WO2018070182A1 - Appliance temperature regulating apparatus - Google Patents

Appliance temperature regulating apparatus Download PDF

Info

Publication number
WO2018070182A1
WO2018070182A1 PCT/JP2017/033313 JP2017033313W WO2018070182A1 WO 2018070182 A1 WO2018070182 A1 WO 2018070182A1 JP 2017033313 W JP2017033313 W JP 2017033313W WO 2018070182 A1 WO2018070182 A1 WO 2018070182A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
condenser
heat
temperature control
storage agent
Prior art date
Application number
PCT/JP2017/033313
Other languages
French (fr)
Japanese (ja)
Inventor
功嗣 三浦
康光 大見
義則 毅
竹内 雅之
山中 隆
加藤 吉毅
慧伍 佐藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018070182A1 publication Critical patent/WO2018070182A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • This disclosure relates to a device temperature control device capable of adjusting the temperature of a temperature control target device.
  • thermosyphon cooling device for cooling a temperature-controlled device.
  • a loop-type thermosyphon cooling device for cooling a temperature-controlled device.
  • the device temperature control apparatus described in Patent Document 1 includes an annular device fluid circuit configured to include a device heat exchanger, a gas passage portion, a condenser, and a liquid passage portion.
  • this equipment temperature control apparatus supplies a heat medium (for example, blown air) for exchanging heat with the working medium existing inside the condenser to dissipate the working medium, thereby supplying the working fluid.
  • a heat radiation amount adjusting unit (for example, a blower) that adjusts the heat radiation amount is provided.
  • the equipment heat exchanger is a heat exchanger that absorbs heat from the temperature control target equipment and evaporates the liquid working fluid.
  • the condenser is a heat exchanger that is disposed above the equipment heat exchanger and condenses the gaseous working fluid evaporated in the equipment heat exchanger.
  • the condenser radiates heat and condenses the working medium existing in the condenser by heat exchange with the heat medium supplied from the heat radiation amount adjusting unit.
  • the gas passage portion is a passage member that guides the gaseous working fluid evaporated in the equipment heat exchanger to the condenser.
  • the liquid passage portion is a passage member that guides the liquid working fluid condensed by the condenser to the equipment heat exchanger. That is, this equipment temperature control device is a heat pipe that performs heat transfer by evaporation and condensation of the working fluid by circulating the working fluid in the equipment fluid circuit.
  • This device temperature control device is configured to be a loop thermosyphon in which a flow path through which a gaseous working fluid flows and a flow path through which a liquid working fluid flows are separated.
  • the working fluid flows in the order of the device heat exchanger, the gas passage portion, the condenser, and the liquid passage portion.
  • the direction in which the working fluid flows in this order is the forward direction.
  • thermosiphon type device temperature control apparatus such as Patent Document 1
  • the heat radiation capacity of the heat radiation amount adjusting unit may be reduced due to various circumstances, thereby reducing the condenser capacity of the condenser.
  • the heat radiation capacity of the heat radiation amount adjusting unit may be reduced due to various circumstances. Specifically, for example, when a blower installed in the engine room is used as the heat dissipation amount adjustment unit, when the vehicle speed is reduced, the air flow by the blower is also reduced, so that the condenser capacity is also reduced. Condensation is not performed sufficiently.
  • the condensation capacity of the condenser is reduced, and the flow rate of the working fluid in the forward direction is reduced.
  • the cooling capacity of the device temperature control device is significantly reduced.
  • the overall cooling capacity that is, the total cooling capacity obtained per predetermined time
  • the upper limit of the rotational speed of the compressor is decreased in response to a decrease in vehicle speed. Even when the upper limit of the rotational speed of the compressor of the refrigeration cycle is reduced by various controls or the like, the condenser capacity of the condenser is lowered, and the cooling capacity is significantly lowered for the same reason as described above.
  • This disclosure aims to provide a configuration in which the cooling capacity is hardly lowered even in the case where the heat radiation capacity of the heat radiation amount adjusting unit is lowered in the thermosiphon type device temperature control device.
  • the equipment temperature control device has a configuration including an annular equipment fluid circuit including an equipment heat exchanger, a gas passage section, a condenser, and a liquid passage section.
  • the equipment heat exchanger cools the temperature control target device by absorbing heat from the temperature control target device and evaporating the liquid working fluid.
  • the gas passage part guides the gaseous working fluid evaporated in the equipment heat exchanger to the condenser.
  • the condenser is disposed above the equipment heat exchanger, and condenses the gaseous working fluid evaporated in the equipment heat exchanger.
  • the liquid passage portion guides the liquid working fluid condensed in the condenser to the equipment heat exchanger. Further, in this device temperature control device, the heat dissipation amount of the working fluid is adjusted by the heat dissipation amount adjusting unit.
  • the heat radiation amount adjusting unit is configured to exchange heat between the heat medium and the working fluid existing in the condenser by supplying the heat medium to the condenser.
  • this apparatus temperature control apparatus is set as the structure which has a cool storage agent arrange
  • this device temperature control device, even when the heat radiation capacity of the heat radiation amount adjusting unit is lowered, the cold heat accumulated in the cold storage agent is transmitted to the working fluid, so that the working fluid is easily cooled and condensed. And since it becomes easy to condense a working fluid, it becomes easy to maintain the forward flow of the working fluid in the fluid circuit for apparatus, and it becomes easy to maintain the cooling capacity of an apparatus temperature control apparatus by extension. That is, since the cool storage agent is arranged in the fluid circuit for equipment, even when the heat radiation capacity of the heat radiation amount adjusting unit is lowered, the cooling capacity is easily maintained without being lowered.
  • FIG. 1 It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on 1st Embodiment. It is explanatory drawing for demonstrating the input-output characteristic of an assembled battery. It is a schematic diagram which shows the inside of the apparatus heat exchanger of the apparatus temperature control apparatus shown in FIG. It is a figure which shows the whole structure of the condenser of the apparatus temperature control apparatus shown in FIG. It is a figure which shows the change of the cooling performance of each apparatus temperature control apparatus with and without having a cool storage agent, when a compressor stops. It is a figure which shows the change of the cooling performance of each apparatus temperature control apparatus with and without having a cool storage agent, when the upper limit of the rotation speed of a compressor falls.
  • FIG. 1 It is a figure which shows the change of the cooling performance of each apparatus temperature control apparatus with and without having a cool storage agent, when installing an air blower in a vehicle interior.
  • It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on 5th Embodiment.
  • FIG. 18 is a sectional view taken along line XVIII-XVIII in FIG. It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on 8th Embodiment. It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on 9th Embodiment. It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on 10th Embodiment. It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on 11th Embodiment. It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on the other example of 11th Embodiment. It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on 12th Embodiment.
  • the device temperature control device 1 is a device capable of cooling the temperature control target device BP.
  • the device temperature adjustment device 1 shown in FIG. 1 is applied as a device for adjusting the battery temperature of the assembled battery BP mounted on a vehicle.
  • a traveling electric motor not shown
  • the assembled battery BP is configured by a stacked body in which a plurality of rectangular parallelepiped battery cells BC are stacked.
  • the plurality of battery cells BC constituting the assembled battery BP are electrically connected in series.
  • Each battery cell BC constituting the assembled battery BP is configured by a chargeable / dischargeable secondary battery (for example, a lithium ion battery or a lead storage battery).
  • the battery cell BC is not limited to a rectangular parallelepiped shape, and may have another shape such as a cylindrical shape.
  • the assembled battery BP may include a battery cell BC electrically connected in parallel.
  • the assembled battery BP is connected to a power converter (not shown) and a motor generator.
  • This power conversion device is, for example, a device that converts a direct current supplied from the assembled battery BP into an alternating current, and supplies (ie, discharges) the converted alternating current to various electric loads such as a traveling electric motor. is there.
  • the motor generator is a device that reversely converts the traveling energy of the vehicle into electric energy during regeneration of the vehicle, and supplies the reversely converted electric energy as regenerative power to the assembled battery BP via a power conversion device or the like. .
  • the battery pack BP may become excessively hot due to self-heating when power is supplied while the vehicle is running.
  • the assembled battery BP becomes excessively high in temperature, as shown in FIG. 2, the deterioration of the battery cell BC is promoted. Therefore, it is necessary to limit the output and input so as to reduce self-heating. For this reason, in order to ensure the output and input of the battery cell BC, a cooling means for maintaining the temperature below a predetermined temperature is required.
  • the battery temperature of the assembled battery BP may become excessively high even during parking in the summer. That is, the power storage device including the assembled battery BP is often disposed under the floor of the vehicle or under the trunk room, and the battery temperature of the assembled battery BP gradually increases not only during the traveling of the vehicle but also during parking in summer.
  • the battery pack BP may rise to an excessively high temperature. If the battery pack BP is left in a high temperature environment, the battery life will be significantly reduced due to the progress of deterioration. Therefore, the battery temperature of the battery pack BP should be kept below a predetermined temperature even during parking of the vehicle. Is desired.
  • the assembled battery BP includes a series connection body of the battery cells BC, and among the battery cells BC, the input / output characteristics of the entire assembled battery BP according to the battery characteristics of the battery cell BC that is most deteriorated. Because it is decided. For this reason, in order to make the assembled battery BP exhibit desired performance for a long period of time, it is important to equalize the temperature of the battery cells BC to reduce temperature variation.
  • an air-cooling cooling means using a blower and a cooling means using the cold heat of a vapor compression refrigeration cycle are generally used.
  • the air-cooled cooling means using the blower only blows air or the like in the passenger compartment to the assembled battery, a cooling capacity sufficient to sufficiently cool the assembled battery BP may not be obtained.
  • the cooling means using the cold heat of the refrigeration cycle has a high ability to cool the assembled battery BP, it is necessary to drive a compressor or the like that consumes a large amount of power while the vehicle is parked. This is undesirable because it leads to an increase in power consumption and an increase in noise.
  • the apparatus temperature control apparatus 1 of the present embodiment employs a thermosiphon system that adjusts the battery temperature of the assembled battery BP not by forced circulation of the refrigerant by the compressor but by natural circulation of the working fluid.
  • the device temperature control device 1 is a device that adjusts the battery temperature of the assembled battery BP using the assembled battery BP mounted on the vehicle as a temperature control target device.
  • the device temperature control device 1 includes an annular device fluid circuit 2 and a refrigeration cycle 3 through which a working fluid circulates.
  • the fluid circuit for equipment 2 is a heat pipe that performs heat transfer by evaporation and condensation of the working fluid.
  • the device fluid circuit 2 is configured to be a loop thermosyphon in which a flow path through which a gaseous working fluid flows and a flow path through which a liquid working fluid flows are separated.
  • refrigerants for example, R134a and R1234yf
  • the refrigeration cycle 3 includes a compressor 3a, a condenser 3b, an expansion valve 3c, an expansion valve 3d, an evaporator 3e, and a refrigerant side heat exchanger HEC.
  • the refrigeration cycle 3 includes a refrigeration cycle (hereinafter referred to as a first refrigeration cycle) 31 including a compressor 3a, a condenser 3b, an expansion valve 3c, and a refrigerant side heat exchanger HEC. is doing.
  • the refrigeration cycle 3 includes a refrigeration cycle (hereinafter referred to as a second refrigeration cycle) 32 including a compressor 3a, a condenser 3b, an expansion valve 3d, and an evaporator 3e. That is, the refrigeration cycle 3 includes a first refrigeration cycle 31 and a second refrigeration cycle 32.
  • the first refrigeration cycle 31 is operated by the compressor 3a to flow a heat medium (that is, a refrigerant) that cools the working fluid existing in the condenser 2c (that is, the condenser 2c of the fluid circuit 2 for equipment) described later.
  • a refrigerant flow path 31a is operated by the compressor 3a to flow a heat medium (that is, a refrigerant) that cools the working fluid existing in the condenser 2c (that is, the condenser 2c of the fluid circuit 2 for equipment) described later.
  • This heat medium is a refrigerant that cools the working fluid by exchanging heat with the working fluid existing inside the condenser 2c of the fluid circuit 2 for equipment.
  • the amount of heat release in the condenser 2c of the fluid circuit 2 for equipment changes as the number of rotations of the compressor 3a in the refrigeration cycle 3 increases or decreases.
  • the second refrigeration cycle 32 is a refrigeration cycle included in a vehicle air conditioner (not shown), and is operated by the compressor 3a to generate cold air provided by the vehicle air conditioner.
  • various refrigerants conventionally used in vapor compression refrigeration cycles for example, R134a and R1234yf
  • the first refrigeration cycle 31 and the second refrigeration cycle 32 are thus integrally configured as a part of the vehicle air conditioner.
  • the refrigerant flow path 31a corresponds to a heat medium flow path.
  • the first refrigeration cycle 31 corresponds to a heat release amount adjustment unit that adjusts the heat release amount of the working fluid existing inside the condenser 2c of the device fluid circuit 2 by supplying a heat medium to the condenser 2c.
  • the heat radiation amount adjustment unit (that is, the first refrigeration cycle 31) uses the limited total cooling capacity of the refrigeration cycle 3 to generate the cold air generation unit (that is, the first refrigeration cycle 31) that generates the cold air of the vehicle air conditioner. 2) Refrigeration cycle 32) and share with various distributions.
  • the device fluid circuit 2 includes a device heat exchanger 2a, a gas passage portion 2b, a condenser 2c, and a liquid passage portion 2d.
  • the fluid circuit 2 for equipment is provided with the cool storage agent CS. Details of the cold storage agent CS will be described later. 1, 3, and 4 indicate the direction in which the vertical line extends, that is, the vertical direction.
  • the device fluid circuit 2 of the present embodiment is configured as a closed annular fluid circuit by connecting the device heat exchanger 2a, the gas passage portion 2b, the condenser 2c, and the liquid passage portion 2d to each other. ing.
  • the device fluid circuit 2 is filled with a predetermined amount of working fluid in a state where the inside thereof is evacuated.
  • the working fluid flows in the order of the device heat exchanger 2a, the gas passage portion 2b, the condenser 2c, and the liquid passage portion 2d.
  • this flow direction of the working fluid in the device fluid circuit 2 is referred to as a forward direction.
  • the equipment heat exchanger 2a is a heat exchanger that functions as an equipment heat exchanger that absorbs heat from the assembled battery BP and evaporates the liquid working fluid when the assembled battery BP, which is a temperature control target apparatus, is cooled.
  • the equipment heat exchanger 2a is disposed at a position facing the bottom surface side of the assembled battery BP.
  • the equipment heat exchanger 2a has a thin rectangular parallelepiped shape.
  • the equipment heat exchanger 2a constitutes a heat transfer section in which the heat exchange section 2aa that exchanges heat by contacting the bottom surface of the assembled battery BP moves heat between the assembled battery BP and the equipment heat exchanger 2a. is doing.
  • the heat exchange part 2aa has a size that covers the entire area of the bottom part of the assembled battery BP so that temperature distribution does not occur in each battery cell BC constituting the assembled battery BP.
  • the heat exchanging portion 2aa is in contact with the bottom surface portion of the assembled battery BP so that heat can be transferred to and from the assembled battery BP.
  • the equipment heat exchanger 2a may have a configuration in which the heat exchanging portion 2aa is separated from the bottom surface portion of the assembled battery BP as long as heat can be transferred between the assembled battery BP.
  • the heat of the assembled battery BP is liquid in the inside of the equipment heat exchanger 2a. It becomes difficult to be transmitted to the working fluid. That is, when the liquid level of the working fluid in the equipment heat exchanger 2a is separated from the heat exchange portion 2aa of the equipment heat exchanger 2a, evaporation of the liquid working fluid existing in the equipment heat exchanger 2a is suppressed. Will be. For this reason, in the fluid circuit for equipment 2 of the present embodiment, the liquid level of the working fluid is such that the heat of the assembled battery BP is transferred to the liquid working fluid existing inside the equipment heat exchanger 2a.
  • the heat exchanger 2aa of the exchanger 2a is in contact with the heat exchanger 2aa. That is, the device fluid circuit 2 of the present embodiment is configured such that the internal space of the device heat exchanger 2a is filled with a liquid working fluid containing bubbles when the assembled battery BP is cooled.
  • the equipment heat exchanger 2a is formed of a hollow container
  • the LS is in contact with the heat exchange part 2aa adjacent to the assembled battery BP.
  • the apparatus heat exchanger 2a is not limited to a hollow container, and may have a configuration in which a plurality of flow paths are formed by a heat exchange tube or the like.
  • the equipment heat exchanger 2a includes a gas outlet 2ab to which the lower end of the gas passage 2b is connected, and a liquid to which the lower end of the liquid passage 2d is connected. It has an inlet 2ac.
  • the gas outlet portion 2ab and the liquid inlet portion 2ac are provided on the side portions facing each other. Further, in the equipment heat exchanger 2a of the present embodiment, the gas outlet portion 2ab and the liquid inlet portion 2ac are provided at the same height in the vertical direction DRg.
  • the equipment heat exchanger 2a is made of a metal or alloy having excellent thermal conductivity such as aluminum or copper.
  • the apparatus heat exchanger 2a can also be comprised with materials other than a metal, it is desirable to comprise at least the heat exchange part 2aa which comprises a heat-transfer part with the material excellent in heat conductivity.
  • the gas passage portion 2b is a passage member that guides the gaseous working fluid evaporated in the equipment heat exchanger 2a to the condenser 2c.
  • the gas passage portion 2b has a lower end connected to the gas outlet 2ab of the equipment heat exchanger 2a and an upper end connected to a gas inlet 2ca (described later) of the condenser 2c.
  • the gas passage portion 2b of the present embodiment is configured by a pipe in which a flow path through which a working fluid flows is formed.
  • the gas passage portion 2b of the present embodiment includes an upper gas passage portion 2b that extends upward from the gas inlet portion 2ca of the condenser 2c.
  • the gas passage portion 2b of the present embodiment is configured to include a passage portion in which a part of the portion on the condenser 2c side extends toward the gas inlet portion 2ca of the condenser 2c.
  • the upper gas passage portion 2b of the present embodiment extends upward along the vertical direction DRg.
  • the gas passage part 2b shown in drawing is an example to the last.
  • the gas passage portion 2b can be appropriately changed in consideration of the mounting property on the vehicle.
  • the condenser 2c is a heat exchanger that condenses the gaseous working fluid evaporated in the equipment heat exchanger 2a.
  • the condenser 2c is an air-cooled heat exchanger that causes heat exchange between the refrigerant flowing through the first refrigeration cycle 31 and the gaseous working fluid to condense the gaseous working fluid. As shown in FIG. 1, the condenser 2c is located above the equipment heat exchanger 2a in the vertical direction DRg so that the liquid working fluid condensed inside moves to the equipment heat exchanger 2a by its own weight. Has been placed.
  • the condenser 2c has a gas inlet 2ca to which an upper end of the gas passage 2b is connected, and a liquid outlet 2cb to which an upper end of the liquid passage 2d is connected.
  • the gas inlet portion 2ca and the liquid outlet portion 2cb are provided at portions facing each other in the vertical direction.
  • the condenser 2c of the present embodiment is provided such that the gas inlet portion 2ca is located above the liquid outlet portion 2cb in the vertical direction DRg.
  • the gas inlet 2ca is provided at the upper end of the condenser 2c
  • the liquid outlet 2cb is provided at the lower end of the condenser 2c.
  • the condenser 2c is basically made of a metal or alloy having excellent thermal conductivity such as aluminum or copper.
  • the condenser 2c may be configured to include a material other than metal, but it is preferable to configure at least a portion exchanging heat with air with a material having excellent thermal conductivity.
  • the condenser 2 c includes a plurality of flow path portions (hereinafter referred to as working fluid flow path portions) P ⁇ b> 1 through which the working fluid flows and a part of the first refrigeration cycle 31. And a plurality of flow path portions (hereinafter referred to as refrigerant flow path portions) P2 through which the refrigerant of the first refrigeration cycle 31 flows.
  • the condenser 2c according to the present embodiment is provided with a plurality of cool storage agents CS.
  • Each of the plurality of working fluid flow path portions P1, each of the plurality of cool storage agents CS, and each of the plurality of refrigerant flow path portions P2 are formed to extend in the vertical direction (that is, the vertical direction in FIG. 4). .
  • Each of the plurality of working fluid flow path portions P1, each of the plurality of cold storage agents CS, and each of the plurality of refrigerant flow passage portions P2 are from the right in the left-right direction (that is, the horizontal direction) in FIG. It arrange
  • Each of the plurality of working fluid flow paths P1 communicates with each other so that the working fluid can flow between them.
  • Each of the plurality of refrigerant flow path portions P2 communicates with each other so that the refrigerant can flow therethrough.
  • the cold storage agent CS is for accumulating at least one of the cold heat of the working fluid and the cold heat of the refrigerant in the first refrigeration cycle 31.
  • the regenerator CS is not particularly limited in the configuration of materials and the like, but various known ones such as paraffin can be adopted. For example, you may use the member which packed this cool storage agent CS in the container comprised with metals, such as aluminum.
  • the cold storage agent CS is configured to accumulate both the cold heat of the working fluid and the cold heat of the refrigerant in the first refrigeration cycle 31.
  • each of the plurality of cool storage agents CS is capable of exchanging heat with the working fluid that flows through the nearest adjacent working fluid flow path portion P1 among the plurality, and the refrigerant that flows through the nearest neighboring coolant flow path portion P2 among the plurality of cool storage agents CS. It is arranged to be able to exchange heat. Specifically, each of the plurality of cool storage agents CS is disposed in contact with both the adjacent working fluid channel portion P1 and the adjacent refrigerant channel portion P2.
  • the cool storage agent CS is ahead of the uppermost portion located in the forward direction of the gas passage portion 2b in the forward direction and in front of the gas outlet portion in the fluid circuit 2 for equipment.
  • the front and the front in the forward direction are the upstream side and the downstream side, respectively.
  • the regenerator CS is disposed in the device fluid circuit 2 before the gas inlet 2ca and before the gas outlet 2ab.
  • the regenerator agent CS is disposed between the working fluid and the heat medium passage (that is, the refrigerant passage 31a) without being interposed therebetween.
  • the regenerator CS is provided between the working fluid channel (that is, the working fluid channel portion P1) and the heat medium channel (that is, the refrigerant channel 31a) in the condenser 2c.
  • the cool storage agent CS is configured integrally with the condenser 2c.
  • the gaseous working fluid flowing from the gas inlet portion 2ca is distributed to each of the plurality of working fluid flow passage portions P1, as indicated by an arrow F1 in FIG. Then, after the working fluid of each of the plurality of working fluid flow paths P1 gathers, it flows out from the liquid outlet 2cb.
  • the refrigerant flowing through the refrigerant flow path portion P2 is distributed to each of the plurality of refrigerant flow path portions P2 after flowing in from the inlet HECA, as indicated by an arrow F2 in FIG.
  • the refrigerant flows in a direction opposite to the direction of the working fluid flowing through the working fluid flow path portion P1. After that, the refrigerant in each of the plurality of refrigerant flow path portions P2 flows out from the outlet HECb after gathering.
  • the heat of the assembled battery BP moves to the apparatus heat exchanger 2a.
  • the equipment heat exchanger 2a a part of the liquid working fluid evaporates by absorbing heat from the assembled battery BP.
  • the assembled battery BP is cooled by the latent heat of vaporization of the working fluid existing inside the equipment heat exchanger 2a, and the temperature thereof decreases.
  • the gaseous working fluid evaporated in the equipment heat exchanger 2a flows out from the gas outlet portion 2ab of the equipment heat exchanger 2a to the gas passage portion 2b, and as shown by an arrow Fcg in FIG.
  • the gaseous working fluid is condensed by dissipating heat to the refrigerant flowing through the first refrigeration cycle 31.
  • the gaseous working fluid is liquefied and the specific gravity of the working fluid increases. Thereby, the working fluid liquefied inside the condenser 2c descends toward the liquid outlet 2cb of the condenser 2c by its own weight.
  • the liquid working fluid condensed in the condenser 2c flows out from the liquid outlet portion 2cb of the condenser 2c to the liquid passage portion 2d, and as shown by an arrow Fcl in FIG.
  • heat exchange for equipment is performed via the liquid passage portion 2d.
  • vessel 2a In the equipment heat exchanger 2a, a part of the liquid working fluid that flows from the liquid inlet 2ac through the liquid passage 2d evaporates by absorbing heat from the assembled battery BP.
  • the equipment temperature control device 1 circulates between the equipment heat exchanger 2a and the condenser 2c while the phase of the working fluid changes between a gas state and a liquid state in the cooling mode, and exchanges heat for the equipment.
  • the assembled battery BP is cooled by transporting heat from the vessel 2a to the condenser 2c.
  • the device temperature control device 1 is configured such that the working fluid naturally circulates inside the device fluid circuit 2 without the driving force required for the circulation of the working fluid by a compressor or the like. For this reason, the apparatus temperature control apparatus 1 can implement
  • the cooling / heating of the working fluid and the coolant supplied by the heat release amount adjustment unit that is, the coolant of the first refrigeration cycle 31. It has the cool storage agent CS which accumulates at least one of these.
  • the apparatus temperature control apparatus 1 which concerns on this embodiment, even when the thermal radiation capability of the heat radiation amount adjustment part (namely, 1st freezing cycle 31) falls, the cold heat accumulate
  • FIG. 5 shows the change in the cooling performance of the device temperature control device 1 when the rotational speed of the compressor 3a is changed, comparing the case with the cold storage agent CS and the case without the cold storage agent CS.
  • the regenerator CS in the case where the regenerator CS is not provided, when the compressor 3 a is stopped, the heat radiation capacity of the heat radiation amount adjustment unit (that is, the first refrigeration cycle 31) is reduced, thereby reducing the condenser.
  • the condensing capacity of 2c also decreases, and as a result, the cooling performance of the device temperature control device 1 decreases. This is due to the fact that the forward flow becomes difficult to maintain due to a decrease in the flow rate of the forward working fluid due to a decrease in the condensation capacity of the condenser 2c.
  • the overall cooling capacity (that is, the total cooling capacity obtained per predetermined time) in the device temperature control apparatus 1 is significantly reduced.
  • the refrigerant that flows through the first refrigeration cycle 31 in the condenser 2c before the compressor 3a stops that is, before 1 in FIG. 5.
  • the cooling performance of the device temperature control device 1 is ensured by radiating heat.
  • the cold heat of the first refrigeration cycle 31 is accumulated directly or indirectly in the cold storage material CS.
  • the compressor 3a is stopped (i.e., 1 in FIG. 5)
  • the refrigerant does not flow in the first refrigeration cycle 31
  • the working fluid Since the cold heat accumulated in is transmitted to the working fluid, the working fluid is sufficiently condensed, and the cooling capacity of the device temperature control device 1 is maintained.
  • the compressor 3a starts to drive again later that is, 2 in FIG. 5
  • the forward flow is maintained at 1, the cooling capacity compared to the case where the regenerator material CS is not provided. It takes no time to recover to the same level as the original.
  • the above-described operation makes it easy to maintain the cooling performance of the device temperature control device 1 without lowering even when the heat dissipation capability of the condenser 2c is reduced, and the overall cooling capability (that is, the predetermined cooling capability).
  • the total cooling capacity obtained per hour) will increase.
  • FIG. 6 shows the change in the cooling performance of the device temperature control device 1 when the upper limit of the rotational speed of the compressor 3a is lowered, comparing the case with the cool storage agent CS and the case without the cool storage agent CS.
  • the situation where the upper limit of the rotational speed of the compressor 3a is lowered means, for example, that the upper limit of the rotational speed of the compressor 3a is lowered in order to satisfy a demand for NV (that is, noise and vibration) when the vehicle speed is lowered.
  • NV that is, noise and vibration
  • control is performed.
  • control is performed to reduce the upper limit of the rotational speed of the compressor 3a in order to ensure the output of the vehicle travel battery.
  • Another example is when control is performed to reduce the upper limit of the rotational speed of the compressor 3a when the remaining battery capacity is low.
  • the device temperature adjustment device 1 has a configuration in which the heat release amount adjustment unit (that is, the first refrigeration cycle 31) shares the total cooling capacity with the second refrigeration cycle 32.
  • the regenerator CS If it does not have, the heat radiation capacity of the heat radiation amount adjusting unit is reduced.
  • FIG. 7 compares the change in the cooling performance of the device temperature control device 1 when the cooling capacity of the refrigeration cycle 3 is preferentially used for the second refrigeration cycle 32 with and without the cool storage agent CS. While showing.
  • the situation in which the cooling capacity of the refrigeration cycle 3 is preferentially used for the second refrigeration cycle 32 is, for example, a cool-down that is performed when the current cabin temperature is higher than the target cabin temperature. is there.
  • Another example is a case where the set temperature of the air conditioner suddenly decreases due to manual operation by the passenger.
  • the regenerator CS in the device fluid circuit 2 is ahead of the topmost portion of the gas passage portion 2b in the forward direction and is located at the gas outlet portion 2ab. It is arranged in front of.
  • the cool storage agent CS is arrange
  • a portion of the gas passage portion 2b in the forward direction that is in front of the uppermost portion is a passage in which the working fluid is directed upward from the bottom in the forward direction.
  • the cool storage agent CS is disposed in the front portion, the gaseous working fluid is liquefied by the cold heat accumulated in the cool storage agent CS and falls downward, so that the working fluid in the forward direction Will decrease the flow rate.
  • the cool storage agent CS is arrange
  • the flow rate of the working fluid in the forward direction is not reduced in this way.
  • the apparatus temperature control apparatus 1 which concerns on this embodiment, there exists an advantage that the forward flow of a working fluid is maintained more easily.
  • the regenerator CS is arranged in the device fluid circuit 2 before the gas inlet 2ca and before the gas outlet 2ab.
  • the cool storage agent CS is arrange
  • the regenerator CS is disposed in the device fluid circuit 2 before the gas inlet 2ca in the forward direction and before the liquid inlet 2ac.
  • the cool storage agent CS is arrange
  • the portion from the liquid outlet portion 2cb of the condenser 2c to the liquid inlet portion 2ac of the equipment heat exchanger 2a is a passage in which the working fluid is directed from top to bottom in the forward direction.
  • the cool storage agent CS since the cool storage agent CS is arrange
  • the regenerator CS is arranged between the working fluid and the heat medium passage (that is, the refrigerant passage 31a).
  • the regenerator CS is arranged between the working fluid and the heat medium passage (that is, the refrigerant passage 31a).
  • at least a part of the cool storage agent CS is disposed between the working fluid and the heat medium passage (that is, the refrigerant passage 31a).
  • the regenerator CS is provided between the working fluid channel (that is, the working fluid channel portion P1) and the heat medium channel (that is, the refrigerant channel 31a) in the condenser 2c.
  • the regenerator CS is provided between the working fluid channel (that is, the working fluid channel portion P1) and the heat medium channel (that is, the refrigerant channel 31a) in the condenser 2c.
  • the cool storage agent CS includes a working fluid channel (that is, the working fluid channel portion P1) and a heat medium channel (that is, the refrigerant channel 31a) in the condenser 2c. ) Between them.
  • the cool storage agent CS functions as a thermal buffer material.
  • the cool storage agent CS since the cool storage agent CS is arrange
  • the temperature control target device is the assembled battery BP having a plurality of battery cells BC.
  • the apparatus temperature control apparatus 1 which concerns on this embodiment is a thermosiphon-type cooling device, it cools the temperature control object apparatus using the evaporative heat which arises in the case of evaporation of a working fluid, ie, a latent heat. .
  • a latent heat which arises in the case of evaporation of a working fluid, ie, a latent heat.
  • the cooling capacity is low.
  • the cooling is performed by the latent heat of the air, the temperature difference between the upstream and downstream of the air becomes large, thereby causing variations in the temperature distribution between the battery cells BC.
  • the temperature adjustment target device is cooled using latent heat, so that the temperature variation of each battery cell BC can be reduced, and each battery cell BC is cooled evenly. can do. Therefore, the apparatus temperature control apparatus 1 which concerns on this embodiment is especially suitable for cooling of the assembled battery BP where temperature equalization which reduces the temperature variation of each battery cell BC becomes important.
  • the liquid passage portion 2d is a passage member that guides the liquid working fluid condensed in the condenser 2c to the equipment heat exchanger 2a.
  • the liquid passage 2d has a lower end connected to the liquid inlet 2ac of the equipment heat exchanger 2a and an upper end connected to the liquid outlet 2cb of the condenser 2c.
  • the liquid passage portion 2d of the present embodiment is constituted by a pipe in which a flow path through which a working fluid flows is formed.
  • the portion on the condenser 2c side is positioned above the portion on the equipment heat exchanger 2a side.
  • liquid passage portion 2d of the present embodiment is configured such that the part on the equipment heat exchanger 2a side is located at the same level as or the upper part of the lowermost part of the equipment heat exchanger 2a.
  • the liquid passage portion 2d shown in the drawing is merely an example.
  • the liquid passage portion 2d can be appropriately changed in consideration of the mounting property on the vehicle.
  • the heat medium supplied by the working fluid cooling / radiating amount adjustment unit that is, the refrigerant of the first refrigeration cycle 31.
  • the heat medium supplied by the working fluid cooling / radiating amount adjustment unit that is, the refrigerant of the first refrigeration cycle 31.
  • a cold storage agent CS that accumulates at least one of the cold heat.
  • the apparatus temperature control apparatus 1 which concerns on this embodiment, even when the thermal radiation capability of the heat radiation amount adjustment part (namely, 1st freezing cycle 31) falls, the cold heat accumulate
  • the working fluid is easily cooled and condensed, and the flow rate of the working fluid in the forward direction is easily maintained.
  • the forward flow of the working fluid in the device fluid circuit 2 is easily maintained, and as a result, the cooling capacity of the device temperature control device 1 is easily maintained. That is, in the device temperature control apparatus 1 according to the present embodiment, the heat storage capacity of the heat release amount adjusting unit (that is, the first refrigeration cycle 31) is reduced by the cold storage agent CS being arranged in the device fluid circuit 2. Sometimes, the cooling capacity is easily maintained without being lowered.
  • the regenerator CS in the device fluid circuit 2 is ahead of the topmost portion of the gas passage portion 2b in the forward direction and is located at the gas outlet portion 2ab. It is arranged in front of.
  • the cool storage agent CS is arrange
  • the regenerator CS is arranged in the device fluid circuit 2 before the gas inlet 2ca and before the gas outlet 2ab.
  • the cool storage agent CS is arrange
  • the regenerator CS is disposed in the device fluid circuit 2 before the gas inlet 2ca in the forward direction and before the liquid inlet 2ac.
  • the cool storage agent CS is arrange
  • the portion from the liquid outlet portion 2cb of the condenser 2c to the liquid inlet portion 2ac of the equipment heat exchanger 2a is a passage in which the working fluid is directed from top to bottom in the forward direction.
  • the cool storage agent CS since the cool storage agent CS is arrange
  • the regenerator CS is arranged between the working fluid and the heat medium passage (that is, the refrigerant passage 31a).
  • the regenerator CS is arranged between the working fluid and the heat medium passage (that is, the refrigerant passage 31a).
  • at least a part of the cool storage agent CS is disposed between the working fluid and the heat medium passage (that is, the refrigerant passage 31a).
  • the regenerator CS is provided between the working fluid channel (that is, the working fluid channel portion P1) and the heat medium channel (that is, the refrigerant channel 31a) in the condenser 2c.
  • the regenerator CS is provided between the working fluid channel (that is, the working fluid channel portion P1) and the heat medium channel (that is, the refrigerant channel 31a) in the condenser 2c.
  • the cool storage agent CS includes a working fluid channel (that is, the working fluid channel portion P1) and a heat medium channel (that is, the refrigerant channel 31a) in the condenser 2c. ) Between them.
  • the cool storage agent CS functions as a thermal buffer material.
  • the cool storage agent CS since the cool storage agent CS is arrange
  • the temperature control target device is the assembled battery BP having a plurality of battery cells BC.
  • the apparatus temperature control apparatus 1 which concerns on this embodiment is a thermosiphon-type cooling device, it cools the temperature control object apparatus using the evaporative heat which arises in the case of evaporation of a working fluid, ie, a latent heat. .
  • a latent heat which arises in the case of evaporation of a working fluid, ie, a latent heat.
  • the cooling capacity is low.
  • the cooling is performed by the latent heat of the air, the temperature difference between the upstream and downstream of the air becomes large, thereby causing variations in the temperature distribution between the battery cells BC.
  • the temperature adjustment target device is cooled using latent heat, so that the temperature variation of each battery cell BC can be reduced, and each battery cell BC is cooled evenly. can do. Therefore, the apparatus temperature control apparatus 1 which concerns on this embodiment is especially suitable for cooling of the assembled battery BP where temperature equalization which reduces the temperature variation of each battery cell BC becomes important.
  • FIGS. 1-10 A second embodiment of the present disclosure will be described with reference to FIGS.
  • the present embodiment is different from the first embodiment in that the heat dissipation amount adjustment unit is changed to the blower BF, and the other aspects are the same as those of the first embodiment. Therefore, only the parts different from the first embodiment will be described, except for the case where it is specified that it is the same as the first embodiment.
  • the first refrigeration cycle 31 is provided as a heat release amount adjusting unit that adjusts the heat release amount of the working fluid existing in the condenser 2c of the fluid circuit 2 for equipment by supplying a heat medium to the condenser 2c.
  • the heat exchange is performed between the working fluid and the refrigerant of the refrigeration cycle.
  • the blower BF is provided as the heat release amount adjusting unit, and heat is exchanged between the working fluid and the blown air of the blower BF. That is, the blown air corresponds to a heat medium supplied by the heat dissipation amount adjustment unit.
  • the blower BF is a device that blows out air in the passenger compartment or outside the passenger compartment toward the equipment heat exchanger 2a.
  • the blower BF includes an electric fan that operates when energized.
  • the blower BF is connected to a control device (not shown), and the blower capacity is controlled based on a control signal from the control device.
  • the working fluid existing in the condenser 2c is cooled by exchanging heat with the air in the vehicle.
  • the apparatus temperature control apparatus 1 also includes the cold storage agent CS that accumulates at least one of the cold heat of the working fluid and the cold heat of the heat medium (that is, the blown air of the blower BF) supplied by the heat dissipation amount adjusting unit.
  • the cool storage agent CS is configured integrally with the condenser 2c.
  • the heat release capacity of the first refrigeration cycle 31 that is the heat release amount adjustment unit is reduced, thereby condensing the condenser 3b.
  • the capability also decreases, and consequently the cooling performance of the device temperature control device 1 decreases.
  • the working fluid is sufficiently condensed by the cold heat accumulated in the cool storage agent CS being transmitted to the working fluid even if the blowing capacity of the blower BF is reduced. The cooling capacity of the device temperature control device 1 is maintained.
  • the situation where the blowing capacity of the blower BF is lowered is, for example, when the vehicle speed is lowered as shown in FIG. Further, as shown in FIG. 10, it is when the grille shutter is activated due to a request from the vehicle side. Further, as shown in FIG. 11, the blower BF is installed in the vehicle interior. Moreover, since the cool storage agent CS is configured integrally with the condenser 2c, cold heat can be efficiently stored in the cool storage agent CS as in the first embodiment.
  • the regenerator CS is gas in the device fluid circuit 2 ahead of the topmost portion of the gas passage portion 2b in the forward direction. It is arranged in front of the exit.
  • the regenerator CS is arranged in the device fluid circuit 2 before the gas inlet portion 2ca and before the gas outlet portion 2ab.
  • the regenerator CS is arranged in the device fluid circuit 2 before the gas inlet 2ca in the forward direction and before the liquid inlet 2ac. ing.
  • the flow path is a channel for flowing a heat medium that cools the working fluid by exchanging heat with the working fluid existing in the condenser 2c.
  • the illustrated heat medium flow path is provided.
  • at least one part of the cool storage agent CS is arrange
  • the present embodiment is also disposed between the working fluid flow path and the heat medium flow path in the condenser 2c.
  • the apparatus temperature control apparatus 1 of the present embodiment is different from the apparatus temperature control apparatus 1 of the first and second embodiments in the installation site of the cool storage agent CS, but other configurations are the apparatus temperature control of the first and second embodiments. Same as device 1.
  • the regenerator CS is not provided in the condenser 2c, and as shown in FIGS. 12 and 13, in the gas passage portion 2b, in the forward direction than the uppermost portion of the gas passage portion 2b. Arranged upstream.
  • the cool storage agent CS is in contact with a pipe forming the gas passage part 2b on the downstream side of the gas outlet part 2ab in the forward direction and upstream of the uppermost part of the gas passage part 2b. Is wound in an annular shape.
  • the cold storage agent CS of this embodiment is for accumulating the cold heat of the working fluid.
  • the material which comprises the cool storage agent CS may be the same as 1st Embodiment, and does not need to be the same.
  • the operation of the device temperature control apparatus 1 having such a configuration will be described.
  • the working fluid in this case is evaporated by absorbing heat from the assembled battery BP in the equipment heat exchanger 2a as in the first and second embodiments, and then the refrigerant side heat of the first refrigeration cycle 31 in the condenser 2c. Heat is condensed to the refrigerant flowing through the exchanger HEC and condensed.
  • the working fluid of the present embodiment is in the vicinity of the regenerator CS on the upstream side in the forward direction from the uppermost portion of the gas passage portion 2b in the gas phase state while the gas passage portion 2b is moving toward the condenser 2c. Then, it absorbs heat from the regenerator CS. That is, the working fluid passes cold heat to the cool storage agent CS. In other words, the working fluid is allowed to cool to the cool storage agent CS.
  • the working fluid can be cooled to the regenerator CS because the refrigerant takes the latent heat of evaporation from the working fluid and cools the working fluid in the condenser 2c when the compressor 3a is operated. This is because the temperature of the working fluid passing through the refrigerant becomes lower than the temperature of the regenerator CS.
  • the state in which the working fluid is condensed in the condenser 2c is a state in which the condenser 2c is operating.
  • the regenerator CS continues to accumulate cold energy.
  • the cold storage agent CS is different from the first and second embodiments in that cold storage is performed by receiving cold heat from a superheated gas phase working fluid.
  • the cold storage agent CS cannot store cold.
  • the gas phase working fluid that has flowed out radiates heat to the cool storage agent CS in the vicinity of the cool storage agent CS on the upstream side in the forward direction from the uppermost portion of the gas passage portion 2b. That is, the working fluid receives cold heat from the cold storage agent CS. In other words, the cool storage agent CS is cooled to the working fluid. As a result, a part of the gas-phase working fluid is liquefied in the vicinity of the cool storage agent CS, and the specific gravity of the part of the working fluid increases.
  • the part of the working fluid is condensed in the gas passage portion 2b to be in a liquid phase state.
  • the working fluid that has become a liquid phase further falls inside the gas passage portion 2b by its own weight and descends toward the gas outlet portion 2ab. That is, the working fluid in a liquid phase flows backward in the gas passage portion 2b. Further, the liquid-phase working fluid moves into the equipment heat exchanger 2a through the gas outlet 2ab. In the apparatus heat exchanger 2a, a part of the liquid-phase working fluid is evaporated by absorbing heat from the assembled battery BP.
  • the remaining working fluid that has not been liquefied out of the working fluid that has received cold from the regenerator CS is cooled through the same path as the working fluid of the first and second embodiments. That is, the remaining working fluid that has not been liquefied enters the condenser 2c from the gas inlet 2ca in the gas phase, and dissipates heat to the refrigerant flowing through the refrigerant side heat exchanger HEC of the first refrigeration cycle 31 in the condenser 2c. Condensed. Then, the working fluid condensed in the condenser 2c passes through the liquid passage portion 2d, enters the equipment heat exchanger 2a, and evaporates by absorbing heat from the assembled battery BP.
  • the device temperature control device 1 uses the cool heat accumulated by the cool storage agent CS and the cool heat received from the refrigerant in the refrigeration cycle 3.
  • the assembled battery BP can be cooled.
  • the loop flow of the working fluid in the forward direction similar to the first and second embodiments is maintained, but a reverse flow is generated in part.
  • the difference between the height of the working fluid level in the liquid passage portion 2d and the height of the working fluid level in the gas passage portion 2b (that is, the head difference) is the same as in the first and second embodiments. Smaller than that.
  • the pressure loss when the gas refrigerant passes through the gas passage portion 2b due to the backflow also increases.
  • the flow rate of the working fluid inside the device fluid circuit 2 is smaller than in the first and second embodiments. This can cause a decrease in the cooling performance of the device temperature control device 1.
  • the head difference when the liquid level of the working fluid in the liquid passage portion 2d is higher than the liquid level of the working fluid in the gas passage portion 2b, that is, when there is a positive head difference, the head difference The larger the is, the larger the flow rate of the working fluid.
  • the gas phase working fluid that has flowed out radiates heat to the cool storage agent CS in the vicinity of the cool storage agent CS on the upstream side in the forward direction from the uppermost portion of the gas passage portion 2b. That is, the cool storage agent CS is cooled to the working fluid. As a result, a part of the gas-phase working fluid is liquefied in the vicinity of the cool storage agent CS, and the specific gravity of the part of the working fluid increases.
  • the part of the working fluid is condensed in the gas passage portion 2b to be in a liquid phase state.
  • the working fluid that has become a liquid phase further falls in the gas passage portion 2b due to its own weight and descends toward the gas outlet portion 2ab. That is, the working fluid in a liquid phase flows backward in the gas passage portion 2b. Further, the liquid-phase working fluid moves into the equipment heat exchanger 2a through the gas outlet 2ab. In the apparatus heat exchanger 2a, a part of the liquid-phase working fluid is evaporated by absorbing heat from the assembled battery BP.
  • the remaining working fluid that has not been liquefied out of the working fluid that has received the cold heat from the cold storage agent CS does not liquefy even when entering the condenser 2c. This is because the compressor 3a is not operating. As a result, the loop flow of the working fluid in the forward direction is not maintained.
  • the device temperature control device 1 can cool the assembled battery BP by the cold heat accumulated in the cool storage agent CS, and the loop flow is not maintained.
  • the apparatus temperature control apparatus 1 of the present embodiment is different from the apparatus temperature control apparatus 1 of the first and second embodiments in the installation site of the cool storage agent CS, but other configurations are the apparatus temperature control of the first and second embodiments. Same as device 1.
  • the regenerator CS is not provided in the condenser 2c, and as shown in FIG. 14, in the gas passage portion 2b, on the downstream side in the forward direction from the uppermost portion of the gas passage portion 2b. Have been placed.
  • the cool storage agent CS is in contact with a pipe forming the gas passage part 2b on the downstream side of the uppermost part of the gas passage part 2b in the forward direction and on the upstream side of the gas inlet part 2ca. Is wound in an annular shape.
  • the cool storage agent CS of this embodiment is for accumulating the cold heat of a working fluid.
  • the material which comprises the cool storage agent CS may be the same as 1st Embodiment, and does not need to be the same.
  • the operation of the device temperature control apparatus 1 having such a configuration will be described.
  • the outflowing gaseous working fluid dissipates heat to the cool storage agent CS in the vicinity of the cool storage agent CS on the downstream side in the forward direction from the uppermost portion of the gas passage portion 2b.
  • a part of the gas-phase working fluid is liquefied in the vicinity of the cool storage agent CS, and the specific gravity of the part of the working fluid increases.
  • the part of the working fluid is condensed in the gas passage portion 2b to be in a liquid phase state.
  • the working fluid that has become a liquid phase further falls inside the gas passage portion 2b by its own weight and descends toward the gas inlet portion 2ca. Further, the liquid-phase working fluid moves into the condenser 2c through the gas inlet 2ca.
  • the remaining working fluid that has not been liquefied out of the working fluid that has received cold from the regenerator CS is cooled through the same path as the working fluid of the first and second embodiments. That is, the remaining working fluid that has not been liquefied also enters the condenser 2c from the gas inlet 2ca in the gas phase.
  • the liquid-phase working fluid and the gas-phase working fluid that have entered the condenser 2c radiate heat to the refrigerant flowing through the refrigerant-side heat exchanger HEC of the first refrigeration cycle 31 in the condenser 2c.
  • the gas-phase working fluid is condensed into a liquid phase.
  • the liquid-phase working fluid passes through the liquid passage portion 2d by its own weight, enters the equipment heat exchanger 2a, and evaporates by absorbing heat from the assembled battery BP.
  • the device temperature control device 1 uses the cool heat accumulated by the cool storage agent CS and the cool heat received from the refrigerant in the refrigeration cycle 3.
  • the assembled battery BP can be cooled. Further, in this case, the loop flow of the working fluid in the forward direction similar to the first and second embodiments is maintained in all the working fluids. Therefore, the condensation performance of the assembled battery BP by the device temperature control device 1 is as good as that of the first and second embodiments.
  • the outflowing gaseous working fluid dissipates heat to the cool storage agent CS in the vicinity of the cool storage agent CS on the downstream side in the forward direction from the uppermost portion of the gas passage portion 2b.
  • a part of the gas-phase working fluid is liquefied in the vicinity of the cool storage agent CS, and the specific gravity of the part of the working fluid increases.
  • the part of the working fluid is condensed in the gas passage portion 2b to be in a liquid phase state.
  • the working fluid that has become a liquid phase further falls in the gas passage portion 2b due to its own weight and descends toward the condenser 2c. Further, the liquid-phase working fluid moves into the equipment heat exchanger 2a through the gas outlet 2ab.
  • the liquid-phase working fluid that has entered the condenser 2c is not cooled by the refrigerant of the first refrigeration cycle 31, and enters the equipment heat exchanger 2a through the liquid passage portion 2d by its own weight, and the assembled battery BP. Evaporates by absorbing heat from
  • the device temperature control device 1 can cool the assembled battery BP by the cold heat accumulated in the cool storage agent CS. In this case, the loop flow of the working fluid in the forward direction similar to the first and second embodiments is maintained. Therefore, the condensation performance of the assembled battery BP by the device temperature control device 1 is good.
  • the apparatus temperature control apparatus 1 of the present embodiment is different from the apparatus temperature control apparatus 1 of the first and second embodiments in the installation site of the cool storage agent CS, but other configurations are the apparatus temperature control of the first and second embodiments. Same as device 1.
  • the regenerator CS is not provided in the condenser 2c, but is disposed in the liquid passage portion 2d as shown in FIG. More specifically, the regenerator CS is in contact with the pipe forming the liquid passage part 2d on the downstream side of the liquid outlet part 2cb and the upstream side of the liquid inlet part 2ac in the forward direction with respect to the pipe. It is wound in a ring.
  • the cold storage agent CS of this embodiment is for accumulating the cold heat of the working fluid.
  • the material which comprises the cool storage agent CS may be the same as 1st Embodiment, and does not need to be the same.
  • the operation of the device temperature control apparatus 1 having such a configuration will be described.
  • the working fluid in this case is evaporated by absorbing heat from the assembled battery BP in the equipment heat exchanger 2a as in the first and second embodiments, and then the refrigerant side heat of the first refrigeration cycle 31 in the condenser 2c. It dissipates heat and condenses in the refrigerant flowing through the exchanger HEC, and then returns to the equipment heat exchanger 2a through the liquid passage portion 2d.
  • the working fluid of the present embodiment absorbs heat from the cool storage agent CS in the vicinity of the cool storage agent CS on the way to the equipment heat exchanger 2a through the liquid passage portion 2d in the liquid phase state. That is, the working fluid is allowed to cool to the cool storage agent CS.
  • the working fluid can be allowed to cool to the regenerator CS because the refrigerant takes the latent heat of evaporation from the working fluid and cools the working fluid in the condenser 2c by the operation of the compressor 3a. This is because the temperature of the working fluid passing through the refrigerant becomes lower than the temperature of the regenerator CS.
  • the cold storage agent CS continues to accumulate cold heat.
  • a part of the liquid-phase working fluid is vaporized by releasing heat to the cold storage agent CS.
  • the vaporized working refrigerant generated by the vaporization rises in the liquid passage portion 2d and moves toward the condenser 2c. That is, the working refrigerant in the gas phase generated by the vaporization flows backward in the liquid passage portion 2d.
  • the cold storage agent CS cannot store cold.
  • the outflowing gas phase working fluid dissipates heat to the cool storage agent CS in the vicinity of the cool storage agent CS in the liquid passage portion 2d. That is, the cool storage agent CS is cooled to the working fluid. As a result, in the vicinity of the cool storage agent CS, the liquid-phase working fluid is further cooled to be in a supercooled state.
  • the working fluid cooled by the regenerator CS further descends in the liquid passage portion 2d toward the equipment heat exchanger 2a by its own weight. Further, the liquid-phase working fluid moves through the liquid inlet 2ac and into the equipment heat exchanger 2a. In the apparatus heat exchanger 2a, a part of the liquid-phase working fluid is evaporated by absorbing heat from the assembled battery BP.
  • the device temperature control device 1 uses the cool heat accumulated by the cool storage agent CS and the cool heat received from the refrigerant in the refrigeration cycle 3.
  • the assembled battery BP can be cooled. In this case, the loop flow of the working fluid in the forward direction similar to the first and second embodiments is maintained.
  • the liquid-phase working fluid is cooled by the cool storage agent CS in the liquid passage portion 2d and is brought into a supercooled state. Therefore, the cooling performance of the assembled battery BP by the device temperature control device 1 is improved.
  • the vapor-phase working fluid that has entered the condenser 2c is not cooled by the refrigerant in the first refrigeration cycle 31, and flows out to the liquid passage portion 2d through the liquid outlet portion 2cb. Then, the working fluid in the gas phase radiates heat to the cool storage agent CS in the vicinity of the cool storage agent CS in the liquid passage portion 2d. As a result, a part of the gas-phase working fluid is liquefied in the vicinity of the cool storage agent CS, and the specific gravity of the part of the working fluid increases.
  • the part of the working fluid is condensed in the liquid passage portion 2d to be in a liquid phase state.
  • the working fluid in the liquid phase is further lowered in the liquid passage portion 2d toward the condenser 2c by its own weight.
  • the liquid-phase working fluid moves through the liquid inlet 2ac and into the equipment heat exchanger 2a.
  • a part of the liquid-phase working fluid is evaporated by absorbing heat from the assembled battery BP.
  • the device temperature control device 1 can cool the assembled battery BP by the cold heat accumulated in the cool storage agent CS. In this case, the loop flow of the working fluid in the forward direction similar to the first and second embodiments is maintained. Therefore, the condensation performance of the assembled battery BP by the device temperature control device 1 is good.
  • the apparatus temperature control apparatus 1 of the present embodiment is different from the apparatus temperature control apparatus 1 of the first and second embodiments in the installation site of the cool storage agent CS, but other configurations are the apparatus temperature control of the first and second embodiments. Same as device 1.
  • the regenerator CS is not provided in the condenser 2c, and is disposed inside the equipment heat exchanger 2a as shown in FIG. More specifically, the regenerator CS is disposed in the equipment heat exchanger 2a at a position closer to the gas outlet 2ab between the gas outlet 2ab and the liquid inlet 2ac. More specifically, the cool storage agent CS is disposed at the most downstream end in the forward direction in the equipment heat exchanger 2a.
  • the regenerator CS extends from the lower end of the equipment heat exchanger 2a to the heat exchange section 2aa (that is, the upper end of the equipment heat exchanger 2a) in the equipment heat exchanger 2a.
  • the heat exchange part 2aa constitutes a heat transfer part that moves heat between the assembled battery BP and the equipment heat exchanger 2a.
  • the cool storage agent CS is arranged in the heat exchange part 2aa, it becomes easy to cool the bubbles generated by the evaporation of the working fluid in the equipment heat exchanger 2a by the cool storage agent CS.
  • the cold storage agent CS of this embodiment is for accumulating the cold heat of the working fluid.
  • the material which comprises the cool storage agent CS may be the same as 1st Embodiment, and does not need to be the same.
  • the operation of the device temperature control apparatus 1 having such a configuration will be described.
  • the working fluid in this case is evaporated by absorbing heat from the assembled battery BP in the equipment heat exchanger 2a as in the first and second embodiments, and then the refrigerant side heat of the first refrigeration cycle 31 in the condenser 2c. It dissipates heat and condenses in the refrigerant flowing through the exchanger HEC, and then returns to the equipment heat exchanger 2a through the liquid passage portion 2d.
  • the gas-phase working fluid and the liquid-phase working fluid of the present embodiment absorb heat from the cool storage agent CS in the vicinity of the cool storage agent CS in the equipment heat exchanger 2a. That is, the working fluid is allowed to cool to the cool storage agent CS.
  • the working fluid can be allowed to cool to the regenerator CS because the refrigerant takes the latent heat of evaporation from the working fluid and cools the working fluid in the condenser 2c when the compressor 3a is operated. This is because the temperature of the working fluid in the vessel 2a is lower than the temperature of the regenerator CS.
  • the regenerator CS continues to accumulate cold energy.
  • the cool storage agent CS receives cold from both the gas-phase working fluid and the liquid-phase working fluid and stores the cold.
  • the cold storage agent CS cannot store cold.
  • the working fluid in the equipment heat exchanger 2a may be higher than the temperature of the cool storage agent CS in a state where the compressor 3a continues to operate. In this case, it is assumed that the battery temperature of the assembled battery BP is still high. In this case, the working fluid cools and evaporates the assembled battery BP in the equipment heat exchanger 2a, flows out from the gas outlet 2ab to the gas passage 2b, flows into the condenser 2c, condenses, and the liquid passage by its own weight. The point which flows out into the part 2d and returns to the heat exchanger 2a for equipment from the liquid passage part 2d is the same as that during cold storage of the cold storage agent CS.
  • the working fluid in the equipment heat exchanger 2a dissipates heat to the cool storage agent CS in the vicinity of the cool storage agent CS. That is, the cool storage agent CS is cooled to the working fluid. As a result, in the vicinity of the cool storage agent CS, a part of the gas-phase working fluid is liquefied and remains in the equipment heat exchanger 2a. On the other hand, the remaining working fluid that has not been liquefied out of the working fluid that has received cold heat from the cold storage agent CS is cooled through the same path as the working fluid of the first and second embodiments.
  • the device temperature control device 1 uses the cool heat accumulated by the cool storage agent CS and the cool heat received from the refrigerant in the refrigeration cycle 3.
  • the assembled battery BP can be cooled. In this case, since the loop flow of the working fluid in the forward direction similar to that in the first and second embodiments is maintained, the cooling performance of the assembled battery BP by the device temperature adjustment device 1 is good.
  • the working fluid heated by the assembled battery BP in the equipment heat exchanger 2a dissipates heat to the cool storage agent CS in the vicinity of the cool storage agent CS. As a result, the working fluid remains in the equipment heat exchanger 2a.
  • the device temperature control device 1 can cool the assembled battery BP by the cold heat accumulated in the cool storage agent CS.
  • the compressor 3a since the compressor 3a is not operated, the working fluid is not cooled by the condenser 2c, and therefore, the loop flow of the working fluid in the forward direction is not maintained.
  • the device temperature control device 1 of the present embodiment is different from the device temperature control device 1 of the first embodiment only in the configuration of the device heat exchanger 2a and the arrangement of the assembled battery BP with respect to the device heat exchanger 2a. Specifically, the equipment heat exchanger 2a of the present embodiment is disposed at a position facing the side surface of the assembled battery BP.
  • the equipment heat exchanger 2 a includes a tubular upper tank 124, a tubular lower tank 125, and a plurality of tubes communicating the upper tank 124 and the lower tank 125. 126 is comprised. Note that the equipment heat exchanger 2a has a configuration in which the upper tank 124 and the lower tank 125 communicate with each other by a member in which a plurality of flow paths are formed inside a hollow member instead of the plurality of tubes 126. May be.
  • Each member which comprises the heat exchanger 2a for apparatuses is comprised with metals with high heat conductivity, such as aluminum and copper, for example.
  • each member which comprises the heat exchanger 2a for apparatuses may be comprised with materials with high heat conductivity other than a metal.
  • the upper tank 124 is provided in the upper part of the vertical direction DRg in the equipment heat exchanger 2a.
  • the upper tank 124 is provided with a gas outlet 2ab having a function equivalent to that of the first embodiment on one side in the longitudinal direction of the equipment heat exchanger 2a.
  • the lower tank 125 is provided in the lower part of the vertical direction DRg in the equipment heat exchanger 2a.
  • the lower tank 125 is provided with a liquid inlet 2ac having a function equivalent to that of the first embodiment on the other side in the longitudinal direction of the equipment heat exchanger 2a.
  • the assembled battery BP is installed outside the equipment heat exchanger 2a via a heat conductive sheet 13 having electrical insulation.
  • the device heat exchanger 2a is electrically insulated from the assembled battery BP by the heat conductive sheet 13, and has a small thermal resistance with the assembled battery BP.
  • the equipment heat exchanger 2a is arranged to face the assembled battery BP in a direction orthogonal to the vertical direction DRg.
  • a portion facing the assembled battery BP in the direction orthogonal to the vertical direction DRg constitutes a heat exchange unit 121 that exchanges heat with the assembled battery BP.
  • the heat exchange unit 121 is a heat transfer unit that moves heat between the assembled battery BP and the device heat exchanger 2a.
  • the heat exchange part 121 comprises the heat exchange site
  • the heat exchanging part 121 has a size that covers almost the entire side surfaces of both the assembled batteries BP so that no temperature distribution is generated in each battery cell BC constituting the assembled battery BP.
  • the heat exchange part 121 of this embodiment is extended along the perpendicular direction DRg.
  • the assembled battery BP of the present embodiment is such that the surface opposite to the surface on which the terminal TE is provided faces the heat exchanging parts 121 on both side surfaces of the equipment heat exchanger 2a via the heat conductive sheet 13. is set up.
  • the battery cells BC constituting the assembled battery BP are arranged in a direction intersecting the vertical direction DRg. Operation
  • movement of the apparatus temperature control apparatus 1 in this embodiment is the same as that of 1st Embodiment.
  • the device temperature adjustment device 1 of the present embodiment moves the position of the regenerator CS to a position equivalent to that of the fifth embodiment with respect to the device temperature adjustment device 1 of the seventh embodiment. has been edited. That is, the cool storage agent CS is disposed in the liquid passage portion 2d. Operation
  • movement of the apparatus temperature control apparatus 1 of this embodiment is the same as that of 5th Embodiment.
  • the apparatus temperature adjustment apparatus 1 of the present embodiment is different from the apparatus temperature adjustment apparatus 1 of the seventh embodiment in the installation site of the cool storage agent CS, but the other configuration is the same as the apparatus temperature adjustment apparatus 1 of the seventh embodiment. .
  • the regenerator CS is not provided in the condenser 2c, but is disposed inside the equipment heat exchanger 2a as shown in FIG. 22A. More specifically, the regenerator CS is disposed in the tube 126 of the equipment heat exchanger 2a at a position closer to the liquid inlet 2ac between the gas outlet 2ab and the liquid inlet 2ac. More specifically, the cool storage agent CS is disposed at the most upstream end in the forward direction in the equipment heat exchanger 2a. In addition, the cool storage agent CS may be disposed at a position closer to the gas outlet 2ab of the gas outlet 2ab and the liquid inlet 2ac in the tube 126 of the equipment heat exchanger 2a.
  • the regenerator CS extends from the lower end to the upper end of the tube 126 in the tube 126. Therefore, the cool storage agent CS contacts the working fluid and exchanges heat both above and below the liquid level of the working fluid in the tube 126. This is to realize both cold storage of the cold storage agent CS accompanying the evaporation of the working fluid and natural cooling of the cold storage agent CS accompanying the condensation of the working fluid.
  • the liquid level LS of the working fluid in the tube 126 may or may not be cooled even if the cool storage agent CS is stored cold or the compressor 3a is operating. Is lower than the upper end of the tube 126 and higher than the lower end of the tube 126. Therefore, the cool storage agent CS is above the liquid level of the working fluid in the tube 126 regardless of whether the cool storage agent CS cools or cools and the condenser 2c is not operating. Heat exchange in contact with the working fluid.
  • the regenerator CS when the regenerator CS is allowed to cool, the gas-phase working fluid can be condensed by exchanging heat with the regenerator CS in the equipment heat exchanger 2a. Further, when the cold storage agent CS is stored cold, the liquid-phase working fluid in the equipment heat exchanger 2a can be evaporated by exchanging heat with the cold storage agent CS.
  • the thermal conductivity may be higher than the working fluid in the gas phase than the working fluid in the liquid phase. If it becomes like this, the part which contact
  • the cool storage agent CS when the cool storage agent CS is storing cold, not only the portion of the cool storage agent CS that contacts the liquid working fluid but also the portion that contacts the gas working fluid is sufficiently cooled. That is, at the time of cold storage, the cool storage agent CS is not stored only in a part (that is, a part in contact with the liquid-phase working fluid), but the possibility that the entire cool storage agent CS is used for cold storage is increased.
  • the cool storage agent CS When the cool storage agent CS is allowed to cool, not only the portion of the cool storage agent CS that comes into contact with the gas phase working fluid but also the portion that touches the liquid phase working fluid is sufficiently cooled. That is, at the time of cooling, not only a part of the regenerator CS (that is, a part in contact with the gas-phase working fluid) is allowed to cool, but the possibility that the whole regenerator CS is used for cooling is increased.
  • the regenerator CS may be in contact with the high thermal conductivity member CSx on one side and the other side.
  • the high thermal conductivity member CSx extends from the upper side to the lower side of the liquid level LS of the working fluid both when the condenser 2c is operating and when not operating. That is, the high thermal conductivity member CSx contacts both the liquid-phase working fluid and the gas-phase working fluid both when the condenser 2c is operating and when not operating.
  • the thermal conductivity of the high thermal conductivity member CSx is higher than that of the regenerator CS than the working fluid in the gas phase than the working fluid in the liquid phase.
  • the part mainly exchanging heat with the liquid phase working fluid and the part mainly exchanging heat with the gas phase working fluid will pass through the high thermal conductivity member CSx. Heat exchange with each other quickly. As a result, there is a high possibility that the entire cool storage agent CS will be used for cooling, both during cold storage and during cooling.
  • the portion that mainly exchanges heat with the liquid-phase working fluid may be in contact with the liquid-phase working fluid, or may exchange heat with the liquid-phase working fluid via the high thermal conductivity member CSx.
  • the portion that mainly exchanges heat with the gas phase working fluid may be in contact with the gas phase working fluid, or may exchange heat with the gas phase working fluid via the high thermal conductivity member CSx. .
  • the entire condenser 2c of the present embodiment is below the upper end of the equipment heat exchanger 2a and above the lower end of the equipment heat exchanger 2a. is there.
  • the vertical center position of the condenser 2c coincides with the vertical center position of the equipment heat exchanger 2a.
  • the gas outlet 2ab is provided on the upper tank 124 on the side close to the condenser 2c in the longitudinal direction of the equipment heat exchanger 2a.
  • the gas passage portion 2b extends in the horizontal direction from the gas outlet portion 2ab toward the condenser 2c without passing through a position higher than the whole of the equipment heat exchanger 2a.
  • the gas passage portion 2b is bent by about 90 ° and extends downward to reach the gas inlet portion 2ca.
  • the liquid passage portion 2d extends downward from the liquid outlet portion 2cb, bends about 90 °, and does not pass through a position lower than the whole of the device heat exchanger 2a in the horizontal direction. To reach the liquid inlet 2ac.
  • the whole condenser 2c is disposed above the lower end of the tube 126, and is disposed above the lower end of the heat exchanging part 121 (that is, a heat exchange part that exchanges heat with the assembled battery BP).
  • the circulation of the working fluid in the device fluid circuit 2 is realized by the head difference. That is, the head difference becomes a driving source for circulating the working fluid. Therefore, when the condenser 2c operates and the working fluid circulates in the forward direction (that is, in the clockwise direction in FIG. 23), the liquid passage portion rather than the liquid level of the working fluid in the equipment heat exchanger 2a. The liquid level of the working fluid in 2d is higher.
  • the height of the liquid level is expected to coincide with the lower end of the heat exchanging part 121 that is a heat exchange part. Therefore, if the lower end of the condenser 2c is lower than the lower end of the heat exchange unit 121, at least a part of the inside of the condenser 2c is always filled with the liquid-phase working fluid, and the working fluid does not condense.
  • the lower end of the condenser 2c is located above the lower end of the heat exchange unit 121 from the viewpoint of using the entire condenser 2c. Further, it is desirable that the lower end of the condenser 2c is located above the lower tank 125.
  • the cold storage agent CS is upstream in the forward direction of the gas passage portion 2b in the forward direction, as in the eighth embodiment.
  • the difference between the device temperature control device 1 of the present embodiment and the device temperature control device 1 of the eighth embodiment is the arrangement of the gas passage 2b, the condenser 2c, and the liquid passage 2d with respect to the device heat exchanger 2a.
  • the entire condenser 2c of the present embodiment is below the upper end of the equipment heat exchanger 2a and above the lower end of the equipment heat exchanger 2a. is there.
  • the vertical center position of the condenser 2c coincides with the vertical center position of the equipment heat exchanger 2a.
  • the gas outlet 2ab is provided on the upper tank 124 on the side close to the condenser 2c in the longitudinal direction of the equipment heat exchanger 2a. Further, the gas passage portion 2b extends upward from the gas outlet portion 2ab and reaches a position higher than the entire heat exchanger for equipment 2a. Further, the gas passage portion 2b is bent by about 90 °, extends in the horizontal direction and further bent by about 90 ° at a position higher than the whole of the equipment heat exchanger 2a, and extends downward to reach the gas inlet portion 2ca. .
  • the vertical position of the condenser 2c relative to the equipment heat exchanger 2a is the same as in the twelfth embodiment. Operation
  • movement of the apparatus temperature control apparatus 1 of this embodiment is the same as that of 8th Embodiment.
  • the cold storage agent CS is downstream in the forward direction from the uppermost part of the gas passage portion 2b in the gas passage portion 2b, as in the ninth embodiment.
  • the difference between the device temperature control device 1 of the present embodiment and the device temperature control device 1 of the ninth embodiment is the arrangement of the gas passage part 2b, the condenser 2c, and the liquid passage part 2d with respect to the equipment heat exchanger 2a.
  • the cool storage agent CS is disposed in the liquid passage portion 2d, as in the tenth embodiment.
  • the difference between the device temperature control device 1 of the present embodiment and the device temperature control device 1 of the tenth embodiment is the arrangement of the gas passage portion 2b, the condenser 2c, and the liquid passage portion 2d with respect to the device heat exchanger 2a.
  • the regenerator CS is disposed in the device heat exchanger 2a, as in the eleventh embodiment.
  • the difference between the device temperature control device 1 of the present embodiment and the device temperature control device 1 of the eleventh embodiment is the arrangement of the gas passage portion 2b, the condenser 2c, and the liquid passage portion 2d with respect to the device heat exchanger 2a.
  • the cold storage agent CS is configured integrally with the condenser 2c, but is not limited to this configuration.
  • the cool storage agent CS is not integrally formed with the condenser 2c, the above-described effects can be obtained as long as the cool storage agent CS is disposed at least in the device fluid circuit 2. That is, if the cool storage agent CS is arranged in the fluid circuit 2 for equipment, the cold heat accumulated in the cool storage agent CS is transmitted to the working fluid, so that the working fluid is easily cooled and condensed, and the cooling capacity is reduced. It becomes easy to be maintained.
  • the regenerator CS Even if the regenerator CS is not integrated with the condenser 2c, the gas outlet portion 2ab is ahead of the uppermost portion of the gas passage portion 2b in the forward direction in the fluid circuit 2 for equipment. If the cool storage agent CS is arranged on the near side, the above effect can be obtained. That is, if the regenerator CS is disposed before the gas outlet portion 2ab before the uppermost portion of the gas passage portion 2b in the forward direction in the fluid circuit 2 for equipment, the working fluid The forward flow is more easily maintained. This is because the flow rate of the working fluid in the forward direction does not decrease unlike the case where the cool storage agent CS is disposed in a portion before the uppermost portion.
  • the regenerator CS is arranged in the device fluid circuit 2 before the gas inlet 2ca and before the gas outlet 2ab. In this case, the above effect can be obtained. That is, if the regenerator CS is disposed before the gas inlet 2ca and before the gas outlet 2ab in the device fluid circuit 2, the liquid working fluid condensed by the condenser 2c is used as the regenerator. By exchanging heat with CS, cold energy can be accumulated in the cold storage agent CS.
  • the regenerator CS is arranged in the fluid circuit 2 for equipment ahead of the gas inlet 2ca in the forward direction and before the liquid inlet 2ac. If it is done, the above effect can be obtained.
  • the regenerator CS is disposed before the gas inlet 2ca in the forward direction and before the liquid inlet 2ac in the device fluid circuit 2, the forward flow of the working fluid is more likely to occur. Become. This is because the liquid working fluid condensed by the condenser 2c is heat-exchanged with the cold storage agent CS, so that the gaseous working fluid is liquefied and falls down by the cold heat accumulated in the cold storage agent CS.
  • water may be used as the regenerator CS of the above embodiment. That is, in the above embodiment, as shown in FIG. 28, the cold heat of the working fluid may be accumulated by the water flowing through the water circulation path 4 through which the water circulates. This water is antifreeze.
  • Reference numeral 4a in FIG. 28 is a pump.
  • Reference numeral 4b denotes a heat exchanger.
  • Reference numeral 4c is a valve.
  • Reference numeral 4d denotes a cooler core.
  • the cooler core is a heat exchanger for cooling the vehicle interior by generating cold air by exchanging heat between the cold water in the water circulation path 4 and the air in the vehicle interior, and is used as an alternative to the evaporator.
  • the cooler core performs cooling by heat exchange between water and air.
  • Reference numeral 4e denotes a heat exchanger. By exchanging heat between the working fluid flowing in the condenser 2c and the water flowing in the heat exchanger 4e, the water is cooled when the water is stored, and the water is warmed when the water is allowed to cool.
  • the heat exchanger 4e and the condenser 2c constitute an integral condenser.
  • Numeral 5 in FIG. 28 is a refrigeration cycle.
  • Reference numeral 5 a is a compressor
  • reference numeral 5 b is a condenser
  • reference numeral 5 c is an expansion valve
  • reference numeral 5 e is an evaporator for exchanging heat between the refrigerant flowing through the refrigeration cycle 5 and the water flowing through the water circulation path 4. is there.
  • Water is cooled by heat exchange between the water flowing in the heat exchanger 4b and the refrigerant evaporated in the evaporator 5e.
  • the heat exchanger 4b and the evaporator 5e together constitute a chiller (that is, a water refrigerant heat exchanger).
  • water cooled by the refrigeration cycle 5 (that is, water flowing through the water circulation path 4) is used for heat dissipation as the heat dissipation amount adjusting unit and also used for cooling the cooler core.
  • the cooler core 4d and the condensers 2c and 4e are arranged in parallel, but may be arranged in series. In that case, it is desirable to provide a valve after providing a flow path that bypasses at least one of the cooler core 4d and the condensers 2c and 4e.
  • the cooler core 4d is used as a heat exchanger for cooling the passenger compartment.
  • a conventional evaporator 5f for cooling the passenger compartment may be used.
  • two evaporators 5e and 5f are connected in series. However, as shown in FIG. 30, two evaporators 5e and 5f may be arranged in parallel. At this time, it is desirable to install the expansion valves 5c and 5d upstream of each of the two evaporators 5e and 5f.
  • the heat exchanger 4b is connected to the evaporator 5e in order to exchange heat between the water flowing through the water circulation path 4 and the refrigerant flowing through the refrigeration cycle 5.
  • the heat exchanger 4b may be a radiator that radiates heat from the water flowing through the water circulation path 4 to the outside air.
  • a radiator 4f and a valve 4g may be added to the water circulation path 4 of FIG.
  • the radiator 4f is disposed in the radiator flow path 4h in the water circulation path 4, and radiates heat from the water flowing in the radiator 4f to the outside air.
  • the valve 4g switches between a state where water discharged from the pump 4a flows into the radiator flow path 4h and a state where water discharged from the pump 4a flows into the radiator bypass flow path 4i. In the latter state, the water discharged from the pump 4a bypasses the radiator 4f and flows into the heat exchanger 4b.
  • These two states realized by the valve 4g are switched according to the temperature of the water and the like. By doing in this way, the refrigerant
  • the heat exchanger 4b, the heat exchanger 44e, the condenser 2c, and the evaporator 5e may be configured as an integral casing as a whole with respect to the water circulation path 4 in FIG. Good.
  • circulate the refrigerating cycle 5, the water circulation path 4, and the fluid circuit 2 for apparatuses can be comprised as one housing
  • the water in the heat exchanger 4b and the refrigerant in the evaporator 5e exchange heat, and the water in the heat exchanger 4e and the working fluid in the condenser 2c exchange heat.
  • a pump 4j, an inverter 4k, a valve 4m, and an inverter flow path 4n may be added to the water circulation path 4 of FIG.
  • the valve 4m is disposed between the outlet of the radiator 4f and the downstream end of the radiator bypass passage 4i.
  • the inverter flow path 4n is a flow path that connects the valve 4m to the valve 4g and the radiator 4f inlet.
  • the pump 4j is arranged in the inverter flow path 4n, sucks water in the inverter flow path 4n, and discharges it to the inverter 4k side.
  • the inverter 4k is an electric device that converts direct current into alternating current, and generates heat during operation.
  • the inverter 4k is cooled by exchanging heat with water flowing through the inverter flow path 4n.
  • the valve 4m switches between a state where the inverter flow path 4n is closed and the radiator flow path 4h is opened, and a state where the inverter flow path 4n is opened and the radiator flow path 4h is closed.
  • the water is cooled by the radiator 4f.
  • the water is heated by cooling the inverter 4k.
  • a circuit for cooling the inverter 4k can be integrated into the water circulation path 4.
  • the water-cooled condenser 2c is connected to the evaporator 5e in order to exchange heat with the refrigeration cycle.
  • the water-cooled condenser 2c may be connected to a heat exchanger for exchanging heat with the outside air or air in the passenger compartment. good.
  • the apparatus temperature control apparatus which can cool a temperature control object apparatus, the heat exchanger for apparatus, a gas passage part, a condenser, and liquid An annular device fluid circuit including a passage portion.
  • the equipment heat exchanger cools the temperature control target device by absorbing heat from the temperature control target device and evaporating the liquid working fluid.
  • the gas passage portion guides the gaseous working fluid evaporated in the equipment heat exchanger to the condenser.
  • the condenser is disposed above the equipment heat exchanger, and condenses the gaseous working fluid evaporated in the equipment heat exchanger.
  • the liquid passage portion guides the liquid working fluid condensed by the condenser to the equipment heat exchanger.
  • this apparatus temperature control apparatus has a cool storage agent which is arrange
  • the cold storage agent is configured integrally with the condenser. By doing in this way, it can cool directly from the heat medium of a heat radiation amount adjustment part.
  • the cool storage agent is disposed on the downstream side of the condenser and on the upstream side of the equipment heat exchanger. By doing in this way, it can cool from the working fluid of a liquid phase state. Further, when the cool storage agent is allowed to cool, the cool storage agent can further cool the working fluid in the liquid phase. That is, the working fluid can be brought into a subcooled state.
  • the cool storage agent is arrange
  • the cold storage agent is disposed in the equipment heat exchanger.
  • a cool storage agent can store cold, maintaining the loop through which a working fluid flows in order of an equipment heat exchanger, a gas passage part, a condenser, and a liquid passage part.
  • the cold storage agent is disposed in the gas passage portion on the upstream side of the uppermost portion of the gas passage portion.
  • the cold storage agent is configured integrally with the condenser.
  • the liquid working fluid condensed by the condenser can be immediately heat-exchanged with the cold storage agent, cold energy can be efficiently accumulated in the cold storage agent, and the order of the working fluid can be increased.
  • the directional flow is particularly easily maintained.
  • a heat radiation amount adjustment part exists in the inside of a condenser. It is a refrigeration cycle having a heat medium flow path that is a flow path for flowing a heat medium that cools the working fluid by exchanging heat with the working fluid.
  • the refrigeration cycle is the first refrigeration cycle, and the first refrigeration cycle is compressed. Actuated by a compressor of an air conditioner with a second refrigeration cycle actuated by the machine.
  • the apparatus temperature control apparatus in any one viewpoint of 1st thru
  • the cold storage agent is interposed between the working fluid and the heat medium flow path. Without being arranged. Specifically, at least a part of the cool storage agent is disposed between the working fluid and the heat medium flow path. According to the ninth aspect, the cold energy of the cool storage agent is easily transmitted to the working fluid, and the forward flow of the working fluid is particularly easily maintained.
  • the cold storage agent is a flow path of the working fluid in the condenser and a heat medium flow It is arranged between the road. Specifically, at least a part of the cool storage agent is disposed between the working fluid flow path and the heat medium flow path in the condenser.
  • the cold energy of the cool storage agent is easily transmitted to the working fluid, and the forward flow of the working fluid is particularly easily maintained.
  • the cold storage agent flows through a water circulation path through which water circulates. It is water.
  • the temperature adjustment target apparatus has a plurality of battery cells. It is an assembled battery.
  • the temperature adjustment target device is cooled using latent heat, the temperature variation of each battery cell can be reduced, and each battery cell can be cooled uniformly. Therefore, it is particularly suitable for cooling an assembled battery in which temperature equalization for reducing the temperature variation of each battery cell is important.
  • the equipment heat exchanger, the gas passage section, the condenser, and the liquid passage section are arranged in this order, and the equipment heat exchange is performed.
  • the vessel has a gas outlet portion to which the lower end portion of the gas passage portion is connected.
  • the cool storage agent is arrange
  • the cool storage agent is disposed in front of the uppermost portion of the gas passage portion in the forward direction, and the cool storage agent is disposed in front of the gas outlet portion. Since the flow rate of the working fluid in the forward direction does not decrease as in the case where is disposed, the forward flow of the working fluid is more easily maintained.
  • the equipment heat exchanger, the gas passage section, the condenser, and the liquid passage section are arranged in this order, and the equipment heat exchange is performed.
  • the vessel has a gas inlet portion to which an upper end portion of the gas passage portion is connected.
  • the cool storage agent is arrange
  • the cool storage agent is disposed before the gas inlet of the condenser in the forward direction, that is, the cool storage agent is disposed downstream of the condenser. Therefore, cold heat can be accumulated in the cold storage agent by exchanging heat between the liquid working fluid condensed by the condenser and the cold storage agent.
  • the equipment heat exchanger, the gas passage section, the condenser, and the liquid passage section are arranged in this order in the forward direction.
  • the equipment heat exchanger has a liquid inlet portion to which the lower end portion of the liquid passage portion is connected
  • the condenser has a gas inlet portion to which the upper end portion of the gas passage portion is connected.
  • the cool storage agent is arrange
  • the cool storage agent is disposed before the gas inlet of the condenser in the forward direction, that is, the cool storage agent is disposed downstream of the condenser. Therefore, cold heat can be accumulated in the cold storage agent by exchanging heat between the liquid working fluid condensed by the condenser and the cold storage agent. Furthermore, the cool storage agent is disposed in front of the liquid inlet portion of the equipment heat exchanger in the forward direction, that is, the cool storage agent is disposed upstream of the equipment heat exchanger. Of the liquid passage portion in the forward direction, the portion from the liquid outlet portion of the condenser to the liquid inlet portion of the equipment heat exchanger is a passage in which the working fluid is directed from top to bottom in the forward direction.
  • the gaseous working fluid is liquefied by the cold heat accumulated in the cool storage agent and falls down, so that the forward direction of the working fluid is reduced. Flow is more likely to occur.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Secondary Cells (AREA)

Abstract

This appliance temperature regulating apparatus capable of cooling an appliance (BP) of which temperature is to be regulated has an annular appliance fluid circuit (2) that is configured to include: an appliance heat exchanger (2a) that cools the appliance of which temperature is to be regulated, by causing heat to be absorbed from the appliance of which temperature is to be regulated and causing a working fluid in a liquid form to be evaporated; a condenser (2c) that condenses the working fluid in a gaseous form evaporated at the appliance heat exchanger; a gas passage part (2b) that guides, to the condenser, the gaseous working fluid evaporated at the appliance heat exchanger; and a liquid passage part (2d) that guides, to the appliance heat exchanger, the working fluid in a liquid form condensed at the condenser. The heat radiation amount of the working fluid is adjusted by a heat radiation amount adjusting part (31, BF) that performs, by supplying a heating medium to the condenser, heat exchange between the heating medium and the working fluid present inside the condenser. This appliance temperature regulating apparatus has a cold storage agent (CS) that is disposed in the appliance fluid circuit and that stores at least one of: cold heat of the working fluid; and cold heat of the heating medium.

Description

機器温調装置Equipment temperature controller 関連出願への相互参照Cross-reference to related applications
 本出願は、2016年10月11日に出願された日本特許出願番号2016-200226号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2016-200286 filed on Oct. 11, 2016, the contents of which are incorporated herein by reference.
 本開示は、温調対象機器の温度を調整可能な機器温調装置に関する。 This disclosure relates to a device temperature control device capable of adjusting the temperature of a temperature control target device.
 従来、温調対象機器を冷却する冷却装置として、ループ型のサーモサイフォン方式の冷却装置が知られている。この種の冷却装置としては、特許文献1に記載のものがある。 Conventionally, a loop-type thermosyphon cooling device is known as a cooling device for cooling a temperature-controlled device. There exists a thing of patent document 1 as this kind of cooling device.
 特許文献1に記載の機器温調装置は、機器用熱交換器、ガス通路部、凝縮器、および液通路部を含んで構成される環状の機器用流体回路を備えている。また、この機器温調装置は、凝縮器の内部に存する作動媒体と熱交換して該作動媒体を放熱させるための熱媒体(例えば、送風空気)を該凝縮器に供給することで作動流体の放熱量を調整する放熱量調整部(例えば、送風機)を備えている。機器用熱交換器は、温調対象機器から吸熱して液状の作動流体を蒸発させる熱交換器である。凝縮器は、機器用熱交換器よりも上方に配置され、機器用熱交換器にて蒸発したガス状の作動流体を凝縮させる熱交換器である。凝縮器は、該凝縮器の内部に存する作動媒体を、放熱量調整部から供給される熱媒体と熱交換させることで放熱させ、凝縮させる。ガス通路部は、機器用熱交換器にて蒸発したガス状の作動流体を凝縮器に導く通路部材である。液通路部は、凝縮器にて凝縮した液状の作動流体を機器用熱交換器に導く通路部材である。すなわち、この機器温調装置は、機器用流体回路において作動流体を循環させることで該作動流体の蒸発および凝縮による熱移動を行うヒートパイプである。この機器温調装置は、ガス状の作動流体が流れる流路と液状の作動流体が流れる流路とが分離されたループ型のサーモサイフォンとなるように構成されている。尚、この機器温調装置では、機器用流体回路において、機器用熱交換器、ガス通路部、凝縮器、液通路部の順に作動流体が流れる。また、機器用流体回路において、この順(すなわち、機器用熱交換器、ガス通路部、凝縮器、液通路部の順)に作動流体が流れる方向が、順方向である。 The device temperature control apparatus described in Patent Document 1 includes an annular device fluid circuit configured to include a device heat exchanger, a gas passage portion, a condenser, and a liquid passage portion. In addition, this equipment temperature control apparatus supplies a heat medium (for example, blown air) for exchanging heat with the working medium existing inside the condenser to dissipate the working medium, thereby supplying the working fluid. A heat radiation amount adjusting unit (for example, a blower) that adjusts the heat radiation amount is provided. The equipment heat exchanger is a heat exchanger that absorbs heat from the temperature control target equipment and evaporates the liquid working fluid. The condenser is a heat exchanger that is disposed above the equipment heat exchanger and condenses the gaseous working fluid evaporated in the equipment heat exchanger. The condenser radiates heat and condenses the working medium existing in the condenser by heat exchange with the heat medium supplied from the heat radiation amount adjusting unit. The gas passage portion is a passage member that guides the gaseous working fluid evaporated in the equipment heat exchanger to the condenser. The liquid passage portion is a passage member that guides the liquid working fluid condensed by the condenser to the equipment heat exchanger. That is, this equipment temperature control device is a heat pipe that performs heat transfer by evaporation and condensation of the working fluid by circulating the working fluid in the equipment fluid circuit. This device temperature control device is configured to be a loop thermosyphon in which a flow path through which a gaseous working fluid flows and a flow path through which a liquid working fluid flows are separated. In this device temperature control apparatus, in the device fluid circuit, the working fluid flows in the order of the device heat exchanger, the gas passage portion, the condenser, and the liquid passage portion. Further, in the fluid circuit for equipment, the direction in which the working fluid flows in this order (that is, the order of equipment heat exchanger, gas passage, condenser, and liquid passage) is the forward direction.
特開2012-9646号公報JP 2012-9646 A
 特許文献1のようなサーモサイフォン方式の機器温調装置においては、諸事情により上記の放熱量調整部の放熱能力が低下し、これにより凝縮器の凝縮能力が低下することがある。特に、車両に搭載され、車載機器(例えば、電池などの電子機器)を冷却する機器温調装置においては、様々な事情により放熱量調整部の放熱能力が低下することがある。具体的には、例えば、放熱量調整部としてエンジンルームに設置される送風機が用いられる場合には、車速が低下したときに、送風機による風量も低下することで凝縮器の凝縮能力も低下し、十分に凝縮が行われなくなる。このとき、凝縮器の凝縮能力が低下することにより、順方向の作動流体の流量が減少することで、順方向の流れが維持され難い事態が生じ、機器温調装置の冷却能力が著しく低下する。また、一度このように順方向が維持され難い状態となると、再度、放熱量調整部の放熱能力を回復させたとしても、機器温調装置の冷却能力が元の状態と同程度に回復するまでに時間(例えば、数十秒)を要することとなってしまう。この結果、機器温調装置における全体的な冷却能力(すなわち、所定時間当たりに得られる総冷却能力)が著しく低下してしまう。また、別の例として、放熱量調整部として車室内に空調風を提供する車両用空調装置の冷凍サイクルが用いられる場合には、例えば車速の低下に対応して圧縮機の回転数上限を低下させるなど、諸制御などによって該冷凍サイクルの圧縮機の回転数上限が低下したときにも、凝縮器の凝縮能力が低下し、上記と同様の理由から冷却能力が著しく低下してしまう。 In a thermosiphon type device temperature control apparatus such as Patent Document 1, the heat radiation capacity of the heat radiation amount adjusting unit may be reduced due to various circumstances, thereby reducing the condenser capacity of the condenser. In particular, in a device temperature control device that is mounted on a vehicle and cools a vehicle-mounted device (for example, an electronic device such as a battery), the heat radiation capacity of the heat radiation amount adjusting unit may be reduced due to various circumstances. Specifically, for example, when a blower installed in the engine room is used as the heat dissipation amount adjustment unit, when the vehicle speed is reduced, the air flow by the blower is also reduced, so that the condenser capacity is also reduced. Condensation is not performed sufficiently. At this time, the condensation capacity of the condenser is reduced, and the flow rate of the working fluid in the forward direction is reduced. As a result, it is difficult to maintain the forward flow, and the cooling capacity of the device temperature control device is significantly reduced. . Also, once it becomes difficult to maintain the forward direction in this way, even if the heat radiation capacity of the heat radiation amount adjustment unit is restored again, until the cooling capacity of the equipment temperature control device recovers to the same level as the original state Time (for example, several tens of seconds) is required. As a result, the overall cooling capacity (that is, the total cooling capacity obtained per predetermined time) in the device temperature control device is significantly reduced. As another example, when a refrigeration cycle of a vehicle air conditioner that provides conditioned air to the passenger compartment is used as a heat dissipation adjustment unit, for example, the upper limit of the rotational speed of the compressor is decreased in response to a decrease in vehicle speed. Even when the upper limit of the rotational speed of the compressor of the refrigeration cycle is reduced by various controls or the like, the condenser capacity of the condenser is lowered, and the cooling capacity is significantly lowered for the same reason as described above.
 本開示は、サーモサイフォン方式の機器温調装置において、放熱量調整部の放熱能力が低下したときでも冷却能力が低下し難い構成を提供することを目的とする。 This disclosure aims to provide a configuration in which the cooling capacity is hardly lowered even in the case where the heat radiation capacity of the heat radiation amount adjusting unit is lowered in the thermosiphon type device temperature control device.
 上記目的を達成するため、本開示の1つの観点によれば、温調対象機器を冷却可能な機器温調装置において、以下の構成とする。すなわち、機器温調装置において、機器用熱交換器と、ガス通路部と、凝縮器と、液通路部とを含んで構成される環状の機器用流体回路を有する構成とする。機器用熱交換器は、温調対象機器から吸熱して液状の作動流体を蒸発させることで温調対象機器を冷却するものである。ガス通路部は、機器用熱交換器にて蒸発したガス状の作動流体を凝縮器に導くものである。凝縮器は、機器用熱交換器よりも上方に配置され、機器用熱交換器にて蒸発したガス状の作動流体を凝縮させるものである。液通路部は、凝縮器にて凝縮した液状の作動流体を機器用熱交換器に導くものである。また、この機器温調装置は、放熱量調整部によって、作動流体の放熱量が調整される。放熱量調整部は、熱媒体を凝縮器に供給することで該熱媒体と前記凝縮器の内部に存する作動流体とで熱交換させるものである。そして、この機器温調装置において、機器用流体回路に配置され、作動流体の冷熱および上記熱媒体の冷熱の少なくとも一方を蓄積する蓄冷剤を有する構成とする。 In order to achieve the above object, according to one aspect of the present disclosure, a device temperature control apparatus capable of cooling a temperature control target device has the following configuration. In other words, the equipment temperature control device has a configuration including an annular equipment fluid circuit including an equipment heat exchanger, a gas passage section, a condenser, and a liquid passage section. The equipment heat exchanger cools the temperature control target device by absorbing heat from the temperature control target device and evaporating the liquid working fluid. The gas passage part guides the gaseous working fluid evaporated in the equipment heat exchanger to the condenser. The condenser is disposed above the equipment heat exchanger, and condenses the gaseous working fluid evaporated in the equipment heat exchanger. The liquid passage portion guides the liquid working fluid condensed in the condenser to the equipment heat exchanger. Further, in this device temperature control device, the heat dissipation amount of the working fluid is adjusted by the heat dissipation amount adjusting unit. The heat radiation amount adjusting unit is configured to exchange heat between the heat medium and the working fluid existing in the condenser by supplying the heat medium to the condenser. And this apparatus temperature control apparatus is set as the structure which has a cool storage agent arrange | positioned in the fluid circuit for apparatuses, and accumulate | stores at least one of the cold heat of a working fluid, and the cold heat of the said heat medium.
 この機器温調装置によれば、放熱量調整部の放熱能力が低下したときでも、蓄冷剤に蓄積された冷熱が作動流体に伝わることで、作動流体が冷却されて凝縮され易くなる。そして、作動流体が凝縮し易くなることで、機器用流体回路における作動流体の順方向の流れが維持され易くなり、ひいては機器温調装置の冷却能力が維持され易くなる。つまり、機器用流体回路に蓄冷剤が配置されていることで、放熱量調整部の放熱能力が低下したときでも冷却能力が低下せずに維持され易くなる。 According to this device temperature control device, even when the heat radiation capacity of the heat radiation amount adjusting unit is lowered, the cold heat accumulated in the cold storage agent is transmitted to the working fluid, so that the working fluid is easily cooled and condensed. And since it becomes easy to condense a working fluid, it becomes easy to maintain the forward flow of the working fluid in the fluid circuit for apparatus, and it becomes easy to maintain the cooling capacity of an apparatus temperature control apparatus by extension. That is, since the cool storage agent is arranged in the fluid circuit for equipment, even when the heat radiation capacity of the heat radiation amount adjusting unit is lowered, the cooling capacity is easily maintained without being lowered.
第1実施形態に係る機器温調装置の模式的な全体構成図である。It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on 1st Embodiment. 組電池の入出力特性を説明するための説明図である。It is explanatory drawing for demonstrating the input-output characteristic of an assembled battery. 図1に示す機器温調装置の機器用熱交換器の内部を示す模式図である。It is a schematic diagram which shows the inside of the apparatus heat exchanger of the apparatus temperature control apparatus shown in FIG. 図1に示す機器温調装置の凝縮器の全体構成を示す図である。It is a figure which shows the whole structure of the condenser of the apparatus temperature control apparatus shown in FIG. 圧縮機が停止したときにおいて、蓄冷剤を有する場合と有しない場合の各々の機器温調装置の冷却性能の変化を示す図である。It is a figure which shows the change of the cooling performance of each apparatus temperature control apparatus with and without having a cool storage agent, when a compressor stops. 圧縮機の回転数の上限が低下したときにおいて、蓄冷剤を有する場合と有しない場合の各々の機器温調装置の冷却性能の変化を示す図である。It is a figure which shows the change of the cooling performance of each apparatus temperature control apparatus with and without having a cool storage agent, when the upper limit of the rotation speed of a compressor falls. 冷凍サイクルの冷却能力が第2冷凍サイクルに優先的に使用されるときにおいて、蓄冷剤を有する場合と有しない場合の各々の機器温調装置の冷却性能の変化を示す図である。It is a figure which shows the change of the cooling performance of each apparatus temperature control apparatus with and without having a cool storage agent, when the cooling capacity of a refrigerating cycle is used preferentially for a 2nd freezing cycle. 第2実施形態に係る機器温調装置の模式的な全体構成図である。It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on 2nd Embodiment. 車速が低下したときにおいて、蓄冷剤を有する場合と有しない場合の各々の機器温調装置の冷却性能の変化を示す図である。It is a figure which shows the change of the cooling performance of each apparatus temperature control apparatus with and without having a cool storage agent, when a vehicle speed falls. グリルシャッターが作動したときにおいて、蓄冷剤を有する場合と有しない場合の各々の機器温調装置の冷却性能の変化を示す図である。It is a figure which shows the change of the cooling performance of each apparatus temperature control apparatus with and without having a cool storage agent, when a grill shutter act | operates. 送風機を車室内に設置したときにおいて、蓄冷剤を有する場合と有しない場合の各々の機器温調装置の冷却性能の変化を示す図である。It is a figure which shows the change of the cooling performance of each apparatus temperature control apparatus with and without having a cool storage agent, when installing an air blower in a vehicle interior. 第3実施形態に係る機器温調装置の模式的な全体構成図である。It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on 3rd Embodiment. 蓄冷剤CSの斜視図である。It is a perspective view of the cool storage agent CS. 第4実施形態に係る機器温調装置の模式的な全体構成図である。It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on 4th Embodiment. 第5実施形態に係る機器温調装置の模式的な全体構成図である。It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on 5th Embodiment. 第6実施形態に係る機器温調装置の模式的な全体構成図である。It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on 6th Embodiment. 第7実施形態に係る機器温調装置の模式的な全体構成図である。It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on 7th Embodiment. 図17のXVIII-XVIII断面図である。FIG. 18 is a sectional view taken along line XVIII-XVIII in FIG. 第8実施形態に係る機器温調装置の模式的な全体構成図である。It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on 8th Embodiment. 第9実施形態に係る機器温調装置の模式的な全体構成図である。It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on 9th Embodiment. 第10実施形態に係る機器温調装置の模式的な全体構成図である。It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on 10th Embodiment. 第11実施形態に係る機器温調装置の模式的な全体構成図である。It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on 11th Embodiment. 第11実施形態の他の例に係る機器温調装置の模式的な全体構成図である。It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on the other example of 11th Embodiment. 第12実施形態に係る機器温調装置の模式的な全体構成図である。It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on 12th Embodiment. 第13実施形態に係る機器温調装置の模式的な全体構成図である。It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on 13th Embodiment. 第14実施形態に係る機器温調装置の模式的な全体構成図である。It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on 14th Embodiment. 第15実施形態に係る機器温調装置の模式的な全体構成図である。It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on 15th Embodiment. 第16実施形態に係る機器温調装置の模式的な全体構成図である。It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on 16th Embodiment. 他の実施形態に係る機器温調装置の模式的な全体構成図である。It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on other embodiment. 別の他の実施形態に係る機器温調装置の模式的な全体構成図である。It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on another other embodiment. 他の実施形態に係る機器温調装置の模式的な全体構成図である。It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on other embodiment. 他の実施形態に係る機器温調装置の模式的な全体構成図である。It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on other embodiment. 他の実施形態に係る機器温調装置の模式的な全体構成図である。It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on other embodiment. 他の実施形態に係る機器温調装置の模式的な全体構成図である。It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on other embodiment. 他の実施形態に係る機器温調装置の模式的な全体構成図である。It is a typical whole block diagram of the apparatus temperature control apparatus which concerns on other embodiment.
 以下、本開示の実施形態について図に基づいて説明する。尚、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals for description.
 (第1実施形態)
 本開示の第1実施形態に係る機器温調装置1について図1~図7を参照して説明する。機器温調装置1は、温調対象機器BPを冷却可能な機器である。本実施形態では、車両に搭載された組電池BPの電池温度を調節する装置として図1に示す機器温調装置1を適用した例について、説明する。機器温調装置1を搭載する車両としては、組電池BPを電源とする不図示の走行用電動モータによって走行可能な電気自動車、ハイブリッド自動車等が想定されている。
(First embodiment)
An apparatus temperature control device 1 according to a first embodiment of the present disclosure will be described with reference to FIGS. 1 to 7. The device temperature control device 1 is a device capable of cooling the temperature control target device BP. In the present embodiment, an example in which the device temperature adjustment device 1 shown in FIG. 1 is applied as a device for adjusting the battery temperature of the assembled battery BP mounted on a vehicle will be described. As the vehicle on which the device temperature control device 1 is mounted, an electric vehicle, a hybrid vehicle, or the like that can be driven by a traveling electric motor (not shown) that uses the assembled battery BP as a power source is assumed.
 図1に示すように、組電池BPは、直方体形状の複数の電池セルBCを積層配置した積層体で構成されている。組電池BPを構成する複数の電池セルBCは、電気的に直列に接続されている。組電池BPを構成する各電池セルBCは、充放電可能な二次電池(例えば、リチウムイオン電池、鉛蓄電池)で構成されている。尚、電池セルBCは、直方体形状に限らず、円筒形状等の他の形状を有していても良い。また、組電池BPは、電気的に並列に接続された電池セルBCを含んで構成されていても良い。 As shown in FIG. 1, the assembled battery BP is configured by a stacked body in which a plurality of rectangular parallelepiped battery cells BC are stacked. The plurality of battery cells BC constituting the assembled battery BP are electrically connected in series. Each battery cell BC constituting the assembled battery BP is configured by a chargeable / dischargeable secondary battery (for example, a lithium ion battery or a lead storage battery). The battery cell BC is not limited to a rectangular parallelepiped shape, and may have another shape such as a cylindrical shape. The assembled battery BP may include a battery cell BC electrically connected in parallel.
 組電池BPは、不図示の電力変換装置およびモータジェネレータに接続されている。この電力変換装置は、例えば、組電池BPから供給された直流電流を交流電流に変換し、変換した交流電流を走行用電動モータ等の各種電気負荷に対して供給(すなわち、放電)する装置である。また、モータジェネレータは、車両の回生時に、車両の走行エネルギを電気エネルギに逆変換し、逆変換した電気エネルギを回生電力として電力変換装置等を介して組電池BPに対して供給する装置である。 The assembled battery BP is connected to a power converter (not shown) and a motor generator. This power conversion device is, for example, a device that converts a direct current supplied from the assembled battery BP into an alternating current, and supplies (ie, discharges) the converted alternating current to various electric loads such as a traveling electric motor. is there. The motor generator is a device that reversely converts the traveling energy of the vehicle into electric energy during regeneration of the vehicle, and supplies the reversely converted electric energy as regenerative power to the assembled battery BP via a power conversion device or the like. .
 組電池BPは、車両の走行中の電力供給等を行うと、自己発熱することで過度に高温になることがある。組電池BPが過度に高温になると、図2に示すように、電池セルBCの劣化が促進されることから、自己発熱が少なくなるように出力および入力を制限する必要がある。このため、電池セルBCの出力および入力を確保するためには、所定の温度以下に維持するための冷却手段が必要となる。 The battery pack BP may become excessively hot due to self-heating when power is supplied while the vehicle is running. When the assembled battery BP becomes excessively high in temperature, as shown in FIG. 2, the deterioration of the battery cell BC is promoted. Therefore, it is necessary to limit the output and input so as to reduce self-heating. For this reason, in order to ensure the output and input of the battery cell BC, a cooling means for maintaining the temperature below a predetermined temperature is required.
 また、組電池BPは、夏季における駐車中等にも組電池BPの電池温度が過度に高温となることがある。すなわち、組電池BPを含む蓄電装置は、車両の床下やトランクルームの下側に配置されることが多く、車両の走行中に限らず、夏季における駐車中等にも組電池BPの電池温度が徐々に上昇して、組電池BPが過度に高温となることがある。組電池BPが高温環境下で放置されると、劣化が進行することで電池寿命が大幅に低下することから、車両の駐車中等にも組電池BPの電池温度を所定の温度以下に維持することが望まれている。 In addition, the battery temperature of the assembled battery BP may become excessively high even during parking in the summer. That is, the power storage device including the assembled battery BP is often disposed under the floor of the vehicle or under the trunk room, and the battery temperature of the assembled battery BP gradually increases not only during the traveling of the vehicle but also during parking in summer. The battery pack BP may rise to an excessively high temperature. If the battery pack BP is left in a high temperature environment, the battery life will be significantly reduced due to the progress of deterioration. Therefore, the battery temperature of the battery pack BP should be kept below a predetermined temperature even during parking of the vehicle. Is desired.
 さらに、組電池BPは、各電池セルBCの温度にバラツキがあると、各電池セルBCの劣化の進行度合いに偏りが生じて、組電池BP全体の入出力特性が低下してしまう。これは、組電池BPが電池セルBCの直列接続体を含んでいることで、各電池セルBCのうち、最も劣化が進行した電池セルBCの電池特性に応じて組電池BP全体の入出力特性が決まるからである。このため、組電池BPを長期間、所望の性能を発揮させるためには、各電池セルBCの温度バラツキを低減させる均温化が重要となる。 Furthermore, if the temperature of each battery cell BC varies in the assembled battery BP, the progress of deterioration of each battery cell BC is biased, and the input / output characteristics of the entire assembled battery BP deteriorate. This is because the assembled battery BP includes a series connection body of the battery cells BC, and among the battery cells BC, the input / output characteristics of the entire assembled battery BP according to the battery characteristics of the battery cell BC that is most deteriorated. Because it is decided. For this reason, in order to make the assembled battery BP exhibit desired performance for a long period of time, it is important to equalize the temperature of the battery cells BC to reduce temperature variation.
 ここで、組電池BPを冷却する冷却手段としては、送風機による空冷式の冷却手段、蒸気圧縮式の冷凍サイクルの冷熱を利用した冷却手段が一般的となっている。ところが、送風機を用いた空冷式の冷却手段は、車室内の空気等を組電池に送風するだけであるため、組電池BPを充分に冷却するだけの冷却能力が得られないことがある。また、冷凍サイクルの冷熱を利用した冷却手段は、組電池BPを冷却する能力は高いものの、車両の駐車中に、電力消費量の多い圧縮機等を駆動させることが必要となる。このことは、電力消費量の増大、騒音の増大等を招くことになるため好ましくない。 Here, as a cooling means for cooling the assembled battery BP, an air-cooling cooling means using a blower and a cooling means using the cold heat of a vapor compression refrigeration cycle are generally used. However, since the air-cooled cooling means using the blower only blows air or the like in the passenger compartment to the assembled battery, a cooling capacity sufficient to sufficiently cool the assembled battery BP may not be obtained. Moreover, although the cooling means using the cold heat of the refrigeration cycle has a high ability to cool the assembled battery BP, it is necessary to drive a compressor or the like that consumes a large amount of power while the vehicle is parked. This is undesirable because it leads to an increase in power consumption and an increase in noise.
 そこで、本実施形態の機器温調装置1では、圧縮機による冷媒の強制循環ではなく、作動流体の自然循環によって組電池BPの電池温度を調整するサーモサイフォン方式を採用している。 Therefore, the apparatus temperature control apparatus 1 of the present embodiment employs a thermosiphon system that adjusts the battery temperature of the assembled battery BP not by forced circulation of the refrigerant by the compressor but by natural circulation of the working fluid.
 機器温調装置1は、車両に搭載された組電池BPを温調対象機器として、組電池BPの電池温度を調整する装置である。図1に示すように、機器温調装置1は、作動流体が循環する環状の機器用流体回路2および冷凍サイクル3を備えている。機器用流体回路2は、作動流体の蒸発および凝縮により熱移動を行うヒートパイプである。機器用流体回路2は、ガス状の作動流体が流れる流路と液状の作動流体が流れる流路とが分離されたループ型のサーモサイフォンとなるように構成されている。機器用流体回路2を循環する作動流体としては、蒸気圧縮式の冷凍サイクルで利用される冷媒(例えば、R134a、R1234yf)等を採用することができる。 The device temperature control device 1 is a device that adjusts the battery temperature of the assembled battery BP using the assembled battery BP mounted on the vehicle as a temperature control target device. As shown in FIG. 1, the device temperature control device 1 includes an annular device fluid circuit 2 and a refrigeration cycle 3 through which a working fluid circulates. The fluid circuit for equipment 2 is a heat pipe that performs heat transfer by evaporation and condensation of the working fluid. The device fluid circuit 2 is configured to be a loop thermosyphon in which a flow path through which a gaseous working fluid flows and a flow path through which a liquid working fluid flows are separated. As the working fluid that circulates in the device fluid circuit 2, refrigerants (for example, R134a and R1234yf) used in a vapor compression refrigeration cycle can be employed.
 次に、機器用流体回路2の詳細について説明する前に、冷凍サイクル3について説明する。図1に示すように、冷凍サイクル3は、圧縮機3a、凝縮器3b、膨張弁3c、膨張弁3d、蒸発器3e、および冷媒側熱交換器HECを有している。具体的には、冷凍サイクル3は、圧縮機3a、凝縮器3b、膨張弁3c、冷媒側熱交換器HECを含んで構成されている冷凍サイクル(以下、第1冷凍サイクルと称する)31を有している。また、冷凍サイクル3は、圧縮機3a、凝縮器3b、膨張弁3d、蒸発器3eを含んで構成されている冷凍サイクル(以下、第2冷凍サイクルと称する)32を有している。すなわち、冷凍サイクル3は、第1冷凍サイクル31および第2冷凍サイクル32を含む構成とされている。第1冷凍サイクル31は、圧縮機3aによって作動し、後述の凝縮器2c(すなわち、機器用流体回路2の凝縮器2c)の内部に存する作動流体を冷却する熱媒体(すなわち、冷媒)を流すための冷媒流路31aを有する。この熱媒体は、機器用流体回路2の凝縮器2cの内部に存する作動流体との間で熱交換することで該作動流体を冷却する冷媒である。本実施形態では、冷凍サイクル3における圧縮機3aの回転数が増減することで、機器用流体回路2の凝縮器2cにおける放熱量が変化する。第2冷凍サイクル32は、不図示の車両用空調装置に含まれている冷凍サイクルであり、圧縮機3aによって作動し、該車両用空調装置が提供する冷風を生成する。この熱媒体としては、従来から蒸気圧縮式の冷凍サイクルで利用される種々の冷媒(例えば、R134a、R1234yf)を採用することができる。本実施形態では、第1冷凍サイクル31および第2冷凍サイクル32は、このように、車両用空調装置の一部として、一体に構成されている。 Next, the refrigeration cycle 3 will be described before the details of the device fluid circuit 2 are described. As shown in FIG. 1, the refrigeration cycle 3 includes a compressor 3a, a condenser 3b, an expansion valve 3c, an expansion valve 3d, an evaporator 3e, and a refrigerant side heat exchanger HEC. Specifically, the refrigeration cycle 3 includes a refrigeration cycle (hereinafter referred to as a first refrigeration cycle) 31 including a compressor 3a, a condenser 3b, an expansion valve 3c, and a refrigerant side heat exchanger HEC. is doing. The refrigeration cycle 3 includes a refrigeration cycle (hereinafter referred to as a second refrigeration cycle) 32 including a compressor 3a, a condenser 3b, an expansion valve 3d, and an evaporator 3e. That is, the refrigeration cycle 3 includes a first refrigeration cycle 31 and a second refrigeration cycle 32. The first refrigeration cycle 31 is operated by the compressor 3a to flow a heat medium (that is, a refrigerant) that cools the working fluid existing in the condenser 2c (that is, the condenser 2c of the fluid circuit 2 for equipment) described later. A refrigerant flow path 31a. This heat medium is a refrigerant that cools the working fluid by exchanging heat with the working fluid existing inside the condenser 2c of the fluid circuit 2 for equipment. In the present embodiment, the amount of heat release in the condenser 2c of the fluid circuit 2 for equipment changes as the number of rotations of the compressor 3a in the refrigeration cycle 3 increases or decreases. The second refrigeration cycle 32 is a refrigeration cycle included in a vehicle air conditioner (not shown), and is operated by the compressor 3a to generate cold air provided by the vehicle air conditioner. As this heat medium, various refrigerants conventionally used in vapor compression refrigeration cycles (for example, R134a and R1234yf) can be employed. In the present embodiment, the first refrigeration cycle 31 and the second refrigeration cycle 32 are thus integrally configured as a part of the vehicle air conditioner.
 すなわち、冷媒流路31aは、熱媒体流路に相当する。また、第1冷凍サイクル31は、熱媒体を凝縮器2cに供給することで機器用流体回路2の凝縮器2cの内部に存する作動流体の放熱量を調整する放熱量調整部に相当する。また、本実施形態では、放熱量調整部(すなわち、第1冷凍サイクル31)は、冷凍サイクル3の限られた総冷却能力を、車両用空調装置の冷風を生成する冷風生成部(すなわち、第2冷凍サイクル32)と種々の配分で分け合いつつ、発揮する。 That is, the refrigerant flow path 31a corresponds to a heat medium flow path. The first refrigeration cycle 31 corresponds to a heat release amount adjustment unit that adjusts the heat release amount of the working fluid existing inside the condenser 2c of the device fluid circuit 2 by supplying a heat medium to the condenser 2c. Further, in the present embodiment, the heat radiation amount adjustment unit (that is, the first refrigeration cycle 31) uses the limited total cooling capacity of the refrigeration cycle 3 to generate the cold air generation unit (that is, the first refrigeration cycle 31) that generates the cold air of the vehicle air conditioner. 2) Refrigeration cycle 32) and share with various distributions.
 次に、機器用流体回路2の詳細について説明する。図1に示すように、機器用流体回路2は、機器用熱交換器2a、ガス通路部2b、凝縮器2c、および液通路部2dを含んで構成されている。また、図4に示すように、機器用流体回路2には、蓄冷剤CSが備えられている。蓄冷剤CSの詳細については後述する。尚、図1、図3、図4に示す矢印DRgは、鉛直線の延びる方向、すなわち鉛直方向を示している。 Next, the details of the fluid circuit 2 for equipment will be described. As shown in FIG. 1, the device fluid circuit 2 includes a device heat exchanger 2a, a gas passage portion 2b, a condenser 2c, and a liquid passage portion 2d. Moreover, as shown in FIG. 4, the fluid circuit 2 for equipment is provided with the cool storage agent CS. Details of the cold storage agent CS will be described later. 1, 3, and 4 indicate the direction in which the vertical line extends, that is, the vertical direction.
 本実施形態の機器用流体回路2は、機器用熱交換器2a、ガス通路部2b、凝縮器2c、および液通路部2dが互いに接続されることによって、閉じられた環状の流体回路として構成されている。機器用流体回路2は、その内部を真空排気した状態で、所定量の作動流体が封入されている。尚、本実施形態の機器用流体回路2においては、作動流体が、機器用熱交換器2a、ガス通路部2b、凝縮器2c、液通路部2dの順に流れる。以下、機器用流体回路2における作動流体のこの流れ方向を、順方向と称する。 The device fluid circuit 2 of the present embodiment is configured as a closed annular fluid circuit by connecting the device heat exchanger 2a, the gas passage portion 2b, the condenser 2c, and the liquid passage portion 2d to each other. ing. The device fluid circuit 2 is filled with a predetermined amount of working fluid in a state where the inside thereof is evacuated. In the device fluid circuit 2 of the present embodiment, the working fluid flows in the order of the device heat exchanger 2a, the gas passage portion 2b, the condenser 2c, and the liquid passage portion 2d. Hereinafter, this flow direction of the working fluid in the device fluid circuit 2 is referred to as a forward direction.
 機器用熱交換器2aは、温調対象機器である組電池BPの冷却時に、組電池BPから吸熱して液状の作動流体を蒸発させる機器用熱交換器として機能する熱交換器である。機器用熱交換器2aは、組電池BPの底面部側に対向する位置に配置されている。機器用熱交換器2aは、厚みの薄い扁平な直方体形状を有している。 The equipment heat exchanger 2a is a heat exchanger that functions as an equipment heat exchanger that absorbs heat from the assembled battery BP and evaporates the liquid working fluid when the assembled battery BP, which is a temperature control target apparatus, is cooled. The equipment heat exchanger 2a is disposed at a position facing the bottom surface side of the assembled battery BP. The equipment heat exchanger 2a has a thin rectangular parallelepiped shape.
 機器用熱交換器2aは、組電池BPの底面部と接触して熱交換する熱交換部2aaが、組電池BPと機器用熱交換器2aとの間で熱を移動させる伝熱部を構成している。熱交換部2aaは、組電池BPを構成する各電池セルBCに温度分布が生じないように、組電池BPの底面部の全域を覆う大きさを有している。機器用熱交換器2aは、組電池BPとの間で熱移動可能なように、熱交換部2aaが組電池BPの底面部に接触している。尚、機器用熱交換器2aは、組電池BPとの間で熱移動可能であれば、熱交換部2aaが組電池BPの底面部から離れた配置構成となっていても良い。 The equipment heat exchanger 2a constitutes a heat transfer section in which the heat exchange section 2aa that exchanges heat by contacting the bottom surface of the assembled battery BP moves heat between the assembled battery BP and the equipment heat exchanger 2a. is doing. The heat exchange part 2aa has a size that covers the entire area of the bottom part of the assembled battery BP so that temperature distribution does not occur in each battery cell BC constituting the assembled battery BP. In the device heat exchanger 2a, the heat exchanging portion 2aa is in contact with the bottom surface portion of the assembled battery BP so that heat can be transferred to and from the assembled battery BP. The equipment heat exchanger 2a may have a configuration in which the heat exchanging portion 2aa is separated from the bottom surface portion of the assembled battery BP as long as heat can be transferred between the assembled battery BP.
 ここで、機器用熱交換器2aにおける作動流体の液面が機器用熱交換器2aの熱交換部2aaから離れている場合、組電池BPの熱が、機器用熱交換器2aの内部の液状の作動流体に伝わり難くなってしまう。すなわち、機器用熱交換器2aにおける作動流体の液面が機器用熱交換器2aの熱交換部2aaから離れている場合、機器用熱交換器2aの内部に存する液状の作動流体の蒸発が抑制されてしまう。このため、本実施形態の機器用流体回路2は、組電池BPの熱が機器用熱交換器2aの内部に存する液状の作動流体に伝達されるように、作動流体の液面が機器用熱交換器2aの熱交換部2aaに接する構成となっている。すなわち、本実施形態の機器用流体回路2は、組電池BPの冷却時において、機器用熱交換器2aの内部空間が、気泡を含む液状の作動流体で満たされる構成となっている。例えば、図3に示すように、機器用熱交換器2aが中空状の容器で構成されている場合、組電池BPの冷却時において、機器用熱交換器2aの内部に存する作動流体の液面LSが、組電池BPに近接する熱交換部2aaに接する構成となっている。尚、機器用熱交換器2aは、中空状の容器に限らず、熱交換チューブ等により複数の流路が形成される構成となっていても良い。 Here, when the liquid level of the working fluid in the equipment heat exchanger 2a is separated from the heat exchange portion 2aa of the equipment heat exchanger 2a, the heat of the assembled battery BP is liquid in the inside of the equipment heat exchanger 2a. It becomes difficult to be transmitted to the working fluid. That is, when the liquid level of the working fluid in the equipment heat exchanger 2a is separated from the heat exchange portion 2aa of the equipment heat exchanger 2a, evaporation of the liquid working fluid existing in the equipment heat exchanger 2a is suppressed. Will be. For this reason, in the fluid circuit for equipment 2 of the present embodiment, the liquid level of the working fluid is such that the heat of the assembled battery BP is transferred to the liquid working fluid existing inside the equipment heat exchanger 2a. The heat exchanger 2aa of the exchanger 2a is in contact with the heat exchanger 2aa. That is, the device fluid circuit 2 of the present embodiment is configured such that the internal space of the device heat exchanger 2a is filled with a liquid working fluid containing bubbles when the assembled battery BP is cooled. For example, as shown in FIG. 3, when the equipment heat exchanger 2a is formed of a hollow container, the liquid level of the working fluid existing inside the equipment heat exchanger 2a when the assembled battery BP is cooled. The LS is in contact with the heat exchange part 2aa adjacent to the assembled battery BP. In addition, the apparatus heat exchanger 2a is not limited to a hollow container, and may have a configuration in which a plurality of flow paths are formed by a heat exchange tube or the like.
 図1に示すように、機器用熱交換器2aは、ガス通路部2bの下方側の端部が接続されるガス出口部2ab、および液通路部2dの下方側の端部が接続される液入口部2acを有している。本実施形態の機器用熱交換器2aでは、ガス出口部2abおよび液入口部2acが互いに対向する側面部に設けられている。また、本実施形態の機器用熱交換器2aは、ガス出口部2abおよび液入口部2acが、鉛直方向DRgにおいて同様の高さとなる位置に設けられている。機器用熱交換器2aは、アルミニウム、銅等の熱伝導性に優れた金属または合金によって構成されている。尚、機器用熱交換器2aは、金属以外の材料によって構成することも可能であるが、少なくとも伝熱部を構成する熱交換部2aaを熱伝導性に優れた材料によって構成することが望ましい。 As shown in FIG. 1, the equipment heat exchanger 2a includes a gas outlet 2ab to which the lower end of the gas passage 2b is connected, and a liquid to which the lower end of the liquid passage 2d is connected. It has an inlet 2ac. In the equipment heat exchanger 2a of the present embodiment, the gas outlet portion 2ab and the liquid inlet portion 2ac are provided on the side portions facing each other. Further, in the equipment heat exchanger 2a of the present embodiment, the gas outlet portion 2ab and the liquid inlet portion 2ac are provided at the same height in the vertical direction DRg. The equipment heat exchanger 2a is made of a metal or alloy having excellent thermal conductivity such as aluminum or copper. In addition, although the apparatus heat exchanger 2a can also be comprised with materials other than a metal, it is desirable to comprise at least the heat exchange part 2aa which comprises a heat-transfer part with the material excellent in heat conductivity.
 図1に示すように、ガス通路部2bは、機器用熱交換器2aにて蒸発したガス状の作動流体を凝縮器2cに導く通路部材である。ガス通路部2bは、下方側の端部が機器用熱交換器2aのガス出口部2abに接続され、上方側の端部が凝縮器2cの後述のガス入口部2caに接続されている。本実施形態のガス通路部2bは、内部に作動流体が流通する流路が形成された配管で構成されている。本実施形態のガス通路部2bは、凝縮器2cのガス入口部2caから上方側に向かって延びる上方側ガス通路部2bを含んで構成されている。換言すれば、本実施形態のガス通路部2bは、凝縮器2c側の部位の一部が凝縮器2cのガス入口部2caに向かって延びる通路部を含んで構成されている。本実施形態の上方側ガス通路部2bは、鉛直方向DRgに沿って上方に延びている。尚、図面に示すガス通路部2bは、あくまでも一例である。ガス通路部2bは、車両への搭載性を考慮して適宜変更可能である。 As shown in FIG. 1, the gas passage portion 2b is a passage member that guides the gaseous working fluid evaporated in the equipment heat exchanger 2a to the condenser 2c. The gas passage portion 2b has a lower end connected to the gas outlet 2ab of the equipment heat exchanger 2a and an upper end connected to a gas inlet 2ca (described later) of the condenser 2c. The gas passage portion 2b of the present embodiment is configured by a pipe in which a flow path through which a working fluid flows is formed. The gas passage portion 2b of the present embodiment includes an upper gas passage portion 2b that extends upward from the gas inlet portion 2ca of the condenser 2c. In other words, the gas passage portion 2b of the present embodiment is configured to include a passage portion in which a part of the portion on the condenser 2c side extends toward the gas inlet portion 2ca of the condenser 2c. The upper gas passage portion 2b of the present embodiment extends upward along the vertical direction DRg. In addition, the gas passage part 2b shown in drawing is an example to the last. The gas passage portion 2b can be appropriately changed in consideration of the mounting property on the vehicle.
 凝縮器2cは、機器用熱交換器2aにて蒸発したガス状の作動流体を凝縮させる熱交換器である。凝縮器2cは、第1冷凍サイクル31を流れる冷媒とガス状の作動流体とを熱交換させて、ガス状の作動流体を凝縮させる空冷式の熱交換器で構成されている。図1に示すように、凝縮器2cは、その内部で凝縮した液状の作動流体が自重によって機器用熱交換器2aに移動するように、鉛直方向DRgにおいて機器用熱交換器2aよりも上方に配置されている。凝縮器2cは、ガス通路部2bの上方側の端部が接続されるガス入口部2ca、および液通路部2dの上方側の端部が接続される液出口部2cbを有している。本実施形態の凝縮器2cでは、ガス入口部2caおよび液出口部2cbが鉛直方向において互いに対向する部位に設けられている。また、本実施形態の凝縮器2cは、鉛直方向DRgにおいてガス入口部2caが液出口部2cbよりも上方に位置するように設けられている。具体的には、本実施形態の凝縮器2cは、ガス入口部2caが凝縮器2cにおける上端部に設けられ、液出口部2cbが凝縮器2cにおける下端部に設けられている。凝縮器2cは、基本的には、アルミニウム、銅等の熱伝導性に優れた金属または合金によって構成されている。尚、凝縮器2cは、金属以外の材料を含んで構成されていても良いが、少なくとも空気と熱交換する部位については、熱伝導性に優れた材料によって構成することが望ましい。 The condenser 2c is a heat exchanger that condenses the gaseous working fluid evaporated in the equipment heat exchanger 2a. The condenser 2c is an air-cooled heat exchanger that causes heat exchange between the refrigerant flowing through the first refrigeration cycle 31 and the gaseous working fluid to condense the gaseous working fluid. As shown in FIG. 1, the condenser 2c is located above the equipment heat exchanger 2a in the vertical direction DRg so that the liquid working fluid condensed inside moves to the equipment heat exchanger 2a by its own weight. Has been placed. The condenser 2c has a gas inlet 2ca to which an upper end of the gas passage 2b is connected, and a liquid outlet 2cb to which an upper end of the liquid passage 2d is connected. In the condenser 2c of this embodiment, the gas inlet portion 2ca and the liquid outlet portion 2cb are provided at portions facing each other in the vertical direction. Further, the condenser 2c of the present embodiment is provided such that the gas inlet portion 2ca is located above the liquid outlet portion 2cb in the vertical direction DRg. Specifically, in the condenser 2c of the present embodiment, the gas inlet 2ca is provided at the upper end of the condenser 2c, and the liquid outlet 2cb is provided at the lower end of the condenser 2c. The condenser 2c is basically made of a metal or alloy having excellent thermal conductivity such as aluminum or copper. The condenser 2c may be configured to include a material other than metal, but it is preferable to configure at least a portion exchanging heat with air with a material having excellent thermal conductivity.
 具体的には、図4に示すように、凝縮器2cは、作動流体が流れる複数の流路部(以下、作動流体流路部と称する)P1と、第1冷凍サイクル31の一部であって第1冷凍サイクル31の冷媒が流れる複数の流路部(以下、冷媒流路部と称する)P2を有している。また、本実施形態に係る凝縮器2cには、複数の蓄冷剤CSが備えられている。複数の作動流体流路部P1の各々、複数の蓄冷剤CSの各々、および複数の冷媒流路部P2の各々は、鉛直方向(すなわち、図4における上下方向)に延びるように形成されている。複数の作動流体流路部P1の各々、複数の蓄冷剤CSの各々、および複数の冷媒流路部P2の各々は、図4における左右方向(すなわち、水平方向)の右から作動流体流路部P1、蓄冷剤CS、冷媒流路部P2、作動流体流路部P1、蓄冷剤CS、冷媒流路部P2、・・・の順に配置されている。複数の作動流体流路部P1の各々は、互いの間で作動流体が流通可能に、連通している。複数の冷媒流路部P2の各々は、互いの間で冷媒が流通可能に、連通している。 Specifically, as shown in FIG. 4, the condenser 2 c includes a plurality of flow path portions (hereinafter referred to as working fluid flow path portions) P <b> 1 through which the working fluid flows and a part of the first refrigeration cycle 31. And a plurality of flow path portions (hereinafter referred to as refrigerant flow path portions) P2 through which the refrigerant of the first refrigeration cycle 31 flows. In addition, the condenser 2c according to the present embodiment is provided with a plurality of cool storage agents CS. Each of the plurality of working fluid flow path portions P1, each of the plurality of cool storage agents CS, and each of the plurality of refrigerant flow path portions P2 are formed to extend in the vertical direction (that is, the vertical direction in FIG. 4). . Each of the plurality of working fluid flow path portions P1, each of the plurality of cold storage agents CS, and each of the plurality of refrigerant flow passage portions P2 are from the right in the left-right direction (that is, the horizontal direction) in FIG. It arrange | positions in order of P1, the cool storage agent CS, the refrigerant | coolant flow path part P2, the working fluid flow path part P1, the cool storage agent CS, the refrigerant flow path part P2, .... Each of the plurality of working fluid flow paths P1 communicates with each other so that the working fluid can flow between them. Each of the plurality of refrigerant flow path portions P2 communicates with each other so that the refrigerant can flow therethrough.
 蓄冷剤CSは、作動流体の冷熱および第1冷凍サイクル31の冷媒の冷熱の少なくとも一方を蓄積するためのものである。この蓄冷剤CSは、特に材料等の構成が限定されるものではないが、パラフィンなどの公知の種々のものが採用され得る。例えば、この蓄冷剤CSを、アルミニウムなどの金属で構成された容器の中に詰め込んだ部材を用いても良い。尚、本実施形態では、蓄冷剤CSは、作動流体の冷熱および第1冷凍サイクル31の冷媒の冷熱の両方を蓄積できるように構成されている。すなわち、複数の蓄冷剤CSの各々は、複数のうち最も近い隣接する作動流体流路部P1を流れる作動流体と熱交換可能に、かつ複数のうち最も近い隣接する冷媒流路部P2を流れる冷媒と熱交換可能に配置されている。具体的には、複数の蓄冷剤CSの各々は、隣接する作動流体流路部P1と隣接する冷媒流路部P2の両方に接触して配置されている。 The cold storage agent CS is for accumulating at least one of the cold heat of the working fluid and the cold heat of the refrigerant in the first refrigeration cycle 31. The regenerator CS is not particularly limited in the configuration of materials and the like, but various known ones such as paraffin can be adopted. For example, you may use the member which packed this cool storage agent CS in the container comprised with metals, such as aluminum. In the present embodiment, the cold storage agent CS is configured to accumulate both the cold heat of the working fluid and the cold heat of the refrigerant in the first refrigeration cycle 31. That is, each of the plurality of cool storage agents CS is capable of exchanging heat with the working fluid that flows through the nearest adjacent working fluid flow path portion P1 among the plurality, and the refrigerant that flows through the nearest neighboring coolant flow path portion P2 among the plurality of cool storage agents CS. It is arranged to be able to exchange heat. Specifically, each of the plurality of cool storage agents CS is disposed in contact with both the adjacent working fluid channel portion P1 and the adjacent refrigerant channel portion P2.
 このように、本実施形態では、蓄冷剤CSは、機器用流体回路2において、順方向におけるガス通路部2bのうち最も上に位置する最上部よりも先であってガス出口部よりも手前に配置されている。なお、順方向における先および手前とは、それぞれ、上流側および下流側のことである。また、本実施形態では特に、蓄冷剤CSは、機器用流体回路2において、ガス入口部2caよりも先であってガス出口部2abよりも手前に配置されている。また、本実施形態では特に、蓄冷剤CSは、作動流体との間に熱媒体流路(すなわち、冷媒流路31a)を介さずに、配置されている。また、本実施形態では特に、蓄冷剤CSは、凝縮器2cにおける作動流体の流路(すなわち、作動流体流路部P1)と熱媒体流路(すなわち、冷媒流路31a)との間に、配置されている。本実施形態では、蓄冷剤CSは、凝縮器2cと一体に構成されている。 Thus, in this embodiment, the cool storage agent CS is ahead of the uppermost portion located in the forward direction of the gas passage portion 2b in the forward direction and in front of the gas outlet portion in the fluid circuit 2 for equipment. Has been placed. Note that the front and the front in the forward direction are the upstream side and the downstream side, respectively. In the present embodiment, in particular, the regenerator CS is disposed in the device fluid circuit 2 before the gas inlet 2ca and before the gas outlet 2ab. In the present embodiment, in particular, the regenerator agent CS is disposed between the working fluid and the heat medium passage (that is, the refrigerant passage 31a) without being interposed therebetween. In the present embodiment, in particular, the regenerator CS is provided between the working fluid channel (that is, the working fluid channel portion P1) and the heat medium channel (that is, the refrigerant channel 31a) in the condenser 2c. Has been placed. In this embodiment, the cool storage agent CS is configured integrally with the condenser 2c.
 本実施形態では、ガス入口部2caから流れ込んだガス状の作動流体は、図4中の矢印F1にて示すように、複数の作動流体流路部P1の各々に分配され、巨視的には上から下に向かって流れ、そののちに複数の作動流体流路部P1の各々の作動流体が集合した後に液出口部2cbから流れ出る。一方で、冷媒流路部P2を流れる冷媒は、図4中の矢印F2にて示すように、入口HECaより流入後、複数の冷媒流路部P2の各々に分配される。尚、この冷媒は、作動流体流路部P1を流れる作動流体の向きとは反対の向きに流れる。そののちに、複数の冷媒流路部P2の各々の冷媒は、集合した後に出口HECbより流れ出る。 In the present embodiment, the gaseous working fluid flowing from the gas inlet portion 2ca is distributed to each of the plurality of working fluid flow passage portions P1, as indicated by an arrow F1 in FIG. Then, after the working fluid of each of the plurality of working fluid flow paths P1 gathers, it flows out from the liquid outlet 2cb. On the other hand, the refrigerant flowing through the refrigerant flow path portion P2 is distributed to each of the plurality of refrigerant flow path portions P2 after flowing in from the inlet HECA, as indicated by an arrow F2 in FIG. The refrigerant flows in a direction opposite to the direction of the working fluid flowing through the working fluid flow path portion P1. After that, the refrigerant in each of the plurality of refrigerant flow path portions P2 flows out from the outlet HECb after gathering.
 本実施形態に係る機器温調装置1では、冷却モード時に、車両の走行時の自己発熱等によって組電池BPの電池温度が上昇すると、組電池BPの熱が機器用熱交換器2aに移動する。機器用熱交換器2aでは、組電池BPから吸熱することで液状の作動流体の一部が蒸発する。組電池BPは、機器用熱交換器2aの内部に存する作動流体の蒸発潜熱によって冷却され、その温度が低下する。機器用熱交換器2aにて蒸発したガス状の作動流体は、機器用熱交換器2aのガス出口部2abからガス通路部2bに流出し、図1の矢印Fcgで示すように、ガス通路部2bを介して凝縮器2cへ移動する。凝縮器2cでは、第1冷凍サイクル31を流れる冷媒に放熱することで、ガス状の作動流体が凝縮する。凝縮器2cの内部では、ガス状の作動流体が液化して作動流体の比重が増大する。これにより、凝縮器2cの内部で液化した作動流体は、その自重によって凝縮器2cの液出口部2cbに向かって下降する。凝縮器2cで凝縮した液状の作動流体は、凝縮器2cの液出口部2cbから液通路部2dに流出し、図1の矢印Fclで示すように、液通路部2dを介して機器用熱交換器2aへ移動する。そして、機器用熱交換器2aでは、液通路部2dを介して液入口部2acから流入した液状の作動流体の一部が組電池BPから吸熱することで蒸発する。このように、機器温調装置1は、冷却モード時に、作動流体がガス状態と液状態とに相変化しながら機器用熱交換器2aと凝縮器2cとの間を循環し、機器用熱交換器2aから凝縮器2cに熱が輸送されることで組電池BPが冷却される。機器温調装置1は、圧縮機等による作動流体の循環に要する駆動力がなくても、機器用流体回路2の内部を作動流体が自然循環する構成となっている。このため、機器温調装置1は、冷凍サイクル等に比べて、電力消費量および騒音の双方を抑えた効率の良い組電池BPの温度調整を実現することができる。 In the apparatus temperature control apparatus 1 according to the present embodiment, when the battery temperature of the assembled battery BP rises due to self-heating during traveling of the vehicle in the cooling mode, the heat of the assembled battery BP moves to the apparatus heat exchanger 2a. . In the equipment heat exchanger 2a, a part of the liquid working fluid evaporates by absorbing heat from the assembled battery BP. The assembled battery BP is cooled by the latent heat of vaporization of the working fluid existing inside the equipment heat exchanger 2a, and the temperature thereof decreases. The gaseous working fluid evaporated in the equipment heat exchanger 2a flows out from the gas outlet portion 2ab of the equipment heat exchanger 2a to the gas passage portion 2b, and as shown by an arrow Fcg in FIG. It moves to the condenser 2c via 2b. In the condenser 2c, the gaseous working fluid is condensed by dissipating heat to the refrigerant flowing through the first refrigeration cycle 31. Inside the condenser 2c, the gaseous working fluid is liquefied and the specific gravity of the working fluid increases. Thereby, the working fluid liquefied inside the condenser 2c descends toward the liquid outlet 2cb of the condenser 2c by its own weight. The liquid working fluid condensed in the condenser 2c flows out from the liquid outlet portion 2cb of the condenser 2c to the liquid passage portion 2d, and as shown by an arrow Fcl in FIG. 1, heat exchange for equipment is performed via the liquid passage portion 2d. Move to vessel 2a. In the equipment heat exchanger 2a, a part of the liquid working fluid that flows from the liquid inlet 2ac through the liquid passage 2d evaporates by absorbing heat from the assembled battery BP. In this way, the equipment temperature control device 1 circulates between the equipment heat exchanger 2a and the condenser 2c while the phase of the working fluid changes between a gas state and a liquid state in the cooling mode, and exchanges heat for the equipment. The assembled battery BP is cooled by transporting heat from the vessel 2a to the condenser 2c. The device temperature control device 1 is configured such that the working fluid naturally circulates inside the device fluid circuit 2 without the driving force required for the circulation of the working fluid by a compressor or the like. For this reason, the apparatus temperature control apparatus 1 can implement | achieve the temperature control of the assembled battery BP with sufficient efficiency which suppressed both power consumption and noise compared with the refrigerating cycle etc.
 上記したように、本実施形態に係る機器温調装置1では、機器用流体回路2において、作動流体の冷熱および放熱量調整部が供給する冷媒(すなわち、第1冷凍サイクル31の冷媒)の冷熱の少なくとも一方を蓄積する蓄冷剤CSを有する。 As described above, in the device temperature control device 1 according to the present embodiment, in the device fluid circuit 2, the cooling / heating of the working fluid and the coolant supplied by the heat release amount adjustment unit (that is, the coolant of the first refrigeration cycle 31). It has the cool storage agent CS which accumulates at least one of these.
 このため、本実施形態に係る機器温調装置1では、放熱量調整部(すなわち、第1冷凍サイクル31)の放熱能力が低下したときでも、蓄冷剤CSに蓄積された冷熱が作動流体に伝わることで、作動流体が冷却されて凝縮され易くなる。これにより、機器用流体回路2における作動流体の順方向の流れが維持され易くなり、ひいては機器温調装置1の冷却能力が維持され易くなる。つまり、本実施形態に係る機器温調装置1では、機器用流体回路2に蓄冷剤CSが配置されていることで、放熱量調整部(すなわち、第1冷凍サイクル31)の放熱能力が低下したときにおいても、冷却能力が低下せずに維持され易くなる。 For this reason, in the apparatus temperature control apparatus 1 which concerns on this embodiment, even when the thermal radiation capability of the heat radiation amount adjustment part (namely, 1st freezing cycle 31) falls, the cold heat accumulate | stored in the cool storage agent CS is transmitted to a working fluid. Thus, the working fluid is cooled and easily condensed. As a result, the forward flow of the working fluid in the device fluid circuit 2 is easily maintained, and as a result, the cooling capacity of the device temperature control device 1 is easily maintained. That is, in the device temperature control apparatus 1 according to the present embodiment, the heat storage capacity of the heat release amount adjusting unit (that is, the first refrigeration cycle 31) is reduced by the cold storage agent CS being arranged in the device fluid circuit 2. Sometimes, the cooling capacity is easily maintained without being lowered.
 具体的には、図5に示すような効果が得られる。図5は、圧縮機3aの回転数が変化したときの機器温調装置1の冷却性能の変化を、蓄冷剤CSを有する場合と有しない場合とを比較しつつ、示している。 Specifically, the effect as shown in FIG. 5 is obtained. FIG. 5 shows the change in the cooling performance of the device temperature control device 1 when the rotational speed of the compressor 3a is changed, comparing the case with the cold storage agent CS and the case without the cold storage agent CS.
 すなわち、図5に示すように、蓄冷剤CSを有しない場合においては、圧縮機3aが停止したとき、放熱量調整部(すなわち、第1冷凍サイクル31)の放熱能力が低下することで凝縮器2cの凝縮能力も低下し、ひいては機器温調装置1の冷却性能が低下する。これは、凝縮器2cの凝縮能力が低下することにより、順方向の作動流体の流量が減少することで、順方向の流れが維持されにくくなる事等に起因する。そして、のちに第1冷凍サイクル31の放熱能力が回復しても、機器温調装置1の冷却能力が元の状態と同程度に回復するまでに時間(例えば、数十秒)を要し、この結果、機器温調装置1における全体的な冷却能力(すなわち、所定時間当たりに得られる総冷却能力)が著しく低下する。これに対して、蓄冷剤CSを有する本実施形態の場合においては、圧縮機3aが停止する前(すなわち、図5の1以前)には、凝縮器2cにて第1冷凍サイクル31を流れる冷媒に放熱することで機器温調装置1の冷却性能が確保される。これとともに、第1冷凍サイクル31の冷熱が蓄冷材CSへ直接もしくは間接的に蓄積される。そののち、圧縮機3aが停止したとき(すなわち、図5の1)には、第1冷凍サイクル31内に冷媒が流れていないため凝縮器2cにて放熱することはできなくなるが、蓄冷剤CSに蓄積された冷熱が作動流体に伝わることで、十分に作動流体が凝縮され、機器温調装置1の冷却能力が維持される。そして、のちに圧縮機3aが再度駆動開始した場合(すなわち、図5の2)には、1の時に順方向の流れが維持されているため、蓄冷材CSを有しない場合に比べて冷却能力が元の状態と同程度に回復するまでに時間を要しない。本実施形態では、上述のような作動により、凝縮器2cの放熱能力が低下したときでも機器温調装置1の冷却性能が低下せずに維持され易くなり、全体的な冷却能力(すなわち、所定時間当たりに得られる総冷却能力)が上昇する。 That is, as shown in FIG. 5, in the case where the regenerator CS is not provided, when the compressor 3 a is stopped, the heat radiation capacity of the heat radiation amount adjustment unit (that is, the first refrigeration cycle 31) is reduced, thereby reducing the condenser. The condensing capacity of 2c also decreases, and as a result, the cooling performance of the device temperature control device 1 decreases. This is due to the fact that the forward flow becomes difficult to maintain due to a decrease in the flow rate of the forward working fluid due to a decrease in the condensation capacity of the condenser 2c. And even if the heat dissipation capacity of the first refrigeration cycle 31 is recovered later, it takes time (for example, several tens of seconds) until the cooling capacity of the device temperature control device 1 recovers to the same level as the original state. As a result, the overall cooling capacity (that is, the total cooling capacity obtained per predetermined time) in the device temperature control apparatus 1 is significantly reduced. On the other hand, in the case of the present embodiment having the regenerator CS, the refrigerant that flows through the first refrigeration cycle 31 in the condenser 2c before the compressor 3a stops (that is, before 1 in FIG. 5). The cooling performance of the device temperature control device 1 is ensured by radiating heat. At the same time, the cold heat of the first refrigeration cycle 31 is accumulated directly or indirectly in the cold storage material CS. After that, when the compressor 3a is stopped (i.e., 1 in FIG. 5), since the refrigerant does not flow in the first refrigeration cycle 31, heat cannot be dissipated in the condenser 2c. Since the cold heat accumulated in is transmitted to the working fluid, the working fluid is sufficiently condensed, and the cooling capacity of the device temperature control device 1 is maintained. Then, when the compressor 3a starts to drive again later (that is, 2 in FIG. 5), since the forward flow is maintained at 1, the cooling capacity compared to the case where the regenerator material CS is not provided. It takes no time to recover to the same level as the original. In the present embodiment, the above-described operation makes it easy to maintain the cooling performance of the device temperature control device 1 without lowering even when the heat dissipation capability of the condenser 2c is reduced, and the overall cooling capability (that is, the predetermined cooling capability). The total cooling capacity obtained per hour) will increase.
 また、圧縮機3aが完全に停止するときに限られず、圧縮機3aの回転数の上限が低下したときにおいても、蓄冷剤CSを有する本実施形態の機器温調装置1によれば、図6に示すように、基本的には上記と同様の効果が得られる。図6は、圧縮機3aの回転数の上限が低下したときの機器温調装置1の冷却性能の変化を、蓄冷剤CSを有する場合と有しない場合とを比較しつつ、示している。尚、圧縮機3aの回転数の上限が低下する状況とは、例えば、車速が低くなったときのNV(すなわち、騒音や振動)に対する要求を満たすために圧縮機3aの回転数の上限を低下させる制御が行われる場合である。また、車両が急加速するときに車両走行用電池の出力確保のために圧縮機3aの回転数の上限を低下させる制御が行われる場合である。また、電池の残容量が少ないときに圧縮機3aの回転数の上限を低下させる制御が行われる場合などである。 Moreover, according to the apparatus temperature control apparatus 1 of this embodiment which has the cool storage agent CS, even when the upper limit of the rotation speed of the compressor 3a falls not only when the compressor 3a stops completely, FIG. As shown in FIG. 4, basically the same effects as described above can be obtained. FIG. 6 shows the change in the cooling performance of the device temperature control device 1 when the upper limit of the rotational speed of the compressor 3a is lowered, comparing the case with the cool storage agent CS and the case without the cool storage agent CS. In addition, the situation where the upper limit of the rotational speed of the compressor 3a is lowered means, for example, that the upper limit of the rotational speed of the compressor 3a is lowered in order to satisfy a demand for NV (that is, noise and vibration) when the vehicle speed is lowered. This is a case where control is performed. In addition, when the vehicle suddenly accelerates, control is performed to reduce the upper limit of the rotational speed of the compressor 3a in order to ensure the output of the vehicle travel battery. Another example is when control is performed to reduce the upper limit of the rotational speed of the compressor 3a when the remaining battery capacity is low.
 また、上記したように、本実施形態に係る機器温調装置1は、放熱量調整部(すなわち、第1冷凍サイクル31)が総冷却能力を第2冷凍サイクル32と分け合う構成である。このような構成においては、図7に示すように、冷凍サイクル3の冷却能力が第2冷凍サイクル32(すなわち、空調装置用の冷凍サイクル)に優先的に使用されるときにも、蓄冷剤CSを有しない場合には、放熱量調整部の放熱能力が低下する。図7は、冷凍サイクル3の冷却能力が第2冷凍サイクル32に優先的に使用されるときの機器温調装置1の冷却性能の変化を、蓄冷剤CSを有する場合と有しない場合とを比較しつつ、示している。このときにおいても、蓄冷剤CSを有する本実施形態の機器温調装置1によれば、基本的には上記と同様の効果が得られる。尚、冷凍サイクル3の冷却能力が第2冷凍サイクル32に優先的に使用される状況とは、例えば、目標室内温度よりも現在の車室温度が高いときなどに実施されるクールダウンの場合である。また、乗員のマニュアル操作によって空調の設定温度が急低下した場合などである。 Further, as described above, the device temperature adjustment device 1 according to the present embodiment has a configuration in which the heat release amount adjustment unit (that is, the first refrigeration cycle 31) shares the total cooling capacity with the second refrigeration cycle 32. In such a configuration, as shown in FIG. 7, even when the cooling capacity of the refrigeration cycle 3 is used preferentially in the second refrigeration cycle 32 (that is, the refrigeration cycle for the air conditioner), the regenerator CS If it does not have, the heat radiation capacity of the heat radiation amount adjusting unit is reduced. FIG. 7 compares the change in the cooling performance of the device temperature control device 1 when the cooling capacity of the refrigeration cycle 3 is preferentially used for the second refrigeration cycle 32 with and without the cool storage agent CS. While showing. Even at this time, according to the device temperature control apparatus 1 of the present embodiment having the cold storage agent CS, basically the same effect as described above can be obtained. The situation in which the cooling capacity of the refrigeration cycle 3 is preferentially used for the second refrigeration cycle 32 is, for example, a cool-down that is performed when the current cabin temperature is higher than the target cabin temperature. is there. Another example is a case where the set temperature of the air conditioner suddenly decreases due to manual operation by the passenger.
 また、上記したように、本実施形態では、蓄冷剤CSは、機器用流体回路2において、順方向におけるガス通路部2bのうち最も上に位置する最上部よりも先であってガス出口部2abよりも手前に配置されている。 Further, as described above, in the present embodiment, the regenerator CS in the device fluid circuit 2 is ahead of the topmost portion of the gas passage portion 2b in the forward direction and is located at the gas outlet portion 2ab. It is arranged in front of.
 このため、本実施形態に係る機器温調装置1では、順方向におけるガス通路部2bのうち最上部よりも先であってガス出口部2abよりも手前に蓄冷剤CSが配置されている。これにより、該最上部よりも手前の部分に蓄冷剤CSが配置された場合のように順方向における作動流体の流量が減少することは無いため、作動流体の順方向の流れがより維持され易い。 For this reason, in the apparatus temperature control apparatus 1 which concerns on this embodiment, the cool storage agent CS is arrange | positioned ahead of the gas outlet part 2ab ahead of the uppermost part among the gas passage parts 2b in a forward direction. Thereby, since the flow rate of the working fluid in the forward direction does not decrease as in the case where the cool storage agent CS is disposed in the portion before the uppermost portion, the forward flow of the working fluid is more easily maintained. .
 尚、順方向におけるガス通路部2bのうち最上部よりも手前の部分は、順方向において作動流体が下から上に向かう通路である。このため、仮に、該手前の部分に蓄冷剤CSが配置された場合には、蓄冷剤CSに蓄積された冷熱によってガス状の作動流体が液化して下に落ちることによって、順方向における作動流体の流量が減少してしまう。これに対して、本実施形態に係る機器温調装置1では、順方向におけるガス通路部2bのうち最上部よりも先であってガス出口部2abよりも手前に蓄冷剤CSが配置されていることで、このように順方向における作動流体の流量が減少することは無い。このため、本実施形態に係る機器温調装置1では、作動流体の順方向の流れがより維持され易いという利点がある。 It should be noted that a portion of the gas passage portion 2b in the forward direction that is in front of the uppermost portion is a passage in which the working fluid is directed upward from the bottom in the forward direction. For this reason, if the cool storage agent CS is disposed in the front portion, the gaseous working fluid is liquefied by the cold heat accumulated in the cool storage agent CS and falls downward, so that the working fluid in the forward direction Will decrease the flow rate. On the other hand, in the apparatus temperature control apparatus 1 which concerns on this embodiment, the cool storage agent CS is arrange | positioned before the gas outlet part 2ab ahead of the uppermost part among the gas passage parts 2b in a forward direction. Thus, the flow rate of the working fluid in the forward direction is not reduced in this way. For this reason, in the apparatus temperature control apparatus 1 which concerns on this embodiment, there exists an advantage that the forward flow of a working fluid is maintained more easily.
 また、上記したように、本実施形態では特に、蓄冷剤CSは、機器用流体回路2において、ガス入口部2caよりも先であってガス出口部2abよりも手前に配置されている。 Further, as described above, in the present embodiment, in particular, the regenerator CS is arranged in the device fluid circuit 2 before the gas inlet 2ca and before the gas outlet 2ab.
 このため、本実施形態に係る機器温調装置1では、順方向における凝縮器2cのガス入口部2caよりも先に蓄冷剤CSが配置されている。すなわち、凝縮器2cよりも下流側に蓄冷剤CSが配置されている。よって、凝縮器2cによって凝縮された液状の作動流体を蓄冷剤CSと熱交換させることで、蓄冷剤CSに冷熱を蓄積させることができる。 For this reason, in the apparatus temperature control apparatus 1 which concerns on this embodiment, the cool storage agent CS is arrange | positioned ahead of the gas inlet part 2ca of the condenser 2c in a forward direction. That is, the cool storage agent CS is disposed downstream of the condenser 2c. Therefore, cold heat can be accumulated in the cold storage agent CS by exchanging heat between the liquid working fluid condensed by the condenser 2c and the cold storage agent CS.
 また、本実施形態では特に、蓄冷剤CSは、機器用流体回路2において、順方向におけるガス入口部2caよりも先であって液入口部2acよりも手前に配置されている。 In the present embodiment, in particular, the regenerator CS is disposed in the device fluid circuit 2 before the gas inlet 2ca in the forward direction and before the liquid inlet 2ac.
 このため、本実施形態に係る機器温調装置1では、順方向における凝縮器2cのガス入口部2caよりも先に蓄冷剤CSが配置されている。すなわち、凝縮器2cよりも下流側に蓄冷剤CSが配置されている。よって、凝縮器2cによって凝縮された液状の作動流体を蓄冷剤CSと熱交換させることで、蓄冷剤CSに冷熱を蓄積させることができる。さらに、順方向における機器用熱交換器2aの液入口部2acの手前に蓄冷剤CSが配置されている。すなわち、機器用熱交換器2aよりも上流側に蓄冷剤CSが配置されている。順方向における液通路部2dのうち凝縮器2cの液出口部2cbから機器用熱交換器2aの液入口部2acに至る部分は、順方向において作動流体が上から下に向かう通路である。このため、本実施形態に係る機器温調装置1では、該液入口部2acに至る部分に蓄冷剤CSが配置されていることで、蓄冷剤CSに蓄積された冷熱によってガス状の作動流体が液化して自重で下に落ちることによって、作動流体の順方向の流れがより生じ易くなる。 For this reason, in the apparatus temperature control apparatus 1 which concerns on this embodiment, the cool storage agent CS is arrange | positioned ahead of the gas inlet part 2ca of the condenser 2c in a forward direction. That is, the cool storage agent CS is disposed downstream of the condenser 2c. Therefore, cold heat can be accumulated in the cold storage agent CS by exchanging heat between the liquid working fluid condensed by the condenser 2c and the cold storage agent CS. Furthermore, the cool storage agent CS is disposed in front of the liquid inlet 2ac of the equipment heat exchanger 2a in the forward direction. That is, the cool storage agent CS is arranged upstream of the equipment heat exchanger 2a. Of the liquid passage portion 2d in the forward direction, the portion from the liquid outlet portion 2cb of the condenser 2c to the liquid inlet portion 2ac of the equipment heat exchanger 2a is a passage in which the working fluid is directed from top to bottom in the forward direction. For this reason, in the apparatus temperature control apparatus 1 which concerns on this embodiment, since the cool storage agent CS is arrange | positioned in the part which reaches this liquid inlet part 2ac, a gaseous working fluid is produced | generated by the cold heat accumulate | stored in the cool storage agent CS. By liquefying and falling down under its own weight, a forward flow of the working fluid is more likely to occur.
 また、本実施形態では特に、蓄冷剤CSは、作動流体との間に熱媒体流路(すなわち、冷媒流路31a)を介さずに、配置されている。具体的には、本実施形態では、蓄冷剤CSの少なくとも一部が、作動流体との間に熱媒体流路(すなわち、冷媒流路31a)を介さずに、配置されている。 In this embodiment, in particular, the regenerator CS is arranged between the working fluid and the heat medium passage (that is, the refrigerant passage 31a). Specifically, in the present embodiment, at least a part of the cool storage agent CS is disposed between the working fluid and the heat medium passage (that is, the refrigerant passage 31a).
 このため、本実施形態に係る機器温調装置1では、蓄冷剤CSの冷熱が作動流体に伝わり易くなり、作動流体の順方向の流れが特に維持され易くなる。 For this reason, in the apparatus temperature control apparatus 1 which concerns on this embodiment, it becomes easy to transmit the cold heat | fever of the cool storage agent CS to a working fluid, and it becomes easy to maintain the forward flow of a working fluid especially.
 また、本実施形態では特に、蓄冷剤CSは、凝縮器2cにおける作動流体の流路(すなわち、作動流体流路部P1)と熱媒体流路(すなわち、冷媒流路31a)との間に、配置されている。具体的には、本実施形態では、蓄冷剤CSの少なくとも一部が、凝縮器2cにおける作動流体の流路(すなわち、作動流体流路部P1)と熱媒体流路(すなわち、冷媒流路31a)との間に、配置されている。 In the present embodiment, in particular, the regenerator CS is provided between the working fluid channel (that is, the working fluid channel portion P1) and the heat medium channel (that is, the refrigerant channel 31a) in the condenser 2c. Has been placed. Specifically, in the present embodiment, at least a part of the cool storage agent CS includes a working fluid channel (that is, the working fluid channel portion P1) and a heat medium channel (that is, the refrigerant channel 31a) in the condenser 2c. ) Between them.
 このため、本実施形態に係る機器温調装置1では、蓄冷剤CSが熱的緩衝材として機能する。従来、この種の機器温調装置1では、作動流体と熱媒体流路(すなわち、冷媒流路31a)を流れる熱媒体との間の温度差が激しい場合には、突沸が生じ、これにより異音が発生することが問題となっていた。しかしながら、実施形態に係る機器温調装置1では、蓄冷剤CSが間に配置されていることで、作動流体の温度低下が緩やかとなり、突沸が生じ難くなる。 For this reason, in the apparatus temperature control apparatus 1 which concerns on this embodiment, the cool storage agent CS functions as a thermal buffer material. Conventionally, in this type of device temperature control apparatus 1, bumps are generated when the temperature difference between the working fluid and the heat medium flowing through the heat medium flow path (that is, the refrigerant flow path 31a) is severe. The problem was that sound was generated. However, in the apparatus temperature control apparatus 1 which concerns on embodiment, since the cool storage agent CS is arrange | positioned in between, the temperature fall of a working fluid becomes moderate and it becomes difficult to produce bumping.
 また、上記したように、本実施形態では特に、凝縮器2cと一体に構成されている。 Further, as described above, in the present embodiment, it is particularly configured integrally with the condenser 2c.
 このため、本実施形態に係る機器温調装置1では、凝縮器2cによって凝縮された液状の作動流体を即座に蓄冷剤CSと熱交換させることができるため、効率良く蓄冷剤CSに冷熱を蓄積させることができ、作動流体の順方向の流れが特に維持され易くなる。 For this reason, in the apparatus temperature control apparatus 1 which concerns on this embodiment, since the liquid working fluid condensed by the condenser 2c can be immediately heat-exchanged with the cool storage agent CS, cold energy is accumulate | stored in the cool storage agent CS efficiently. And the forward flow of the working fluid is particularly easily maintained.
 また、上記したように、本実施形態では、温調対象機器が、複数の電池セルBCを有する組電池BPである。 As described above, in the present embodiment, the temperature control target device is the assembled battery BP having a plurality of battery cells BC.
 このため、本実施形態に係る機器温調装置1は、サーモサイフォン方式の冷却装置であるため、作動流体の蒸発の際に生じる蒸発熱、すなわち潜熱を利用して、温調対象機器を冷却する。これに対して、送風機による送風によって組電池BPを冷却する方法もあるが、この方法の場合、冷却能力が低いことが問題となる。また、この場合、空気の潜熱によって冷却するため、空気の上流と下流とで温度差が大きくなり、これにより、各電池セルBC間の温度分布にばらつきが生じる。しかしながら、本実施形態に係る機器温調装置1では、潜熱を利用して温調対象機器を冷却するため、各電池セルBCの温度バラツキを低減させることができ、各電池セルBCを均等に冷却することができる。よって、本実施形態に係る機器温調装置1は、各電池セルBCの温度バラツキを低減させる均温化が重要となる組電池BPの冷却に特に好適である。 For this reason, since the apparatus temperature control apparatus 1 which concerns on this embodiment is a thermosiphon-type cooling device, it cools the temperature control object apparatus using the evaporative heat which arises in the case of evaporation of a working fluid, ie, a latent heat. . On the other hand, there is a method of cooling the assembled battery BP by blowing air from a blower. However, in this method, there is a problem that the cooling capacity is low. In this case, since the cooling is performed by the latent heat of the air, the temperature difference between the upstream and downstream of the air becomes large, thereby causing variations in the temperature distribution between the battery cells BC. However, in the device temperature adjustment device 1 according to the present embodiment, the temperature adjustment target device is cooled using latent heat, so that the temperature variation of each battery cell BC can be reduced, and each battery cell BC is cooled evenly. can do. Therefore, the apparatus temperature control apparatus 1 which concerns on this embodiment is especially suitable for cooling of the assembled battery BP where temperature equalization which reduces the temperature variation of each battery cell BC becomes important.
 図1に示すように、液通路部2dは、凝縮器2cにて凝縮した液状の作動流体を機器用熱交換器2aに導く通路部材である。液通路部2dは、下方側の端部が機器用熱交換器2aの液入口部2acに接続され、上方側の端部が凝縮器2cの液出口部2cbに接続されている。本実施形態の液通路部2dは、内部において、作動流体が流通する流路が形成された配管で構成されている。本実施形態の液通路部2dは、凝縮器2c側の部位が機器用熱交換器2a側の部位の上方に位置している。また、本実施形態の液通路部2dは、機器用熱交換器2a側の部位が機器用熱交換器2aの最も下方側の部位と同程度または上方側に位置するように構成されている。尚、図面に示す液通路部2dは、あくまでも一例である。液通路部2dは、車両への搭載性を考慮して適宜変更され得る。 As shown in FIG. 1, the liquid passage portion 2d is a passage member that guides the liquid working fluid condensed in the condenser 2c to the equipment heat exchanger 2a. The liquid passage 2d has a lower end connected to the liquid inlet 2ac of the equipment heat exchanger 2a and an upper end connected to the liquid outlet 2cb of the condenser 2c. The liquid passage portion 2d of the present embodiment is constituted by a pipe in which a flow path through which a working fluid flows is formed. In the liquid passage portion 2d of the present embodiment, the portion on the condenser 2c side is positioned above the portion on the equipment heat exchanger 2a side. Further, the liquid passage portion 2d of the present embodiment is configured such that the part on the equipment heat exchanger 2a side is located at the same level as or the upper part of the lowermost part of the equipment heat exchanger 2a. The liquid passage portion 2d shown in the drawing is merely an example. The liquid passage portion 2d can be appropriately changed in consideration of the mounting property on the vehicle.
 以上で説明したように、本実施形態に係る機器温調装置1では、機器用流体回路2において、作動流体の冷熱および放熱量調整部が供給する熱媒体(すなわち、第1冷凍サイクル31の冷媒)の冷熱の少なくとも一方を蓄積する蓄冷剤CSを有する。 As described above, in the device temperature control apparatus 1 according to the present embodiment, in the device fluid circuit 2, the heat medium supplied by the working fluid cooling / radiating amount adjustment unit (that is, the refrigerant of the first refrigeration cycle 31). ) Of a cold storage agent CS that accumulates at least one of the cold heat.
 このため、本実施形態に係る機器温調装置1では、放熱量調整部(すなわち、第1冷凍サイクル31)の放熱能力が低下したときでも、蓄冷剤CSに蓄積された冷熱が作動流体に伝わることで、作動流体が冷却されて凝縮され易くなり、順方向の作動流体の流量が維持され易くなる。これにより、機器用流体回路2における作動流体の順方向の流れが維持され易くなり、ひいては機器温調装置1の冷却能力が維持され易くなる。つまり、本実施形態に係る機器温調装置1では、機器用流体回路2に蓄冷剤CSが配置されていることで、放熱量調整部(すなわち、第1冷凍サイクル31)の放熱能力が低下したときにおいても、冷却能力が低下せずに維持され易くなる。 For this reason, in the apparatus temperature control apparatus 1 which concerns on this embodiment, even when the thermal radiation capability of the heat radiation amount adjustment part (namely, 1st freezing cycle 31) falls, the cold heat accumulate | stored in the cool storage agent CS is transmitted to a working fluid. Thus, the working fluid is easily cooled and condensed, and the flow rate of the working fluid in the forward direction is easily maintained. As a result, the forward flow of the working fluid in the device fluid circuit 2 is easily maintained, and as a result, the cooling capacity of the device temperature control device 1 is easily maintained. That is, in the device temperature control apparatus 1 according to the present embodiment, the heat storage capacity of the heat release amount adjusting unit (that is, the first refrigeration cycle 31) is reduced by the cold storage agent CS being arranged in the device fluid circuit 2. Sometimes, the cooling capacity is easily maintained without being lowered.
 また、上記したように、本実施形態では、蓄冷剤CSは、機器用流体回路2において、順方向におけるガス通路部2bのうち最も上に位置する最上部よりも先であってガス出口部2abよりも手前に配置されている。 Further, as described above, in the present embodiment, the regenerator CS in the device fluid circuit 2 is ahead of the topmost portion of the gas passage portion 2b in the forward direction and is located at the gas outlet portion 2ab. It is arranged in front of.
 このため、本実施形態に係る機器温調装置1では、順方向におけるガス通路部2bのうち最上部よりも先であってガス出口部2abよりも手前に蓄冷剤CSが配置されている。これにより、該最上部よりも手前の部分に蓄冷剤CSが配置された場合のように順方向における作動流体の流量が減少することは無いため、作動流体の順方向の流れがより維持され易い。 For this reason, in the apparatus temperature control apparatus 1 which concerns on this embodiment, the cool storage agent CS is arrange | positioned ahead of the gas outlet part 2ab ahead of the uppermost part among the gas passage parts 2b in a forward direction. Thereby, since the flow rate of the working fluid in the forward direction does not decrease as in the case where the cool storage agent CS is disposed in the portion before the uppermost portion, the forward flow of the working fluid is more easily maintained. .
 また、上記したように、本実施形態では特に、蓄冷剤CSは、機器用流体回路2において、ガス入口部2caよりも先であってガス出口部2abよりも手前に配置されている。 Further, as described above, in the present embodiment, in particular, the regenerator CS is arranged in the device fluid circuit 2 before the gas inlet 2ca and before the gas outlet 2ab.
 このため、本実施形態に係る機器温調装置1では、順方向における凝縮器2cのガス入口部2caよりも先に蓄冷剤CSが配置されている。すなわち、凝縮器2cよりも下流側に蓄冷剤CSが配置されている。よって、凝縮器2cによって凝縮された液状の作動流体を蓄冷剤CSと熱交換させることで、蓄冷剤CSに冷熱を蓄積させることができる。 For this reason, in the apparatus temperature control apparatus 1 which concerns on this embodiment, the cool storage agent CS is arrange | positioned ahead of the gas inlet part 2ca of the condenser 2c in a forward direction. That is, the cool storage agent CS is disposed downstream of the condenser 2c. Therefore, cold heat can be accumulated in the cold storage agent CS by exchanging heat between the liquid working fluid condensed by the condenser 2c and the cold storage agent CS.
 また、本実施形態では特に、蓄冷剤CSは、機器用流体回路2において、順方向におけるガス入口部2caよりも先であって液入口部2acよりも手前に配置されている。 In the present embodiment, in particular, the regenerator CS is disposed in the device fluid circuit 2 before the gas inlet 2ca in the forward direction and before the liquid inlet 2ac.
 このため、本実施形態に係る機器温調装置1では、順方向における凝縮器2cのガス入口部2caよりも先に蓄冷剤CSが配置されている。すなわち、凝縮器2cよりも下流側に蓄冷剤CSが配置されている。よって、凝縮器2cによって凝縮された液状の作動流体を蓄冷剤CSと熱交換させることで、蓄冷剤CSに冷熱を蓄積させることができる。さらに、順方向における機器用熱交換器2aの液入口部2acの手前に蓄冷剤CSが配置されている。すなわち、機器用熱交換器2aよりも上流側に蓄冷剤CSが配置されている。順方向における液通路部2dのうち凝縮器2cの液出口部2cbから機器用熱交換器2aの液入口部2acに至る部分は、順方向において作動流体が上から下に向かう通路である。このため、本実施形態に係る機器温調装置1では、該液入口部2acに至る部分に蓄冷剤CSが配置されていることで、蓄冷剤CSに蓄積された冷熱によってガス状の作動流体が液化して自重で下に落ちることによって、作動流体の順方向の流れがより生じ易くなる。 For this reason, in the apparatus temperature control apparatus 1 which concerns on this embodiment, the cool storage agent CS is arrange | positioned ahead of the gas inlet part 2ca of the condenser 2c in a forward direction. That is, the cool storage agent CS is disposed downstream of the condenser 2c. Therefore, cold heat can be accumulated in the cold storage agent CS by exchanging heat between the liquid working fluid condensed by the condenser 2c and the cold storage agent CS. Furthermore, the cool storage agent CS is disposed in front of the liquid inlet 2ac of the equipment heat exchanger 2a in the forward direction. That is, the cool storage agent CS is arranged upstream of the equipment heat exchanger 2a. Of the liquid passage portion 2d in the forward direction, the portion from the liquid outlet portion 2cb of the condenser 2c to the liquid inlet portion 2ac of the equipment heat exchanger 2a is a passage in which the working fluid is directed from top to bottom in the forward direction. For this reason, in the apparatus temperature control apparatus 1 which concerns on this embodiment, since the cool storage agent CS is arrange | positioned in the part which reaches this liquid inlet part 2ac, a gaseous working fluid is produced | generated by the cold heat accumulate | stored in the cool storage agent CS. By liquefying and falling down under its own weight, a forward flow of the working fluid is more likely to occur.
 また、本実施形態では特に、蓄冷剤CSは、作動流体との間に熱媒体流路(すなわち、冷媒流路31a)を介さずに、配置されている。具体的には、本実施形態では、蓄冷剤CSの少なくとも一部が、作動流体との間に熱媒体流路(すなわち、冷媒流路31a)を介さずに、配置されている。 In this embodiment, in particular, the regenerator CS is arranged between the working fluid and the heat medium passage (that is, the refrigerant passage 31a). Specifically, in the present embodiment, at least a part of the cool storage agent CS is disposed between the working fluid and the heat medium passage (that is, the refrigerant passage 31a).
 このため、本実施形態に係る機器温調装置1では、蓄冷剤CSの冷熱が作動流体に伝わり易くなり、作動流体の順方向の流れが特に維持され易くなる。 For this reason, in the apparatus temperature control apparatus 1 which concerns on this embodiment, it becomes easy to transmit the cold heat | fever of the cool storage agent CS to a working fluid, and it becomes easy to maintain the forward flow of a working fluid especially.
 また、本実施形態では特に、蓄冷剤CSは、凝縮器2cにおける作動流体の流路(すなわち、作動流体流路部P1)と熱媒体流路(すなわち、冷媒流路31a)との間に、配置されている。具体的には、本実施形態では、蓄冷剤CSの少なくとも一部が、凝縮器2cにおける作動流体の流路(すなわち、作動流体流路部P1)と熱媒体流路(すなわち、冷媒流路31a)との間に、配置されている。 In the present embodiment, in particular, the regenerator CS is provided between the working fluid channel (that is, the working fluid channel portion P1) and the heat medium channel (that is, the refrigerant channel 31a) in the condenser 2c. Has been placed. Specifically, in the present embodiment, at least a part of the cool storage agent CS includes a working fluid channel (that is, the working fluid channel portion P1) and a heat medium channel (that is, the refrigerant channel 31a) in the condenser 2c. ) Between them.
 このため、本実施形態に係る機器温調装置1では、蓄冷剤CSが熱的緩衝材として機能する。従来、この種の機器温調装置1では、作動流体と熱媒体流路(すなわち、冷媒流路31a)を流れる熱媒体との間の温度差が激しい場合には、突沸が生じ、これにより異音が発生することが問題となっていた。しかしながら、実施形態に係る機器温調装置1では、蓄冷剤CSが間に配置されていることで、作動流体の温度低下が緩やかとなり、突沸が生じ難くなる。 For this reason, in the apparatus temperature control apparatus 1 which concerns on this embodiment, the cool storage agent CS functions as a thermal buffer material. Conventionally, in this type of device temperature control apparatus 1, bumps are generated when the temperature difference between the working fluid and the heat medium flowing through the heat medium flow path (that is, the refrigerant flow path 31a) is severe. The problem was that sound was generated. However, in the apparatus temperature control apparatus 1 which concerns on embodiment, since the cool storage agent CS is arrange | positioned in between, the temperature fall of a working fluid becomes moderate and it becomes difficult to produce bumping.
 また、上記したように、本実施形態では特に、凝縮器2cと一体に構成されている。 Further, as described above, in the present embodiment, it is particularly configured integrally with the condenser 2c.
 このため、本実施形態に係る機器温調装置1では、凝縮器2cによって凝縮された液状の作動流体を即座に蓄冷剤CSと熱交換させることができるため、効率良く蓄冷剤CSに冷熱を蓄積させることができ、作動流体の順方向の流れが特に維持され易くなる。 For this reason, in the apparatus temperature control apparatus 1 which concerns on this embodiment, since the liquid working fluid condensed by the condenser 2c can be immediately heat-exchanged with the cool storage agent CS, cold energy is accumulate | stored in the cool storage agent CS efficiently. And the forward flow of the working fluid is particularly easily maintained.
 また、上記したように、本実施形態では、温調対象機器が、複数の電池セルBCを有する組電池BPである。 As described above, in the present embodiment, the temperature control target device is the assembled battery BP having a plurality of battery cells BC.
 このため、本実施形態に係る機器温調装置1は、サーモサイフォン方式の冷却装置であるため、作動流体の蒸発の際に生じる蒸発熱、すなわち潜熱を利用して、温調対象機器を冷却する。これに対して、送風機による送風によって組電池BPを冷却する方法もあるが、この方法の場合、冷却能力が低いことが問題となる。また、この場合、空気の潜熱によって冷却するため、空気の上流と下流とで温度差が大きくなり、これにより、各電池セルBC間の温度分布にばらつきが生じる。しかしながら、本実施形態に係る機器温調装置1では、潜熱を利用して温調対象機器を冷却するため、各電池セルBCの温度バラツキを低減させることができ、各電池セルBCを均等に冷却することができる。よって、本実施形態に係る機器温調装置1は、各電池セルBCの温度バラツキを低減させる均温化が重要となる組電池BPの冷却に特に好適である。 For this reason, since the apparatus temperature control apparatus 1 which concerns on this embodiment is a thermosiphon-type cooling device, it cools the temperature control object apparatus using the evaporative heat which arises in the case of evaporation of a working fluid, ie, a latent heat. . On the other hand, there is a method of cooling the assembled battery BP by blowing air from a blower. However, in this method, there is a problem that the cooling capacity is low. In this case, since the cooling is performed by the latent heat of the air, the temperature difference between the upstream and downstream of the air becomes large, thereby causing variations in the temperature distribution between the battery cells BC. However, in the device temperature adjustment device 1 according to the present embodiment, the temperature adjustment target device is cooled using latent heat, so that the temperature variation of each battery cell BC can be reduced, and each battery cell BC is cooled evenly. can do. Therefore, the apparatus temperature control apparatus 1 which concerns on this embodiment is especially suitable for cooling of the assembled battery BP where temperature equalization which reduces the temperature variation of each battery cell BC becomes important.
 (第2実施形態)
 本開示の第2実施形態について図8~図11を参照して説明する。本実施形態は、第1実施形態に対して、放熱量調整部を送風機BFに変更したものであり、その他に関しては第1実施形態と同様である。よって、第1実施形態と同様であることを明記する場合を除いて、第1実施形態と異なる部分のみについて説明する。
(Second Embodiment)
A second embodiment of the present disclosure will be described with reference to FIGS. The present embodiment is different from the first embodiment in that the heat dissipation amount adjustment unit is changed to the blower BF, and the other aspects are the same as those of the first embodiment. Therefore, only the parts different from the first embodiment will be described, except for the case where it is specified that it is the same as the first embodiment.
 第1実施形態では、熱媒体を凝縮器2cに供給することで機器用流体回路2の凝縮器2cの内部に存する作動流体の放熱量を調整する放熱量調整部として第1冷凍サイクル31が備えられ、作動流体と冷凍サイクルの冷媒とで熱交換させる構成であった。これに対して、本実施形態では、図8に示すように、この放熱量調整部として送風機BFが備えられ、作動流体と送風機BFの送風空気とで熱交換させる構成とされている。すなわち、送風空気は、放熱量調整部が供給する熱媒体に相当する。 In the first embodiment, the first refrigeration cycle 31 is provided as a heat release amount adjusting unit that adjusts the heat release amount of the working fluid existing in the condenser 2c of the fluid circuit 2 for equipment by supplying a heat medium to the condenser 2c. Thus, the heat exchange is performed between the working fluid and the refrigerant of the refrigeration cycle. On the other hand, in this embodiment, as shown in FIG. 8, the blower BF is provided as the heat release amount adjusting unit, and heat is exchanged between the working fluid and the blown air of the blower BF. That is, the blown air corresponds to a heat medium supplied by the heat dissipation amount adjustment unit.
 送風機BFは、車室内の空気または車室外の空気を機器用熱交換器2aに向けて吹き出す装置である。送風機BFは、通電によって作動する電動ファンを含んで構成されている。送風機BFは、不図示の制御装置に接続され、該制御装置からの制御信号に基づいて送風能力が制御される。 The blower BF is a device that blows out air in the passenger compartment or outside the passenger compartment toward the equipment heat exchanger 2a. The blower BF includes an electric fan that operates when energized. The blower BF is connected to a control device (not shown), and the blower capacity is controlled based on a control signal from the control device.
 すなわち、本実施形態に係る機器温調装置1では、凝縮器2cの内部に存する作動流体は、車両内の空気との間で熱交換することで冷却される。 That is, in the apparatus temperature control apparatus 1 according to the present embodiment, the working fluid existing in the condenser 2c is cooled by exchanging heat with the air in the vehicle.
 本実施形態に係る機器温調装置1においても、作動流体の冷熱および放熱量調整部が供給する熱媒体(すなわち、送風機BFの送風空気)の冷熱の少なくとも一方を蓄積する蓄冷剤CSを有する。尚、本実施形態においても、蓄冷剤CSは、凝縮器2cと一体に構成されている。 The apparatus temperature control apparatus 1 according to the present embodiment also includes the cold storage agent CS that accumulates at least one of the cold heat of the working fluid and the cold heat of the heat medium (that is, the blown air of the blower BF) supplied by the heat dissipation amount adjusting unit. In the present embodiment as well, the cool storage agent CS is configured integrally with the condenser 2c.
 このため、本実施形態においても、第1実施形態と同様の効果が得られる。 For this reason, also in this embodiment, the same effect as the first embodiment can be obtained.
 すなわち、本実施形態においては、蓄冷剤CSを有しない場合、送風機BFの送風能力が低下したとき、放熱量調整部である第1冷凍サイクル31の放熱能力が低下することで凝縮器3bの凝縮能力も低下し、ひいては機器温調装置1の冷却性能が低下する。これに対して蓄冷剤CSを有する本実施形態の場合は、送風機BFの送風能力が低下しても、蓄冷剤CSに蓄積された冷熱が作動流体に伝わることで、十分に作動流体が凝縮され、機器温調装置1の冷却能力が維持される。尚、送風機BFの送風能力が低下する状況とは、例えば、図9に示すように車速が低下したときである。また、図10に示すように車両側の要求などによりグリルシャッターが作動したときである。また、図11に示すように送風機BFを車室内に設置したときなどである。また、蓄冷剤CSが凝縮器2cと一体に構成されていることで、第1実施形態と同様、効率良く蓄冷剤CSに冷熱を蓄積させることができる。 That is, in this embodiment, when the cool storage agent CS is not provided, when the blower capacity of the blower BF is reduced, the heat release capacity of the first refrigeration cycle 31 that is the heat release amount adjustment unit is reduced, thereby condensing the condenser 3b. The capability also decreases, and consequently the cooling performance of the device temperature control device 1 decreases. On the other hand, in the case of the present embodiment having the cool storage agent CS, the working fluid is sufficiently condensed by the cold heat accumulated in the cool storage agent CS being transmitted to the working fluid even if the blowing capacity of the blower BF is reduced. The cooling capacity of the device temperature control device 1 is maintained. The situation where the blowing capacity of the blower BF is lowered is, for example, when the vehicle speed is lowered as shown in FIG. Further, as shown in FIG. 10, it is when the grille shutter is activated due to a request from the vehicle side. Further, as shown in FIG. 11, the blower BF is installed in the vehicle interior. Moreover, since the cool storage agent CS is configured integrally with the condenser 2c, cold heat can be efficiently stored in the cool storage agent CS as in the first embodiment.
 また、第1実施形態と同様、本実施形態においても、蓄冷剤CSは、機器用流体回路2において、順方向におけるガス通路部2bのうち最も上に位置する最上部よりも先であってガス出口部よりも手前に配置されている。 Further, similarly to the first embodiment, also in this embodiment, the regenerator CS is gas in the device fluid circuit 2 ahead of the topmost portion of the gas passage portion 2b in the forward direction. It is arranged in front of the exit.
 このため、本実施形態においても、第1実施形態と同様の効果が得られる。 For this reason, also in this embodiment, the same effect as the first embodiment can be obtained.
 また、第1実施形態と同様、本実施形態においても、蓄冷剤CSは、機器用流体回路2において、ガス入口部2caよりも先であってガス出口部2abよりも手前に配置されている。 Further, similarly to the first embodiment, also in the present embodiment, the regenerator CS is arranged in the device fluid circuit 2 before the gas inlet portion 2ca and before the gas outlet portion 2ab.
 このため、本実施形態においても、第1実施形態と同様の効果が得られる。 For this reason, also in this embodiment, the same effect as the first embodiment can be obtained.
 また、第1実施形態と同様、本実施形態においても、蓄冷剤CSは、機器用流体回路2において、順方向におけるガス入口部2caよりも先であって液入口部2acよりも手前に配置されている。 Similarly to the first embodiment, also in this embodiment, the regenerator CS is arranged in the device fluid circuit 2 before the gas inlet 2ca in the forward direction and before the liquid inlet 2ac. ing.
 このため、本実施形態においても、第1実施形態と同様の効果が得られる。 For this reason, also in this embodiment, the same effect as the first embodiment can be obtained.
 また、第1実施形態と同様、本実施形態においても、凝縮器2cの内部に存する作動流体との間で熱交換することで該作動流体を冷却する熱媒体を流すための流路である不図示の熱媒体流路を有する。そして、本実施形態においても、蓄冷剤CSの少なくとも一部が、作動流体との間に熱媒体流路を介さずに、配置されている。 Further, similarly to the first embodiment, in the present embodiment, the flow path is a channel for flowing a heat medium that cools the working fluid by exchanging heat with the working fluid existing in the condenser 2c. The illustrated heat medium flow path is provided. And also in this embodiment, at least one part of the cool storage agent CS is arrange | positioned without a heat medium flow path between working fluid.
 このため、本実施形態においても、第1実施形態と同様の効果が得られる。 For this reason, also in this embodiment, the same effect as the first embodiment can be obtained.
 また、第1実施形態と同様、本実施形態においても、凝縮器2cにおける作動流体の流路と熱媒体流路との間に、配置されている。 Further, similarly to the first embodiment, the present embodiment is also disposed between the working fluid flow path and the heat medium flow path in the condenser 2c.
 このため、本実施形態においても、第1実施形態と同様の効果が得られる。 For this reason, also in this embodiment, the same effect as the first embodiment can be obtained.
 (第3実施形態)
 次に、第3実施形態について説明する。本実施形態の機器温調装置1は、蓄冷剤CSの設置部位が第1、第2実施形態の機器温調装置1と異なるが、その他の構成は第1、第2実施形態の機器温調装置1と同じである。
(Third embodiment)
Next, a third embodiment will be described. The apparatus temperature control apparatus 1 of the present embodiment is different from the apparatus temperature control apparatus 1 of the first and second embodiments in the installation site of the cool storage agent CS, but other configurations are the apparatus temperature control of the first and second embodiments. Same as device 1.
 本実施形態においては、蓄冷剤CSは、凝縮器2cに備えられておらず、図12、図13に示すように、ガス通路部2bのうち、ガス通路部2bの最上部よりも順方向における上流側に、配置されている。 In the present embodiment, the regenerator CS is not provided in the condenser 2c, and as shown in FIGS. 12 and 13, in the gas passage portion 2b, in the forward direction than the uppermost portion of the gas passage portion 2b. Arranged upstream.
 より具体的には、蓄冷剤CSは、順方向におけるガス出口部2abよりも下流側かつガス通路部2bの最上部よりも上流側において、ガス通路部2bを形成する配管に接触して当該配管に対して環状に巻き付けられている。 More specifically, the cool storage agent CS is in contact with a pipe forming the gas passage part 2b on the downstream side of the gas outlet part 2ab in the forward direction and upstream of the uppermost part of the gas passage part 2b. Is wound in an annular shape.
 本実施形態の蓄冷剤CSは、作動流体の冷熱を蓄積するためのものである。蓄冷剤CSを構成する材料は、第1実施形態と同じでもよいし、同じでなくてもよい。以下、このような構成の機器温調装置1の作動について説明する。 The cold storage agent CS of this embodiment is for accumulating the cold heat of the working fluid. The material which comprises the cool storage agent CS may be the same as 1st Embodiment, and does not need to be the same. Hereinafter, the operation of the device temperature control apparatus 1 having such a configuration will be described.
 [蓄冷剤が蓄冷する場合]
 まず、冷却モード(すなわち、圧縮機が作動している状態)において、車両の走行時の自己発熱等によって組電池BPの電池温度が高いときの、作動流体の流れは、第1、第2実施形態と同じく、順方向である。
[When cold storage agent stores cold]
First, in the cooling mode (that is, when the compressor is operating), the flow of the working fluid when the battery temperature of the assembled battery BP is high due to self-heating during traveling of the vehicle is the first and second implementations. Like the form, it is forward.
 そしてこの場合の作動流体は、第1、第2実施形態と同様、機器用熱交換器2aで組電池BPから吸熱して蒸発し、その後、凝縮器2cで第1冷凍サイクル31の冷媒側熱交換器HECを流れる冷媒に放熱して凝縮する。 And the working fluid in this case is evaporated by absorbing heat from the assembled battery BP in the equipment heat exchanger 2a as in the first and second embodiments, and then the refrigerant side heat of the first refrigeration cycle 31 in the condenser 2c. Heat is condensed to the refrigerant flowing through the exchanger HEC and condensed.
 ただしこの場合、本実施形態の作動流体は、気相状態でガス通路部2bを凝縮器2cに向かう途中で、ガス通路部2bの最上部よりも順方向における上流側において、蓄冷剤CSの近傍で、蓄冷剤CSから吸熱する。すなわち、作動流体は蓄冷剤CSに冷熱を渡す。言い換えれば、作動流体は蓄冷剤CSに放冷する。 However, in this case, the working fluid of the present embodiment is in the vicinity of the regenerator CS on the upstream side in the forward direction from the uppermost portion of the gas passage portion 2b in the gas phase state while the gas passage portion 2b is moving toward the condenser 2c. Then, it absorbs heat from the regenerator CS. That is, the working fluid passes cold heat to the cool storage agent CS. In other words, the working fluid is allowed to cool to the cool storage agent CS.
 この場合に作動流体が蓄冷剤CSに放冷できるのは、圧縮機3aが作動することによって、凝縮器2cで冷媒が作動流体から蒸発潜熱を奪って作動流体を冷却するので、ガス通路部2bを通る作動流体の温度が蓄冷剤CSの温度よりも低くなるからである。凝縮器2cで作動流体が凝縮している状態は、凝縮器2cが作動している状態である。 In this case, the working fluid can be cooled to the regenerator CS because the refrigerant takes the latent heat of evaporation from the working fluid and cools the working fluid in the condenser 2c when the compressor 3a is operated. This is because the temperature of the working fluid passing through the refrigerant becomes lower than the temperature of the regenerator CS. The state in which the working fluid is condensed in the condenser 2c is a state in which the condenser 2c is operating.
 このような作動が続くことで、蓄冷剤CSは、冷熱を蓄積し続ける。ただし、蓄冷剤CSは、過熱状態の気相の作動流体から冷熱を受けて蓄冷する点が、第1、第2実施形態と異なる。なお、圧縮機3aが作動しておらず、作動流体が凝縮器2cで冷媒に放熱できない場合、すなわち、凝縮器2cが機能しない場合、蓄冷剤CSは蓄冷できない。 冷 As such operation continues, the regenerator CS continues to accumulate cold energy. However, the cold storage agent CS is different from the first and second embodiments in that cold storage is performed by receiving cold heat from a superheated gas phase working fluid. In addition, when the compressor 3a is not operated and the working fluid cannot radiate heat to the refrigerant in the condenser 2c, that is, when the condenser 2c does not function, the cold storage agent CS cannot store cold.
 [蓄冷剤CSが放冷し、凝縮器2cが作動中の場合]
 蓄冷剤CSが十分に蓄冷した後、圧縮機3aが作動を継続した状態で、ガス通路部2bを凝縮器2cに向けて通る気相の作動流体が、蓄冷剤CSの温度よりも高温になる場合がある。この場合、組電池BPの電池温度が依然として高いとする。この場合、機器用熱交換器2aで作動流体が組電池BPを冷却して蒸発し、ガス出口部2abからガス通路部2bに流出する点は、蓄冷剤CSの蓄冷時と同様である。
[When the regenerator CS is allowed to cool and the condenser 2c is operating]
After the cool storage agent CS has sufficiently stored, the gas phase working fluid passing through the gas passage portion 2b toward the condenser 2c becomes higher than the temperature of the cool storage agent CS while the compressor 3a continues to operate. There is a case. In this case, it is assumed that the battery temperature of the assembled battery BP is still high. In this case, the point that the working fluid cools and evaporates the assembled battery BP in the equipment heat exchanger 2a and flows out from the gas outlet 2ab to the gas passage 2b is the same as in the cold storage of the cool storage agent CS.
 流出した気相の作動流体は、ガス通路部2bの最上部よりも順方向における上流側において、蓄冷剤CSの近傍で、蓄冷剤CSに放熱する。すなわち、作動流体は蓄冷剤CSから冷熱を受け取る。言い換えれば、蓄冷剤CSは作動流体に放冷する。この結果、蓄冷剤CSの近傍で、気相の作動流体の一部が液化して、当該一部の作動流体の比重が増大する。 The gas phase working fluid that has flowed out radiates heat to the cool storage agent CS in the vicinity of the cool storage agent CS on the upstream side in the forward direction from the uppermost portion of the gas passage portion 2b. That is, the working fluid receives cold heat from the cold storage agent CS. In other words, the cool storage agent CS is cooled to the working fluid. As a result, a part of the gas-phase working fluid is liquefied in the vicinity of the cool storage agent CS, and the specific gravity of the part of the working fluid increases.
 これにより、当該一部の作動流体は、ガス通路部2bの内部で凝縮して液相状態になる。液相状態となった作動流体は更に、その自重によって、ガス通路部2bの内部を落下し、ガス出口部2abに向かって下降する。すなわち、液相状態となった作動流体はガス通路部2b内を逆流する。更にこの液相の作動流体は、ガス出口部2abを通って機器用熱交換器2a内へ移動する。そして、機器用熱交換器2aでは、この液相の作動流体の一部が組電池BPから吸熱することで蒸発する。 Thereby, the part of the working fluid is condensed in the gas passage portion 2b to be in a liquid phase state. The working fluid that has become a liquid phase further falls inside the gas passage portion 2b by its own weight and descends toward the gas outlet portion 2ab. That is, the working fluid in a liquid phase flows backward in the gas passage portion 2b. Further, the liquid-phase working fluid moves into the equipment heat exchanger 2a through the gas outlet 2ab. In the apparatus heat exchanger 2a, a part of the liquid-phase working fluid is evaporated by absorbing heat from the assembled battery BP.
 一方、蓄冷剤CSから冷熱を受け取った作動流体のうち、液化しなかった残りの作動流体は、第1、第2実施形態の作動流体と同様の経路を通って冷却される。すなわち、液化しなかった残りの作動流体は、気相のままガス入口部2caから凝縮器2c内に入り、凝縮器2cで第1冷凍サイクル31の冷媒側熱交換器HECを流れる冷媒に放熱して凝縮する。そして、凝縮器2cで凝縮した作動流体は、液通路部2dを通って機器用熱交換器2aに入り、組電池BPから吸熱することで蒸発する。 On the other hand, the remaining working fluid that has not been liquefied out of the working fluid that has received cold from the regenerator CS is cooled through the same path as the working fluid of the first and second embodiments. That is, the remaining working fluid that has not been liquefied enters the condenser 2c from the gas inlet 2ca in the gas phase, and dissipates heat to the refrigerant flowing through the refrigerant side heat exchanger HEC of the first refrigeration cycle 31 in the condenser 2c. Condensed. Then, the working fluid condensed in the condenser 2c passes through the liquid passage portion 2d, enters the equipment heat exchanger 2a, and evaporates by absorbing heat from the assembled battery BP.
 このように、蓄冷剤CSが放冷して凝縮器2cが作動を続けている間は、機器温調装置1は、蓄冷剤CSが蓄積した冷熱と冷凍サイクル3の冷媒から受けた冷熱により、組電池BPを冷却できる。 In this way, while the cool storage agent CS is allowed to cool and the condenser 2c continues to operate, the device temperature control device 1 uses the cool heat accumulated by the cool storage agent CS and the cool heat received from the refrigerant in the refrigeration cycle 3. The assembled battery BP can be cooled.
 またこの場合、第1、第2実施形態と同様の順方向の作動流体のループ流れが維持されるものの、一部で逆流が発生する。逆流発生の結果、液通路部2dにおける作動流体の液面の高さと、ガス通路部2bにおける作動流体の液面の高さとの差(すなわち、ヘッド差)が、第1、第2実施形態に比べて小さくなる。加えて、逆流によりガス冷媒がガス通路部2bを通過する際の圧力損失も大きくなる。その結果、機器用流体回路2内部の作動流体の流量が、第1、第2実施形態に比べて小さくなる。これは、機器温調装置1の冷却性能の低下の原因となり得る。 In this case, the loop flow of the working fluid in the forward direction similar to the first and second embodiments is maintained, but a reverse flow is generated in part. As a result of the backflow, the difference between the height of the working fluid level in the liquid passage portion 2d and the height of the working fluid level in the gas passage portion 2b (that is, the head difference) is the same as in the first and second embodiments. Smaller than that. In addition, the pressure loss when the gas refrigerant passes through the gas passage portion 2b due to the backflow also increases. As a result, the flow rate of the working fluid inside the device fluid circuit 2 is smaller than in the first and second embodiments. This can cause a decrease in the cooling performance of the device temperature control device 1.
 なお、本実施形態に限らず、一般に、液通路部2dにおける作動流体の液面が、ガス通路部2bにおける作動流体の液面よりも高い場合、すなわち、正のヘッド差がある場合、ヘッド差が大きいほど作動流体の流量が大きくなる。 In addition to the present embodiment, generally, when the liquid level of the working fluid in the liquid passage portion 2d is higher than the liquid level of the working fluid in the gas passage portion 2b, that is, when there is a positive head difference, the head difference The larger the is, the larger the flow rate of the working fluid.
 [蓄冷剤CSが放冷し、凝縮器2cが非作動の場合]
 次に、蓄冷剤CSが十分に蓄冷した後、圧縮機3aが作動状態から停止した場合について説明する。なお、この場合、組電池BPの電池温度が依然として高いとする。この場合、機器用熱交換器2aで作動流体が組電池BPを冷却して蒸発し、ガス出口部2abからガス通路部2bに流出する点は、蓄冷剤CSの蓄冷時と同様である。
[When the regenerator CS is allowed to cool and the condenser 2c is inactive]
Next, the case where the compressor 3a stops from the operating state after the cold storage agent CS has sufficiently stored cold will be described. In this case, it is assumed that the battery temperature of the assembled battery BP is still high. In this case, the point that the working fluid cools and evaporates the assembled battery BP in the equipment heat exchanger 2a and flows out from the gas outlet 2ab to the gas passage 2b is the same as in the cold storage of the cool storage agent CS.
 流出した気相の作動流体は、ガス通路部2bの最上部よりも順方向における上流側において、蓄冷剤CSの近傍で、蓄冷剤CSに放熱する。すなわち、蓄冷剤CSは作動流体に放冷する。この結果、蓄冷剤CSの近傍で、気相の作動流体の一部が液化して、当該一部の作動流体の比重が増大する。 The gas phase working fluid that has flowed out radiates heat to the cool storage agent CS in the vicinity of the cool storage agent CS on the upstream side in the forward direction from the uppermost portion of the gas passage portion 2b. That is, the cool storage agent CS is cooled to the working fluid. As a result, a part of the gas-phase working fluid is liquefied in the vicinity of the cool storage agent CS, and the specific gravity of the part of the working fluid increases.
 これにより、当該一部の作動流体は、ガス通路部2bの内部で凝縮して液相状態になる。液相状態となった作動流体は更に、その自重によって、ガス通路部2bの内部を落下しガス出口部2abに向かって下降する。すなわち、液相状態となった作動流体はガス通路部2b内を逆流する。更にこの液相の作動流体は、ガス出口部2abを通って機器用熱交換器2a内へ移動する。そして、機器用熱交換器2aでは、この液相の作動流体の一部が組電池BPから吸熱することで蒸発する。 Thereby, the part of the working fluid is condensed in the gas passage portion 2b to be in a liquid phase state. The working fluid that has become a liquid phase further falls in the gas passage portion 2b due to its own weight and descends toward the gas outlet portion 2ab. That is, the working fluid in a liquid phase flows backward in the gas passage portion 2b. Further, the liquid-phase working fluid moves into the equipment heat exchanger 2a through the gas outlet 2ab. In the apparatus heat exchanger 2a, a part of the liquid-phase working fluid is evaporated by absorbing heat from the assembled battery BP.
 一方、蓄冷剤CSから冷熱を受け取った作動流体のうち、液化しなかった残りの作動流体は凝縮器2cに入っても液化しない。圧縮機3aが作動していないためである。この結果、順方向の作動流体のループ流れが維持されない。 On the other hand, the remaining working fluid that has not been liquefied out of the working fluid that has received the cold heat from the cold storage agent CS does not liquefy even when entering the condenser 2c. This is because the compressor 3a is not operating. As a result, the loop flow of the working fluid in the forward direction is not maintained.
 このように、蓄冷剤CSが放冷し、凝縮器2cが非作動の場合、機器温調装置1は蓄冷剤CSが蓄積した冷熱により組電池BPを冷却できるもの、ループ流れは維持されない。 Thus, when the cool storage agent CS is allowed to cool and the condenser 2c is not operated, the device temperature control device 1 can cool the assembled battery BP by the cold heat accumulated in the cool storage agent CS, and the loop flow is not maintained.
 (第4実施形態)
 次に、第4実施形態について説明する。本実施形態の機器温調装置1は、蓄冷剤CSの設置部位が第1、第2実施形態の機器温調装置1と異なるが、その他の構成は第1、第2実施形態の機器温調装置1と同じである。
(Fourth embodiment)
Next, a fourth embodiment will be described. The apparatus temperature control apparatus 1 of the present embodiment is different from the apparatus temperature control apparatus 1 of the first and second embodiments in the installation site of the cool storage agent CS, but other configurations are the apparatus temperature control of the first and second embodiments. Same as device 1.
 本実施形態においては、蓄冷剤CSは、凝縮器2cに備えられておらず、図14に示すように、ガス通路部2bのうち、ガス通路部2bの最上部よりも順方向における下流側に、配置されている。 In the present embodiment, the regenerator CS is not provided in the condenser 2c, and as shown in FIG. 14, in the gas passage portion 2b, on the downstream side in the forward direction from the uppermost portion of the gas passage portion 2b. Have been placed.
 より具体的には、蓄冷剤CSは、順方向におけるガス通路部2bの最上部よりも下流側かつガス入口部2caよりも上流側において、ガス通路部2bを形成する配管に接触して当該配管に対して環状に巻き付けられている。本実施形態の蓄冷剤CSは、作動流体の冷熱を蓄積するためのものである。蓄冷剤CSを構成する材料は、第1実施形態と同じでもよいし、同じでなくてもよい。以下、このような構成の機器温調装置1の作動について説明する。 More specifically, the cool storage agent CS is in contact with a pipe forming the gas passage part 2b on the downstream side of the uppermost part of the gas passage part 2b in the forward direction and on the upstream side of the gas inlet part 2ca. Is wound in an annular shape. The cool storage agent CS of this embodiment is for accumulating the cold heat of a working fluid. The material which comprises the cool storage agent CS may be the same as 1st Embodiment, and does not need to be the same. Hereinafter, the operation of the device temperature control apparatus 1 having such a configuration will be described.
 [蓄冷剤が蓄冷する場合]
 まず、冷却モード(すなわち、圧縮機が作動している状態)において、車両の走行時の自己発熱等によって組電池BPの電池温度が高いときの作動は、第3実施形態と同じである。ただし、ガス通路部2bを通る作動流体が蓄冷剤CSの近傍で蓄冷剤CSから吸熱するのは、ガス通路部2bの最上部よりも順方向における上流側でなく下流側である。
[When cold storage agent stores cold]
First, in the cooling mode (that is, in a state where the compressor is operating), the operation when the battery temperature of the assembled battery BP is high due to self-heating during traveling of the vehicle is the same as in the third embodiment. However, the working fluid passing through the gas passage portion 2b absorbs heat from the cold storage agent CS in the vicinity of the cold storage agent CS not on the upstream side in the forward direction but on the downstream side of the uppermost portion of the gas passage portion 2b.
 [蓄冷剤CSが放冷し、凝縮器2cが作動中の場合]
 蓄冷剤CSが十分に蓄冷した後、圧縮機3aが作動を継続した状態で、ガス通路部2bを凝縮器2cに向けて通る気相の作動流体が、蓄冷剤CSの温度よりも高温になる場合がある。この場合、組電池BPの電池温度が依然として高いとする。この場合、機器用熱交換器2aで作動流体が組電池BPを冷却して蒸発し、ガス出口部2abからガス通路部2bに流出する点は、蓄冷剤CSの蓄冷時と同様である。
[When the regenerator CS is allowed to cool and the condenser 2c is operating]
After the cool storage agent CS has sufficiently stored, the gas phase working fluid passing through the gas passage portion 2b toward the condenser 2c becomes higher than the temperature of the cool storage agent CS while the compressor 3a continues to operate. There is a case. In this case, it is assumed that the battery temperature of the assembled battery BP is still high. In this case, the point that the working fluid cools and evaporates the assembled battery BP in the equipment heat exchanger 2a and flows out from the gas outlet 2ab to the gas passage 2b is the same as in the cold storage of the cool storage agent CS.
 流出した気相の作動流体は、ガス通路部2bの最上部よりも順方向における下流側において、蓄冷剤CSの近傍で、蓄冷剤CSに放熱する。この結果、蓄冷剤CSの近傍で、気相の作動流体の一部が液化して、当該一部の作動流体の比重が増大する。 The outflowing gaseous working fluid dissipates heat to the cool storage agent CS in the vicinity of the cool storage agent CS on the downstream side in the forward direction from the uppermost portion of the gas passage portion 2b. As a result, a part of the gas-phase working fluid is liquefied in the vicinity of the cool storage agent CS, and the specific gravity of the part of the working fluid increases.
 これにより、当該一部の作動流体は、ガス通路部2bの内部で凝縮して液相状態になる。液相状態となった作動流体は更に、その自重によって、ガス通路部2bの内部を落下しガス入口部2caに向かって下降する。更にこの液相の作動流体は、ガス入口部2caを通って凝縮器2c内へ移動する。 Thereby, the part of the working fluid is condensed in the gas passage portion 2b to be in a liquid phase state. The working fluid that has become a liquid phase further falls inside the gas passage portion 2b by its own weight and descends toward the gas inlet portion 2ca. Further, the liquid-phase working fluid moves into the condenser 2c through the gas inlet 2ca.
 一方、蓄冷剤CSから冷熱を受け取った作動流体のうち、液化しなかった残りの作動流体は、第1、第2実施形態の作動流体と同様の経路を通って冷却される。すなわち、液化しなかった残りの作動流体も、気相のままガス入口部2caから凝縮器2c内に入る。 On the other hand, the remaining working fluid that has not been liquefied out of the working fluid that has received cold from the regenerator CS is cooled through the same path as the working fluid of the first and second embodiments. That is, the remaining working fluid that has not been liquefied also enters the condenser 2c from the gas inlet 2ca in the gas phase.
 凝縮器2cに入った液相の作動流体および気相の作動流体は、凝縮器2cで第1冷凍サイクル31の冷媒側熱交換器HECを流れる冷媒に放熱する。この際、気相の作動流体は凝縮して液相状態になる。そして、液相の作動流体は、自重により液通路部2dを通って機器用熱交換器2aに入り、組電池BPから吸熱することで蒸発する。 The liquid-phase working fluid and the gas-phase working fluid that have entered the condenser 2c radiate heat to the refrigerant flowing through the refrigerant-side heat exchanger HEC of the first refrigeration cycle 31 in the condenser 2c. At this time, the gas-phase working fluid is condensed into a liquid phase. Then, the liquid-phase working fluid passes through the liquid passage portion 2d by its own weight, enters the equipment heat exchanger 2a, and evaporates by absorbing heat from the assembled battery BP.
 このように、蓄冷剤CSが放冷して凝縮器2cが作動を続けている間は、機器温調装置1は、蓄冷剤CSが蓄積した冷熱と冷凍サイクル3の冷媒から受けた冷熱により、組電池BPを冷却できる。またこの場合、すべての作動流体において、第1、第2実施形態と同様の順方向の作動流体のループ流れが維持される。したがって、機器温調装置1による組電池BPの凝縮性能が、第1、第2実施形態と同等に良好である。 In this way, while the cool storage agent CS is allowed to cool and the condenser 2c continues to operate, the device temperature control device 1 uses the cool heat accumulated by the cool storage agent CS and the cool heat received from the refrigerant in the refrigeration cycle 3. The assembled battery BP can be cooled. Further, in this case, the loop flow of the working fluid in the forward direction similar to the first and second embodiments is maintained in all the working fluids. Therefore, the condensation performance of the assembled battery BP by the device temperature control device 1 is as good as that of the first and second embodiments.
 [蓄冷剤CSが放冷し、凝縮器2cが非作動の場合]
 次に、蓄冷剤CSが十分に蓄冷した後、圧縮機3aが作動状態から停止した場合、あるいは、圧縮機3aの回転数が低下して冷媒吐出能力が低下した場合について説明する。なお、この場合、組電池BPの電池温度が依然として高いとする。この場合、機器用熱交換器2aで作動流体が組電池BPを冷却して蒸発し、ガス出口部2abからガス通路部2bに流出する点は、蓄冷剤CSの蓄冷時と同様である。
[When the regenerator CS is allowed to cool and the condenser 2c is inactive]
Next, the case where the compressor 3a is stopped from the operating state after the cold storage agent CS has sufficiently stored cold, or the case where the refrigerant discharge capacity is reduced due to a decrease in the rotation speed of the compressor 3a will be described. In this case, it is assumed that the battery temperature of the assembled battery BP is still high. In this case, the point that the working fluid cools and evaporates the assembled battery BP in the equipment heat exchanger 2a and flows out from the gas outlet 2ab to the gas passage 2b is the same as in the cold storage of the cool storage agent CS.
 流出した気相の作動流体は、ガス通路部2bの最上部よりも順方向における下流側において、蓄冷剤CSの近傍で、蓄冷剤CSに放熱する。この結果、蓄冷剤CSの近傍で、気相の作動流体の一部が液化して、当該一部の作動流体の比重が増大する。 The outflowing gaseous working fluid dissipates heat to the cool storage agent CS in the vicinity of the cool storage agent CS on the downstream side in the forward direction from the uppermost portion of the gas passage portion 2b. As a result, a part of the gas-phase working fluid is liquefied in the vicinity of the cool storage agent CS, and the specific gravity of the part of the working fluid increases.
 これにより、当該一部の作動流体は、ガス通路部2bの内部で凝縮して液相状態になる。液相状態となった作動流体は更に、その自重によって、ガス通路部2bの内部を落下し凝縮器2cに向かって下降する。更にこの液相の作動流体は、ガス出口部2abを通って機器用熱交換器2a内へ移動する。 Thereby, the part of the working fluid is condensed in the gas passage portion 2b to be in a liquid phase state. The working fluid that has become a liquid phase further falls in the gas passage portion 2b due to its own weight and descends toward the condenser 2c. Further, the liquid-phase working fluid moves into the equipment heat exchanger 2a through the gas outlet 2ab.
 凝縮器2cに入った液相の作動流体は、第1冷凍サイクル31の冷媒によって冷却されることはないもの、自重により液通路部2dを通って機器用熱交換器2aに入り、組電池BPから吸熱することで蒸発する。 The liquid-phase working fluid that has entered the condenser 2c is not cooled by the refrigerant of the first refrigeration cycle 31, and enters the equipment heat exchanger 2a through the liquid passage portion 2d by its own weight, and the assembled battery BP. Evaporates by absorbing heat from
 このように、蓄冷剤CSが放冷して凝縮器2cが作動していない間は、機器温調装置1は、蓄冷剤CSが蓄積した冷熱により、組電池BPを冷却できる。またこの場合、第1、第2実施形態と同様の順方向の作動流体のループ流れが維持される。したがって、機器温調装置1による組電池BPの凝縮性能は良好である。 Thus, while the cool storage agent CS is allowed to cool and the condenser 2c is not operating, the device temperature control device 1 can cool the assembled battery BP by the cold heat accumulated in the cool storage agent CS. In this case, the loop flow of the working fluid in the forward direction similar to the first and second embodiments is maintained. Therefore, the condensation performance of the assembled battery BP by the device temperature control device 1 is good.
 (第5実施形態)
 次に、第5実施形態について説明する。本実施形態の機器温調装置1は、蓄冷剤CSの設置部位が第1、第2実施形態の機器温調装置1と異なるが、その他の構成は第1、第2実施形態の機器温調装置1と同じである。
(Fifth embodiment)
Next, a fifth embodiment will be described. The apparatus temperature control apparatus 1 of the present embodiment is different from the apparatus temperature control apparatus 1 of the first and second embodiments in the installation site of the cool storage agent CS, but other configurations are the apparatus temperature control of the first and second embodiments. Same as device 1.
 本実施形態においては、蓄冷剤CSは、凝縮器2cに備えられておらず、図15に示すように、液通路部2dに配置されている。より具体的には、蓄冷剤CSは、順方向における液出口部2cbよりも下流側かつ液入口部2acよりも上流側において、液通路部2dを形成する配管に接触して当該配管に対して環状に巻き付けられている。 In the present embodiment, the regenerator CS is not provided in the condenser 2c, but is disposed in the liquid passage portion 2d as shown in FIG. More specifically, the regenerator CS is in contact with the pipe forming the liquid passage part 2d on the downstream side of the liquid outlet part 2cb and the upstream side of the liquid inlet part 2ac in the forward direction with respect to the pipe. It is wound in a ring.
 本実施形態の蓄冷剤CSは、作動流体の冷熱を蓄積するためのものである。蓄冷剤CSを構成する材料は、第1実施形態と同じでもよいし、同じでなくてもよい。以下、このような構成の機器温調装置1の作動について説明する。 The cold storage agent CS of this embodiment is for accumulating the cold heat of the working fluid. The material which comprises the cool storage agent CS may be the same as 1st Embodiment, and does not need to be the same. Hereinafter, the operation of the device temperature control apparatus 1 having such a configuration will be described.
 [蓄冷剤が蓄冷する場合]
 まず、冷却モード(すなわち、圧縮機が作動している状態)において、車両の走行時の自己発熱等によって組電池BPの電池温度が高いときの、作動流体の流れは、第1、第2実施形態と同じく、順方向である。
[When cold storage agent stores cold]
First, in the cooling mode (that is, when the compressor is operating), the flow of the working fluid when the battery temperature of the assembled battery BP is high due to self-heating during traveling of the vehicle is the first and second implementations. Like the form, it is forward.
 そしてこの場合の作動流体は、第1、第2実施形態と同様、機器用熱交換器2aで組電池BPから吸熱して蒸発し、その後、凝縮器2cで第1冷凍サイクル31の冷媒側熱交換器HECを流れる冷媒に放熱して凝縮し、その後液通路部2dを通って機器用熱交換器2aに戻る。 And the working fluid in this case is evaporated by absorbing heat from the assembled battery BP in the equipment heat exchanger 2a as in the first and second embodiments, and then the refrigerant side heat of the first refrigeration cycle 31 in the condenser 2c. It dissipates heat and condenses in the refrigerant flowing through the exchanger HEC, and then returns to the equipment heat exchanger 2a through the liquid passage portion 2d.
 ただしこの場合、本実施形態の作動流体は、液相状態で液通路部2dを機器用熱交換器2aに向かう途中で、蓄冷剤CSの近傍で、蓄冷剤CSから吸熱する。すなわち、作動流体は蓄冷剤CSに放冷する。 However, in this case, the working fluid of the present embodiment absorbs heat from the cool storage agent CS in the vicinity of the cool storage agent CS on the way to the equipment heat exchanger 2a through the liquid passage portion 2d in the liquid phase state. That is, the working fluid is allowed to cool to the cool storage agent CS.
 この場合に作動流体が蓄冷剤CSに放冷できるのは、圧縮機3aが作動することによって、凝縮器2cで冷媒が作動流体から蒸発潜熱を奪って作動流体を冷却するので、液通路部2dを通る作動流体の温度が蓄冷剤CSの温度よりも低くなるからである。このような作動が続くことで、蓄冷剤CSは、冷熱を蓄積し続ける。 In this case, the working fluid can be allowed to cool to the regenerator CS because the refrigerant takes the latent heat of evaporation from the working fluid and cools the working fluid in the condenser 2c by the operation of the compressor 3a. This is because the temperature of the working fluid passing through the refrigerant becomes lower than the temperature of the regenerator CS. By continuing such an operation, the cold storage agent CS continues to accumulate cold heat.
 ただしこの場合、液相の作動流体の一部は、蓄冷剤CSに放熱することで気化する。この気化によって発生した気相状態の作動冷媒は、液通路部2d内を上昇して凝縮器2cの方向に向かう。すなわち、この気化によって発生した気相状態の作動冷媒は、液通路部2d内を逆流する。 However, in this case, a part of the liquid-phase working fluid is vaporized by releasing heat to the cold storage agent CS. The vaporized working refrigerant generated by the vaporization rises in the liquid passage portion 2d and moves toward the condenser 2c. That is, the working refrigerant in the gas phase generated by the vaporization flows backward in the liquid passage portion 2d.
 なお、圧縮機3aが作動しておらず、作動流体が凝縮器2cで冷媒に放熱できない場合、すなわち、凝縮器2cが機能しない場合、蓄冷剤CSは蓄冷できない。 In addition, when the compressor 3a is not operating and the working fluid cannot release heat to the refrigerant in the condenser 2c, that is, when the condenser 2c does not function, the cold storage agent CS cannot store cold.
 [蓄冷剤CSが放冷し、凝縮器2cが作動中の場合]
 蓄冷剤CSが十分に蓄冷した後、圧縮機3aが作動を継続した状態で、液通路部2dを機器用熱交換器2aに向けて通る液相の作動流体が、蓄冷剤CSの温度よりも高温になる場合がある。この場合、組電池BPの電池温度が依然として高いとする。この場合、機器用熱交換器2aで作動流体が組電池BPを冷却して蒸発し、ガス出口部2abからガス通路部2bに流出し、凝縮器2cに流入して凝縮し、自重により液通路部2dに流出する点は、蓄冷剤CSの蓄冷時と同様である。
[When the regenerator CS is allowed to cool and the condenser 2c is operating]
After the cold storage agent CS has sufficiently stored cold, the liquid-phase working fluid passing through the liquid passage portion 2d toward the equipment heat exchanger 2a in a state where the compressor 3a continues to operate is more than the temperature of the cold storage agent CS. May become hot. In this case, it is assumed that the battery temperature of the assembled battery BP is still high. In this case, the working fluid cools and evaporates the assembled battery BP in the equipment heat exchanger 2a, flows out from the gas outlet 2ab to the gas passage 2b, flows into the condenser 2c, condenses, and the liquid passage by its own weight. The point which flows out to the part 2d is the same as that during cold storage of the cold storage agent CS.
 流出した気相の作動流体は、液通路部2dにおいて、蓄冷剤CSの近傍で、蓄冷剤CSに放熱する。すなわち、蓄冷剤CSは作動流体に放冷する。この結果、蓄冷剤CSの近傍で、液相の作動流体は更に冷却されて過冷却の状態になる。 The outflowing gas phase working fluid dissipates heat to the cool storage agent CS in the vicinity of the cool storage agent CS in the liquid passage portion 2d. That is, the cool storage agent CS is cooled to the working fluid. As a result, in the vicinity of the cool storage agent CS, the liquid-phase working fluid is further cooled to be in a supercooled state.
 蓄冷剤CSで冷却された作動流体は更に、その自重によって、液通路部2d内を機器用熱交換器2aに向かって下降する。更にこの液相の作動流体は、液入口部2acを通って機器用熱交換器2a内へ移動する。そして、機器用熱交換器2aでは、この液相の作動流体の一部が組電池BPから吸熱することで蒸発する。 The working fluid cooled by the regenerator CS further descends in the liquid passage portion 2d toward the equipment heat exchanger 2a by its own weight. Further, the liquid-phase working fluid moves through the liquid inlet 2ac and into the equipment heat exchanger 2a. In the apparatus heat exchanger 2a, a part of the liquid-phase working fluid is evaporated by absorbing heat from the assembled battery BP.
 このように、蓄冷剤CSが放冷して凝縮器2cが作動を続けている間は、機器温調装置1は、蓄冷剤CSが蓄積した冷熱と冷凍サイクル3の冷媒から受けた冷熱により、組電池BPを冷却できる。またこの場合、第1、第2実施形態と同様の順方向の作動流体のループ流れが維持される。また、液通路部2dで液相の作動流体が蓄冷剤CSによって冷却されて過冷却の状態になる。したがって、機器温調装置1による組電池BPの冷却性能が向上する。 In this way, while the cool storage agent CS is allowed to cool and the condenser 2c continues to operate, the device temperature control device 1 uses the cool heat accumulated by the cool storage agent CS and the cool heat received from the refrigerant in the refrigeration cycle 3. The assembled battery BP can be cooled. In this case, the loop flow of the working fluid in the forward direction similar to the first and second embodiments is maintained. In addition, the liquid-phase working fluid is cooled by the cool storage agent CS in the liquid passage portion 2d and is brought into a supercooled state. Therefore, the cooling performance of the assembled battery BP by the device temperature control device 1 is improved.
 [蓄冷剤CSが放冷し、凝縮器2cが非作動の場合]
 次に、蓄冷剤CSが十分に蓄冷した後、圧縮機3aが作動状態から停止した場合、あるいは、圧縮機3aの回転数が低下して冷媒吐出能力が低下した場合について説明する。なお、この場合、組電池BPの電池温度が依然として高いとする。この場合、機器用熱交換器2aで作動流体が組電池BPを冷却して蒸発し、ガス出口部2abからガス通路部2bに流出し、更にガス入口部2caから凝縮器2cに流入する点は、蓄冷剤CSの蓄冷時と同様である。
[When the regenerator CS is allowed to cool and the condenser 2c is inactive]
Next, the case where the compressor 3a is stopped from the operating state after the cold storage agent CS has sufficiently stored cold, or the case where the refrigerant discharge capacity is reduced due to a decrease in the rotation speed of the compressor 3a will be described. In this case, it is assumed that the battery temperature of the assembled battery BP is still high. In this case, the working fluid cools the assembled battery BP in the equipment heat exchanger 2a, evaporates, flows out from the gas outlet portion 2ab to the gas passage portion 2b, and further flows into the condenser 2c from the gas inlet portion 2ca. This is the same as the cold storage of the cold storage agent CS.
 凝縮器2c内に入った気相の作動流体は、第1冷凍サイクル31の冷媒によって冷却されることはなく、液出口部2cbを通って液通路部2dに流出する。そして気相状態の作動流体は、液通路部2dにおいて、蓄冷剤CSの近傍で、蓄冷剤CSに放熱する。この結果、蓄冷剤CSの近傍で、気相の作動流体の一部が液化して、当該一部の作動流体の比重が増大する。 The vapor-phase working fluid that has entered the condenser 2c is not cooled by the refrigerant in the first refrigeration cycle 31, and flows out to the liquid passage portion 2d through the liquid outlet portion 2cb. Then, the working fluid in the gas phase radiates heat to the cool storage agent CS in the vicinity of the cool storage agent CS in the liquid passage portion 2d. As a result, a part of the gas-phase working fluid is liquefied in the vicinity of the cool storage agent CS, and the specific gravity of the part of the working fluid increases.
 これにより、当該一部の作動流体は、液通路部2dの内部で凝縮して液相状態になる。液相状態となった作動流体は更に、その自重によって、液通路部2d内を凝縮器2cに向かって下降する。更にこの液相の作動流体は、液入口部2acを通って機器用熱交換器2a内へ移動する。そして、機器用熱交換器2aでは、この液相の作動流体の一部が組電池BPから吸熱することで蒸発する。 Thereby, the part of the working fluid is condensed in the liquid passage portion 2d to be in a liquid phase state. The working fluid in the liquid phase is further lowered in the liquid passage portion 2d toward the condenser 2c by its own weight. Further, the liquid-phase working fluid moves through the liquid inlet 2ac and into the equipment heat exchanger 2a. In the apparatus heat exchanger 2a, a part of the liquid-phase working fluid is evaporated by absorbing heat from the assembled battery BP.
 このように、蓄冷剤CSが放冷して凝縮器2cが作動していない間は、機器温調装置1は、蓄冷剤CSが蓄積した冷熱により、組電池BPを冷却できる。またこの場合、第1、第2実施形態と同様の順方向の作動流体のループ流れが維持される。したがって、機器温調装置1による組電池BPの凝縮性能は良好である。 Thus, while the cool storage agent CS is allowed to cool and the condenser 2c is not operating, the device temperature control device 1 can cool the assembled battery BP by the cold heat accumulated in the cool storage agent CS. In this case, the loop flow of the working fluid in the forward direction similar to the first and second embodiments is maintained. Therefore, the condensation performance of the assembled battery BP by the device temperature control device 1 is good.
 (第6実施形態)
 次に、第6実施形態について説明する。本実施形態の機器温調装置1は、蓄冷剤CSの設置部位が第1、第2実施形態の機器温調装置1と異なるが、その他の構成は第1、第2実施形態の機器温調装置1と同じである。
(Sixth embodiment)
Next, a sixth embodiment will be described. The apparatus temperature control apparatus 1 of the present embodiment is different from the apparatus temperature control apparatus 1 of the first and second embodiments in the installation site of the cool storage agent CS, but other configurations are the apparatus temperature control of the first and second embodiments. Same as device 1.
 本実施形態においては、蓄冷剤CSは、凝縮器2cに備えられておらず、図16に示すように、機器用熱交換器2aの内部に配置されている。より具体的には、蓄冷剤CSは、機器用熱交換器2a内において、ガス出口部2abと液入口部2acのうちガス出口部2abの方により近い位置に配置されている。更に具体的には、蓄冷剤CSは、機器用熱交換器2a内の順方向の最下流端に配置されている。 In the present embodiment, the regenerator CS is not provided in the condenser 2c, and is disposed inside the equipment heat exchanger 2a as shown in FIG. More specifically, the regenerator CS is disposed in the equipment heat exchanger 2a at a position closer to the gas outlet 2ab between the gas outlet 2ab and the liquid inlet 2ac. More specifically, the cool storage agent CS is disposed at the most downstream end in the forward direction in the equipment heat exchanger 2a.
 このような位置に蓄冷剤CSが配置されていることで、蓄冷剤CSが蓄冷する際に発生する作動流体の気泡が、液通路部2dよりもガス通路部2bの方に、すなわち順方向に、流れ易い。 By arranging the cool storage agent CS at such a position, bubbles of the working fluid generated when the cool storage agent CS cools are moved toward the gas passage 2b rather than the liquid passage 2d, that is, in the forward direction. Easy to flow.
 また、蓄冷剤CSは、機器用熱交換器2a内において、機器用熱交換器2aの下端から、熱交換部2aa(すなわち機器用熱交換器2aの上端)にまで伸びている。この熱交換部2aaは、第1実施形態で説明した通り、組電池BPと機器用熱交換器2aとの間で熱を移動させる伝熱部を構成している。 Further, the regenerator CS extends from the lower end of the equipment heat exchanger 2a to the heat exchange section 2aa (that is, the upper end of the equipment heat exchanger 2a) in the equipment heat exchanger 2a. As described in the first embodiment, the heat exchange part 2aa constitutes a heat transfer part that moves heat between the assembled battery BP and the equipment heat exchanger 2a.
 このように、蓄冷剤CSが熱交換部2aaに配置されていることで、機器用熱交換器2a内で作動流体が蒸発することで発生した気泡を蓄冷剤CSによって冷却し易くなる。 Thus, since the cool storage agent CS is arranged in the heat exchange part 2aa, it becomes easy to cool the bubbles generated by the evaporation of the working fluid in the equipment heat exchanger 2a by the cool storage agent CS.
 本実施形態の蓄冷剤CSは、作動流体の冷熱を蓄積するためのものである。蓄冷剤CSを構成する材料は、第1実施形態と同じでもよいし、同じでなくてもよい。以下、このような構成の機器温調装置1の作動について説明する。 The cold storage agent CS of this embodiment is for accumulating the cold heat of the working fluid. The material which comprises the cool storage agent CS may be the same as 1st Embodiment, and does not need to be the same. Hereinafter, the operation of the device temperature control apparatus 1 having such a configuration will be described.
 [蓄冷剤が蓄冷する場合]
 まず、冷却モード(すなわち、圧縮機が作動している状態)において、車両の走行時の自己発熱等によって組電池BPの電池温度が高いときの、作動流体の流れは、第1、第2実施形態と同じく、順方向である。
[When cold storage agent stores cold]
First, in the cooling mode (that is, when the compressor is operating), the flow of the working fluid when the battery temperature of the assembled battery BP is high due to self-heating during traveling of the vehicle is the first and second implementations. Like the form, it is forward.
 そしてこの場合の作動流体は、第1、第2実施形態と同様、機器用熱交換器2aで組電池BPから吸熱して蒸発し、その後、凝縮器2cで第1冷凍サイクル31の冷媒側熱交換器HECを流れる冷媒に放熱して凝縮し、その後液通路部2dを通って機器用熱交換器2aに戻る。 And the working fluid in this case is evaporated by absorbing heat from the assembled battery BP in the equipment heat exchanger 2a as in the first and second embodiments, and then the refrigerant side heat of the first refrigeration cycle 31 in the condenser 2c. It dissipates heat and condenses in the refrigerant flowing through the exchanger HEC, and then returns to the equipment heat exchanger 2a through the liquid passage portion 2d.
 ただしこの場合、本実施形態の気相の作動流体および液相の作動流体は、機器用熱交換器2a内において、蓄冷剤CSの近傍で、蓄冷剤CSから吸熱する。すなわち、作動流体は蓄冷剤CSに放冷する。 However, in this case, the gas-phase working fluid and the liquid-phase working fluid of the present embodiment absorb heat from the cool storage agent CS in the vicinity of the cool storage agent CS in the equipment heat exchanger 2a. That is, the working fluid is allowed to cool to the cool storage agent CS.
 この場合に作動流体が蓄冷剤CSに放冷できるのは、圧縮機3aが作動することによって、凝縮器2cで冷媒が作動流体から蒸発潜熱を奪って作動流体を冷却するので、機器用熱交換器2a内の作動流体の温度が蓄冷剤CSの温度よりも低くなるからである。 In this case, the working fluid can be allowed to cool to the regenerator CS because the refrigerant takes the latent heat of evaporation from the working fluid and cools the working fluid in the condenser 2c when the compressor 3a is operated. This is because the temperature of the working fluid in the vessel 2a is lower than the temperature of the regenerator CS.
 このような作動が続くことで、蓄冷剤CSは、冷熱を蓄積し続ける。このとき、蓄冷剤CSは、気相の作動流体と液相の作動流体の両方から冷熱を受けて蓄冷する。なお、圧縮機3aが作動しておらず、作動流体が凝縮器2cで冷媒に放熱できない場合、すなわち、凝縮器2cが機能しない場合、蓄冷剤CSは蓄冷できない。 冷 As such operation continues, the regenerator CS continues to accumulate cold energy. At this time, the cool storage agent CS receives cold from both the gas-phase working fluid and the liquid-phase working fluid and stores the cold. In addition, when the compressor 3a is not operated and the working fluid cannot radiate heat to the refrigerant in the condenser 2c, that is, when the condenser 2c does not function, the cold storage agent CS cannot store cold.
 [蓄冷剤CSが放冷し、凝縮器2cが作動中の場合]
 蓄冷剤CSが十分に蓄冷した後、圧縮機3aが作動を継続した状態で、機器用熱交換器2a内の作動流体が、蓄冷剤CSの温度よりも高温になる場合がある。この場合、組電池BPの電池温度が依然として高いとする。この場合、機器用熱交換器2aで作動流体が組電池BPを冷却して蒸発し、ガス出口部2abからガス通路部2bに流出し、凝縮器2cに流入して凝縮し、自重により液通路部2dに流出し、液通路部2dから機器用熱交換器2aに戻る点は、蓄冷剤CSの蓄冷時と同様である。
[When the regenerator CS is allowed to cool and the condenser 2c is operating]
After the cool storage agent CS is sufficiently stored, the working fluid in the equipment heat exchanger 2a may be higher than the temperature of the cool storage agent CS in a state where the compressor 3a continues to operate. In this case, it is assumed that the battery temperature of the assembled battery BP is still high. In this case, the working fluid cools and evaporates the assembled battery BP in the equipment heat exchanger 2a, flows out from the gas outlet 2ab to the gas passage 2b, flows into the condenser 2c, condenses, and the liquid passage by its own weight. The point which flows out into the part 2d and returns to the heat exchanger 2a for equipment from the liquid passage part 2d is the same as that during cold storage of the cold storage agent CS.
 機器用熱交換器2a内の作動流体は、蓄冷剤CSの近傍で、蓄冷剤CSに放熱する。すなわち、蓄冷剤CSは作動流体に放冷する。この結果、蓄冷剤CSの近傍で、気相の作動流体の一部が液化して機器用熱交換器2a内に留まる。一方、蓄冷剤CSから冷熱を受け取った作動流体のうち、液化しなかった残りの作動流体は、第1、第2実施形態の作動流体と同様の経路を通って冷却される。 The working fluid in the equipment heat exchanger 2a dissipates heat to the cool storage agent CS in the vicinity of the cool storage agent CS. That is, the cool storage agent CS is cooled to the working fluid. As a result, in the vicinity of the cool storage agent CS, a part of the gas-phase working fluid is liquefied and remains in the equipment heat exchanger 2a. On the other hand, the remaining working fluid that has not been liquefied out of the working fluid that has received cold heat from the cold storage agent CS is cooled through the same path as the working fluid of the first and second embodiments.
 このように、蓄冷剤CSが放冷して凝縮器2cが作動を続けている間は、機器温調装置1は、蓄冷剤CSが蓄積した冷熱と冷凍サイクル3の冷媒から受けた冷熱により、組電池BPを冷却できる。またこの場合、第1、第2実施形態と同様の順方向の作動流体のループ流れが維持されるので、機器温調装置1による組電池BPの冷却性能は良好である。 In this way, while the cool storage agent CS is allowed to cool and the condenser 2c continues to operate, the device temperature control device 1 uses the cool heat accumulated by the cool storage agent CS and the cool heat received from the refrigerant in the refrigeration cycle 3. The assembled battery BP can be cooled. In this case, since the loop flow of the working fluid in the forward direction similar to that in the first and second embodiments is maintained, the cooling performance of the assembled battery BP by the device temperature adjustment device 1 is good.
 [蓄冷剤CSが放冷し、凝縮器2cが非作動の場合]
 次に、蓄冷剤CSが十分に蓄冷した後、圧縮機3aが作動状態から停止した場合、あるいは、圧縮機3aの回転数が低下して冷媒吐出能力が低下した場合について説明する。なお、この場合、組電池BPの電池温度が依然として高いとする。この場合、機器用熱交換器2aで作動流体が組電池BPを冷却する点は、蓄冷剤CSの蓄冷時と同様である。
[When the regenerator CS is allowed to cool and the condenser 2c is inactive]
Next, the case where the compressor 3a is stopped from the operating state after the cold storage agent CS has sufficiently stored cold, or the case where the refrigerant discharge capacity is reduced due to a decrease in the rotation speed of the compressor 3a will be described. In this case, it is assumed that the battery temperature of the assembled battery BP is still high. In this case, the point that the working fluid cools the assembled battery BP in the equipment heat exchanger 2a is the same as in the cold storage of the cold storage agent CS.
 機器用熱交換器2a内で組電池BPにより加熱された作動流体は、蓄冷剤CSの近傍で、蓄冷剤CSに放熱する。これにより、作動流体は、機器用熱交換器2a内に留まる。 The working fluid heated by the assembled battery BP in the equipment heat exchanger 2a dissipates heat to the cool storage agent CS in the vicinity of the cool storage agent CS. As a result, the working fluid remains in the equipment heat exchanger 2a.
 このように、蓄冷剤CSが放冷して凝縮器2cが作動していない間は、機器温調装置1は、蓄冷剤CSが蓄積した冷熱により、組電池BPを冷却できる。しかし、圧縮機3aが作動していないため、作動流体は凝縮器2cで冷却されないので、順方向の作動流体のループ流れが維持されない。 Thus, while the cool storage agent CS is allowed to cool and the condenser 2c is not operating, the device temperature control device 1 can cool the assembled battery BP by the cold heat accumulated in the cool storage agent CS. However, since the compressor 3a is not operated, the working fluid is not cooled by the condenser 2c, and therefore, the loop flow of the working fluid in the forward direction is not maintained.
 (第7実施形態)
 次に、第7実施形態について説明する。本実施形態の機器温調装置1が第1実施形態の機器温調装置1と異なる点は、機器用熱交換器2aの構成と機器用熱交換器2aに対する組電池BPの配置のみである。具体的には、本実施形態の機器用熱交換器2aは組電池BPの側面部に対向する位置に配置される。
(Seventh embodiment)
Next, a seventh embodiment will be described. The device temperature control device 1 of the present embodiment is different from the device temperature control device 1 of the first embodiment only in the configuration of the device heat exchanger 2a and the arrangement of the assembled battery BP with respect to the device heat exchanger 2a. Specifically, the equipment heat exchanger 2a of the present embodiment is disposed at a position facing the side surface of the assembled battery BP.
 図17、図18に示すように、本実施形態の機器用熱交換器2aは、筒状の上タンク124、筒状の下タンク125、上タンク124と下タンク125とを連通する複数のチューブ126を含んで構成されている。なお、機器用熱交換器2aは、複数のチューブ126に代えて、中空状の部材の内側に複数の流路を形成した部材により、上タンク124と下タンク125とが連通する構成となっていてもよい。 As shown in FIGS. 17 and 18, the equipment heat exchanger 2 a according to the present embodiment includes a tubular upper tank 124, a tubular lower tank 125, and a plurality of tubes communicating the upper tank 124 and the lower tank 125. 126 is comprised. Note that the equipment heat exchanger 2a has a configuration in which the upper tank 124 and the lower tank 125 communicate with each other by a member in which a plurality of flow paths are formed inside a hollow member instead of the plurality of tubes 126. May be.
 機器用熱交換器2aを構成する各部材は、例えば、アルミニウム、銅等の熱伝導性の高い金属で構成されている。なお、機器用熱交換器2aを構成する各部材は、金属以外の熱伝導性の高い材料で構成されていてもよい。 Each member which comprises the heat exchanger 2a for apparatuses is comprised with metals with high heat conductivity, such as aluminum and copper, for example. In addition, each member which comprises the heat exchanger 2a for apparatuses may be comprised with materials with high heat conductivity other than a metal.
 上タンク124は、機器用熱交換器2aのうち、鉛直方向DRgの上側の部位に設けられている。上タンク124には、機器用熱交換器2aの長手方向の一方側に、第1実施形態と同等の機能を有するガス出口部2abが設けられている。下タンク125は、機器用熱交換器2aのうち、鉛直方向DRgの下側の部位に設けられている。下タンク125には、機器用熱交換器2aの長手方向の他方側に、第1実施形態と同等の機能を有する液入口部2acが設けられている。 The upper tank 124 is provided in the upper part of the vertical direction DRg in the equipment heat exchanger 2a. The upper tank 124 is provided with a gas outlet 2ab having a function equivalent to that of the first embodiment on one side in the longitudinal direction of the equipment heat exchanger 2a. The lower tank 125 is provided in the lower part of the vertical direction DRg in the equipment heat exchanger 2a. The lower tank 125 is provided with a liquid inlet 2ac having a function equivalent to that of the first embodiment on the other side in the longitudinal direction of the equipment heat exchanger 2a.
 機器用熱交換器2aの外側には、電気絶縁性を有する熱伝導シート13を介して、組電池BPが設置されている。機器用熱交換器2aは、熱伝導シート13によって、組電池BPとの電気的絶縁性が確保されると共に、組電池BPとの間の熱抵抗が小さくなっている。 The assembled battery BP is installed outside the equipment heat exchanger 2a via a heat conductive sheet 13 having electrical insulation. The device heat exchanger 2a is electrically insulated from the assembled battery BP by the heat conductive sheet 13, and has a small thermal resistance with the assembled battery BP.
 機器用熱交換器2aは、鉛直方向DRgに直交する方向において、組電池BPと対向するように配置されている。本実施形態の機器用熱交換器2aは、鉛直方向DRgに直交する方向において、組電池BPに対向する部位が、組電池BPと熱交換する熱交換部121を構成する。 The equipment heat exchanger 2a is arranged to face the assembled battery BP in a direction orthogonal to the vertical direction DRg. In the device heat exchanger 2a of the present embodiment, a portion facing the assembled battery BP in the direction orthogonal to the vertical direction DRg constitutes a heat exchange unit 121 that exchanges heat with the assembled battery BP.
 この熱交換部121は、組電池BPと機器用熱交換器2aとの間で熱を移動させる伝熱部である。本実施形態では、熱交換部121が、機器用熱交換器2aにおける組電池BPと熱交換する熱交換部位を構成する。 The heat exchange unit 121 is a heat transfer unit that moves heat between the assembled battery BP and the device heat exchanger 2a. In this embodiment, the heat exchange part 121 comprises the heat exchange site | part which heat-exchanges with the assembled battery BP in the heat exchanger 2a for apparatuses.
 熱交換部121は、組電池BPを構成する各電池セルBCに温度分布が生じないように、組電池BPの両方の側面部のほぼ全体を覆う大きさを有している。なお、本実施形態の熱交換部121は、鉛直方向DRgに沿って延びている。 The heat exchanging part 121 has a size that covers almost the entire side surfaces of both the assembled batteries BP so that no temperature distribution is generated in each battery cell BC constituting the assembled battery BP. In addition, the heat exchange part 121 of this embodiment is extended along the perpendicular direction DRg.
 本実施形態の組電池BPは、端子TEが設けられた面の反対側の面が、熱伝導シート13を介して、機器用熱交換器2aの両側面の熱交換部121に対向するように設置されている。組電池BPを構成する各電池セルBCは、鉛直方向DRgに交差する方向に並べられている。本実施形態における機器温調装置1の作動は、第1実施形態と同様である。 The assembled battery BP of the present embodiment is such that the surface opposite to the surface on which the terminal TE is provided faces the heat exchanging parts 121 on both side surfaces of the equipment heat exchanger 2a via the heat conductive sheet 13. is set up. The battery cells BC constituting the assembled battery BP are arranged in a direction intersecting the vertical direction DRg. Operation | movement of the apparatus temperature control apparatus 1 in this embodiment is the same as that of 1st Embodiment.
 (第8実施形態)
 次に、第8実施形態について説明する。本実施形態の機器温調装置1では、図19に示すように、第7実施形態の機器温調装置1に対して、第3実施形態と同等の位置に蓄冷剤CSの位置を移動するよう変更されている。すなわち、蓄冷剤CSは、ガス通路部2bのうち、ガス通路部2bの最上部よりも順方向における上流側に、配置されている。本実施形態の機器温調装置1の作動は、第3実施形態と同様である。
(Eighth embodiment)
Next, an eighth embodiment will be described. In the apparatus temperature control apparatus 1 of this embodiment, as shown in FIG. 19, with respect to the apparatus temperature control apparatus 1 of 7th Embodiment, the position of the cool storage agent CS is moved to the position equivalent to 3rd Embodiment. has been edited. That is, the cool storage agent CS is disposed on the upstream side in the forward direction of the gas passage portion 2b with respect to the uppermost portion of the gas passage portion 2b. Operation | movement of the apparatus temperature control apparatus 1 of this embodiment is the same as that of 3rd Embodiment.
 (第9実施形態)
 次に、第9実施形態について説明する。本実施形態の機器温調装置1では、図20に示すように、第7実施形態の機器温調装置1に対して、第4実施形態と同等の位置に蓄冷剤CSの位置を移動するよう変更されている。すなわち、蓄冷剤CSは、ガス通路部2bのうち、ガス通路部2bの最上部よりも順方向における下流側に、配置されている。本実施形態の機器温調装置1の作動は、第4実施形態と同様である。
(Ninth embodiment)
Next, a ninth embodiment will be described. In the apparatus temperature control apparatus 1 of this embodiment, as shown in FIG. 20, with respect to the apparatus temperature control apparatus 1 of 7th Embodiment, the position of the cool storage agent CS is moved to the position equivalent to 4th Embodiment. has been edited. That is, the cool storage agent CS is disposed on the downstream side in the forward direction of the gas passage portion 2b with respect to the uppermost portion of the gas passage portion 2b. Operation | movement of the apparatus temperature control apparatus 1 of this embodiment is the same as that of 4th Embodiment.
 (第10実施形態)
 次に、第10実施形態について説明する。本実施形態の機器温調装置1は、図21に示すように、第7実施形態の機器温調装置1に対して、第5実施形態と同等の位置に蓄冷剤CSの位置を移動するよう変更されている。すなわち、蓄冷剤CSは、液通路部2dに配置されている。本実施形態の機器温調装置1の作動は、第5実施形態と同様である。
(10th Embodiment)
Next, a tenth embodiment will be described. As shown in FIG. 21, the device temperature adjustment device 1 of the present embodiment moves the position of the regenerator CS to a position equivalent to that of the fifth embodiment with respect to the device temperature adjustment device 1 of the seventh embodiment. has been edited. That is, the cool storage agent CS is disposed in the liquid passage portion 2d. Operation | movement of the apparatus temperature control apparatus 1 of this embodiment is the same as that of 5th Embodiment.
 (第11実施形態)
 次に、第11実施形態について説明する。本実施形態の機器温調装置1は、蓄冷剤CSの設置部位が第7実施形態の機器温調装置1と異なるが、その他の構成は第7実施形態の機器温調装置1と同じである。
(Eleventh embodiment)
Next, an eleventh embodiment will be described. The apparatus temperature adjustment apparatus 1 of the present embodiment is different from the apparatus temperature adjustment apparatus 1 of the seventh embodiment in the installation site of the cool storage agent CS, but the other configuration is the same as the apparatus temperature adjustment apparatus 1 of the seventh embodiment. .
 本実施形態においては、蓄冷剤CSは、凝縮器2cに備えられておらず、図22Aに示すように、機器用熱交換器2aの内部に配置されている。より具体的には、蓄冷剤CSは、機器用熱交換器2aにおけるチューブ126の内部において、ガス出口部2abと液入口部2acのうち液入口部2acの方により近い位置に配置されている。更に具体的には、蓄冷剤CSは、機器用熱交換器2a内の順方向の最上流端に配置されている。なお、蓄冷剤CSは、機器用熱交換器2aにおけるチューブ126の内部において、ガス出口部2abと液入口部2acのうちガス出口部2abの方により近い位置に配置されていてもよい。 In the present embodiment, the regenerator CS is not provided in the condenser 2c, but is disposed inside the equipment heat exchanger 2a as shown in FIG. 22A. More specifically, the regenerator CS is disposed in the tube 126 of the equipment heat exchanger 2a at a position closer to the liquid inlet 2ac between the gas outlet 2ab and the liquid inlet 2ac. More specifically, the cool storage agent CS is disposed at the most upstream end in the forward direction in the equipment heat exchanger 2a. In addition, the cool storage agent CS may be disposed at a position closer to the gas outlet 2ab of the gas outlet 2ab and the liquid inlet 2ac in the tube 126 of the equipment heat exchanger 2a.
 また、蓄冷剤CSは、チューブ126内において、チューブ126の下端から上端にまで伸びている。したがって、蓄冷剤CSは、チューブ126内の作動流体の液面の上方においても下方においても、作動流体と接触して熱交換する。これは、作動流体の蒸発に伴う蓄冷剤CSの蓄冷、および、作動流体の凝縮に伴う蓄冷剤CSの放冷の双方を実現するためである。 Further, the regenerator CS extends from the lower end to the upper end of the tube 126 in the tube 126. Therefore, the cool storage agent CS contacts the working fluid and exchanges heat both above and below the liquid level of the working fluid in the tube 126. This is to realize both cold storage of the cold storage agent CS accompanying the evaporation of the working fluid and natural cooling of the cold storage agent CS accompanying the condensation of the working fluid.
 実際、図22Aに示すように、チューブ126内における作動流体の液面LSは、蓄冷剤CSが蓄冷していても放冷していても、かつ、圧縮機3aが作動していてもいなくても、チューブ126の上端よりも低くチューブ126の下端よりも高い。したがって、蓄冷剤CSが蓄冷していても放冷していても、かつ、凝縮器2cが作動していてもいなくても、蓄冷剤CSは、チューブ126内の作動流体の液面の上方においても下方においても、作動流体と接触して熱交換する。 Actually, as shown in FIG. 22A, the liquid level LS of the working fluid in the tube 126 may or may not be cooled even if the cool storage agent CS is stored cold or the compressor 3a is operating. Is lower than the upper end of the tube 126 and higher than the lower end of the tube 126. Therefore, the cool storage agent CS is above the liquid level of the working fluid in the tube 126 regardless of whether the cool storage agent CS cools or cools and the condenser 2c is not operating. Heat exchange in contact with the working fluid.
 このようになっていれば、蓄冷剤CSの放冷時は、機器用熱交換器2a内で気相の作動流体が蓄冷剤CSと熱交換して凝縮することができる。また、蓄冷剤CSの蓄冷時は、機器用熱交換器2a内での液相の作動流体が蓄冷剤CSと熱交換して蒸発することができる。 If this is the case, when the regenerator CS is allowed to cool, the gas-phase working fluid can be condensed by exchanging heat with the regenerator CS in the equipment heat exchanger 2a. Further, when the cold storage agent CS is stored cold, the liquid-phase working fluid in the equipment heat exchanger 2a can be evaporated by exchanging heat with the cold storage agent CS.
 なお、蓄冷剤CSとしては、熱伝導率が液相状態の作動流体よりも気相状態の作動流体よりも高くなっていてもよい。このようになっていれば、蓄冷剤CSのうち、液相の作動流体に接する部分と、気相の作動流体に接する部分とが、迅速に互いに熱交換を行うことができる。 In addition, as the cool storage agent CS, the thermal conductivity may be higher than the working fluid in the gas phase than the working fluid in the liquid phase. If it becomes like this, the part which contact | connects the liquid-phase working fluid among the cool storage agents CS and the part which contact | connects a gaseous-phase working fluid can perform heat exchange mutually rapidly.
 したがって、蓄冷剤CSが蓄冷を行っているときは、蓄冷剤CSのうち液相の作動流体に接する部分のみならず、気相の作動流体に接する部分も、十分に冷やされる。つまり、蓄冷時において、蓄冷剤CSの一部分(すなわち、液相の作動流体に接する部分)のみに蓄冷されるのではなく、蓄冷剤CSの全体を蓄冷に使い切る可能性が高くなる。 Therefore, when the cool storage agent CS is storing cold, not only the portion of the cool storage agent CS that contacts the liquid working fluid but also the portion that contacts the gas working fluid is sufficiently cooled. That is, at the time of cold storage, the cool storage agent CS is not stored only in a part (that is, a part in contact with the liquid-phase working fluid), but the possibility that the entire cool storage agent CS is used for cold storage is increased.
 また、蓄冷剤CSが放冷を行っているときは、蓄冷剤CSのうち気相の作動流体に接する部分のみならず、液相の作動流体に接する部分も、十分に放冷する。つまり、放冷時において、蓄冷剤CSの一部分(すなわち、気相の作動流体に接する部分)のみが放冷するのではなく、蓄冷剤CSの全体を放冷に使い切る可能性が高くなる。 When the cool storage agent CS is allowed to cool, not only the portion of the cool storage agent CS that comes into contact with the gas phase working fluid but also the portion that touches the liquid phase working fluid is sufficiently cooled. That is, at the time of cooling, not only a part of the regenerator CS (that is, a part in contact with the gas-phase working fluid) is allowed to cool, but the possibility that the whole regenerator CS is used for cooling is increased.
 また、本実施形態において、蓄冷剤CSは、図22Bに示すように、一方側の面と他方側の面で高熱伝導性部材CSxに接触していてもよい。高熱伝導性部材CSxは、凝縮器2cが作動しているときも作動していないときも、作動流体の液面LSの上側から下側まで伸びている。すなわち、高熱伝導性部材CSxは、凝縮器2cが作動しているときも作動していないときも、液相状態の作動流体にも気相状態の作動流体にも接触する。高熱伝導性部材CSxの熱伝導率は、液相状態の作動流体よりも気相状態の作動流体よりも蓄冷剤CSよりも高い。 In the present embodiment, as shown in FIG. 22B, the regenerator CS may be in contact with the high thermal conductivity member CSx on one side and the other side. The high thermal conductivity member CSx extends from the upper side to the lower side of the liquid level LS of the working fluid both when the condenser 2c is operating and when not operating. That is, the high thermal conductivity member CSx contacts both the liquid-phase working fluid and the gas-phase working fluid both when the condenser 2c is operating and when not operating. The thermal conductivity of the high thermal conductivity member CSx is higher than that of the regenerator CS than the working fluid in the gas phase than the working fluid in the liquid phase.
 このようになっていれば、蓄冷剤CSのうち、液相の作動流体と主に熱交換する部分と、気相の作動流体と主に熱交換する部分とが、高熱伝導性部材CSxを介して迅速に互いに熱交換を行うことができる。その結果、蓄冷時も放冷時も、蓄冷剤CSの全体を放冷に使い切る可能性が高くなる。 If it becomes like this, among the cool storage agent CS, the part mainly exchanging heat with the liquid phase working fluid and the part mainly exchanging heat with the gas phase working fluid will pass through the high thermal conductivity member CSx. Heat exchange with each other quickly. As a result, there is a high possibility that the entire cool storage agent CS will be used for cooling, both during cold storage and during cooling.
 ここで、液相の作動流体と主に熱交換する部分は、液相の作動流体と接触していてもよいし、高熱伝導性部材CSxを介して液相の作動流体と熱交換してもよい。また、気相の作動流体と主に熱交換する部分は、気相の作動流体と接触していてもよいし、高熱伝導性部材CSxを介して気相の作動流体と熱交換してもよい。 Here, the portion that mainly exchanges heat with the liquid-phase working fluid may be in contact with the liquid-phase working fluid, or may exchange heat with the liquid-phase working fluid via the high thermal conductivity member CSx. Good. In addition, the portion that mainly exchanges heat with the gas phase working fluid may be in contact with the gas phase working fluid, or may exchange heat with the gas phase working fluid via the high thermal conductivity member CSx. .
 (第12実施形態)
 次に、第12実施形態について説明する。本実施形態の機器温調装置1が第7実施形態の機器温調装置1と異なる点は、機器用熱交換器2aに対するガス通路部2b、凝縮器2c、液通路部2dの配置である。
(Twelfth embodiment)
Next, a twelfth embodiment will be described. The difference between the device temperature control device 1 of the present embodiment and the device temperature control device 1 of the seventh embodiment is the arrangement of the gas passage portion 2b, the condenser 2c, and the liquid passage portion 2d with respect to the device heat exchanger 2a.
 具体的には、図23に示すように、本実施形態の凝縮器2cの全体は、機器用熱交換器2aの上端よりも下方に、かつ、機器用熱交換器2aの下端よりも上方にある。また、凝縮器2cの上下方向中央位置は、機器用熱交換器2aの上下方向中央位置と一致する。 Specifically, as shown in FIG. 23, the entire condenser 2c of the present embodiment is below the upper end of the equipment heat exchanger 2a and above the lower end of the equipment heat exchanger 2a. is there. In addition, the vertical center position of the condenser 2c coincides with the vertical center position of the equipment heat exchanger 2a.
 ガス出口部2abは、第7実施形態と違い、上タンク124のうち、機器用熱交換器2aの長手方向の凝縮器2cに近い側に設けられている。また、ガス通路部2bは、ガス出口部2abから水平方向に、機器用熱交換器2aの全体よりも高い位置を通ることなく、凝縮器2cに近づいて伸びる。更にガス通路部2bは、約90°曲がって、下方向に伸びてガス入口部2caに至る。また、液通路部2dは、液出口部2cbから下方に伸び、更に約90°曲がり、水平方向に、機器用熱交換器2aの全体よりも低い位置を通ることなく、機器用熱交換器2aに近付いて伸び、液入口部2acに至る。 Unlike the seventh embodiment, the gas outlet 2ab is provided on the upper tank 124 on the side close to the condenser 2c in the longitudinal direction of the equipment heat exchanger 2a. Further, the gas passage portion 2b extends in the horizontal direction from the gas outlet portion 2ab toward the condenser 2c without passing through a position higher than the whole of the equipment heat exchanger 2a. Further, the gas passage portion 2b is bent by about 90 ° and extends downward to reach the gas inlet portion 2ca. Further, the liquid passage portion 2d extends downward from the liquid outlet portion 2cb, bends about 90 °, and does not pass through a position lower than the whole of the device heat exchanger 2a in the horizontal direction. To reach the liquid inlet 2ac.
 ここで、機器用熱交換器2aに対する凝縮器2cの上下方向位置について、更に説明する。凝縮器2cの全体は、チューブ126の下端よりも上方に配置され、かつ、熱交換部121(すなわち、組電池BPと熱交換する熱交換部位)の下端よりも上方に配置される。 Here, the vertical position of the condenser 2c with respect to the equipment heat exchanger 2a will be further described. The whole condenser 2c is disposed above the lower end of the tube 126, and is disposed above the lower end of the heat exchanging part 121 (that is, a heat exchange part that exchanges heat with the assembled battery BP).
 既に説明した通り、機器用流体回路2内の作動流体の循環は、ヘッド差があることによって実現する。つまり、ヘッド差が、作動流体の循環の駆動源となる。したがって、凝縮器2cが作動して作動流体が順方向(ずなわち図23中時計回り方向に)に循環する場合、機器用熱交換器2a内の作動流体の液面よりも、液通路部2dにおける作動流体の液面の方が高い。 As already described, the circulation of the working fluid in the device fluid circuit 2 is realized by the head difference. That is, the head difference becomes a driving source for circulating the working fluid. Therefore, when the condenser 2c operates and the working fluid circulates in the forward direction (that is, in the clockwise direction in FIG. 23), the liquid passage portion rather than the liquid level of the working fluid in the equipment heat exchanger 2a. The liquid level of the working fluid in 2d is higher.
 また、機器用熱交換器2a内において作動流体の液面が最も低くなったとき、当該液面の高さは、熱交換部位である熱交換部121の下端と一致すると予想される。したがって、もし凝縮器2cの下端が熱交換部121の下端よりも低いと、凝縮器2cの内部の少なくとも一部は、常に液相の作動流体で満たされて、作動流体の凝縮が起こらない。 In addition, when the liquid level of the working fluid becomes the lowest in the equipment heat exchanger 2a, the height of the liquid level is expected to coincide with the lower end of the heat exchanging part 121 that is a heat exchange part. Therefore, if the lower end of the condenser 2c is lower than the lower end of the heat exchange unit 121, at least a part of the inside of the condenser 2c is always filled with the liquid-phase working fluid, and the working fluid does not condense.
 このことから、凝縮器2cの全体を使いたいという観点からは、凝縮器2cの下端は、熱交換部121の下端よりも上方にあることが望ましい。また、凝縮器2cの下端は、下タンク125よりも上方にあることが望ましい。 From this point of view, it is desirable that the lower end of the condenser 2c is located above the lower end of the heat exchange unit 121 from the viewpoint of using the entire condenser 2c. Further, it is desirable that the lower end of the condenser 2c is located above the lower tank 125.
 (第13実施形態)
 次に、第13実施形態について説明する。本実施形態の機器温調装置1は、図24に示すように、第8実施形態と同様、蓄冷剤CSが、ガス通路部2bのうち、ガス通路部2bの最上部よりも順方向における上流側に、配置されている。本実施形態の機器温調装置1が第8実施形態の機器温調装置1と異なる点は、機器用熱交換器2aに対するガス通路部2b、凝縮器2c、液通路部2dの配置である。
(13th Embodiment)
Next, a thirteenth embodiment will be described. As shown in FIG. 24, in the device temperature control apparatus 1 of the present embodiment, the cold storage agent CS is upstream in the forward direction of the gas passage portion 2b in the forward direction, as in the eighth embodiment. On the side. The difference between the device temperature control device 1 of the present embodiment and the device temperature control device 1 of the eighth embodiment is the arrangement of the gas passage 2b, the condenser 2c, and the liquid passage 2d with respect to the device heat exchanger 2a.
 具体的には、図24に示すように、本実施形態の凝縮器2cの全体は、機器用熱交換器2aの上端よりも下方に、かつ、機器用熱交換器2aの下端よりも上方にある。また、凝縮器2cの上下方向中央位置は、機器用熱交換器2aの上下方向中央位置と一致する。 Specifically, as shown in FIG. 24, the entire condenser 2c of the present embodiment is below the upper end of the equipment heat exchanger 2a and above the lower end of the equipment heat exchanger 2a. is there. In addition, the vertical center position of the condenser 2c coincides with the vertical center position of the equipment heat exchanger 2a.
 ガス出口部2abは、第8実施形態と違い、上タンク124のうち、機器用熱交換器2aの長手方向の凝縮器2cに近い側に設けられている。また、ガス通路部2bは、ガス出口部2abから上方向に伸びて、機器用熱交換器2aの全体よりも高い位置に到達する。更にガス通路部2bは、約90°曲がって、機器用熱交換器2aの全体よりも高い位置で、水平方向に伸びて更に約90°曲がって、下方向に伸びてガス入口部2caに至る。 Unlike the eighth embodiment, the gas outlet 2ab is provided on the upper tank 124 on the side close to the condenser 2c in the longitudinal direction of the equipment heat exchanger 2a. Further, the gas passage portion 2b extends upward from the gas outlet portion 2ab and reaches a position higher than the entire heat exchanger for equipment 2a. Further, the gas passage portion 2b is bent by about 90 °, extends in the horizontal direction and further bent by about 90 ° at a position higher than the whole of the equipment heat exchanger 2a, and extends downward to reach the gas inlet portion 2ca. .
 ここで、機器用熱交換器2aに対する凝縮器2cの上下方向位置については、第12実施形態と同じである。本実施形態の機器温調装置1の作動は、第8実施形態と同様である。 Here, the vertical position of the condenser 2c relative to the equipment heat exchanger 2a is the same as in the twelfth embodiment. Operation | movement of the apparatus temperature control apparatus 1 of this embodiment is the same as that of 8th Embodiment.
 (第14実施形態)
 次に、第14実施形態について説明する。本実施形態の機器温調装置1は、図25に示すように、第9実施形態と同様、蓄冷剤CSが、ガス通路部2bのうち、ガス通路部2bの最上部よりも順方向における下流側に、配置されている。本実施形態の機器温調装置1が第9実施形態の機器温調装置1と異なる点は、機器用熱交換器2aに対するガス通路部2b、凝縮器2c、液通路部2dの配置である。
(14th Embodiment)
Next, a fourteenth embodiment will be described. As shown in FIG. 25, in the device temperature control apparatus 1 of the present embodiment, the cold storage agent CS is downstream in the forward direction from the uppermost part of the gas passage portion 2b in the gas passage portion 2b, as in the ninth embodiment. On the side. The difference between the device temperature control device 1 of the present embodiment and the device temperature control device 1 of the ninth embodiment is the arrangement of the gas passage part 2b, the condenser 2c, and the liquid passage part 2d with respect to the equipment heat exchanger 2a.
 具体的には、図25に示す通りである。すなわち、第12実施形態において第7実施形態に対して適用した変更と同じ変更が、第9実施形態に対して適用される。本実施形態の機器温調装置1の作動は、第9実施形態と同様である。 Specifically, it is as shown in FIG. That is, the same changes as applied to the seventh embodiment in the twelfth embodiment are applied to the ninth embodiment. Operation | movement of the apparatus temperature control apparatus 1 of this embodiment is the same as that of 9th Embodiment.
 (第15実施形態)
 次に、第15実施形態について説明する。本実施形態の機器温調装置1は、図26に示すように、第10実施形態と同様、蓄冷剤CSが、液通路部2dに配置されている。本実施形態の機器温調装置1が第10実施形態の機器温調装置1と異なる点は、機器用熱交換器2aに対するガス通路部2b、凝縮器2c、液通路部2dの配置である。
(Fifteenth embodiment)
Next, a fifteenth embodiment is described. As shown in FIG. 26, in the device temperature control apparatus 1 of the present embodiment, the cool storage agent CS is disposed in the liquid passage portion 2d, as in the tenth embodiment. The difference between the device temperature control device 1 of the present embodiment and the device temperature control device 1 of the tenth embodiment is the arrangement of the gas passage portion 2b, the condenser 2c, and the liquid passage portion 2d with respect to the device heat exchanger 2a.
 具体的には、図26に示す通りである。すなわち、第12実施形態において第7実施形態に対して適用した変更と同じ変更が、第10実施形態に対して適用される。本実施形態の機器温調装置1の作動は、第10実施形態と同様である。 Specifically, it is as shown in FIG. That is, the same changes as applied to the seventh embodiment in the twelfth embodiment are applied to the tenth embodiment. Operation | movement of the apparatus temperature control apparatus 1 of this embodiment is the same as that of 10th Embodiment.
 (第16実施形態)
 次に、第16実施形態について説明する。本実施形態の機器温調装置1は、図27に示すように、第11実施形態と同様、蓄冷剤CSが、機器用熱交換器2aに配置されている。本実施形態の機器温調装置1が第11実施形態の機器温調装置1と異なる点は、機器用熱交換器2aに対するガス通路部2b、凝縮器2c、液通路部2dの配置である。
(Sixteenth embodiment)
Next, a sixteenth embodiment will be described. As shown in FIG. 27, in the device temperature control apparatus 1 of the present embodiment, the regenerator CS is disposed in the device heat exchanger 2a, as in the eleventh embodiment. The difference between the device temperature control device 1 of the present embodiment and the device temperature control device 1 of the eleventh embodiment is the arrangement of the gas passage portion 2b, the condenser 2c, and the liquid passage portion 2d with respect to the device heat exchanger 2a.
 具体的には、図27に示す通りである。すなわち、第12実施形態において第7実施形態に対して適用した変更と同じ変更が、第11実施形態に対して適用される。本実施形態の機器温調装置1の作動は、第10実施形態と同様である。 Specifically, it is as shown in FIG. That is, the same changes as applied to the seventh embodiment in the twelfth embodiment are applied to the eleventh embodiment. Operation | movement of the apparatus temperature control apparatus 1 of this embodiment is the same as that of 10th Embodiment.
 (他の実施形態)
 本開示は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。
(Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be appropriately changed within the scope described in the claims.
 例えば、第1、第2実施形態では、蓄冷剤CSは、凝縮器2cと一体に構成されていたが、この構成に限られるものでは無い。 For example, in the first and second embodiments, the cold storage agent CS is configured integrally with the condenser 2c, but is not limited to this configuration.
 しかしながら、蓄冷剤CSが凝縮器2cと一体に構成されていなくとも、少なくとも機器用流体回路2に蓄冷剤CSが配置されていれば、上記の効果が得られる。すなわち、機器用流体回路2に蓄冷剤CSが配置されていれば、蓄冷剤CSに蓄積された冷熱が作動流体に伝わることで、作動流体が冷却されて凝縮され易くなり、冷却能力が低下せずに維持され易くなる。 However, even if the cool storage agent CS is not integrally formed with the condenser 2c, the above-described effects can be obtained as long as the cool storage agent CS is disposed at least in the device fluid circuit 2. That is, if the cool storage agent CS is arranged in the fluid circuit 2 for equipment, the cold heat accumulated in the cool storage agent CS is transmitted to the working fluid, so that the working fluid is easily cooled and condensed, and the cooling capacity is reduced. It becomes easy to be maintained.
 また、蓄冷剤CSが凝縮器2cと一体に構成されていなくとも、機器用流体回路2において順方向におけるガス通路部2bのうち最も上に位置する最上部よりも先であってガス出口部2abよりも手前に蓄冷剤CSが配置されていれば、上記の効果が得られる。すなわち、機器用流体回路2において順方向におけるガス通路部2bのうち最も上に位置する最上部よりも先であってガス出口部2abよりも手前に蓄冷剤CSが配置されていれば、作動流体の順方向の流れがより維持され易い。該最上部よりも手前の部分に蓄冷剤CSが配置された場合のように順方向における作動流体の流量が減少することは無いためである。 Even if the regenerator CS is not integrated with the condenser 2c, the gas outlet portion 2ab is ahead of the uppermost portion of the gas passage portion 2b in the forward direction in the fluid circuit 2 for equipment. If the cool storage agent CS is arranged on the near side, the above effect can be obtained. That is, if the regenerator CS is disposed before the gas outlet portion 2ab before the uppermost portion of the gas passage portion 2b in the forward direction in the fluid circuit 2 for equipment, the working fluid The forward flow is more easily maintained. This is because the flow rate of the working fluid in the forward direction does not decrease unlike the case where the cool storage agent CS is disposed in a portion before the uppermost portion.
 また、蓄冷剤CSが凝縮器2cと一体に構成されていなくとも、機器用流体回路2においてガス入口部2caよりも先であってガス出口部2abよりも手前に蓄冷剤CSが配置されていれば、上記の効果が得られる。すなわち、機器用流体回路2においてガス入口部2caよりも先であってガス出口部2abよりも手前に蓄冷剤CSが配置されていれば、凝縮器2cによって凝縮された液状の作動流体を蓄冷剤CSと熱交換させることで、蓄冷剤CSに冷熱を蓄積させることができる。 Even if the regenerator CS is not integrally formed with the condenser 2c, the regenerator CS is arranged in the device fluid circuit 2 before the gas inlet 2ca and before the gas outlet 2ab. In this case, the above effect can be obtained. That is, if the regenerator CS is disposed before the gas inlet 2ca and before the gas outlet 2ab in the device fluid circuit 2, the liquid working fluid condensed by the condenser 2c is used as the regenerator. By exchanging heat with CS, cold energy can be accumulated in the cold storage agent CS.
 また、蓄冷剤CSが凝縮器2cと一体に構成されていなくとも、機器用流体回路2において順方向におけるガス入口部2caよりも先であって液入口部2acよりも手前に蓄冷剤CSが配置されていれば、上記の効果が得られる。すなわち、機器用流体回路2において順方向におけるガス入口部2caよりも先であって液入口部2acよりも手前に蓄冷剤CSが配置されていれば、作動流体の順方向の流れがより生じ易くなる。凝縮器2cによって凝縮された液状の作動流体を蓄冷剤CSと熱交換させることで、蓄冷剤CSに蓄積された冷熱によってガス状の作動流体が液化して下に落ちるからである。 Further, even if the regenerator CS is not integrally formed with the condenser 2c, the regenerator CS is arranged in the fluid circuit 2 for equipment ahead of the gas inlet 2ca in the forward direction and before the liquid inlet 2ac. If it is done, the above effect can be obtained. In other words, if the regenerator CS is disposed before the gas inlet 2ca in the forward direction and before the liquid inlet 2ac in the device fluid circuit 2, the forward flow of the working fluid is more likely to occur. Become. This is because the liquid working fluid condensed by the condenser 2c is heat-exchanged with the cold storage agent CS, so that the gaseous working fluid is liquefied and falls down by the cold heat accumulated in the cold storage agent CS.
 また、水は熱容量が大きいため、上記実施形態の蓄冷剤CSとして水を用いても良い。すなわち、上記実施形態において、図28に示すように、水が循環して流れる水循環路4を流れる水によって、作動流体の冷熱を蓄積するようにしても良い。この水は、不凍液である。図28の符号4aはポンプである。符号4bは熱交換器である。符号4cはバルブである。符号4dはクーラコアである。クーラコアは、水循環路4の冷水と車室内空気を熱交換することで冷風を発生させることにより車室内を冷房するための熱交換器であり、蒸発器の代替として用いられるものである。クーラコアは、水と空気とで熱交換させることで冷房を行う。符号4eは熱交換器である。凝縮器2c内を流れる作動流体と、熱交換器4e内を流れる水とが熱交換することで、水の蓄冷時には水が冷やされ、水の放冷時には水が温められる。熱交換器4eと凝縮器2cは、一体の凝縮器を構成する。 Moreover, since water has a large heat capacity, water may be used as the regenerator CS of the above embodiment. That is, in the above embodiment, as shown in FIG. 28, the cold heat of the working fluid may be accumulated by the water flowing through the water circulation path 4 through which the water circulates. This water is antifreeze. Reference numeral 4a in FIG. 28 is a pump. Reference numeral 4b denotes a heat exchanger. Reference numeral 4c is a valve. Reference numeral 4d denotes a cooler core. The cooler core is a heat exchanger for cooling the vehicle interior by generating cold air by exchanging heat between the cold water in the water circulation path 4 and the air in the vehicle interior, and is used as an alternative to the evaporator. The cooler core performs cooling by heat exchange between water and air. Reference numeral 4e denotes a heat exchanger. By exchanging heat between the working fluid flowing in the condenser 2c and the water flowing in the heat exchanger 4e, the water is cooled when the water is stored, and the water is warmed when the water is allowed to cool. The heat exchanger 4e and the condenser 2c constitute an integral condenser.
 図28の符号5は冷凍サイクルである。符号5aは圧縮機であり、符号5bは凝縮器であり、符号5cは膨張弁であり、符号5eは冷凍サイクル5を流れる冷媒と水循環路4を流れる水とで熱交換するための蒸発器である。熱交換器4b内を流れる水と、蒸発器5e内で蒸発する冷媒とが熱交換することで、水が冷却される。熱交換器4bと蒸発器5eは、一体となってチラー(すなわち水冷媒熱交換器)を構成する。 Numeral 5 in FIG. 28 is a refrigeration cycle. Reference numeral 5 a is a compressor, reference numeral 5 b is a condenser, reference numeral 5 c is an expansion valve, and reference numeral 5 e is an evaporator for exchanging heat between the refrigerant flowing through the refrigeration cycle 5 and the water flowing through the water circulation path 4. is there. Water is cooled by heat exchange between the water flowing in the heat exchanger 4b and the refrigerant evaporated in the evaporator 5e. The heat exchanger 4b and the evaporator 5e together constitute a chiller (that is, a water refrigerant heat exchanger).
 このように蓄冷剤CSとして水を用いた場合、簡易な構成にて安定した冷却が可能である。図28の例では、冷凍サイクル5によって冷却される水(すなわち、水循環路4を流れる水)を、放熱量調整部としての放熱のために用いるとともに、クーラコアを冷却するためにも用いている。尚、冷凍サイクル5によって冷却される水を、放熱量調整部としての放熱のためにのみ用いるようにしても良い。 Thus, when water is used as the regenerator CS, stable cooling is possible with a simple configuration. In the example of FIG. 28, water cooled by the refrigeration cycle 5 (that is, water flowing through the water circulation path 4) is used for heat dissipation as the heat dissipation amount adjusting unit and also used for cooling the cooler core. In addition, you may make it use the water cooled by the refrigerating cycle 5 only for the heat radiation as a heat radiation amount adjustment part.
 また、図28の例ではクーラコア4dと、凝縮器2c、4eとを並列としたが、直列としても良い。その際は、クーラコア4dおよび凝縮器2c、4eの少なくとも一方をバイパスする流路を設けた上でバルブを設置することが望ましい。また、図28の例においては車室内を冷房するための熱交換器としてクーラコア4dを用いていた。しかしながら、図29に示すように、冷凍サイクル5において、従来の車室内を冷房するための蒸発器5fを用いても良い。 In the example of FIG. 28, the cooler core 4d and the condensers 2c and 4e are arranged in parallel, but may be arranged in series. In that case, it is desirable to provide a valve after providing a flow path that bypasses at least one of the cooler core 4d and the condensers 2c and 4e. In the example of FIG. 28, the cooler core 4d is used as a heat exchanger for cooling the passenger compartment. However, as shown in FIG. 29, in the refrigeration cycle 5, a conventional evaporator 5f for cooling the passenger compartment may be used.
 また、図29では2つの蒸発器5e、5fを直列としていた。しかし、図30に示すように、2つの蒸発器5e、5fを並列に配置しても良い。このとき、2つの蒸発器5e、5fの各々の上流側に膨張弁5c、5dを設置することが望ましい。 In FIG. 29, two evaporators 5e and 5f are connected in series. However, as shown in FIG. 30, two evaporators 5e and 5f may be arranged in parallel. At this time, it is desirable to install the expansion valves 5c and 5d upstream of each of the two evaporators 5e and 5f.
 また、図28、図29、図30の例では、水循環路4を流れる水を冷凍サイクル5を流れる冷媒と熱交換させるために、熱交換器4bを蒸発器5eと接続させている。しかし、図31に示すように、熱交換器4bは、水循環路4を流れる水から外気に放熱させるラジエータであってもよい。 In the examples of FIGS. 28, 29, and 30, the heat exchanger 4b is connected to the evaporator 5e in order to exchange heat between the water flowing through the water circulation path 4 and the refrigerant flowing through the refrigeration cycle 5. However, as shown in FIG. 31, the heat exchanger 4b may be a radiator that radiates heat from the water flowing through the water circulation path 4 to the outside air.
 また、図30の水循環路4に対して、図32に示すように、ラジエータ4fとバルブ4gを追加してもよい。ラジエータ4fは、水循環路4中のラジエータ流路4h中に配置され、ラジエータ4f内を流れる水から外気に放熱させる。バルブ4gは、ポンプ4aから吐出された水がラジエータ流路4hに流れる状態と、ポンプ4aから吐出された水がラジエータバイパス流路4iに流れる状態とを切り替える。後者の状態では、ポンプ4aから吐出された水がラジエータ4fをバイパスして熱交換器4bに流入する。バルブ4gが実現するこれら2つの状態は、水の温度等に応じて切り替えられる。このようにすることで、水の放熱先として冷凍サイクル5の冷媒と外気の2つを確保できる。 Further, as shown in FIG. 32, a radiator 4f and a valve 4g may be added to the water circulation path 4 of FIG. The radiator 4f is disposed in the radiator flow path 4h in the water circulation path 4, and radiates heat from the water flowing in the radiator 4f to the outside air. The valve 4g switches between a state where water discharged from the pump 4a flows into the radiator flow path 4h and a state where water discharged from the pump 4a flows into the radiator bypass flow path 4i. In the latter state, the water discharged from the pump 4a bypasses the radiator 4f and flows into the heat exchanger 4b. These two states realized by the valve 4g are switched according to the temperature of the water and the like. By doing in this way, the refrigerant | coolant of the refrigerating cycle 5 and two outside air can be ensured as a heat dissipation point of water.
 また、図30の水循環路4に対して、図33に示すように、熱交換器4b、熱交換器44e、凝縮器2c、蒸発器5eは、全体として一体の筐体として構成されていてもよい。このようにすることで、冷凍サイクル5、水循環路4、機器用流体回路2を流通する3つの媒体を熱交換するための熱交換器を、1つの筐体として構成することができる。この筐体内では、熱交換器4b内の水と蒸発器5e内の冷媒とが熱交換し、かつ、熱交換器4e内の水と凝縮器2c内の作動流体とが熱交換する。 Further, as shown in FIG. 33, the heat exchanger 4b, the heat exchanger 44e, the condenser 2c, and the evaporator 5e may be configured as an integral casing as a whole with respect to the water circulation path 4 in FIG. Good. By doing in this way, the heat exchanger for carrying out heat exchange of the three media which distribute | circulate the refrigerating cycle 5, the water circulation path 4, and the fluid circuit 2 for apparatuses can be comprised as one housing | casing. In this housing, the water in the heat exchanger 4b and the refrigerant in the evaporator 5e exchange heat, and the water in the heat exchanger 4e and the working fluid in the condenser 2c exchange heat.
 また、図32の水循環路4に対して、図34に示すように、ポンプ4j、インバータ4k、バルブ4m、インバータ流路4nを追加してもよい。バルブ4mは、ラジエータ4f出口とラジエータバイパス流路4iの下流端との間に配置される。インバータ流路4nは、バルブ4mからバルブ4gとラジエータ4f入口との間までを繋ぐ流路である。 Further, as shown in FIG. 34, a pump 4j, an inverter 4k, a valve 4m, and an inverter flow path 4n may be added to the water circulation path 4 of FIG. The valve 4m is disposed between the outlet of the radiator 4f and the downstream end of the radiator bypass passage 4i. The inverter flow path 4n is a flow path that connects the valve 4m to the valve 4g and the radiator 4f inlet.
 ポンプ4jは、インバータ流路4nに配置され、インバータ流路4n内の水を吸入してインバータ4k側に吐出する。インバータ4kは、直流を交流に変換する電気機器であり、作動中には発熱する。このインバータ4kは、インバータ流路4nを流れる水と熱交換することで冷却される。 The pump 4j is arranged in the inverter flow path 4n, sucks water in the inverter flow path 4n, and discharges it to the inverter 4k side. The inverter 4k is an electric device that converts direct current into alternating current, and generates heat during operation. The inverter 4k is cooled by exchanging heat with water flowing through the inverter flow path 4n.
 バルブ4mは、インバータ流路4nを閉じてラジエータ流路4hを開く状態と、インバータ流路4nを開いてラジエータ流路4hを閉じる状態とを、切り替える。前者の場合、水はラジエータ4fで冷却される。後者の場合、水はインバータ4kを冷却することで加熱される。このように、水循環路4にインバータ4kを冷却する回路を統合することができる。 The valve 4m switches between a state where the inverter flow path 4n is closed and the radiator flow path 4h is opened, and a state where the inverter flow path 4n is opened and the radiator flow path 4h is closed. In the former case, the water is cooled by the radiator 4f. In the latter case, the water is heated by cooling the inverter 4k. Thus, a circuit for cooling the inverter 4k can be integrated into the water circulation path 4.
 なお、第1実施形態に対する図28~図34のような変形は、第3~第6実施形態に対して適用してもよい。 Note that the modifications shown in FIGS. 28 to 34 with respect to the first embodiment may be applied to the third to sixth embodiments.
 また上記の実施形態では水冷の凝縮器2cを、冷凍サイクルと熱交換させるために蒸発器5eと接続させたが、外気もしくは車室内の空気と熱交換させるための熱交換器と接続させても良い。 In the above embodiment, the water-cooled condenser 2c is connected to the evaporator 5e in order to exchange heat with the refrigeration cycle. However, the water-cooled condenser 2c may be connected to a heat exchanger for exchanging heat with the outside air or air in the passenger compartment. good.
 (まとめ)
 上記各実施形態の一部または全部で示された第1の観点では、温調対象機器を冷却可能な機器温調装置において、機器用熱交換器と、ガス通路部と、凝縮器と、液通路部とを含んで構成される環状の機器用流体回路を有する。機器用熱交換器は、温調対象機器から吸熱して液状の作動流体を蒸発させることで温調対象機器を冷却する。ガス通路部は、機器用熱交換器にて蒸発したガス状の作動流体を凝縮器に導く。凝縮器は、機器用熱交換器よりも上方に配置され、機器用熱交換器にて蒸発したガス状の作動流体を凝縮させる。液通路部は、凝縮器にて凝縮した液状の作動流体を機器用熱交換器に導く。そして、この機器温調装置において、機器用流体回路に配置され、作動流体の冷熱および熱媒体の冷熱の少なくとも一方を蓄積する蓄冷剤を有する。
(Summary)
In the 1st viewpoint shown by one part or all part of said each embodiment, in the apparatus temperature control apparatus which can cool a temperature control object apparatus, the heat exchanger for apparatus, a gas passage part, a condenser, and liquid An annular device fluid circuit including a passage portion. The equipment heat exchanger cools the temperature control target device by absorbing heat from the temperature control target device and evaporating the liquid working fluid. The gas passage portion guides the gaseous working fluid evaporated in the equipment heat exchanger to the condenser. The condenser is disposed above the equipment heat exchanger, and condenses the gaseous working fluid evaporated in the equipment heat exchanger. The liquid passage portion guides the liquid working fluid condensed by the condenser to the equipment heat exchanger. And this apparatus temperature control apparatus has a cool storage agent which is arrange | positioned at the fluid circuit for apparatuses and accumulate | stores at least one of the cold heat of a working fluid, and the cold heat of a heat medium.
 また、第2の観点によれば、蓄冷剤が、凝縮器と一体に構成されている。このようにすることで、放熱量調整部の熱媒体から直接蓄冷することができる。 Further, according to the second aspect, the cold storage agent is configured integrally with the condenser. By doing in this way, it can cool directly from the heat medium of a heat radiation amount adjustment part.
 また、第3の観点によれば、蓄冷剤が、凝縮器の下流側かつ機器用熱交換器の上流側に配置されている。このようにすることで、液相状態の作動流体から蓄冷することができる。また、蓄冷剤の放冷時には、液相状態の作動流体を蓄冷剤が更に冷却することができる。すなわち、作動流体をサブクール状態にすることができる。 Further, according to the third aspect, the cool storage agent is disposed on the downstream side of the condenser and on the upstream side of the equipment heat exchanger. By doing in this way, it can cool from the working fluid of a liquid phase state. Further, when the cool storage agent is allowed to cool, the cool storage agent can further cool the working fluid in the liquid phase. That is, the working fluid can be brought into a subcooled state.
 また、第4の観点によれば、蓄冷剤が、ガス通路部において、ガス通路部の最上部よりも下流側に配置されている。このようにすることで、機器用熱交換器、ガス通路部、凝縮器、液通路部の順に作動流体が流れるループが維持されながら、蓄冷剤が蓄冷および放冷することができる。 Moreover, according to the 4th viewpoint, the cool storage agent is arrange | positioned in the gas passage part downstream from the uppermost part of the gas passage part. By doing in this way, a cool storage agent can cool-store and cool-down, maintaining the loop through which a working fluid flows in order of an equipment heat exchanger, a gas passage part, a condenser, and a liquid passage part.
 また、第5の観点によれば、蓄冷剤が、機器用熱交換器に配置されている。このようにすることで、機器用熱交換器、ガス通路部、凝縮器、液通路部の順に作動流体が流れるループが維持されながら、蓄冷剤が蓄冷することができる。 Further, according to the fifth aspect, the cold storage agent is disposed in the equipment heat exchanger. By doing in this way, a cool storage agent can store cold, maintaining the loop through which a working fluid flows in order of an equipment heat exchanger, a gas passage part, a condenser, and a liquid passage part.
 また、第6の観点によれば、蓄冷剤が、ガス通路部において、ガス通路部の最上部よりも上流側に配置されている。このようにすることで、機器用熱交換器、ガス通路部、凝縮器、液通路部の順に作動流体が流れるループが維持されながら、蓄冷剤が蓄冷することができる。 Further, according to the sixth aspect, the cold storage agent is disposed in the gas passage portion on the upstream side of the uppermost portion of the gas passage portion. By doing in this way, a cool storage agent can store cold, maintaining the loop through which a working fluid flows in order of an equipment heat exchanger, a gas passage part, a condenser, and a liquid passage part.
 また、第7の観点では、第1の観点における機器温調装置において、蓄冷剤が、凝縮器と一体に構成されている。 Also, in the seventh aspect, in the device temperature control apparatus in the first aspect, the cold storage agent is configured integrally with the condenser.
 この第7の観点によれば、凝縮器によって凝縮された液状の作動流体を即座に蓄冷剤と熱交換させることができるため、効率良く蓄冷剤に冷熱を蓄積させることができ、作動流体の順方向の流れが特に維持され易くなる。 According to the seventh aspect, since the liquid working fluid condensed by the condenser can be immediately heat-exchanged with the cold storage agent, cold energy can be efficiently accumulated in the cold storage agent, and the order of the working fluid can be increased. The directional flow is particularly easily maintained.
 また、上記各実施形態の一部または全部で示された第8の観点では、第1ないし7のいずれか1つの観点における機器温調装置において、放熱量調整部は、凝縮器の内部に存する作動流体との間で熱交換することで該作動流体を冷却する熱媒体を流すための流路である熱媒体流路を有する冷凍サイクルである。 Moreover, in the 8th viewpoint shown by one part or all of said each embodiment, in the apparatus temperature control apparatus in any one viewpoint of 1st thru | or 7, a heat radiation amount adjustment part exists in the inside of a condenser. It is a refrigeration cycle having a heat medium flow path that is a flow path for flowing a heat medium that cools the working fluid by exchanging heat with the working fluid.
 また、上記各実施形態の一部または全部で示された第9の観点では、第8の観点における機器温調装置において、冷凍サイクルは、第1冷凍サイクルであり、第1冷凍サイクルは、圧縮機によって作動する第2冷凍サイクルを備える空調装置の圧縮機によって作動する。 In the ninth aspect shown in part or all of the above embodiments, in the device temperature control apparatus according to the eighth aspect, the refrigeration cycle is the first refrigeration cycle, and the first refrigeration cycle is compressed. Actuated by a compressor of an air conditioner with a second refrigeration cycle actuated by the machine.
 また、上記各実施形態の一部または全部で示された第10の観点では、第1ないし7のいずれか1つの観点における機器温調装置において、凝縮器の内部に存する作動流体との間で熱交換することで該作動流体を冷却する送風空気を送風する送風機である。また、凝縮器の内部に存する作動流体との間で熱交換することで該作動流体を冷却する熱媒体を流すための流路である熱媒体流路を有する。 Moreover, in the 10th viewpoint shown by one part or all of said each embodiment, in the apparatus temperature control apparatus in any one viewpoint of 1st thru | or 7, it is between the working fluid which exists in the inside of a condenser. It is a blower that blows blown air that cools the working fluid by exchanging heat. Moreover, it has the heat medium flow path which is a flow path for flowing the heat medium which cools this working fluid by exchanging heat with the working fluid which exists in the inside of a condenser.
 また、上記各実施形態の一部または全部で示された第11の観点では、第8または10の観点における機器温調装置において、蓄冷剤が、作動流体との間に熱媒体流路を介さずに、配置されている。具体的には、蓄冷剤の少なくとも一部が、作動流体との間に熱媒体流路を介さずに、配置されている。この第9の観点によれば、蓄冷剤の冷熱が作動流体に伝わり易くなり、作動流体の順方向の流れが特に維持され易くなる。 In the eleventh aspect shown in part or all of the above embodiments, in the apparatus temperature control apparatus according to the eighth or tenth aspect, the cold storage agent is interposed between the working fluid and the heat medium flow path. Without being arranged. Specifically, at least a part of the cool storage agent is disposed between the working fluid and the heat medium flow path. According to the ninth aspect, the cold energy of the cool storage agent is easily transmitted to the working fluid, and the forward flow of the working fluid is particularly easily maintained.
 また、上記各実施形態の一部または全部で示された第12の観点では、第8または10の観点における機器温調装置において、蓄冷剤が、凝縮器における作動流体の流路と熱媒体流路との間に、配置されている。具体的には、蓄冷剤の少なくとも一部が、凝縮器における作動流体の流路と熱媒体流路との間に、配置されている。 Further, in a twelfth aspect shown in a part or all of each of the above embodiments, in the apparatus temperature control apparatus according to the eighth or tenth aspect, the cold storage agent is a flow path of the working fluid in the condenser and a heat medium flow It is arranged between the road. Specifically, at least a part of the cool storage agent is disposed between the working fluid flow path and the heat medium flow path in the condenser.
 この第10の観点によれば、蓄冷剤の冷熱が作動流体に伝わり易くなり、作動流体の順方向の流れが特に維持され易くなる。 According to the tenth aspect, the cold energy of the cool storage agent is easily transmitted to the working fluid, and the forward flow of the working fluid is particularly easily maintained.
 上記各実施形態の一部または全部で示された第13の観点では、第1ないし7のいずれか1つの観点における機器温調装置において、蓄冷剤が、水が循環して流れる水循環路を流れる水である。 In a thirteenth aspect shown in part or all of the above embodiments, in the device temperature control apparatus according to any one of the first to seventh aspects, the cold storage agent flows through a water circulation path through which water circulates. It is water.
 また、上記各実施形態の一部または全部で示された第14の観点では、第1ないし13のいずれか1つの観点における機器温調装置において、温調対象機器が、複数の電池セルを有する組電池である。 In the fourteenth aspect shown in part or all of the above embodiments, in the apparatus temperature adjustment device according to any one of the first to thirteenth aspects, the temperature adjustment target apparatus has a plurality of battery cells. It is an assembled battery.
 この第14の観点によれば、潜熱を利用して温調対象機器を冷却するため、各電池セルの温度バラツキを低減させることができ、各電池セルを均等に冷却することができる。よって、各電池セルの温度バラツキを低減させる均温化が重要となる組電池の冷却に特に好適である。 According to the fourteenth aspect, since the temperature adjustment target device is cooled using latent heat, the temperature variation of each battery cell can be reduced, and each battery cell can be cooled uniformly. Therefore, it is particularly suitable for cooling an assembled battery in which temperature equalization for reducing the temperature variation of each battery cell is important.
 また、他の観点では、第1の観点における機器温調装置において、順方向において、機器用熱交換器、ガス通路部、凝縮器、および液通路部は、この順に配置され、機器用熱交換器は、ガス通路部の下方側の端部が接続されるガス出口部を有する。そして、蓄冷剤が、機器用流体回路において、順方向におけるガス通路部のうち最も上に位置する最上部よりも先であってガス出口部よりも手前に配置されている。 In another aspect, in the equipment temperature control apparatus according to the first aspect, in the forward direction, the equipment heat exchanger, the gas passage section, the condenser, and the liquid passage section are arranged in this order, and the equipment heat exchange is performed. The vessel has a gas outlet portion to which the lower end portion of the gas passage portion is connected. And the cool storage agent is arrange | positioned ahead of the gas outlet part ahead of the uppermost part located in the uppermost part among the gas passage parts in a forward direction in the fluid circuit for apparatuses.
 この観点によれば、順方向におけるガス通路部のうち最上部よりも先であってガス出口部よりも手前に蓄冷剤が配置されていることで、該最上部よりも手前の部分に蓄冷剤が配置された場合のように順方向における作動流体の流量が減少することは無いため、作動流体の順方向の流れがより維持され易い。 According to this aspect, the cool storage agent is disposed in front of the uppermost portion of the gas passage portion in the forward direction, and the cool storage agent is disposed in front of the gas outlet portion. Since the flow rate of the working fluid in the forward direction does not decrease as in the case where is disposed, the forward flow of the working fluid is more easily maintained.
 また、他の観点では、第1の観点における機器温調装置において、順方向において、機器用熱交換器、ガス通路部、凝縮器、および液通路部は、この順に配置され、機器用熱交換器は、ガス通路部の上方側の端部が接続されるガス入口部を有する。そして、蓄冷剤が、機器用流体回路において、順方向におけるガス入口部よりも先であってガス出口部よりも手前に配置されている。 In another aspect, in the equipment temperature control apparatus according to the first aspect, in the forward direction, the equipment heat exchanger, the gas passage section, the condenser, and the liquid passage section are arranged in this order, and the equipment heat exchange is performed. The vessel has a gas inlet portion to which an upper end portion of the gas passage portion is connected. And the cool storage agent is arrange | positioned ahead of the gas inlet part in a forward direction, and before the gas outlet part in the fluid circuit for apparatuses.
 この観点によれば、順方向における凝縮器のガス入口部よりも先に蓄冷剤が配置され、すなわち凝縮器よりも下流側に蓄冷剤が配置されている。よって、凝縮器によって凝縮された液状の作動流体を蓄冷剤と熱交換させることで、蓄冷剤に冷熱を蓄積させることができる。 According to this aspect, the cool storage agent is disposed before the gas inlet of the condenser in the forward direction, that is, the cool storage agent is disposed downstream of the condenser. Therefore, cold heat can be accumulated in the cold storage agent by exchanging heat between the liquid working fluid condensed by the condenser and the cold storage agent.
 また、他の観点では、第1の観点における機器温調装置において、順方向において、機器用熱交換器、ガス通路部、凝縮器、および液通路部は、この順に配置されている。また、機器用熱交換器は、液通路部の下方側の端部が接続される液入口部を有し、凝縮器は、ガス通路部の上方側の端部が接続されるガス入口部を有する。そして、蓄冷剤が、機器用流体回路において、順方向におけるガス入口部よりも先であって液入口部よりも手前に配置されている。 In another aspect, in the equipment temperature control apparatus according to the first aspect, the equipment heat exchanger, the gas passage section, the condenser, and the liquid passage section are arranged in this order in the forward direction. Further, the equipment heat exchanger has a liquid inlet portion to which the lower end portion of the liquid passage portion is connected, and the condenser has a gas inlet portion to which the upper end portion of the gas passage portion is connected. Have. And the cool storage agent is arrange | positioned in the fluid circuit for apparatuses ahead of the gas inlet part in the forward direction, and before this liquid inlet part.
 この観点によれば、順方向における凝縮器のガス入口部よりも先に蓄冷剤が配置され、すなわち凝縮器よりも下流側に蓄冷剤が配置されている。よって、凝縮器によって凝縮された液状の作動流体を蓄冷剤と熱交換させることで、蓄冷剤に冷熱を蓄積させることができる。さらに、順方向における機器用熱交換器の液入口部の手前に蓄冷剤が配置され、すなわち機器用熱交換器よりも上流側に蓄冷剤が配置されている。順方向における液通路部のうち凝縮器の液出口部から機器用熱交換器の液入口部に至る部分は、順方向において作動流体が上から下に向かう通路である。このため、該液入口部に至る部分に蓄冷剤が配置されていることで、蓄冷剤に蓄積された冷熱によってガス状の作動流体が液化して下に落ちることによって、作動流体の順方向の流れがより生じ易くなる。 According to this aspect, the cool storage agent is disposed before the gas inlet of the condenser in the forward direction, that is, the cool storage agent is disposed downstream of the condenser. Therefore, cold heat can be accumulated in the cold storage agent by exchanging heat between the liquid working fluid condensed by the condenser and the cold storage agent. Furthermore, the cool storage agent is disposed in front of the liquid inlet portion of the equipment heat exchanger in the forward direction, that is, the cool storage agent is disposed upstream of the equipment heat exchanger. Of the liquid passage portion in the forward direction, the portion from the liquid outlet portion of the condenser to the liquid inlet portion of the equipment heat exchanger is a passage in which the working fluid is directed from top to bottom in the forward direction. For this reason, by arranging the cool storage agent in the part leading to the liquid inlet, the gaseous working fluid is liquefied by the cold heat accumulated in the cool storage agent and falls down, so that the forward direction of the working fluid is reduced. Flow is more likely to occur.

Claims (14)

  1.  温調対象機器(BP)を冷却可能な機器温調装置であって、
     前記温調対象機器から吸熱して液状の作動流体を蒸発させることで前記温調対象機器を冷却する機器用熱交換器(2a)と、
     前記機器用熱交換器にて蒸発したガス状の作動流体を凝縮させる凝縮器(2c)と、
     前記機器用熱交換器にて蒸発したガス状の作動流体を前記凝縮器に導くガス通路部(2b)と、
     前記凝縮器にて凝縮した液状の作動流体を前記機器用熱交換器に導く液通路部(2d)と、を含んで構成される環状の機器用流体回路(2)を有するとともに、
     熱媒体を前記凝縮器に供給することで該熱媒体と前記凝縮器の内部に存する前記作動流体とで熱交換させる放熱量調整部(31、BF)によって、前記作動流体の放熱量が調整され、
     前記機器用流体回路に配置され、前記作動流体の冷熱および前記熱媒体の冷熱の少なくとも一方を蓄積する蓄冷剤(CS)を有する機器温調装置。
    A device temperature control device capable of cooling a temperature control target device (BP),
    A heat exchanger for equipment (2a) that cools the temperature control target device by absorbing heat from the temperature control target device and evaporating the liquid working fluid;
    A condenser (2c) for condensing the gaseous working fluid evaporated in the equipment heat exchanger;
    A gas passage portion (2b) for guiding the gaseous working fluid evaporated in the equipment heat exchanger to the condenser;
    A liquid passage portion (2d) for guiding the liquid working fluid condensed in the condenser to the device heat exchanger, and an annular device fluid circuit (2) configured to include
    The heat dissipation amount of the working fluid is adjusted by a heat dissipation amount adjusting unit (31, BF) that exchanges heat between the heat medium and the working fluid existing inside the condenser by supplying the heat medium to the condenser. ,
    A device temperature control device having a cold storage agent (CS) that is disposed in the device fluid circuit and stores at least one of cold heat of the working fluid and cold heat of the heat medium.
  2.  前記蓄冷剤が、前記凝縮器と一体に構成されている請求項1に記載の機器温調装置。 The apparatus temperature control device according to claim 1, wherein the cold storage agent is configured integrally with the condenser.
  3.  前記蓄冷剤が、前記凝縮器の下流側かつ前記機器用熱交換器の上流側に配置されている請求項1に記載の機器温調装置。 The equipment temperature control device according to claim 1, wherein the cold storage agent is disposed on the downstream side of the condenser and on the upstream side of the equipment heat exchanger.
  4.  前記蓄冷剤が、前記ガス通路部において、前記ガス通路部の最上部よりも下流側に配置されている請求項1に記載の機器温調装置。 The apparatus temperature control device according to claim 1, wherein the cold storage agent is disposed in the gas passage portion on the downstream side of the uppermost portion of the gas passage portion.
  5.  前記蓄冷剤が、前記機器用熱交換器に配置されている請求項1に記載の機器温調装置。 The equipment temperature control device according to claim 1, wherein the cold storage agent is disposed in the equipment heat exchanger.
  6.  前記蓄冷剤が、前記ガス通路部において、前記ガス通路部の最上部よりも上流側に配置されている請求項1に記載の機器温調装置。 The apparatus temperature control device according to claim 1, wherein the cold storage agent is disposed in the gas passage portion on the upstream side of the uppermost portion of the gas passage portion.
  7.  前記蓄冷剤が、前記凝縮器と一体に構成されている請求項1に記載の機器温調装置。 The apparatus temperature control device according to claim 1, wherein the cold storage agent is configured integrally with the condenser.
  8.  前記放熱量調整部は、前記凝縮器の内部に存する前記作動流体との間で熱交換することで該作動流体を冷却する熱媒体を流すための流路である熱媒体流路(31a)を有する冷凍サイクル(31)である請求項1ないし7のいずれか1つに記載の機器温調装置。 The heat dissipation amount adjustment unit includes a heat medium flow path (31a) that is a flow path for flowing a heat medium that cools the working fluid by exchanging heat with the working fluid existing inside the condenser. It is a refrigerating cycle (31) which has, The apparatus temperature control apparatus as described in any one of Claim 1 thru | or 7.
  9.  前記冷凍サイクルは、第1冷凍サイクルであり、
     前記第1冷凍サイクルは、圧縮機(3a)によって作動する第2冷凍サイクル(32)を備える空調装置の前記圧縮機によって作動する請求項8に記載の機器温調装置。
    The refrigeration cycle is a first refrigeration cycle;
    The apparatus temperature control device according to claim 8, wherein the first refrigeration cycle is operated by the compressor of an air conditioner including a second refrigeration cycle (32) operated by a compressor (3a).
  10.  前記放熱量調整部は、前記凝縮器の内部に存する前記作動流体との間で熱交換することで該作動流体を冷却する送風空気を送風する送風機(BF)であり、
     前記凝縮器の内部に存する前記作動流体との間で熱交換することで該作動流体を冷却する熱媒体を流すための流路である熱媒体流路を有する請求項1ないし7のいずれか1つに記載の機器温調装置。
    The heat dissipation amount adjustment unit is a blower (BF) that blows blown air that cools the working fluid by exchanging heat with the working fluid existing inside the condenser.
    The heat medium flow path which is a flow path for flowing the heat medium which cools this working fluid by exchanging heat with the said working fluid which exists in the inside of the said condenser. Equipment temperature control device as described in one.
  11.  前記蓄冷剤の少なくとも一部が、前記作動流体との間に前記熱媒体流路を介さずに、配置されている請求項8または10に記載の機器温調装置。 The apparatus temperature control device according to claim 8 or 10, wherein at least a part of the cold storage agent is disposed between the working fluid and the heat medium passage without being interposed.
  12.  前記蓄冷剤の少なくとも一部が、前記凝縮器における前記作動流体の流路(P1)と前記熱媒体流路(P2)の間に、配置されている請求項8または10に記載の機器温調装置。 The apparatus temperature control according to claim 8 or 10, wherein at least a part of the cold storage agent is disposed between the flow path (P1) of the working fluid and the heat medium flow path (P2) in the condenser. apparatus.
  13.  前記蓄冷剤が、水が循環して流れる水循環路(4)を流れる前記水である請求項1ないし7のいずれか1つに記載の機器温調装置。 The device temperature control device according to any one of claims 1 to 7, wherein the cold storage agent is the water flowing through a water circulation path (4) through which water circulates.
  14.  前記温調対象機器が、複数の電池セル(BC)を有する組電池(BP)である請求項1ないし13のいずれか1つに記載の機器温調装置。 The device temperature control device according to any one of claims 1 to 13, wherein the temperature control target device is a battery pack (BP) having a plurality of battery cells (BC).
PCT/JP2017/033313 2016-10-11 2017-09-14 Appliance temperature regulating apparatus WO2018070182A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016200226A JP2019215090A (en) 2016-10-11 2016-10-11 Device temperature regulation apparatus
JP2016-200226 2016-10-11

Publications (1)

Publication Number Publication Date
WO2018070182A1 true WO2018070182A1 (en) 2018-04-19

Family

ID=61906169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033313 WO2018070182A1 (en) 2016-10-11 2017-09-14 Appliance temperature regulating apparatus

Country Status (2)

Country Link
JP (1) JP2019215090A (en)
WO (1) WO2018070182A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021085614A (en) * 2019-11-28 2021-06-03 学校法人慶應義塾 Cooling device and cooling method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300471A (en) * 1993-04-12 1994-10-28 Fujikura Ltd Cooling device of heat storage type heat pipe system
JPH10238972A (en) * 1997-02-24 1998-09-11 Hitachi Ltd Heat transfer unit
JP2001201282A (en) * 2000-01-18 2001-07-27 Hitachi Ltd Radiator
JP2015041418A (en) * 2013-08-20 2015-03-02 トヨタ自動車株式会社 Battery temperature adjusting device
JP2015230907A (en) * 2014-06-03 2015-12-21 株式会社東芝 Cooling device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300471A (en) * 1993-04-12 1994-10-28 Fujikura Ltd Cooling device of heat storage type heat pipe system
JPH10238972A (en) * 1997-02-24 1998-09-11 Hitachi Ltd Heat transfer unit
JP2001201282A (en) * 2000-01-18 2001-07-27 Hitachi Ltd Radiator
JP2015041418A (en) * 2013-08-20 2015-03-02 トヨタ自動車株式会社 Battery temperature adjusting device
JP2015230907A (en) * 2014-06-03 2015-12-21 株式会社東芝 Cooling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021085614A (en) * 2019-11-28 2021-06-03 学校法人慶應義塾 Cooling device and cooling method
JP7399692B2 (en) 2019-11-28 2023-12-18 慶應義塾 Cooling device and cooling method

Also Published As

Publication number Publication date
JP2019215090A (en) 2019-12-19

Similar Documents

Publication Publication Date Title
JP6604442B2 (en) Equipment temperature controller
JP5748000B2 (en) Cooling device for electrical equipment
JP6593544B2 (en) Equipment temperature controller
JP6579276B2 (en) Equipment temperature controller
WO2018168276A1 (en) Device temperature adjusting apparatus
JP2019016584A (en) Device temperature adjusting apparatus
WO2018047533A1 (en) Device temperature adjusting apparatus
JP6575690B2 (en) Equipment temperature controller
JP5737424B2 (en) Cooling device for electrical equipment
WO2018047534A1 (en) Instrument temperature adjustment device
JP6604441B2 (en) Method for manufacturing apparatus temperature control device and method for filling working fluid
JP2014029232A (en) Cooling device
JP6601567B2 (en) Equipment temperature controller
WO2018047538A1 (en) Device temperature control system
US20190214695A1 (en) Device temperature controller
WO2018055926A1 (en) Device temperature adjusting apparatus
JP2019035572A (en) Equipment temperature adjustment device
WO2013084472A1 (en) Heat utilization system
WO2018070182A1 (en) Appliance temperature regulating apparatus
WO2019123881A1 (en) Device temperature adjusting apparatus
WO2019039129A1 (en) Device temperature regulating apparatus
WO2019054076A1 (en) Device temperature adjustment apparatus
JP2013105879A (en) Cooling device for electrical apparatus
JP2019095103A (en) Apparatus temperature adjustment device
WO2019146262A1 (en) Thermosiphon cooling device for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17859586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17859586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP