WO2018047534A1 - Instrument temperature adjustment device - Google Patents

Instrument temperature adjustment device Download PDF

Info

Publication number
WO2018047534A1
WO2018047534A1 PCT/JP2017/028058 JP2017028058W WO2018047534A1 WO 2018047534 A1 WO2018047534 A1 WO 2018047534A1 JP 2017028058 W JP2017028058 W JP 2017028058W WO 2018047534 A1 WO2018047534 A1 WO 2018047534A1
Authority
WO
WIPO (PCT)
Prior art keywords
condenser
medium
heat exchange
evaporator
temperature control
Prior art date
Application number
PCT/JP2017/028058
Other languages
French (fr)
Japanese (ja)
Inventor
義則 毅
山中 隆
加藤 吉毅
竹内 雅之
功嗣 三浦
康光 大見
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018047534A1 publication Critical patent/WO2018047534A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • This disclosure relates to a device temperature control device that adjusts the temperature of a target device.
  • thermosiphon as a device temperature control device for adjusting the temperature of an electrical device such as a power storage device mounted on an electric vehicle such as an electric vehicle or a hybrid vehicle has been studied.
  • an evaporator provided on a side surface of a battery as a power storage device and a condenser provided above the evaporator are connected in an annular shape by two pipes, A refrigerant as a working fluid is enclosed in the inside.
  • the liquid-phase refrigerant in the evaporator boils, and the battery is cooled by the latent heat of evaporation at that time.
  • the gas-phase refrigerant generated by the evaporator flows through the gas-phase passage formed by one of the two pipes and flows into the condenser.
  • the gas-phase refrigerant is condensed by heat exchange with a medium outside the condenser.
  • the liquid phase refrigerant generated by the condenser flows by gravity through a liquid phase passage formed by the other pipe of the two pipes, and flows into the evaporator.
  • the battery as the target device is cooled by such natural circulation of the refrigerant.
  • an apparatus temperature control apparatus includes the whole apparatus which adjusts the temperature of an object apparatus by a thermosiphon system. That is, the device temperature control device includes both a device that only cools the target device, a device that performs only heating, and a device that performs both cooling and heating of the target device.
  • the device temperature control apparatus described in Patent Document 1 described above includes only one condenser. For this reason, when the heat generation amount of the battery increases, it is conceivable that the liquid phase refrigerant necessary for cooling the battery is not sufficiently supplied from the condenser to the evaporator.
  • the equipment temperature control device is provided with a plurality of condensers, a plurality of condensers are installed so that the refrigerant that has become a liquid phase in one condenser is not reheated in the other condenser. It is preferable to appropriately set the temperature of the environment to be used, the position where the plurality of condensers are arranged, the size of the flow paths of the plurality of condensers, and the like.
  • the apparatus temperature control apparatus described in Patent Document 1 causes the liquid-phase refrigerant in the evaporator to boil due to the heat generated by the battery, and when the gas-phase refrigerant is generated as bubbles in the liquid-phase refrigerant, Some of the bubbles flow into the liquid phase passage and may reverse the flow of the liquid phase refrigerant due to buoyancy. If the bubbles enter the condenser and the generation of the liquid refrigerant in the condenser is hindered, the liquid refrigerant is not smoothly supplied from the condenser to the evaporator via the liquid passage, and the cooling capacity of the battery is reduced. There is concern about the decline.
  • This disclosure is intended to provide an apparatus temperature control device that can improve the cooling capacity by smoothing the flow of the working fluid.
  • the device temperature control device is a device temperature control device that adjusts the temperature of the target device, and includes an evaporator, a first condenser, and a second condenser.
  • the evaporator cools the target device by latent heat of vaporization of the working fluid that absorbs heat from the target device and evaporates.
  • the first condenser is provided above the evaporator in the direction of gravity, and has a first heat exchange passage that condenses the working fluid evaporated by the evaporator by heat exchange with the first medium outside.
  • the second condenser is provided above the evaporator in the gravitational direction, and has a second heat exchange passage that condenses the working fluid flowing in from the first condenser by heat exchange with the second medium outside.
  • the discharged working fluid flows out toward the evaporator.
  • the second heat exchange passage of the second condenser has a smaller cross-sectional area or equivalent diameter than the first heat exchange passage of the first condenser.
  • the second heat exchange passage has higher heat exchange efficiency than the first heat exchange passage, and the amount of liquid-phase working fluid generated is large. Further, the second heat exchange passage has a larger flow resistance than the first heat exchange passage. Therefore, when the liquid-phase working fluid is accumulated from the second heat exchange passage to the first heat exchange passage, the liquid-phase working fluid in the first heat exchange passage is self-weighted and the liquid-phase working fluid in the second heat exchange passage Is pushed to the evaporator side, so that the pressure of the liquid-phase working fluid from the first condenser and the second heat condenser toward the evaporator increases. Therefore, the back flow of the liquid-phase working fluid or the back flow of bubbles is suppressed from the evaporator side, and the working fluid flows smoothly in the forward direction.
  • the working fluid condensed in the first heat exchange passage is reheated in the second heat exchange passage and bubbles are generated, the bubbles enter the first heat exchange passage from the second heat exchange passage by buoyancy. It is possible. Also in this case, since the first heat exchange passage has a larger channel cross-sectional area or equivalent diameter than the second heat exchange passage, bubbles that have entered the first heat exchange passage from the second heat exchange passage It is quickly discharged from the passage to the upstream side. Therefore, the liquid-phase working fluid flows smoothly through the first heat exchange passage and the second heat exchange passage. Therefore, this equipment temperature control apparatus can improve the cooling capacity of the target equipment.
  • path which a 2nd condenser has should just have a flow-path cross-sectional area or an equivalent diameter smaller than the 1st heat exchange channel
  • the first medium outside the first condenser and the second medium outside the second condenser are different media.
  • the first medium and the second medium at different temperatures. Therefore, for example, when the calorific value of the target device is large, use the medium having the lower temperature of the first medium and the second medium to increase the amount of liquid-phase working fluid generated, and sufficiently cool the target device. Is possible. On the other hand, when the calorific value of the target device is small, it is possible to cool the target device to an appropriate temperature using a medium having a relatively high temperature of the first medium and the second medium. Therefore, this device temperature control device can adjust the temperature according to the calorific value of the target device.
  • an apparatus temperature control apparatus is provided with an evaporator, a 1st condenser, a 2nd condenser, a 1st medium supply apparatus, and a 2nd medium supply apparatus.
  • the first medium supply device supplies the first medium to the first condenser.
  • the second medium supply device supplies the second medium to the second condenser.
  • the second medium supply device is configured to be able to set the second medium to a temperature lower than that of the first medium.
  • this equipment temperature control apparatus can improve the cooling capacity of the target equipment.
  • the device temperature control device of the present embodiment cools an electrical device such as a power storage device or an electronic circuit mounted on an electric vehicle such as an electric vehicle or a hybrid vehicle, and adjusts the temperature of those target devices.
  • the arrow which shows up and down shows the gravity direction up and down when the apparatus temperature control apparatus is mounted in a vehicle and the vehicle has stopped on the horizontal surface.
  • a target device whose temperature is adjusted by the device temperature adjustment device 1 of the present embodiment is an assembled battery 2 (hereinafter referred to as “battery”).
  • the target device may be a battery pack including the battery 2 and a power converter (not shown).
  • the battery 2 is used as a power source for vehicles that can be driven by an electric motor for traveling, such as an electric vehicle and a hybrid vehicle.
  • the battery 2 is configured by a stacked body in which a plurality of rectangular parallelepiped battery cells 21 are stacked.
  • the plurality of battery cells 21 constituting the battery 2 are electrically connected in series.
  • the battery cell 21 is comprised by the secondary battery which can be charged / discharged, such as a lithium ion battery or a lead acid battery, for example.
  • the battery cell 21 is not limited to a rectangular parallelepiped shape, and may have another shape such as a cylindrical shape.
  • the battery 2 may be comprised including the battery cell 21 electrically connected in parallel.
  • the battery 2 is connected to a power conversion device and a motor generator (not shown) included in the vehicle.
  • the power conversion device is a device that converts, for example, a direct current supplied from the battery 2 into an alternating current, and discharges the converted alternating current to various electric loads such as a traveling electric motor.
  • the motor generator is a device that reversely converts the traveling energy of the vehicle into electric energy during regenerative braking of the vehicle and supplies the reversely converted electric energy as regenerative power to the battery 2 via an inverter or the like.
  • the battery 2 may self-heat when power is supplied while the vehicle is running, and the battery 2 may become excessively hot.
  • the battery 2 becomes excessively high in temperature, deterioration of the battery cell 21 is promoted. Therefore, it is necessary to limit output and input so that self-heating is reduced. Therefore, in order to ensure the output and input of the battery cell 21, a cooling means for maintaining the temperature below a predetermined temperature is required.
  • the power storage device including the battery 2 is often arranged under the floor of the vehicle or under the trunk room. Therefore, the temperature of the battery 2 gradually rises not only when the vehicle is running but also during parking in the summer, and the battery 2 may become excessively hot. If the battery 2 is left in a high temperature environment, the battery 2 will deteriorate and its life will be greatly reduced. Therefore, it is desirable to keep the temperature of the battery 2 below a predetermined temperature even during parking of the vehicle. It is rare.
  • the battery 2 since the battery 2 includes a structure in which the battery cells 21 are electrically connected in series, the input / output characteristics of the entire battery are determined according to the battery cell 21 that has undergone the most deterioration among the battery cells 21. . Therefore, if the temperature of each battery cell 21 varies, the degree of progress of the deterioration of each battery cell 21 is biased, and the input / output characteristics of the entire battery are degraded. For this reason, in order for the battery 2 to exhibit desired performance for a long period of time, it is important to equalize the temperature so as to reduce the temperature variation of each battery cell 21.
  • an air-cooling cooling means using a blower a cooling means using cooling water, or a cooling means using a vapor compression refrigeration cycle is employed.
  • the air-cooled cooling means using the blower only blows air inside or outside the vehicle to the battery 2, a cooling capacity sufficient to sufficiently cool the battery 2 may not be obtained.
  • the cooling means using air cooling and cooling water may cause variations in the cooling temperature of the battery cell 21 on the upstream side of the flow of air or cooling water and the cooling temperature of the battery cell 21 on the downstream side.
  • the cooling means using the cold heat of the refrigeration cycle has a high cooling capacity of the battery 2, it is necessary to drive a compressor or the like that consumes a large amount of power while the vehicle is parked. This leads to an increase in power consumption and noise.
  • the apparatus temperature control device 1 of the present embodiment employs a thermosiphon system in which the temperature of the battery 2 is adjusted by natural circulation of the refrigerant, instead of forcibly circulating the refrigerant as the working fluid by the compressor.
  • the device temperature control device 1 includes an evaporator 3, a first condenser 41, a second condenser 42, a gas phase passage 5, a liquid phase passage 6, and the like, and these constituent members are connected to each other. As a result, a loop-type thermosiphon is configured.
  • the apparatus temperature control device 1 is filled with a predetermined amount of refrigerant in a state where the inside thereof is evacuated.
  • refrigerants such as R134a, R1234yf, carbon dioxide, or water can be employed as the refrigerant.
  • R134a, R1234yf Various refrigerants such as R134a, R1234yf, carbon dioxide, or water can be employed as the refrigerant.
  • the amount of the refrigerant is the state before the cooling of the battery 2 is started, and the liquid upper surface of the liquid phase refrigerant It is preferable that it is in the middle.
  • coolant circulates in the direction of the arrow of the broken line of FIG. 1, the liquid upper surface of a liquid phase refrigerant will change according to it.
  • the evaporator 3 is a sealed case, is formed in a flat shape, and is provided at a position facing the lower surface of the battery 2.
  • the evaporator 3 is preferably formed of a material having excellent thermal conductivity such as aluminum or copper.
  • the evaporator 3 only needs to be provided so as to be able to transfer heat to the plurality of battery cells 21, and may be provided at a position facing the side surface or the upper surface of the battery 2, for example. Further, the shape and size of the evaporator 3 can be arbitrarily set according to the space mounted on the vehicle.
  • the evaporator 3 has a fluid chamber 30 inside. It is preferable that the fluid chamber 30 is filled with a liquid-phase refrigerant before the battery 2 starts cooling. In practice, a liquid phase refrigerant and a gas phase refrigerant may be included. When the battery 2 self-heats due to power storage or discharge, heat is transferred from the battery 2 to the evaporator 3, and the liquid phase refrigerant in the fluid chamber 30 absorbs the heat and evaporates. At that time, evaporation of the liquid-phase refrigerant occurs in the entire fluid chamber 30, and the plurality of battery cells 21 are cooled substantially uniformly by the latent heat of evaporation. Therefore, the evaporator 3 can reduce the temperature variation between the plurality of battery cells 21 to equalize and cool the plurality of battery cells 21.
  • the battery 2 cannot obtain a sufficient function at a high temperature, and may be deteriorated or damaged.
  • the input / output characteristics of the entire battery are determined in accordance with the characteristics of the battery cell 21 that is most deteriorated. Therefore, the evaporator 3 can make the battery 2 exhibit desired performance for a long period of time by equalizing and cooling the plurality of battery cells 21 by cooling using latent heat of evaporation. .
  • the vapor phase passage 5 and the liquid phase passage 6 are connected to the evaporator 3.
  • a location where the evaporator 3 and the liquid phase passage 6 are connected is referred to as a first opening 31, and a location where the evaporator 3 and the gas phase passage 5 are connected is referred to as a second opening 32.
  • the 1st opening part 31 and the 2nd opening part 32 are separated. Thereby, when the refrigerant circulates through the thermosiphon, a flow of the refrigerant from the first opening 31 toward the second opening 32 is formed in the evaporator 3.
  • both the first opening 31 and the second opening 32 are provided on the side surface of the evaporator 3, but the positions of the first opening 31 and the second opening 32 are not limited to the side surfaces.
  • the upper surface or the lower surface may be used.
  • Both the first condenser 41 and the second condenser 42 are provided above the evaporator 3 in the gravity direction.
  • the entire region of the first condenser 41 is disposed above the second condenser 42 in the gravity direction.
  • the vapor phase passage 5 connects the evaporator 3 and the first condenser 41.
  • the gas phase passage 5 has one end connected to the second opening 32 of the evaporator 3 and the other end connected to the first condenser 41.
  • the gas phase passage 5 can flow the gas phase refrigerant evaporated in the evaporator 3 to the first condenser 41.
  • the gas-phase passage 5 mainly flows through the gas-phase refrigerant, but a gas-liquid two-phase refrigerant or a liquid-phase refrigerant may flow therethrough.
  • the first condenser 41 has a function of condensing the refrigerant flowing through the internal flow path by heat exchange with a medium (not shown) outside the first condenser 41.
  • a medium outside the first condenser 41 is referred to as a first medium.
  • a connection passage 43 connects the first condenser 41 and the second condenser 42.
  • the liquid phase refrigerant condensed in the first condenser 41 passes through the connection passage 43 and flows into the second condenser 42.
  • the second condenser 42 also has a function of condensing the refrigerant flowing in the internal flow path by heat exchange with a medium (not shown) outside the second condenser 42.
  • a medium outside the second condenser 42 is referred to as a second medium.
  • the first medium and the second medium may be the same type of media or different types of media.
  • the liquid phase passage 6 connects the second condenser and the evaporator 3.
  • the liquid phase passage 6 has one end connected to the second condenser 42 and the other end connected to the first opening 31 of the evaporator 3.
  • the liquid phase passage 6 can flow the liquid phase refrigerant condensed by the first condenser 41 and the second condenser 42 to the evaporator 3 by gravity.
  • the liquid phase passage 6 mainly flows through the liquid phase refrigerant, a gas-liquid two-phase refrigerant or a gas phase refrigerant may flow therethrough.
  • the first condenser 41 includes a first upper tank 411, a plurality of first heat exchange tubes 412, a first lower tank 413, and the like.
  • the first condenser 41 is preferably formed of a material having excellent thermal conductivity such as aluminum or copper.
  • the shape and size of the first condenser 41 can be arbitrarily set according to the space mounted on the vehicle.
  • the first heat exchange tube 412 corresponds to a first heat exchange passage that condenses the gas-phase refrigerant by heat exchange with an external first medium.
  • a plurality of fins 414 are provided outside the first heat exchange tube 412.
  • the multiple first heat exchange tubes 412 extend along the direction of gravity. Thereby, a liquid phase refrigerant flows along the direction of gravity inside the plurality of first heat exchange tubes 412.
  • the vapor phase refrigerant supplied from the vapor phase passage 5 to the first upper tank 411 flows into the first heat exchange tubes 412 from the first upper tank 411.
  • the gas-phase refrigerant is condensed by heat exchange with the first medium outside the first condenser 41 when flowing through the plurality of first heat exchange tubes 412.
  • the liquid refrigerant generated in the plurality of first heat exchange tubes 412 flows into the first lower tank 413 due to its own weight.
  • the second condenser 42 also includes a second upper tank 421, a plurality of second heat exchange tubes 422, a second lower tank 423, and the like.
  • the second condenser 42 is also preferably formed of a material having excellent thermal conductivity such as aluminum or copper.
  • the shape and size of the second condenser 42 can be arbitrarily set according to the space mounted on the vehicle.
  • the second heat exchange tube 422 corresponds to a second heat exchange passage that condenses the gas-phase refrigerant by heat exchange with an external second medium.
  • a plurality of fins 424 are provided outside the second heat exchange tube 422.
  • the multiple second heat exchange tubes 422 extend along the direction of gravity. Thereby, a liquid phase refrigerant flows along the direction of gravity inside the plurality of second heat exchange tubes 422.
  • a connection passage 43 connects the first lower tank 413 of the first condenser 41 and the second upper tank 421 of the second condenser 42.
  • the liquid refrigerant that has passed through the first condenser 41 passes through the connection passage 43 and flows into the second upper tank 421 of the second condenser 42.
  • a part of the gas-phase refrigerant included in the flow of the liquid-phase refrigerant also flows into the second upper tank 421.
  • the refrigerant supplied from the connection passage 43 to the second upper tank 421 of the second condenser 42 flows from the second upper tank 421 into the plurality of second heat exchange tubes 422.
  • the gas phase refrigerant in the refrigerant is condensed by heat exchange with the second medium outside the second condenser 42 when flowing through the plurality of second heat exchange tubes 422.
  • the liquid refrigerant generated in the plurality of second heat exchange tubes 422 flows into the second lower tank 423 by its own weight.
  • the flow path cross-sectional area of the first heat exchange tube 412 included in the first condenser 41 is S1
  • the flow path cross-sectional area of the second heat exchange tube 422 included in the second condenser 42 is S2.
  • the number of first heat exchange tubes 412 included in the first condenser 41 is N1
  • the number of second heat exchange tubes 422 included in the second condenser 42 is N2.
  • the equivalent diameter of the first heat exchange tube 412 included in the first condenser 41 is D1
  • the equivalent diameter of the second heat exchange tube 422 included in the second condenser 42 is D2.
  • the first condenser 41 and the second condenser 42 have the following relationship.
  • the second heat exchange tube 422 included in the second condenser 42 has a flow path cross-sectional area or a larger area than the first heat exchange tube 412 included in the first condenser 41. It has a region with a small equivalent diameter.
  • the total cross-sectional area of the plurality of first heat exchange tubes 412 combined with the cross-sectional area of the plurality of first heat exchange tubes 412 is the same as the cross-sectional area of the plurality of second heat exchange tubes 422. It is larger than the total channel cross-sectional area.
  • the apparatus temperature control apparatus 1 of 1st Embodiment has the following effect by providing the structure mentioned above.
  • the second heat exchange tube 422 Since the second heat exchange tube 422 has a smaller channel cross-sectional area or equivalent diameter than the first heat exchange tube 412, as shown in the above formulas 1 and 3, the heat exchange efficiency is high. For this reason, the second heat exchange tube 422 generates more liquid refrigerant than the first heat exchange tube 412.
  • the total flow path cross-sectional area (S1 ⁇ N1) of the flow path cross-sectional areas S1 of the plurality of first heat exchange tubes 412 is the sum of the plurality of second heat exchange tubes 422. It is larger than the total channel cross-sectional area (S2 ⁇ N2) including the channel cross-sectional area S2. Therefore, the second heat exchange tube 422 has a larger flow path resistance than the first heat exchange tube 412.
  • the device temperature control device 1 can improve the cooling capacity of the battery 2.
  • the apparatus temperature control apparatus 1 of the first embodiment has a region where the first condenser 41 is located above the second condenser 42 in the gravity direction.
  • the liquid phase refrigerant generated in the first condenser 41 flows from the first condenser 41 to the second condenser 42 by its own weight. Therefore, since the liquid phase refrigerant smoothly flows from the first condenser 41 to the evaporator 3 via the second condenser 42, the back flow of the liquid phase refrigerant or the back flow of bubbles from the evaporator 3 side is suppressed. Therefore, the device temperature control device 1 can improve the cooling capacity of the battery 2.
  • the apparatus temperature control device 1 of the first embodiment includes a plurality of first heat exchange tubes 412 included in the first condenser 41 and a plurality of second heat exchange tubes 422 included in the second condenser 42. , Extending along the direction of gravity.
  • the first heat exchange tube 412 and the second heat exchange tube 422 can smoothly flow the liquid-phase refrigerant downward in the gravity direction by its own weight. Therefore, the device temperature control device 1 can improve the cooling capacity of the battery 2.
  • a second embodiment will be described.
  • the second embodiment is obtained by changing the arrangement of the first condenser 41 or the second condenser 42 with respect to the first embodiment, and is otherwise the same as the first embodiment, and therefore the first embodiment. Only different parts will be described.
  • the first condenser 41 is located above the second condenser 42 in the gravity direction.
  • a region where the first condenser 41 is located above the second condenser 42 in the gravity direction is indicated by an arrow ⁇ .
  • the liquid refrigerant generated in the first condenser 41 flows from the first condenser 41 to the second condenser 42 by its own weight. Therefore, since the liquid phase refrigerant smoothly flows in the forward direction from the first condenser 41 to the evaporator 3 via the second condenser 42, the reverse flow of the liquid phase refrigerant or the reverse flow of the bubbles is caused from the evaporator 3 side. It is suppressed. Therefore, the device temperature control device 1 can improve the cooling capacity of the battery 2.
  • the plurality of second heat exchange tubes 422 included in the second condenser 42 extend in a direction intersecting the direction of gravity.
  • the multiple first heat exchange tubes 412 included in the first condenser 41 extend along the direction of gravity. Therefore, the force by which the liquid refrigerant flows along the direction of gravity inside the plurality of first heat exchange tubes 412 increases.
  • the liquid refrigerant generated in the plurality of first heat exchange tubes 412 of the first condenser 41 has a greater force flowing along the direction of gravity due to its own weight, and is connected from the first lower tank 413. It flows to the second condenser 42 via the passage 43.
  • the liquid phase refrigerant generated in the plurality of second heat exchange tubes 422 flows into the second upper tank 421 or the second lower tank 423, and then passes through the liquid phase passage 6 to the evaporator. 3 flows smoothly. Thereby, the backflow of a liquid phase refrigerant
  • At least one of the plurality of first heat exchange tubes 412 of the first condenser 41 or the plurality of second heat exchange tubes 422 of the second condenser 42 is gravity. By extending along the direction, the cooling capacity of the battery 2 can be improved.
  • the plurality of first heat exchange tubes 412 included in the first condenser 41 extend in a direction crossing the gravity direction. Note that the first upper tank 411 and the first lower tank 413 of the first condenser 41 extend along the direction of gravity.
  • the plurality of second heat exchange tubes 422 included in the second condenser 42 extend along the direction of gravity. Therefore, the force by which the liquid refrigerant flows along the direction of gravity inside the plurality of second heat exchange tubes 422 increases.
  • the liquid-phase refrigerant generated by the plurality of first heat exchange tubes 412 included in the first condenser 41 flows from the first upper tank 411 to the first lower tank 413 and then passes through the connection passage 43. Via the second condenser 42.
  • the liquid refrigerant generated in the plurality of second heat exchange tubes 422 included in the second condenser 42 has a larger force flowing along the direction of gravity due to its own weight, and passes through the liquid phase passage 6 from the second condenser 42. And flows smoothly into the evaporator 3. Thereby, the backflow of a liquid phase refrigerant
  • At least one of the plurality of first heat exchange tubes 412 of the first condenser 41 or the plurality of second heat exchange tubes 422 of the second condenser 42 is gravity. By extending along the direction, the cooling capacity of the battery 2 can be improved.
  • 5th Embodiment changes the structure of the 1st condenser 41 and the 2nd condenser 42 with respect to 1st Embodiment, Since it is the same as that of 1st Embodiment about others, 1st Embodiment Only different parts will be described.
  • the first condenser 41 and the second condenser 42 are integrally formed. Specifically, as shown in FIG. 7, the first lower tank 413 of the first condenser 41 and the second upper tank 421 of the second condenser 42 are configured integrally in a continuous manner.
  • a plate-like separator 44 is provided between the first lower tank 413 of the first condenser 41 and the second upper tank 421 of the second condenser 42.
  • a hole 45 is provided in a part of the separator 44. Through this hole 45, the refrigerant flows between the first lower tank 413 of the first condenser 41 and the second upper tank 421 of the second condenser 42.
  • the first condenser 41 and the second condenser 42 are integrally configured to reduce the size of the first condenser 41 and to connect the first condenser 41 and the second condenser 42.
  • the passage 43 can be abolished, and the fear of heating or heat radiation by the connection passage 43 can be eliminated.
  • the number of parts can be reduced, the configuration can be simplified, and the manufacturing cost can be reduced.
