heat exchangers. Such circulation of the working fluid enables the device temperature control device to cool the target device even when the device temperature control unit is inclined.

Claims (20)

  1.  作動流体の液相と気相との相変化により対象機器(2)の温度を調整する機器温調装置であって、
     前記対象機器の冷却時に作動流体が蒸発するように前記対象機器と作動流体とが熱交換可能に構成された1つまたは複数の機器用熱交換器(11~14)を有する機器温度調整部(10)と、
     気相の作動流体を放熱させ、凝縮した液相の作動流体を流出させる凝縮器(50)と、
     前記凝縮器と前記機器温度調整部との間に液相の作動流体を流す液相通路(55)と、
     前記機器温度調整部と前記凝縮器との間に気相の作動流体を流す複数の気相通路(21~24、30~32、40~42)と、を備え、
     複数の前記気相通路のうち第1気相通路(21)が前記機器温度調整部に接続する第1接続部(211)と、第2気相通路(22)が前記機器温度調整部に接続する第2接続部(221)とは、水平方向に離れた場所に位置している、機器温調装置。
    An apparatus temperature control device for adjusting the temperature of a target device (2) by phase change between a liquid phase and a gas phase of a working fluid, comprising:
    An apparatus temperature control unit having one or more apparatus heat exchangers (11 to 14) configured to be capable of exchanging heat between the target apparatus and the working fluid so that the working fluid evaporates when the target apparatus is cooled 10) and
    A condenser (50) for dissipating the gas phase working fluid and discharging the condensed liquid phase working fluid;
    A liquid phase passage (55) for flowing a working fluid in a liquid phase between the condenser and the device temperature control unit;
    A plurality of gas phase passages (21-24, 30-32, 40-42) for flowing a working fluid of gas phase between the device temperature control unit and the condenser;
    Among the plurality of gas phase passages, the first connection portion (211) where the first gas phase passage (21) is connected to the device temperature adjustment unit, and the second gas phase passage (22) are connected to the device temperature adjustment portion The second connection unit (221) is an apparatus temperature control device located at a position distant in the horizontal direction.
  2.  機器温調装置は、車両に搭載されるものであり、
     前記第1接続部と前記第2接続部とは、車両前後方向に離れた場所に位置している、請求項1に記載の機器温調装置。
    The device temperature control device is mounted on a vehicle,
    The device temperature control device according to claim 1, wherein the first connection portion and the second connection portion are located at places separated in the vehicle longitudinal direction.
  3.  前記機器温度調整部が水平状態にある場合、作動流体の液面(FL)が前記機器用熱交換器の高さ方向の途中に位置し、前記第1接続部と前記第2接続部が、前記機器温度調整部のうち作動流体の液面より上側に位置するように作動流体の封入量が調整されている、請求項1または2に記載の機器温調装置。 When the device temperature adjustment unit is in the horizontal state, the liquid level (FL) of the working fluid is located halfway in the height direction of the device heat exchanger, and the first connection portion and the second connection portion are The device temperature control device according to claim 1 or 2, wherein the enclosed amount of the working fluid is adjusted so as to be located above the liquid surface of the working fluid in the device temperature control unit.
  4.  前記機器温度調整部が所定角度に傾斜した場合、作動流体の液面が前記第1接続部または前記第2接続部の一方の上側にあり、前記第1接続部または前記第2接続部の他方の下側にあるように、作動流体の封入量が調整されている、請求項1ないし3のいずれか1つに記載の機器温調装置。 When the device temperature adjustment unit is inclined at a predetermined angle, the liquid surface of the working fluid is on the upper side of one of the first connection portion or the second connection portion, and the other of the first connection portion or the second connection portion The temperature controller for equipment according to any one of claims 1 to 3, wherein the amount of the working fluid enclosed is adjusted so that it is under the
  5.  前記気相通路は、前記第1気相通路を流れる作動流体と前記第2気相通路を流れる作動流体とを合流させる合流部(30~32)と、前記合流部と前記凝縮器との間に気相の作動流体を流す合流通路(40~42)と、を含んで構成されており、
     前記合流部は、前記第1接続部および前記第2接続部よりも重力方向上側に設けられる、請求項1ないし4のいずれか1つに記載の機器温調装置。
    The gas phase passage includes a junction (30 to 32) for joining the working fluid flowing in the first gas phase passage and the working fluid flowing in the second gas phase passage, and between the junction and the condenser. And a merging passage (40 to 42) through which the working fluid in the gas phase flows.
    The device temperature control device according to any one of claims 1 to 4, wherein the merging portion is provided above the first connection portion and the second connection portion in the direction of gravity.
  6.  前記機器温度調整部が所定角度に傾斜した場合、前記合流部より下側に作動流体の液面があるように、作動流体の封入量が調整されている、請求項5に記載の機器温調装置。 The apparatus temperature control according to claim 5, wherein when the apparatus temperature adjusting unit is inclined at a predetermined angle, the enclosed amount of the working fluid is adjusted such that the liquid level of the working fluid is below the merging part. apparatus.
  7.  前記第1接続部と前記第2接続部は、1つの前記機器用熱交換器のうち水平方向に離れた位置に設けられている、請求項1ないし6のいずれか1つに記載の機器温調装置。 The device temperature according to any one of claims 1 to 6, wherein the first connection portion and the second connection portion are provided at horizontally separated positions in one of the device heat exchangers. Adjuster.
  8.  前記機器用熱交換器は、重力方向から視て長手方向と短手方向を有する形状であり、前記対象機器に直接接触または熱伝導部材を介して間接的に熱接触する熱交換部(113)を有しており、
     前記第1接続部と前記第2接続部は、前記機器用熱交換器のうち前記熱交換部より長手方向外側の位置に設けられている、請求項1ないし7のいずれか1つに記載の機器温調装置。
    The device heat exchanger has a shape having a longitudinal direction and a short direction as viewed from the direction of gravity, and is in direct thermal contact with the target device or indirectly through a heat conducting member (113) And have
    The said 1st connection part and the said 2nd connection part are provided in the position of the longitudinal direction outer side from the said heat exchange part among the said heat exchangers for apparatuses, It is provided in any one of Claim 1 thru | or 7 Equipment temperature control device.
  9.  前記第1接続部は、前記機器用熱交換器のうち前記熱交換部より車両前方側の位置に設けられており、
     前記第2接続部は、前記機器用熱交換器のうち前記熱交換部より車両後方側の位置に設けられており、
     前記第1気相通路は、前記第1接続部から上方または車両前方へ延びる部位(21a)を有し、
     前記第2気相通路は、前記第2接続部から上方または車両後方へ延びる部位(22a)を有している、請求項8に記載の機器温調装置。
    The first connection portion is provided at a position forward of the heat exchange portion of the heat exchanger for the device.
    The second connection portion is provided at a position rearward of the heat exchange portion of the heat exchanger for the device.
    The first gas phase passage has a portion (21a) extending upward or forward of the vehicle from the first connection portion,
    The apparatus temperature control device according to claim 8, wherein the second gas phase passage has a portion (22a) extending upward or rearward of the vehicle from the second connection portion.
  10.  前記機器温度調整部は、車両前後方向に離れた位置に設けられる複数の前記機器用熱交換器、および、複数の前記機器用熱交換器のうちいずれかに設けられた前記第1接続部と前記第2接続部を連結する連結通路(61、62)を有している、請求項1ないし9のいずれか1つに記載の機器温調装置。 The device temperature adjustment unit includes a plurality of device heat exchangers provided at positions separated in the vehicle longitudinal direction, and the first connection portion provided in any of the plurality of device heat exchangers. The device temperature control device according to any one of claims 1 to 9, further comprising a connection passage (61, 62) connecting the second connection portion.
  11.  前記第1接続部は、複数の前記機器用熱交換器のうち車両前方側に配置された所定の前記機器用熱交換器に設けられており、
     前記第2接続部は、複数の前記機器用熱交換器のうち車両後方側に配置された別の前記機器用熱交換器に設けられており、
     前記第1気相通路は、前記第1接続部から上方または車両前方へ延びる部位(21a)を有しており、
     前記第2気相通路は、前記第2接続部から上方または車両後方へ延びる部位(22a)を有している、請求項10に記載の機器温調装置。
    The first connection portion is provided to a predetermined heat exchanger for equipment disposed on the front side of the vehicle among the plurality of heat exchangers for equipment.
    The second connection portion is provided to another device heat exchanger disposed on the rear side of the vehicle among the plurality of device heat exchangers,
    The first gas phase passage has a portion (21a) extending upward or forward of the vehicle from the first connection portion,
    The apparatus temperature control device according to claim 10, wherein the second gas phase passage has a portion (22a) extending upward or rearward of the vehicle from the second connection portion.
  12.  前記第1気相通路または前記第2気相通路の少なくとも一部と前記連結通路とは、互いに当接または隣接した状態で延びる並列部(251)を構成している、請求項10または11に記載の機器温調装置。 The parallel portion (251) according to claim 10 or 11, wherein at least a part of the first gas phase passage or the second gas phase passage and the connection passage form a parallel portion (251) extending in a state of being in contact with or adjacent to each other. Equipment temperature control device as described.
  13.  前記第1気相通路の少なくとも一部と前記第2気相通路の少なくとも一部とは、互いに当接または隣接した状態で延びる並列部(25)を構成している、請求項1ないし12のいずれか1つに記載の機器温調装置。 13. A parallel section (25) according to claim 1, wherein at least a portion of the first gas phase passage and at least a portion of the second gas phase passage form parallel portions (25) extending in abutment or adjacent to each other. The apparatus temperature control apparatus as described in any one.
  14.  前記第1気相通路または前記第2気相通路の少なくとも一部と前記連結通路とは、一方の配管の内側に他方の配管が設けられた二重配管構造(26)となっている、請求項10または11に記載の機器温調装置。 At least a part of the first gas phase passage or the second gas phase passage and the connection passage form a double piping structure (26) in which the other piping is provided inside one piping. The apparatus temperature control apparatus of claim 10 or 11.
  15.  前記第1気相通路の少なくとも一部と前記第2気相通路の少なくとも一部とは、一方の配管の内側に他方の配管が設けられた二重配管構造(26)となっている、請求項1ないし14のいずれか1つに記載の機器温調装置。 At least a portion of the first gas phase passage and at least a portion of the second gas phase passage have a double piping structure (26) in which the other piping is provided inside the one piping. The apparatus temperature control apparatus as described in any one of claim | item 1 thru | or 14.
  16.  前記第1気相通路または前記第2気相通路に設けられ、前記気相通路の前記第1接続部側または前記第2接続部側から前記凝縮器側への液相の作動流体の流れを規制する流路面積調整弁(80、83、86)を備える、請求項1ないし13のいずれか1つに記載の機器温調装置。 It is provided in the first gas phase passage or the second gas phase passage, and the flow of the working fluid of the liquid phase from the first connection portion side or the second connection portion side of the gas phase passage to the condenser side The apparatus temperature control apparatus according to any one of claims 1 to 13, further comprising a flow path area control valve (80, 83, 86) for regulating.
  17.  前記機器温度調整部の傾きを検出する傾きセンサ(82)をさらに備え、
     前記機器温度調整部の傾きが前記傾きセンサにより検出されたとき、前記流路面積調整弁は、前記気相通路の前記第1接続部側または前記第2接続部側から前記凝縮器側への液相の作動流体の流れを規制する、請求項16に記載の機器温調装置。
    It further comprises an inclination sensor (82) for detecting the inclination of the device temperature adjustment unit,
    When the inclination of the device temperature adjustment unit is detected by the inclination sensor, the flow passage area adjustment valve is connected to the condenser side from the first connection portion side or the second connection portion side of the gas phase passage. The device temperature control device according to claim 16, which regulates the flow of the working fluid in the liquid phase.
  18.  前記流路面積調整弁(83)は、
     前記気相通路の内壁に設けられる弁座(84)と、
     前記気相通路の前記第1接続部または前記第2接続部が前記弁座より重力方向上側にあるときに自重により前記弁座に着座し、前記気相通路の前記第1接続部または前記第2接続部が前記弁座より重力方向下側にあるとき前記弁座から離座する弁体(85)を有する、請求項16に記載の機器温調装置。
    The flow passage area adjustment valve (83)
    A valve seat (84) provided on the inner wall of the gas phase passage;
    When the first connection portion or the second connection portion of the gas phase passage is above the valve seat in the gravity direction, the valve seat is seated on the valve seat by its own weight, and the first connection portion or the The device temperature control device according to claim 16, further comprising a valve body (85) which is separated from the valve seat when the two connection portions are lower than the valve seat in the gravity direction.
  19.  前記流路面積調整弁(86)は、
     前記気相通路の内壁に設けられる弁座(87)と、
     前記気相通路に液相の作動流体が流れるときに浮力により弁座に着座し、前記気相通路に気相の作動流体が流れるときに弁座から離座する弁体(88)を有する、請求項16に記載の機器温調装置。
    The flow passage area adjustment valve (86)
    A valve seat (87) provided on the inner wall of the gas phase passage;
    The valve body (88) is seated on the valve seat by buoyancy when the liquid phase working fluid flows in the gas phase passage, and is detached from the valve seat when the gas phase working fluid flows in the gas phase passage. The device temperature control device according to claim 16.
  20.  作動流体の液相と気相との相変化により対象機器(2)の温度を調整する機器温調装置であって、
     前記対象機器の冷却時に作動流体が蒸発するように前記対象機器と作動流体とが熱交換可能に構成された複数の機器用熱交換器(11~14)、および、複数の前記機器用熱交換器同士を連結する連結通路(61、62)を有する機器温度調整部(10)と、
     気相の作動流体を放熱させ、凝縮した液相の作動流体を流出させる凝縮器(50)と、
     複数の前記機器用熱交換器と前記凝縮器との間に液相の作動流体を流す液相通路(55)と、
     複数の前記機器用熱交換器と前記凝縮器との間に気相の作動流体を流す複数の気相通路(21~24、30~32、40~42)と、を備え、
     複数の前記気相通路のうち第1気相通路(21)が前記機器温度調整部に接続する第1接続部(211)と、第2気相通路(22)が前記機器温度調整部に接続する第2接続部(221)とは、水平方向に離れた場所に位置し、それぞれ別々の前記機器用熱交換器に設けられるか、または、同一の前記機器用熱交換器に設けられている、機器温調装置。
    An apparatus temperature control device for adjusting the temperature of a target device (2) by phase change between a liquid phase and a gas phase of a working fluid, comprising:
    Heat exchangers (11 to 14) for a plurality of devices configured to be able to exchange heat between the target device and the working fluid so that the working fluid evaporates when the target device is cooled, and heat exchange for a plurality of the devices A device temperature control unit (10) having connection passages (61, 62) for connecting the
    A condenser (50) for dissipating the gas phase working fluid and discharging the condensed liquid phase working fluid;
    A liquid phase passage (55) for flowing a working fluid in a liquid phase between the plurality of heat exchangers for equipment and the condenser;
    A plurality of gas phase passages (21-24, 30-32, 40-42) for flowing a working fluid of gas phase between the plurality of heat exchangers for equipment and the condenser;
    Among the plurality of gas phase passages, the first connection portion (211) where the first gas phase passage (21) is connected to the device temperature adjustment unit, and the second gas phase passage (22) are connected to the device temperature adjustment portion And the second connection portion (221), which are located horizontally away from each other, are respectively provided in the separate heat exchangers for equipment or are provided in the same heat exchanger for equipment , Equipment temperature control device.
PCT/JP2018/029095 2017-09-13 2018-08-02 Device temperature adjustment apparatus WO2019054076A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880046989.6A CN110892225B (en) 2017-09-13 2018-08-02 Equipment temperature adjusting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017176038 2017-09-13
JP2017-176038 2017-09-13
JP2018137127A JP6784281B2 (en) 2017-09-13 2018-07-20 Equipment temperature controller
JP2018-137127 2018-07-20

Publications (1)

Publication Number Publication Date
WO2019054076A1 true WO2019054076A1 (en) 2019-03-21

Family

ID=65723346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029095 WO2019054076A1 (en) 2017-09-13 2018-08-02 Device temperature adjustment apparatus

Country Status (1)

Country Link
WO (1) WO2019054076A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203152A1 (en) * 2019-03-29 2020-10-08 株式会社デンソー Thermosiphon-type cooling device for vehicle
CN111854488A (en) * 2019-04-26 2020-10-30 丰田自动车株式会社 Cooling device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065456A (en) * 1998-08-20 2000-03-03 Denso Corp Ebullient cooler
JP2005019904A (en) * 2003-06-30 2005-01-20 Matsushita Electric Ind Co Ltd Cooler
JP2007533944A (en) * 2004-03-31 2007-11-22 ベリッツ コンピューター システムズ, インコーポレイテッド Thermosyphon-based thin cooling system for computers and other electronic equipment
US20090014155A1 (en) * 2007-07-13 2009-01-15 International Business Machines Corporation Thermally pumped liquid/gas heat exchanger for cooling heat-generating devices
JP2013083413A (en) * 2011-10-12 2013-05-09 Panasonic Corp Cooling device, electronic device with the same, and electric vehicle
JP2016017732A (en) * 2014-07-11 2016-02-01 富士通株式会社 Cooling system and electronic device
WO2016031195A1 (en) * 2014-08-27 2016-03-03 日本電気株式会社 Phase-change cooler and phase-change cooling method
JP2017116151A (en) * 2015-12-22 2017-06-29 パナソニックIpマネジメント株式会社 Cooling device, electronic equipment and electric vehicle mounting the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065456A (en) * 1998-08-20 2000-03-03 Denso Corp Ebullient cooler
JP2005019904A (en) * 2003-06-30 2005-01-20 Matsushita Electric Ind Co Ltd Cooler
JP2007533944A (en) * 2004-03-31 2007-11-22 ベリッツ コンピューター システムズ, インコーポレイテッド Thermosyphon-based thin cooling system for computers and other electronic equipment
US20090014155A1 (en) * 2007-07-13 2009-01-15 International Business Machines Corporation Thermally pumped liquid/gas heat exchanger for cooling heat-generating devices
JP2013083413A (en) * 2011-10-12 2013-05-09 Panasonic Corp Cooling device, electronic device with the same, and electric vehicle
JP2016017732A (en) * 2014-07-11 2016-02-01 富士通株式会社 Cooling system and electronic device
WO2016031195A1 (en) * 2014-08-27 2016-03-03 日本電気株式会社 Phase-change cooler and phase-change cooling method
JP2017116151A (en) * 2015-12-22 2017-06-29 パナソニックIpマネジメント株式会社 Cooling device, electronic equipment and electric vehicle mounting the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203152A1 (en) * 2019-03-29 2020-10-08 株式会社デンソー Thermosiphon-type cooling device for vehicle
CN111854488A (en) * 2019-04-26 2020-10-30 丰田自动车株式会社 Cooling device
CN111854488B (en) * 2019-04-26 2022-04-08 丰田自动车株式会社 Cooling device

Similar Documents

Publication Publication Date Title
JP6604442B2 (en) Equipment temperature controller
JP6784281B2 (en) Equipment temperature controller
JP5626194B2 (en) Heat exchange system
JP6579276B2 (en) Equipment temperature controller
WO2018168276A1 (en) Device temperature adjusting apparatus
WO2018047534A1 (en) Instrument temperature adjustment device
WO2018047533A1 (en) Device temperature adjusting apparatus
JP6575690B2 (en) Equipment temperature controller
JP6593544B2 (en) Equipment temperature controller
WO2019039187A1 (en) Battery temperature regulator
WO2019054076A1 (en) Device temperature adjustment apparatus
JP7159771B2 (en) Equipment temperature controller
WO2020203152A1 (en) Thermosiphon-type cooling device for vehicle
WO2019123881A1 (en) Device temperature adjusting apparatus
WO2019093230A1 (en) Device-temperature adjusting apparatus
WO2020235475A1 (en) Device temperature adjustment apparatus
WO2019221237A1 (en) Apparatus temperature adjustment device
WO2020129645A1 (en) Equipment temperature regulating device
WO2019087574A1 (en) Thermosiphon-type temperature control device
WO2018070182A1 (en) Appliance temperature regulating apparatus
WO2019087800A1 (en) Equipment temperature control device
JP2019086275A (en) Equipment temperature controller
JP7102977B2 (en) Thermosiphon type heating system
WO2019146262A1 (en) Thermosiphon cooling device for vehicle
JP2019082310A (en) Apparatus temperature adjusting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18856049

Country of ref document: EP

Kind code of ref document: A1