  • the device temperature adjustment device 1 of the sixth embodiment includes a first blower 71 as an example of the first medium supply device 100, and a second blower 72 as an example of the second medium supply device 200. It has.
  • the first blower 71 supplies air as the first medium to the first condenser 41.
  • the second blower 72 also supplies air as the second medium to the second condenser 42.
  • the first blower 71 supplies vehicle exterior air to the first condenser 41 as a first medium at least in summer.
  • the vehicle exterior air flows outside the first condenser 41 and exchanges heat with the refrigerant flowing through the first condenser 41.
  • the second blower 72 supplies vehicle interior air to the second condenser 42 as the second medium at least in summer.
  • the vehicle interior air flows outside the second condenser 42 and exchanges heat with the refrigerant flowing through the second condenser 42.
  • the air in the vehicle interior is set at a lower temperature than the air outside the vehicle interior by the air conditioner.
  • the air in the passenger compartment as the second medium is at a lower temperature than the air outside the passenger compartment as the first medium. Therefore, the refrigerant condensed by the first condenser 41 can be prevented from being reheated by the second condenser 42. For this reason, since the generation of bubbles in the second condenser 42 is suppressed, the deterioration of the flow of the liquid-phase refrigerant due to the buoyancy of the bubbles is prevented.
  • the bubbles push up the liquid-phase refrigerant and the liquid-phase refrigerant is prevented from being blown up on the liquid upper surface of the first condenser 41 or the second condenser 42, and the bubbles burst there and generate abnormal noise. It is suppressed. Further, since the generation of bubbles in the second condenser 42 is suppressed, the liquid refrigerant is smoothly generated in the first condenser 41 and the second condenser 42, and the first condenser 41 and the second condenser 42 are generated. The liquid refrigerant is smoothly supplied from the two condenser 42 to the evaporator 3. Therefore, the device temperature control device 1 can improve the cooling capacity of the battery 2.
  • the device temperature adjustment device 1 of the seventh embodiment includes a first blower 71 and a first cold heat supply device 101 as an example of the first medium supply device 100.
  • the apparatus temperature control apparatus 1 is provided with the 2nd air blower 72 and the 2nd cold heat supply device 201 as an example of the 2nd medium supply apparatus 200.
  • the 1st cold heat supply device 101 and the 2nd cold heat supply device 201 are comprised by the low pressure side heat exchanger which comprises a refrigerating cycle, or the heat exchanger which comprises the circulating cycle of cooling water, etc., for example.
  • the first medium supply device 100 generates an air flow by the first blower 71 and causes the air that has passed through the first cold heat supply device 101 to flow to the first condenser 41 as the first medium. Thereby, the refrigerant
  • the first medium supply device 100 can adjust the temperature of the air as the first medium by adjusting the temperature of the first cold heat supply device 101.
  • the second medium supply device 200 generates an air flow by the second blower 72 and causes the air that has passed through the second cold heat supply device 201 to flow to the second condenser 42 as the second medium. Thereby, the refrigerant
  • the second medium supply device 200 can also adjust the temperature of the air as the second medium by adjusting the temperature of the second cold heat supply device 201.
  • the first medium supply device 100 and the second medium supply device 200 cool the refrigerant flowing through the second condenser 42 by lowering the temperature of the air as the second medium than the temperature of the air as the first medium. Is possible. Therefore, the seventh embodiment can also prevent the refrigerant condensed by the first condenser 41 from being reheated by the second condenser 42. In the seventh embodiment, the first medium and the second medium can be adjusted to desired temperatures.
  • the device temperature adjustment device 1 includes a first blower 71 as an example of the first medium supply device 100.
  • the first blower 71 supplies air as the first medium to the first condenser 41.
  • the air flows outside the first condenser 41 and exchanges heat with the refrigerant flowing through the first condenser 41.
  • the apparatus temperature control apparatus 1 is provided with the 2nd cold heat supply device 201 as an example of the 2nd medium supply apparatus 200.
  • the 2nd cold heat supply device 201 is comprised by the low pressure side heat exchanger which comprises a refrigerating cycle, or the heat exchanger which comprises the circulation cycle through which cooling water flows, for example.
  • the second cold heat supply device 201 is a low-pressure side heat exchanger constituting the refrigeration cycle
  • the second cold heat supply device 201 supplies the second condenser 42 with the cold heat of the refrigerant circulating in the refrigeration cycle as the second medium.
  • the 2nd cold heat supply device 201 when the 2nd cold heat supply device 201 is a heat exchanger which comprises the circulation cycle of a cooling water, the 2nd cold heat supply device 201 supplies the cold heat of a cooling water to the 2nd condenser 42 as a 2nd medium.
  • the refrigerant flowing through the second condenser 42 is cooled by heat conduction from the refrigerant or cooling water as the second medium.
  • the second cold heat supply device 201 can adjust the amount of cold heat supplied to the refrigerant flowing through the second condenser 42 by adjusting the output of the refrigeration cycle or the cooling water circulation cycle.
  • the 1st medium supply apparatus 100 and the 2nd medium supply apparatus 200 are the refrigerant
  • the first medium and the second medium are different types of media. According to this, it is possible to easily set the first medium and the second medium at different temperatures. Therefore, for example, when the amount of heat generated by the battery 2 is large, such as when the vehicle is traveling at high speed, it is possible to sufficiently cool the battery 2 using a low-temperature refrigerant or cooling water as the second medium. On the other hand, when the heat generation amount of the battery 2 is small, for example, when the vehicle is traveling in the city, the battery 2 is cooled to an appropriate temperature by using air having a relatively higher temperature than the second medium as the first medium. Is possible. Therefore, the device temperature control device 1 can adjust the temperature according to the amount of heat generated by the battery 2.
  • the first medium supply device 100 is a blower 71.
  • the second medium supply device 200 is a low-pressure side heat exchanger constituting a refrigeration cycle or a heat exchanger constituting a circulation cycle through which cooling water flows.
  • the battery 2 when the heat generation amount of the battery 2 is small, for example, when the vehicle travels in the city, the battery 2 is used compared to driving the refrigeration cycle or the like by using the blower as the first medium supply device 100. It is possible to reduce the power consumption required for cooling.
  • the second medium supply device 200 can set the temperature of the refrigerant or cooling water of the refrigeration cycle as the second medium to be lower than the temperature of the air as the first medium.
  • the device temperature adjustment device 1 can reduce the power consumption required for cooling the battery 2 and can adjust the temperature according to the amount of heat generated by the battery 2.
  • the device temperature adjustment device 1 of the ninth embodiment includes a cooling water circulation cycle 8 as an example of the first medium supply device 100.
  • the cooling water circulation cycle 8 includes a first medium circulation circuit 111 in which a pump 81, a blower 82, an air cooling radiator 83, a heat exchanger 84, and the like are connected in a ring shape by a pipe 85, and the cooling water circulates. It is a thing.
  • the pump 81 circulates cooling water through the pipe 85.
  • the blower 82 causes an air flow to flow to the air cooling radiator 83.
  • the heat exchanger 84 corresponds to the first cold heat supply device 101.
  • the cooling water flowing through the heat exchanger 84 exchanges heat with the refrigerant flowing through the first condenser 41 and cools the refrigerant flowing through the second condenser 42.
  • the cooling water absorbed by the heat exchanger 84 flows to the air cooling radiator 83.
  • the device temperature adjustment device 1 includes a refrigeration cycle 9 as an example of the second medium supply device 200.
  • the refrigeration cycle 9 includes a compressor 91, a high-pressure side heat exchanger 92, an expansion valve 93, a low-pressure side heat exchanger 94, and the like that are annularly connected by a pipe 95 to circulate the refrigerant. Is configured.
  • the first medium circulation circuit 111 and the second medium circulation circuit 211 described above are separate and independent.
  • refrigerant used in the refrigeration cycle 9 may be the same as or different from the refrigerant as the working fluid used in the device temperature control apparatus 1.
  • the compressor 91 sucks and compresses the refrigerant from the low-pressure side heat exchanger 94 side.
  • the compressor 91 is driven by power transmitted from a traveling engine or an electric motor of the vehicle (not shown).
  • the high-pressure gas-phase refrigerant discharged from the compressor 91 flows into the high-pressure side heat exchanger 92.
  • the high-pressure gas-phase refrigerant flowing into the high-pressure side heat exchanger 92 flows through the flow path of the high-pressure side heat exchanger 92, the high-pressure gas-phase refrigerant is cooled and condensed by heat exchange with outside air by a blower (not shown).
  • the liquid-phase refrigerant condensed in the high-pressure side heat exchanger 92 is depressurized when passing through the expansion valve 93, becomes a mist-like gas-liquid two-phase state, and flows into the low-pressure side heat exchanger 94.
  • the expansion valve 93 is configured by a fixed throttle such as an orifice or a nozzle, or an appropriate variable throttle.
  • the low-pressure side heat exchanger 94 corresponds to the second cold heat supply device 201.
  • the low pressure side heat exchanger 94 cools the refrigerant flowing through the second condenser 42 by the evaporation heat of the refrigerant flowing through the inside.
  • the refrigerant that has passed through the low-pressure side heat exchanger 94 is sucked into the compressor 91 via an accumulator (not shown).
  • the second medium supply device 200 is configured so that the refrigerant flowing through the second condenser 42 is more than the amount of cold supplied to the refrigerant flowing through the first condenser 41 by adjusting the output of the cooling water circulation cycle 8 or adjusting the output of the refrigeration cycle 9. It is possible to increase the amount of cooling heat supplied to. Thereby, the refrigerant flowing through the second condenser 42 is cooled more than the refrigerant flowing through the first condenser 41. Therefore, also in the ninth embodiment, the refrigerant condensed by the first condenser 41 can be prevented from being reheated by the second condenser 42.
  • the cooling water as the first medium and the refrigerant of the refrigeration cycle 9 as the second medium are different media. According to this, it is possible to easily set the temperatures of the first medium and the second medium to different temperatures. Therefore, the device temperature control device 1 can adjust the temperature according to the amount of heat generated by the battery 2.
  • the first medium circulation circuit 111 for circulating the cooling water as the first medium and the second medium circulation circuit 211 for circulating the refrigerant as the second medium are separate and independent circuits. According to this, it is possible to prevent the temperature of the first medium and the temperature of the second medium from affecting each other. Therefore, the amount of cold supplied to the refrigerant flowing through the first condenser 41 by the first medium supply device 100 is appropriately adjusted, and the amount of cold supplied to the refrigerant flowing through the second condenser 42 by the second medium supply device 200. Can be adjusted appropriately.
  • the first medium supply device 100 and the second medium supply device 200 included in the device temperature adjustment device 1 are configured by the same refrigeration cycle 9.
  • a first low-pressure side heat exchanger 941 corresponding to the first cold heat supply device 101 and a second low-pressure side heat exchanger 942 corresponding to the second cold heat supply device 201 are connected in parallel. Yes.
  • the refrigeration cycle 9 includes a compressor 91, a high pressure side heat exchanger 92, a first flow rate adjustment valve 961, a first expansion valve 931, a first low pressure side heat exchanger 941, a second flow rate adjustment valve 962,
  • the second expansion valve 932 and the second low-pressure side heat exchanger 942 are connected in a ring shape by a pipe 95 to constitute a circulation circuit in which the refrigerant circulates.
  • the compressor 91 and the high pressure side heat exchanger 92 are substantially the same as those described in the ninth embodiment.
  • the liquid-phase refrigerant condensed in the high-pressure side heat exchanger 92 flows separately through the branched pipes 951 and 952 to the first low-pressure side heat exchanger 941 side and the second low-pressure side heat exchanger 942 side.
  • a pipe 951 on the first low pressure side heat exchanger 941 side is provided with a first flow rate adjustment valve 961 for adjusting the flow rate of the refrigerant.
  • the liquid-phase refrigerant that has passed through the first flow rate adjustment valve 961 is reduced in pressure when passing through the first expansion valve 931, becomes a mist-like gas-liquid two-phase state, and flows into the first low-pressure side heat exchanger 941.
  • the first low-pressure side heat exchanger 941 corresponds to the first cold heat supply device 101.
  • the first low-pressure side heat exchanger 941 is provided so as to be able to exchange heat with the refrigerant flowing through the first condenser 41 of the device temperature control device 1.
  • the low-pressure refrigerant flowing through the flow path of the first low-pressure side heat exchanger 941 absorbs heat from the refrigerant flowing through the first condenser 41 of the device temperature control device 1 and evaporates.
  • the refrigerant flowing through the first condenser 41 of the device temperature control apparatus 1 is cooled and condensed by the latent heat of vaporization of the low-pressure refrigerant flowing through the flow path of the first low-pressure side heat exchanger 941.
  • the refrigerant that has passed through the first low-pressure side heat exchanger 941 is sucked into the compressor 91 via an accumulator (not shown).
  • a second flow rate adjusting valve 962 for adjusting the flow rate of the refrigerant is also provided in the pipe 952 on the second low pressure side heat exchanger 942 side.
  • the liquid-phase refrigerant that has passed through the second flow rate adjustment valve 962 is depressurized when passing through the second expansion valve 932, enters a second gas-liquid two-phase state, and flows into the second low-pressure side heat exchanger 942.
  • the second low-pressure side heat exchanger 942 corresponds to the second cold heat supply device 201.
  • the second low-pressure side heat exchanger 942 is provided so as to be able to exchange heat with the refrigerant flowing through the second condenser 42 of the device temperature control device 1.
  • the low-pressure refrigerant flowing through the flow path of the second low-pressure side heat exchanger 942 absorbs heat from the refrigerant flowing through the second condenser 42 of the device temperature control device 1 and evaporates.
  • the refrigerant flowing through the second condenser 42 of the device temperature control apparatus 1 is cooled and condensed by the latent heat of vaporization of the low-pressure refrigerant flowing through the flow path of the second low-pressure side heat exchanger 942.
  • the refrigerant that has passed through the second low-pressure side heat exchanger 942 is also sucked into the compressor 91 via an accumulator (not shown).
  • the first flow rate adjustment valve 961 and the second flow rate adjustment valve 962 included in the refrigeration cycle 9 are used to change the amount of cold supplied to the refrigerant flowing through the first condenser 41 and the refrigerant flowing through the second condenser 42. It is possible to adjust the amount of cold supplied.
  • the flow rate adjustment of the first flow rate adjustment valve 961 and the second flow rate adjustment valve 962 is performed by adjusting the on / off time. By adjusting the output of the refrigeration cycle 9 as described above, the amount of cold supplied to the refrigerant flowing through the second condenser 42 can be made larger than the amount of cold supplied to the refrigerant flowing through the first condenser 41.
  • the refrigerant flowing through the second condenser 42 is cooled more than the refrigerant flowing through the first condenser 41. Therefore, also in the tenth embodiment, the refrigerant condensed by the first condenser 41 can be prevented from being reheated by the second condenser 42.
  • the first and second low-pressure heat exchangers 941 and 942 constituting the refrigeration cycle 9 are used as the first and second cold heat supply devices 101 and 201, respectively. It is possible to increase the refrigerant condensing capacity of both 41 and the second condenser 42. Further, by using the first and second low-pressure heat exchangers 941 and 942 of the refrigeration cycle 9 of the air conditioner mounted on the vehicle as the first and second cold heat supply devices 101 and 201, respectively, the device temperature control is performed. The configuration of the device 1 can be simplified.
  • the apparatus temperature control apparatus 1 of 11th Embodiment is provided with the 1st air blower 71 as an example of the 1st medium supply apparatus 100.
  • the apparatus temperature control apparatus 1 is equipped with what is called a secondary loop structure by the circulating cycle 8 and the refrigerating cycle 9 of a cooling water as an example of the 2nd medium supply apparatus 200.
  • FIG. The heat exchanger 84 constituting the cooling water circulation cycle 8 corresponds to the second cold heat supply device 201.
  • the cooling water circulation cycle 8 has a pump 81, a heat exchanger 84, a radiator 83, and the like connected in a ring shape by a pipe 85.
  • the radiator 83 of the cooling water circulation cycle 8 is configured to be able to exchange heat with the low-pressure heat exchanger 94 constituting the refrigeration cycle 9.
  • the compressor 91, the high-pressure side heat exchanger 92, the expansion valve 93, and the low-pressure side heat exchanger 94 constituting the refrigeration cycle 9 are substantially the same as those described in the ninth embodiment.
  • the cooling water flowing through the second cold heat supply device 201 is cooled by the low pressure side heat exchanger 94 constituting the refrigeration cycle 9.
  • the second cold heat supply device 201 can adjust the amount of cold supplied from the second cold heat supply device 201 to the refrigerant flowing through the second condenser 42 by adjusting the output of the refrigeration cycle 9 or the like.
  • the eleventh embodiment can also provide the same operational effects as the eighth embodiment.
  • the device temperature adjustment device 1 cools the battery 2 of the vehicle.
  • the target device cooled by the device temperature adjustment device 1 may be various types of vehicles. It may be an equipment device.
  • the device temperature adjustment device 1 is configured to cool the battery 2, but in other embodiments, the device temperature adjustment device 1 may be configured to heat the battery 2.
  • the evaporator 3 condenses the refrigerant, and the condensers 41 and 42 evaporate the refrigerant.
  • the evaporator 3 is configured as a flat case, but in other embodiments, the evaporator 3 may include a heat exchange tube.
  • the device temperature adjustment device 1 is provided with two condensers. However, in other embodiments, the device temperature adjustment device 1 is provided with three or more condensers. Also good.
  • the first medium supply device 100 or the second medium supply device 200 the cooling water circulation cycle 8, the refrigeration cycle 9, the blowers 71 and 72, and the like are illustrated, but the present invention is not limited thereto.
  • the first medium supply device 100 or the second medium supply device 200 is applied with various devices such as a thermo module having a Peltier element or a cooling body that generates a refrigeration action magnetically. Also good.
  • an apparatus temperature control apparatus is an apparatus temperature control apparatus which adjusts the temperature of object apparatus, and is an evaporator, a 1st condenser, and 1st.
  • Two condensers are provided.
  • the evaporator cools the target device by latent heat of vaporization of the working fluid that absorbs heat from the target device and evaporates.
  • the first condenser is provided above the evaporator in the direction of gravity, and has a first heat exchange passage that condenses the working fluid evaporated by the evaporator by heat exchange with the first medium outside.
  • the second condenser is provided above the evaporator in the gravitational direction, and has a second heat exchange passage that condenses the working fluid flowing in from the first condenser by heat exchange with the second medium outside.
  • the discharged working fluid flows out toward the evaporator.
  • the second heat exchange passage of the second condenser has a smaller cross-sectional area or equivalent diameter than the first heat exchange passage of the first condenser.
  • the first condenser has a plurality of first heat exchange passages
  • the second condenser has a plurality of second heat exchange passages.
  • the total channel cross-sectional area of the plurality of first heat exchange passages combined with the channel cross-sectional area is larger than the total channel cross-sectional area of the plurality of second heat exchange passages combined.
  • the liquid-phase working fluid in the first heat exchange passage is self-weighted and the liquid phase in the second heat exchange passage Since the working fluid is pushed to the evaporator side, the pressure of the flow of the liquid-phase working fluid toward the evaporator from the first condenser and the second condenser increases. Therefore, the backflow of the liquid-phase working fluid or the backflow of bubbles is suppressed from the evaporator side, and the working fluid flows smoothly. Therefore, this equipment temperature control apparatus can improve the cooling capacity of the target equipment.
  • the first condenser has a region located above the second condenser in the direction of gravity.
  • the liquid-phase working fluid generated in the first condenser flows from the first condenser to the second condenser due to its own weight. Therefore, since the liquid-phase working fluid smoothly flows in the forward direction from the first condenser to the evaporator via the second condenser, the back-flow of the liquid-phase working fluid or the back-flow of bubbles is generated from the evaporator side. It is suppressed. Therefore, this equipment temperature control apparatus can improve the cooling capacity of the target equipment.
  • At least one of the plurality of first heat exchange passages included in the first condenser or the plurality of second heat exchange passages included in the second condenser extends along the direction of gravity. .
  • the first heat exchange passage or the second heat exchange passage that extends along the gravity direction can smoothly flow the liquid-phase working fluid downward in the gravity direction by its own weight. is there. Therefore, this equipment temperature control apparatus can improve the cooling capacity of the target equipment.
  • the first condenser and the second condenser are integrally formed.
  • the size of the first condenser and the second condenser can be reduced. Further, by eliminating the pipe connecting the first condenser and the second condenser, it is possible to eliminate the concern of heating or heat radiation by the pipe.
  • the first condenser has a first upper tank, a first heat exchange passage, and a first lower tank.
  • the second condenser has a second upper tank, a second heat exchange passage, and a second lower tank.
  • the first lower tank of the first condenser and the second upper tank of the second condenser are integrally formed.
  • the first lower tank and the second upper tank are integrally formed, the number of parts can be reduced, the structure can be simplified, and the manufacturing cost can be reduced. Moreover, piping etc. which connect a 1st condenser and a 2nd condenser can be abolished.
  • the first medium outside the first condenser and the second medium outside the second condenser are different media.
  • the first medium and the second medium at different temperatures. Therefore, for example, when the calorific value of the target device is large, use the medium having the lower temperature of the first medium and the second medium to increase the amount of liquid-phase working fluid generated, and sufficiently cool the target device. Is possible. On the other hand, when the calorific value of the target device is small, it is possible to cool the target device to an appropriate temperature using a medium having a relatively high temperature of the first medium and the second medium. Therefore, this device temperature control device can adjust the temperature according to the calorific value of the target device.
  • the device temperature adjustment device further includes a first medium supply device and a second medium supply device.
  • the first medium supply device supplies the first medium to the first condenser.
  • the second medium supply device supplies the second medium to the second condenser.
  • the amount of cold supplied to the working fluid flowing from the first medium through the first condenser by the first medium supply device is adjusted, and the working fluid flowing from the second medium to the second condenser by the second medium supply device. It is possible to adjust the amount of cooling heat supplied to.
  • the second medium supply device is configured to be able to set the second medium at a temperature lower than that of the first medium.
  • this equipment temperature control apparatus can improve the cooling capacity of the target equipment.
  • the first medium supply device has a first medium circulation circuit through which the first medium circulates.
  • the second medium supply device has a second medium circulation circuit through which the second medium circulates.
  • the first medium circulation circuit and the second medium circulation circuit are separate and independent circuits.
  • the amount of cooling heat supplied from the first medium to the working fluid flowing through the first condenser is appropriately adjusted by the first medium supply device, and the second medium supply device is operated to flow from the second medium to the second condenser. It is possible to appropriately adjust the amount of cold supplied to the fluid.
  • the first medium supply device is a blower
  • the second medium supply device is a low-pressure side heat exchanger constituting a refrigeration cycle.
  • the calorific value of the target device is small, for example, by using the blower as the first medium supply device, the power consumption required for cooling the target device is reduced compared to driving the refrigeration cycle. It is possible to reduce.
  • the second medium supply device can set the refrigerant of the refrigeration cycle, which is the second medium, to a temperature lower than that of the air, which is the first medium.
  • the target device can be sufficiently cooled by using the low-pressure side heat exchanger that constitutes the refrigeration cycle that is the second medium supply device. Therefore, this device temperature control apparatus can reduce the power consumption required for cooling the target device and can adjust the temperature according to the heat generation amount of the target device.
  • the device temperature control device for adjusting the temperature of the target device includes an evaporator, a first condenser, and a second condenser.
  • the evaporator cools the target device by latent heat of vaporization of the working fluid that absorbs heat from the target device and evaporates.
  • the first condenser has a first heat exchange passage that condenses the working fluid evaporated in the evaporator by heat exchange with the first medium outside.
  • the second condenser has a second heat exchange passage for condensing the working fluid flowing in from the first condenser by heat exchange with the second medium outside, and the condensed working fluid flows out toward the evaporator.
  • the first medium and the second medium are different types of media.
  • this device temperature control device can adjust the temperature according to the calorific value of the target device.
  • the device temperature adjustment device further includes a first medium supply device and a second medium supply device.
  • the first medium supply device supplies the first medium to the first condenser.
  • the second medium supply device supplies the second medium to the second condenser.
  • the second medium supply device is configured such that the second medium can be set to a temperature lower than that of the first medium.
  • the device temperature adjustment device for adjusting the temperature of the target device includes an evaporator, a first condenser, a second condenser, a first medium supply device, and a second medium supply device.
  • the evaporator cools the target device by latent heat of vaporization of the working fluid that absorbs heat from the target device and evaporates.
  • the first condenser has a first heat exchange passage for condensing the working fluid evaporated in the evaporator by heat exchange with the first medium outside.
  • the second condenser has a second heat exchange passage that allows the working fluid flowing in from the first condenser to condense by heat exchange with the second medium outside, and the condensed working fluid flows out toward the evaporator. To do.
  • the first medium supply device supplies the first medium to the first condenser.
  • the second medium supply device supplies the second medium to the second condenser.
  • the second medium supply device is configured such that the second medium can be set to a temperature lower than that of the first
  • this equipment temperature control apparatus can improve the cooling capacity of the target equipment.

Abstract

This instrument temperature adjustment device for adjusting the temperature of a target instrument (2) comprises an evaporator (3), a first condenser (41), and a second condenser (42). The evaporator (3) cools the target instrument (2) by the latent heat of vaporization of a working fluid that absorbs heat from the target instrument (2) and evaporates. The first condenser (41) is provided on the upper side, in the gravitational direction, of the evaporator (3), and includes a first heat exchange passage (412) that condenses the working fluid having evaporated in the evaporator (3) by heat exchange with a first medium in the exterior. The second condenser (42) is provided on the upper side, in the gravitational direction, of the evaporator (3), includes a second heat exchange passage (422) that condenses the working fluid having flowed in from the first condenser (41) by heat exchange with a second medium in the exterior, and causes the condensed working fluid to flow out toward the evaporator (3). The second heat exchange passage (422) of the second condenser (42) has a smaller flow path cross-sectional area or equivalent diameter relative to the first heat exchange passage (412) of the first condenser (41).

Description

機器温調装置Equipment temperature controller 関連出願への相互参照Cross-reference to related applications
 本出願は、2016年9月9日に出願された日本特許出願番号2016-176789号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2016-176789 filed on September 9, 2016, the description of which is incorporated herein by reference.
 本開示は、対象機器の温度を調整する機器温調装置に関するものである。 This disclosure relates to a device temperature control device that adjusts the temperature of a target device.
 近年、電気自動車またはハイブリッド自動車などの電動車両に搭載される蓄電装置などの電気機器の温度を調整するための機器温調装置としてサーモサイフォンを使用した技術が検討されている。 In recent years, a technique using a thermosiphon as a device temperature control device for adjusting the temperature of an electrical device such as a power storage device mounted on an electric vehicle such as an electric vehicle or a hybrid vehicle has been studied.
 特許文献1に記載の機器温調装置は、蓄電装置としての電池の側面に設けられた蒸発器と、その蒸発器の上方に設けられた凝縮器とが2本の配管により環状に接続され、その中に作動流体としての冷媒が封入されたものである。この機器温調装置は、電池が発熱すると、蒸発器内の液相冷媒が沸騰し、そのときの蒸発潜熱により電池が冷却される。蒸発器で生成された気相冷媒は、2本の配管のうち一方の配管で構成された気相通路を流れ、凝縮器に流入する。凝縮器では、気相冷媒が凝縮器の外部にある媒体との熱交換により凝縮する。凝縮器で生成された液相冷媒は、重力により、2本の配管のうち他方の配管で構成された液相通路を流れ、蒸発器に流入する。このような冷媒の自然循環により、対象機器である電池の冷却が行われる。 In the device temperature control device described in Patent Literature 1, an evaporator provided on a side surface of a battery as a power storage device and a condenser provided above the evaporator are connected in an annular shape by two pipes, A refrigerant as a working fluid is enclosed in the inside. In this device temperature control device, when the battery generates heat, the liquid-phase refrigerant in the evaporator boils, and the battery is cooled by the latent heat of evaporation at that time. The gas-phase refrigerant generated by the evaporator flows through the gas-phase passage formed by one of the two pipes and flows into the condenser. In the condenser, the gas-phase refrigerant is condensed by heat exchange with a medium outside the condenser. The liquid phase refrigerant generated by the condenser flows by gravity through a liquid phase passage formed by the other pipe of the two pipes, and flows into the evaporator. The battery as the target device is cooled by such natural circulation of the refrigerant.
 なお、本明細書において、機器温調装置とは、サーモサイフォン方式により対象機器の温度を調整する装置全般を含むものである。すなわち、機器温調装置とは、対象機器の冷却のみを行う装置、加熱のみを行う装置、および、対象機器の冷却と加熱の両方を行う装置のいずれも含むものである。 In addition, in this specification, an apparatus temperature control apparatus includes the whole apparatus which adjusts the temperature of an object apparatus by a thermosiphon system. That is, the device temperature control device includes both a device that only cools the target device, a device that performs only heating, and a device that performs both cooling and heating of the target device.
特開2015-041418号公報Japanese Patent Laying-Open No. 2015-041418
 上述した特許文献1に記載の機器温調装置は、1個の凝縮器しか備えていない。そのため、電池の発熱量が大きくなると、凝縮器から蒸発器に対し、電池の冷却に必要な液相冷媒が十分に供給されないことが考えられる。また、機器温調装置が複数の凝縮器を備えるものとした場合、一方の凝縮器で液相となった冷媒が他方の凝縮器で再加熱されることの無いよう、複数の凝縮器が設置される環境の温度、複数の凝縮器を配置する位置、および、複数の凝縮器の流路の大きさなどを適切に設定することが好ましい。 The device temperature control apparatus described in Patent Document 1 described above includes only one condenser. For this reason, when the heat generation amount of the battery increases, it is conceivable that the liquid phase refrigerant necessary for cooling the battery is not sufficiently supplied from the condenser to the evaporator. In addition, when the equipment temperature control device is provided with a plurality of condensers, a plurality of condensers are installed so that the refrigerant that has become a liquid phase in one condenser is not reheated in the other condenser. It is preferable to appropriately set the temperature of the environment to be used, the position where the plurality of condensers are arranged, the size of the flow paths of the plurality of condensers, and the like.
 また、特許文献1に記載の機器温調装置は、電池の発熱により蒸発器内の液相冷媒が沸騰し、その液相冷媒の中で気相冷媒が気泡となって生成されると、その気泡の一部は液相通路に流入し、浮力により液相冷媒の流れを逆流することがある。その気泡が凝縮器に入り込み、凝縮器での液相冷媒の生成が妨げられると、凝縮器から液相通路を経由して蒸発器に液相冷媒が円滑に供給されなくなり、電池の冷却能力が低下することが懸念される。 Moreover, the apparatus temperature control apparatus described in Patent Document 1 causes the liquid-phase refrigerant in the evaporator to boil due to the heat generated by the battery, and when the gas-phase refrigerant is generated as bubbles in the liquid-phase refrigerant, Some of the bubbles flow into the liquid phase passage and may reverse the flow of the liquid phase refrigerant due to buoyancy. If the bubbles enter the condenser and the generation of the liquid refrigerant in the condenser is hindered, the liquid refrigerant is not smoothly supplied from the condenser to the evaporator via the liquid passage, and the cooling capacity of the battery is reduced. There is concern about the decline.
 本開示は、作動流体の流れを円滑にして冷却能力を向上することの可能な機器温調装置を提供することを目的とする。 This disclosure is intended to provide an apparatus temperature control device that can improve the cooling capacity by smoothing the flow of the working fluid.
 本開示の1つの観点によれば、機器温調装置は、対象機器の温度を調整する機器温調装置であり、蒸発器、第1凝縮器および第2凝縮器を備える。蒸発器は、対象機器から吸熱して蒸発する作動流体の蒸発潜熱により対象機器を冷却する。第1凝縮器は、蒸発器より重力方向上側に設けられ、蒸発器で蒸発した作動流体を、外部にある第1媒体との熱交換により凝縮させる第1熱交換通路を有する。第2凝縮器は、蒸発器より重力方向上側に設けられ、第1凝縮器から流入する作動流体を、外部にある第2媒体との熱交換により凝縮させる第2熱交換通路を有し、凝縮した作動流体を蒸発器に向けて流出する。ここで、第2凝縮器が有する第2熱交換通路は、第1凝縮器が有する第1熱交換通路より、流路断面積または相当直径が小さいものである。 According to one aspect of the present disclosure, the device temperature control device is a device temperature control device that adjusts the temperature of the target device, and includes an evaporator, a first condenser, and a second condenser. The evaporator cools the target device by latent heat of vaporization of the working fluid that absorbs heat from the target device and evaporates. The first condenser is provided above the evaporator in the direction of gravity, and has a first heat exchange passage that condenses the working fluid evaporated by the evaporator by heat exchange with the first medium outside. The second condenser is provided above the evaporator in the gravitational direction, and has a second heat exchange passage that condenses the working fluid flowing in from the first condenser by heat exchange with the second medium outside. The discharged working fluid flows out toward the evaporator. Here, the second heat exchange passage of the second condenser has a smaller cross-sectional area or equivalent diameter than the first heat exchange passage of the first condenser.
 これによれば、第2熱交換通路は第1熱交換通路より熱交換効率が高く、液相の作動流体の生成量が多いものとなる。また、第2熱交換通路は、第1熱交換通路より流路抵抗が大きいものとなる。そのため、第2熱交換通路から第1熱交換通路に亘って液相の作動流体が溜まると、第1熱交換通路の液相の作動流体が自重により第2熱交換通路の液相の作動流体を蒸発器側へ押すので、第1凝縮器および第2熱凝縮器から蒸発器に向かう液相の作動流体の圧力が大きくなる。したがって、蒸発器側から液相の作動流体の逆流または気泡の逆流が抑制され、作動流体が順方向に円滑に流れる。 According to this, the second heat exchange passage has higher heat exchange efficiency than the first heat exchange passage, and the amount of liquid-phase working fluid generated is large. Further, the second heat exchange passage has a larger flow resistance than the first heat exchange passage. Therefore, when the liquid-phase working fluid is accumulated from the second heat exchange passage to the first heat exchange passage, the liquid-phase working fluid in the first heat exchange passage is self-weighted and the liquid-phase working fluid in the second heat exchange passage Is pushed to the evaporator side, so that the pressure of the liquid-phase working fluid from the first condenser and the second heat condenser toward the evaporator increases. Therefore, the back flow of the liquid-phase working fluid or the back flow of bubbles is suppressed from the evaporator side, and the working fluid flows smoothly in the forward direction.
 また、仮に、第1熱交換通路で凝縮した作動流体が第2熱交換通路で再加熱されて気泡が発生した場合、その気泡は浮力により第2熱交換通路から第1熱交換通路へ侵入することが考えられる。この場合にも、第1熱交換通路は、第2熱交換通路より流路断面積または相当直径が大きいので、第2熱交換通路から第1熱交換通路に侵入した気泡は、第1熱交換通路から上流側へ速やかに排出される。そのため、第1熱交換通路と第2熱交換通路を液相の作動流体が円滑に流れる。したがって、この機器温調装置は、対象機器の冷却能力を向上することができる。 Also, if the working fluid condensed in the first heat exchange passage is reheated in the second heat exchange passage and bubbles are generated, the bubbles enter the first heat exchange passage from the second heat exchange passage by buoyancy. It is possible. Also in this case, since the first heat exchange passage has a larger channel cross-sectional area or equivalent diameter than the second heat exchange passage, bubbles that have entered the first heat exchange passage from the second heat exchange passage It is quickly discharged from the passage to the upstream side. Therefore, the liquid-phase working fluid flows smoothly through the first heat exchange passage and the second heat exchange passage. Therefore, this equipment temperature control apparatus can improve the cooling capacity of the target equipment.
 なお、第2凝縮器が有する第2熱交換通路は、少なくとも一部の領域において、第1凝縮器が有する第1熱交換通路よりも流路断面積または相当直径が小さいものであればよい。 In addition, the 2nd heat exchange channel | path which a 2nd condenser has should just have a flow-path cross-sectional area or an equivalent diameter smaller than the 1st heat exchange channel | path which a 1st condenser has at least in one part area | region.
 また、別の観点によれば、第1凝縮器の外部にある第1媒体と、第2凝縮器の外部にある第2媒体は、異種の媒体である。 According to another aspect, the first medium outside the first condenser and the second medium outside the second condenser are different media.
 これによれば、第1媒体と第2媒体を、温度の異なるものに設定することが可能である。そのため、例えば対象機器の発熱量が大きいとき、第1媒体と第2媒体のうち温度の低い方の媒体を使用して液相の作動流体の生成量を増やし、対象機器を十分に冷却することが可能である。一方、対象機器の発熱量が小さいとき、第1媒体と第2媒体のうち比較的に温度の高い方の媒体を使用して対象機器を適切な温度に冷却することが可能である。したがって、この機器温調装置は、対象機器の発熱量に応じた温度調節をすることができる。 According to this, it is possible to set the first medium and the second medium at different temperatures. Therefore, for example, when the calorific value of the target device is large, use the medium having the lower temperature of the first medium and the second medium to increase the amount of liquid-phase working fluid generated, and sufficiently cool the target device. Is possible. On the other hand, when the calorific value of the target device is small, it is possible to cool the target device to an appropriate temperature using a medium having a relatively high temperature of the first medium and the second medium. Therefore, this device temperature control device can adjust the temperature according to the calorific value of the target device.
 また、別の観点によれば、機器温調装置は、蒸発器、第1凝縮器、第2凝縮器、第1媒体供給装置および第2媒体供給装置を備える。第1媒体供給装置は、第1凝縮器に対し第1媒体を供給する。第2媒体供給装置は、第2凝縮器に対し第2媒体を供給する。ここで、第2媒体供給装置は、第2媒体を第1媒体よりも低い温度に設定することが可能に構成されている。 Moreover, according to another viewpoint, an apparatus temperature control apparatus is provided with an evaporator, a 1st condenser, a 2nd condenser, a 1st medium supply apparatus, and a 2nd medium supply apparatus. The first medium supply device supplies the first medium to the first condenser. The second medium supply device supplies the second medium to the second condenser. Here, the second medium supply device is configured to be able to set the second medium to a temperature lower than that of the first medium.
 これによれば、第1熱交換通路で凝縮した作動流体が、第2熱交換通路で再加熱されることが防がれる。そのため、第2熱交換通路で気泡の生成が抑制されるので、その気泡の浮力による液相の作動流体の流れの悪化が防がれる。また、気泡が液相の作動流体を押し上げ、第1または第2熱交換通路の上面で液相の作動流体を吹き上げることが抑制されると共に、そこで気泡が破裂して異音を発生することが抑制される。さらに、第2熱交換通路で気泡の生成が抑制されるので、第1熱交換通路および第2熱交換通路で液相の作動流体の生成が円滑に行われ、第1熱交換通路および第2熱交換通路から蒸発器に液相冷媒が円滑に供給される。したがって、この機器温調装置は、対象機器の冷却能力を向上することができる。 This prevents the working fluid condensed in the first heat exchange passage from being reheated in the second heat exchange passage. Therefore, since the generation of bubbles is suppressed in the second heat exchange passage, the deterioration of the flow of the liquid-phase working fluid due to the buoyancy of the bubbles is prevented. In addition, it is possible that the bubbles push up the liquid-phase working fluid and the liquid-phase working fluid is prevented from being blown up on the upper surface of the first or second heat exchange passage. It is suppressed. Further, since the generation of bubbles is suppressed in the second heat exchange passage, the liquid phase working fluid is smoothly generated in the first heat exchange passage and the second heat exchange passage, and the first heat exchange passage and the second heat exchange passage Liquid phase refrigerant is smoothly supplied from the heat exchange passage to the evaporator. Therefore, this equipment temperature control apparatus can improve the cooling capacity of the target equipment.
第1実施形態にかかる機器温調装置の構成図である。It is a block diagram of the apparatus temperature control apparatus concerning 1st Embodiment. 第1実施形態にかかる機器温調装置の部分拡大図である。It is the elements on larger scale of the apparatus temperature control apparatus concerning 1st Embodiment. 第2実施形態にかかる機器温調装置の構成図である。It is a block diagram of the apparatus temperature control apparatus concerning 2nd Embodiment. 第3実施形態にかかる機器温調装置の部分拡大図である。It is the elements on larger scale of the apparatus temperature control apparatus concerning 3rd Embodiment. 第4実施形態にかかる機器温調装置の部分拡大図である。It is the elements on larger scale of the apparatus temperature control apparatus concerning 4th Embodiment. 第5実施形態にかかる機器温調装置の構成図である。It is a block diagram of the apparatus temperature control apparatus concerning 5th Embodiment. 第5実施形態にかかる機器温調装置の部分拡大図である。It is the elements on larger scale of the apparatus temperature control apparatus concerning 5th Embodiment. 第6実施形態にかかる機器温調装置の部分拡大図である。It is the elements on larger scale of the apparatus temperature control apparatus concerning 6th Embodiment. 第7実施形態にかかる機器温調装置の部分拡大図である。It is the elements on larger scale of the apparatus temperature control apparatus concerning 7th Embodiment. 第8実施形態にかかる機器温調装置の部分拡大図である。It is the elements on larger scale of the apparatus temperature control apparatus concerning 8th Embodiment. 第9実施形態にかかる機器温調装置の部分拡大図である。It is the elements on larger scale of the apparatus temperature control apparatus concerning 9th Embodiment. 第10実施形態にかかる機器温調装置の部分拡大図である。It is the elements on larger scale of the apparatus temperature control apparatus concerning 10th Embodiment. 第11実施形態にかかる機器温調装置の部分拡大図である。It is the elements on larger scale of the apparatus temperature control apparatus concerning 11th Embodiment.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。なお、図面において、同一の構成が複数個所に記載されている場合、その一部にのみ符号を付すものとする。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other will be described with the same reference numerals. In the drawings, when the same configuration is described in a plurality of places, only a part thereof is provided with a reference numeral.
 (第1実施形態)
 第1実施形態について図面を参照しつつ説明する。本実施形態の機器温調装置は、電気自動車またはハイブリッド自動車などの電動車両に搭載される蓄電装置または電子回路などの電気機器を冷却し、それらの対象機器の温度を調整するものである。なお、各図面において、上下を示す矢印は、機器温調装置が車両に搭載され、その車両が水平面に停車しているとしたときの重力方向上下を示すものである。
(First embodiment)
A first embodiment will be described with reference to the drawings. The device temperature control device of the present embodiment cools an electrical device such as a power storage device or an electronic circuit mounted on an electric vehicle such as an electric vehicle or a hybrid vehicle, and adjusts the temperature of those target devices. In addition, in each drawing, the arrow which shows up and down shows the gravity direction up and down when the apparatus temperature control apparatus is mounted in a vehicle and the vehicle has stopped on the horizontal surface.
 まず、本実施形態の機器温調装置1が温度調整する対象機器について説明する。 First, a target device whose temperature is adjusted by the device temperature control apparatus 1 of the present embodiment will be described.
 図1に示すように、本実施形態の機器温調装置1が温度調整する対象機器は、組電池2(以下、「電池」という)である。なお、対象機器としては、電池2と図示していない電力変換装置などから構成される電池パックとしてもよい。 As shown in FIG. 1, a target device whose temperature is adjusted by the device temperature adjustment device 1 of the present embodiment is an assembled battery 2 (hereinafter referred to as “battery”). Note that the target device may be a battery pack including the battery 2 and a power converter (not shown).
 電池2は、電気自動車、およびハイブリッド自動車など、走行用電動モータによって走行可能な車両の電源として用いられる。電池2は、直方体形状の複数の電池セル21を積層配置した積層体で構成されている。電池2を構成する複数の電池セル21は、電気的に直列に接続されている。電池セル21は、例えば、リチウムイオン電池または鉛蓄電池などの充放電可能な二次電池で構成されている。なお、電池セル21は、直方体形状に限らず、円筒形状等の他の形状を有していてもよい。また、電池2は、電気的に並列に接続された電池セル21を含んで構成されていてもよい。 The battery 2 is used as a power source for vehicles that can be driven by an electric motor for traveling, such as an electric vehicle and a hybrid vehicle. The battery 2 is configured by a stacked body in which a plurality of rectangular parallelepiped battery cells 21 are stacked. The plurality of battery cells 21 constituting the battery 2 are electrically connected in series. The battery cell 21 is comprised by the secondary battery which can be charged / discharged, such as a lithium ion battery or a lead acid battery, for example. The battery cell 21 is not limited to a rectangular parallelepiped shape, and may have another shape such as a cylindrical shape. Moreover, the battery 2 may be comprised including the battery cell 21 electrically connected in parallel.
 電池2は、車両が備える図示していない電力変換装置およびモータジェネレータに接続されている。電力変換装置は、例えば、電池2から供給された直流電流を交流電流に変換し、変換した交流電流を走行用電動モータ等の各種電気負荷に対して放電する装置である。また、モータジェネレータは、車両の回生制動時に、車両の走行エネルギを電気エネルギに逆変換し、逆変換した電気エネルギを回生電力としてインバータ等を介して電池2に供給する装置である。 The battery 2 is connected to a power conversion device and a motor generator (not shown) included in the vehicle. The power conversion device is a device that converts, for example, a direct current supplied from the battery 2 into an alternating current, and discharges the converted alternating current to various electric loads such as a traveling electric motor. The motor generator is a device that reversely converts the traveling energy of the vehicle into electric energy during regenerative braking of the vehicle and supplies the reversely converted electric energy as regenerative power to the battery 2 via an inverter or the like.
 電池2は、車両の走行中に電力供給等を行うときに自己発熱し、電池2が過度に高温になることがある。電池2が過度に高温になると、電池セル21の劣化が促進されることから、自己発熱が少なくなるように出力、および入力に制限を設ける必要がある。そのため、電池セル21の出力、入力を確保するためには、所定の温度以下に維持するための冷却手段が必要となる。 The battery 2 may self-heat when power is supplied while the vehicle is running, and the battery 2 may become excessively hot. When the battery 2 becomes excessively high in temperature, deterioration of the battery cell 21 is promoted. Therefore, it is necessary to limit output and input so that self-heating is reduced. Therefore, in order to ensure the output and input of the battery cell 21, a cooling means for maintaining the temperature below a predetermined temperature is required.
 また、電池2を含む蓄電装置は、車両の床下やトランクルームの下側に配置されることが多い。そのため、車両の走行中に限らず、夏季における駐車中等にも電池2の温度が徐々に上昇し、電池2が過度に高温になることがある。電池2が高温環境下で放置されると、電池2の劣化が進行し、その寿命が大幅に低下するので、車両の駐車中等にも電池2の温度を所定の温度以下に維持することが望まれている。 Also, the power storage device including the battery 2 is often arranged under the floor of the vehicle or under the trunk room. Therefore, the temperature of the battery 2 gradually rises not only when the vehicle is running but also during parking in the summer, and the battery 2 may become excessively hot. If the battery 2 is left in a high temperature environment, the battery 2 will deteriorate and its life will be greatly reduced. Therefore, it is desirable to keep the temperature of the battery 2 below a predetermined temperature even during parking of the vehicle. It is rare.
 さらに、電池2は、各電池セル21を電気的に直列接続した構造を含んでいるので、各電池セル21のうち、最も劣化が進行した電池セル21に応じて電池全体の入出力特性が決まる。そのため、各電池セル21の温度にばらつきがあると、各電池セル21の劣化の進行度合いが偏ったものとなり、電池全体の入出力特性が低下してしまう。そのため、電池2を長期間、所望の性能を発揮させるためには、各電池セル21の温度ばらつきを低減させる均温化が重要となる。 Furthermore, since the battery 2 includes a structure in which the battery cells 21 are electrically connected in series, the input / output characteristics of the entire battery are determined according to the battery cell 21 that has undergone the most deterioration among the battery cells 21. . Therefore, if the temperature of each battery cell 21 varies, the degree of progress of the deterioration of each battery cell 21 is biased, and the input / output characteristics of the entire battery are degraded. For this reason, in order for the battery 2 to exhibit desired performance for a long period of time, it is important to equalize the temperature so as to reduce the temperature variation of each battery cell 21.
 一般に、電池2を冷却する冷却手段として、送風機による空冷式の冷却手段、冷却水による冷却手段、または、蒸気圧縮式の冷凍サイクルを利用した冷却手段が採用されている。 Generally, as a cooling means for cooling the battery 2, an air-cooling cooling means using a blower, a cooling means using cooling water, or a cooling means using a vapor compression refrigeration cycle is employed.
 しかし、送風機による空冷式の冷却手段は、車室内または車室外の空気を電池2に送風するだけなので、電池2を充分に冷却するだけの冷却能力が得られないことがある。また、空冷式および冷却水による冷却手段は、空気または冷却水の流れの上流側の電池セル21の冷却温度と、下流側の電池セル21の冷却温度とにばらつきが生じることがある。 However, since the air-cooled cooling means using the blower only blows air inside or outside the vehicle to the battery 2, a cooling capacity sufficient to sufficiently cool the battery 2 may not be obtained. In addition, the cooling means using air cooling and cooling water may cause variations in the cooling temperature of the battery cell 21 on the upstream side of the flow of air or cooling water and the cooling temperature of the battery cell 21 on the downstream side.
 また、冷凍サイクルの冷熱を利用した冷却手段は、電池2の冷却能力が高いものの、車両の駐車中に、電力消費量の多いコンプレッサ等を駆動させることが必要となる。このことは、電力消費量の増大および騒音の増大などを招くことになる。 Moreover, although the cooling means using the cold heat of the refrigeration cycle has a high cooling capacity of the battery 2, it is necessary to drive a compressor or the like that consumes a large amount of power while the vehicle is parked. This leads to an increase in power consumption and noise.
 そこで、本実施形態の機器温調装置1では、作動流体としての冷媒をコンプレッサにより強制循環させるのではなく、冷媒の自然循環によって電池2の温度を調整するサーモサイフォン方式を採用している。 Therefore, the apparatus temperature control device 1 of the present embodiment employs a thermosiphon system in which the temperature of the battery 2 is adjusted by natural circulation of the refrigerant, instead of forcibly circulating the refrigerant as the working fluid by the compressor.
 次に、機器温調装置1の構成について説明する。 Next, the configuration of the device temperature control device 1 will be described.
 図1に示すように、機器温調装置1は、蒸発器3、第1凝縮器41、第2凝縮器42、気相通路5および液相通路6などを備え、それらの構成部材が互いに接続されることにより、ループ型のサーモサイフォンを構成している。機器温調装置1は、その内部を真空排気した状態で、所定量の冷媒が封入されている。冷媒として、例えばR134a、R1234yf、二酸化炭素または水など、種々のものを採用することが可能である。なお、図1の一点鎖線S1、S2に示すように、冷媒の量は、電池2の冷却開始前の状態で、液相冷媒の液上面が、気相通路5の途中と液相通路6の途中にあることが好ましい。なお、図1の破線の矢印の方向に冷媒が循環すると、それに応じて液相冷媒の液上面は変位する。 As shown in FIG. 1, the device temperature control device 1 includes an evaporator 3, a first condenser 41, a second condenser 42, a gas phase passage 5, a liquid phase passage 6, and the like, and these constituent members are connected to each other. As a result, a loop-type thermosiphon is configured. The apparatus temperature control device 1 is filled with a predetermined amount of refrigerant in a state where the inside thereof is evacuated. Various refrigerants such as R134a, R1234yf, carbon dioxide, or water can be employed as the refrigerant. As indicated by the one-dot chain lines S1 and S2 in FIG. 1, the amount of the refrigerant is the state before the cooling of the battery 2 is started, and the liquid upper surface of the liquid phase refrigerant It is preferable that it is in the middle. In addition, when a refrigerant | coolant circulates in the direction of the arrow of the broken line of FIG. 1, the liquid upper surface of a liquid phase refrigerant will change according to it.
 蒸発器3は、密閉されたケースであり、扁平状に形成され、電池2の下面に対向する位置に設けられている。蒸発器3は、例えばアルミニウムまたは銅などの熱伝導率に優れた材料により形成されることが好ましい。なお、蒸発器3は、複数の電池セル21と熱伝達可能に設けられていればよく、例えば電池2の側面または上面に対向する位置に設けられてもよい。また、蒸発器3の形状および大きさは、車両に搭載される空間に合わせて任意に設定可能である。 The evaporator 3 is a sealed case, is formed in a flat shape, and is provided at a position facing the lower surface of the battery 2. The evaporator 3 is preferably formed of a material having excellent thermal conductivity such as aluminum or copper. The evaporator 3 only needs to be provided so as to be able to transfer heat to the plurality of battery cells 21, and may be provided at a position facing the side surface or the upper surface of the battery 2, for example. Further, the shape and size of the evaporator 3 can be arbitrarily set according to the space mounted on the vehicle.
 蒸発器3は、内側に流体室30を有している。電池2の冷却開始前の状態で、流体室30には、液相冷媒が充満していることが好ましい。なお、実際には、液相冷媒と気相冷媒とを含んでいてもよい。電池2が蓄電または放電などにより自己発熱すると、電池2から蒸発器3に伝熱し、流体室30の液相冷媒がその熱を吸収して蒸発する。その際、流体室30の全体で液相冷媒の蒸発が生じ、その蒸発潜熱により、複数の電池セル21がほぼ均一に冷却される。したがって、蒸発器3は、複数の電池セル21同士の温度ばらつきを低減して複数の電池セル21を均温化し、且つ、冷却することが可能である。 The evaporator 3 has a fluid chamber 30 inside. It is preferable that the fluid chamber 30 is filled with a liquid-phase refrigerant before the battery 2 starts cooling. In practice, a liquid phase refrigerant and a gas phase refrigerant may be included. When the battery 2 self-heats due to power storage or discharge, heat is transferred from the battery 2 to the evaporator 3, and the liquid phase refrigerant in the fluid chamber 30 absorbs the heat and evaporates. At that time, evaporation of the liquid-phase refrigerant occurs in the entire fluid chamber 30, and the plurality of battery cells 21 are cooled substantially uniformly by the latent heat of evaporation. Therefore, the evaporator 3 can reduce the temperature variation between the plurality of battery cells 21 to equalize and cool the plurality of battery cells 21.
 上述したように、電池2は、高温になると十分な機能を得られず、また、劣化や破損を招くことがある。そして、電池2は、最も劣化した電池セル21の特性に合わせて電池全体の入出力特性が決まるものである。そこで、この蒸発器3は、蒸発潜熱を利用した冷却により、複数の電池セル21を均温化し、且つ、冷却することで、電池2に長期間、所望の性能を発揮させることが可能である。 As described above, the battery 2 cannot obtain a sufficient function at a high temperature, and may be deteriorated or damaged. In the battery 2, the input / output characteristics of the entire battery are determined in accordance with the characteristics of the battery cell 21 that is most deteriorated. Therefore, the evaporator 3 can make the battery 2 exhibit desired performance for a long period of time by equalizing and cooling the plurality of battery cells 21 by cooling using latent heat of evaporation. .
 蒸発器3には、気相通路5と液相通路6とが接続されている。蒸発器3と液相通路6とが接続する箇所を第1開口部31と称し、蒸発器3と気相通路5とが接続する箇所を第2開口部32と称することとする。蒸発器3において、第1開口部31と第2開口部32とは、離れていることが好ましい。これにより、サーモサイフォンを冷媒が循環する際、蒸発器3には、第1開口部31から第2開口部32に向かう冷媒の流れが形成される。なお、図1では、第1開口部31と第2開口部32はいずれも蒸発器3の側面に設けられているが、第1開口部31と第2開口部32の位置は側面に限らず、上面または下面であってもよい。 The vapor phase passage 5 and the liquid phase passage 6 are connected to the evaporator 3. A location where the evaporator 3 and the liquid phase passage 6 are connected is referred to as a first opening 31, and a location where the evaporator 3 and the gas phase passage 5 are connected is referred to as a second opening 32. In the evaporator 3, it is preferable that the 1st opening part 31 and the 2nd opening part 32 are separated. Thereby, when the refrigerant circulates through the thermosiphon, a flow of the refrigerant from the first opening 31 toward the second opening 32 is formed in the evaporator 3. In FIG. 1, both the first opening 31 and the second opening 32 are provided on the side surface of the evaporator 3, but the positions of the first opening 31 and the second opening 32 are not limited to the side surfaces. The upper surface or the lower surface may be used.
 第1凝縮器41と第2凝縮器42とはいずれも、蒸発器3よりも重力方向上側に設けられている。第1実施形態では、第1凝縮器41の全ての領域が、第2凝縮器42よりも重力方向上側に配置されている。 Both the first condenser 41 and the second condenser 42 are provided above the evaporator 3 in the gravity direction. In the first embodiment, the entire region of the first condenser 41 is disposed above the second condenser 42 in the gravity direction.
 蒸発器3と第1凝縮器41とを気相通路5が接続している。気相通路5は、一端が蒸発器3の第2開口部32に接続し、他端が第1凝縮器41に接続している。気相通路5は、蒸発器3で蒸発した気相冷媒を第1凝縮器41に流すことが可能である。なお、気相通路5は、主に気相冷媒が流れるものであるが、気液二相状態の冷媒、または液相冷媒が流れることもある。 The vapor phase passage 5 connects the evaporator 3 and the first condenser 41. The gas phase passage 5 has one end connected to the second opening 32 of the evaporator 3 and the other end connected to the first condenser 41. The gas phase passage 5 can flow the gas phase refrigerant evaporated in the evaporator 3 to the first condenser 41. The gas-phase passage 5 mainly flows through the gas-phase refrigerant, but a gas-liquid two-phase refrigerant or a liquid-phase refrigerant may flow therethrough.
 第1凝縮器41は、内部の流路を流れる冷媒を、第1凝縮器41の外部にある図示していない媒体との熱交換により、凝縮させる機能を有するものである。以下の説明において、第1凝縮器41の外部にある媒体を第1媒体と称することとする。第1凝縮器41と第2凝縮器42とを接続通路43が接続している。第1凝縮器41で凝縮した液相冷媒は、接続通路43を通り、第2凝縮器42に流入する。第2凝縮器42も、内部の流路を流れる冷媒を、第2凝縮器42の外部にある図示していない媒体との熱交換により、凝縮させる機能を有するものである。以下の説明において、第2凝縮器42の外部にある媒体を第2媒体と称することとする。なお、第1から第5実施形態において、第1媒体と第2媒体とは、同種の媒体であってもよく、または、異種の媒体であってもよい。 The first condenser 41 has a function of condensing the refrigerant flowing through the internal flow path by heat exchange with a medium (not shown) outside the first condenser 41. In the following description, a medium outside the first condenser 41 is referred to as a first medium. A connection passage 43 connects the first condenser 41 and the second condenser 42. The liquid phase refrigerant condensed in the first condenser 41 passes through the connection passage 43 and flows into the second condenser 42. The second condenser 42 also has a function of condensing the refrigerant flowing in the internal flow path by heat exchange with a medium (not shown) outside the second condenser 42. In the following description, a medium outside the second condenser 42 is referred to as a second medium. In the first to fifth embodiments, the first medium and the second medium may be the same type of media or different types of media.
 第2凝縮器と蒸発器3とを液相通路6が接続している。液相通路6は、一端が第2凝縮器42に接続し、他端が蒸発器3の第1開口部31に接続している。液相通路6は、第1凝縮器41と第2凝縮器42で凝縮した液相冷媒を重力により蒸発器3に流すことが可能である。なお、液相通路6は、主に液相冷媒が流れるものであるが、気液二相状態の冷媒、または気相冷媒が流れることもある。 The liquid phase passage 6 connects the second condenser and the evaporator 3. The liquid phase passage 6 has one end connected to the second condenser 42 and the other end connected to the first opening 31 of the evaporator 3. The liquid phase passage 6 can flow the liquid phase refrigerant condensed by the first condenser 41 and the second condenser 42 to the evaporator 3 by gravity. In addition, although the liquid phase passage 6 mainly flows through the liquid phase refrigerant, a gas-liquid two-phase refrigerant or a gas phase refrigerant may flow therethrough.
 続いて、第1凝縮器41と第2凝縮器42について詳細に説明する。 Subsequently, the first condenser 41 and the second condenser 42 will be described in detail.
 図2に示すように、第1凝縮器41は、第1上タンク411、複数の第1熱交換チューブ412および第1下タンク413などを有している。第1凝縮器41は、例えばアルミニウムまたは銅などの熱伝導率に優れた材料により形成されることが好ましい。第1凝縮器41の形状および大きさは、車両に搭載される空間に合わせて任意に設定可能である。 2, the first condenser 41 includes a first upper tank 411, a plurality of first heat exchange tubes 412, a first lower tank 413, and the like. The first condenser 41 is preferably formed of a material having excellent thermal conductivity such as aluminum or copper. The shape and size of the first condenser 41 can be arbitrarily set according to the space mounted on the vehicle.
 第1熱交換チューブ412は、外部にある第1媒体との熱交換により気相冷媒を凝縮させる第1熱交換通路に相当するものである。第1熱交換チューブ412の外側には、複数のフィン414が設けられている。複数の第1熱交換チューブ412は、重力方向に沿うように延びている。これにより、複数の第1熱交換チューブ412の内側を、液相冷媒が重力方向に沿って流れる。 The first heat exchange tube 412 corresponds to a first heat exchange passage that condenses the gas-phase refrigerant by heat exchange with an external first medium. A plurality of fins 414 are provided outside the first heat exchange tube 412. The multiple first heat exchange tubes 412 extend along the direction of gravity. Thereby, a liquid phase refrigerant flows along the direction of gravity inside the plurality of first heat exchange tubes 412.
 気相通路5から第1上タンク411に供給される気相冷媒は、第1上タンク411から複数の第1熱交換チューブ412に流入する。この気相冷媒は、複数の第1熱交換チューブ412を流れる際に、第1凝縮器41の外部にある第1媒体との熱交換により凝縮する。複数の第1熱交換チューブ412で生成された液相冷媒は、自重により、第1下タンク413に流入する。 The vapor phase refrigerant supplied from the vapor phase passage 5 to the first upper tank 411 flows into the first heat exchange tubes 412 from the first upper tank 411. The gas-phase refrigerant is condensed by heat exchange with the first medium outside the first condenser 41 when flowing through the plurality of first heat exchange tubes 412. The liquid refrigerant generated in the plurality of first heat exchange tubes 412 flows into the first lower tank 413 due to its own weight.
 第2凝縮器42も、第2上タンク421、複数の第2熱交換チューブ422および第2下タンク423などを有している。第2凝縮器42も、例えばアルミニウムまたは銅などの熱伝導率に優れた材料により形成されることが好ましい。第2凝縮器42の形状および大きさは、車両に搭載される空間に合わせて任意に設定可能である。 The second condenser 42 also includes a second upper tank 421, a plurality of second heat exchange tubes 422, a second lower tank 423, and the like. The second condenser 42 is also preferably formed of a material having excellent thermal conductivity such as aluminum or copper. The shape and size of the second condenser 42 can be arbitrarily set according to the space mounted on the vehicle.
 第2熱交換チューブ422は、外部にある第2媒体との熱交換により気相冷媒を凝縮させる第2熱交換通路に相当するものである。第2熱交換チューブ422の外側には、複数のフィン424が設けられている。複数の第2熱交換チューブ422は、重力方向に沿うように延びている。これにより、複数の第2熱交換チューブ422の内側を、液相冷媒が重力方向に沿って流れる。 The second heat exchange tube 422 corresponds to a second heat exchange passage that condenses the gas-phase refrigerant by heat exchange with an external second medium. A plurality of fins 424 are provided outside the second heat exchange tube 422. The multiple second heat exchange tubes 422 extend along the direction of gravity. Thereby, a liquid phase refrigerant flows along the direction of gravity inside the plurality of second heat exchange tubes 422.
 第1凝縮器41の第1下タンク413と、第2凝縮器42の第2上タンク421とを接続通路43が接続している。第1凝縮器41を通過した液相冷媒は、接続通路43を通り、第2凝縮器42の第2上タンク421に流入する。なお、液相冷媒の流れに含まれて気相冷媒の一部も第2上タンク421に流入する。接続通路43から第2凝縮器42の第2上タンク421に供給される冷媒は、第2上タンク421から複数の第2熱交換チューブ422に流入する。この冷媒の中の気相冷媒は、複数の第2熱交換チューブ422を流れる際に、第2凝縮器42の外部にある第2媒体との熱交換により凝縮する。複数の第2熱交換チューブ422で生成された液相冷媒は、自重により、第2下タンク423に流入する。 A connection passage 43 connects the first lower tank 413 of the first condenser 41 and the second upper tank 421 of the second condenser 42. The liquid refrigerant that has passed through the first condenser 41 passes through the connection passage 43 and flows into the second upper tank 421 of the second condenser 42. A part of the gas-phase refrigerant included in the flow of the liquid-phase refrigerant also flows into the second upper tank 421. The refrigerant supplied from the connection passage 43 to the second upper tank 421 of the second condenser 42 flows from the second upper tank 421 into the plurality of second heat exchange tubes 422. The gas phase refrigerant in the refrigerant is condensed by heat exchange with the second medium outside the second condenser 42 when flowing through the plurality of second heat exchange tubes 422. The liquid refrigerant generated in the plurality of second heat exchange tubes 422 flows into the second lower tank 423 by its own weight.
 ここで、第1凝縮器41が有する第1熱交換チューブ412の流路断面積をS1とし、第2凝縮器42が有する第2熱交換チューブ422の流路断面積をS2とする。第1凝縮器41が有する第1熱交換チューブ412の本数をN1とし、第2凝縮器42が有する第2熱交換チューブ422の本数をN2とする。第1凝縮器41が有する第1熱交換チューブ412の相当直径をD1とし、第2凝縮器42が有する第2熱交換チューブ422の相当直径をD2とする。 Here, the flow path cross-sectional area of the first heat exchange tube 412 included in the first condenser 41 is S1, and the flow path cross-sectional area of the second heat exchange tube 422 included in the second condenser 42 is S2. The number of first heat exchange tubes 412 included in the first condenser 41 is N1, and the number of second heat exchange tubes 422 included in the second condenser 42 is N2. The equivalent diameter of the first heat exchange tube 412 included in the first condenser 41 is D1, and the equivalent diameter of the second heat exchange tube 422 included in the second condenser 42 is D2.
 このとき、第1凝縮器41と第2凝縮器42とは、次の関係を有している。 At this time, the first condenser 41 and the second condenser 42 have the following relationship.
 S1>S2・・・(式1)
 S1×N1>S2×N2・・・(式2)
 D1>D2・・・(式3)
 すなわち、上記の式1および式3に示したように、第2凝縮器42が有する第2熱交換チューブ422は、第1凝縮器41が有する第1熱交換チューブ412より、流路断面積または相当直径が小さい領域を有している。
S1> S2 (Formula 1)
S1 × N1> S2 × N2 (Formula 2)
D1> D2 (Formula 3)
That is, as shown in the above formulas 1 and 3, the second heat exchange tube 422 included in the second condenser 42 has a flow path cross-sectional area or a larger area than the first heat exchange tube 412 included in the first condenser 41. It has a region with a small equivalent diameter.
 また、上記の式2に示したように、複数の第1熱交換チューブ412の流路断面積を合わせた総流路断面積は、複数の第2熱交換チューブ422の流路断面積を合わせた総流路断面積より大きいものである。 Further, as shown in Equation 2 above, the total cross-sectional area of the plurality of first heat exchange tubes 412 combined with the cross-sectional area of the plurality of first heat exchange tubes 412 is the same as the cross-sectional area of the plurality of second heat exchange tubes 422. It is larger than the total channel cross-sectional area.
 第1実施形態の機器温調装置1は、上述した構成を備えることにより、次の作用効果を奏する。 The apparatus temperature control apparatus 1 of 1st Embodiment has the following effect by providing the structure mentioned above.
 (1)上記の式1および式3に示したように、第2熱交換チューブ422は、第1熱交換チューブ412より流路断面積または相当直径が小さいので、熱交換効率が高い。そのため、第2熱交換チューブ422は第1熱交換チューブ412より液相冷媒の生成量が多いものとなる。 (1) Since the second heat exchange tube 422 has a smaller channel cross-sectional area or equivalent diameter than the first heat exchange tube 412, as shown in the above formulas 1 and 3, the heat exchange efficiency is high. For this reason, the second heat exchange tube 422 generates more liquid refrigerant than the first heat exchange tube 412.
 また、上記の式2に示したように、複数の第1熱交換チューブ412の流路断面積S1を合わせた総流路断面積(S1×N1)は、複数の第2熱交換チューブ422の流路断面積S2を合わせた総流路断面積(S2×N2)より大きい。そのため、第2熱交換チューブ422は、第1熱交換チューブ412より流路抵抗が大きいものとなる。 Further, as shown in Equation 2 above, the total flow path cross-sectional area (S1 × N1) of the flow path cross-sectional areas S1 of the plurality of first heat exchange tubes 412 is the sum of the plurality of second heat exchange tubes 422. It is larger than the total channel cross-sectional area (S2 × N2) including the channel cross-sectional area S2. Therefore, the second heat exchange tube 422 has a larger flow path resistance than the first heat exchange tube 412.
 これにより、第2熱交換チューブ422から第1熱交換チューブ412に亘って液相冷媒が溜まると、第1熱交換チューブ412の液相媒体が自重により第2熱交換チューブ422の液相媒体を蒸発器3側へ押圧する。そのため、第1凝縮器41と第2凝縮器42から蒸発器3に向かう液相冷媒の圧力が大きくなる。したがって、蒸発器3側から液相冷媒の逆流または気泡の逆流が抑制され、冷媒が順方向に円滑に流れる。よって、この機器温調装置1は、電池2の冷却能力を向上することができる。 As a result, when the liquid refrigerant accumulates from the second heat exchange tube 422 to the first heat exchange tube 412, the liquid phase medium in the first heat exchange tube 412 is self-weighted to cause the liquid phase medium in the second heat exchange tube 422 to flow. Press to the evaporator 3 side. Therefore, the pressure of the liquid-phase refrigerant toward the evaporator 3 from the first condenser 41 and the second condenser 42 increases. Therefore, the backflow of the liquid phase refrigerant or the backflow of bubbles is suppressed from the evaporator 3 side, and the refrigerant flows smoothly in the forward direction. Therefore, this apparatus temperature control apparatus 1 can improve the cooling capacity of the battery 2.
 また、仮に、第1熱交換チューブ412で凝縮した冷媒が第2熱交換チューブ422で再加熱されて気泡が発生した場合、その気泡は浮力により第2熱交換チューブ422から第1熱交換チューブ412へ侵入することが考えられる。この場合にも、第1熱交換チューブ412は第2熱交換チューブ422より流路断面積または相当直径が大きいので、第2熱交換チューブ422から第1熱交換チューブ412に侵入した気泡は、第1熱交換チューブ412から上流側へ速やかに排出される。そのため、第1熱交換チューブ412と第2熱交換チューブ422を液相冷媒が円滑に流れる。したがって、この機器温調装置1は、電池2の冷却能力を向上することができる。 In addition, if the refrigerant condensed in the first heat exchange tube 412 is reheated in the second heat exchange tube 422 to generate bubbles, the bubbles are buoyant and the bubbles are transferred from the second heat exchange tube 422 to the first heat exchange tube 412. It is possible to intrude into. Also in this case, since the first heat exchange tube 412 has a larger channel cross-sectional area or equivalent diameter than the second heat exchange tube 422, the bubbles that have entered the first heat exchange tube 412 from the second heat exchange tube 422 1 The heat exchange tube 412 is quickly discharged upstream. Therefore, the liquid refrigerant flows smoothly through the first heat exchange tube 412 and the second heat exchange tube 422. Therefore, the device temperature control device 1 can improve the cooling capacity of the battery 2.
 (2)第1実施形態の機器温調装置1は、第1凝縮器41が、第2凝縮器42よりも重力方向上側に位置する領域を有する。 (2) The apparatus temperature control apparatus 1 of the first embodiment has a region where the first condenser 41 is located above the second condenser 42 in the gravity direction.
 これによれば、第1凝縮器41で生成された液相冷媒は、その自重により、第1凝縮器41から第2凝縮器42へ流れる。そのため、第1凝縮器41から第2凝縮器42を経由して蒸発器3へ液相冷媒が円滑に流れるので、蒸発器3側から液相冷媒の逆流または気泡の逆流が抑制される。したがって、この機器温調装置1は、電池2の冷却能力を向上することができる。 According to this, the liquid phase refrigerant generated in the first condenser 41 flows from the first condenser 41 to the second condenser 42 by its own weight. Therefore, since the liquid phase refrigerant smoothly flows from the first condenser 41 to the evaporator 3 via the second condenser 42, the back flow of the liquid phase refrigerant or the back flow of bubbles from the evaporator 3 side is suppressed. Therefore, the device temperature control device 1 can improve the cooling capacity of the battery 2.
 (3)第1実施形態の機器温調装置1は、第1凝縮器41が有する複数の第1熱交換チューブ412と、第2凝縮器42が有する複数の第2熱交換チューブ422がいずれも、重力方向に沿うように延びている。 (3) The apparatus temperature control device 1 of the first embodiment includes a plurality of first heat exchange tubes 412 included in the first condenser 41 and a plurality of second heat exchange tubes 422 included in the second condenser 42. , Extending along the direction of gravity.
 これによれば、第1熱交換チューブ412および第2熱交換チューブ422は、液相冷媒を自重により重力方向下側へ円滑に流すことが可能である。したがって、この機器温調装置1は、電池2の冷却能力を向上することができる。 According to this, the first heat exchange tube 412 and the second heat exchange tube 422 can smoothly flow the liquid-phase refrigerant downward in the gravity direction by its own weight. Therefore, the device temperature control device 1 can improve the cooling capacity of the battery 2.
 (第2実施形態)
 第2実施形態について説明する。第2実施形態は、第1実施形態に対して第1凝縮器41または第2凝縮器42の配置を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Second Embodiment)
A second embodiment will be described. The second embodiment is obtained by changing the arrangement of the first condenser 41 or the second condenser 42 with respect to the first embodiment, and is otherwise the same as the first embodiment, and therefore the first embodiment. Only different parts will be described.
 図3に示すように、第2実施形態では、第1凝縮器41は、少なくとも一部の領域が第2凝縮器42よりも重力方向上側に位置している。図3では、第1凝縮器41が第2凝縮器42よりも重力方向上側に位置する領域を、矢印αで示している。 As shown in FIG. 3, in the second embodiment, at least a part of the first condenser 41 is located above the second condenser 42 in the gravity direction. In FIG. 3, a region where the first condenser 41 is located above the second condenser 42 in the gravity direction is indicated by an arrow α.
 これによれば、第1凝縮器41で生成される液相冷媒は、その自重により、第1凝縮器41から第2凝縮器42へ流れる。そのため、第1凝縮器41から第2凝縮器42を経由して蒸発器3へ向けて液相冷媒が順方向に円滑に流れるので、蒸発器3側から液相冷媒の逆流または気泡の逆流が抑制される。したがって、この機器温調装置1は、電池2の冷却能力を向上することができる。 According to this, the liquid refrigerant generated in the first condenser 41 flows from the first condenser 41 to the second condenser 42 by its own weight. Therefore, since the liquid phase refrigerant smoothly flows in the forward direction from the first condenser 41 to the evaporator 3 via the second condenser 42, the reverse flow of the liquid phase refrigerant or the reverse flow of the bubbles is caused from the evaporator 3 side. It is suppressed. Therefore, the device temperature control device 1 can improve the cooling capacity of the battery 2.
 (第3実施形態)
 第3実施形態について説明する。第3実施形態は、第1実施形態に対して第2凝縮器42の配置を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Third embodiment)
A third embodiment will be described. In the third embodiment, the arrangement of the second condenser 42 is changed with respect to the first embodiment, and the others are the same as those in the first embodiment. Therefore, only the parts different from the first embodiment will be described. To do.
 図4に示すように、第3実施形態では、第2凝縮器42が有する複数の第2熱交換チューブ422は、重力方向に対し交差する方向に延びている。なお、第2凝縮器42が有する第2上タンク421と第2下タンク423は、重力方向に沿って延びている。 As shown in FIG. 4, in the third embodiment, the plurality of second heat exchange tubes 422 included in the second condenser 42 extend in a direction intersecting the direction of gravity. In addition, the 2nd upper tank 421 and the 2nd lower tank 423 which the 2nd condenser 42 has extended along the gravity direction.
 一方、第1凝縮器41が有する複数の第1熱交換チューブ412は、重力方向に沿うように延びている。これにより、複数の第1熱交換チューブ412の内側を、液相冷媒が重力方向に沿って流れる力が大きくなる。 On the other hand, the multiple first heat exchange tubes 412 included in the first condenser 41 extend along the direction of gravity. Thereby, the force by which the liquid refrigerant flows along the direction of gravity inside the plurality of first heat exchange tubes 412 increases.
 第3実施形態では、第1凝縮器41の複数の第1熱交換チューブ412で生成された液相冷媒は、その自重により重力方向に沿って流れる力が大きくなり、第1下タンク413から接続通路43を経由して第2凝縮器42に流れる。第2凝縮器42では、複数の第2熱交換チューブ422で生成された液相冷媒が、第2上タンク421または第2下タンク423に流れた後、液相通路6を経由して蒸発器3に円滑に流れる。これにより、蒸発器3側から液相冷媒の逆流または気泡の逆流が抑制される。したがって、第3実施形態の機器温調装置1は、第1凝縮器41の複数の第1熱交換チューブ412または第2凝縮器42の複数の第2熱交換チューブ422のうち少なくとも一方が、重力方向に沿うように延びていることで、電池2の冷却能力を向上することができる。 In the third embodiment, the liquid refrigerant generated in the plurality of first heat exchange tubes 412 of the first condenser 41 has a greater force flowing along the direction of gravity due to its own weight, and is connected from the first lower tank 413. It flows to the second condenser 42 via the passage 43. In the second condenser 42, the liquid phase refrigerant generated in the plurality of second heat exchange tubes 422 flows into the second upper tank 421 or the second lower tank 423, and then passes through the liquid phase passage 6 to the evaporator. 3 flows smoothly. Thereby, the backflow of a liquid phase refrigerant | coolant or the backflow of a bubble is suppressed from the evaporator 3 side. Therefore, in the apparatus temperature adjustment device 1 of the third embodiment, at least one of the plurality of first heat exchange tubes 412 of the first condenser 41 or the plurality of second heat exchange tubes 422 of the second condenser 42 is gravity. By extending along the direction, the cooling capacity of the battery 2 can be improved.
 (第4実施形態)
 第4実施形態について説明する。第4実施形態は、第1実施形態に対して第1凝縮器41の配置を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Fourth embodiment)
A fourth embodiment will be described. In the fourth embodiment, the arrangement of the first condenser 41 is changed with respect to the first embodiment, and the other parts are the same as those in the first embodiment. Therefore, only the parts different from the first embodiment will be described. To do.
 図5に示すように、第4実施形態では、第1凝縮器41が有する複数の第1熱交換チューブ412は、重力方向に対し交差する方向に延びている。なお、第1凝縮器41が有する第1上タンク411と第1下タンク413は、重力方向に沿って延びている。 As shown in FIG. 5, in the fourth embodiment, the plurality of first heat exchange tubes 412 included in the first condenser 41 extend in a direction crossing the gravity direction. Note that the first upper tank 411 and the first lower tank 413 of the first condenser 41 extend along the direction of gravity.
 一方、第2凝縮器42が有する複数の第2熱交換チューブ422は、重力方向に沿うように延びている。これにより、複数の第2熱交換チューブ422の内側を、液相冷媒が重力方向に沿って流れる力が大きくなる。 On the other hand, the plurality of second heat exchange tubes 422 included in the second condenser 42 extend along the direction of gravity. Thereby, the force by which the liquid refrigerant flows along the direction of gravity inside the plurality of second heat exchange tubes 422 increases.
 第4実施形態でも、第1凝縮器41が有する複数の第1熱交換チューブ412で生成された液相冷媒は、第1上タンク411から第1下タンク413に流れた後、接続通路43を経由して第2凝縮器42に流れる。第2凝縮器42が有する複数の第2熱交換チューブ422で生成された液相冷媒は、その自重により重力方向に沿って流れる力が大きくなり、第2凝縮器42から液相通路6を経由して蒸発器3に円滑に流れる。これにより、蒸発器3側から液相冷媒の逆流または気泡の逆流が抑制される。したがって、第4実施形態の機器温調装置1も、第1凝縮器41の複数の第1熱交換チューブ412または第2凝縮器42の複数の第2熱交換チューブ422のうち少なくとも一方が、重力方向に沿うように延びていることで、電池2の冷却能力を向上することができる。 Also in the fourth embodiment, the liquid-phase refrigerant generated by the plurality of first heat exchange tubes 412 included in the first condenser 41 flows from the first upper tank 411 to the first lower tank 413 and then passes through the connection passage 43. Via the second condenser 42. The liquid refrigerant generated in the plurality of second heat exchange tubes 422 included in the second condenser 42 has a larger force flowing along the direction of gravity due to its own weight, and passes through the liquid phase passage 6 from the second condenser 42. And flows smoothly into the evaporator 3. Thereby, the backflow of a liquid phase refrigerant | coolant or the backflow of a bubble is suppressed from the evaporator 3 side. Therefore, in the device temperature control apparatus 1 of the fourth embodiment, at least one of the plurality of first heat exchange tubes 412 of the first condenser 41 or the plurality of second heat exchange tubes 422 of the second condenser 42 is gravity. By extending along the direction, the cooling capacity of the battery 2 can be improved.
 (第5実施形態)
 第5実施形態について説明する。第5実施形態は、第1実施形態に対して第1凝縮器41および第2凝縮器42の構成を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Fifth embodiment)
A fifth embodiment will be described. 5th Embodiment changes the structure of the 1st condenser 41 and the 2nd condenser 42 with respect to 1st Embodiment, Since it is the same as that of 1st Embodiment about others, 1st Embodiment Only different parts will be described.
 図6に示すように、第5実施形態では、第1凝縮器41と第2凝縮器42とが、一体に構成されている。具体的には、図7に示すように、第1凝縮器41の第1下タンク413と第2凝縮器42の第2上タンク421とが、連続して一体に構成されている。第1凝縮器41の第1下タンク413と第2凝縮器42の第2上タンク421との間には、板状のセパレータ44が設けられている。セパレータ44の一部には穴45が設けられている。この穴45を通じて、第1凝縮器41の第1下タンク413と第2凝縮器42の第2上タンク421との間を冷媒が流れる。 As shown in FIG. 6, in the fifth embodiment, the first condenser 41 and the second condenser 42 are integrally formed. Specifically, as shown in FIG. 7, the first lower tank 413 of the first condenser 41 and the second upper tank 421 of the second condenser 42 are configured integrally in a continuous manner. A plate-like separator 44 is provided between the first lower tank 413 of the first condenser 41 and the second upper tank 421 of the second condenser 42. A hole 45 is provided in a part of the separator 44. Through this hole 45, the refrigerant flows between the first lower tank 413 of the first condenser 41 and the second upper tank 421 of the second condenser 42.
 第5実施形態では、第1凝縮器41と第2凝縮器42とを一体に構成することで、その体格を小型化すると共に、第1凝縮器41と第2凝縮器42とを接続する接続通路43を廃止し、その接続通路43による加熱または放熱の懸念を払拭することができる。 In the fifth embodiment, the first condenser 41 and the second condenser 42 are integrally configured to reduce the size of the first condenser 41 and to connect the first condenser 41 and the second condenser 42. The passage 43 can be abolished, and the fear of heating or heat radiation by the connection passage 43 can be eliminated.
 また、第1下タンク413と第2上タンク421とを一体に構成することで、部品点数を少なくし、構成を簡素なものとして、製造上のコストを低減することができる。 Further, by integrally configuring the first lower tank 413 and the second upper tank 421, the number of parts can be reduced, the configuration can be simplified, and the manufacturing cost can be reduced.
 (第6実施形態)
 第6実施形態について説明する。以下に説明する複数の実施形態は、上述した第1から第5実施形態に対し、第1凝縮器41および第2凝縮器42のそれぞれの外部にある第1媒体および第2媒体について説明するものである。なお、以下に説明する複数の実施形態で参照する各図面では、蒸発器3とその周辺の構成の図示を省略している。
(Sixth embodiment)
A sixth embodiment will be described. The plurality of embodiments to be described below describe the first medium and the second medium outside the first condenser 41 and the second condenser 42, respectively, with respect to the first to fifth embodiments described above. It is. In addition, in each drawing referred in the several embodiment demonstrated below, illustration of the evaporator 3 and its periphery structure is abbreviate | omitted.
 図8に示すように、第6実施形態の機器温調装置1は、第1媒体供給装置100の一例として第1送風機71を備えており、第2媒体供給装置200の一例として第2送風機72を備えている。第1送風機71は、第1媒体としての空気を第1凝縮器41に供給するものである。第2送風機72も、第2媒体としての空気を第2凝縮器42に供給するものである。 As shown in FIG. 8, the device temperature adjustment device 1 of the sixth embodiment includes a first blower 71 as an example of the first medium supply device 100, and a second blower 72 as an example of the second medium supply device 200. It has. The first blower 71 supplies air as the first medium to the first condenser 41. The second blower 72 also supplies air as the second medium to the second condenser 42.
 第1送風機71は、少なくとも夏季において、第1媒体として車室外空気を第1凝縮器41に供給する。車室外空気は、第1凝縮器41の外部を流れ、第1凝縮器41を流れる冷媒と熱交換する。一方、第2送風機72は、少なくとも夏季において、第2媒体として車室内空気を第2凝縮器42に供給する。車室内空気は、第2凝縮器42の外部を流れ、第2凝縮器42を流れる冷媒と熱交換する。 The first blower 71 supplies vehicle exterior air to the first condenser 41 as a first medium at least in summer. The vehicle exterior air flows outside the first condenser 41 and exchanges heat with the refrigerant flowing through the first condenser 41. On the other hand, the second blower 72 supplies vehicle interior air to the second condenser 42 as the second medium at least in summer. The vehicle interior air flows outside the second condenser 42 and exchanges heat with the refrigerant flowing through the second condenser 42.
 一般に、少なくとも夏季における車両走行時では、空調装置によって車室内の空気は車室外の空気よりも低温に設定されている。そのため、第2媒体としての車室内の空気は、第1媒体としての車室外の空気よりも低温である。したがって、第1凝縮器41で凝縮した冷媒が、第2凝縮器42で再加熱されることを防ぐことができる。そのため、第2凝縮器42で気泡が生成されることが抑制されるので、その気泡の浮力による液相冷媒の流れの悪化が防がれる。また、気泡が液相冷媒を押し上げ、第1凝縮器41または第2凝縮器42の液上面で液相冷媒を吹き上げることが抑制されると共に、そこで気泡が破裂して異音を発生することが抑制される。さらに、第2凝縮器42で気泡が生成されることが抑制されるので、第1凝縮器41および第2凝縮器42で液相冷媒の生成が円滑に行われ、第1凝縮器41および第2凝縮器42から蒸発器3に液相冷媒が円滑に供給される。したがって、この機器温調装置1は、電池2の冷却能力を向上することができる。 Generally, at least when the vehicle travels in summer, the air in the vehicle interior is set at a lower temperature than the air outside the vehicle interior by the air conditioner. For this reason, the air in the passenger compartment as the second medium is at a lower temperature than the air outside the passenger compartment as the first medium. Therefore, the refrigerant condensed by the first condenser 41 can be prevented from being reheated by the second condenser 42. For this reason, since the generation of bubbles in the second condenser 42 is suppressed, the deterioration of the flow of the liquid-phase refrigerant due to the buoyancy of the bubbles is prevented. In addition, it is possible that the bubbles push up the liquid-phase refrigerant and the liquid-phase refrigerant is prevented from being blown up on the liquid upper surface of the first condenser 41 or the second condenser 42, and the bubbles burst there and generate abnormal noise. It is suppressed. Further, since the generation of bubbles in the second condenser 42 is suppressed, the liquid refrigerant is smoothly generated in the first condenser 41 and the second condenser 42, and the first condenser 41 and the second condenser 42 are generated. The liquid refrigerant is smoothly supplied from the two condenser 42 to the evaporator 3. Therefore, the device temperature control device 1 can improve the cooling capacity of the battery 2.
 (第7実施形態)
 第7実施形態について説明する。図9に示すように、第7実施形態の機器温調装置1は、第1媒体供給装置100の一例として、第1送風機71および第1冷熱供給器101を備えている。また、機器温調装置1は、第2媒体供給装置200の一例として、第2送風機72および第2冷熱供給器201を備えている。第1冷熱供給器101および第2冷熱供給器201は、例えば冷凍サイクルを構成する低圧側熱交換器、または、冷却水の循環サイクルを構成する熱交換器などで構成されるものである。
(Seventh embodiment)
A seventh embodiment will be described. As shown in FIG. 9, the device temperature adjustment device 1 of the seventh embodiment includes a first blower 71 and a first cold heat supply device 101 as an example of the first medium supply device 100. Moreover, the apparatus temperature control apparatus 1 is provided with the 2nd air blower 72 and the 2nd cold heat supply device 201 as an example of the 2nd medium supply apparatus 200. As shown in FIG. The 1st cold heat supply device 101 and the 2nd cold heat supply device 201 are comprised by the low pressure side heat exchanger which comprises a refrigerating cycle, or the heat exchanger which comprises the circulating cycle of cooling water, etc., for example.
 第1媒体供給装置100は、第1送風機71により気流を発生させ、第1冷熱供給器101を通過した空気を第1媒体として第1凝縮器41に流す。これにより、第1凝縮器41を流れる冷媒が冷却される。第1媒体供給装置100は、第1冷熱供給器101の温度調節により、第1媒体としての空気の温度を調整することが可能である。 The first medium supply device 100 generates an air flow by the first blower 71 and causes the air that has passed through the first cold heat supply device 101 to flow to the first condenser 41 as the first medium. Thereby, the refrigerant | coolant which flows through the 1st condenser 41 is cooled. The first medium supply device 100 can adjust the temperature of the air as the first medium by adjusting the temperature of the first cold heat supply device 101.
 第2媒体供給装置200は、第2送風機72により気流を発生させ、第2冷熱供給器201を通過した空気を第2媒体として第2凝縮器42に流す。これにより、第2凝縮器42を流れる冷媒が冷却される。第2媒体供給装置200も、第2冷熱供給器201の温度調節により、第2媒体としての空気の温度を調整することが可能である。 The second medium supply device 200 generates an air flow by the second blower 72 and causes the air that has passed through the second cold heat supply device 201 to flow to the second condenser 42 as the second medium. Thereby, the refrigerant | coolant which flows through the 2nd condenser 42 is cooled. The second medium supply device 200 can also adjust the temperature of the air as the second medium by adjusting the temperature of the second cold heat supply device 201.
 第1媒体供給装置100と第2媒体供給装置200は、第1媒体としての空気の温度よりも、第2媒体としての空気の温度を低くして、第2凝縮器42を流れる冷媒をより冷却することが可能である。そのため、第7実施形態も、第1凝縮器41で凝縮した冷媒が、第2凝縮器42で再加熱されることを防ぐことができる。また、第7実施形態は、第1媒体と第2媒体を所望の温度に調整することが可能である。 The first medium supply device 100 and the second medium supply device 200 cool the refrigerant flowing through the second condenser 42 by lowering the temperature of the air as the second medium than the temperature of the air as the first medium. Is possible. Therefore, the seventh embodiment can also prevent the refrigerant condensed by the first condenser 41 from being reheated by the second condenser 42. In the seventh embodiment, the first medium and the second medium can be adjusted to desired temperatures.
 (第8実施形態)
 第8実施形態について説明する。図10に示すように、第8実施形態の機器温調装置1は、第1媒体供給装置100の一例として、第1送風機71を備えている。第1送風機71は、第1媒体としての空気を第1凝縮器41に供給するものである。その空気は、第1凝縮器41の外部を流れ、第1凝縮器41を流れる冷媒と熱交換する。
(Eighth embodiment)
An eighth embodiment will be described. As illustrated in FIG. 10, the device temperature adjustment device 1 according to the eighth embodiment includes a first blower 71 as an example of the first medium supply device 100. The first blower 71 supplies air as the first medium to the first condenser 41. The air flows outside the first condenser 41 and exchanges heat with the refrigerant flowing through the first condenser 41.
 また、機器温調装置1は、第2媒体供給装置200の一例として、第2冷熱供給器201を備えている。第2冷熱供給器201は、例えば冷凍サイクルを構成する低圧側熱交換器、または、冷却水の流れる循環サイクルを構成する熱交換器などで構成されるものである。第2冷熱供給器201が冷凍サイクルを構成する低圧側熱交換器である場合、第2冷熱供給器201は第2媒体として冷凍サイクルを循環する冷媒の冷熱を第2凝縮器42に供給する。一方、第2冷熱供給器201が冷却水の循環サイクルを構成する熱交換器である場合、第2冷熱供給器201は第2媒体として冷却水の冷熱を第2凝縮器42に供給する。第2凝縮器42を流れる冷媒は、第2媒体としての冷媒または冷却水からの熱伝導により冷却される。第2冷熱供給器201は、冷凍サイクルまたは冷却水の循環サイクルの出力調整により、第2凝縮器42を流れる冷媒に供給する冷熱量を調整することが可能である。 Moreover, the apparatus temperature control apparatus 1 is provided with the 2nd cold heat supply device 201 as an example of the 2nd medium supply apparatus 200. FIG. The 2nd cold heat supply device 201 is comprised by the low pressure side heat exchanger which comprises a refrigerating cycle, or the heat exchanger which comprises the circulation cycle through which cooling water flows, for example. When the second cold heat supply device 201 is a low-pressure side heat exchanger constituting the refrigeration cycle, the second cold heat supply device 201 supplies the second condenser 42 with the cold heat of the refrigerant circulating in the refrigeration cycle as the second medium. On the other hand, when the 2nd cold heat supply device 201 is a heat exchanger which comprises the circulation cycle of a cooling water, the 2nd cold heat supply device 201 supplies the cold heat of a cooling water to the 2nd condenser 42 as a 2nd medium. The refrigerant flowing through the second condenser 42 is cooled by heat conduction from the refrigerant or cooling water as the second medium. The second cold heat supply device 201 can adjust the amount of cold heat supplied to the refrigerant flowing through the second condenser 42 by adjusting the output of the refrigeration cycle or the cooling water circulation cycle.
 第8実施形態では、第1媒体供給装置100と第2媒体供給装置200は、第1媒体としての空気から第1凝縮器41に供給される冷熱量より、第2媒体としての冷媒または冷却水から第2凝縮器42に供給される冷熱量を大きくすることが可能である。これにより、第1凝縮器41を流れる冷媒よりも、第2凝縮器42を流れる冷媒がより冷却される。したがって、第8実施形態においても、第1凝縮器41で凝縮した冷媒が、第2凝縮器42で再加熱されることを防ぐことができる。 In 8th Embodiment, the 1st medium supply apparatus 100 and the 2nd medium supply apparatus 200 are the refrigerant | coolant or cooling water as a 2nd medium from the cold heat amount supplied to the 1st condenser 41 from the air as a 1st medium. It is possible to increase the amount of cold supplied to the second condenser 42. Thereby, the refrigerant flowing through the second condenser 42 is cooled more than the refrigerant flowing through the first condenser 41. Therefore, also in the eighth embodiment, the refrigerant condensed by the first condenser 41 can be prevented from being reheated by the second condenser 42.
 また、第8実施形態では、第1媒体と第2媒体とは、異種の媒体である。これによれば、第1媒体と第2媒体を、温度の異なるものに容易に設定することが可能である。そのため、例えば車両の高速走行時など電池2の発熱量が大きいとき、第2媒体として、温度の低い冷媒または冷却水を使用して、電池2を十分に冷却することが可能である。一方、例えば車両の市内走行時など電池2の発熱量が小さいとき、第1媒体として、第2媒体よりも温度が比較的高い空気を使用して、電池2を適切な温度に冷却することが可能である。したがって、この機器温調装置1は、電池2の発熱量に応じた温度調節をすることができる。 In the eighth embodiment, the first medium and the second medium are different types of media. According to this, it is possible to easily set the first medium and the second medium at different temperatures. Therefore, for example, when the amount of heat generated by the battery 2 is large, such as when the vehicle is traveling at high speed, it is possible to sufficiently cool the battery 2 using a low-temperature refrigerant or cooling water as the second medium. On the other hand, when the heat generation amount of the battery 2 is small, for example, when the vehicle is traveling in the city, the battery 2 is cooled to an appropriate temperature by using air having a relatively higher temperature than the second medium as the first medium. Is possible. Therefore, the device temperature control device 1 can adjust the temperature according to the amount of heat generated by the battery 2.
 また、第8実施形態では、第1媒体供給装置100は、送風機71である。第2媒体供給装置200は、冷凍サイクルを構成する低圧側熱交換器、または、冷却水の流れる循環サイクルを構成する熱交換器である。 In the eighth embodiment, the first medium supply device 100 is a blower 71. The second medium supply device 200 is a low-pressure side heat exchanger constituting a refrigeration cycle or a heat exchanger constituting a circulation cycle through which cooling water flows.
 これによれば、例えば車両の市内走行時など電池2の発熱量が小さいとき、第1媒体供給装置100としての送風機を使用することで、冷凍サイクルなどを駆動することに比べて、電池2の冷却に必要となる消費電力を低減することが可能である。 According to this, when the heat generation amount of the battery 2 is small, for example, when the vehicle travels in the city, the battery 2 is used compared to driving the refrigeration cycle or the like by using the blower as the first medium supply device 100. It is possible to reduce the power consumption required for cooling.
 一方、第2媒体供給装置200は、第2媒体としての冷凍サイクルの冷媒または冷却水の温度を、第1媒体としての空気の温度よりも低い温度に設定することが可能である。例えば車両の高速走行時など電池2の発熱量が大きいとき、第2媒体供給装置200としての冷凍サイクルなどを使用することで、電池2を十分に冷却することが可能である。したがって、この機器温調装置1は、電池2の冷却に必要となる消費電力を低減すると共に、電池2の発熱量に応じた温度調節をすることができる。 On the other hand, the second medium supply device 200 can set the temperature of the refrigerant or cooling water of the refrigeration cycle as the second medium to be lower than the temperature of the air as the first medium. For example, when the amount of heat generated by the battery 2 is large, such as when the vehicle is traveling at high speed, the battery 2 can be sufficiently cooled by using a refrigeration cycle or the like as the second medium supply device 200. Therefore, the device temperature adjustment device 1 can reduce the power consumption required for cooling the battery 2 and can adjust the temperature according to the amount of heat generated by the battery 2.
 (第9実施形態)
 第9実施形態について説明する。図11に示すように、第9実施形態の機器温調装置1は、第1媒体供給装置100の一例として、冷却水の循環サイクル8を備えている。具体的に、冷却水の循環サイクル8は、ポンプ81、送風機82、空冷放熱器83および熱交換器84などが配管85によって環状に接続され、冷却水が循環する第1媒体循環回路111を構成したものである。
(Ninth embodiment)
A ninth embodiment will be described. As shown in FIG. 11, the device temperature adjustment device 1 of the ninth embodiment includes a cooling water circulation cycle 8 as an example of the first medium supply device 100. Specifically, the cooling water circulation cycle 8 includes a first medium circulation circuit 111 in which a pump 81, a blower 82, an air cooling radiator 83, a heat exchanger 84, and the like are connected in a ring shape by a pipe 85, and the cooling water circulates. It is a thing.
 ポンプ81は、配管85に冷却水を循環させる。送風機82は、空冷放熱器83に対して気流を流す。これにより、空冷放熱器83の内部を流れる冷却水が冷却される。熱交換器84は、第1冷熱供給器101に相当するものである。熱交換器84を流れる冷却水は、第1凝縮器41を流れる冷媒と熱交換し、第2凝縮器42を流れる冷媒を冷却する。熱交換器84で吸熱した冷却水は、空冷放熱器83へ流れる。 The pump 81 circulates cooling water through the pipe 85. The blower 82 causes an air flow to flow to the air cooling radiator 83. Thereby, the cooling water flowing inside the air-cooling radiator 83 is cooled. The heat exchanger 84 corresponds to the first cold heat supply device 101. The cooling water flowing through the heat exchanger 84 exchanges heat with the refrigerant flowing through the first condenser 41 and cools the refrigerant flowing through the second condenser 42. The cooling water absorbed by the heat exchanger 84 flows to the air cooling radiator 83.
 また、機器温調装置1は、第2媒体供給装置200の一例として、冷凍サイクル9を備えている。具体的に、冷凍サイクル9は、圧縮機91、高圧側熱交換器92、膨張弁93および低圧側熱交換器94などが配管95によって環状に接続され、冷媒が循環する第2媒体循環回路211を構成したものである。上述した第1媒体循環回路111と第2媒体循環回路211とは別個独立したものである。 In addition, the device temperature adjustment device 1 includes a refrigeration cycle 9 as an example of the second medium supply device 200. Specifically, the refrigeration cycle 9 includes a compressor 91, a high-pressure side heat exchanger 92, an expansion valve 93, a low-pressure side heat exchanger 94, and the like that are annularly connected by a pipe 95 to circulate the refrigerant. Is configured. The first medium circulation circuit 111 and the second medium circulation circuit 211 described above are separate and independent.
 なお、冷凍サイクル9に使用する冷媒は、機器温調装置1に用いられる作動流体としての冷媒と同一のものであってもよく、また、異なるものであってもよい。 Note that the refrigerant used in the refrigeration cycle 9 may be the same as or different from the refrigerant as the working fluid used in the device temperature control apparatus 1.
 圧縮機91は、低圧側熱交換器94側から冷媒を吸引し圧縮する。圧縮機91は、図示していない車両の走行用エンジンまたは電動機等から動力が伝達されて駆動する。 The compressor 91 sucks and compresses the refrigerant from the low-pressure side heat exchanger 94 side. The compressor 91 is driven by power transmitted from a traveling engine or an electric motor of the vehicle (not shown).
 圧縮機91から吐出した高圧の気相冷媒は高圧側熱交換器92に流入する。高圧側熱交換器92に流入した高圧の気相冷媒は、高圧側熱交換器92の流路を流れる際、図示されていない送風機による外気との熱交換により冷却されて凝縮する。 The high-pressure gas-phase refrigerant discharged from the compressor 91 flows into the high-pressure side heat exchanger 92. When the high-pressure gas-phase refrigerant flowing into the high-pressure side heat exchanger 92 flows through the flow path of the high-pressure side heat exchanger 92, the high-pressure gas-phase refrigerant is cooled and condensed by heat exchange with outside air by a blower (not shown).
 高圧側熱交換器92で凝縮された液相冷媒は、膨張弁93を通過する際に減圧され、霧状の気液二相状態となって低圧側熱交換器94に流入する。膨張弁93はオリフィスまたはノズルのような固定絞り、或いは、適宜の可変絞り等により構成される。低圧側熱交換器94は、第2冷熱供給器201に相当するものである。低圧側熱交換器94は、内部を流れる冷媒の蒸発熱により、第2凝縮器42を流れる冷媒を冷却する。低圧側熱交換器94を通過した冷媒は、図示していないアキュムレータを経由して圧縮機91に吸引される。 The liquid-phase refrigerant condensed in the high-pressure side heat exchanger 92 is depressurized when passing through the expansion valve 93, becomes a mist-like gas-liquid two-phase state, and flows into the low-pressure side heat exchanger 94. The expansion valve 93 is configured by a fixed throttle such as an orifice or a nozzle, or an appropriate variable throttle. The low-pressure side heat exchanger 94 corresponds to the second cold heat supply device 201. The low pressure side heat exchanger 94 cools the refrigerant flowing through the second condenser 42 by the evaporation heat of the refrigerant flowing through the inside. The refrigerant that has passed through the low-pressure side heat exchanger 94 is sucked into the compressor 91 via an accumulator (not shown).
 第2媒体供給装置200は、冷却水の循環サイクル8の出力調整または冷凍サイクル9の出力調整により、第1凝縮器41を流れる冷媒に供給する冷熱量よりも、第2凝縮器42を流れる冷媒に供給する冷熱量を大きくすることが可能である。これにより、第1凝縮器41を流れる冷媒よりも、第2凝縮器42を流れる冷媒がより冷却される。したがって、第9実施形態でも、第1凝縮器41で凝縮した冷媒が、第2凝縮器42で再加熱されることを防ぐことができる。 The second medium supply device 200 is configured so that the refrigerant flowing through the second condenser 42 is more than the amount of cold supplied to the refrigerant flowing through the first condenser 41 by adjusting the output of the cooling water circulation cycle 8 or adjusting the output of the refrigeration cycle 9. It is possible to increase the amount of cooling heat supplied to. Thereby, the refrigerant flowing through the second condenser 42 is cooled more than the refrigerant flowing through the first condenser 41. Therefore, also in the ninth embodiment, the refrigerant condensed by the first condenser 41 can be prevented from being reheated by the second condenser 42.
 また、第9実施形態では、第1媒体としての冷却水と、第2媒体としての冷凍サイクル9の冷媒とは、異種の媒体である。これによれば、第1媒体と第2媒体の温度を異なる温度に容易に設定することが可能である。したがって、この機器温調装置1は、電池2の発熱量に応じた温度調節をすることができる。 In the ninth embodiment, the cooling water as the first medium and the refrigerant of the refrigeration cycle 9 as the second medium are different media. According to this, it is possible to easily set the temperatures of the first medium and the second medium to different temperatures. Therefore, the device temperature control device 1 can adjust the temperature according to the amount of heat generated by the battery 2.
 さらに、第9実施形態では、第1媒体としての冷却水が循環する第1媒体循環回路111と、第2媒体としての冷媒が循環する第2媒体循環回路211とは別個独立した回路である。これによれば、第1媒体の温度と第2媒体の温度とが互いに影響しあうことを防ぐことが可能である。したがって、第1媒体供給装置100により第1凝縮器41を流れる冷媒に供給する冷熱量を適切に調整し、且つ、第2媒体供給装置200により第2凝縮器42を流れる冷媒に供給する冷熱量を適切に調整することが可能である。 Furthermore, in the ninth embodiment, the first medium circulation circuit 111 for circulating the cooling water as the first medium and the second medium circulation circuit 211 for circulating the refrigerant as the second medium are separate and independent circuits. According to this, it is possible to prevent the temperature of the first medium and the temperature of the second medium from affecting each other. Therefore, the amount of cold supplied to the refrigerant flowing through the first condenser 41 by the first medium supply device 100 is appropriately adjusted, and the amount of cold supplied to the refrigerant flowing through the second condenser 42 by the second medium supply device 200. Can be adjusted appropriately.
 (第10実施形態)
 第10実施形態について説明する。図12に示すように、第10実施形態では、機器温調装置1が備える第1媒体供給装置100と第2媒体供給装置200は、同一の冷凍サイクル9により構成されている。この冷凍サイクル9において、第1冷熱供給器101に相当する第1低圧側熱交換器941と、第2冷熱供給器201に相当する第2低圧側熱交換器942とは、並列に接続されている。
(10th Embodiment)
A tenth embodiment will be described. As shown in FIG. 12, in the tenth embodiment, the first medium supply device 100 and the second medium supply device 200 included in the device temperature adjustment device 1 are configured by the same refrigeration cycle 9. In this refrigeration cycle 9, a first low-pressure side heat exchanger 941 corresponding to the first cold heat supply device 101 and a second low-pressure side heat exchanger 942 corresponding to the second cold heat supply device 201 are connected in parallel. Yes.
 具体的に、冷凍サイクル9は、圧縮機91、高圧側熱交換器92、第1流量調整弁961、第1膨張弁931、第1低圧側熱交換器941、第2流量調整弁962、第2膨張弁932および第2低圧側熱交換器942などが配管95によって環状に接続され、冷媒が循環する循環回路を構成したものである。 Specifically, the refrigeration cycle 9 includes a compressor 91, a high pressure side heat exchanger 92, a first flow rate adjustment valve 961, a first expansion valve 931, a first low pressure side heat exchanger 941, a second flow rate adjustment valve 962, The second expansion valve 932 and the second low-pressure side heat exchanger 942 are connected in a ring shape by a pipe 95 to constitute a circulation circuit in which the refrigerant circulates.
 圧縮機91および高圧側熱交換器92は、第9実施形態で説明したものと実質的に同一である。 The compressor 91 and the high pressure side heat exchanger 92 are substantially the same as those described in the ninth embodiment.
 高圧側熱交換器92で凝縮された液相冷媒は、分岐した配管951、952を経由し、第1低圧側熱交換器941側と第2低圧側熱交換器942側にそれぞれ分かれて流れる。第1低圧側熱交換器941側の配管951には、冷媒の流れる流量を調整するための第1流量調整弁961が設けられている。第1流量調整弁961を通過した液相冷媒は、第1膨張弁931を通過する際に減圧され、霧状の気液二相状態となって第1低圧側熱交換器941に流入する。第1低圧側熱交換器941は、第1冷熱供給器101に相当するものである。 The liquid-phase refrigerant condensed in the high-pressure side heat exchanger 92 flows separately through the branched pipes 951 and 952 to the first low-pressure side heat exchanger 941 side and the second low-pressure side heat exchanger 942 side. A pipe 951 on the first low pressure side heat exchanger 941 side is provided with a first flow rate adjustment valve 961 for adjusting the flow rate of the refrigerant. The liquid-phase refrigerant that has passed through the first flow rate adjustment valve 961 is reduced in pressure when passing through the first expansion valve 931, becomes a mist-like gas-liquid two-phase state, and flows into the first low-pressure side heat exchanger 941. The first low-pressure side heat exchanger 941 corresponds to the first cold heat supply device 101.
 第1低圧側熱交換器941は、機器温調装置1の第1凝縮器41を流れる冷媒と熱交換可能に設けられている。第1低圧側熱交換器941の流路を流れる低圧冷媒は、機器温調装置1の第1凝縮器41を流れる冷媒から吸熱して蒸発する。機器温調装置1の第1凝縮器41を流れる冷媒は、第1低圧側熱交換器941の流路を流れる低圧冷媒の蒸発潜熱により、冷却され、凝縮する。第1低圧側熱交換器941を通過した冷媒は、図示していないアキュムレータを経由して圧縮機91に吸引される。 The first low-pressure side heat exchanger 941 is provided so as to be able to exchange heat with the refrigerant flowing through the first condenser 41 of the device temperature control device 1. The low-pressure refrigerant flowing through the flow path of the first low-pressure side heat exchanger 941 absorbs heat from the refrigerant flowing through the first condenser 41 of the device temperature control device 1 and evaporates. The refrigerant flowing through the first condenser 41 of the device temperature control apparatus 1 is cooled and condensed by the latent heat of vaporization of the low-pressure refrigerant flowing through the flow path of the first low-pressure side heat exchanger 941. The refrigerant that has passed through the first low-pressure side heat exchanger 941 is sucked into the compressor 91 via an accumulator (not shown).
 一方、第2低圧側熱交換器942側の配管952にも、冷媒の流れる流量を調整するための第2流量調整弁962が設けられている。第2流量調整弁962を通過した液相冷媒は、第2膨張弁932を通過する際に減圧され、霧状の気液二相状態となって第2低圧側熱交換器942に流入する。第2低圧側熱交換器942は、第2冷熱供給器201に相当するものである。第2低圧側熱交換器942は、機器温調装置1の第2凝縮器42を流れる冷媒と熱交換可能に設けられている。第2低圧側熱交換器942の流路を流れる低圧冷媒は、機器温調装置1の第2凝縮器42を流れる冷媒から吸熱して蒸発する。機器温調装置1の第2凝縮器42を流れる冷媒は、第2低圧側熱交換器942の流路を流れる低圧冷媒の蒸発潜熱により、冷却され、凝縮する。第2低圧側熱交換器942を通過した冷媒も、図示していないアキュムレータを経由して圧縮機91に吸引される。 Meanwhile, a second flow rate adjusting valve 962 for adjusting the flow rate of the refrigerant is also provided in the pipe 952 on the second low pressure side heat exchanger 942 side. The liquid-phase refrigerant that has passed through the second flow rate adjustment valve 962 is depressurized when passing through the second expansion valve 932, enters a second gas-liquid two-phase state, and flows into the second low-pressure side heat exchanger 942. The second low-pressure side heat exchanger 942 corresponds to the second cold heat supply device 201. The second low-pressure side heat exchanger 942 is provided so as to be able to exchange heat with the refrigerant flowing through the second condenser 42 of the device temperature control device 1. The low-pressure refrigerant flowing through the flow path of the second low-pressure side heat exchanger 942 absorbs heat from the refrigerant flowing through the second condenser 42 of the device temperature control device 1 and evaporates. The refrigerant flowing through the second condenser 42 of the device temperature control apparatus 1 is cooled and condensed by the latent heat of vaporization of the low-pressure refrigerant flowing through the flow path of the second low-pressure side heat exchanger 942. The refrigerant that has passed through the second low-pressure side heat exchanger 942 is also sucked into the compressor 91 via an accumulator (not shown).
 第10実施形態では、冷凍サイクル9が備える第1流量調整弁961および第2流量調整弁962により、第1凝縮器41を流れる冷媒に供給する冷熱量と、第2凝縮器42を流れる冷媒に供給する冷熱量とを調整することが可能である。第1流量調整弁961および第2流量調整弁962の流量調整は、オンオフ時間の調整などにより行われる。このような冷凍サイクル9の出力調整により、第1凝縮器41を流れる冷媒に供給する冷熱量よりも、第2凝縮器42を流れる冷媒に供給する冷熱量を大きくすることが可能である。これにより、第1凝縮器41を流れる冷媒よりも、第2凝縮器42を流れる冷媒がより冷却される。したがって、第10実施形態でも、第1凝縮器41で凝縮した冷媒が、第2凝縮器42で再加熱されることを防ぐことができる。 In the tenth embodiment, the first flow rate adjustment valve 961 and the second flow rate adjustment valve 962 included in the refrigeration cycle 9 are used to change the amount of cold supplied to the refrigerant flowing through the first condenser 41 and the refrigerant flowing through the second condenser 42. It is possible to adjust the amount of cold supplied. The flow rate adjustment of the first flow rate adjustment valve 961 and the second flow rate adjustment valve 962 is performed by adjusting the on / off time. By adjusting the output of the refrigeration cycle 9 as described above, the amount of cold supplied to the refrigerant flowing through the second condenser 42 can be made larger than the amount of cold supplied to the refrigerant flowing through the first condenser 41. Thereby, the refrigerant flowing through the second condenser 42 is cooled more than the refrigerant flowing through the first condenser 41. Therefore, also in the tenth embodiment, the refrigerant condensed by the first condenser 41 can be prevented from being reheated by the second condenser 42.
 また、第10実施形態では、冷凍サイクル9を構成する第1、第2低圧側熱交換器941、942をそれぞれ第1、第2冷熱供給器101、201として使用することで、第1凝縮器41と第2凝縮器42両方の冷媒凝縮能力を高めることが可能である。また、車両に搭載されている空調装置の冷凍サイクル9の第1、第2低圧側熱交換器941、942をそれぞれ第1、第2冷熱供給器101、201として使用することで、機器温調装置1の構成を簡素なものとすることができる。 In the tenth embodiment, the first and second low-pressure heat exchangers 941 and 942 constituting the refrigeration cycle 9 are used as the first and second cold heat supply devices 101 and 201, respectively. It is possible to increase the refrigerant condensing capacity of both 41 and the second condenser 42. Further, by using the first and second low-pressure heat exchangers 941 and 942 of the refrigeration cycle 9 of the air conditioner mounted on the vehicle as the first and second cold heat supply devices 101 and 201, respectively, the device temperature control is performed. The configuration of the device 1 can be simplified.
 (第11実施形態)
 第11実施形態について説明する。図13に示すように、第11実施形態は、第8実施形態の変形例である。
(Eleventh embodiment)
An eleventh embodiment will be described. As shown in FIG. 13, the eleventh embodiment is a modification of the eighth embodiment.
 第11実施形態の機器温調装置1は、第1媒体供給装置100の一例として、第1送風機71を備えている。また、機器温調装置1は、第2媒体供給装置200の一例として、冷却水の循環サイクル8と冷凍サイクル9によるいわゆる二次ループ構成を備えている。冷却水の循環サイクル8を構成する熱交換器84は、第2冷熱供給器201に相当するものである。 The apparatus temperature control apparatus 1 of 11th Embodiment is provided with the 1st air blower 71 as an example of the 1st medium supply apparatus 100. FIG. Moreover, the apparatus temperature control apparatus 1 is equipped with what is called a secondary loop structure by the circulating cycle 8 and the refrigerating cycle 9 of a cooling water as an example of the 2nd medium supply apparatus 200. FIG. The heat exchanger 84 constituting the cooling water circulation cycle 8 corresponds to the second cold heat supply device 201.
 冷却水の循環サイクル8は、ポンプ81、熱交換器84および放熱器83などが配管85によって環状に接続されたものである。この冷却水の循環サイクル8の放熱器83は、冷凍サイクル9を構成する低圧側熱交換器94と熱交換可能に構成されている。なお、冷凍サイクル9を構成する圧縮機91、高圧側熱交換器92、膨張弁93および低圧側熱交換器94は、第9実施形態で説明したものと実質的に同一である。 The cooling water circulation cycle 8 has a pump 81, a heat exchanger 84, a radiator 83, and the like connected in a ring shape by a pipe 85. The radiator 83 of the cooling water circulation cycle 8 is configured to be able to exchange heat with the low-pressure heat exchanger 94 constituting the refrigeration cycle 9. The compressor 91, the high-pressure side heat exchanger 92, the expansion valve 93, and the low-pressure side heat exchanger 94 constituting the refrigeration cycle 9 are substantially the same as those described in the ninth embodiment.
 第11実施形態では、第2冷熱供給器201を流れる冷却水は、冷凍サイクル9を構成する低圧側熱交換器94により冷却される。第2冷熱供給器201は、冷凍サイクル9の出力調節などにより、第2冷熱供給器201から第2凝縮器42を流れる冷媒に供給する冷熱量を調整することが可能である。第11実施形態も、第8実施形態と同様の作用効果を奏することが可能である。 In the eleventh embodiment, the cooling water flowing through the second cold heat supply device 201 is cooled by the low pressure side heat exchanger 94 constituting the refrigeration cycle 9. The second cold heat supply device 201 can adjust the amount of cold supplied from the second cold heat supply device 201 to the refrigerant flowing through the second condenser 42 by adjusting the output of the refrigeration cycle 9 or the like. The eleventh embodiment can also provide the same operational effects as the eighth embodiment.
 (他の実施形態)
 本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。
(Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be modified as appropriate. Further, the above embodiments are not irrelevant to each other, and can be combined as appropriate unless the combination is clearly impossible. In each of the above-described embodiments, it is needless to say that elements constituting the embodiment are not necessarily essential unless explicitly stated as essential and clearly considered essential in principle. Yes. Further, in each of the above embodiments, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is clearly limited to a specific number when clearly indicated as essential and in principle. The number is not limited to the specific number except for the case. Further, in each of the above embodiments, when referring to the shape, positional relationship, etc. of the component, etc., the shape, unless otherwise specified and in principle limited to a specific shape, positional relationship, etc. It is not limited to the positional relationship or the like.
 例えば、上述した実施形態では、機器温調装置1は、車両の電池2を冷却するものとしたが、他の実施形態では、機器温調装置1が冷却する対象機器は、車両が備える種々の機器装置であってもよい。 For example, in the embodiment described above, the device temperature adjustment device 1 cools the battery 2 of the vehicle. However, in other embodiments, the target device cooled by the device temperature adjustment device 1 may be various types of vehicles. It may be an equipment device.
 例えば、上述した実施形態では、機器温調装置1は、電池2を冷却するものとしたが、他の実施形態では、機器温調装置1は電池2を加熱するものであってもよい。この場合、蒸発器3で冷媒を凝縮させ、凝縮器41、42で冷媒を蒸発させることとなる。 For example, in the embodiment described above, the device temperature adjustment device 1 is configured to cool the battery 2, but in other embodiments, the device temperature adjustment device 1 may be configured to heat the battery 2. In this case, the evaporator 3 condenses the refrigerant, and the condensers 41 and 42 evaporate the refrigerant.
 例えば、上述した実施形態では、蒸発器3を扁平状に形成されたケースで構成したが、他の実施形態では、蒸発器3は熱交換チューブを含む構成としてもよい。 For example, in the above-described embodiment, the evaporator 3 is configured as a flat case, but in other embodiments, the evaporator 3 may include a heat exchange tube.
 例えば、上述した実施形態では、機器温調装置1は、2個の凝縮器を備えるものとしたが、他の実施形態では、機器温調装置1は、3個以上の凝縮器を備えるものとしてもよい。 For example, in the embodiment described above, the device temperature adjustment device 1 is provided with two condensers. However, in other embodiments, the device temperature adjustment device 1 is provided with three or more condensers. Also good.
 例えば、上述した実施形態では、第1媒体供給装置100または第2媒体供給装置200として、冷却水の循環サイクル8、冷凍サイクル9または送風機71、72などを例示したが、これに限らない。他の実施形態では、第1媒体供給装置100または第2媒体供給装置200は、例えばペルチェ素子を備えたサーモモジュール、または、磁気で冷凍作用を生成する冷却体など、種々のものを適用してもよい。 For example, in the above-described embodiment, as the first medium supply device 100 or the second medium supply device 200, the cooling water circulation cycle 8, the refrigeration cycle 9, the blowers 71 and 72, and the like are illustrated, but the present invention is not limited thereto. In other embodiments, the first medium supply device 100 or the second medium supply device 200 is applied with various devices such as a thermo module having a Peltier element or a cooling body that generates a refrigeration action magnetically. Also good.
 (まとめ)
 上述の実施形態の一部または全部で示された第1の観点によれば、機器温調装置は、対象機器の温度を調整する機器温調装置であり、蒸発器、第1凝縮器および第2凝縮器を備える。蒸発器は、対象機器から吸熱して蒸発する作動流体の蒸発潜熱により対象機器を冷却する。第1凝縮器は、蒸発器より重力方向上側に設けられ、蒸発器で蒸発した作動流体を、外部にある第1媒体との熱交換により凝縮させる第1熱交換通路を有する。第2凝縮器は、蒸発器より重力方向上側に設けられ、第1凝縮器から流入する作動流体を、外部にある第2媒体との熱交換により凝縮させる第2熱交換通路を有し、凝縮した作動流体を蒸発器に向けて流出する。ここで、第2凝縮器が有する第2熱交換通路は、第1凝縮器が有する第1熱交換通路より、流路断面積または相当直径が小さいものである。
(Summary)
According to the 1st viewpoint shown by one part or all part of the above-mentioned embodiment, an apparatus temperature control apparatus is an apparatus temperature control apparatus which adjusts the temperature of object apparatus, and is an evaporator, a 1st condenser, and 1st. Two condensers are provided. The evaporator cools the target device by latent heat of vaporization of the working fluid that absorbs heat from the target device and evaporates. The first condenser is provided above the evaporator in the direction of gravity, and has a first heat exchange passage that condenses the working fluid evaporated by the evaporator by heat exchange with the first medium outside. The second condenser is provided above the evaporator in the gravitational direction, and has a second heat exchange passage that condenses the working fluid flowing in from the first condenser by heat exchange with the second medium outside. The discharged working fluid flows out toward the evaporator. Here, the second heat exchange passage of the second condenser has a smaller cross-sectional area or equivalent diameter than the first heat exchange passage of the first condenser.
 第2の観点によれば、第1凝縮器は複数の第1熱交換通路を有し、第2凝縮器は複数の第2熱交換通路を有する。複数の第1熱交換通路の流路断面積を合わせた総流路断面積は、複数の第2熱交換通路の流路断面積を合わせた総流路断面積より大きいものである。 According to the second aspect, the first condenser has a plurality of first heat exchange passages, and the second condenser has a plurality of second heat exchange passages. The total channel cross-sectional area of the plurality of first heat exchange passages combined with the channel cross-sectional area is larger than the total channel cross-sectional area of the plurality of second heat exchange passages combined.
 これによれば、第2熱交換通路から第1熱交換通路に亘って液相の作動流体が溜まると、第1熱交換通路の液相の作動流体が自重により第2熱交換通路の液相の作動流体を蒸発器側へ押すので、第1凝縮器および第2凝縮器から蒸発器に向かう液相の作動流体の流れの圧力が大きくなる。そのため、蒸発器側から液相の作動流体の逆流または気泡の逆流が抑制され、作動流体が円滑に流れる。したがって、この機器温調装置は、対象機器の冷却能力を向上することができる。 According to this, when the liquid-phase working fluid accumulates from the second heat exchange passage to the first heat exchange passage, the liquid-phase working fluid in the first heat exchange passage is self-weighted and the liquid phase in the second heat exchange passage Since the working fluid is pushed to the evaporator side, the pressure of the flow of the liquid-phase working fluid toward the evaporator from the first condenser and the second condenser increases. Therefore, the backflow of the liquid-phase working fluid or the backflow of bubbles is suppressed from the evaporator side, and the working fluid flows smoothly. Therefore, this equipment temperature control apparatus can improve the cooling capacity of the target equipment.
 第3の観点によれば、第1凝縮器は、第2凝縮器よりも重力方向上側に位置する領域を有する。 According to the third aspect, the first condenser has a region located above the second condenser in the direction of gravity.
 これによれば、第1凝縮器で生成された液相の作動流体は、その自重により、第1凝縮器から第2凝縮器へ流れる。そのため、第1凝縮器から第2凝縮器を経由して蒸発器へ向けて液相の作動流体が順方向に円滑に流れるので、蒸発器側から液相の作動流体の逆流または気泡の逆流が抑制される。したがって、この機器温調装置は、対象機器の冷却能力を向上することができる。 According to this, the liquid-phase working fluid generated in the first condenser flows from the first condenser to the second condenser due to its own weight. Therefore, since the liquid-phase working fluid smoothly flows in the forward direction from the first condenser to the evaporator via the second condenser, the back-flow of the liquid-phase working fluid or the back-flow of bubbles is generated from the evaporator side. It is suppressed. Therefore, this equipment temperature control apparatus can improve the cooling capacity of the target equipment.
 第4の観点によれば、第1凝縮器が有する複数の第1熱交換通路または第2凝縮器が有する複数の第2熱交換通路のうち少なくとも一方は、重力方向に沿うように延びている。 According to the fourth aspect, at least one of the plurality of first heat exchange passages included in the first condenser or the plurality of second heat exchange passages included in the second condenser extends along the direction of gravity. .
 これによれば、第1熱交換通路または第2熱交換通路のうち重力方向に沿うように延びているものは、液相の作動流体を自重により重力方向下側へ円滑に流すことが可能である。したがって、この機器温調装置は、対象機器の冷却能力を向上することができる。 According to this, the first heat exchange passage or the second heat exchange passage that extends along the gravity direction can smoothly flow the liquid-phase working fluid downward in the gravity direction by its own weight. is there. Therefore, this equipment temperature control apparatus can improve the cooling capacity of the target equipment.
 第5の観点によれば、第1凝縮器と第2凝縮器とは、一体に構成されている。 According to the fifth aspect, the first condenser and the second condenser are integrally formed.
 これによれば、第1凝縮器と第2凝縮器の体格を小型化することができる。また、第1凝縮器と第2凝縮器とを接続する配管などを廃止することで、その配管による加熱または放熱の懸念を払拭することができる。 According to this, the size of the first condenser and the second condenser can be reduced. Further, by eliminating the pipe connecting the first condenser and the second condenser, it is possible to eliminate the concern of heating or heat radiation by the pipe.
 第6の観点によれば、第1凝縮器は、第1上タンク、第1熱交換通路、第1下タンクを有する。第2凝縮器は、第2上タンク、第2熱交換通路、第2下タンクを有する。第1凝縮器の第1下タンクと第2凝縮器の第2上タンクとは、一体に構成されている。 According to a sixth aspect, the first condenser has a first upper tank, a first heat exchange passage, and a first lower tank. The second condenser has a second upper tank, a second heat exchange passage, and a second lower tank. The first lower tank of the first condenser and the second upper tank of the second condenser are integrally formed.
 これによれば、第1下タンクと第2上タンクとを一体に構成することで、部品点数を少なくし、構成を簡素なものとして、製造上のコストを低減することができる。また、第1凝縮器と第2凝縮器とを接続する配管などを廃止することができる。 According to this, since the first lower tank and the second upper tank are integrally formed, the number of parts can be reduced, the structure can be simplified, and the manufacturing cost can be reduced. Moreover, piping etc. which connect a 1st condenser and a 2nd condenser can be abolished.
 第7の観点によれば、第1凝縮器の外部にある第1媒体と、第2凝縮器の外部にある第2媒体とは、異種の媒体である。 According to the seventh aspect, the first medium outside the first condenser and the second medium outside the second condenser are different media.
 これによれば、第1媒体と第2媒体を、温度の異なるものに容易に設定することが可能である。そのため、例えば対象機器の発熱量が大きいとき、第1媒体と第2媒体のうち温度の低い方の媒体を使用して液相の作動流体の生成量を増やし、対象機器を十分に冷却することが可能である。一方、対象機器の発熱量が小さいとき、第1媒体と第2媒体のうち比較的に温度の高い方の媒体を使用して対象機器を適切な温度に冷却することが可能である。したがって、この機器温調装置は、対象機器の発熱量に応じた温度調節をすることができる。 According to this, it is possible to easily set the first medium and the second medium at different temperatures. Therefore, for example, when the calorific value of the target device is large, use the medium having the lower temperature of the first medium and the second medium to increase the amount of liquid-phase working fluid generated, and sufficiently cool the target device. Is possible. On the other hand, when the calorific value of the target device is small, it is possible to cool the target device to an appropriate temperature using a medium having a relatively high temperature of the first medium and the second medium. Therefore, this device temperature control device can adjust the temperature according to the calorific value of the target device.
 第8の観点によれば、機器温調装置は、第1媒体供給装置および第2媒体供給装置をさらに備える。第1媒体供給装置は、第1凝縮器に対し第1媒体を供給する。第2媒体供給装置は、第2凝縮器に対し第2媒体を供給する。 According to an eighth aspect, the device temperature adjustment device further includes a first medium supply device and a second medium supply device. The first medium supply device supplies the first medium to the first condenser. The second medium supply device supplies the second medium to the second condenser.
 これによれば、第1媒体供給装置により第1媒体から第1凝縮器を流れる作動流体に供給する冷熱量を調整し、第2媒体供給装置により第2媒体から第2凝縮器を流れる作動流体に供給する冷熱量を調整することが可能である。 According to this, the amount of cold supplied to the working fluid flowing from the first medium through the first condenser by the first medium supply device is adjusted, and the working fluid flowing from the second medium to the second condenser by the second medium supply device. It is possible to adjust the amount of cooling heat supplied to.
 第9の観点によれば、第2媒体供給装置は、第2媒体を第1媒体よりも低い温度に設定することが可能に構成されている。 According to the ninth aspect, the second medium supply device is configured to be able to set the second medium at a temperature lower than that of the first medium.
 これによれば、第1凝縮器で凝縮した作動流体が、第2凝縮器で再加熱されることを防ぐことができる。そのため、第2凝縮器で気泡が生成されることが抑制されるので、その気泡の浮力による液相の作動流体の流れの悪化が防がれる。また、気泡が液相の作動流体を押し上げ、第1または第2凝縮器の液上面で作動流体を吹き上げることが抑制されると共に、そこで気泡が破裂して異音を発生することが抑制される。さらに、第2凝縮器で気泡が生成されることが抑制されるので、第1凝縮器および第2凝縮器で液相の作動流体の生成が円滑に行われ、第1凝縮器および第2凝縮器から蒸発器に液相冷媒が円滑に供給される。したがって、この機器温調装置は、対象機器の冷却能力を向上することができる。 According to this, it is possible to prevent the working fluid condensed in the first condenser from being reheated in the second condenser. Therefore, since it is suppressed that a bubble is produced | generated by a 2nd condenser, the deterioration of the flow of the liquid-phase working fluid by the buoyancy of the bubble is prevented. In addition, the bubbles push up the liquid-phase working fluid and the working fluid is prevented from being blown up on the liquid surface of the first or second condenser, and the bubbles are prevented from bursting to generate abnormal noise. . Furthermore, since the generation of bubbles in the second condenser is suppressed, the first condenser and the second condenser smoothly generate the liquid-phase working fluid, and the first condenser and the second condenser. The liquid phase refrigerant is smoothly supplied from the evaporator to the evaporator. Therefore, this equipment temperature control apparatus can improve the cooling capacity of the target equipment.
 第10の観点によれば、第1媒体供給装置は、第1媒体が循環する第1媒体循環回路を有する。第2媒体供給装置は、第2媒体が循環する第2媒体循環回路を有する。ここで、第1媒体循環回路と第2媒体循環回路とは別個独立した回路である。 According to a tenth aspect, the first medium supply device has a first medium circulation circuit through which the first medium circulates. The second medium supply device has a second medium circulation circuit through which the second medium circulates. Here, the first medium circulation circuit and the second medium circulation circuit are separate and independent circuits.
 これによれば、第1媒体の温度と第2媒体の温度とが互いに影響しあうことを防ぐことが可能である。したがって、第1媒体供給装置により第1媒体から第1凝縮器を流れる作動流体に供給する冷熱量を適切に調整し、且つ、第2媒体供給装置により第2媒体から第2凝縮器を流れる作動流体に供給する冷熱量を適切に調整することが可能である。 According to this, it is possible to prevent the temperature of the first medium and the temperature of the second medium from affecting each other. Therefore, the amount of cooling heat supplied from the first medium to the working fluid flowing through the first condenser is appropriately adjusted by the first medium supply device, and the second medium supply device is operated to flow from the second medium to the second condenser. It is possible to appropriately adjust the amount of cold supplied to the fluid.
 第11の観点によれば、第1媒体供給装置は送風機であり、第2媒体供給装置は冷凍サイクルを構成する低圧側熱交換器である。 According to the eleventh aspect, the first medium supply device is a blower, and the second medium supply device is a low-pressure side heat exchanger constituting a refrigeration cycle.
 これによれば、例えば対象機器の発熱量が小さいとき、第1媒体供給装置としての送風機を使用することで、冷凍サイクルを駆動することに比べて、対象機器の冷却に必要となる消費電力を低減することが可能である。 According to this, when the calorific value of the target device is small, for example, by using the blower as the first medium supply device, the power consumption required for cooling the target device is reduced compared to driving the refrigeration cycle. It is possible to reduce.
 一方、第2媒体供給装置は、第2媒体である冷凍サイクルの冷媒を、第1媒体である空気よりも低い温度に設定することが可能である。例えば対象機器の発熱量が大きいとき、第2媒体供給装置である冷凍サイクルを構成する低圧側熱交換器を使用することで、対象機器を十分に冷却することが可能である。したがって、この機器温調装置は、対象機器の冷却に必要となる消費電力を低減すると共に、対象機器の発熱量に応じた温度調節をすることができる。 On the other hand, the second medium supply device can set the refrigerant of the refrigeration cycle, which is the second medium, to a temperature lower than that of the air, which is the first medium. For example, when the heat generation amount of the target device is large, the target device can be sufficiently cooled by using the low-pressure side heat exchanger that constitutes the refrigeration cycle that is the second medium supply device. Therefore, this device temperature control apparatus can reduce the power consumption required for cooling the target device and can adjust the temperature according to the heat generation amount of the target device.
 第12の観点によれば、対象機器の温度を調整する機器温調装置は、蒸発器、第1凝縮器および第2凝縮器を備える。蒸発器は、対象機器から吸熱して蒸発する作動流体の蒸発潜熱により対象機器を冷却する。第1凝縮器は、蒸発器で蒸発した作動流体を、外部にある第1媒体との熱交換により凝縮させる第1熱交換通路を有する。第2凝縮器は、第1凝縮器から流入する作動流体を、外部にある第2媒体との熱交換により凝縮させる第2熱交換通路を有し、凝縮した作動流体を蒸発器に向けて流出する。ここで、第1媒体と第2媒体とは、異種の媒体である。 According to the twelfth aspect, the device temperature control device for adjusting the temperature of the target device includes an evaporator, a first condenser, and a second condenser. The evaporator cools the target device by latent heat of vaporization of the working fluid that absorbs heat from the target device and evaporates. The first condenser has a first heat exchange passage that condenses the working fluid evaporated in the evaporator by heat exchange with the first medium outside. The second condenser has a second heat exchange passage for condensing the working fluid flowing in from the first condenser by heat exchange with the second medium outside, and the condensed working fluid flows out toward the evaporator. To do. Here, the first medium and the second medium are different types of media.
 これによれば、第1媒体と第2媒体を、温度の異なるものに容易に設定することが可能である。そのため、例えば対象機器の発熱量が大きいとき、第1媒体と第2媒体のうち温度の低い方の媒体を使用して対象機器を十分に冷却することが可能である。一方、対象機器の発熱量が小さいとき、第1媒体と第2媒体のうち比較的に温度の高い方の媒体を使用して対象機器を適切な温度に冷却することが可能である。したがって、この機器温調装置は、対象機器の発熱量に応じた温度調節をすることができる。 According to this, it is possible to easily set the first medium and the second medium at different temperatures. Therefore, for example, when the calorific value of the target device is large, it is possible to sufficiently cool the target device using the medium having the lower temperature of the first medium and the second medium. On the other hand, when the calorific value of the target device is small, it is possible to cool the target device to an appropriate temperature using a medium having a relatively high temperature of the first medium and the second medium. Therefore, this device temperature control device can adjust the temperature according to the calorific value of the target device.
 第13の観点によれば、機器温調装置は、第1媒体供給装置と第2媒体供給装置とをさらに備える。第1媒体供給装置は、第1凝縮器に対し第1媒体を供給する。第2媒体供給装置は、第2凝縮器に対し第2媒体を供給する。この第2媒体供給装置は、第2媒体を第1媒体よりも低い温度に設定することが可能に構成されている。 According to a thirteenth aspect, the device temperature adjustment device further includes a first medium supply device and a second medium supply device. The first medium supply device supplies the first medium to the first condenser. The second medium supply device supplies the second medium to the second condenser. The second medium supply device is configured such that the second medium can be set to a temperature lower than that of the first medium.
 これによれば、第1凝縮器で凝縮した作動流体が、第2凝縮器で再加熱されることを防ぐことができる。そのため、第2凝縮器で気泡が生成されることが抑制されるので、その気泡の浮力による液相の作動流体の流れの悪化が防がれる。また、気泡が液相の作動流体を押し上げ、第1または第2凝縮器の液上面で液相の作動流体を吹き上げることが抑制されると共に、そこで気泡が破裂して異音を発生することが抑制される。さらに、第2凝縮器で気泡が生成されることが抑制されるので、第1凝縮器および第2凝縮器で液相の作動流体の生成が円滑に行われ、第1凝縮器および第2凝縮器から蒸発器に液相冷媒が円滑に供給される。したがって、この機器温調装置は、対象機器の冷却能力を向上することができる。 According to this, it is possible to prevent the working fluid condensed in the first condenser from being reheated in the second condenser. Therefore, since it is suppressed that a bubble is produced | generated by a 2nd condenser, the deterioration of the flow of the liquid-phase working fluid by the buoyancy of the bubble is prevented. In addition, the bubbles push up the liquid-phase working fluid and the liquid-phase working fluid is prevented from being blown up on the liquid surface of the first or second condenser. It is suppressed. Furthermore, since the generation of bubbles in the second condenser is suppressed, the first condenser and the second condenser smoothly generate the liquid-phase working fluid, and the first condenser and the second condenser. The liquid phase refrigerant is smoothly supplied from the evaporator to the evaporator. Therefore, this equipment temperature control apparatus can improve the cooling capacity of the target equipment.
 第14の観点によれば、対象機器の温度を調整する機器温調装置は、蒸発器、第1凝縮器、第2凝縮器、第1媒体供給装置および第2媒体供給装置を備える。蒸発器は、対象機器から吸熱して蒸発する作動流体の蒸発潜熱により対象機器を冷却する。第1凝縮器は、蒸発器で蒸発した作動流体が、外部にある第1媒体との熱交換により凝縮させる第1熱交換通路を有する。第2凝縮器は、第1凝縮器から流入する作動流体が、外部にある第2媒体との熱交換により凝縮させる第2熱交換通路を有し、凝縮した作動流体を蒸発器に向けて流出する。第1媒体供給装置は、第1凝縮器に対し第1媒体を供給する。第2媒体供給装置は、第2凝縮器に対し第2媒体を供給する。この第2媒体供給装置は、第2媒体を第1媒体よりも低い温度に設定することが可能に構成されている。 According to the fourteenth aspect, the device temperature adjustment device for adjusting the temperature of the target device includes an evaporator, a first condenser, a second condenser, a first medium supply device, and a second medium supply device. The evaporator cools the target device by latent heat of vaporization of the working fluid that absorbs heat from the target device and evaporates. The first condenser has a first heat exchange passage for condensing the working fluid evaporated in the evaporator by heat exchange with the first medium outside. The second condenser has a second heat exchange passage that allows the working fluid flowing in from the first condenser to condense by heat exchange with the second medium outside, and the condensed working fluid flows out toward the evaporator. To do. The first medium supply device supplies the first medium to the first condenser. The second medium supply device supplies the second medium to the second condenser. The second medium supply device is configured such that the second medium can be set to a temperature lower than that of the first medium.
 これによれば、第1熱交換通路で凝縮した作動流体が、第2熱交換通路で再加熱されることを防ぐことができる。そのため、第2熱交換通路で気泡が生成されることが抑制されるので、その気泡の浮力による液相の作動流体の流れの悪化が防がれる。また、気泡が液相の作動流体を押し上げ、第1または第2熱交換通路の上面で液相の作動流体を吹き上げることが抑制されると共に、そこで気泡が破裂して異音を発生することが抑制される。さらに、第2熱交換通路で気泡が生成されることが抑制されるので、第1熱交換通路および第2熱交換通路で液相の作動流体の生成が円滑に行われ、第1熱交換通路および第2熱交換通路から蒸発器に液相冷媒が円滑に供給される。したがって、この機器温調装置は、対象機器の冷却能力を向上することができる。 According to this, it is possible to prevent the working fluid condensed in the first heat exchange passage from being reheated in the second heat exchange passage. Therefore, generation of bubbles in the second heat exchange passage is suppressed, so that deterioration of the flow of the liquid-phase working fluid due to the buoyancy of the bubbles is prevented. In addition, it is possible that the bubbles push up the liquid-phase working fluid and the liquid-phase working fluid is prevented from being blown up on the upper surface of the first or second heat exchange passage. It is suppressed. Further, since the generation of bubbles in the second heat exchange passage is suppressed, the liquid phase working fluid is smoothly generated in the first heat exchange passage and the second heat exchange passage, and the first heat exchange passage The liquid phase refrigerant is smoothly supplied to the evaporator from the second heat exchange passage. Therefore, this equipment temperature control apparatus can improve the cooling capacity of the target equipment.

Claims (14)

  1.  対象機器(2)の温度を調整する機器温調装置であって、
     前記対象機器から吸熱して蒸発する作動流体の蒸発潜熱により前記対象機器を冷却する蒸発器(3)と、
     前記蒸発器より重力方向上側に設けられ、前記蒸発器で蒸発した作動流体を、外部にある第1媒体との熱交換により凝縮させる第1熱交換通路(412)を有する第1凝縮器(41)と、
     前記蒸発器より重力方向上側に設けられ、前記第1凝縮器から流入する作動流体を、外部にある第2媒体との熱交換により凝縮させる第2熱交換通路(422)を有し、凝縮した作動流体を前記蒸発器に向けて流出する第2凝縮器(42)と、を備え、
     前記第2凝縮器が有する前記第2熱交換通路は、前記第1凝縮器が有する前記第1熱交換通路より、流路断面積または相当直径が小さいものである機器温調装置。
    A device temperature control device for adjusting the temperature of the target device (2),
    An evaporator (3) for cooling the target device by latent heat of evaporation of the working fluid that absorbs heat from the target device and evaporates;
    A first condenser (41) having a first heat exchange passage (412) provided above the evaporator in the direction of gravity and condensing the working fluid evaporated by the evaporator by heat exchange with a first medium outside. )When,
    A second heat exchange passage (422) that is provided above the evaporator in the gravitational direction and that condenses the working fluid flowing in from the first condenser by heat exchange with the second medium outside is condensed. A second condenser (42) for flowing a working fluid toward the evaporator,
    The device temperature control device, wherein the second heat exchange passage of the second condenser has a smaller cross-sectional area or equivalent diameter than the first heat exchange passage of the first condenser.
  2.  前記第1凝縮器は複数の前記第1熱交換通路を有し、前記第2凝縮器は複数の前記第2熱交換通路を有するものであり、
     複数の前記第1熱交換通路の流路断面積(S1)を合わせた総流路断面積(S1×N1)は、複数の前記第2熱交換通路の流路断面積(S2)を合わせた総流路断面積(S2×N2)より大きいものである請求項1に記載の機器温調装置。
    The first condenser has a plurality of the first heat exchange passages, and the second condenser has a plurality of the second heat exchange passages,
    The total channel cross-sectional area (S1 × N1) obtained by combining the channel cross-sectional areas (S1) of the plurality of first heat exchange passages is the sum of the channel cross-sectional areas (S2) of the plurality of second heat exchange passages. The apparatus temperature control apparatus according to claim 1, wherein the apparatus temperature control apparatus is larger than a total flow path cross-sectional area (S2 × N2).
  3.  前記第1凝縮器は、前記第2凝縮器よりも重力方向上側に位置する領域(α)を有する請求項1または2に記載の機器温調装置。 The apparatus temperature control device according to claim 1 or 2, wherein the first condenser has a region (α) located on the upper side in the gravity direction than the second condenser.
  4.  前記第1凝縮器が有する複数の前記第1熱交換通路または前記第2凝縮器が有する複数の前記第2熱交換通路のうち少なくとも一方は、重力方向に沿うように延びている請求項1ないし3のいずれか1つに記載の機器温調装置。 The at least one of the plurality of first heat exchange passages included in the first condenser or the plurality of second heat exchange passages included in the second condenser extends along the direction of gravity. 4. The apparatus temperature control apparatus according to any one of 3.
  5.  前記第1凝縮器と前記第2凝縮器とは、一体に構成されている請求項1ないし4のいずれか1つに記載の機器温調装置。 The apparatus temperature control device according to any one of claims 1 to 4, wherein the first condenser and the second condenser are integrally formed.
  6.  前記第1凝縮器は、第1上タンク(411)、前記第1熱交換通路、第1下タンク(413)を有し、
     前記第2凝縮器は、第2上タンク(421)、前記第2熱交換通路、第2下タンク(423)を有し、
     前記第1凝縮器の前記第1下タンクと前記第2凝縮器の前記第2上タンクとは、一体に構成されている請求項1ないし5のいずれか1つに記載の機器温調装置。
    The first condenser has a first upper tank (411), the first heat exchange passage, and a first lower tank (413),
    The second condenser includes a second upper tank (421), the second heat exchange passage, and a second lower tank (423),
    The apparatus temperature control device according to any one of claims 1 to 5, wherein the first lower tank of the first condenser and the second upper tank of the second condenser are configured integrally.
  7.  前記第1凝縮器の外部にある前記第1媒体と、前記第2凝縮器の外部にある前記第2媒体とは、異種の媒体である請求項1ないし6のいずれか1つに記載の機器温調装置。 The apparatus according to claim 1, wherein the first medium outside the first condenser and the second medium outside the second condenser are different kinds of media. Temperature control device.
  8.  前記第1凝縮器に対し前記第1媒体を供給する第1媒体供給装置(100)と、
     前記第2凝縮器に対し前記第2媒体を供給する第2媒体供給装置(200)と、をさらに備える請求項1ないし7のいずれか1つに記載の機器温調装置。
    A first medium supply device (100) for supplying the first medium to the first condenser;
    The device temperature control device according to any one of claims 1 to 7, further comprising a second medium supply device (200) for supplying the second medium to the second condenser.
  9.  前記第2媒体供給装置は、前記第2媒体を前記第1媒体よりも低い温度に設定することが可能に構成されている請求項8に記載の機器温調装置。 The device temperature adjusting device according to claim 8, wherein the second medium supply device is configured to be able to set the second medium to a temperature lower than that of the first medium.
  10.  前記第1媒体供給装置は、前記第1媒体が循環する第1媒体循環回路(111)を有し、
     前記第2媒体供給装置は、前記第2媒体が循環する第2媒体循環回路(211)を有し、
     前記第1媒体循環回路と前記第2媒体循環回路とは別個独立した回路である請求項8または9に記載の機器温調装置。
    The first medium supply device has a first medium circulation circuit (111) through which the first medium circulates,
    The second medium supply device has a second medium circulation circuit (211) through which the second medium circulates,
    The apparatus temperature control device according to claim 8 or 9, wherein the first medium circulation circuit and the second medium circulation circuit are separate and independent circuits.
  11.  前記第1媒体供給装置は、送風機(71)であり、
     前記第2媒体供給装置は、冷凍サイクル(9)を構成する低圧側熱交換器(94)である請求項8または9に記載の機器温調装置。
    The first medium supply device is a blower (71),
    The device temperature control device according to claim 8 or 9, wherein the second medium supply device is a low-pressure side heat exchanger (94) constituting the refrigeration cycle (9).
  12.  対象機器(2)の温度を調整する機器温調装置であって、
     前記対象機器から吸熱して蒸発する作動流体の蒸発潜熱により前記対象機器を冷却する蒸発器(3)と、
     前記蒸発器で蒸発した作動流体を、外部にある第1媒体との熱交換により凝縮させる第1熱交換通路(412)を有する第1凝縮器(41)と、
     前記第1凝縮器から流入する作動流体を、外部にある第2媒体との熱交換により凝縮させる第2熱交換通路(422)を有し、凝縮した作動流体を前記蒸発器に向けて流出する第2凝縮器(42)と、を備え、
     前記第1凝縮器の外部にある前記第1媒体と、前記第2凝縮器の外部にある前記第2媒体とは、異種の媒体である、機器温調装置。
    A device temperature control device for adjusting the temperature of the target device (2),
    An evaporator (3) for cooling the target device by latent heat of evaporation of the working fluid that absorbs heat from the target device and evaporates;
    A first condenser (41) having a first heat exchange passage (412) for condensing the working fluid evaporated in the evaporator by heat exchange with an external first medium;
    It has a second heat exchange passage (422) for condensing the working fluid flowing in from the first condenser by heat exchange with the second medium outside, and the condensed working fluid flows out toward the evaporator. A second condenser (42),
    The apparatus temperature control device, wherein the first medium outside the first condenser and the second medium outside the second condenser are different kinds of media.
  13.  前記第1凝縮器に対し前記第1媒体を供給する第1媒体供給装置(100)と、
     前記第2凝縮器に対し前記第2媒体を供給する第2媒体供給装置(200)と、をさらに備え、
     前記第2媒体供給装置は、前記第2媒体を前記第1媒体よりも低い温度に設定することが可能に構成されている請求項12に記載の機器温調装置。
    A first medium supply device (100) for supplying the first medium to the first condenser;
    A second medium supply device (200) for supplying the second medium to the second condenser;
    The apparatus temperature control device according to claim 12, wherein the second medium supply device is configured to be able to set the second medium to a temperature lower than that of the first medium.
  14.  対象機器(2)の温度を調整する機器温調装置であって、
     前記対象機器から吸熱して蒸発する作動流体の蒸発潜熱により前記対象機器を冷却する蒸発器(3)と、
     前記蒸発器で蒸発した作動流体を、外部にある第1媒体との熱交換により凝縮させる第1熱交換通路(412)を有する第1凝縮器(41)と、
     前記第1凝縮器から流入する作動流体を、外部にある第2媒体との熱交換により凝縮させる第2熱交換通路(422)を有し、凝縮した作動流体を前記蒸発器に向けて流出する第2凝縮器(42)と、
     前記第1凝縮器に対し前記第1媒体を供給する第1媒体供給装置(100)と、
     前記第2凝縮器に対し前記第2媒体を供給する第2媒体供給装置(200)と、を備え、
     前記第2媒体供給装置は、前記第2媒体を前記第1媒体よりも低い温度に設定することが可能に構成されている機器温調装置。
    A device temperature control device for adjusting the temperature of the target device (2),
    An evaporator (3) for cooling the target device by latent heat of evaporation of the working fluid that absorbs heat from the target device and evaporates;
    A first condenser (41) having a first heat exchange passage (412) for condensing the working fluid evaporated in the evaporator by heat exchange with an external first medium;
    It has a second heat exchange passage (422) for condensing the working fluid flowing in from the first condenser by heat exchange with the second medium outside, and the condensed working fluid flows out toward the evaporator. A second condenser (42);
    A first medium supply device (100) for supplying the first medium to the first condenser;
    A second medium supply device (200) for supplying the second medium to the second condenser,
    The apparatus for adjusting an apparatus temperature, wherein the second medium supply device is configured to be able to set the second medium to a temperature lower than that of the first medium.
PCT/JP2017/028058 2016-09-09 2017-08-02 Instrument temperature adjustment device WO2018047534A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-176789 2016-09-09
JP2016176789A JP2019196840A (en) 2016-09-09 2016-09-09 Device temperature regulator

Publications (1)

Publication Number Publication Date
WO2018047534A1 true WO2018047534A1 (en) 2018-03-15

Family

ID=61561786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028058 WO2018047534A1 (en) 2016-09-09 2017-08-02 Instrument temperature adjustment device

Country Status (2)

Country Link
JP (1) JP2019196840A (en)
WO (1) WO2018047534A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105323A1 (en) * 2018-11-22 2020-05-28 株式会社Soken Boiling cooling device
JP2020085311A (en) * 2018-11-22 2020-06-04 株式会社Soken Ebullient cooling device
JP2020173051A (en) * 2019-04-09 2020-10-22 株式会社Soken Ebullient cooling device
US10906141B2 (en) 2016-09-09 2021-02-02 Denso Corporation Method for manufacturing device temperature control device and method for filling working fluid
US10950909B2 (en) 2016-09-09 2021-03-16 Denso Corporation Device temperature regulator
US11029098B2 (en) 2016-09-09 2021-06-08 Denso Corporation Device temperature regulator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115493440B (en) * 2022-11-16 2023-03-28 中国电建集团华东勘测设计研究院有限公司 Compressed air energy storage salt cavern constant temperature system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10238972A (en) * 1997-02-24 1998-09-11 Hitachi Ltd Heat transfer unit
JP2001330382A (en) * 2000-05-19 2001-11-30 Denso Corp Cooling/boiling apparatus
JP2005291645A (en) * 2004-04-01 2005-10-20 Calsonic Kansei Corp Loop-like heat pipe and method of manufacturing the same
JP2014531013A (en) * 2011-10-27 2014-11-20 智▲鳴▼ 王 Cooling system without a compressor powered by a heat source
JP2015041418A (en) * 2013-08-20 2015-03-02 トヨタ自動車株式会社 Battery temperature adjusting device
WO2015059832A1 (en) * 2013-10-25 2015-04-30 三菱電機株式会社 Heat exchanger and refrigeration cycle device using said heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10238972A (en) * 1997-02-24 1998-09-11 Hitachi Ltd Heat transfer unit
JP2001330382A (en) * 2000-05-19 2001-11-30 Denso Corp Cooling/boiling apparatus
JP2005291645A (en) * 2004-04-01 2005-10-20 Calsonic Kansei Corp Loop-like heat pipe and method of manufacturing the same
JP2014531013A (en) * 2011-10-27 2014-11-20 智▲鳴▼ 王 Cooling system without a compressor powered by a heat source
JP2015041418A (en) * 2013-08-20 2015-03-02 トヨタ自動車株式会社 Battery temperature adjusting device
WO2015059832A1 (en) * 2013-10-25 2015-04-30 三菱電機株式会社 Heat exchanger and refrigeration cycle device using said heat exchanger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10906141B2 (en) 2016-09-09 2021-02-02 Denso Corporation Method for manufacturing device temperature control device and method for filling working fluid
US10950909B2 (en) 2016-09-09 2021-03-16 Denso Corporation Device temperature regulator
US11029098B2 (en) 2016-09-09 2021-06-08 Denso Corporation Device temperature regulator
WO2020105323A1 (en) * 2018-11-22 2020-05-28 株式会社Soken Boiling cooling device
JP2020085311A (en) * 2018-11-22 2020-06-04 株式会社Soken Ebullient cooling device
JP2020173051A (en) * 2019-04-09 2020-10-22 株式会社Soken Ebullient cooling device

Also Published As

Publication number Publication date
JP2019196840A (en) 2019-11-14

Similar Documents

Publication Publication Date Title
WO2018047534A1 (en) Instrument temperature adjustment device
JP6593544B2 (en) Equipment temperature controller
US20140374081A1 (en) Vehicle thermal management system
WO2018047533A1 (en) Device temperature adjusting apparatus
WO2019087629A1 (en) Equipment cooling device
JP6575690B2 (en) Equipment temperature controller
WO2018047531A1 (en) Device temperature adjusting apparatus
JP2019009220A (en) Terminal cooling device
US20190214695A1 (en) Device temperature controller
WO2018047537A1 (en) Device temperature control device
WO2018055926A1 (en) Device temperature adjusting apparatus
JP6662462B2 (en) Equipment temperature controller
WO2018047538A1 (en) Device temperature control system
WO2020203152A1 (en) Thermosiphon-type cooling device for vehicle
WO2019123881A1 (en) Device temperature adjusting apparatus
JP2019113301A (en) Machine temperature adjusting device
WO2019054076A1 (en) Device temperature adjustment apparatus
WO2018070182A1 (en) Appliance temperature regulating apparatus
WO2019221237A1 (en) Apparatus temperature adjustment device
JP2020159612A (en) Heat transport system
WO2019039129A1 (en) Device temperature regulating apparatus
JP2012140060A (en) Cooling system
WO2019146262A1 (en) Thermosiphon cooling device for vehicle
JP2021028546A (en) Thermosiphon type cooler
JP2020159610A (en) Heat transport system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP