WO2020105323A1 - Boiling cooling device - Google Patents
Boiling cooling deviceInfo
- Publication number
- WO2020105323A1 WO2020105323A1 PCT/JP2019/040634 JP2019040634W WO2020105323A1 WO 2020105323 A1 WO2020105323 A1 WO 2020105323A1 JP 2019040634 W JP2019040634 W JP 2019040634W WO 2020105323 A1 WO2020105323 A1 WO 2020105323A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- condenser
- heat medium
- liquid
- passage
- condensation
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/427—Cooling by change of state, e.g. use of heat pipes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
Definitions
- the present disclosure relates to a boiling cooling device.
- Patent Document 1 discloses a boiling cooling apparatus that cools a heating element such as a power element mounted on a vehicle by boiling the heat medium by the heat generated by the heating element and absorbing the heat from the heating element. There is.
- the boiling cooling device of Patent Document 1 includes an evaporator, a condenser, and a heat medium pipe.
- the evaporator receives heat from the heating element by circulating the heat medium inside.
- the condenser liquefies the heat medium evaporated in the evaporator as a cooling liquid.
- the heat medium pipe connects the evaporator and the condenser in a loop and circulates the heat medium between the evaporator and the condenser.
- the present disclosure aims to downsize the boiling cooling device.
- a boiling cooling device includes an evaporator, a condenser, and a heat medium passage.
- the evaporator cools the object to be cooled by boiling and vaporizing the heat medium by exchanging heat between the heating element and the heat medium.
- the condenser radiates the heat of the heat medium to the air by condensing the heat medium by heat exchange between the heat medium and air.
- the heat medium passage connects the evaporator and the condenser in a loop and circulates the heat medium between the evaporator and the condenser.
- the condenser includes a first condenser and a second condenser into which the heat medium flowing out from the first condenser flows.
- the first condenser is arranged on the lower side in the gravity direction of the second condenser, and is configured to separate at least a part of the liquid-phase heat medium from the heat medium in the gas-liquid two-phase state, or It is arranged in parallel to the second condenser in the flow direction of the external fluid.
- the first condenser is arranged on the lower side in the gravity direction of the second condenser, and at least a part of the liquid-phase heat medium is separated from the heat medium in the gas-liquid two-phase state.
- the heat medium after at least a part of the liquid heat medium is separated flows into the second condenser located on the upper side in the gravity direction. Therefore, it is not necessary to raise the heat medium in the gas-liquid two-phase state to the second condenser. Therefore, since the rising height of the heat medium in the gas-liquid two-phase state to the upper side in the direction of gravity can be reduced, the pressure loss of the heat medium can be reduced. Therefore, it is not necessary to increase the height of the condenser with respect to the evaporator, so that the boiling cooling device can be downsized.
- the boiling cooling device can be downsized.
- FIG. 4 is an enlarged view of an IV section in FIG. 3. It is a whole block diagram which shows the boiling cooling apparatus which concerns on 3rd Embodiment. It is explanatory drawing which shows the structure of the 1st condenser in 3rd Embodiment. It is explanatory drawing which shows the flow of the heat medium in the 1st condenser in 3rd Embodiment. It is explanatory drawing which shows the structure of the 1st condenser in 4th Embodiment.
- the boiling cooling device of the present embodiment is a device for cooling a heating element mounted on a vehicle.
- up and down arrows indicate up and down directions of the vehicle.
- Each of the following figures shows a state in which the vertical direction of the vehicle is parallel to the gravity direction.
- the “gravitational direction” means the direction of gravity in a state where the boiling cooling device is arranged on a horizontal plane. Therefore, the “upper side in the direction of gravity” refers to the upper side in the direction of gravity when the boiling cooling device is arranged on the horizontal plane. Similarly, the “lower side in the gravity direction” refers to the lower side in the gravity direction in the state where the boiling cooling device is arranged on the horizontal plane. Further, the “horizontal direction” means the horizontal direction in a state where the boiling cooling device is arranged on the horizontal plane.
- the "gravitational direction” means the direction of gravity when a vehicle located on a horizontal plane is equipped with a boiling cooling device. Therefore, the “upper side in the direction of gravity” refers to the upper side in the direction of gravity when the boiling cooling device is mounted on the vehicle located on the horizontal plane. Similarly, the “lower side in the direction of gravity” refers to the lower side in the direction of gravity when the boiling cooling device is mounted on the vehicle located on the horizontal plane. Further, the “horizontal direction” means the horizontal direction in a state where the boiling cooling device is mounted on the vehicle located on the horizontal plane.
- the boiling cooling device includes an evaporator 10, a condenser 20, and a heat medium passage 30.
- the evaporator 10 is a heat exchanger that cools the heating element 40 by boiling and vaporizing the heating medium by exchanging heat between the heating element 40 that is an object to be cooled and the heating medium.
- a chargeable / dischargeable secondary battery for example, a lithium ion battery or a lead storage battery
- a power element can be adopted.
- the condenser 20 is a heat exchanger that radiates the heat of the heat medium to the air by condensing the heat medium by exchanging heat between the heat medium and air that is an external fluid.
- the heat medium passage 30 is a passage that connects the evaporator 10 and the condenser 20 in a loop and circulates the heat medium between the evaporator 10 and the condenser 20.
- a fluid that can be evaporated and condensed can be used as the heat medium.
- water or alcohol can be adopted as the heat medium.
- a CFC-based refrigerant for example, R134a, R1234yf, etc.
- a vapor compression refrigeration cycle can be used as the heat medium.
- the heat medium not only a CFC-based refrigerant but also another refrigerant such as carbon dioxide or an antifreezing liquid can be used.
- the evaporator 10 is a so-called tank-and-tube type heat exchanger.
- the evaporator 10 includes an evaporation tube 101 and evaporation tanks 102 and 103.
- the evaporation tube 101 is a tubular member that forms a flow path through which a heat medium flows.
- the evaporation tube 101 is a flat tube formed in a flat plate shape (that is, a flat cross section).
- the evaporation tube 101 is arranged such that its longitudinal direction is substantially parallel to the direction of gravity.
- a plurality of evaporation tubes 101 are arranged in parallel in the horizontal direction.
- the plurality of evaporation tubes 101 form the same plane. That is, the plurality of evaporation tubes 101 are arranged in a line so that flat surfaces on both sides of the evaporation tubes 101 are arranged on the same plane.
- the heating element 40 is joined to the flat surfaces of the plurality of evaporation tubes 101. Therefore, the heat from the heating element 40 is transferred to the heat medium in the evaporation tube 101.
- the evaporation tanks 102 and 103 communicate with a plurality of evaporation tubes 101.
- the evaporation tanks 102 and 103 collect or distribute the heat medium with respect to the plurality of evaporation tubes 101.
- the evaporation tanks 102 and 103 are provided one at each end of the evaporation tube 101 in the longitudinal direction. That is, the evaporation tanks 102 and 103 are respectively provided at the upper end and the lower end in the gravity direction of the evaporation tube 101.
- the evaporation tanks 102 and 103 extend in a direction orthogonal to the longitudinal direction of the evaporation tube 101. That is, the evaporation tanks 102 and 103 extend in the horizontal direction.
- An evaporation tube 101 is inserted and joined to the evaporation tanks 102 and 103.
- the evaporation inlet tank 102 the one arranged on the lower side in the direction of gravity and distributing the heat medium to the evaporation tube 101.
- one of the two evaporation tanks 102 and 103 which is arranged on the upper side in the gravity direction and collects the heat medium flowing out from the evaporation tube 101, is called an evaporation outlet tank 103.
- the evaporation inlet tank 102 has a liquid inlet 1021 through which the liquid-phase heat medium condensed in the condenser 20 described later flows into the evaporation inlet tank 102.
- the liquid inlet 1021 is provided at one end side in the longitudinal direction of the evaporation inlet tank 102.
- the evaporation outlet tank 103 has a vapor outlet 1031 that causes the heat medium in the evaporation outlet tank 103 to flow to the vapor inlet 2121 side of the condenser 20.
- the evaporation outlet tank 103 has a vapor outlet 1031 for causing the heat medium in the gas-liquid two-phase state containing the vapor heat medium evaporated in the evaporation tube 101 to flow out to the vapor inlet 2121 side of the condenser 20. ing.
- the vapor outlet 1031 is provided at one end side in the longitudinal direction of the evaporation outlet tank 103.
- the vapor outlet 1031 is provided at the end of the evaporation outlet tank 103 on the same side as the liquid inlet 1021 in the longitudinal direction.
- the condenser 20 has a first condenser 21 and a second condenser 22.
- the second condenser 22 is arranged above the first condenser 21 in the direction of gravity.
- the first condenser 21 and the second condenser 22 are integrally formed.
- the first condenser 21 separates at least a part of the liquid-phase heat medium from the gas-liquid two-phase heat medium flowing out from the evaporator 10.
- the first condenser 21 uses the heat medium obtained by separating at least a part of the liquid-phase heat medium from the heat medium in the gas-liquid two-phase state into the inlet of the second condenser 22 (that is, the vapor inlet described later). 2221) side.
- the first condenser 21 is a so-called tank-and-tube heat exchanger.
- the first condenser 21 includes a first condensing tube 211 and first condensing tanks 212 and 213.
- the first condensing tube 211 is a tubular member that forms a flow path through which the heat medium flows.
- the first condensing tube 211 is a flat tube formed in a flat plate shape.
- the 1st condensing tube 211 is arrange
- a plurality of the first condensing tubes 211 are arranged in parallel in the gravity direction.
- the plurality of first condensing tubes 211 are laminated at a predetermined interval. Air flows between the plurality of first condensing tubes 211.
- First radiating fins 215 are provided in the air passage between the plurality of first condensing tubes 211.
- the first radiating fins 215 are formed in a wavy shape (that is, a corrugated shape). As a result, the heat medium flowing in the plurality of first condensing tubes 211 and the air flowing between the plurality of first condensing tubes 211 are heat-exchanged.
- the first condensing tanks 212 and 213 communicate with the plurality of first condensing tubes 211.
- the first condensing tanks 212 and 213 collect or distribute the heat medium with respect to the plurality of first condensing tubes 211.
- the first condensing tanks 212 and 213 are provided one at each end of the first condensing tube 211 in the longitudinal direction.
- the first condensing tanks 212 and 213 extend in a direction orthogonal to the longitudinal direction of the first condensing tube 211. That is, the first condensing tanks 212 and 213 extend in the gravity direction.
- the first condensing tubes 211 are joined to the first condensing tanks 212 and 213 while being inserted therein.
- one of the two first condensing tanks 212 and 213, which is arranged on one side in the horizontal direction and which distributes the heat medium to the first condensing tube 211, is referred to as a first condensing inlet tank 212. .. Further, one of the two first condensing tanks 212 and 213, which is arranged on the other side in the horizontal direction and collects the heat medium flowing out from the first condensing tube 211, is referred to as a first condensing outlet tank 213.
- the first condensation inlet tank 212 has a vapor inlet port 2121 through which the heat medium in a gas-liquid two-phase state flowing out from the evaporator 10 flows into the first condensation inlet tank 212.
- the steam inlet 2121 is provided in a substantially central portion of the first condensation inlet tank 212 in the gravity direction.
- the steam inlet 2121 is arranged above the steam outlet 1031 of the evaporator 10 in the gravity direction.
- the first condensation outlet tank 213 has a vapor outlet 2131 and a liquid outlet 2132.
- the vapor outlet 2131 causes the vapor-phase heat medium in the first condensation outlet tank 213 to flow out to the vapor inlet 2221 side of the second condenser 22 described later.
- the liquid outlet 2132 causes the liquid heat medium in the first condensation outlet tank 213 to flow out to the liquid inlet 1021 side of the evaporator 10.
- the vapor outlet 2131 is a vapor of the second condenser 22 for the heat medium after at least a part of the liquid-phase heat medium is separated from the heat medium in the gas-liquid two-phase state in the first condenser 21. It is made to flow out to the inflow port 2221 side. Therefore, the steam outlet 2131 in the present embodiment corresponds to an example of the outlet.
- the vapor outlet 2131 is provided above the first condensation outlet tank 213 in the gravity direction.
- the liquid outlet 2132 is provided on the lower side in the gravity direction of the first condensation outlet tank 213.
- the second condenser 22 is a so-called tank-and-tube heat exchanger.
- the second condenser 22 includes a second condensing tube 221, and second condensing tanks 222 and 223.
- the second condensing tube 221 is a tubular member that forms a flow path through which the heat medium flows.
- the second condensing tube 221 is a flat tube formed in a flat plate shape.
- the second condensing tube 221 is arranged such that its longitudinal direction is substantially parallel to the gravity direction.
- the second condensing tubes 221 are arranged in parallel in the horizontal direction.
- the plurality of second condensing tubes 221 are laminated at a predetermined interval. Air flows between the plurality of second condensing tubes 221. Second radiating fins 225 are provided in the air passage between the plurality of second condensing tubes 221. In the present embodiment, the second heat radiation fin 225 is formed in a wave shape. The heat medium flowing in the plurality of second condensing tubes 221 and the air flowing between the plurality of second condensing tubes 221 are heat-exchanged.
- the second condensing tanks 222 and 223 communicate with a plurality of second condensing tubes 221.
- the second condensing tanks 222 and 223 collect or distribute the heat medium with respect to the plurality of second condensing tubes 221.
- the second condensing tanks 222 and 223 are provided one at each end of the second condensing tube 221 in the longitudinal direction. That is, the second condensing tanks 222 and 223 are respectively provided at the upper end and the lower end in the gravity direction of the second condensing tube 221.
- the second condensing tanks 222 and 223 extend in a direction orthogonal to the longitudinal direction of the second condensing tube 221. That is, the second condensing tanks 222 and 223 extend in the horizontal direction.
- a second condensing tube 221 is inserted and joined to the second condensing tanks 222 and 223.
- one of the two second condensing tanks 222 and 223, which is arranged on the upper side in the gravity direction and which distributes the heat medium to the second condensing tube 221, is referred to as a second condensing inlet tank 222. ..
- one of the two second condensing tanks 222 and 223, which is arranged on the lower side in the direction of gravity and collects the heat medium flowing out from the second condensing tube 221, is referred to as a second condensing outlet tank 223.
- the second condensation inlet tank 222 has a vapor inlet 2221 that allows the vapor-phase heat medium flowing out of the first condenser 21 to flow into the second condensation inlet tank 222.
- the steam inlet 2221 is provided at one end side in the longitudinal direction of the second condensation inlet tank 222.
- the second condensation outlet tank 223 has a liquid outlet 2231.
- the liquid outlet 2231 causes the liquid heat medium in the second condensation outlet tank 223 to flow to the liquid inlet 1021 side of the evaporator 10.
- the liquid outlet 2231 is provided on one end side in the longitudinal direction of the second condensation outlet tank 223. In the present embodiment, the liquid outlet 2231 is provided at the end of the second condensation outlet tank 223 on the same side as the vapor inlet 2221 in the longitudinal direction.
- the upper end surface of the first condensing tube 211 arranged on the uppermost side in the gravity direction among the plurality of first condensing tubes 211 in the first condenser 21 is joined. There is. As a result, the first condenser 21 and the second condenser 22 are integrated.
- the heat medium passage 30 includes a vapor passage 301, a connection passage 302, a first liquid passage 303, and a second liquid passage 304.
- Each of the passages 301 to 304 is formed of, for example, a metal pipe.
- the steam passage 301 is a passage that guides the heat medium flowing out of the evaporator 10 to the first condenser 21.
- the steam passage 301 is a passage that connects the steam outlet 1031 of the evaporator 10 and the steam inlet 2121 of the first condenser 21.
- the upstream end (that is, the inlet end) of the steam passage 301 is connected to the upper side of the evaporator 10 in the gravity direction.
- the downstream end (that is, the outlet end) of the steam passage 301 is connected to a substantially central portion of the first condenser 21 in the gravity direction.
- the downstream end of the steam passage 301 is connected to the first condenser 21 via the first connector 216.
- connection passage 302 is a passage that guides the heat medium flowing out from the first condenser 21 to the second condenser 22.
- connection passage 302 is a passage that connects the vapor outlet 2131 of the first condenser 21 and the vapor inlet 2221 of the second condenser 22.
- connection passage 302 The upstream end of the connection passage 302 is connected to the upper side of the first condenser 21 in the gravity direction.
- the downstream end of the connection passage 302 is connected to the upper side of the second condenser 22 in the gravity direction.
- connection passage 302 The upstream end of the connection passage 302 is connected to the first condenser 21 via the second connector 217.
- the downstream end of the connection passage 302 is connected to the second condenser 22 via the third connector 226.
- the first liquid passage 303 is a passage that guides the heat medium flowing out from the first condenser 21 to the evaporator 10. Specifically, the first liquid passage 303 is a passage that connects the liquid outlet 2132 of the first condenser 21 and the liquid inlet 1021 of the evaporator 10.
- the upstream end of the first liquid passage 303 is connected to the lower side of the first condenser 21 in the gravity direction.
- the downstream end of the first liquid passage 303 is connected to the lower side of the evaporator 10 in the gravity direction. Further, the upstream end of the first liquid passage 303 is connected to the first condenser 21 via the fourth connector 218.
- the second liquid passage 304 is a liquid passage that guides the heat medium flowing out from the second condenser 22 to the evaporator 10.
- the second liquid passage 304 is a passage that connects the liquid outlet 2231 of the second condenser 22 and a merging portion 305 described later.
- the downstream end of the second liquid passage 304 is connected to the evaporator 10 via the confluence portion 305.
- the merging portion 305 is a portion where the first liquid passage 303 and the second liquid passage 304 merge. Therefore, the heat medium flowing out from the second condenser 22 is guided to the evaporator 10 via the second liquid passage 304 and the first liquid passage 303. That is, the heat medium flowing out from the second condenser 22 flows into the evaporator 10 in the order of the second liquid passage 304, the joining portion 305, and the first liquid passage 303.
- the upstream end of the second liquid passage 304 is connected to the lower side of the second condenser 22 in the gravity direction.
- the downstream end of the first liquid passage 303, that is, the confluence portion 305 is located below the condenser 20 in the gravity direction.
- the upstream end of the second liquid passage 304 is connected to the second condenser 22 via the fifth connector 227.
- the first condenser 21 has an inlet-side flow passage 219 into which the heat medium flowing out from the steam passage 301 flows.
- the inlet side flow passage 219 is formed by the first condensing tank 212.
- the cross-sectional area D 2 of the inlet-side flow passage 219 is larger than the cross-sectional area D 1 of the steam passage 301.
- the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 refers to a cross-sectional area of a cross-section perpendicular to the flow direction of the heat medium flowing from the steam inlet 2121 in the inlet-side flow passage 219.
- the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 is a cross-sectional area of a cross section perpendicular to the horizontal direction in the internal space of the first condensation inlet tank 212.
- heat exchange is performed between the high temperature heating element 40 and the liquid phase heat medium in the evaporation tube 101.
- the amount of heat of the heating element 40 moves to the liquid-phase heat medium, the liquid-phase heat medium boils and becomes the vapor-phase heat medium, and the heating element 40 is cooled.
- the vapor-phase heat medium evaporated in the evaporation tube 101 flows into the evaporation outlet tank 103.
- the vapor-phase heat medium in the evaporation outlet tank 103 flows into the first condenser 21 via the vapor passage 301.
- the heat medium in the gas-liquid two-phase state flows out from the evaporation tube 101 to the evaporation outlet tank 103. Therefore, the heat medium in the gas-liquid two-phase state flows from the evaporation outlet tank 103 into the first condenser 21 via the vapor passage 301.
- the gas-phase heat medium separated in the first condensing inlet tank 212 from the first condensing inlet tank 212 flows through the first condensing tube 211 of the plurality of first condensing tubes 211 on the upper side in the direction of gravity, and the direction of gravity of the first condensing outlet tank 213 in the direction of gravity. Inflow to the upper side. Then, the gas-phase heat medium separated into gas and liquid in the first condenser 21 flows from the first condensation outlet tank 213 into the second condensation inlet tank 222 of the second condenser 22 via the connection passage 302.
- the liquid-phase heat medium separated in the first condensing inlet tank 212 flows through the first condensing tube 211 on the lower side in the direction of gravity of the plurality of first condensing tubes 211, and the direction of gravity in the first condensing outlet tank 213 is decreased. Inflow to the lower side. Then, the liquid-phase heat medium separated into gas and liquid in the first condenser 21 flows into the evaporation inlet tank 102 of the evaporator 10 from the first condensation outlet tank 213 via the first liquid passage 303.
- the second condenser 22 between the air flowing in the air passage between the plurality of second condensing tubes 221 and the gas phase heat medium in the second condensing tube 221 via the second radiating fins 225. Heat exchange takes place between them.
- the vapor phase heat medium is condensed to become the liquid phase heat medium, and the heat of the heat medium is released to the air.
- the liquid heat medium condensed in the second condensing tube 221 flows into the second condensing outlet tank 223. Then, the liquid-phase heat medium condensed in the second condensing tube 221 flows from the second condensing outlet tank 223 into the evaporation inlet tank 102 of the evaporator 10 via the second liquid passage 304 and the first liquid passage 303.
- the condenser 20 As described above, in the present embodiment, as the condenser 20, the first condenser 21 and the second condenser 22 arranged on the upper side in the gravity direction of the first condenser 21 are provided. In the first condenser 21, the liquid-phase heat medium is separated from the gas-liquid two-phase heat medium. Further, in the first condenser 21, the vapor-phase heat medium after the liquid-phase heat medium is separated is caused to flow out to the vapor inlet 2221 side of the second condenser 22.
- the gas-phase heat medium flows into the second condenser 22, which is located on the upper side in the gravity direction, of the first condenser 21 and the second condenser 22. That is, it is not necessary to raise (that is, raise) the heat medium in the gas-liquid two-phase state to the second condenser 22. Therefore, since the rising height of the heat medium in the gas-liquid two-phase state to the upper side in the direction of gravity can be reduced, the pressure loss of the heat medium can be reduced.
- the rising height at which the vapor-liquid two-phase heat medium flowing out from the vapor outlet 1031 of the evaporator 10 is raised to the vapor inlet 2121 of the first condenser 21 is referred to as the two-phase lifting height H 1 .
- the rising height at which the vapor phase refrigerant flowing out from the vapor outlet 2131 of the first condenser 21 is raised to the vapor inlet 2221 of the second condenser 22 is referred to as vapor phase lifting height H 2 .
- the two-phase lift height H 1 is sufficiently smaller than the gas-phase lift height H 2 . Therefore, the pressure loss of the heat medium can be sufficiently reduced.
- the boiling cooling device can be downsized.
- the vapor-phase heat medium after the liquid-phase heat medium is separated is caused to flow out to the vapor inlet port 2221 side of the second condenser 22, so that the second condenser The inflow of the liquid-phase heat medium into the container 22 can be suppressed. Therefore, it is not necessary to increase the size of the second condenser 22 in order to secure the heat dissipation of the heat medium in the second condenser 22. Therefore, the boiling cooling device can be downsized.
- the flow path cross-sectional area D 2 of the inlet passage 219 in the first condenser 21 is made larger than the cross-sectional area D 1 of the steam path 301. According to this, the flow velocity of the heat medium flowing from the steam passage 301 into the first condenser 21 can be reduced. Therefore, in the inlet-side flow passage 219 of the first condenser 21, the liquid-phase heat medium can be separated from the gas-liquid two-phase heat medium.
- the evaporation outlet tank 103 in the evaporator 10 of the present embodiment has a plurality of vapor outlets 1031 and 1032 for allowing the heat medium in the evaporation outlet tank 103 to flow to the inlet side of the condenser 20. is doing.
- the evaporation outlet tank 103 has a plurality of vapor outlets 1031 and 1032 for causing the heat medium in the gas-liquid two-phase state including the vapor phase heat medium evaporated in the evaporation tube 101 to flow out to the inlet side of the condenser 20.
- the evaporation outlet tank 103 has two vapor outlets 1031 and 1032.
- the two vapor outlets 1031 and 1032 are provided at one end side and the other end side in the longitudinal direction of the evaporation outlet tank 103.
- a first vapor outlet 1031 one provided at one end side in the longitudinal direction of the evaporation outlet tank 103 is referred to as a first vapor outlet 1031 and provided at the other end side in the longitudinal direction of the evaporation outlet tank 103.
- This is called the second steam outlet 1032.
- the first vapor outlet 1031 is provided at the end on the same side as the liquid inlet 1021 in the longitudinal direction of the evaporation outlet tank 103.
- the first condensing inlet tank 212 in the first condenser 21 of the present embodiment has a plurality of vapor inlets 2125 for allowing the heat medium in the gas-liquid two-phase state flowing out from the evaporator 10 to flow into the first condensing inlet tank 212. It has 2126. Specifically, the first condensation inlet tank 212 has two vapor inlets 2125 and 2126.
- the two steam inlets 2125, 2126 are provided side by side in the vertical direction around the central portion in the gravity direction of the first condensation inlet tank 212.
- the two steam inlets 2125 and 2126 the one provided on the lower side in the direction of gravity is referred to as the lower steam inlet 2125, and the one provided on the upper side in the direction of gravity is referred to as the upper steam inlet 2126.
- the lower steam inlet 2125 is arranged above the first steam outlet 1031 of the evaporator 10 in the gravity direction.
- the upper steam inflow port 2126 is arranged above the second steam outflow port 1032 of the evaporator 10 in the gravity direction.
- the heat medium passage 30 of the present embodiment has a plurality of steam passages 301A and 301B. Specifically, the heat medium passage 30 has a first steam passage 301A and a second steam passage 301B.
- the first steam passage 301A is a passage that connects the first steam outlet 1031 of the evaporator 10 and the lower steam inlet 2125 of the first condenser 21.
- the second steam passage 301B is a passage that connects the second steam outlet 1032 of the evaporator 10 and the upper steam inlet 2126 of the first condenser 21.
- the downstream end of the first steam passage 301A is connected to the first condenser 21 via the sixth connector 216A.
- the downstream end of the second steam passage 301B is connected to the first condenser 21 via the seventh connector 216B.
- the inlet-side flow passage 219 of the present embodiment is configured so that the heat medium flowing out from the first vapor passage 301A and the second vapor passage 301B flows into the first condenser 21. .. That is, the first condenser 21 has an inlet-side flow passage 219 into which the heat medium flowing out from the plurality of steam passages 301A and 301B flows.
- the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 is larger than the total value of the passage cross-sectional areas D 1A and D 1B in the plurality of vapor passages 301A and 301B. Specifically, the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 is larger than the total value of the passage cross-sectional area D 1A of the first steam passage 301A and the passage cross-sectional area D 1B of the second steam passage 301B.
- the flow passage cross-sectional area D 2 of the inlet-side flow passage 219, the flow passage cross-sectional area D 1A of the first steam passage 301A, and the flow passage cross-sectional area D 1B of the second steam passage 301B have a relationship of D 2 ⁇ D 1A + D 1B . Are satisfied.
- the heat medium passage 30 has the plurality of steam passages 301A and 301B. According to this, the flow rate of the heat medium guided from the evaporator 10 to the first condenser 21 can be increased, so that the cooling capacity of the boiling cooling device can be improved.
- the flow passage cross-sectional area D 2 of the inlet side flow passage 219 in the first condenser 21 is set to the flow passage cross-sectional area D 1A in the first steam passage 301A and the flow passage cross-sectional area D 1B in the second steam passage 301B. And it is larger than the total value. According to this, the flow velocity of the heat medium flowing into the first condenser 21 from the first steam passage 301A and the second steam passage 301B can be reduced. Therefore, in the inlet-side flow passage 219 of the first condenser 21, the liquid-phase heat medium can be separated from the gas-liquid two-phase heat medium.
- the evaporator 10 is a so-called tank-and-tube heat exchanger.
- the evaporator 10 includes an evaporation tube 101 and evaporation tanks 102 and 103.
- the evaporation tube 101 is a tubular member that forms a flow path through which a heat medium flows.
- the evaporation tube 101 is a flat tube formed in a flat plate shape (that is, a flat cross section).
- the evaporation tube 101 is arranged such that its longitudinal direction is substantially parallel to the direction of gravity.
- a plurality of evaporation tubes 101 are arranged in parallel in the horizontal direction.
- the plurality of evaporation tubes 101 form the same plane. That is, the plurality of evaporation tubes 101 are arranged in a line so that flat surfaces on both sides of the evaporation tubes 101 are arranged on the same plane.
- the heating element 40 is joined to the flat surfaces of the plurality of evaporation tubes 101. Therefore, the heat from the heating element 40 is transferred to the heat medium in the evaporation tube 101.
- the evaporation tanks 102 and 103 communicate with a plurality of evaporation tubes 101.
- the evaporation tanks 102 and 103 collect or distribute the heat medium with respect to the plurality of evaporation tubes 101.
- the evaporation tanks 102 and 103 are provided one at each end of the evaporation tube 101 in the longitudinal direction. That is, the evaporation tanks 102 and 103 are respectively provided at the upper end and the lower end in the gravity direction of the evaporation tube 101.
- the evaporation tanks 102 and 103 extend in a direction orthogonal to the longitudinal direction of the evaporation tube 101. That is, the evaporation tanks 102 and 103 extend in the horizontal direction.
- An evaporation tube 101 is inserted and joined to the evaporation tanks 102 and 103.
- the evaporation inlet tank 102 the one arranged on the lower side in the direction of gravity and distributing the heat medium to the evaporation tube 101.
- one of the two evaporation tanks 102 and 103 which is arranged on the upper side in the gravity direction and collects the heat medium flowing out from the evaporation tube 101, is called an evaporation outlet tank 103.
- the evaporation inlet tank 102 has a liquid inlet 1021 through which the liquid-phase heat medium condensed in the condenser 20 described later flows into the evaporation inlet tank 102.
- the liquid inlet 1021 is provided at one end side in the longitudinal direction of the evaporation inlet tank 102.
- the evaporation outlet tank 103 has a vapor outlet 1031 that causes the heat medium in the evaporation outlet tank 103 to flow to the vapor inlet 2121 side of the condenser 20.
- the evaporation outlet tank 103 has a vapor outlet 1031 for causing the heat medium in the gas-liquid two-phase state containing the vapor heat medium evaporated in the evaporation tube 101 to flow out to the vapor inlet 2121 side of the condenser 20. ing.
- the vapor outlet 1031 is provided at one end side in the longitudinal direction of the evaporation outlet tank 103.
- the vapor outlet 1031 is provided at the end of the evaporation outlet tank 103 on the same side as the liquid inlet 1021 in the longitudinal direction.
- the condenser 20 has a first condenser 21 and a second condenser 22.
- the second condenser 22 is arranged above the first condenser 21 in the direction of gravity.
- the first condenser 21 and the second condenser 22 are integrally formed.
- the first condenser 21 and the second condenser 22 may be formed as separate bodies.
- the first condenser 21 separates at least a part of the liquid-phase heat medium from the gas-liquid two-phase heat medium flowing out from the evaporator 10.
- the first condenser 21 causes the heat medium after at least a part of the liquid-phase heat medium is separated from the heat medium in the gas-liquid two-phase state to flow out to the inlet side of the second condenser 22.
- the first condenser 21 has a first heat exchange section 210 for exchanging heat between the heat medium and air. More specifically, the first heat exchange unit 210 heat-exchanges the heat medium in the gas-liquid two-phase state and the air flowing out from the evaporator 10 to condense at least a part of the heat medium in the gas-liquid two-phase state.
- the first heat exchange section 210 has a first condensing tube 211 and a first radiating fin 215.
- the first heat exchange section 210 is configured by the first condensing tube 211 and the first heat radiation fin 215.
- the first condenser 21 is a so-called tank-and-tube heat exchanger.
- the first condenser 21 includes a first condensing tube 211, first condensing tanks 212 and 213, and a first radiating fin 215.
- the first condensing tube 211 is a tubular member that forms a first condensing channel 2110 through which the heat medium flows.
- the first condensation flow passage 2110 corresponds to the first heat medium flow passage.
- the first condensing tube 211 is a flat tube formed in a flat plate shape.
- the 1st condensing tube 211 is arrange
- the first condenser 21 has a plurality of first condensing tubes 211. Therefore, the first condenser 21 has a plurality of first condensation flow paths 2110. In this example, the plurality of first condensing tubes 211 are arranged in parallel in the gravity direction.
- the plurality of first condensing tubes 211 are laminated at a predetermined interval. Air flows between the plurality of first condensing tubes 211.
- First radiating fins 215 are provided in the air passage between the plurality of first condensing tubes 211.
- the first radiating fins 215 are formed in a wavy shape (that is, a corrugated shape). As a result, the heat medium flowing in the plurality of first condensing tubes 211 and the air flowing between the plurality of first condensing tubes 211 are heat-exchanged.
- the first condensing tanks 212 and 213 communicate with the plurality of first condensing tubes 211.
- the first condensing tanks 212 and 213 collect or distribute the heat medium with respect to the plurality of first condensing tubes 211.
- the first condensing tanks 212 and 213 are provided one at each end of the first condensing tube 211 in the longitudinal direction.
- the first condensing tanks 212 and 213 extend in a direction orthogonal to the longitudinal direction of the first condensing tube 211. That is, the first condensing tanks 212 and 213 extend in the gravity direction.
- the first condensing tubes 211 are joined to the first condensing tanks 212 and 213 while being inserted therein.
- one of the two first condensing tanks 212 and 213, which is arranged on one side in the horizontal direction and which distributes the heat medium to the first condensing tube 211, is referred to as a first condensing inlet tank 212. .. Further, one of the two first condensing tanks 212 and 213, which is arranged on the other side in the horizontal direction and collects the heat medium flowing out from the first condensing tube 211, is referred to as a first condensing outlet tank 213.
- the first condensation inlet tank 212 has a vapor inlet port 2121 through which the heat medium in a gas-liquid two-phase state flowing out from the evaporator 10 flows into the first condensation inlet tank 212.
- the steam inlet 2121 is provided in a substantially central portion of the first condensation inlet tank 212 in the gravity direction.
- the steam inlet 2121 is arranged above the steam outlet 1031 of the evaporator 10 in the gravity direction.
- the first condensation outlet tank 213 has a vapor outlet 2131 and a liquid outlet 2132.
- the vapor outlet 2131 causes the vapor-phase heat medium in the first condensation outlet tank 213 to flow out to the vapor inlet 2221 side of the second condenser 22 described later.
- the liquid outlet 2132 causes the liquid heat medium in the first condensation outlet tank 213 to flow out to the liquid inlet 1021 side of the evaporator 10.
- the vapor outlet 2131 is provided above the first condensation outlet tank 213 in the gravity direction.
- the liquid outlet 2132 is provided on the lower side in the gravity direction of the first condensation outlet tank 213.
- the second condenser 22 has a second heat exchange section 220 that exchanges heat between the heat medium and air. More specifically, the second heat exchange unit 220 heat-exchanges the heat medium in the vapor phase state and the air flowing out from the first condenser 21 with each other to condense the heat medium in the vapor phase state.
- the second heat exchange section 220 has a second condensing tube 221 and a second radiating fin 225.
- the second condensing tube 221 and the second radiating fin 225 form the second heat exchange section 220.
- the second condenser 22 is a so-called tank-and-tube heat exchanger.
- the second condenser 22 includes a second condensing tube 221, second condensing tanks 222 and 223, and a second radiating fin 225.
- the second condensing tube 221 is a tubular member that forms the second condensing channel 2210 through which the heat medium flows.
- the second condensation flow path 2210 corresponds to the second heat medium flow path.
- the second condensing tube 221 is a flat tube formed in a flat plate shape.
- the second condensing tube 221 is arranged such that its longitudinal direction is substantially parallel to the gravity direction.
- the second condensing tubes 221 are arranged in parallel in the horizontal direction.
- the plurality of second condensing tubes 221 are laminated at a predetermined interval. Air flows between the plurality of second condensing tubes 221. Second radiating fins 225 are provided in the air passage between the plurality of second condensing tubes 221. In the present embodiment, the second heat radiation fin 225 is formed in a wave shape. The heat medium flowing in the plurality of second condensing tubes 221 and the air flowing between the plurality of second condensing tubes 221 are heat-exchanged.
- the second condensing tanks 222 and 223 communicate with a plurality of second condensing tubes 221.
- the second condensing tanks 222 and 223 collect or distribute the heat medium with respect to the plurality of second condensing tubes 221.
- the second condensing tanks 222 and 223 are provided one at each end of the second condensing tube 221 in the longitudinal direction. That is, the second condensing tanks 222 and 223 are respectively provided at the upper end and the lower end in the gravity direction of the second condensing tube 221.
- the second condensing tanks 222 and 223 extend in a direction orthogonal to the longitudinal direction of the second condensing tube 221. That is, the second condensing tanks 222 and 223 extend in the horizontal direction.
- a second condensing tube 221 is inserted and joined to the second condensing tanks 222 and 223.
- one of the two second condensing tanks 222 and 223, which is arranged on the upper side in the gravity direction and which distributes the heat medium to the second condensing tube 221, is referred to as a second condensing inlet tank 222. ..
- one of the two second condensing tanks 222 and 223, which is arranged on the lower side in the direction of gravity and collects the heat medium flowing out from the second condensing tube 221, is referred to as a second condensing outlet tank 223.
- the second condensation inlet tank 222 has a vapor inlet 2221 that allows the vapor-phase heat medium flowing out of the first condenser 21 to flow into the second condensation inlet tank 222.
- the steam inlet 2221 is provided at one end side in the longitudinal direction of the second condensation inlet tank 222.
- the second condensation outlet tank 223 has a liquid outlet 2231.
- the liquid outlet 2231 causes the liquid heat medium in the second condensation outlet tank 223 to flow to the liquid inlet 1021 side of the evaporator 10.
- the liquid outlet 2231 is provided on one end side in the longitudinal direction of the second condensation outlet tank 223. In the present embodiment, the liquid outlet 2231 is provided at the end of the second condensation outlet tank 223 on the same side as the vapor inlet 2221 in the longitudinal direction.
- the upper end surface of the first condensing tube 211 arranged on the uppermost side in the gravity direction among the plurality of first condensing tubes 211 in the first condenser 21 is joined. There is. As a result, the first condenser 21 and the second condenser 22 are integrated.
- the heat medium passage 30 includes a vapor passage 301, a connection passage 302, a first liquid passage 303, and a second liquid passage 304.
- Each of the passages 301 to 304 is formed of, for example, a metal pipe.
- the steam passage 301 is a passage that guides the heat medium flowing out of the evaporator 10 to the first condenser 21.
- the steam passage 301 is a passage that connects the steam outlet 1031 of the evaporator 10 and the steam inlet 2121 of the first condenser 21.
- the upstream end (that is, the inlet end) of the steam passage 301 is connected to the upper side of the evaporator 10 in the gravity direction.
- the downstream end (that is, the outlet end) of the steam passage 301 is connected to a substantially central portion of the first condenser 21 in the gravity direction.
- the downstream end of the steam passage 301 is connected to the first condenser 21 via the first connector 216.
- connection passage 302 is a passage that guides the heat medium flowing out from the first condenser 21 to the second condenser 22.
- connection passage 302 is a passage that connects the vapor outlet 2131 of the first condenser 21 and the vapor inlet 2221 of the second condenser 22.
- connection passage 302 The upstream end of the connection passage 302 is connected to the upper side of the first condenser 21 in the gravity direction.
- the downstream end of the connection passage 302 is connected to the upper side of the second condenser 22 in the gravity direction.
- connection passage 302 The upstream end of the connection passage 302 is connected to the first condenser 21 via the second connector 217.
- the downstream end of the connection passage 302 is connected to the second condenser 22 via the third connector 226.
- the first liquid passage 303 is a liquid passage that guides the heat medium flowing out from the first condenser 21 to the evaporator 10. Specifically, the first liquid passage 303 is a passage that connects the liquid outlet 2132 of the first condenser 21 and the liquid inlet 1021 of the evaporator 10.
- the upstream end of the first liquid passage 303 is connected to the lower side of the first condenser 21 in the gravity direction. Specifically, the upstream end of the first liquid passage 303 is connected to the lower side of the first condensation outlet tank 213 in the gravity direction.
- the first condensing outlet tank 213 is provided on the downstream side of the heat medium flow in the first condensing tube 211. That is, the first condensation outlet tank 213 is connected to the heat medium flow downstream side in the first condensation flow path 2110. Since the upstream end of the first liquid passage 303 is connected to the first condensation outlet tank 213, it can be said that it is connected to the heat medium flow downstream side in the first condensation flow passage 2110.
- the downstream end of the first liquid passage 303 is connected to the lower side of the evaporator 10 in the gravity direction. Further, the upstream end of the first liquid passage 303 is connected to the first condenser 21 via the fourth connector 218.
- the second liquid passage 304 is a liquid passage that guides the heat medium flowing out from the second condenser 22 to the evaporator 10.
- the second liquid passage 304 is a passage that connects the liquid outlet 2231 of the second condenser 22 and a merging portion 305 described later.
- the downstream end of the second liquid passage 304 is connected to the evaporator 10 via the confluence portion 305.
- the merging portion 305 is a portion where the first liquid passage 303 and the second liquid passage 304 merge. Therefore, the heat medium flowing out from the second condenser 22 is guided to the evaporator 10 via the second liquid passage 304 and the first liquid passage 303. That is, the heat medium flowing out from the second condenser 22 flows into the evaporator 10 in the order of the second liquid passage 304, the joining portion 305, and the first liquid passage 303.
- the upstream end of the second liquid passage 304 is connected to the lower side of the second condenser 22 in the gravity direction.
- the downstream end of the first liquid passage 303, that is, the confluence portion 305 is located below the condenser 20 in the gravity direction.
- the upstream end of the second liquid passage 304 is connected to the second condenser 22 via the fifth connector 227.
- the liquid outlet 2132 constitutes a connection portion with the first liquid passage 303. That is, the liquid outlet 2132 of the first condenser 21 corresponds to an example of a connecting portion with the first liquid passage 303.
- the upstream end of the connection passage 302 is connected to the upper side of the first condenser 21 in the gravity direction with respect to the liquid outlet 2132 which is a connection portion with the first liquid passage 303.
- the first condenser 21 has an inlet-side flow passage 219 into which the heat medium flowing out from the steam passage 301 flows.
- the inlet side flow passage 219 is formed by the first condensing tank 212.
- the cross-sectional area D 2 of the inlet-side flow passage 219 is larger than the cross-sectional area D 1 of the steam passage 301.
- the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 refers to a cross-sectional area of a cross-section perpendicular to the flow direction of the heat medium flowing from the steam inlet 2121 in the inlet-side flow passage 219.
- the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 is a cross-sectional area of a cross section perpendicular to the longitudinal direction of the first condensation tube 211 in the internal space of the first condensation inlet tank 212.
- the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 is the cross-sectional area of the cross section perpendicular to the stacking direction of the second condensation tube 221 in the internal space of the first condensation inlet tank 212. That is, the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 is a cross-sectional area of a cross section perpendicular to the horizontal direction in the internal space of the first condensation inlet tank 212.
- FIG. 7 a broken line arrow indicates the flow of the vapor phase heat medium, a solid line arrow indicates the flow of the liquid phase heat medium, and a dot-hatched portion indicates the liquid phase refrigerant.
- heat exchange is performed between the high temperature heating element 40 and the liquid phase heat medium in the evaporation tube 101.
- the amount of heat of the heating element 40 moves to the liquid-phase heat medium, the liquid-phase heat medium boils and becomes the vapor-phase heat medium, and the heating element 40 is cooled.
- the vapor-phase heat medium evaporated in the evaporation tube 101 flows into the evaporation outlet tank 103.
- the vapor-phase heat medium in the evaporation outlet tank 103 flows into the first condenser 21 via the vapor passage 301.
- the heat medium in the gas-liquid two-phase state flows out from the evaporation tube 101 to the evaporation outlet tank 103. Therefore, the heat medium in the gas-liquid two-phase state flows from the evaporation outlet tank 103 into the first condenser 21 via the vapor passage 301.
- the gas-phase heat medium separated in the first condensing inlet tank 212 from the first condensing inlet tank 212 flows through the first condensing tube 211 of the plurality of first condensing tubes 211 on the upper side in the direction of gravity, and the direction of gravity of the first condensing outlet tank 213 in the direction of gravity. Inflow to the upper side. Then, the gas-phase heat medium separated into gas and liquid in the first condenser 21 flows from the first condensation outlet tank 213 into the second condensation inlet tank 222 of the second condenser 22 via the connection passage 302.
- the liquid-phase heat medium separated in the first condensing inlet tank 212 flows through the first condensing tube 211 on the lower side in the direction of gravity of the plurality of first condensing tubes 211, and the direction of gravity in the first condensing outlet tank 213 is decreased. Inflow to the lower side. Then, the liquid-phase heat medium separated into gas and liquid in the first condenser 21 flows into the evaporation inlet tank 102 of the evaporator 10 from the first condensation outlet tank 213 via the first liquid passage 303.
- the second condenser 22 between the air flowing in the air passage between the plurality of second condensing tubes 221 and the gas phase heat medium in the second condensing tube 221 via the second radiating fins 225. Heat exchange takes place between them.
- the vapor phase heat medium is condensed to become the liquid phase heat medium, and the heat of the heat medium is released to the air.
- the liquid heat medium condensed in the second condensing tube 221 flows into the second condensing outlet tank 223. Then, the liquid-phase heat medium condensed in the second condensing tube 221 flows from the second condensing outlet tank 223 into the evaporation inlet tank 102 of the evaporator 10 via the second liquid passage 304 and the first liquid passage 303.
- the condenser 20 As described above, in the present embodiment, as the condenser 20, the first condenser 21 and the second condenser 22 arranged on the upper side in the gravity direction of the first condenser 21 are provided. In the first condenser 21, the liquid-phase heat medium is separated from the gas-liquid two-phase heat medium. Further, in the first condenser 21, the vapor-phase heat medium after the liquid-phase heat medium is separated is caused to flow out to the vapor inlet 2221 side of the second condenser 22.
- the gas-phase heat medium flows into the second condenser 22, which is located on the upper side in the gravity direction, of the first condenser 21 and the second condenser 22. That is, it is not necessary to raise (that is, raise) the heat medium in the gas-liquid two-phase state to the second condenser 22. Therefore, since the rising height of the heat medium in the gas-liquid two-phase state to the upper side in the direction of gravity can be reduced, the pressure loss of the heat medium can be reduced.
- the rising height at which the vapor-liquid two-phase heat medium flowing out from the vapor outlet 1031 of the evaporator 10 is raised to the vapor inlet 2121 of the first condenser 21 is referred to as the two-phase lifting height H 1 .
- the rising height at which the vapor phase refrigerant flowing out from the vapor outlet 2131 of the first condenser 21 is raised to the vapor inlet 2221 of the second condenser 22 is referred to as vapor phase lifting height H 2 .
- the two-phase lift height H 1 is sufficiently smaller than the gas-phase lift height H 2 . Therefore, the pressure loss of the heat medium can be sufficiently reduced.
- the boiling cooling device can be downsized.
- the vapor-phase heat medium after the liquid-phase heat medium is separated is caused to flow out to the vapor inlet port 2221 side of the second condenser 22, so that the second condenser The inflow of the liquid-phase heat medium into the container 22 can be suppressed. Therefore, it is not necessary to increase the size of the second condenser 22 in order to secure the heat dissipation of the heat medium in the second condenser 22. Therefore, the boiling cooling device can be downsized.
- the flow path cross-sectional area D 2 of the inlet passage 219 in the first condenser 21 is made larger than the cross-sectional area D 1 of the steam path 301. According to this, the flow velocity of the heat medium flowing from the steam passage 301 into the first condenser 21 can be reduced. Therefore, in the inlet-side flow passage 219 of the first condenser 21, the liquid-phase heat medium can be separated from the gas-liquid two-phase heat medium.
- the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 in the first condenser 21 is the cross-sectional area of the cross section perpendicular to the horizontal direction in the internal space of the first condensation inlet tank 212.
- the first condenser 21 of the present embodiment is configured such that the heat medium flows in the horizontal direction in the first condensing flow path 2110, and thus the plurality of first condensing tubes 211 are arranged in the gravity direction. Therefore, the first condensing inlet tank 212 to which the plurality of first condensing tubes 211 are connected has a long length in the gravity direction.
- the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 which is the cross-sectional area of the cross section perpendicular to the horizontal direction in the internal space of the first condensation inlet tank 212, is increased.
- the flow velocity of the heat medium flowing from the steam passage 301 into the first condenser 21 can be further reduced. Therefore, in the inlet-side flow path 219 of the first condenser 21, the liquid-phase heat medium can be efficiently separated from the gas-liquid two-phase heat medium.
- the first condenser 21 is provided with a plurality of first condensation flow paths 2110. That is, in the present embodiment, the first condenser 21 is provided with the plurality of first condensation tubes 211. According to this, the heat transfer area with the air (that is, the heat exchange area) in the first condenser 21 is increased, and the heat exchange between the heat medium and the air is promoted. Therefore, in the first condenser 21, the heat exchange efficiency between the heat medium and the air is improved, so that the heat medium can be efficiently condensed.
- the upstream end of the first liquid passage 303 is connected to the lower side of the first condenser 21 in the gravity direction. According to this, it is possible to suppress the liquid-phase heat medium from remaining inside the first condenser 21.
- connection passage 302 is connected to the upper side of the first condenser 21 in the gravity direction with respect to the liquid outlet 2132 which is a connection portion with the first liquid passage 303. There is. According to this, it is possible to prevent the liquid-phase heat medium from mixing into the connection passage 302.
- the first condenser 21 has a connection condensation passage 23 in which a plurality of first condensation passages 2110 are connected to each other.
- the connection condensation flow path 23 is connected in the middle of each first condensation flow path 2110.
- the connection condensation flow path 23 extends in the direction of gravity (that is, the vehicle vertical direction).
- the first heat exchange section 210 is divided into a plurality of small heat exchange sections 24 by the connection condensation flow path 23.
- the plurality of small heat exchange units 24 are arranged in the horizontal direction (that is, the direction orthogonal to the gravity direction).
- the heat exchange part arrangement direction is parallel to the horizontal direction.
- the first condenser 21 has two connected condensation flow passages 23.
- the two connected condensing flow paths 23 are arranged at a distance from each other.
- the first heat exchange section 210 is divided into the three small heat exchange sections 24.
- the small heat exchange unit 24 includes the first condensation inlet tank 212 and the connection condensation passage 23, the two connection condensation passages 23, the connection condensation passage 23 and the first condensation outlet tank. 213 and 213, respectively.
- the vehicle vertical length of the connecting condensation flow path 23, the vehicle vertical length of the first condensation inlet tank 212, and the vehicle vertical length of the first condensation outlet tank 213 are equal to each other.
- the upper end of the connected condensing flow path 23 overlaps with the upper end of the first condensing inlet tank 212 and the upper end of the first condensing outlet tank 213, respectively.
- the upper end of the connecting condensing channel 23 is arranged so as to overlap the upper end of the first condensing inlet tank 212 and the upper end of the first condensing outlet tank 213 in the horizontal direction.
- the lower end of the connected condensing flow path 23 is overlapped with the lower end of the first condensing inlet tank 212 and the lower end of the first condensing outlet tank 213 when viewed in the horizontal direction.
- the lengths of the small heat exchange parts 24 in the heat exchange part arrangement direction are equal to each other. Further, the number of the first condensation flow passages 2110 in each small heat exchange section 24 is equal to each other. The first condensation flow passages 2110 in the adjacent small heat exchange portions 24 overlap each other when viewed from the heat exchange portion arrangement direction.
- the first condenser 21 is provided with the connection condensing flow path 23 in which the plurality of first condensing flow paths 2110 are connected to each other. According to this, the liquid-phase heat medium separated from the heat medium in the gas-liquid two-phase state in the inlet-side flow passage 219 of the first condenser 21, and the liquid-phase heat medium condensed in the first condensation flow passage 2110 , Can be discharged to the lower side in the gravity direction of the first condenser 21.
- the fifth embodiment is different from the above-described fourth embodiment in the configurations of the connection condensation flow path 23 and the small heat exchange section 24.
- the length of the connecting condensing flow path 23 in the vehicle vertical direction is longer than the length of the first condensation inlet tank 212 in the vehicle vertical direction.
- the length of the connecting condensation flow path 23 in the vehicle vertical direction is longer than the length of the first condensation outlet tank 213 in the vehicle vertical direction.
- the upper end of the connecting condensing flow path 23 is arranged above the upper end of the first condensing inlet tank 212.
- the upper end of the connecting condensing flow path 23 is arranged above the upper end of the first condensing outlet tank 213.
- the lower end of the connecting condensing flow path 23 is arranged below the lower end of the first condensing inlet tank 212.
- the lower end of the connecting condensing flow path 23 is arranged below the lower end of the first condensing outlet tank 213.
- the small heat exchange part 24 arranged in the center will be referred to as the central heat exchange part 241, and the small heat exchange part 24 arranged outside will be referred to as the outer heat exchange part 242.
- the first condensing flow path 2110 arranged at the uppermost side is referred to as an upper condensing flow path 2111
- the first condensing flow path 2111 is arranged at the lowermost side.
- the one condensing channel 2110 is referred to as the lower condensing channel 2112.
- the number of the first condensation flow passages 2110 in the central heat exchange unit 241 is larger than the number of the first condensation flow passages 2110 in the outer heat exchange unit 242. Specifically, the number of the first condensation flow passages 2110 in the central heat exchange unit 241 is five, and the number of the first condensation flow passages 2110 in the outer heat exchange unit 242 is four.
- each first condensation flow passage 2110 in the central heat exchange unit 241 and the flow passage cross-sectional area of each first condensation flow passage 2110 in the outer heat exchange unit 242 are equal to each other.
- the interval between adjacent first condensing channels 2110 in the central heat exchange section 241 and the interval between adjacent first condensing channels 2110 in the outer heat exchange section 242 are equal to each other.
- the upper condensation flow passage 2111 of the central heat exchange section 241 is arranged above the upper condensation flow passage 2111 of the outer heat exchange section 242.
- the lower condensation flow passage 2112 of the central heat exchange part 241 is arranged below the lower condensation flow passage 2112 of the outer heat exchange part 242.
- the first condensing flow path 2110 of the central heat exchange section 241 and the first condensing flow path 2110 of the outer heat exchange section 242 do not overlap each other when viewed from the heat exchange section arrangement direction.
- the plurality of first condensing tubes 211 have mutually different flow passage cross-sectional areas. That is, the plurality of first condensing channels 2110 have mutually different channel cross-sectional areas.
- the channel cross-sectional area of the first condensing channel 2110 arranged on the lower side is equal to that of the first condensing channel 2110 arranged on the upper side. Greater than area. That is, the plurality of first condensing flow paths 2110, which are arranged on the lower side, have larger flow path cross-sectional areas.
- the channel cross-sectional area of the first condensing channel 2110 arranged on the lower side is smaller than the channel cross-sectional area of the first condensing channel 2110 arranged on the upper side. May be smaller.
- the flow passage cross-sectional areas of the plurality of first condensation flow passages 2110 are made different from each other. According to this, in the inside of the first condenser 21, any one of the flow containing the liquid phase heat medium and the flow containing only the gas phase heat medium is selected, and each first condensing flow path is selected. It can be flushed to 2110.
- the flow passage cross-sectional area of the first condensation flow passage 2110 arranged on the lower side is made larger than the flow passage cross-sectional area of the first condensation flow passage 2110 arranged on the upper side. ing. Therefore, the flow containing a large amount of gas-phase heat medium having a smaller pressure loss than the liquid-phase heat medium flows through the first condensation flow passage 2110 having a small flow passage cross-sectional area, that is, the first condensation flow passage 2110 arranged on the upper side. Flowing.
- a flow containing a large amount of liquid-phase heat medium having a larger pressure loss than the gas-phase heat medium flows through the first condensing flow passage 2110 having a large flow passage cross-sectional area, that is, the first condensing flow passage 2110 arranged on the lower side. ..
- a flow containing a large amount of the vapor phase heat medium is caused to flow through the first condensation flow passage 2110 arranged on the upper side, and the liquid phase heat is flown through the first condensation flow passage 2110 arranged on the lower side.
- a medium rich stream can be flowed.
- gas-liquid separation of the heat medium can be efficiently performed.
- the plurality of first condensation flow passages 2110 have mutually different flow passage cross-sectional areas.
- the flow passage cross-sectional area of the first condensation flow passage 2110 arranged on the lower side is the first condensation flow passage arranged on the upper side. It is larger than the flow passage cross-sectional area of the flow passage 2110. That is, the plurality of first condensing flow paths 2110 in each small heat exchange section 24 have a larger flow path cross-sectional area as they are arranged on the lower side.
- the flow passage cross-sectional areas of the plurality of first condensation flow passages 2110 are made different from each other. According to this, similarly to the sixth embodiment, in the inside of the first condenser 21, any one of the flow containing a large amount of the liquid phase heat medium and the flow containing a large amount of the gas phase heat medium is selected. Then, it can flow into each of the first condensation flow paths 2110.
- the flow passage cross-sectional area of the first condensation flow passage 2110 arranged on the lower side is made larger than the flow passage cross-sectional area of the first condensation flow passage 2110 arranged on the upper side. ing.
- a flow containing a large amount of the vapor phase heat medium is caused to flow through the first condensing flow passage 2110 arranged on the upper side, and the first condensing flow passage arranged on the lower side.
- a flow containing a large amount of liquid-phase heat medium can be passed through the 2110.
- gas-liquid separation of the heat medium can be efficiently performed.
- the eighth embodiment is different from the fifth embodiment in the configuration of the first heat exchange section 210.
- the plurality of first condensation flow passages 2110 have different flow passage cross-sectional areas. Further, in each of the outer heat exchange sections 242, the plurality of first condensing channels 2110 have mutually different channel cross-sectional areas.
- the channel cross-sectional area of the first condensing channel 2110 arranged on the lower side is the first condensing flow arranged on the upper side. It is larger than the flow passage cross-sectional area of the passage 2110. That is, the plurality of first condensation flow passages 2110 in the central heat exchange section 241 have a larger flow passage cross-sectional area as they are arranged on the lower side.
- the channel cross-sectional area of the first condensing channel 2110 arranged on the lower side is the first condensing channel arranged on the upper side. It is larger than the flow passage cross-sectional area of 2110. That is, the plurality of first condensing flow paths 2110 in each outer heat exchange section 242 have a larger flow path cross-sectional area as they are arranged on the lower side.
- the flow passage cross-sectional areas of the plurality of first condensation flow passages 2110 are made different from each other. According to this, similarly to the sixth embodiment, in the inside of the first condenser 21, any one of the flow containing a large amount of the liquid phase heat medium and the flow containing a large amount of the gas phase heat medium is selected. Then, it can flow into each of the first condensation flow paths 2110.
- the flow passage cross-sectional area of the first condensation flow passage 2110 arranged on the lower side is made larger than the flow passage cross-sectional area of the first condensation flow passage 2110 arranged on the upper side. ing.
- a flow containing a large amount of the vapor phase heat medium is caused to flow through the first condensing flow passage 2110 arranged on the upper side, and the first condensing flow passage arranged on the lower side.
- a large amount of liquid-phase heat medium can flow in the 2110.
- gas-liquid separation of the heat medium can be efficiently performed.
- the first condensing tube 211 is arranged so that its longitudinal direction is substantially parallel to the gravity direction. Therefore, the first condensing flow path 2110 is configured so that the heat medium flows in the gravity direction. A plurality of the first condensing tubes 211 are arranged in parallel in the horizontal direction.
- the first condensation inlet tank 212 and the first condensation outlet tank 213 each extend in the horizontal direction.
- the first condensing inlet tank 212 is arranged above the first condensing tube 211 in the gravity direction.
- the first condensation outlet tank 213 is arranged below the first condensation tube 211 in the gravity direction.
- the first condensing inlet tank 212 is configured by a part of the pipe forming the steam passage 301 (hereinafter referred to as the steam passage pipe 3010). Specifically, the plurality of first condensing tubes 211 are directly connected to a part of the steam passage pipe 3010. A portion of the steam passage piping 3010 to which the plurality of first condensing tubes 211 are connected constitutes a first condensing inlet tank 212.
- a second connector 217 is connected to the first condensation inlet tank 212, that is, the end of the steam passage pipe 3010 opposite to the evaporator 10. Note that the first connector 216 is omitted in this embodiment.
- a liquid outlet 2132 is provided at the end of the lower end surface of the first condensation outlet tank 213 opposite to the evaporator 10.
- the gas-phase heat medium is condensed in the first condensation inlet tank 212 and the first condensation flow passage 2110 of the first condensation tube 211. Then, the condensed liquid heat medium drops in the first condensation flow path 2110 due to gravity. At this time, the liquid-phase heat medium is sucked from the first condensation inlet tank 212 into the first condensation flow passage 2110, so that the flow velocity of the heat medium flowing through the first condensation inlet tank 212 decreases.
- the liquid-phase heat medium is separated and removed from the heat medium in the gas-liquid two-phase state. That is, in the first condensation inlet tank 212, the heat medium in the gas-liquid two-phase state is separated into the liquid heat medium and the gas heat medium.
- the gas-phase heat medium separated in the first condensation inlet tank 212 in the horizontal direction flows through the first condensation inlet tank 212 and flows into the second condenser 22 via the connection passage 302.
- the liquid-phase heat medium separated in the first condensing inlet tank 212 drops through the first condensing passages 2110 in the plurality of first condensing tubes 211 and flows into the first condensing outlet tank 213. Then, the liquid-phase heat medium separated into gas and liquid in the first condenser 21 flows into the evaporator 10 from the first condensation outlet tank 213 via the first liquid passage 303.
- the first condensing flow path 2110 is configured so that the heat medium flows in the direction of gravity. According to this, the discharge (that is, the drop) of the liquid-phase heat medium condensed in the first condensation flow path 2110 to the lower side can be promoted by gravity.
- the first condensation inlet tank 212 is composed of a tank member 212A which is separate from the steam passage piping 3010.
- a vapor inlet 2121 is provided at the end of the first condensation inlet tank 212 on the evaporator 10 side in the longitudinal direction.
- the cross-sectional area D 2 of the inlet-side flow passage 219 is larger than the cross-sectional area D 1 of the steam passage 301.
- the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 is larger than the cross-sectional area D 3 of the cross section perpendicular to the stacking direction of the first condensation tube 211 in the internal space of the first condensation outlet tank 213.
- the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 is a cross-sectional area of a cross section perpendicular to the stacking direction of the first condensation tubes 211 in the internal space of the first condensation inlet tank 212.
- the flow path cross-sectional area D 2 of the inlet passage 219 in the first condenser 21 is made larger than the cross-sectional area D 1 of the steam path 301. According to this, the flow velocity of the heat medium flowing from the steam passage 301 into the first condenser 21 can be reduced. Therefore, in the inlet-side flow passage 219 of the first condenser 21, the separation of the liquid-phase heat medium from the heat medium in the gas-liquid two-phase state can be promoted.
- the first condenser 21 has a connection condensation passage 23.
- the connection condensation flow path 23 is connected in the middle of each first condensation flow path 2110.
- the connecting condensing channel 23 extends in the horizontal direction. That is, the connection condensing flow path 23 extends in the stacking direction of the first condensing tubes 211.
- the stacking direction of the first condensing tube 211 is referred to as the tube stacking direction.
- the side of the evaporator 10 is referred to as one side of the tube stacking direction, and the side opposite to the evaporator 10 is referred to as the other side of the tube stacking direction.
- the first heat exchange section 210 is divided into a plurality of small heat exchange sections 24 by the connection condensation flow path 23.
- the plurality of small heat exchange units 24 are arranged in the gravity direction.
- the first condenser 21 has one connected condensing flow path 23.
- the connection condensing flow path 23 is arranged in the center of the first heat exchange unit 210 in the direction of gravity.
- the length of the connecting condensing channel 23 in the tube stacking direction, the length of the first condensing inlet tank 212 in the tube stacking direction, and the length of the first condensing outlet tank 213 in the tube stacking direction are equal to each other.
- connection condensation flow path 23 on one side of the tube stacking direction is, when viewed from the gravity direction (that is, in the gravity direction), the end of the first condensation inlet tank 212 on one side of the tube stacking direction and the first condensation outlet.
- the end portions of the tank 213 on one side in the tube stacking direction are overlapped with each other.
- the end portion on the other side of the tube stacking direction in the connection condensing flow path 23, when viewed from the gravity direction, is the end portion on the other side of the tube stacking direction of the first condensation inlet tank 212 and the tube stacking direction of the first condensation outlet tank 213. It overlaps with the other end.
- the lengths of the small heat exchange units 24 in the heat exchange unit arrangement direction are equal to each other. Further, the number of the first condensation flow passages 2110 in each small heat exchange section 24 is equal to each other. The first condensation flow passages 2110 in the adjacent small heat exchange portions 24 overlap each other when viewed from the heat exchange portion arrangement direction.
- the first condenser 21 is provided with the connection condensation passage 23 in which the plurality of first condensation passages 2110 are connected to each other. According to this, the liquid heat medium condensed in the first condensation inlet tank 212 and the first condensation flow passage 2110 can be collected and separated in the middle of the first condensation flow passage 2110.
- the first condensation inlet tank 212 is composed of a tank member 212A that is separate from the steam passage piping 3010.
- the cross-sectional area D 2 of the inlet-side flow passage 219 is larger than the cross-sectional area D 1 of the steam passage 301.
- the flow path cross-sectional area D 2 of the inlet passage 219 in the first condenser 21 is made larger than the cross-sectional area D 1 of the steam path 301. According to this, similarly to the tenth embodiment, in the inlet-side flow passage 219 of the first condenser 21, the separation of the liquid-phase heat medium from the heat medium in the gas-liquid two-phase state can be promoted.
- the steam passage 301 is connected to the middle of the first condensing passage 2110 in the first condenser 21 (that is, the intermediate portion). Then, the heat medium in the gas-liquid two-phase state flows from the evaporator 10 into the middle portion of the first condensation flow path 2110 in the first condenser 21.
- the steam passage 301 is connected to the connection condensation flow path 23. Therefore, the heat medium in the gas-liquid two-phase state that has flowed out of the evaporator 10 directly flows into the connected condensing channel 23 without passing through the first condensing tube 211.
- connection condensing flow path 23 has a function of distributing the heat medium to the plurality of first condensing tubes 211. That is, the connection condensation flow path 23 constitutes the first condensation inlet tank 212. In other words, the first condensation inlet tank 212 constitutes the connection condensation passage 23. Note that the first connector 216 is omitted in this embodiment.
- the small heat exchange part 24 arranged on the upper side in the direction of gravity is referred to as the upper heat exchange part 243, and the small heat exchange part 24 arranged on the lower side in the direction of gravity is the lower side. It is called the heat exchange section 244.
- the first condensation inlet tank 212 is configured by a part of the steam passage piping 3010. Specifically, the plurality of first condensing tubes 211 are directly connected to the downstream end of the steam passage pipe 3010.
- a plurality of first condensing tubes 211 forming the upper heat exchange section 243 are connected to the downstream end of the steam passage pipe 3010 on the upper side in the direction of gravity.
- a plurality of first condensing tubes 211 that constitute the lower heat exchange section 244 are connected to the downstream end of the steam passage pipe 3010 in the direction of gravity.
- the first condenser 21 has a first vapor outlet tank 214 that mainly collects the heat medium in the vapor phase from the plurality of first condenser tubes 211.
- the first steam outlet tank 214 is arranged on the upper side in the gravity direction of the first condensing tube 211 that constitutes the upper heat exchange section 243.
- the first steam outlet tank 214 has a steam outlet 2131.
- the steam outlet 2131 is arranged at the end of the first steam outlet tank 214 on the other side in the tube stacking direction. That is, the steam outlet 2131 is arranged at the end of the first steam outlet tank 214 on the side opposite to the evaporator 10 in the longitudinal direction.
- the steam passage 301 is connected to the intermediate portion of the first condensation flow passage 2110 in the first condenser 21. According to this, the rising height of the heat medium in the gas-liquid two-phase state to the upper side in the direction of gravity can be made lower, so that the pressure loss of the heat medium can be reliably reduced.
- the steam outlet 2131 is provided in the first steam outlet tank 214 located on the upper side in the gravity direction with respect to the connected condensation flow path 23. According to this, the liquid-phase heat medium condensed in the first condenser 21 drops through the first condensation flow path 2110, the vapor-phase heat medium flows into the first vapor outlet tank 214, and the vapor outflow port 2131 It flows into the second condenser 22. Therefore, the separation of the liquid-phase heat medium from the heat medium in the gas-liquid two-phase state can be promoted.
- the first condensing inlet tank 212 forming the connecting condensing flow path 23 is composed of a tank member 212A which is separate from the steam passage pipe 3010.
- a vapor inlet 2121 is provided at the end of the first condensation inlet tank 212 on the evaporator 10 side in the longitudinal direction. That is, the steam inlet 2121 is provided at the end of the first condensation inlet tank 212 on one side in the tube stacking direction.
- the cross-sectional area D 2 of the inlet-side flow passage 219 is larger than the cross-sectional area D 1 of the steam passage 301.
- the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 is the cross-sectional area of the cross section perpendicular to the tube stacking direction in the internal space of the first condensation inlet tank 212.
- the flow path cross-sectional area D 2 of the inlet passage 219 in the first condenser 21 is made larger than the cross-sectional area D 1 of the steam path 301. According to this, similarly to the tenth embodiment, in the inlet-side flow passage 219 of the first condenser 21, the separation of the liquid-phase heat medium from the heat medium in the gas-liquid two-phase state can be promoted.
- the steam outlet 2131 of the present embodiment is arranged at the end of the first steam outlet tank 214 on one side in the tube stacking direction. That is, the steam outlet 2131 is arranged at the end of the first steam outlet tank 214 on the evaporator 10 side in the longitudinal direction.
- the steam outlet 2131 of the present embodiment is arranged at the end of the first steam outlet tank 214 on one side in the tube stacking direction. That is, the steam outlet 2131 is arranged at the end of the first steam outlet tank 214 on the evaporator 10 side in the longitudinal direction.
- the number of first condensation flow passages 2110 in the upper heat exchange unit 243 is larger than the number of first condensation flow passages 2110 in the lower heat exchange unit 244. Specifically, the number of the first condensation flow passages 2110 in the upper heat exchange unit 243 is seven, and the number of the first condensation flow passages 2110 in the lower heat exchange unit 244 is four.
- each first condensation flow passage 2110 in the lower heat exchange unit 244 is larger than the flow passage cross-sectional area of each first condensation flow passage 2110 in the upper heat exchange unit 243.
- the distance between the adjacent first condensation flow passages 2110 in the lower heat exchange section 244 is wider than the distance between the adjacent first condensation flow passages 2110 in the upper heat exchange section 243.
- the first condensing flow path 2110 arranged at one end in the tube stacking direction is referred to as one side condensing flow path 2113, and the tube stacking
- the first condensation flow passage 2110 arranged at the end portion on the other side in the direction is referred to as the other side condensation flow passage 2114.
- the one-side condensation flow passage 2113 of the upper heat exchange unit 243 is arranged on one side of the one-side condensation flow passage 2113 of the lower heat exchange unit 244 in the tube stacking direction (that is, the evaporator 10 side).
- the other side condensing channel 2114 of the upper heat exchanging part 243 is arranged on the other side (that is, the side opposite to the evaporator 10) in the tube stacking direction than the other side condensing channel 2114 of the lower heat exchanging part 244.
- each first condensation flow passage 2110 in the lower heat exchange section 244 is made larger than the flow passage cross-sectional area of each first condensation flow passage 2110 in the upper heat exchange portion 243.
- the liquid-phase heat medium separated into gas and liquid and the condensed liquid-phase heat medium are suppressed from being clogged in the first condensation flow path 2110 on the lower side in the gravity direction. it can.
- the first condensation inlet tank 212 of the present embodiment is composed of a tank member 212A that is separate from the steam passage piping 3010.
- the cross-sectional area D 2 of the inlet-side flow passage 219 is larger than the cross-sectional area D 1 of the steam passage 301.
- the flow path cross-sectional area D 2 of the inlet passage 219 in the first condenser 21 is made larger than the cross-sectional area D 1 of the steam path 301. According to this, similarly to the tenth embodiment, in the inlet-side flow passage 219 of the first condenser 21, the separation of the liquid-phase heat medium from the heat medium in the gas-liquid two-phase state can be promoted.
- the number of first condensation flow passages 2110 in the upper heat exchange unit 243 is smaller than the number of first condensation flow passages 2110 in the lower heat exchange unit 244. Specifically, the number of the first condensation flow passages 2110 in the upper heat exchange unit 243 is seven, and the number of the first condensation flow passages 2110 in the lower heat exchange unit 244 is eight.
- each first condensation flow passage 2110 in the upper heat exchange section 243 and the flow passage cross-sectional area of each first condensation flow passage 2110 in the lower heat exchange portion 244 are equal to each other.
- the interval between the adjacent first condensation flow passages 2110 in the upper heat exchange section 243 and the interval between the adjacent first condensation flow passages 2110 in the lower heat exchange section 244 are equal to each other.
- the one-side condensation flow passage 2113 of the upper heat exchange unit 243 is arranged on the one side in the tube stacking direction with respect to the one-side condensation flow passage 2113 of the lower heat exchange unit 244.
- the other side condensation flow passage 2114 of the upper heat exchange portion 243 is arranged on the other side in the tube stacking direction than the other side condensation flow passage 2114 of the lower heat exchange portion 244.
- the first condensation flow passage 2110 of the upper heat exchange portion 243 and the first condensation flow passage 2110 of the lower heat exchange portion 244 do not overlap with each other when viewed from the direction of gravity.
- the first condensation inlet tank 212 is composed of a tank member 212A that is separate from the steam passage piping 3010.
- the cross-sectional area D 2 of the inlet-side flow passage 219 is larger than the cross-sectional area D 1 of the steam passage 301.
- the flow path cross-sectional area D 2 of the inlet passage 219 in the first condenser 21 is made larger than the cross-sectional area D 1 of the steam path 301. According to this, similarly to the tenth embodiment, in the inlet-side flow passage 219 of the first condenser 21, the separation of the liquid-phase heat medium from the heat medium in the gas-liquid two-phase state can be promoted.
- the flow passage cross-sectional area D 2 of the inlet side flow passage 219 of the first condensation inlet tank 212 is equal to that of the first condensation tube 211 in the internal space of the first condensation outlet tank 213. It is equivalent to the cross-sectional area D 3 of the cross section perpendicular to the stacking direction. Further, the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 of the first condensation inlet tank 212 is a cross-sectional area D of a cross section perpendicular to the stacking direction of the first condensation tube 211 in the internal space of the first vapor outlet tank 214. It is equivalent to 4 .
- the steam outlet 2131 of this embodiment is arranged at the end of the first steam outlet tank 214 on one side in the tube stacking direction. That is, the steam outlet 2131 is arranged at the end of the first steam outlet tank 214 on the evaporator 10 side in the longitudinal direction.
- the steam outlet 2131 of the present embodiment is arranged at the end of the first steam outlet tank 214 on one side in the tube stacking direction. That is, the steam outlet 2131 is arranged at the end of the first steam outlet tank 214 on the evaporator 10 side in the longitudinal direction.
- the average flow passage cross-sectional area of the first condensation flow passage 2110 in the first condenser 21 is the average of the second condensation flow passage 2210 in the second condenser 22. It is larger than the flow passage cross-sectional area.
- the flow passage cross-sectional areas of the plurality of first condensation flow passages 2110 in the first condenser 21 are equal to each other.
- the flow passage cross-sectional areas of the plurality of second condensation flow passages 2210 in the second condenser 22 are equal to each other. Therefore, in the present embodiment, the flow passage cross-sectional area of each first condensation flow passage 2110 is larger than the flow passage cross-sectional area of each second condensation flow passage 2210.
- the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 is a cross section perpendicular to the stacking direction of the first condensation tubes 211 in the internal space of the first condensation outlet tank 213. It is equivalent to the cross-sectional area D 3 of.
- the liquid outlet 2132 is arranged at the end of the first condensation outlet tank 213 on one side in the tube stacking direction. That is, the liquid outlet 2132 is arranged at the end of the first condensation outlet tank 213 on the evaporator 10 side in the longitudinal direction.
- the liquid outlet 2231 is arranged at the end of the second condensation outlet tank 223 on one side in the tube stacking direction. That is, the liquid outlet 2231 is arranged at the end of the second condensation outlet tank 223 on the evaporator 10 side in the longitudinal direction.
- the flow path diameter of the condensing tubes is made small and the number of the condensing tubes is increased in the entire condenser. That is, in the entire condenser, the average flow passage cross-sectional area of the condensation flow passage in the condensation tube is reduced. As a result, the heat transfer area with the air in the condenser can be increased, and the condensation capacity of the condenser can be increased, so that the maximum heat generation state of the heating element can be dealt with.
- the flow path resistance of the condensation flow path in the condenser becomes large, there is a possibility that the heat medium will not be circulated when the heat generation amount of the heating element is small.
- the condenser 20 As the condenser 20, a first condenser 21 and a second condenser 22 are provided. Then, the average flow path cross-sectional area of the first condensation flow path 2110 in the first condenser 21 into which the heat medium evaporated in the evaporator 10 flows is calculated as the average flow path cross-section of the second condensation flow path 2210 in the second condenser 22. It is larger than the area.
- the flow resistance of the first condensation flow path 2110 in the first condenser 21 can be reduced. Therefore, even when the heat generation amount of the heating element 40 is small, the heat medium can be circulated in the boiling cooling device.
- the first condenser 21 has a connection condensation passage 23.
- the connection condensation flow path 23 is connected in the middle of each first condensation flow path 2110.
- the connecting condensing channel 23 extends in the horizontal direction. That is, the connection condensing flow path 23 extends in the stacking direction of the first condensing tubes 211.
- the first heat exchange section 210 is divided into a plurality of small heat exchange sections 24 in the direction of gravity by the connected condensing flow path 23. That is, the plurality of small heat exchange units 24 are arranged in the gravity direction.
- the small heat exchange section 24 is connected to the upper side and the lower side of the connection condensation flow path 23, respectively.
- the first condenser 21 has one connected condensing flow path 23.
- the first heat exchange section 210 is divided into the upper heat exchange section 243 and the lower heat exchange section 244.
- the connection condensing flow path 23 is arranged in the center of the first heat exchange unit 210 in the direction of gravity.
- the length of the connecting condensing channel 23 in the tube stacking direction, the length of the first condensing inlet tank 212 in the tube stacking direction, and the length of the first condensing outlet tank 213 in the tube stacking direction are equal to each other.
- connection condensation flow path 23 on one side of the tube stacking direction is, when viewed from the gravity direction (that is, in the gravity direction), the end of the first condensation inlet tank 212 on one side of the tube stacking direction and the first condensation outlet.
- the end portions of the tank 213 on one side in the tube stacking direction are overlapped with each other.
- the end portion on the other side of the tube stacking direction in the connection condensing flow path 23, when viewed from the gravity direction, is the end portion on the other side of the tube stacking direction of the first condensation inlet tank 212 and the tube stacking direction of the first condensation outlet tank 213. It overlaps with the other end.
- the upper heat exchange section 243 and the lower heat exchange section 244 each have a first condensation flow path 2110.
- the number of first condensation flow passages 2110 in the upper heat exchange portion 243 is smaller than the number of first condensation flow passages 2110 in the lower heat exchange portion 244.
- the number of the first condensation flow passages 2110 in the upper heat exchange unit 243 is six
- the number of the first condensation flow passages 2110 in the lower heat exchange unit 244 is seven.
- the average flow passage cross-sectional areas of the first condensation flow passages 2110 in the plurality of small heat exchange portions 24 are different from each other.
- An average channel cross-sectional area of the plurality of first condensation channels 2110 in the upper heat exchange section 243 is larger than an average channel cross-sectional area of the plurality of first condensation channels 2110 in the lower heat exchange section 244.
- the average flow passage cross-sectional area of the plurality of first condensation flow passages 2110 in the lower heat exchange section 244 is larger than the average flow passage cross-sectional area of the second condensation flow passage 2210 in the second condenser 22. Therefore, also in the present embodiment, the average flow passage cross-sectional area of the first condensation flow passage 2110 in the first condenser 21 is larger than the average flow passage cross-sectional area of the second condensation flow passage 2210 in the second condenser 22.
- the flow passage cross-sectional areas of the plurality of first condensation flow passages 2110 in the upper heat exchange section 243 are equal to each other.
- the flow passage cross-sectional areas of the plurality of first condensation flow passages 2110 in the lower heat exchange section 244 are equal to each other. Therefore, in the present embodiment, the flow passage cross-sectional area of each first condensation flow passage 2110 in the upper heat exchange unit 243 is larger than the flow passage cross-sectional area of each first condensation flow passage 2110 in the lower heat exchange unit 244.
- the first condenser 21 is provided with the connection condensation passage 23 in which the plurality of first condensation passages 2110 are connected to each other. According to this, the liquid heat medium condensed in the first condensation inlet tank 212 and the first condensation flow passage 2110 can be collected and separated in the middle of the first condensation flow passage 2110.
- the number of first condensation flow passages 2110 in the lower heat exchange unit 244 is smaller than the number of first condensation flow passages 2110 in the upper heat exchange unit 243. Specifically, the number of the first condensation flow passages 2110 in the lower heat exchange unit 244 is four, and the number of the first condensation flow passages 2110 in the upper heat exchange unit 243 is six.
- the average flow passage cross-sectional area of the first condensation flow passages 2110 in the small heat exchange parts 24 arranged on the lower side is equal to the first condensation in the small heat exchange parts 24 arranged on the upper side. It is larger than the average channel cross-sectional area of the channel 2110. In other words, the average channel cross-sectional area of the plurality of first condensation channels 2110 in the lower heat exchange section 244 is larger than the average channel cross-sectional area of the plurality of first condensation channels 2110 in the upper heat exchange section 243.
- the average flow passage cross-sectional area of the plurality of first condensation flow passages 2110 in the upper heat exchange section 243 is larger than the average flow passage cross-sectional area of the second condensation flow passage 2210 in the second condenser 22. Therefore, also in the present embodiment, the average flow passage cross-sectional area of the first condensation flow passage 2110 in the first condenser 21 is larger than the average flow passage cross-sectional area of the second condensation flow passage 2210 in the second condenser 22.
- each first condensation flow passage 2110 in the lower heat exchange section 244 is made larger than the flow passage cross-sectional area of each first condensation flow passage 2110 in the upper heat exchange portion 243.
- the liquid-phase heat medium separated into gas and liquid and the condensed liquid-phase heat medium are suppressed from being clogged in the first condensation flow path 2110 on the lower side in the gravity direction. it can.
- the first condenser 21 has a connection condensation flow path 23 in which a plurality of first condensation flow paths 2110 are connected to each other.
- the connection condensation flow path 23 is connected in the middle of each first condensation flow path 2110.
- the connecting condensing flow path 23 extends in the gravity direction.
- the first heat exchange section 210 is divided into a plurality of small heat exchange sections 24 by the connection condensation flow path 23.
- the plurality of small heat exchange units 24 are arranged in the horizontal direction.
- the first condenser 21 has two connected condensation flow passages 23.
- the two connected condensing flow paths 23 are arranged at a distance from each other.
- the first heat exchange section 210 is divided into the three small heat exchange sections 24.
- the small heat exchange unit 24 includes the first condensation inlet tank 212 and the connection condensation passage 23, the two connection condensation passages 23, the connection condensation passage 23 and the first condensation outlet tank. 213 and 213, respectively.
- the vehicle vertical length of the connecting condensation flow path 23, the vehicle vertical length of the first condensation inlet tank 212, and the vehicle vertical length of the first condensation outlet tank 213 are equal to each other.
- the upper end of the connecting condensing flow path 23 overlaps with the upper end of the first condensing inlet tank 212 and the upper end of the first condensing outlet tank 213, respectively.
- the lower end of the connecting condensing flow path 23 overlaps with the lower end of the first condensing inlet tank 212 and the lower end of the first condensing outlet tank 213 when viewed in the horizontal direction.
- the lengths of the small heat exchange parts 24 in the heat exchange part arrangement direction are equal to each other. Further, the number of the first condensation flow passages 2110 in each small heat exchange section 24 is equal to each other. The first condensation flow passages 2110 in the adjacent small heat exchange portions 24 overlap each other when viewed from the heat exchange portion arrangement direction.
- the first condenser 21 is provided with the connection condensation passage 23 in which the plurality of first condensation passages 2110 are connected to each other. According to this, the liquid heat medium condensed in the first condensation inlet tank 212 and the first condensation flow passage 2110 can be collected and separated in the middle of the first condensation flow passage 2110.
- the plurality of first condensation flow passages 2110 have different flow passage cross-sectional areas. Specifically, in the plurality of first condensation flow passages 2110 in each small heat exchange section 24, the flow passage cross-sectional area of the first condensation flow passage 2110 arranged on the lower side is the first condensation flow passage arranged on the upper side. It is larger than the flow passage cross-sectional area of the flow passage 2110. That is, the plurality of first condensing flow paths 2110 in each small heat exchange section 24 have a larger flow path cross-sectional area as they are arranged on the lower side.
- the flow passage cross-sectional areas of the plurality of first condensation flow passages 2110 are made different from each other. According to this, in the inside of the first condenser 21, any one of the flow containing a large amount of the liquid phase heat medium and the flow containing a large amount of the gas phase heat medium is selected, and each first condensing flow path is selected. It can be flushed to 2110.
- the flow passage cross-sectional area of the first condensation flow passage 2110 arranged on the lower side is made larger than the flow passage cross-sectional area of the first condensation flow passage 2110 arranged on the upper side. ing. Therefore, the flow containing a large amount of gas-phase heat medium having a smaller pressure loss than the liquid-phase heat medium flows through the first condensation flow passage 2110 having a small flow passage cross-sectional area, that is, the first condensation flow passage 2110 arranged on the upper side. Flowing.
- a flow containing a large amount of liquid-phase heat medium having a larger pressure loss than the gas-phase heat medium flows through the first condensing flow passage 2110 having a large flow passage cross-sectional area, that is, the first condensing flow passage 2110 arranged on the lower side. ..
- a flow containing a large amount of the vapor phase heat medium is caused to flow through the first condensation flow passage 2110 arranged on the upper side, and the liquid phase heat is flown through the first condensation flow passage 2110 arranged on the lower side.
- a medium rich stream can be flowed.
- gas-liquid separation of the heat medium can be efficiently performed.
- the first condenser 21 and the second condenser 22 are arranged in the air flow direction. That is, the first condenser 21 and the second condenser 22 are arranged in the thickness direction of the condensers 21 and 22.
- the upper end of the first condenser 21 in the gravity direction is arranged at the same height as the upper end of the second condenser 22 in the gravity direction. That is, the upper end of the first condenser 21 in the direction of gravity is arranged at the same height as the upper end of the second condenser 22 in the direction of gravity. In other words, the upper end of the first condenser 21 in the direction of gravity overlaps the upper end of the second condenser 22 in the direction of gravity when viewed in the horizontal direction.
- the flow passage cross-sectional area D 2 of the inlet side flow passage 219 is such that the first condensing tubes 211 are stacked in the internal space of the first condensing outlet tank 213. It is equivalent to the cross-sectional area D 3 of the cross section perpendicular to the direction.
- the liquid outlet 2132 of the first condenser 21 is provided at the end of the first condenser outlet tank 213 on one side in the tube stacking direction. That is, the liquid outlet 2132 of the first condenser 21 is provided at the end of the first condenser outlet tank 213 on the evaporator 10 side in the longitudinal direction.
- the liquid outlet 2231 of the second condenser 22 is provided at the end of the second condenser outlet tank 223 on one side of the tube stacking direction. That is, the liquid outlet 2231 of the second condenser 22 is provided at the end of the second condensation outlet tank 223 on the evaporator 10 side in the longitudinal direction.
- connection passage 302 The upstream end of the connection passage 302 is connected to the upper side of the first condenser 21 in the gravity direction.
- the downstream end of the connection passage 302 is connected to the upper side of the second condenser 22 in the gravity direction.
- the upstream end of the first liquid passage 303 is connected to the lower side of the first condenser 21 in the gravity direction.
- the upstream end of the second liquid passage 304 is connected to the lower side of the second condenser 22 in the gravity direction.
- the heating elements 40 are joined to both sides of the flat surface of each evaporation tube (not shown).
- a plurality of heating elements 40 are laminated on each of one side and the other side in the thickness direction of the evaporator 10.
- the thickness direction of the evaporator 10 is parallel to the air flow direction of the condenser 20.
- the gas-phase heat medium is condensed in the first condensation inlet tank 212 and the first condensation flow passage 2110 of the first condensation tube 211. Then, the condensed liquid heat medium drops in the first condensation flow path 2110 due to gravity. At this time, the liquid-phase heat medium is sucked from the first condensation inlet tank 212 into the first condensation flow passage 2110, so that the flow velocity of the heat medium flowing through the first condensation inlet tank 212 decreases.
- the liquid-phase heat medium is separated and removed from the heat medium in the gas-liquid two-phase state. That is, in the first condensation inlet tank 212, the heat medium in the gas-liquid two-phase state is separated into the liquid heat medium and the gas heat medium.
- the gas-phase heat medium separated in the first condensation inlet tank 212 in the horizontal direction flows through the first condensation inlet tank 212 and flows into the second condenser 22 via the connection passage 302.
- the liquid-phase heat medium separated in the first condensing inlet tank 212 drops through the first condensing passages 2110 in the plurality of first condensing tubes 211 and flows into the first condensing outlet tank 213. Then, the liquid-phase heat medium separated into gas and liquid in the first condenser 21 flows into the evaporator 10 from the first condensation outlet tank 213 via the first liquid passage 303.
- the first condenser 21 and the second condenser 22 are provided as the condenser 20.
- the first condenser 21 and the second condenser 22 are arranged in the air flow direction.
- the liquid-phase heat medium is separated from the gas-liquid two-phase heat medium.
- the vapor-phase heat medium after the liquid-phase heat medium is separated is caused to flow to the vapor inlet 2221 side of the second condenser 22.
- the boiling cooling device can be downsized.
- the first condenser 21 and the second condenser 22 are arranged in parallel in the air flow direction. Therefore, in the first condensation outlet tank 213 and the second condensation outlet tank 223, it is possible to collect the liquid phase heat medium condensed in the heat exchange sections 210 and 220 of the condensers 21 and 22. Therefore, since there are two parts (hereinafter, referred to as liquid tanks) for collecting the liquid-phase heat medium condensed in the heat exchange parts 210 and 220 of the condensers 21 and 22, the boiling cooling device of Patent Document 1 is different. As a result, the capacity of the liquid tank increases.
- the boiling cooling device of the present embodiment it is possible to suppress the rise of the liquid level of the liquid phase heat medium inside each of the condensers 21 and 22. For this reason, since it is possible to suppress deterioration of heat dissipation of the heat medium in each of the condensers 21 and 22, it is possible to reduce the height of each of the condensers 21 and 22 with respect to the evaporator 10.
- the first condensing tube 211 is arranged such that its longitudinal direction is substantially parallel to the horizontal direction. Therefore, the first condensing flow path 2110 is configured so that the heat medium flows in the horizontal direction. A plurality of the first condensing tubes 211 are arranged in parallel in the gravity direction.
- the first condensation inlet tank 212 and the first condensation outlet tank 213 each extend in the gravity direction.
- the first condensation inlet tank 212 is connected to the end of the first condensation tube 211 on the side closer to the evaporator 10 in the longitudinal direction.
- the first condensation outlet tank 213 is connected to the end of the first condensation tube 211 on the side farther from the evaporator 10 in the longitudinal direction.
- the flow path cross-sectional area D 2 of the first condenser inlet tank 212 inlet passage 219 is greater than the cross-sectional area D 1 of the steam path 301.
- the vapor inlet 2121 of the first condenser 21 is arranged on the upper side in the gravity direction of the first condenser inlet tank 212.
- the vapor outlet 2131 of the first condenser 21 is provided on the upper side in the gravity direction of the first condenser outlet tank 213.
- the liquid outlet 2132 of the first condenser 21 is arranged on the lower end surface of the first condenser outlet tank 213 in the gravity direction.
- the heat medium in the gas-liquid two-phase state that has flowed out of the evaporator 10 flows into the first condenser 21 via the vapor passage 301.
- the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 in the first condenser 21 is larger than the passage cross-sectional area D 1 of the steam passage 301, the heat medium flowing from the steam passage 301 into the first condenser 21 The flow velocity decreases.
- the liquid-phase heat medium is separated and removed from the heat medium in the gas-liquid two-phase state in the inlet-side flow passage 219 of the first condenser 21 (that is, the first condensation inlet tank 212). That is, in the first condensation inlet tank 212, the heat medium in the gas-liquid two-phase state is separated into the liquid heat medium and the gas heat medium.
- FIGS. 37 to 39 A thirtieth embodiment of the present invention will be described with reference to FIGS. 37 to 39.
- FIG. 37 below and FIG. 40 described later show a state in which the vertical direction of the vehicle is parallel to the gravity direction.
- the evaporator 10 and the condenser 20 are arranged in the front-rear direction of the vehicle.
- the evaporator 10 is located on the vehicle rear side of the condenser 20.
- the evaporator 10 is a so-called tank-and-tube type heat exchanger.
- the evaporator 10 includes an evaporation tube 101 and evaporation tanks 102 and 103.
- the evaporation tube 101 is a tubular member that forms a flow path through which a heat medium flows.
- the evaporation tube 101 is a flat tube formed in a flat plate shape (that is, a flat cross section).
- the evaporation tube 101 is arranged such that its longitudinal direction is substantially parallel to the direction of gravity.
- a plurality of evaporation tubes 101 are arranged in parallel in the horizontal direction.
- the plurality of evaporation tubes 101 form the same plane. That is, the plurality of evaporation tubes 101 are arranged in a line so that flat surfaces on both sides of the evaporation tubes 101 are arranged on the same plane.
- the heating element 40 is joined to the flat surfaces of the plurality of evaporation tubes 101. Therefore, the heat from the heating element 40 is transferred to the heat medium in the evaporation tube 101.
- the evaporation tanks 102 and 103 communicate with a plurality of evaporation tubes 101.
- the evaporation tanks 102 and 103 collect or distribute the heat medium with respect to the plurality of evaporation tubes 101.
- the evaporation tanks 102 and 103 are provided one at each end of the evaporation tube 101 in the longitudinal direction. That is, the evaporation tanks 102 and 103 are respectively provided at the upper end and the lower end in the gravity direction of the evaporation tube 101.
- the evaporation tanks 102 and 103 extend in a direction orthogonal to the longitudinal direction of the evaporation tube 101. That is, the evaporation tanks 102 and 103 extend in the horizontal direction.
- An evaporation tube 101 is inserted and joined to the evaporation tanks 102 and 103.
- the evaporation inlet tank 102 the one arranged on the lower side in the direction of gravity and distributing the heat medium to the evaporation tube 101.
- one of the two evaporation tanks 102 and 103 which is arranged on the upper side in the gravity direction and collects the heat medium flowing out from the evaporation tube 101, is called an evaporation outlet tank 103.
- the evaporation inlet tank 102 has an evaporation side liquid inflow port 1021 through which a liquid phase heat medium condensed in a condenser 20 described later flows into the evaporation inlet tank 102.
- the evaporation side liquid inlet 1021 is provided at one end side in the longitudinal direction of the evaporation inlet tank 102.
- the evaporation outlet tank 103 has an evaporation side vapor outlet 1031.
- the vaporization side vapor outlet 1031 causes the heat medium in the vaporization outlet tank 103 to flow out to the first vapor inlet 2120 side of the condenser 20.
- the evaporation-side vapor outlet 1031 causes the heat medium in the gas-liquid two-phase state including the vapor-phase heat medium evaporated in the evaporation tube 101 to flow out to the first vapor inlet 2120 side of the condenser 20.
- the evaporation side vapor outlet 1031 is provided at one end side in the longitudinal direction of the evaporation outlet tank 103.
- the evaporation side vapor outlet 1031 is provided at the end of the evaporation outlet tank 103 on the same side as the evaporation side liquid inlet 1021.
- the condenser 20 has a first condenser 21 and a second condenser 22.
- the second condenser 22 is arranged above the first condenser 21 in the direction of gravity.
- the first condenser 21 and the second condenser 22 are integrally formed.
- the first condenser 21 and the second condenser 22 may be formed as separate bodies.
- the first condenser 21 separates at least a part of the liquid-phase heat medium from the gas-liquid two-phase heat medium flowing out from the evaporator 10.
- the first condenser 21 causes the heat medium after at least a part of the liquid-phase heat medium is separated from the heat medium in the gas-liquid two-phase state to flow out to the inlet side of the second condenser 22.
- the first condenser 21 has a first heat exchange section 210 for exchanging heat between the heat medium and air. More specifically, the first heat exchange unit 210 heat-exchanges the heat medium in the gas-liquid two-phase state and the air flowing out from the evaporator 10 to condense at least a part of the heat medium in the gas-liquid two-phase state.
- the first heat exchange section 210 has a first condensing tube 211 and a first radiating fin 215.
- the first heat exchange section 210 is configured by the first condensing tube 211 and the first heat radiation fin 215.
- the first condenser 21 is a so-called tank-and-tube heat exchanger.
- the first condenser 21 includes a first condensing tube 211, first condensing tanks 212 and 213, and a first radiating fin 215.
- the first condensing tube 211 is a tubular member that forms a first condensing channel 2110 through which the heat medium flows.
- the first condensing tube 211 is a flat tube formed in a flat plate shape.
- the first condensing tube 211 is arranged so that its longitudinal direction is substantially vertical to the horizontal direction. That is, the first condensing tube 211 is arranged such that its longitudinal direction is substantially parallel to the gravity direction. Therefore, the first condenser 21 is configured such that the heat medium flows in the gravity direction in the first condensation flow path 2110.
- the first condenser 21 has a plurality of first condensing tubes 211. Therefore, the first condenser 21 has a plurality of first condensation flow paths 2110. In this example, the first condensing tubes 211 are arranged in parallel in the horizontal direction.
- the plurality of first condensing tubes 211 are laminated at a predetermined interval. Air flows between the plurality of first condensing tubes 211.
- First radiating fins 215 are provided in the air passage between the plurality of first condensing tubes 211.
- the first radiating fins 215 are formed in a wavy shape (that is, a corrugated shape). As a result, the heat medium flowing in the plurality of first condensing tubes 211 and the air flowing between the plurality of first condensing tubes 211 are heat-exchanged.
- the first condensing tanks 212 and 213 communicate with the plurality of first condensing tubes 211.
- the first condensing tanks 212 and 213 collect or distribute the heat medium with respect to the plurality of first condensing tubes 211.
- the first condensing tanks 212 and 213 are provided one at each end of the first condensing tube 211 in the longitudinal direction.
- the first condensing tanks 212 and 213 extend in a direction orthogonal to the longitudinal direction of the first condensing tube 211. That is, the first condensing tanks 212 and 213 extend in the horizontal direction. Specifically, the first condensing tanks 212 and 213 extend in the vehicle front-rear direction.
- the first condensing tubes 211 are joined to the first condensing tanks 212 and 213 while being inserted therein.
- first condensing inlet tank 212 one of the two first condensing tanks 212 and 213, which is arranged on the lower side in the gravity direction and collects the heat medium flowing out from the first condensing tube 211, is referred to as a first condensing outlet tank 213.
- the first condensation inlet tank 212 has a first vapor inlet 2120 and a condensation side vapor outlet 2123.
- the first vapor inlet 2120 causes the heat medium in the gas-liquid two-phase state that has flowed out of the evaporator 10 to flow into the first condensation inlet tank 212.
- the condensation-side vapor outlet 2123 causes the vapor-phase heat medium in the first condensation outlet tank 213 to flow to the second vapor inlet 2220 side of the second condenser 22 described later.
- the first steam inlet 2120 is provided at one horizontal end of the first condensation inlet tank 212. Specifically, the first steam inlet 2120 is provided at the end of the first condensation inlet tank 212 on the vehicle rear side. The first steam inlet 2120 is arranged above the evaporation side steam outlet 1031 of the evaporator 10 in the gravity direction.
- the condensation-side vapor outlet 2123 is provided at the other horizontal end of the first condensation inlet tank 212. Specifically, the condensation-side vapor outlet 2123 is provided at the end of the first condensation inlet tank 212 on the vehicle front side.
- the first condensation outlet tank 213 has a first liquid outlet 213a, a second liquid outlet 213b, a first liquid inlet 213c and a second liquid inlet 213d.
- the first liquid outlet 213a and the second liquid outlet 213b cause the liquid heat medium in the first condensation outlet tank 213 to flow to the evaporation side liquid inlet 1021 side of the evaporator 10.
- the first liquid inlet 213c and the second liquid inlet 213d cause the liquid-phase heat medium flowing out from the second condenser 22 to flow into the first condensation outlet tank 213.
- the lower end surface of the first condensation outlet tank 213 in the direction of gravity is referred to as the lower end surface 2130 of the first condensation outlet tank 213.
- the first liquid outlet 213a is provided at one horizontal end of the lower end surface 2130 of the first condensation outlet tank 213. Specifically, the first liquid outlet 213a is provided at an end of the lower end surface 2130 of the first condensation outlet tank 213 on the vehicle rear side.
- the second liquid outlet 213b is provided at the other horizontal end of the lower end surface 2130 of the first condensation outlet tank 213. Specifically, the second liquid outlet 213b is provided at the end of the lower end surface 2130 of the first condensation outlet tank 213 on the vehicle front side.
- the first liquid inlet 213c is provided at one horizontal end of the first condensation outlet tank 213. Specifically, the first liquid inlet 213c is provided at the end of the first condensation outlet tank 213 on the vehicle rear side. The first liquid inlet 213c is arranged on the upper side in the gravity direction than the first liquid outlet 213a.
- the second liquid inlet 213d is provided at the other horizontal end of the first condensation outlet tank 213. Specifically, the second liquid inlet 213d is provided at the end of the first condensation outlet tank 213 on the vehicle front side.
- the second liquid inflow port 213d is arranged above the second liquid outflow port 213b in the gravity direction.
- the second condenser 22 has a second heat exchange section 220 that exchanges heat between the heat medium and air. More specifically, the second heat exchange unit 220 heat-exchanges the heat medium in the vapor phase state and the air flowing out from the first condenser 21 with each other to condense the heat medium in the vapor phase state.
- the second heat exchange section 220 has a second condensing tube 221 and a second radiating fin 225.
- the second condensing tube 221 and the second radiating fin 225 form the second heat exchange section 220.
- the second condenser 22 is a so-called tank-and-tube heat exchanger.
- the second condenser 22 includes a second condensing tube 221, second condensing tanks 222 and 223, and a second radiating fin 225.
- the second condensing tube 221 is a tubular member that forms the second condensing channel 2210 through which the heat medium flows.
- the second condensing tube 221 is a flat tube formed in a flat plate shape.
- the second condensing tube 221 is arranged so that its longitudinal direction is substantially parallel to the gravity direction.
- the second condensing tubes 221 are arranged in parallel in the horizontal direction.
- the plurality of second condensing tubes 221 are laminated at a predetermined interval. Air flows between the plurality of second condensing tubes 221. Second radiating fins 225 are provided in the air passage between the plurality of second condensing tubes 221. In the present embodiment, the second heat radiation fin 225 is formed in a wave shape. The heat medium flowing in the plurality of second condensing tubes 221 and the air flowing between the plurality of second condensing tubes 221 are heat-exchanged.
- the second condensing tanks 222 and 223 communicate with a plurality of second condensing tubes 221.
- the second condensing tanks 222 and 223 collect or distribute the heat medium with respect to the plurality of second condensing tubes 221.
- the second condensing tanks 222 and 223 are provided one at each end of the second condensing tube 221 in the longitudinal direction. That is, the second condensing tanks 222 and 223 are respectively provided at the upper end and the lower end in the gravity direction of the second condensing tube 221.
- the second condensing tanks 222 and 223 extend in a direction orthogonal to the longitudinal direction of the second condensing tube 221. That is, the second condensing tanks 222 and 223 extend in the horizontal direction. Specifically, the second condensing tanks 222 and 223 extend in the vehicle front-rear direction. A second condensing tube 221 is inserted and joined to the second condensing tanks 222 and 223.
- one of the two second condensing tanks 222 and 223, which is arranged on the upper side in the gravity direction and which distributes the heat medium to the second condensing tube 221, is referred to as a second condensing inlet tank 222. ..
- one of the two second condensing tanks 222 and 223, which is arranged on the lower side in the direction of gravity and collects the heat medium flowing out from the second condensing tube 221, is referred to as a second condensing outlet tank 223.
- the second condensation inlet tank 222 has a second vapor inlet 2220 that allows the vapor-phase heat medium flowing out of the first condenser 21 to flow into the second condensation inlet tank 222.
- the second vapor inlet 2220 is provided at the other horizontal end of the second condensation inlet tank 222.
- the second steam inlet 2220 is provided at the end of the second condensation inlet tank 222 on the vehicle front side.
- the second condensation outlet tank 223 has a third liquid outlet 2231 and a fourth liquid outlet 2232.
- the third liquid outlet 2231 causes the liquid heat medium in the second condensation outlet tank 223 to flow to the first liquid inlet 213c side of the first condenser 21.
- the fourth liquid outlet 2232 causes the liquid heat medium in the second condensation outlet tank 223 to flow out to the second liquid inlet 213d side of the first condenser 21.
- the third liquid outlet 2231 is provided at one horizontal end of the second condensation outlet tank 223. Specifically, the third liquid outlet 2231 is provided at the end of the second condensation outlet tank 223 on the vehicle rear side.
- the fourth liquid outlet 2232 is provided at the other horizontal end of the second condensation outlet tank 223. Specifically, the fourth liquid outlet 2232 is provided at the end of the second condensation outlet tank 223 on the vehicle front side.
- the upper end surface of the first condensing inlet tank 212 of the first condenser 21 is joined to the lower end surface of the second condensing outlet tank 223.
- the first condenser 21 and the second condenser 22 are integrated.
- the heat medium passage 30 includes a vapor passage 301, a connection passage 302, a plurality of first liquid passages 303a and 303b, and a plurality of second liquid passages 304a and 304b.
- Each of the passages 303a, 303b, 304a, 304b is formed of, for example, a metal pipe.
- the steam passage 301 is a passage that guides the heat medium flowing out of the evaporator 10 to the first condenser 21.
- the vapor passage 301 is a passage that connects the vaporization side vapor outlet 1031 of the evaporator 10 and the first vapor inlet 2120 of the first condenser 21.
- the upstream end (that is, the inlet end) of the steam passage 301 is connected to the upper side of the center of the evaporator 10 in the gravity direction.
- the downstream end (that is, the outlet end) of the steam passage 301 is connected to the upper side of the center of the first condenser 21 in the gravity direction.
- the downstream end of the steam passage 301 is connected to the first condenser 21 via the first connector 401.
- connection passage 302 is a passage that guides the heat medium flowing out from the first condenser 21 to the second condenser 22.
- connection passage 302 is a passage that connects the condensation-side vapor outlet 2123 of the first condenser 21 and the second vapor inlet 2220 of the second condenser 22.
- connection passage 302 The upstream end of the connection passage 302 is connected to the upper side of the first condenser 21 in the gravity direction.
- the downstream end of the connection passage 302 is connected to the upper side of the second condenser 22 in the gravity direction.
- connection passage 302 The upstream end of the connection passage 302 is connected to the first condenser 21 via the second connector 402.
- the downstream end of the connection passage 302 is connected to the second condenser 22 via the third connector 403.
- the first liquid passages 303a and 303b are liquid passages that guide the liquid-phase heat medium flowing out of the first condenser 21 to the evaporator 10 side.
- the upstream ends of the plurality of first liquid passages 303a and 303b are connected to the lower side of the center of the first condenser 21 in the direction of gravity.
- the upstream ends of the plurality of first liquid passages 303a and 303b are connected to the lower end faces of the first condenser 21 in the gravity direction. Specifically, the upstream ends of the plurality of first liquid passages 303a and 303b are connected to the lower end surface 2130 of the first condensation outlet tank 213, respectively.
- the plurality of first liquid passages 303a and 303b are arranged in the front-rear direction of the vehicle.
- the boiling cooling device 1 of this embodiment has two first liquid passages 303a and 303b.
- the first liquid passage arranged on the vehicle rear side is referred to as a first rear liquid passage 303a
- the first liquid passage arranged on the vehicle front side is the first. It is referred to as the front liquid passage 303b.
- the first rear liquid passage 303a corresponds to an example of the first liquid passage arranged on the rearmost side of the vehicle among the plurality of first liquid passages.
- the first front liquid passage 303b corresponds to an example of the first liquid passage arranged on the most front side of the vehicle among the plurality of first liquid passages.
- the first rear liquid passage 303a is a liquid passage that connects the first liquid outlet 213a of the first condenser 21 and the evaporation side liquid inlet 1021 of the evaporator 10.
- the upstream end of the first rear liquid passage 303a is connected to the end of the first condenser 21 on the vehicle rear side.
- the upstream end of the first rear liquid passage 303a is connected to the first condenser 21 via the fourth connector 404.
- the downstream end of the first rear liquid passage 303a is connected to the lower side of the center of the evaporator 10 in the gravity direction.
- the first front liquid passage 303b is a liquid passage that connects the second liquid outlet 213b of the first condenser 21 and a merging portion 307 described later. More specifically, the downstream end of the first front liquid passage 303b is connected to the evaporator 10 via the confluence portion 307.
- the merging portion 307 is a portion where the first rear liquid passage 303a and the first front liquid passage 303b merge.
- the heat medium flowing out from the second liquid outlet 213b of the first condenser 21 is guided to the evaporator 10 via the first front liquid passage 303b and the first rear liquid passage 303a. That is, the heat medium flowing out from the second liquid outlet 213b flows in the order of the first front liquid passage 303b, the merging portion 307, and the first rear liquid passage 303a, and then flows into the evaporator 10.
- the upstream end of the first front liquid passage 303b is connected to the end of the first condenser 21 on the vehicle front side.
- the upstream end of the first front liquid passage 303b is connected to the first condenser 21 via the fifth connector 405. Further, the downstream end of the first front liquid passage 303b, that is, the confluence portion 307 is located below the condenser 20 in the gravity direction.
- the second liquid passages 304 a and 304 b are liquid passages that guide the liquid-phase heat medium flowing out from the second condenser 22 to the first condensation outlet tank 213 of the first condenser 21.
- the upstream ends of the plurality of second liquid passages 304a and 304b are connected to the lower side of the center of the second condenser 22 in the gravity direction.
- the upstream end portions of the plurality of second liquid passages 304a and 304b are connected to the lower end portions of the second condenser 22 in the gravity direction.
- the upstream ends of the plurality of second liquid passages 304a and 304b are connected to the second condensation outlet tank 223, respectively.
- the downstream ends of the plurality of second liquid passages 304a and 304b are connected to the lower ends of the first condenser 21 in the gravity direction.
- the downstream ends of the plurality of second liquid passages 304a and 304b are connected to the first condensation outlet tank 213, respectively.
- the liquid-phase heat medium flowing out from the second condenser 22 is guided to the evaporator 10 via the second liquid passages 304a and 304b, the first condensation outlet tank 213, and the first liquid passages 303a and 303b. Therefore, the second liquid passages 304a and 304b correspond to an example of liquid passages that guide the liquid-phase heat medium flowing out from the second condenser 22 to the evaporator 10 side.
- the plurality of second liquid passages 304a and 304b are arranged in the front-rear direction of the vehicle.
- the boiling cooling device 1 of the present embodiment has two second liquid passages 304a and 304b.
- the second liquid passage arranged on the vehicle rear side is referred to as a second rear liquid passage 304a
- the second liquid passage arranged on the vehicle front side is referred to as the second. It is called the front liquid passage 304b.
- the second rear liquid passage 304a corresponds to an example of the second liquid passage disposed on the rearmost side of the vehicle among the plurality of second liquid passages.
- the second front liquid passage 304b corresponds to an example of the second liquid passage disposed on the most front side of the vehicle among the plurality of second liquid passages.
- the second rear liquid passage 304a is a liquid passage that connects the third liquid outlet 2231 of the second condenser 22 and the first liquid inlet 213c of the first condenser 21.
- the upstream end of the second rear liquid passage 304a is connected to the end of the second condenser 22 on the vehicle rear side.
- the upstream end of the second rear liquid passage 304a is connected to the second condenser 22 via the sixth connector 406.
- the downstream end of the second rear liquid passage 304a is connected to the first condenser 21 via the seventh connector 407.
- the second front liquid passage 304b is a liquid passage that connects the fourth liquid outlet 2232 of the second condenser 22 and the second liquid inlet 213d of the first condenser 21.
- the upstream end of the second front liquid passage 304b is connected to the end of the second condenser 22 on the vehicle front side.
- the upstream end of the second front liquid passage 304b is connected to the second condenser 22 via the eighth connector 408.
- the downstream end of the second front liquid passage 304b is connected to the first condenser 21 via the ninth connector 409.
- heat exchange is performed between the high temperature heating element 40 and the liquid phase heat medium in the evaporation tube 101.
- the amount of heat of the heating element 40 moves to the liquid-phase heat medium, the liquid-phase heat medium boils and becomes the vapor-phase heat medium, and the heating element 40 is cooled.
- the vapor-phase heat medium evaporated in the evaporation tube 101 flows into the evaporation outlet tank 103.
- the vapor-phase heat medium in the evaporation outlet tank 103 flows into the first condenser 21 via the vapor passage 301.
- the heat medium in the gas-liquid two-phase state flows out from the evaporation tube 101 to the evaporation outlet tank 103. Therefore, the heat medium in the gas-liquid two-phase state flows from the evaporation outlet tank 103 into the first condenser 21 via the vapor passage 301.
- the gas-phase heat medium is condensed in the first condensation inlet tank 212 and the first condensation flow passage 2110 of the first condensation tube 211. Then, the condensed liquid heat medium drops in the first condensation flow path 2110 due to gravity. At this time, the liquid-phase heat medium is sucked from the first condensation inlet tank 212 into the first condensation flow passage 2110, so that the flow velocity of the heat medium flowing through the first condensation inlet tank 212 decreases.
- the liquid-phase heat medium is separated and removed from the heat medium in the gas-liquid two-phase state. That is, in the first condensation inlet tank 212, the heat medium in the gas-liquid two-phase state is separated into the liquid heat medium and the gas heat medium.
- the gas-phase heat medium separated into gas and liquid in the first condensation inlet tank 212 flows horizontally in the first condensation inlet tank 212 and passes through the connection passage 302 to the second condensation inlet tank 222 of the second condenser 22. Flow into.
- the second condenser 22 between the air flowing in the air passage between the plurality of second condensing tubes 221 and the gas phase heat medium in the second condensing tube 221 via the second radiating fins 225. Heat exchange takes place between them.
- the vapor phase heat medium is condensed to become the liquid phase heat medium, and the heat of the heat medium is released to the air.
- the liquid heat medium condensed in the second condensing tube 221 flows into the second condensing outlet tank 223. Then, the liquid-phase heat medium condensed in the second condensing tube 221 is discharged from the second condensing outlet tank 223 through at least one of the second rear liquid passage 304a and the second front liquid passage 304b to the first condenser 21. It flows into the first condensation outlet tank 213.
- the liquid-phase heat medium separated in the first condensing inlet tank 212 drops through the first condensing passages 2110 in the plurality of first condensing tubes 211 and flows into the first condensing outlet tank 213.
- the first condenser 21 between the air flowing in the air passage between the plurality of first condensing tubes 211 and the heat medium in the first condensing tube 211 via the first heat radiation fins 215. Heat exchange takes place. As a result, the heat of the heat medium is released to the air.
- the liquid-phase heat medium separated into gas and liquid in the first condenser 21 and the liquid-phase heat medium flowing in from the second condenser 22 are discharged from the first condensation outlet tank 213 into the first rear liquid passage 303a and the first front side. It flows into the evaporation inlet tank 102 of the evaporator 10 through at least one of the liquid passages 303b.
- the boiling cooling device 1 When the vehicle is climbing uphill, the boiling cooling device 1 is inclined so that the front side of the vehicle is located above the rear side. In other words, when the vehicle is climbing uphill, the boiling cooling device 1 is inclined so that the condenser 20 is located above the evaporator 10. At this time, in the first condenser 21 and the second condenser 22, since the liquid-phase refrigerant flows to the vehicle rear side, the liquid-phase refrigerant does not exist on the vehicle front side.
- the liquid-phase refrigerant in the second condenser 22 flows into the second rear liquid passage 304a and the second front liquid passage 304b, which are located on the lower side when climbing the slope, of the second rear liquid passage 304a and the first condensed liquid. Guided to the vessel 21 side. Then, the liquid-phase refrigerant in the first condenser 21 flows into the first rear liquid passage 303a and the first front liquid passage 303b, which are located on the lower side when climbing the slope, of the first rear liquid passage 303a and the first front liquid passage 303b, and the evaporator 10 Be guided to the side.
- the boiling cooling system 1 When the vehicle descends, the boiling cooling system 1 is inclined so that the front side of the vehicle is located below the rear side. In other words, when the vehicle is downhill, the boiling cooling device 1 is inclined such that the condenser 20 is located below the evaporator 10. At this time, in the first condenser 21 and the second condenser 22, the liquid-phase refrigerant flows toward the front side of the vehicle, so that the liquid-phase refrigerant does not exist at the rear side of the vehicle.
- the liquid-phase refrigerant in the second condenser 22 flows into the second front liquid passage 304a and the second front liquid passage 304b, which are located in the second front liquid passage 304b located on the lower side at the time of descending the slope. It is guided to the condenser 21 side. Then, the liquid-phase refrigerant in the first condenser 21 flows into the first front liquid passage 303b, which is located on the lower side when descending the slope, of the first rear liquid passage 303a and the first front liquid passage 303b, and the evaporator It is led to the 10 side.
- the boiling cooling device 1 of the present embodiment includes, as the condenser 20, the first condenser 21 and the second condenser 22 arranged on the upper side in the gravity direction of the first condenser 21.
- the first condenser 21 separates the liquid-phase heat medium from the gas-liquid two-phase heat medium. Further, the first condenser 21 causes the vapor-phase heat medium after the liquid-phase heat medium is separated to flow out to the second vapor inflow port 2220 side of the second condenser 22.
- the gas-phase heat medium flows into the second condenser 22, which is located on the upper side in the gravity direction, of the first condenser 21 and the second condenser 22. That is, it is not necessary to raise (that is, raise) the heat medium in the gas-liquid two-phase state to the second condenser 22. Therefore, since the rising height of the heat medium in the gas-liquid two-phase state to the upper side in the direction of gravity can be reduced, the pressure loss of the heat medium can be reduced.
- the rising height for raising the vapor-liquid two-phase heat medium flowing out from the evaporation side vapor outlet 1031 of the evaporator 10 to the first vapor inlet 2120 of the first condenser 21 is the two-phase lifting height. It is called H 1 .
- the rising height at which the vapor-phase refrigerant flowing out from the condensation-side vapor outlet 2123 of the first condenser 21 is raised to the second vapor inlet 2220 of the second condenser 22 is called vapor-phase lifting height H 2 .
- the two-phase lift height H 1 is sufficiently smaller than the gas-phase lift height H 2 . Therefore, the pressure loss generated in the heat medium flowing through the steam passage 301 can be sufficiently reduced.
- the boiling cooling device 1 can be downsized.
- the boiling cooling device 1 of the present embodiment in the first condenser 21, the vapor-phase heat medium after the liquid-phase heat medium is separated is directed to the second vapor inlet 2220 side of the second condenser 22. It has been leaked. Therefore, the inflow of the liquid-phase heat medium into the second condenser 22 can be suppressed. Therefore, it is not necessary to increase the size of the second condenser 22 in order to secure the heat dissipation of the heat medium in the second condenser 22. That is, the boiling cooling device 1 can be downsized.
- the boiling cooling device 1 of the present embodiment is provided with a plurality of first liquid passages 303a and 303b for guiding the liquid phase heat medium flowing out from the first condenser 21 to the evaporator 10 side.
- the upstream ends of the plurality of first liquid passages (that is, the first rear liquid passage 303a and the first front liquid passage 303b) are connected to the lower side of the center of the first condenser 21 in the gravity direction. ing.
- the first liquid passages 303a, 303b located on the lower side at the time of the inclination.
- the liquid-phase refrigerant can be supplied from the first condenser 21 to the evaporator 10 side. Therefore, as compared with the boiling cooling device having only one first liquid passage, it is possible to suppress the liquid-phase heat medium from staying in the first condenser 21 at the time of inclination. As a result, it becomes possible to secure the cooling performance of the boiling cooling device 1 at the time of inclination.
- the boiling cooling device 1 of the present embodiment has a plurality of second liquid passages 304a and 304b for guiding the liquid phase heat medium flowing out from the second condenser 22 to the first condenser 21 side.
- the upstream ends of the plurality of second liquid passages (that is, the second rear liquid passage 304a and the second front liquid passage 304b) are connected to the lower side of the center of the second condenser 22 in the gravity direction. ing.
- the second liquid passages 304a, 304b located on the lower side at the time of inclination.
- the liquid-phase refrigerant can be supplied from the second condenser 22 to the first condenser 21 side.
- the liquid-phase heat medium supplied to the first condenser 21 is transferred to the evaporator 10 side by the first liquid passages 303a and 303b, which are located on the lower side when inclined, among the plurality of first liquid passages 303a and 303b. Can be supplied.
- the upstream end of the first rear liquid passage 303a which is the rearmost vehicle, of the plurality of first liquid passages 303a and 303b is the first condenser. It is connected to the end of the vehicle 21 on the rear side of the vehicle.
- the end of the first condenser 21 on the rear side of the vehicle is a portion located on the lowest side of the first condenser 21 (that is, the lowest point) when the vehicle is climbing uphill. Therefore, when the vehicle climbs uphill, the liquid-phase heat medium stays at the end of the first condenser 21 on the vehicle rear side.
- the liquid-phase refrigerant in the first condenser 21 is removed when the vehicle is climbing uphill. It is possible to reliably discharge the liquid from the first rear liquid passage 303a. Therefore, it is possible to further suppress the liquid-phase refrigerant from accumulating in the first condenser 21 when the vehicle climbs a slope.
- the upstream end of the second rear liquid passage 304a which is the most rearward of the vehicle among the plurality of second liquid passages 304a and 304b, is the second condenser. It is connected to the end of the vehicle 22 on the rear side of the vehicle.
- the end of the second condenser 22 on the rear side of the vehicle is a portion located on the lowermost side of the second condenser 22 when the vehicle is climbing uphill. Therefore, when the vehicle climbs uphill, the liquid-phase heat medium stays at the end of the second condenser 22 on the vehicle rear side.
- the liquid-phase refrigerant in the second condenser 22 is removed when the vehicle is climbing uphill.
- the liquid can be reliably discharged from the second rear liquid passage 304a. Therefore, it is possible to further suppress the liquid-phase refrigerant from accumulating in the second condenser 22 when the vehicle climbs uphill.
- the upstream end of the first front liquid passage 303b which is the most front of the vehicle among the plurality of first liquid passages 303a and 303b, is the first condenser. It is connected to an end of the vehicle 21 on the front side of the vehicle.
- the end of the first condenser 21 on the front side of the vehicle is a portion located on the lowermost side of the first condenser 21 when the vehicle descends a slope. Therefore, when the vehicle descends, the liquid heat medium stays at the end of the first condenser 21 on the vehicle rear side.
- the liquid-phase refrigerant in the first condenser 21 during the downhill of the vehicle can be reliably discharged from the first front liquid passage 303b. Therefore, it is possible to further suppress the liquid-phase refrigerant from accumulating in the first condenser 21 when the vehicle descends a slope.
- the upstream end of the second front liquid passage 304b which is the most front of the vehicle among the plurality of second liquid passages 304a and 304b, is the second condenser. It is connected to an end of the vehicle 22 on the front side of the vehicle.
- the end of the second condenser 22 on the front side of the vehicle is the lowermost portion of the second condenser 22 when the vehicle descends a slope. Therefore, when the vehicle descends, the liquid-phase heat medium stays at the end of the second condenser 22 on the vehicle rear side.
- the liquid-phase refrigerant in the second condenser 22 during downhill of the vehicle can be reliably discharged from the second front liquid passage 304b. Therefore, it is possible to further suppress the liquid-phase refrigerant from accumulating in the second condenser 22 when the vehicle descends a slope.
- the downstream end of the steam passage 301 is connected to the upper side of the center of the first condenser 21 in the gravity direction. According to this, when the vehicle leans, it is possible to prevent the liquid-phase heat medium in the first condenser 21 from flowing backward from the vapor passage 301 to the evaporator 10 side.
- the downstream end portions of the second liquid passages 304a and 304b are connected to the first condensation outlet tank 213. That is, the downstream end portions of the second liquid passages 304a and 304b are connected to the lower end portion of the first condenser 21 in the gravity direction. According to this, the length of the second liquid passages 304a and 304b becomes shorter than that in the case where the second liquid passages 304a and 304b are directly connected to the first liquid passages 303a and 303b. Therefore, the pressure loss that occurs when the heat medium flows through the second liquid passages 304a and 304b can be reduced.
- the first condensing tube 211 is arranged such that its longitudinal direction is substantially parallel to the vehicle front-rear direction. Therefore, in the first condensing flow path 2110, the heat medium flows in the vehicle front-rear direction. Specifically, in the first condensation flow path 2110, the heat medium flows from the vehicle rear side toward the front side. A plurality of the first condensing tubes 211 are arranged in parallel in the gravity direction.
- the first condensation inlet tank 212 and the first condensation outlet tank 213 each extend in the direction of gravity.
- the first condensation inlet tank 212 is connected to the end of the first condensation tube 211 on the vehicle rear side.
- the first condensation outlet tank 213 is connected to the end of the first condensation tube 211 on the vehicle front side.
- the first condensation inlet tank 212 has a first vapor inlet 2120, a first liquid outlet 213a, and a first liquid inlet 213c.
- the first steam inlet 2120 is provided above the central portion of the first condensation inlet tank 212 in the gravity direction.
- the first liquid outlet 213a is provided on the lower end surface of the first condensation inlet tank 212.
- the first liquid inlet 213c is provided below the central portion of the first condensation inlet tank 212 in the direction of gravity.
- the first condensation outlet tank 213 has a condensation side vapor outlet 2123, a second liquid outlet 213b, and a second liquid inlet 213d.
- the condensation side vapor outlet 2123 is provided above the central portion of the first condensation outlet tank 213 in the gravity direction.
- the second liquid outlet 213b is provided on the lower end surface of the first condensation outlet tank 213.
- the second liquid inlet 213d is provided below the central portion of the first condensation outlet tank 213 in the direction of gravity.
- the upstream end of the connection passage 302 is connected to the first condensation outlet tank 213.
- the upstream end of the first rear liquid passage 303a is connected to the lower end surface of the first condensation inlet tank 212.
- the upstream end of the first front liquid passage 303b is connected to the lower end surface of the first condensation outlet tank 213.
- the downstream end of the second rear liquid passage 304a is connected to the first condensation inlet tank 212.
- the downstream end of the second front liquid passage 304b is connected to the first condensation outlet tank 213.
- the first condenser 21 has an inlet side flow passage 219 into which the heat medium flowing out from the steam passage 301 flows.
- the inlet side flow passage 219 is formed by the first condensation inlet tank 212.
- the cross-sectional area D 2 of the inlet-side flow passage 219 is larger than the cross-sectional area D 1 of the steam passage 301.
- the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 refers to a cross-sectional area of a cross-section perpendicular to the flow direction of the heat medium flowing from the first steam inlet 2120 in the inlet-side flow passage 219.
- the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 is a cross-sectional area of a cross section perpendicular to the longitudinal direction of the first condensation tube 211 in the internal space of the first condensation inlet tank 212.
- the flow passage cross-sectional area D 2 of the inlet side flow passage 219 is a cross-sectional area of a cross section perpendicular to the horizontal direction (that is, the vehicle front-rear direction) in the internal space of the first condensation inlet tank 212.
- the lower end surface of the second condensing outlet tank 223 is joined to the upper end surface of the first condensing tube 211 arranged on the uppermost side in the gravity direction among the plurality of first condensing tubes 211 in the first condenser 21. Has been done. As a result, the first condenser 21 and the second condenser 22 are integrated.
- the heat medium in the gas-liquid two-phase state flowing out from the evaporator 10 passes through the steam passage 301 and the first steam inflow port 2120, and then the inlet side flow path 219 of the first condenser 21 (that is, the first condensation inlet tank 212). ) Flow into.
- the gas-phase heat medium separated in the first condensing inlet tank 212 from the first condensing inlet tank 212 flows through the first condensing tube 211 of the plurality of first condensing tubes 211 on the upper side in the direction of gravity, and the direction of gravity of the first condensing outlet tank 213 in the direction of gravity. Inflow to the upper side. Then, the gas-phase heat medium separated into gas and liquid in the first condenser 21 flows from the first condensation outlet tank 213 into the second condensation inlet tank 222 of the second condenser 22 via the connection passage 302.
- the liquid-phase heat medium separated in the first condensing inlet tank 212 flows through the first condensing tube 211 on the lower side in the direction of gravity of the plurality of first condensing tubes 211, and the direction of gravity in the first condensing outlet tank 213 is decreased. Inflow to the lower side. Then, the liquid-phase heat medium separated into gas and liquid in the first condenser 21 flows into the evaporation inlet tank 102 of the evaporator 10 from the first condensation outlet tank 213 via the first front liquid passage 303b.
- the boiling cooling device 1 When the vehicle is climbing uphill, the boiling cooling device 1 is inclined so that the front side of the vehicle is located above the rear side. At this time, in the first condenser 21 and the second condenser 22, since the liquid-phase refrigerant flows to the vehicle rear side, the liquid-phase refrigerant does not exist on the vehicle front side. Therefore, in the first condenser 21, the liquid-phase refrigerant stays in the first condensation inlet tank 212.
- the liquid-phase refrigerant in the second condenser 22 flows into the second rear liquid passage 304a and the second front liquid passage 304b, which are located in the second rear liquid passage 304a located on the lower side when climbing the slope, and the first condenser 21 Be guided to the side. Specifically, the liquid-phase refrigerant in the second condenser 22 flows into the second rear liquid passage 304a and is guided to the first condensation inlet tank 212 of the first condenser 21.
- the liquid-phase refrigerant in the first condensation inlet tank 212 of the first condenser 21 is the first rear liquid passage 303a, which is located on the lower side when climbing the slope, of the first rear liquid passage 303a and the first front liquid passage 303b. Is guided to the evaporator 10 side.
- the boiling cooling system 1 is inclined so that the front side of the vehicle is located below the rear side.
- the liquid-phase refrigerant flows toward the front side of the vehicle, so that the liquid-phase refrigerant does not exist at the rear side of the vehicle. Therefore, in the first condenser 21, the liquid-phase refrigerant stays in the first condensation outlet tank 213.
- the liquid-phase refrigerant in the second condenser 22 flows into the second front liquid passage 304a and the second front liquid passage 304b, which are located on the lower side when descending the slope, of the second rear liquid passage 304a and the second front liquid passage 304b. It is led to 21 side. Specifically, the liquid-phase refrigerant in the second condenser 22 flows into the second rear liquid passage 304a and is guided to the first condensation outlet tank 213 of the first condenser 21.
- the liquid-phase refrigerant in the first condensation outlet tank 213 of the first condenser 21 is the first front liquid passage 303a and the first front liquid passage 303b, which are located on the lower side when descending the slope. It is guided to the evaporator 10 side by 303b.
- the liquid-phase heat medium is separated and removed from the heat medium in the gas-liquid two-phase state, and the gas-phase heat medium is directed to the vapor inlet 2221 side of the second condenser 22.
- the present invention is not limited to this.
- a part of the liquid-phase heat medium may be separated and removed from the gas-liquid two-phase heat medium. Furthermore, in the first condenser 21, the heat medium after a part of the liquid-phase refrigerant is separated may be discharged to the vapor inlet 2221 side of the second condenser 22.
- first condenser 21 and the second condenser 22 are integrally formed
- the configurations of the first condenser 21 and the second condenser 22 are not limited to this.
- the first condenser 21 and the second condenser 22 may be formed as separate bodies.
- the first condenser 21 is provided with the plurality of first condensing flow paths 2110, but the present invention is not limited to this mode.
- the number of the first condensation flow paths 2110 of the first condenser 21 may be one.
- the first rear liquid passage 303a and the first front liquid passage 303b are used as the plurality of first liquid passages 303a and 303b. Not limited. For example, three or more first liquid passages 303a and 303b may be provided.
- the second rear liquid passage 304a and the second front liquid passage 304b are adopted as the plurality of second liquid passages 304a and 304b.
- the number of the second liquid passages 304a and 304b may be one, or may be three or more.
- all the downstream side end portions of the plurality of second liquid passages 304a and 304b are respectively connected to the end portions on the lower side in the gravity direction of the first condenser 21.
- it is not limited to this mode.
- At least one downstream end of the plurality of second liquid passages 304a, 304b may be connected to the lower end of the first condenser 21 in the gravity direction. At least one downstream end of the plurality of second liquid passages 304a and 304b may be connected to the first liquid passages 303a and 303b. It is also possible to directly connect at least one downstream end of the plurality of second liquid passages 304a and 304b to the evaporator 10.
- the upstream end of the first rear liquid passage 303a is connected to the end of the first condenser 21 on the vehicle rear side, but the present invention is not limited to this mode.
- the upstream end of the first rear liquid passage 303a may be connected to the vehicle front side with respect to the vehicle rear end of the first condenser 21.
- the upstream end of the first front liquid passage 303b is connected to the end of the first condenser 21 on the vehicle front side, but the present invention is not limited to this mode.
- the upstream end of the first front liquid passage 303b may be connected to the vehicle rear side with respect to the vehicle front end of the first condenser 21.
- the upstream end of the second rear liquid passage 304a is connected to the end of the second condenser 22 on the vehicle rear side, but the present invention is not limited to this mode.
- the upstream end of the second rear liquid passage 304a may be connected to the vehicle front side with respect to the vehicle rear end of the second condenser 22.
- the upstream end of the second front liquid passage 304b is connected to the end of the second condenser 22 on the front side of the vehicle, but the embodiment is not limited to this.
- the upstream end of the second front liquid passage 304b may be connected to the vehicle rear side with respect to the vehicle front end of the second condenser 22.
- a boiling cooling apparatus includes an evaporator that cools an object to be cooled by boiling and vaporizing the heat medium by heat exchange between the object to be cooled and the heat medium, and a heat medium and an external fluid.
- a condenser that radiates the heat of the heat medium to an external fluid by condensing the heat medium by heat exchange.
- the boiling cooling device includes a heat medium passage that connects the evaporator and the condenser in a loop shape and circulates the heat medium between the evaporator and the condenser.
- the condenser includes a first condenser and a second condenser into which the heat medium flowing out from the first condenser flows.
- the first condenser is arranged on the lower side in the gravity direction of the second condenser, and is configured to separate at least a part of the liquid-phase heat medium from the heat medium in the gas-liquid two-phase state, or It is arranged in parallel to the second condenser in the flow direction of the external fluid.
- a boiling cooling device includes an evaporator that cools an object to be cooled by boiling and vaporizing the heat medium by heat exchange between the object to be cooled and the heat medium, and a heat medium and an external fluid.
- a condenser that radiates the heat of the heat medium to an external fluid by condensing the heat medium by heat exchange.
- the boiling cooling device includes a heat medium passage that connects the evaporator and the condenser in a loop shape and circulates the heat medium between the evaporator and the condenser.
- the condenser includes a first condenser and a second condenser arranged above the first condenser in the gravity direction.
- the first condenser separates at least a part of the liquid-phase heat medium from the heat medium in the gas-liquid two-phase state, and the heat medium after the at least a part of the liquid-phase heat medium is separated from the heat medium of the second condenser. Let it flow out to the inlet side.
- the heat medium after at least a part of the liquid-phase heat medium has been separated flows into the second condenser located on the upper side in the gravity direction. That is, it is not necessary to raise the heat medium in the gas-liquid two-phase state to the second condenser. Therefore, since the rising height of the heat medium in the gas-liquid two-phase state to the upper side in the direction of gravity can be reduced, the pressure loss of the heat medium can be reduced. Therefore, it is not necessary to increase the height of the condenser with respect to the evaporator, so that the boiling cooling device can be downsized.
- a boiling cooling device includes an evaporator that cools an object to be cooled by boiling and vaporizing the heat medium by heat exchange between the object to be cooled and the heat medium, and a heat medium and an external fluid.
- a condenser that radiates the heat of the heat medium to an external fluid by condensing the heat medium by heat exchange.
- the boiling cooling device includes a heat medium passage that connects the evaporator and the condenser in a loop shape and circulates the heat medium between the evaporator and the condenser.
- the condenser includes a first condenser and a second condenser arranged above the first condenser in the gravity direction.
- the heat medium flowing out from the evaporator flows into the first condenser.
- the heat medium flowing out from the first condenser flows into the second condenser.
- the first condenser has a heat exchange section that exchanges heat between the heat medium and the external fluid.
- a boiling cooling apparatus includes an evaporator that cools an object to be cooled by boiling and vaporizing the heat medium by heat exchange between the object to be cooled and the heat medium, and a heat medium and an external fluid.
- a condenser that radiates the heat of the heat medium to an external fluid by condensing the heat medium by heat exchange.
- the boiling cooling device includes a heat medium passage that connects the evaporator and the condenser in a loop and circulates the heat medium between the evaporator and the condenser.
- the condenser has a first condenser into which the heat medium flowing out from the evaporator flows, and a second condenser into which the heat medium flowing out from the first condenser flows.
- the first condenser and the second condenser are arranged in the flow direction of the external fluid.
- the boiling cooling device can be downsized.
- a boiling cooling device includes an evaporator that cools an object to be cooled by evaporating the heat medium by boiling heat by heat exchange between the object to be cooled and the heat medium, and a heat medium and an external fluid.
- a condenser that radiates the heat of the heat medium to an external fluid by condensing the heat medium by heat exchange.
- the boiling cooling device includes a heat medium passage that connects the evaporator and the condenser in a loop shape and circulates the heat medium between the evaporator and the condenser.
- the condenser includes a first condenser and a second condenser arranged above the first condenser in the gravity direction.
- the heat medium flowing out from the evaporator flows into the first condenser.
- the heat medium flowing out from the first condenser flows into the second condenser.
- the heat medium passage includes a plurality of first liquid passages for guiding the liquid-phase heat medium flowing out of the first condenser to the evaporator side, and a plurality of first liquid passages for guiding the liquid-phase heat medium flowing out of the second condenser to the evaporator side. And a two liquid passage.
- the upstream ends of the plurality of first liquid passages are connected to the lower side of the center of the first condenser in the direction of gravity.
- the fifth aspect it is possible to obtain the same effects as those of the second aspect and the third aspect. Furthermore, by providing a plurality of first liquid passages and connecting the upstream end portions of the plurality of first liquid passages to the lower side from the center of the first condenser in the direction of gravity, the cooling performance at the time of inclination is improved. Can be secured.
- the liquid refrigerant is supplied from the first condenser to the evaporator side by the first liquid passage that is located on the lower side at the time of inclination among the plurality of first liquid passages. You can Therefore, it is possible to prevent the liquid-phase heat medium from staying in the first condenser at the time of inclination. As a result, it becomes possible to secure the cooling performance of the boiling cooling device at the time of inclination.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Sustainable Development (AREA)
- Power Engineering (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
This boiling cooling device is provided with an evaporator (10), a condenser (20), and a heat medium passage (30). The evaporator (10) boils and vaporizes a heat medium through heat exchange between a heating body (40) and the heat medium, thereby cooling an object to be cooled. The condenser (20) condenses the heat medium through heat exchange between the heat medium and air, thereby discharging heat from the heat medium to the air. The heat medium passage (30) connects the evaporator (10) and the condenser (20) in a loop shape, thereby circulating the heat medium between the evaporator (10) and the condenser (20). The condenser (20) has a first condenser (21) and a second condenser (22) into which the heat medium, having flowed out from the first condenser (21), flows. The first condenser (21) is arranged under the second condenser (22) in the gravitational force direction, and is configured such that from the heat medium in a gas-liquid two-phase state, the liquid phase heat medium is separated, the liquid phase heat medium being at least a portion of the heat medium in a gas-liquid two-phase state, or is arranged in parallel with the second evaporator (22) in the flow direction of the external fluid.
Description
本出願は、
2018年11月22日に出願された日本特許出願2018-218983号と、
2019年4月9日に出願された日本特許出願2019-74131号と、
2019年4月25日に出願された日本特許出願2019-84004号に基づくもので、ここにその記載内容を援用する。 This application is
Japanese Patent Application No. 2018-218983 filed on November 22, 2018,
Japanese Patent Application No. 2019-74131 filed on April 9, 2019,
It is based on Japanese Patent Application No. 2019-84004, filed on April 25, 2019, the contents of which are incorporated herein by reference.
2018年11月22日に出願された日本特許出願2018-218983号と、
2019年4月9日に出願された日本特許出願2019-74131号と、
2019年4月25日に出願された日本特許出願2019-84004号に基づくもので、ここにその記載内容を援用する。 This application is
Japanese Patent Application No. 2018-218983 filed on November 22, 2018,
Japanese Patent Application No. 2019-74131 filed on April 9, 2019,
It is based on Japanese Patent Application No. 2019-84004, filed on April 25, 2019, the contents of which are incorporated herein by reference.
本開示は、沸騰冷却装置に関する。
The present disclosure relates to a boiling cooling device.
従来、特許文献1には、車両に搭載されるパワー素子等の発熱体を冷却するために、発熱体で発生する熱により熱媒体を沸騰させて発熱体から吸熱する沸騰冷却装置が開示されている。特許文献1の沸騰冷却装置は、蒸発器、凝縮器および熱媒体配管を備えている。
BACKGROUND ART Conventionally, Patent Document 1 discloses a boiling cooling apparatus that cools a heating element such as a power element mounted on a vehicle by boiling the heat medium by the heat generated by the heating element and absorbing the heat from the heating element. There is. The boiling cooling device of Patent Document 1 includes an evaporator, a condenser, and a heat medium pipe.
蒸発器は、内部に熱媒体を流通させて発熱体からの熱を受熱する。凝縮器は、蒸発器で蒸発した熱媒体を冷却液化する。熱媒体配管は、蒸発器と凝縮器とをループ状に連結して蒸発器と凝縮器との間で熱媒体を循環させる。
The evaporator receives heat from the heating element by circulating the heat medium inside. The condenser liquefies the heat medium evaporated in the evaporator as a cooling liquid. The heat medium pipe connects the evaporator and the condenser in a loop and circulates the heat medium between the evaporator and the condenser.
ところで、上記特許文献1に記載の沸騰冷却装置において、発熱体の発熱量が増大すると、蒸発器から気液二相状態の熱媒体が流出する。気液二相状態の熱媒体を凝縮器の重力方向上方側にある熱媒体流入口まで上昇させる必要があるので、気相熱媒体を熱媒体流入口まで上昇させる場合と比較して、圧力損失が増大する。
By the way, in the boiling cooling device described in Patent Document 1, when the amount of heat generated by the heating element increases, the heat medium in the gas-liquid two-phase state flows out from the evaporator. Since it is necessary to raise the heat medium in the gas-liquid two-phase state to the heat medium inlet on the upper side in the gravity direction of the condenser, pressure loss is higher than that in the case where the gas phase heat medium is raised to the heat medium inlet. Will increase.
したがって、沸騰冷却装置内で熱媒体を循環させるためには、蒸発器に対する凝縮器の高さを高くする必要がある。これにより、液相熱媒体の位置エネルギを増大させて、液相熱媒体の駆動力を大きくすることができる。しかしながら、蒸発器に対する凝縮器の高さを高くすると、沸騰冷却装置が大型化してしまう。
Therefore, in order to circulate the heat medium in the boiling cooling device, it is necessary to increase the height of the condenser with respect to the evaporator. This can increase the potential energy of the liquid-phase heat medium and increase the driving force of the liquid-phase heat medium. However, when the height of the condenser with respect to the evaporator is increased, the boiling cooling device becomes large.
本開示は上記点に鑑みて、沸騰冷却装置において、小型化を図ることを目的とする。
In view of the above points, the present disclosure aims to downsize the boiling cooling device.
上記目的を達成するため、本開示の一態様に係る沸騰冷却装置は、蒸発器と、凝縮器と、熱媒体通路とを備える。蒸発器は、発熱体と熱媒体との熱交換により熱媒体を沸騰気化させることで冷却対象物を冷却する。凝縮器は、熱媒体と空気との熱交換により熱媒体を凝縮させることで熱媒体の熱を空気に放熱する。熱媒体通路は、蒸発器と凝縮器とをループ状に連結して蒸発器と凝縮器との間で熱媒体を循環させる。凝縮器は、第1凝縮器と、第1凝縮器から流出した熱媒体が流入する第2凝縮器と、を有している。第1凝縮器は、第2凝縮器の重力方向下方側に配置されるとともに気液二相状態の熱媒体から少なくとも一部の液相熱媒体が分離されるように構成されている、または、第2凝縮器に対して外部流体の流れ方向において並列に配置されている。
In order to achieve the above object, a boiling cooling device according to an aspect of the present disclosure includes an evaporator, a condenser, and a heat medium passage. The evaporator cools the object to be cooled by boiling and vaporizing the heat medium by exchanging heat between the heating element and the heat medium. The condenser radiates the heat of the heat medium to the air by condensing the heat medium by heat exchange between the heat medium and air. The heat medium passage connects the evaporator and the condenser in a loop and circulates the heat medium between the evaporator and the condenser. The condenser includes a first condenser and a second condenser into which the heat medium flowing out from the first condenser flows. The first condenser is arranged on the lower side in the gravity direction of the second condenser, and is configured to separate at least a part of the liquid-phase heat medium from the heat medium in the gas-liquid two-phase state, or It is arranged in parallel to the second condenser in the flow direction of the external fluid.
上述の態様において、第1凝縮器が、第2凝縮器の重力方向下方側に配置されるとともに気液二相状態の熱媒体から少なくとも一部の液相熱媒体が分離されるように構成されている場合、重力方向上方側に位置する第2凝縮器には、少なくとも一部の液相熱媒体が分離された後の熱媒体が流入する。このため、気液二相状態の熱媒体を第2凝縮器まで上昇させる必要がない。したがって、気液二相状態の熱媒体の重力方向上方側への上昇高さを低くすることができるので、熱媒体の圧力損失を低減できる。このため、蒸発器に対する凝縮器の高さを高くする必要がないので、沸騰冷却装置の小型化を図ることができる。
In the above aspect, the first condenser is arranged on the lower side in the gravity direction of the second condenser, and at least a part of the liquid-phase heat medium is separated from the heat medium in the gas-liquid two-phase state. In this case, the heat medium after at least a part of the liquid heat medium is separated flows into the second condenser located on the upper side in the gravity direction. Therefore, it is not necessary to raise the heat medium in the gas-liquid two-phase state to the second condenser. Therefore, since the rising height of the heat medium in the gas-liquid two-phase state to the upper side in the direction of gravity can be reduced, the pressure loss of the heat medium can be reduced. Therefore, it is not necessary to increase the height of the condenser with respect to the evaporator, so that the boiling cooling device can be downsized.
また、上述の態様において、第1凝縮器が、第2凝縮器に対して外部流体の流れ方向において並列に配置されている場合、沸騰冷却装置全体の高さを低くすることができる。このため、沸騰冷却装置の小型化を図ることができる。
Further, in the above-described aspect, when the first condenser is arranged in parallel with the second condenser in the flow direction of the external fluid, the height of the entire boiling cooling device can be reduced. Therefore, the boiling cooling device can be downsized.
以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各実施形態において先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の実施形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
A plurality of modes for carrying out the present disclosure will be described below with reference to the drawings. In each embodiment, the same reference numerals may be given to portions corresponding to the matters described in the preceding embodiments, and duplicated description may be omitted. In the case where only a part of the configuration is described in each embodiment, the other embodiments described above can be applied to the other part of the configuration. Not only the combination of the parts clearly indicating that the respective embodiments can be specifically combined, but also the combination of the embodiments may be partially combined even if not explicitly stated, unless the combination causes any trouble. Is also possible.
(第1実施形態)
本開示の第1実施形態について図1および図2に基づいて説明する。本実施形態の沸騰冷却装置は、車両に搭載された発熱体を冷却する装置である。また、以下の各図中、上下の矢印は、車両の上下の各方向を示している。以下の各図は、車両の上下方向が重力方向と平行になっている状態を示している。 (First embodiment)
1st Embodiment of this indication is described based on FIG. 1 and FIG. The boiling cooling device of the present embodiment is a device for cooling a heating element mounted on a vehicle. In addition, in each of the following drawings, up and down arrows indicate up and down directions of the vehicle. Each of the following figures shows a state in which the vertical direction of the vehicle is parallel to the gravity direction.
本開示の第1実施形態について図1および図2に基づいて説明する。本実施形態の沸騰冷却装置は、車両に搭載された発熱体を冷却する装置である。また、以下の各図中、上下の矢印は、車両の上下の各方向を示している。以下の各図は、車両の上下方向が重力方向と平行になっている状態を示している。 (First embodiment)
1st Embodiment of this indication is described based on FIG. 1 and FIG. The boiling cooling device of the present embodiment is a device for cooling a heating element mounted on a vehicle. In addition, in each of the following drawings, up and down arrows indicate up and down directions of the vehicle. Each of the following figures shows a state in which the vertical direction of the vehicle is parallel to the gravity direction.
また、本明細書において、「重力方向」とは、沸騰冷却装置が水平面に配置された状態における重力方向を意味している。したがって、「重力方向の上方側」とは、沸騰冷却装置が水平面に配置された状態における重力方向の上方側を示している。同様に、「重力方向の下方側」とは、沸騰冷却装置が水平面に配置された状態における重力方向の下方側を示している。また、「水平方向」とは、沸騰冷却装置が水平面に配置された状態における水平方向を意味している。
Further, in the present specification, the “gravitational direction” means the direction of gravity in a state where the boiling cooling device is arranged on a horizontal plane. Therefore, the "upper side in the direction of gravity" refers to the upper side in the direction of gravity when the boiling cooling device is arranged on the horizontal plane. Similarly, the “lower side in the gravity direction” refers to the lower side in the gravity direction in the state where the boiling cooling device is arranged on the horizontal plane. Further, the “horizontal direction” means the horizontal direction in a state where the boiling cooling device is arranged on the horizontal plane.
より詳細には、「重力方向」とは、水平面に位置する車両に沸騰冷却装置が搭載された状態における重力方向を意味している。したがって、「重力方向の上方側」とは、水平面に位置する車両に沸騰冷却装置が搭載された状態における重力方向の上方側を示している。同様に、「重力方向の下方側」とは、水平面に位置する車両に沸騰冷却装置が搭載された状態における重力方向の下方側を示している。また、「水平方向」とは、水平面に位置する車両に沸騰冷却装置が搭載された状態における水平方向を意味している。
More specifically, the "gravitational direction" means the direction of gravity when a vehicle located on a horizontal plane is equipped with a boiling cooling device. Therefore, the "upper side in the direction of gravity" refers to the upper side in the direction of gravity when the boiling cooling device is mounted on the vehicle located on the horizontal plane. Similarly, the "lower side in the direction of gravity" refers to the lower side in the direction of gravity when the boiling cooling device is mounted on the vehicle located on the horizontal plane. Further, the “horizontal direction” means the horizontal direction in a state where the boiling cooling device is mounted on the vehicle located on the horizontal plane.
沸騰冷却装置は、蒸発器10と、凝縮器20と、熱媒体通路30とを備えている。蒸発器10は、冷却対象物である発熱体40と熱媒体との熱交換により熱媒体を沸騰気化させることで発熱体40を冷却する熱交換器である。発熱体40としては、充放電可能な二次電池(例えば、リチウムイオン電池、鉛蓄電池)やパワー素子を採用することができる。
The boiling cooling device includes an evaporator 10, a condenser 20, and a heat medium passage 30. The evaporator 10 is a heat exchanger that cools the heating element 40 by boiling and vaporizing the heating medium by exchanging heat between the heating element 40 that is an object to be cooled and the heating medium. As the heating element 40, a chargeable / dischargeable secondary battery (for example, a lithium ion battery or a lead storage battery) or a power element can be adopted.
凝縮器20は、熱媒体と外部流体である空気との熱交換により熱媒体を凝縮させることで熱媒体の熱を空気に放熱する熱交換器である。熱媒体通路30は、蒸発器10と凝縮器20とをループ状に連結して、蒸発器10と凝縮器20との間で熱媒体を循環させる通路である。
The condenser 20 is a heat exchanger that radiates the heat of the heat medium to the air by condensing the heat medium by exchanging heat between the heat medium and air that is an external fluid. The heat medium passage 30 is a passage that connects the evaporator 10 and the condenser 20 in a loop and circulates the heat medium between the evaporator 10 and the condenser 20.
熱媒体としては、蒸発および凝縮可能な流体を採用することができる。具体的には、熱媒体として、水またはアルコールを採用することができる。また、熱媒体として、蒸気圧縮式の冷凍サイクルで利用されるフロン系冷媒(例えば、R134a、R1234yf等)を用いることができる。また、熱媒体としては、フロン系冷媒だけでなく、二酸化炭素等の他の冷媒や不凍液等を用いることも可能である。
A fluid that can be evaporated and condensed can be used as the heat medium. Specifically, water or alcohol can be adopted as the heat medium. Further, as the heat medium, a CFC-based refrigerant (for example, R134a, R1234yf, etc.) used in a vapor compression refrigeration cycle can be used. Further, as the heat medium, not only a CFC-based refrigerant but also another refrigerant such as carbon dioxide or an antifreezing liquid can be used.
次に、蒸発器10の構成について説明する。蒸発器10は、いわゆるタンクアンドチューブ型の熱交換器である。蒸発器10は、蒸発チューブ101と、蒸発タンク102、103とを備えている。
Next, the structure of the evaporator 10 will be described. The evaporator 10 is a so-called tank-and-tube type heat exchanger. The evaporator 10 includes an evaporation tube 101 and evaporation tanks 102 and 103.
蒸発チューブ101は、熱媒体が流れる流路を形成する管状部材である。蒸発チューブ101は、扁平板状(すなわち断面扁平形状)に形成された扁平チューブである。蒸発チューブ101は、その長手方向が重力方向と略平行となるように配置されている。蒸発チューブ101は、水平方向において、複数本平行に配置されている。
The evaporation tube 101 is a tubular member that forms a flow path through which a heat medium flows. The evaporation tube 101 is a flat tube formed in a flat plate shape (that is, a flat cross section). The evaporation tube 101 is arranged such that its longitudinal direction is substantially parallel to the direction of gravity. A plurality of evaporation tubes 101 are arranged in parallel in the horizontal direction.
複数の蒸発チューブ101は、同一平面を形成している。すなわち、複数の蒸発チューブ101は、蒸発チューブ101の両側の扁平面がそれぞれ同一平面上に配置されるように、一列に並んで配置されている。
The plurality of evaporation tubes 101 form the same plane. That is, the plurality of evaporation tubes 101 are arranged in a line so that flat surfaces on both sides of the evaporation tubes 101 are arranged on the same plane.
複数の蒸発チューブ101における扁平面には、発熱体40が接合されている。このため、蒸発チューブ101内の熱媒体には、発熱体40からの熱が伝わる。
The heating element 40 is joined to the flat surfaces of the plurality of evaporation tubes 101. Therefore, the heat from the heating element 40 is transferred to the heat medium in the evaporation tube 101.
蒸発タンク102、103は、複数の蒸発チューブ101と連通している。蒸発タンク102、103は、複数の蒸発チューブ101に対して熱媒体の集合または分配を行う。
The evaporation tanks 102 and 103 communicate with a plurality of evaporation tubes 101. The evaporation tanks 102 and 103 collect or distribute the heat medium with respect to the plurality of evaporation tubes 101.
蒸発タンク102、103は、蒸発チューブ101における長手方向の両端部に一つずつ設けられている。すなわち、蒸発タンク102、103は、蒸発チューブ101における重力方向上端部および下端部に一つずつ設けられている。
The evaporation tanks 102 and 103 are provided one at each end of the evaporation tube 101 in the longitudinal direction. That is, the evaporation tanks 102 and 103 are respectively provided at the upper end and the lower end in the gravity direction of the evaporation tube 101.
蒸発タンク102、103は、蒸発チューブ101の長手方向と直交する方向に延びている。すなわち、蒸発タンク102、103は、水平方向に延びている。蒸発タンク102、103には、蒸発チューブ101が挿入された状態で接合されている。
The evaporation tanks 102 and 103 extend in a direction orthogonal to the longitudinal direction of the evaporation tube 101. That is, the evaporation tanks 102 and 103 extend in the horizontal direction. An evaporation tube 101 is inserted and joined to the evaporation tanks 102 and 103.
ここで、二つの蒸発タンク102、103のうち、重力方向下方側に配置されるとともに蒸発チューブ101に対して熱媒体の分配を行うものを、蒸発入口タンク102という。また、二つの蒸発タンク102、103のうち、重力方向上方側に配置されるとともに、蒸発チューブ101から流出する熱媒体の集合を行うものを、蒸発出口タンク103という。
Here, of the two evaporation tanks 102 and 103, the one arranged on the lower side in the direction of gravity and distributing the heat medium to the evaporation tube 101 is called an evaporation inlet tank 102. Further, one of the two evaporation tanks 102 and 103, which is arranged on the upper side in the gravity direction and collects the heat medium flowing out from the evaporation tube 101, is called an evaporation outlet tank 103.
蒸発入口タンク102は、後述する凝縮器20にて凝縮した液相熱媒体を蒸発入口タンク102内に流入させる液流入口1021を有している。液流入口1021は、蒸発入口タンク102における長手方向の一端側に設けられている。
The evaporation inlet tank 102 has a liquid inlet 1021 through which the liquid-phase heat medium condensed in the condenser 20 described later flows into the evaporation inlet tank 102. The liquid inlet 1021 is provided at one end side in the longitudinal direction of the evaporation inlet tank 102.
蒸発出口タンク103は、蒸発出口タンク103内の熱媒体を凝縮器20の蒸気流入口2121側へ流出させる蒸気流出口1031を有している。換言すると、蒸発出口タンク103は、蒸発チューブ101にて蒸発した気相熱媒体を含む気液二相状態の熱媒体を凝縮器20の蒸気流入口2121側へ流出させる蒸気流出口1031を有している。
The evaporation outlet tank 103 has a vapor outlet 1031 that causes the heat medium in the evaporation outlet tank 103 to flow to the vapor inlet 2121 side of the condenser 20. In other words, the evaporation outlet tank 103 has a vapor outlet 1031 for causing the heat medium in the gas-liquid two-phase state containing the vapor heat medium evaporated in the evaporation tube 101 to flow out to the vapor inlet 2121 side of the condenser 20. ing.
蒸気流出口1031は、蒸発出口タンク103における長手方向の一端側に設けられている。本実施形態では、蒸気流出口1031は、蒸発出口タンク103の長手方向における液流入口1021と同一側の端部に設けられている。
The vapor outlet 1031 is provided at one end side in the longitudinal direction of the evaporation outlet tank 103. In the present embodiment, the vapor outlet 1031 is provided at the end of the evaporation outlet tank 103 on the same side as the liquid inlet 1021 in the longitudinal direction.
次に、凝縮器20の構成について説明する。凝縮器20は、第1凝縮器21および第2凝縮器22を有している。第2凝縮器22は、第1凝縮器21の重力方向上方側に配置されている。本実施形態では、第1凝縮器21および第2凝縮器22は一体に形成されている。
Next, the configuration of the condenser 20 will be described. The condenser 20 has a first condenser 21 and a second condenser 22. The second condenser 22 is arranged above the first condenser 21 in the direction of gravity. In this embodiment, the first condenser 21 and the second condenser 22 are integrally formed.
第1凝縮器21は、蒸発器10から流出した気液二相状態の熱媒体から少なくとも一部の液相熱媒体を分離する。第1凝縮器21は、気液二相状態の熱媒体から少なくとも一部の液相熱媒体が分離された後の熱媒体を、第2凝縮器22の流入口(すなわち、後述する蒸気流入口2221)側へ流出させる。
The first condenser 21 separates at least a part of the liquid-phase heat medium from the gas-liquid two-phase heat medium flowing out from the evaporator 10. The first condenser 21 uses the heat medium obtained by separating at least a part of the liquid-phase heat medium from the heat medium in the gas-liquid two-phase state into the inlet of the second condenser 22 (that is, the vapor inlet described later). 2221) side.
次に、第1凝縮器21の構成について説明する。第1凝縮器21は、いわゆるタンクアンドチューブ型の熱交換器である。第1凝縮器21は、第1凝縮チューブ211と、第1凝縮タンク212、213とを備えている。
Next, the configuration of the first condenser 21 will be described. The first condenser 21 is a so-called tank-and-tube heat exchanger. The first condenser 21 includes a first condensing tube 211 and first condensing tanks 212 and 213.
第1凝縮チューブ211は、熱媒体が流れる流路を形成する管状部材である。第1凝縮チューブ211は、扁平板状に形成された扁平チューブである。第1凝縮チューブ211は、その長手方向が重力方向と略垂直となるように配置されている。すなわち、第1凝縮チューブ211は、その長手方向が水平方向と略平行となるように配置されている。第1凝縮チューブ211は、重力方向において、複数本平行に配置されている。
The first condensing tube 211 is a tubular member that forms a flow path through which the heat medium flows. The first condensing tube 211 is a flat tube formed in a flat plate shape. The 1st condensing tube 211 is arrange | positioned so that the longitudinal direction may become substantially perpendicular | vertical to the gravity direction. That is, the first condensing tube 211 is arranged such that its longitudinal direction is substantially parallel to the horizontal direction. A plurality of the first condensing tubes 211 are arranged in parallel in the gravity direction.
複数の第1凝縮チューブ211は所定の間隔で互いに積層されている。複数の第1凝縮チューブ211同士の間には、空気が流れるようになっている。複数の第1凝縮チューブ211同士の間の空気通路には、第1放熱フィン215が設けられている。本実施形態では、第1放熱フィン215は、波状(すなわちコルゲート状)に形成されている。これにより、複数の第1凝縮チューブ211内を流れる熱媒体と、複数の第1凝縮チューブ211間を流れる空気とが熱交換される。
The plurality of first condensing tubes 211 are laminated at a predetermined interval. Air flows between the plurality of first condensing tubes 211. First radiating fins 215 are provided in the air passage between the plurality of first condensing tubes 211. In the present embodiment, the first radiating fins 215 are formed in a wavy shape (that is, a corrugated shape). As a result, the heat medium flowing in the plurality of first condensing tubes 211 and the air flowing between the plurality of first condensing tubes 211 are heat-exchanged.
第1凝縮タンク212、213は、複数の第1凝縮チューブ211と連通している。第1凝縮タンク212、213は、複数の第1凝縮チューブ211に対して熱媒体の集合または分配を行う。第1凝縮タンク212、213は、第1凝縮チューブ211における長手方向の両端部に一つずつ設けられている。
The first condensing tanks 212 and 213 communicate with the plurality of first condensing tubes 211. The first condensing tanks 212 and 213 collect or distribute the heat medium with respect to the plurality of first condensing tubes 211. The first condensing tanks 212 and 213 are provided one at each end of the first condensing tube 211 in the longitudinal direction.
第1凝縮タンク212、213は、第1凝縮チューブ211の長手方向と直交する方向に延びている。すなわち、第1凝縮タンク212、213は、重力方向に延びている。第1凝縮タンク212、213には、第1凝縮チューブ211が挿入された状態で接合されている。
The first condensing tanks 212 and 213 extend in a direction orthogonal to the longitudinal direction of the first condensing tube 211. That is, the first condensing tanks 212 and 213 extend in the gravity direction. The first condensing tubes 211 are joined to the first condensing tanks 212 and 213 while being inserted therein.
ここで、二つの第1凝縮タンク212、213のうち、水平方向の一側に配置されるとともに、第1凝縮チューブ211に対して熱媒体の分配を行うものを、第1凝縮入口タンク212という。また、二つの第1凝縮タンク212、213のうち、水平方向の他側に配置されるとともに、第1凝縮チューブ211から流出する熱媒体の集合を行うものを、第1凝縮出口タンク213という。
Here, one of the two first condensing tanks 212 and 213, which is arranged on one side in the horizontal direction and which distributes the heat medium to the first condensing tube 211, is referred to as a first condensing inlet tank 212. .. Further, one of the two first condensing tanks 212 and 213, which is arranged on the other side in the horizontal direction and collects the heat medium flowing out from the first condensing tube 211, is referred to as a first condensing outlet tank 213.
第1凝縮入口タンク212は、蒸発器10から流出した気液二相状態の熱媒体を第1凝縮入口タンク212内に流入させる蒸気流入口2121を有している。蒸気流入口2121は、第1凝縮入口タンク212における重力方向の略中央部に設けられている。蒸気流入口2121は、蒸発器10の蒸気流出口1031よりも重力方向上方側に配置されている。
The first condensation inlet tank 212 has a vapor inlet port 2121 through which the heat medium in a gas-liquid two-phase state flowing out from the evaporator 10 flows into the first condensation inlet tank 212. The steam inlet 2121 is provided in a substantially central portion of the first condensation inlet tank 212 in the gravity direction. The steam inlet 2121 is arranged above the steam outlet 1031 of the evaporator 10 in the gravity direction.
第1凝縮出口タンク213は、蒸気流出口2131および液流出口2132を有している。蒸気流出口2131は、第1凝縮出口タンク213内の気相熱媒体を、後述する第2凝縮器22の蒸気流入口2221側へ流出させる。液流出口2132は、第1凝縮出口タンク213内の液相熱媒体を、蒸発器10の液流入口1021側へ流出させる。
The first condensation outlet tank 213 has a vapor outlet 2131 and a liquid outlet 2132. The vapor outlet 2131 causes the vapor-phase heat medium in the first condensation outlet tank 213 to flow out to the vapor inlet 2221 side of the second condenser 22 described later. The liquid outlet 2132 causes the liquid heat medium in the first condensation outlet tank 213 to flow out to the liquid inlet 1021 side of the evaporator 10.
ここで、蒸気流出口2131は、第1凝縮器21にて気液二相状態の熱媒体から少なくとも一部の液相熱媒体が分離された後の熱媒体を、第2凝縮器22の蒸気流入口2221側へ流出させる。したがって、本実施形態における蒸気流出口2131は、流出口の一例に相当する。
Here, the vapor outlet 2131 is a vapor of the second condenser 22 for the heat medium after at least a part of the liquid-phase heat medium is separated from the heat medium in the gas-liquid two-phase state in the first condenser 21. It is made to flow out to the inflow port 2221 side. Therefore, the steam outlet 2131 in the present embodiment corresponds to an example of the outlet.
蒸気流出口2131は、第1凝縮出口タンク213における重力方向上方側に設けられている。液流出口2132は、第1凝縮出口タンク213における重力方向下方側に設けられている。
The vapor outlet 2131 is provided above the first condensation outlet tank 213 in the gravity direction. The liquid outlet 2132 is provided on the lower side in the gravity direction of the first condensation outlet tank 213.
次に、第2凝縮器22の構成について説明する。第2凝縮器22は、いわゆるタンクアンドチューブ型の熱交換器である。第2凝縮器22は、第2凝縮チューブ221と、第2凝縮タンク222、223とを備えている。
Next, the configuration of the second condenser 22 will be described. The second condenser 22 is a so-called tank-and-tube heat exchanger. The second condenser 22 includes a second condensing tube 221, and second condensing tanks 222 and 223.
第2凝縮チューブ221は、熱媒体が流れる流路を形成する管状部材である。第2凝縮チューブ221は、扁平板状に形成された扁平チューブである。第2凝縮チューブ221は、その長手方向が重力方向と略平行となるように配置されている。第2凝縮チューブ221は、水平方向において、複数本平行に配置されている。
The second condensing tube 221 is a tubular member that forms a flow path through which the heat medium flows. The second condensing tube 221 is a flat tube formed in a flat plate shape. The second condensing tube 221 is arranged such that its longitudinal direction is substantially parallel to the gravity direction. The second condensing tubes 221 are arranged in parallel in the horizontal direction.
複数の第2凝縮チューブ221は所定の間隔で互いに積層されている。複数の第2凝縮チューブ221同士の間には、空気が流れるようになっている。複数の第2凝縮チューブ221同士の間の空気通路には、第2放熱フィン225が設けられている。本実施形態では、第2放熱フィン225は、波状に形成されている。複数の第2凝縮チューブ221内を流れる熱媒体と、複数の第2凝縮チューブ221間を流れる空気とが熱交換される。
The plurality of second condensing tubes 221 are laminated at a predetermined interval. Air flows between the plurality of second condensing tubes 221. Second radiating fins 225 are provided in the air passage between the plurality of second condensing tubes 221. In the present embodiment, the second heat radiation fin 225 is formed in a wave shape. The heat medium flowing in the plurality of second condensing tubes 221 and the air flowing between the plurality of second condensing tubes 221 are heat-exchanged.
第2凝縮タンク222、223は、複数の第2凝縮チューブ221と連通している。第2凝縮タンク222、223は、複数の第2凝縮チューブ221に対して熱媒体の集合または分配を行う。第2凝縮タンク222、223は、第2凝縮チューブ221における長手方向の両端部に一つずつ設けられている。すなわち、第2凝縮タンク222、223は、第2凝縮チューブ221における重力方向上端部および下端部に一つずつ設けられている。
The second condensing tanks 222 and 223 communicate with a plurality of second condensing tubes 221. The second condensing tanks 222 and 223 collect or distribute the heat medium with respect to the plurality of second condensing tubes 221. The second condensing tanks 222 and 223 are provided one at each end of the second condensing tube 221 in the longitudinal direction. That is, the second condensing tanks 222 and 223 are respectively provided at the upper end and the lower end in the gravity direction of the second condensing tube 221.
第2凝縮タンク222、223は、第2凝縮チューブ221の長手方向と直交する方向に延びている。すなわち、第2凝縮タンク222、223は、水平方向に延びている。第2凝縮タンク222、223には、第2凝縮チューブ221が挿入された状態で接合されている。
The second condensing tanks 222 and 223 extend in a direction orthogonal to the longitudinal direction of the second condensing tube 221. That is, the second condensing tanks 222 and 223 extend in the horizontal direction. A second condensing tube 221 is inserted and joined to the second condensing tanks 222 and 223.
ここで、二つの第2凝縮タンク222、223のうち、重力方向の上方側に配置されるとともに、第2凝縮チューブ221に対して熱媒体の分配を行うものを、第2凝縮入口タンク222という。また、二つの第2凝縮タンク222、223のうち、重力方向の下方側に配置されるとともに、第2凝縮チューブ221から流出する熱媒体の集合を行うものを、第2凝縮出口タンク223という。
Here, one of the two second condensing tanks 222 and 223, which is arranged on the upper side in the gravity direction and which distributes the heat medium to the second condensing tube 221, is referred to as a second condensing inlet tank 222. .. Further, one of the two second condensing tanks 222 and 223, which is arranged on the lower side in the direction of gravity and collects the heat medium flowing out from the second condensing tube 221, is referred to as a second condensing outlet tank 223.
第2凝縮入口タンク222は、第1凝縮器21から流出した気相熱媒体を第2凝縮入口タンク222内に流入させる蒸気流入口2221を有している。蒸気流入口2221は、第2凝縮入口タンク222における長手方向の一端側に設けられている。
The second condensation inlet tank 222 has a vapor inlet 2221 that allows the vapor-phase heat medium flowing out of the first condenser 21 to flow into the second condensation inlet tank 222. The steam inlet 2221 is provided at one end side in the longitudinal direction of the second condensation inlet tank 222.
第2凝縮出口タンク223は、液流出口2231を有している。液流出口2231は、第2凝縮出口タンク223内の液相熱媒体を、蒸発器10の液流入口1021側へ流出させる。液流出口2231は、第2凝縮出口タンク223における長手方向の一端側に設けられている。本実施形態では、液流出口2231は、第2凝縮出口タンク223の長手方向における蒸気流入口2221と同一側の端部に設けられている。
The second condensation outlet tank 223 has a liquid outlet 2231. The liquid outlet 2231 causes the liquid heat medium in the second condensation outlet tank 223 to flow to the liquid inlet 1021 side of the evaporator 10. The liquid outlet 2231 is provided on one end side in the longitudinal direction of the second condensation outlet tank 223. In the present embodiment, the liquid outlet 2231 is provided at the end of the second condensation outlet tank 223 on the same side as the vapor inlet 2221 in the longitudinal direction.
第2凝縮出口タンク223の下端面には、第1凝縮器21における複数の第1凝縮チューブ211のうち、重力方向の最上方側に配置された第1凝縮チューブ211の上端面が接合されている。これにより、第1凝縮器21および第2凝縮器22が一体化されている。
To the lower end surface of the second condensing outlet tank 223, the upper end surface of the first condensing tube 211 arranged on the uppermost side in the gravity direction among the plurality of first condensing tubes 211 in the first condenser 21 is joined. There is. As a result, the first condenser 21 and the second condenser 22 are integrated.
次に、熱媒体通路30の構成について説明する。熱媒体通路30は、蒸気通路301、接続通路302、第1液通路303および第2液通路304を備えている。各通路301~304は、例えば金属製の配管により形成されている。
Next, the structure of the heat medium passage 30 will be described. The heat medium passage 30 includes a vapor passage 301, a connection passage 302, a first liquid passage 303, and a second liquid passage 304. Each of the passages 301 to 304 is formed of, for example, a metal pipe.
蒸気通路301は、蒸発器10から流出した熱媒体を第1凝縮器21に導く通路である。具体的には、蒸気通路301は、蒸発器10の蒸気流出口1031と第1凝縮器21の蒸気流入口2121とを接続する通路である。
The steam passage 301 is a passage that guides the heat medium flowing out of the evaporator 10 to the first condenser 21. Specifically, the steam passage 301 is a passage that connects the steam outlet 1031 of the evaporator 10 and the steam inlet 2121 of the first condenser 21.
蒸気通路301の上流側端部(すなわち入口側端部)は、蒸発器10の重力方向上方側に接続されている。蒸気通路301の下流側端部(すなわち出口側端部)は、第1凝縮器21の重力方向における略中央部に接続されている。また、蒸気通路301の下流側端部は、第1コネクタ216を介して第1凝縮器21に接続されている。
The upstream end (that is, the inlet end) of the steam passage 301 is connected to the upper side of the evaporator 10 in the gravity direction. The downstream end (that is, the outlet end) of the steam passage 301 is connected to a substantially central portion of the first condenser 21 in the gravity direction. The downstream end of the steam passage 301 is connected to the first condenser 21 via the first connector 216.
接続通路302は、第1凝縮器21から流出した熱媒体を第2凝縮器22に導く通路である。具体的には、接続通路302は、第1凝縮器21の蒸気流出口2131と第2凝縮器22の蒸気流入口2221とを接続する通路である。
The connection passage 302 is a passage that guides the heat medium flowing out from the first condenser 21 to the second condenser 22. Specifically, the connection passage 302 is a passage that connects the vapor outlet 2131 of the first condenser 21 and the vapor inlet 2221 of the second condenser 22.
接続通路302の上流側端部は、第1凝縮器21の重力方向上方側に接続されている。接続通路302の下流側端部は、第2凝縮器22の重力方向上方側に接続されている。
The upstream end of the connection passage 302 is connected to the upper side of the first condenser 21 in the gravity direction. The downstream end of the connection passage 302 is connected to the upper side of the second condenser 22 in the gravity direction.
接続通路302の上流側端部は、第2コネクタ217を介して第1凝縮器21に接続されている。接続通路302の下流側端部は、第3コネクタ226を介して第2凝縮器22に接続されている。
The upstream end of the connection passage 302 is connected to the first condenser 21 via the second connector 217. The downstream end of the connection passage 302 is connected to the second condenser 22 via the third connector 226.
第1液通路303は、第1凝縮器21から流出した熱媒体を蒸発器10に導く通路である。具体的には、第1液通路303は、第1凝縮器21の液流出口2132と蒸発器10の液流入口1021とを接続する通路である。
The first liquid passage 303 is a passage that guides the heat medium flowing out from the first condenser 21 to the evaporator 10. Specifically, the first liquid passage 303 is a passage that connects the liquid outlet 2132 of the first condenser 21 and the liquid inlet 1021 of the evaporator 10.
第1液通路303の上流側端部は、第1凝縮器21の重力方向下方側に接続されている。第1液通路303の下流側端部は、蒸発器10の重力方向下方側に接続されている。また、第1液通路303の上流側端部は、第4コネクタ218を介して第1凝縮器21に接続されている。
The upstream end of the first liquid passage 303 is connected to the lower side of the first condenser 21 in the gravity direction. The downstream end of the first liquid passage 303 is connected to the lower side of the evaporator 10 in the gravity direction. Further, the upstream end of the first liquid passage 303 is connected to the first condenser 21 via the fourth connector 218.
第2液通路304は、第2凝縮器22から流出した熱媒体を蒸発器10に導く液通路である。具体的には、第2液通路304は、第2凝縮器22の液流出口2231と後述する合流部305とを接続する通路である。
The second liquid passage 304 is a liquid passage that guides the heat medium flowing out from the second condenser 22 to the evaporator 10. Specifically, the second liquid passage 304 is a passage that connects the liquid outlet 2231 of the second condenser 22 and a merging portion 305 described later.
より詳細には、第2液通路304の下流側端部は、合流部305を介して蒸発器10に接続されている。合流部305は、第1液通路303と第2液通路304とが合流する部分である。したがって、第2凝縮器22から流出した熱媒体は、第2液通路304および第1液通路303を介して蒸発器10に導かれる。すなわち、第2凝縮器22から流出した熱媒体は、第2液通路304、合流部305、第1液通路303の順に流れて、蒸発器10に流入する。
More specifically, the downstream end of the second liquid passage 304 is connected to the evaporator 10 via the confluence portion 305. The merging portion 305 is a portion where the first liquid passage 303 and the second liquid passage 304 merge. Therefore, the heat medium flowing out from the second condenser 22 is guided to the evaporator 10 via the second liquid passage 304 and the first liquid passage 303. That is, the heat medium flowing out from the second condenser 22 flows into the evaporator 10 in the order of the second liquid passage 304, the joining portion 305, and the first liquid passage 303.
第2液通路304の上流側端部は、第2凝縮器22の重力方向下方側に接続されている。第1液通路303の下流側端部、すなわち合流部305は、凝縮器20よりも重力方向下方側に位置している。また、第2液通路304の上流側端部は、第5コネクタ227を介して第2凝縮器22に接続されている。
The upstream end of the second liquid passage 304 is connected to the lower side of the second condenser 22 in the gravity direction. The downstream end of the first liquid passage 303, that is, the confluence portion 305 is located below the condenser 20 in the gravity direction. In addition, the upstream end of the second liquid passage 304 is connected to the second condenser 22 via the fifth connector 227.
図2に示すように、第1凝縮器21は、蒸気通路301から流出した熱媒体が流入する入口側流路219を有している。本実施形態では、入口側流路219は、第1凝縮タンク212により形成されている。
As shown in FIG. 2, the first condenser 21 has an inlet-side flow passage 219 into which the heat medium flowing out from the steam passage 301 flows. In the present embodiment, the inlet side flow passage 219 is formed by the first condensing tank 212.
入口側流路219の流路断面積D2は、蒸気通路301の通路断面積D1より大きい。ここで、入口側流路219の流路断面積D2とは、入口側流路219における蒸気流入口2121から流入した熱媒体の流れ方向に垂直な断面の断面積をいう。本実施形態では、入口側流路219の流路断面積D2は、第1凝縮入口タンク212の内部空間における水平方向に垂直な断面の断面積である。
The cross-sectional area D 2 of the inlet-side flow passage 219 is larger than the cross-sectional area D 1 of the steam passage 301. Here, the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 refers to a cross-sectional area of a cross-section perpendicular to the flow direction of the heat medium flowing from the steam inlet 2121 in the inlet-side flow passage 219. In the present embodiment, the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 is a cross-sectional area of a cross section perpendicular to the horizontal direction in the internal space of the first condensation inlet tank 212.
続いて、本実施形態における沸騰冷却装置の作動を説明する。
Next, the operation of the boiling cooling device in this embodiment will be described.
蒸発器10において、高温の発熱体40と蒸発チューブ101内の液相熱媒体との間で、熱交換が行われる。これにより、発熱体40の熱量が液相熱媒体に移動して、液相熱媒体が沸騰して気相熱媒体となり、発熱体40が冷却される。
In the evaporator 10, heat exchange is performed between the high temperature heating element 40 and the liquid phase heat medium in the evaporation tube 101. As a result, the amount of heat of the heating element 40 moves to the liquid-phase heat medium, the liquid-phase heat medium boils and becomes the vapor-phase heat medium, and the heating element 40 is cooled.
そして、蒸発チューブ101内で蒸発した気相熱媒体は、蒸発出口タンク103に流入する。蒸発出口タンク103内の気相熱媒体は、蒸気通路301を介して、第1凝縮器21に流入する。
Then, the vapor-phase heat medium evaporated in the evaporation tube 101 flows into the evaporation outlet tank 103. The vapor-phase heat medium in the evaporation outlet tank 103 flows into the first condenser 21 via the vapor passage 301.
ここで、発熱体40の発熱量が増大すると、気液二相状態の熱媒体が、蒸発チューブ101から蒸発出口タンク103に流出する。このため、気液二相状態の熱媒体が、蒸発出口タンク103から蒸気通路301を介して第1凝縮器21に流入する。
Here, when the amount of heat generated by the heating element 40 increases, the heat medium in the gas-liquid two-phase state flows out from the evaporation tube 101 to the evaporation outlet tank 103. Therefore, the heat medium in the gas-liquid two-phase state flows from the evaporation outlet tank 103 into the first condenser 21 via the vapor passage 301.
このとき、第1凝縮器21における入口側流路219の流路断面積D2が蒸気通路301の通路断面積D1より大きいので、蒸気通路301から第1凝縮器21に流入した熱媒体の流速が低下する。これにより、第1凝縮器21の入口側流路219(すなわち第1凝縮入口タンク212)において、気液二相状態の熱媒体から液相熱媒体が分離・除去される。つまり、第1凝縮入口タンク212において、気液二相状態の熱媒体から液相熱媒体と気相熱媒体とに分離される。
At this time, since the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 in the first condenser 21 is larger than the passage cross-sectional area D 1 of the steam passage 301, the heat medium flowing from the steam passage 301 into the first condenser 21 The flow velocity decreases. As a result, the liquid-phase heat medium is separated and removed from the heat medium in the gas-liquid two-phase state in the inlet-side flow passage 219 of the first condenser 21 (that is, the first condensation inlet tank 212). That is, in the first condensation inlet tank 212, the heat medium in the gas-liquid two-phase state is separated into the liquid heat medium and the gas heat medium.
第1凝縮入口タンク212において気液分離された気相熱媒体は、複数の第1凝縮チューブ211のうち重力方向上方側の第1凝縮チューブ211を流れて、第1凝縮出口タンク213の重力方向上方側に流入する。そして、第1凝縮器21で気液分離された気相熱媒体は、第1凝縮出口タンク213から接続通路302を介して、第2凝縮器22の第2凝縮入口タンク222に流入する。
The gas-phase heat medium separated in the first condensing inlet tank 212 from the first condensing inlet tank 212 flows through the first condensing tube 211 of the plurality of first condensing tubes 211 on the upper side in the direction of gravity, and the direction of gravity of the first condensing outlet tank 213 in the direction of gravity. Inflow to the upper side. Then, the gas-phase heat medium separated into gas and liquid in the first condenser 21 flows from the first condensation outlet tank 213 into the second condensation inlet tank 222 of the second condenser 22 via the connection passage 302.
一方、第1凝縮入口タンク212において分離された液相熱媒体は、複数の第1凝縮チューブ211のうち重力方向下方側の第1凝縮チューブ211を流れて、第1凝縮出口タンク213の重力方向下方側に流入する。そして、第1凝縮器21で気液分離された液相熱媒体は、第1凝縮出口タンク213から第1液通路303を介して、蒸発器10の蒸発入口タンク102に流入する。
On the other hand, the liquid-phase heat medium separated in the first condensing inlet tank 212 flows through the first condensing tube 211 on the lower side in the direction of gravity of the plurality of first condensing tubes 211, and the direction of gravity in the first condensing outlet tank 213 is decreased. Inflow to the lower side. Then, the liquid-phase heat medium separated into gas and liquid in the first condenser 21 flows into the evaporation inlet tank 102 of the evaporator 10 from the first condensation outlet tank 213 via the first liquid passage 303.
このとき、第1凝縮器21では、第1放熱フィン215を介して、複数の第1凝縮チューブ211同士の間の空気通路を流れる空気と、第1凝縮チューブ211内の熱媒体との間で熱交換が行われる。これにより、熱媒体の有する熱が空気に放出される。
At this time, in the first condenser 21, between the air flowing in the air passage between the plurality of first condensing tubes 211 and the heat medium in the first condensing tube 211 via the first heat radiation fins 215. Heat exchange takes place. As a result, the heat of the heat medium is released to the air.
第2凝縮器22の第2凝縮入口タンク222に流入した気相熱媒体は、第2凝縮チューブ221に流入する。このとき、第2凝縮器22では、第2放熱フィン225を介して、複数の第2凝縮チューブ221同士の間の空気通路を流れる空気と、第2凝縮チューブ221内の気相熱媒体との間で熱交換が行われる。これにより、気相熱媒体が凝縮して液相熱媒体となり、熱媒体の有する熱が空気に放出される。
The vapor-phase heat medium that has flowed into the second condensation inlet tank 222 of the second condenser 22 flows into the second condensation tube 221. At this time, in the second condenser 22, between the air flowing in the air passage between the plurality of second condensing tubes 221 and the gas phase heat medium in the second condensing tube 221 via the second radiating fins 225. Heat exchange takes place between them. As a result, the vapor phase heat medium is condensed to become the liquid phase heat medium, and the heat of the heat medium is released to the air.
第2凝縮チューブ221で凝縮した液相熱媒体は、第2凝縮出口タンク223に流入する。そして、第2凝縮チューブ221で凝縮した液相熱媒体は、第2凝縮出口タンク223から第2液通路304および第1液通路303を介して、蒸発器10の蒸発入口タンク102に流入する。
The liquid heat medium condensed in the second condensing tube 221 flows into the second condensing outlet tank 223. Then, the liquid-phase heat medium condensed in the second condensing tube 221 flows from the second condensing outlet tank 223 into the evaporation inlet tank 102 of the evaporator 10 via the second liquid passage 304 and the first liquid passage 303.
以上説明したように、本実施形態では、凝縮器20として、第1凝縮器21と、第1凝縮器21の重力方向上方側に配置される第2凝縮器22と、を設けている。第1凝縮器21において、気液二相状態の熱媒体から液相熱媒体を分離させる。さらに、第1凝縮器21において、液相熱媒体が分離された後の気相熱媒体を第2凝縮器22の蒸気流入口2221側へ流出させる。
As described above, in the present embodiment, as the condenser 20, the first condenser 21 and the second condenser 22 arranged on the upper side in the gravity direction of the first condenser 21 are provided. In the first condenser 21, the liquid-phase heat medium is separated from the gas-liquid two-phase heat medium. Further, in the first condenser 21, the vapor-phase heat medium after the liquid-phase heat medium is separated is caused to flow out to the vapor inlet 2221 side of the second condenser 22.
これによれば、第1凝縮器21および第2凝縮器22のうち、重力方向上方側に位置する第2凝縮器22には、気相熱媒体が流入する。つまり、気液二相状態の熱媒体を第2凝縮器22まで上昇させる(すなわち、持ち上げる)必要がない。したがって、気液二相状態の熱媒体の重力方向上方側への上昇高さを低くすることができるので、熱媒体の圧力損失を低減できる。
According to this, the gas-phase heat medium flows into the second condenser 22, which is located on the upper side in the gravity direction, of the first condenser 21 and the second condenser 22. That is, it is not necessary to raise (that is, raise) the heat medium in the gas-liquid two-phase state to the second condenser 22. Therefore, since the rising height of the heat medium in the gas-liquid two-phase state to the upper side in the direction of gravity can be reduced, the pressure loss of the heat medium can be reduced.
ここで、蒸発器10の蒸気流出口1031から流出した気液二相状態の熱媒体を第1凝縮器21の蒸気流入口2121まで上昇させる上昇高さを、二相持ち上げ高さH1という。第1凝縮器21の蒸気流出口2131から流出した気相冷媒を第2凝縮器22の蒸気流入口2221まで上昇させる上昇高さを、気相持ち上げ高さH2という。本実施形態では、二相持ち上げ高さH1は、気相持ち上げ高さH2よりも十分小さい。このため、熱媒体の圧力損失を十分低減できる。
Here, the rising height at which the vapor-liquid two-phase heat medium flowing out from the vapor outlet 1031 of the evaporator 10 is raised to the vapor inlet 2121 of the first condenser 21 is referred to as the two-phase lifting height H 1 . The rising height at which the vapor phase refrigerant flowing out from the vapor outlet 2131 of the first condenser 21 is raised to the vapor inlet 2221 of the second condenser 22 is referred to as vapor phase lifting height H 2 . In the present embodiment, the two-phase lift height H 1 is sufficiently smaller than the gas-phase lift height H 2 . Therefore, the pressure loss of the heat medium can be sufficiently reduced.
したがって、蒸発器10に対する凝縮器20の高さを高くする必要がない。このため、沸騰冷却装置の小型化を図ることができる。
Therefore, it is not necessary to increase the height of the condenser 20 with respect to the evaporator 10. Therefore, the boiling cooling device can be downsized.
ところで、上述した特許文献1の沸騰冷却装置では、蒸発器から気液二相状態の熱媒体が流出した場合、凝縮器内に液相熱媒体が流入する。これにより、凝縮器における熱媒体の放熱性が悪化する可能性がある。このため、凝縮器における熱媒体の放熱性を確保するためには、凝縮器の体格を大きくする必要がある。その結果、沸騰冷却装置が大型化してしまう。
By the way, in the boiling cooling device of Patent Document 1 described above, when the heat medium in the gas-liquid two-phase state flows out from the evaporator, the liquid phase heat medium flows into the condenser. This may deteriorate the heat dissipation of the heat medium in the condenser. Therefore, in order to secure the heat dissipation of the heat medium in the condenser, it is necessary to increase the size of the condenser. As a result, the boiling cooling device becomes large.
これに対し、本実施形態では、第1凝縮器21において、液相熱媒体が分離された後の気相熱媒体を第2凝縮器22の蒸気流入口2221側へ流出させるので、第2凝縮器22への液相熱媒体の流入を抑制できる。したがって、第2凝縮器22における熱媒体の放熱性を確保するために第2凝縮器22の体格を大きくする必要がない。このため、沸騰冷却装置の小型化を図ることができる。
On the other hand, in the present embodiment, in the first condenser 21, the vapor-phase heat medium after the liquid-phase heat medium is separated is caused to flow out to the vapor inlet port 2221 side of the second condenser 22, so that the second condenser The inflow of the liquid-phase heat medium into the container 22 can be suppressed. Therefore, it is not necessary to increase the size of the second condenser 22 in order to secure the heat dissipation of the heat medium in the second condenser 22. Therefore, the boiling cooling device can be downsized.
また、本実施形態では、第1凝縮器21における入口側流路219の流路断面積D2を、蒸気通路301の通路断面積D1より大きくしている。これによれば、蒸気通路301から第1凝縮器21に流入する熱媒体の流速を低下させることができる。このため、第1凝縮器21の入口側流路219において、気液二相状態の熱媒体から液相熱媒体を分離することができる。
Further, in the present embodiment, the flow path cross-sectional area D 2 of the inlet passage 219 in the first condenser 21 is made larger than the cross-sectional area D 1 of the steam path 301. According to this, the flow velocity of the heat medium flowing from the steam passage 301 into the first condenser 21 can be reduced. Therefore, in the inlet-side flow passage 219 of the first condenser 21, the liquid-phase heat medium can be separated from the gas-liquid two-phase heat medium.
(第2実施形態)
次に、本開示の第2実施形態について図3および図4に基づいて説明する。本第2実施形態は、上記第1実施形態と比較して、蒸気通路301の構成が異なる。 (Second embodiment)
Next, a second embodiment of the present disclosure will be described based on FIGS. 3 and 4. The second embodiment is different from the first embodiment in the configuration of thesteam passage 301.
次に、本開示の第2実施形態について図3および図4に基づいて説明する。本第2実施形態は、上記第1実施形態と比較して、蒸気通路301の構成が異なる。 (Second embodiment)
Next, a second embodiment of the present disclosure will be described based on FIGS. 3 and 4. The second embodiment is different from the first embodiment in the configuration of the
図3に示すように、本実施形態の蒸発器10における蒸発出口タンク103は、蒸発出口タンク103内の熱媒体を凝縮器20の流入口側へ流出させる複数の蒸気流出口1031、1032を有している。換言すると、蒸発出口タンク103は、蒸発チューブ101にて蒸発した気相熱媒体を含む気液二相状態の熱媒体を凝縮器20の流入口側へ流出させる複数の蒸気流出口1031、1032を有している。具体的には、蒸発出口タンク103は、2つの蒸気流出口1031、1032を有している。
As shown in FIG. 3, the evaporation outlet tank 103 in the evaporator 10 of the present embodiment has a plurality of vapor outlets 1031 and 1032 for allowing the heat medium in the evaporation outlet tank 103 to flow to the inlet side of the condenser 20. is doing. In other words, the evaporation outlet tank 103 has a plurality of vapor outlets 1031 and 1032 for causing the heat medium in the gas-liquid two-phase state including the vapor phase heat medium evaporated in the evaporation tube 101 to flow out to the inlet side of the condenser 20. Have Specifically, the evaporation outlet tank 103 has two vapor outlets 1031 and 1032.
2つの蒸気流出口1031、1032は、蒸発出口タンク103における長手方向の一端側および他端側に設けられている。以下、2つの蒸気流出口1031のうち、蒸発出口タンク103における長手方向の一端側に設けられたものを第1蒸気流出口1031といい、蒸発出口タンク103における長手方向の他端側に設けられたものを第2蒸気流出口1032という。第1蒸気流出口1031は、蒸発出口タンク103の長手方向における液流入口1021と同一側の端部に設けられている。
The two vapor outlets 1031 and 1032 are provided at one end side and the other end side in the longitudinal direction of the evaporation outlet tank 103. Hereinafter, of the two vapor outlets 1031, one provided at one end side in the longitudinal direction of the evaporation outlet tank 103 is referred to as a first vapor outlet 1031 and provided at the other end side in the longitudinal direction of the evaporation outlet tank 103. This is called the second steam outlet 1032. The first vapor outlet 1031 is provided at the end on the same side as the liquid inlet 1021 in the longitudinal direction of the evaporation outlet tank 103.
本実施形態の第1凝縮器21における第1凝縮入口タンク212は、蒸発器10から流出した気液二相状態の熱媒体を第1凝縮入口タンク212内に流入させる複数の蒸気流入口2125、2126を有している。具体的には、第1凝縮入口タンク212は、2つの蒸気流入口2125、2126を有している。
The first condensing inlet tank 212 in the first condenser 21 of the present embodiment has a plurality of vapor inlets 2125 for allowing the heat medium in the gas-liquid two-phase state flowing out from the evaporator 10 to flow into the first condensing inlet tank 212. It has 2126. Specifically, the first condensation inlet tank 212 has two vapor inlets 2125 and 2126.
2つの蒸気流入口2125、2126は、第1凝縮入口タンク212における重力方向の中央部周辺に、上下方向に並んで設けられている。以下、2つの蒸気流入口2125、2126のうち、重力方向下方側に設けられたものを下側蒸気流入口2125といい、重力方向上方側に設けられたものを上側蒸気流入口2126という。
The two steam inlets 2125, 2126 are provided side by side in the vertical direction around the central portion in the gravity direction of the first condensation inlet tank 212. Hereinafter, of the two steam inlets 2125 and 2126, the one provided on the lower side in the direction of gravity is referred to as the lower steam inlet 2125, and the one provided on the upper side in the direction of gravity is referred to as the upper steam inlet 2126.
下側蒸気流入口2125は、蒸発器10の第1蒸気流出口1031よりも重力方向上方側に配置されている。上側蒸気流入口2126は、蒸発器10の第2蒸気流出口1032よりも重力方向上方側に配置されている。
The lower steam inlet 2125 is arranged above the first steam outlet 1031 of the evaporator 10 in the gravity direction. The upper steam inflow port 2126 is arranged above the second steam outflow port 1032 of the evaporator 10 in the gravity direction.
本実施形態の熱媒体通路30は、複数の蒸気通路301A、301Bを有している。具体的には、熱媒体通路30は、第1蒸気通路301Aおよび第2蒸気通路301Bを有している。
The heat medium passage 30 of the present embodiment has a plurality of steam passages 301A and 301B. Specifically, the heat medium passage 30 has a first steam passage 301A and a second steam passage 301B.
第1蒸気通路301Aは、蒸発器10の第1蒸気流出口1031と第1凝縮器21の下側蒸気流入口2125とを接続する通路である。第2蒸気通路301Bは、蒸発器10の第2蒸気流出口1032と第1凝縮器21の上側蒸気流入口2126とを接続する通路である。
The first steam passage 301A is a passage that connects the first steam outlet 1031 of the evaporator 10 and the lower steam inlet 2125 of the first condenser 21. The second steam passage 301B is a passage that connects the second steam outlet 1032 of the evaporator 10 and the upper steam inlet 2126 of the first condenser 21.
第1蒸気通路301Aの下流側端部は、第6コネクタ216Aを介して第1凝縮器21に接続されている。第2蒸気通路301Bの下流側端部は、第7コネクタ216Bを介して第1凝縮器21に接続されている。
The downstream end of the first steam passage 301A is connected to the first condenser 21 via the sixth connector 216A. The downstream end of the second steam passage 301B is connected to the first condenser 21 via the seventh connector 216B.
図4に示すように、本実施形態の入口側流路219は、第1凝縮器21において、第1蒸気通路301Aおよび第2蒸気通路301Bから流出した熱媒体が流入するように構成されている。すなわち、第1凝縮器21は、複数の蒸気通路301A、301Bから流出した熱媒体が流入する入口側流路219を有している。
As shown in FIG. 4, the inlet-side flow passage 219 of the present embodiment is configured so that the heat medium flowing out from the first vapor passage 301A and the second vapor passage 301B flows into the first condenser 21. .. That is, the first condenser 21 has an inlet-side flow passage 219 into which the heat medium flowing out from the plurality of steam passages 301A and 301B flows.
入口側流路219の流路断面積D2は、複数の蒸気通路301A、301Bにおける通路断面積D1A、D1Bの合計値より大きい。具体的には、入口側流路219の流路断面積D2は、第1蒸気通路301Aの通路断面積D1Aと、第2蒸気通路301Bの通路断面積D1Bとの合計値より大きい。すなわち、入口側流路219の流路断面積D2、第1蒸気通路301Aの通路断面積D1A、および第2蒸気通路301Bの通路断面積D1Bが、D2<D1A+D1Bの関係を満している。
The flow passage cross-sectional area D 2 of the inlet-side flow passage 219 is larger than the total value of the passage cross-sectional areas D 1A and D 1B in the plurality of vapor passages 301A and 301B. Specifically, the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 is larger than the total value of the passage cross-sectional area D 1A of the first steam passage 301A and the passage cross-sectional area D 1B of the second steam passage 301B. That is, the flow passage cross-sectional area D 2 of the inlet-side flow passage 219, the flow passage cross-sectional area D 1A of the first steam passage 301A, and the flow passage cross-sectional area D 1B of the second steam passage 301B have a relationship of D 2 <D 1A + D 1B . Are satisfied.
以上説明したように、本実施形態では、熱媒体通路30は、複数の蒸気通路301A、301Bを有している。これによれば、蒸発器10から第1凝縮器21に導かれる熱媒体の流量を増大させることができるので、沸騰冷却装置の冷却能力を向上させることができる。
As described above, in the present embodiment, the heat medium passage 30 has the plurality of steam passages 301A and 301B. According to this, the flow rate of the heat medium guided from the evaporator 10 to the first condenser 21 can be increased, so that the cooling capacity of the boiling cooling device can be improved.
また、本実施形態では、第1凝縮器21における入口側流路219の流路断面積D2を第1蒸気通路301Aにおける通路断面積D1Aと、第2蒸気通路301Bにおける通路断面積D1Bと合計値より大きくしている。これによれば、第1蒸気通路301Aおよび第2蒸気通路301Bから第1凝縮器21に流入する熱媒体の流速を低下させることができる。このため、第1凝縮器21の入口側流路219において、気液二相状態の熱媒体から液相熱媒体を分離することができる。
Further, in the present embodiment, the flow passage cross-sectional area D 2 of the inlet side flow passage 219 in the first condenser 21 is set to the flow passage cross-sectional area D 1A in the first steam passage 301A and the flow passage cross-sectional area D 1B in the second steam passage 301B. And it is larger than the total value. According to this, the flow velocity of the heat medium flowing into the first condenser 21 from the first steam passage 301A and the second steam passage 301B can be reduced. Therefore, in the inlet-side flow passage 219 of the first condenser 21, the liquid-phase heat medium can be separated from the gas-liquid two-phase heat medium.
(第3実施形態)
次に、本発明の第3実施形態について図5~図7に基づいて説明する。まず、本実施形態における蒸発器10の構成について説明する。図5に示すように、蒸発器10は、いわゆるタンクアンドチューブ型の熱交換器である。蒸発器10は、蒸発チューブ101と、蒸発タンク102、103とを備えている。 (Third Embodiment)
Next, a third embodiment of the present invention will be described with reference to FIGS. First, the configuration of theevaporator 10 in this embodiment will be described. As shown in FIG. 5, the evaporator 10 is a so-called tank-and-tube heat exchanger. The evaporator 10 includes an evaporation tube 101 and evaporation tanks 102 and 103.
次に、本発明の第3実施形態について図5~図7に基づいて説明する。まず、本実施形態における蒸発器10の構成について説明する。図5に示すように、蒸発器10は、いわゆるタンクアンドチューブ型の熱交換器である。蒸発器10は、蒸発チューブ101と、蒸発タンク102、103とを備えている。 (Third Embodiment)
Next, a third embodiment of the present invention will be described with reference to FIGS. First, the configuration of the
蒸発チューブ101は、熱媒体が流れる流路を形成する管状部材である。蒸発チューブ101は、扁平板状(すなわち断面扁平形状)に形成された扁平チューブである。蒸発チューブ101は、その長手方向が重力方向と略平行となるように配置されている。蒸発チューブ101は、水平方向において、複数本平行に配置されている。
The evaporation tube 101 is a tubular member that forms a flow path through which a heat medium flows. The evaporation tube 101 is a flat tube formed in a flat plate shape (that is, a flat cross section). The evaporation tube 101 is arranged such that its longitudinal direction is substantially parallel to the direction of gravity. A plurality of evaporation tubes 101 are arranged in parallel in the horizontal direction.
複数の蒸発チューブ101は、同一平面を形成している。すなわち、複数の蒸発チューブ101は、蒸発チューブ101の両側の扁平面がそれぞれ同一平面上に配置されるように、一列に並んで配置されている。
The plurality of evaporation tubes 101 form the same plane. That is, the plurality of evaporation tubes 101 are arranged in a line so that flat surfaces on both sides of the evaporation tubes 101 are arranged on the same plane.
複数の蒸発チューブ101における扁平面には、発熱体40が接合されている。このため、蒸発チューブ101内の熱媒体には、発熱体40からの熱が伝わる。
The heating element 40 is joined to the flat surfaces of the plurality of evaporation tubes 101. Therefore, the heat from the heating element 40 is transferred to the heat medium in the evaporation tube 101.
蒸発タンク102、103は、複数の蒸発チューブ101と連通している。蒸発タンク102、103は、複数の蒸発チューブ101に対して熱媒体の集合または分配を行う。
The evaporation tanks 102 and 103 communicate with a plurality of evaporation tubes 101. The evaporation tanks 102 and 103 collect or distribute the heat medium with respect to the plurality of evaporation tubes 101.
蒸発タンク102、103は、蒸発チューブ101における長手方向の両端部に一つずつ設けられている。すなわち、蒸発タンク102、103は、蒸発チューブ101における重力方向上端部および下端部に一つずつ設けられている。
The evaporation tanks 102 and 103 are provided one at each end of the evaporation tube 101 in the longitudinal direction. That is, the evaporation tanks 102 and 103 are respectively provided at the upper end and the lower end in the gravity direction of the evaporation tube 101.
蒸発タンク102、103は、蒸発チューブ101の長手方向と直交する方向に延びている。すなわち、蒸発タンク102、103は、水平方向に延びている。蒸発タンク102、103には、蒸発チューブ101が挿入された状態で接合されている。
The evaporation tanks 102 and 103 extend in a direction orthogonal to the longitudinal direction of the evaporation tube 101. That is, the evaporation tanks 102 and 103 extend in the horizontal direction. An evaporation tube 101 is inserted and joined to the evaporation tanks 102 and 103.
ここで、二つの蒸発タンク102、103のうち、重力方向下方側に配置されるとともに蒸発チューブ101に対して熱媒体の分配を行うものを、蒸発入口タンク102という。また、二つの蒸発タンク102、103のうち、重力方向上方側に配置されるとともに、蒸発チューブ101から流出する熱媒体の集合を行うものを、蒸発出口タンク103という。
Here, of the two evaporation tanks 102 and 103, the one arranged on the lower side in the direction of gravity and distributing the heat medium to the evaporation tube 101 is called an evaporation inlet tank 102. Further, one of the two evaporation tanks 102 and 103, which is arranged on the upper side in the gravity direction and collects the heat medium flowing out from the evaporation tube 101, is called an evaporation outlet tank 103.
蒸発入口タンク102は、後述する凝縮器20にて凝縮した液相熱媒体を蒸発入口タンク102内に流入させる液流入口1021を有している。液流入口1021は、蒸発入口タンク102における長手方向の一端側に設けられている。
The evaporation inlet tank 102 has a liquid inlet 1021 through which the liquid-phase heat medium condensed in the condenser 20 described later flows into the evaporation inlet tank 102. The liquid inlet 1021 is provided at one end side in the longitudinal direction of the evaporation inlet tank 102.
蒸発出口タンク103は、蒸発出口タンク103内の熱媒体を凝縮器20の蒸気流入口2121側へ流出させる蒸気流出口1031を有している。換言すると、蒸発出口タンク103は、蒸発チューブ101にて蒸発した気相熱媒体を含む気液二相状態の熱媒体を凝縮器20の蒸気流入口2121側へ流出させる蒸気流出口1031を有している。
The evaporation outlet tank 103 has a vapor outlet 1031 that causes the heat medium in the evaporation outlet tank 103 to flow to the vapor inlet 2121 side of the condenser 20. In other words, the evaporation outlet tank 103 has a vapor outlet 1031 for causing the heat medium in the gas-liquid two-phase state containing the vapor heat medium evaporated in the evaporation tube 101 to flow out to the vapor inlet 2121 side of the condenser 20. ing.
蒸気流出口1031は、蒸発出口タンク103における長手方向の一端側に設けられている。本実施形態では、蒸気流出口1031は、蒸発出口タンク103の長手方向における液流入口1021と同一側の端部に設けられている。
The vapor outlet 1031 is provided at one end side in the longitudinal direction of the evaporation outlet tank 103. In the present embodiment, the vapor outlet 1031 is provided at the end of the evaporation outlet tank 103 on the same side as the liquid inlet 1021 in the longitudinal direction.
次に、凝縮器20の構成について説明する。凝縮器20は、第1凝縮器21および第2凝縮器22を有している。第2凝縮器22は、第1凝縮器21の重力方向上方側に配置されている。本実施形態では、第1凝縮器21および第2凝縮器22は一体に形成されている。なお、第1凝縮器21および第2凝縮器22を別体として形成してもよい。
Next, the configuration of the condenser 20 will be described. The condenser 20 has a first condenser 21 and a second condenser 22. The second condenser 22 is arranged above the first condenser 21 in the direction of gravity. In this embodiment, the first condenser 21 and the second condenser 22 are integrally formed. The first condenser 21 and the second condenser 22 may be formed as separate bodies.
第1凝縮器21は、蒸発器10から流出した気液二相状態の熱媒体から少なくとも一部の液相熱媒体を分離する。第1凝縮器21は、気液二相状態の熱媒体から少なくとも一部の液相熱媒体が分離された後の熱媒体を、第2凝縮器22の流入口側へ流出させる。
The first condenser 21 separates at least a part of the liquid-phase heat medium from the gas-liquid two-phase heat medium flowing out from the evaporator 10. The first condenser 21 causes the heat medium after at least a part of the liquid-phase heat medium is separated from the heat medium in the gas-liquid two-phase state to flow out to the inlet side of the second condenser 22.
次に、第1凝縮器21の構成について説明する。第1凝縮器21は、熱媒体と空気とを熱交換させる第1熱交換部210を有している。より詳細には、第1熱交換部210は、蒸発器10から流出した気液二相状態の熱媒体と空気とを熱交換させて、気液二相状態の熱媒体の少なくとも一部を凝縮させる。
Next, the configuration of the first condenser 21 will be described. The first condenser 21 has a first heat exchange section 210 for exchanging heat between the heat medium and air. More specifically, the first heat exchange unit 210 heat-exchanges the heat medium in the gas-liquid two-phase state and the air flowing out from the evaporator 10 to condense at least a part of the heat medium in the gas-liquid two-phase state. Let
第1熱交換部210は、第1凝縮チューブ211および第1放熱フィン215を有している。換言すると、第1凝縮チューブ211および第1放熱フィン215により、第1熱交換部210が構成されている。
The first heat exchange section 210 has a first condensing tube 211 and a first radiating fin 215. In other words, the first heat exchange section 210 is configured by the first condensing tube 211 and the first heat radiation fin 215.
具体的には、第1凝縮器21は、いわゆるタンクアンドチューブ型の熱交換器である。第1凝縮器21は、第1凝縮チューブ211と、第1凝縮タンク212、213と、第1放熱フィン215とを備えている。
Specifically, the first condenser 21 is a so-called tank-and-tube heat exchanger. The first condenser 21 includes a first condensing tube 211, first condensing tanks 212 and 213, and a first radiating fin 215.
第1凝縮チューブ211は、熱媒体が流れる第1凝縮流路2110を形成する管状部材である。第1凝縮流路2110は、第1熱媒体流路に相当している。
The first condensing tube 211 is a tubular member that forms a first condensing channel 2110 through which the heat medium flows. The first condensation flow passage 2110 corresponds to the first heat medium flow passage.
第1凝縮チューブ211は、扁平板状に形成された扁平チューブである。第1凝縮チューブ211は、その長手方向が重力方向と略垂直となるように配置されている。すなわち、第1凝縮チューブ211は、その長手方向が水平方向と略平行となるように配置されている。したがって、第1凝縮器21は、第1凝縮流路2110において熱媒体が水平方向に流れるように構成されている。
The first condensing tube 211 is a flat tube formed in a flat plate shape. The 1st condensing tube 211 is arrange | positioned so that the longitudinal direction may become substantially perpendicular | vertical to the gravity direction. That is, the first condensing tube 211 is arranged such that its longitudinal direction is substantially parallel to the horizontal direction. Therefore, the first condenser 21 is configured such that the heat medium flows in the horizontal direction in the first condensation flow passage 2110.
第1凝縮器21は、複数の第1凝縮チューブ211を有している。したがって、第1凝縮器21は、複数の第1凝縮流路2110を有している。本例では、第1凝縮チューブ211は、重力方向において、複数本平行に配置されている。
The first condenser 21 has a plurality of first condensing tubes 211. Therefore, the first condenser 21 has a plurality of first condensation flow paths 2110. In this example, the plurality of first condensing tubes 211 are arranged in parallel in the gravity direction.
複数の第1凝縮チューブ211は所定の間隔で互いに積層されている。複数の第1凝縮チューブ211同士の間には、空気が流れるようになっている。複数の第1凝縮チューブ211同士の間の空気通路には、第1放熱フィン215が設けられている。本実施形態では、第1放熱フィン215は、波状(すなわちコルゲート状)に形成されている。これにより、複数の第1凝縮チューブ211内を流れる熱媒体と、複数の第1凝縮チューブ211間を流れる空気とが熱交換される。
The plurality of first condensing tubes 211 are laminated at a predetermined interval. Air flows between the plurality of first condensing tubes 211. First radiating fins 215 are provided in the air passage between the plurality of first condensing tubes 211. In the present embodiment, the first radiating fins 215 are formed in a wavy shape (that is, a corrugated shape). As a result, the heat medium flowing in the plurality of first condensing tubes 211 and the air flowing between the plurality of first condensing tubes 211 are heat-exchanged.
第1凝縮タンク212、213は、複数の第1凝縮チューブ211と連通している。第1凝縮タンク212、213は、複数の第1凝縮チューブ211に対して熱媒体の集合または分配を行う。第1凝縮タンク212、213は、第1凝縮チューブ211における長手方向の両端部に一つずつ設けられている。
The first condensing tanks 212 and 213 communicate with the plurality of first condensing tubes 211. The first condensing tanks 212 and 213 collect or distribute the heat medium with respect to the plurality of first condensing tubes 211. The first condensing tanks 212 and 213 are provided one at each end of the first condensing tube 211 in the longitudinal direction.
第1凝縮タンク212、213は、第1凝縮チューブ211の長手方向と直交する方向に延びている。すなわち、第1凝縮タンク212、213は、重力方向に延びている。第1凝縮タンク212、213には、第1凝縮チューブ211が挿入された状態で接合されている。
The first condensing tanks 212 and 213 extend in a direction orthogonal to the longitudinal direction of the first condensing tube 211. That is, the first condensing tanks 212 and 213 extend in the gravity direction. The first condensing tubes 211 are joined to the first condensing tanks 212 and 213 while being inserted therein.
ここで、二つの第1凝縮タンク212、213のうち、水平方向の一側に配置されるとともに、第1凝縮チューブ211に対して熱媒体の分配を行うものを、第1凝縮入口タンク212という。また、二つの第1凝縮タンク212、213のうち、水平方向の他側に配置されるとともに、第1凝縮チューブ211から流出する熱媒体の集合を行うものを、第1凝縮出口タンク213という。
Here, one of the two first condensing tanks 212 and 213, which is arranged on one side in the horizontal direction and which distributes the heat medium to the first condensing tube 211, is referred to as a first condensing inlet tank 212. .. Further, one of the two first condensing tanks 212 and 213, which is arranged on the other side in the horizontal direction and collects the heat medium flowing out from the first condensing tube 211, is referred to as a first condensing outlet tank 213.
第1凝縮入口タンク212は、蒸発器10から流出した気液二相状態の熱媒体を第1凝縮入口タンク212内に流入させる蒸気流入口2121を有している。蒸気流入口2121は、第1凝縮入口タンク212における重力方向の略中央部に設けられている。蒸気流入口2121は、蒸発器10の蒸気流出口1031よりも重力方向上方側に配置されている。
The first condensation inlet tank 212 has a vapor inlet port 2121 through which the heat medium in a gas-liquid two-phase state flowing out from the evaporator 10 flows into the first condensation inlet tank 212. The steam inlet 2121 is provided in a substantially central portion of the first condensation inlet tank 212 in the gravity direction. The steam inlet 2121 is arranged above the steam outlet 1031 of the evaporator 10 in the gravity direction.
第1凝縮出口タンク213は、蒸気流出口2131および液流出口2132を有している。蒸気流出口2131は、第1凝縮出口タンク213内の気相熱媒体を、後述する第2凝縮器22の蒸気流入口2221側へ流出させる。液流出口2132は、第1凝縮出口タンク213内の液相熱媒体を、蒸発器10の液流入口1021側へ流出させる。
The first condensation outlet tank 213 has a vapor outlet 2131 and a liquid outlet 2132. The vapor outlet 2131 causes the vapor-phase heat medium in the first condensation outlet tank 213 to flow out to the vapor inlet 2221 side of the second condenser 22 described later. The liquid outlet 2132 causes the liquid heat medium in the first condensation outlet tank 213 to flow out to the liquid inlet 1021 side of the evaporator 10.
蒸気流出口2131は、第1凝縮出口タンク213における重力方向上方側に設けられている。液流出口2132は、第1凝縮出口タンク213における重力方向下方側に設けられている。
The vapor outlet 2131 is provided above the first condensation outlet tank 213 in the gravity direction. The liquid outlet 2132 is provided on the lower side in the gravity direction of the first condensation outlet tank 213.
次に、第2凝縮器22の構成について説明する。第2凝縮器22は、熱媒体と空気とを熱交換させる第2熱交換部220を有している。より詳細には、第2熱交換部220は、第1凝縮器21から流出した気相状態の熱媒体と空気とを熱交換させて、気相状態の熱媒体を凝縮させる。
Next, the configuration of the second condenser 22 will be described. The second condenser 22 has a second heat exchange section 220 that exchanges heat between the heat medium and air. More specifically, the second heat exchange unit 220 heat-exchanges the heat medium in the vapor phase state and the air flowing out from the first condenser 21 with each other to condense the heat medium in the vapor phase state.
第2熱交換部220は、第2凝縮チューブ221および第2放熱フィン225を有している。換言すると、第2凝縮チューブ221および第2放熱フィン225により、第2熱交換部220が構成されている。
The second heat exchange section 220 has a second condensing tube 221 and a second radiating fin 225. In other words, the second condensing tube 221 and the second radiating fin 225 form the second heat exchange section 220.
具体的には、第2凝縮器22は、いわゆるタンクアンドチューブ型の熱交換器である。第2凝縮器22は、第2凝縮チューブ221と、第2凝縮タンク222、223と、第2放熱フィン225とを備えている。
Specifically, the second condenser 22 is a so-called tank-and-tube heat exchanger. The second condenser 22 includes a second condensing tube 221, second condensing tanks 222 and 223, and a second radiating fin 225.
第2凝縮チューブ221は、熱媒体が流れる第2凝縮流路2210を形成する管状部材である。第2凝縮流路2210は、第2熱媒体流路に相当している。
The second condensing tube 221 is a tubular member that forms the second condensing channel 2210 through which the heat medium flows. The second condensation flow path 2210 corresponds to the second heat medium flow path.
第2凝縮チューブ221は、扁平板状に形成された扁平チューブである。第2凝縮チューブ221は、その長手方向が重力方向と略平行となるように配置されている。第2凝縮チューブ221は、水平方向において、複数本平行に配置されている。
The second condensing tube 221 is a flat tube formed in a flat plate shape. The second condensing tube 221 is arranged such that its longitudinal direction is substantially parallel to the gravity direction. The second condensing tubes 221 are arranged in parallel in the horizontal direction.
複数の第2凝縮チューブ221は所定の間隔で互いに積層されている。複数の第2凝縮チューブ221同士の間には、空気が流れるようになっている。複数の第2凝縮チューブ221同士の間の空気通路には、第2放熱フィン225が設けられている。本実施形態では、第2放熱フィン225は、波状に形成されている。複数の第2凝縮チューブ221内を流れる熱媒体と、複数の第2凝縮チューブ221間を流れる空気とが熱交換される。
The plurality of second condensing tubes 221 are laminated at a predetermined interval. Air flows between the plurality of second condensing tubes 221. Second radiating fins 225 are provided in the air passage between the plurality of second condensing tubes 221. In the present embodiment, the second heat radiation fin 225 is formed in a wave shape. The heat medium flowing in the plurality of second condensing tubes 221 and the air flowing between the plurality of second condensing tubes 221 are heat-exchanged.
第2凝縮タンク222、223は、複数の第2凝縮チューブ221と連通している。第2凝縮タンク222、223は、複数の第2凝縮チューブ221に対して熱媒体の集合または分配を行う。第2凝縮タンク222、223は、第2凝縮チューブ221における長手方向の両端部に一つずつ設けられている。すなわち、第2凝縮タンク222、223は、第2凝縮チューブ221における重力方向上端部および下端部に一つずつ設けられている。
The second condensing tanks 222 and 223 communicate with a plurality of second condensing tubes 221. The second condensing tanks 222 and 223 collect or distribute the heat medium with respect to the plurality of second condensing tubes 221. The second condensing tanks 222 and 223 are provided one at each end of the second condensing tube 221 in the longitudinal direction. That is, the second condensing tanks 222 and 223 are respectively provided at the upper end and the lower end in the gravity direction of the second condensing tube 221.
第2凝縮タンク222、223は、第2凝縮チューブ221の長手方向と直交する方向に延びている。すなわち、第2凝縮タンク222、223は、水平方向に延びている。第2凝縮タンク222、223には、第2凝縮チューブ221が挿入された状態で接合されている。
The second condensing tanks 222 and 223 extend in a direction orthogonal to the longitudinal direction of the second condensing tube 221. That is, the second condensing tanks 222 and 223 extend in the horizontal direction. A second condensing tube 221 is inserted and joined to the second condensing tanks 222 and 223.
ここで、二つの第2凝縮タンク222、223のうち、重力方向の上方側に配置されるとともに、第2凝縮チューブ221に対して熱媒体の分配を行うものを、第2凝縮入口タンク222という。また、二つの第2凝縮タンク222、223のうち、重力方向の下方側に配置されるとともに、第2凝縮チューブ221から流出する熱媒体の集合を行うものを、第2凝縮出口タンク223という。
Here, one of the two second condensing tanks 222 and 223, which is arranged on the upper side in the gravity direction and which distributes the heat medium to the second condensing tube 221, is referred to as a second condensing inlet tank 222. .. Further, one of the two second condensing tanks 222 and 223, which is arranged on the lower side in the direction of gravity and collects the heat medium flowing out from the second condensing tube 221, is referred to as a second condensing outlet tank 223.
第2凝縮入口タンク222は、第1凝縮器21から流出した気相熱媒体を第2凝縮入口タンク222内に流入させる蒸気流入口2221を有している。蒸気流入口2221は、第2凝縮入口タンク222における長手方向の一端側に設けられている。
The second condensation inlet tank 222 has a vapor inlet 2221 that allows the vapor-phase heat medium flowing out of the first condenser 21 to flow into the second condensation inlet tank 222. The steam inlet 2221 is provided at one end side in the longitudinal direction of the second condensation inlet tank 222.
第2凝縮出口タンク223は、液流出口2231を有している。液流出口2231は、第2凝縮出口タンク223内の液相熱媒体を、蒸発器10の液流入口1021側へ流出させる。液流出口2231は、第2凝縮出口タンク223における長手方向の一端側に設けられている。本実施形態では、液流出口2231は、第2凝縮出口タンク223の長手方向における蒸気流入口2221と同一側の端部に設けられている。
The second condensation outlet tank 223 has a liquid outlet 2231. The liquid outlet 2231 causes the liquid heat medium in the second condensation outlet tank 223 to flow to the liquid inlet 1021 side of the evaporator 10. The liquid outlet 2231 is provided on one end side in the longitudinal direction of the second condensation outlet tank 223. In the present embodiment, the liquid outlet 2231 is provided at the end of the second condensation outlet tank 223 on the same side as the vapor inlet 2221 in the longitudinal direction.
第2凝縮出口タンク223の下端面には、第1凝縮器21における複数の第1凝縮チューブ211のうち、重力方向の最上方側に配置された第1凝縮チューブ211の上端面が接合されている。これにより、第1凝縮器21および第2凝縮器22が一体化されている。
To the lower end surface of the second condensing outlet tank 223, the upper end surface of the first condensing tube 211 arranged on the uppermost side in the gravity direction among the plurality of first condensing tubes 211 in the first condenser 21 is joined. There is. As a result, the first condenser 21 and the second condenser 22 are integrated.
次に、熱媒体通路30の構成について説明する。熱媒体通路30は、蒸気通路301、接続通路302、第1液通路303および第2液通路304を備えている。各通路301~304は、例えば金属製の配管により形成されている。
Next, the structure of the heat medium passage 30 will be described. The heat medium passage 30 includes a vapor passage 301, a connection passage 302, a first liquid passage 303, and a second liquid passage 304. Each of the passages 301 to 304 is formed of, for example, a metal pipe.
蒸気通路301は、蒸発器10から流出した熱媒体を第1凝縮器21に導く通路である。具体的には、蒸気通路301は、蒸発器10の蒸気流出口1031と第1凝縮器21の蒸気流入口2121とを接続する通路である。
The steam passage 301 is a passage that guides the heat medium flowing out of the evaporator 10 to the first condenser 21. Specifically, the steam passage 301 is a passage that connects the steam outlet 1031 of the evaporator 10 and the steam inlet 2121 of the first condenser 21.
蒸気通路301の上流側端部(すなわち入口側端部)は、蒸発器10の重力方向上方側に接続されている。蒸気通路301の下流側端部(すなわち出口側端部)は、第1凝縮器21の重力方向における略中央部に接続されている。また、蒸気通路301の下流側端部は、第1コネクタ216を介して第1凝縮器21に接続されている。
The upstream end (that is, the inlet end) of the steam passage 301 is connected to the upper side of the evaporator 10 in the gravity direction. The downstream end (that is, the outlet end) of the steam passage 301 is connected to a substantially central portion of the first condenser 21 in the gravity direction. The downstream end of the steam passage 301 is connected to the first condenser 21 via the first connector 216.
接続通路302は、第1凝縮器21から流出した熱媒体を第2凝縮器22に導く通路である。具体的には、接続通路302は、第1凝縮器21の蒸気流出口2131と第2凝縮器22の蒸気流入口2221とを接続する通路である。
The connection passage 302 is a passage that guides the heat medium flowing out from the first condenser 21 to the second condenser 22. Specifically, the connection passage 302 is a passage that connects the vapor outlet 2131 of the first condenser 21 and the vapor inlet 2221 of the second condenser 22.
接続通路302の上流側端部は、第1凝縮器21の重力方向上方側に接続されている。接続通路302の下流側端部は、第2凝縮器22の重力方向上方側に接続されている。
The upstream end of the connection passage 302 is connected to the upper side of the first condenser 21 in the gravity direction. The downstream end of the connection passage 302 is connected to the upper side of the second condenser 22 in the gravity direction.
接続通路302の上流側端部は、第2コネクタ217を介して第1凝縮器21に接続されている。接続通路302の下流側端部は、第3コネクタ226を介して第2凝縮器22に接続されている。
The upstream end of the connection passage 302 is connected to the first condenser 21 via the second connector 217. The downstream end of the connection passage 302 is connected to the second condenser 22 via the third connector 226.
第1液通路303は、第1凝縮器21から流出した熱媒体を蒸発器10に導く液通路である。具体的には、第1液通路303は、第1凝縮器21の液流出口2132と蒸発器10の液流入口1021とを接続する通路である。
The first liquid passage 303 is a liquid passage that guides the heat medium flowing out from the first condenser 21 to the evaporator 10. Specifically, the first liquid passage 303 is a passage that connects the liquid outlet 2132 of the first condenser 21 and the liquid inlet 1021 of the evaporator 10.
第1液通路303の上流側端部は、第1凝縮器21の重力方向下方側に接続されている。具体的には、第1液通路303の上流側端部は、第1凝縮出口タンク213の重力方向下方側に接続されている。
The upstream end of the first liquid passage 303 is connected to the lower side of the first condenser 21 in the gravity direction. Specifically, the upstream end of the first liquid passage 303 is connected to the lower side of the first condensation outlet tank 213 in the gravity direction.
ここで、上述したように、第1凝縮出口タンク213は、第1凝縮チューブ211における熱媒体流れ下流側に設けられている。すなわち、第1凝縮出口タンク213は、第1凝縮流路2110における熱媒体流れ下流側に接続されている。第1液通路303の上流側端部は、第1凝縮出口タンク213に接続されているため、第1凝縮流路2110における熱媒体流れ下流側に接続されていると言える。
Here, as described above, the first condensing outlet tank 213 is provided on the downstream side of the heat medium flow in the first condensing tube 211. That is, the first condensation outlet tank 213 is connected to the heat medium flow downstream side in the first condensation flow path 2110. Since the upstream end of the first liquid passage 303 is connected to the first condensation outlet tank 213, it can be said that it is connected to the heat medium flow downstream side in the first condensation flow passage 2110.
第1液通路303の下流側端部は、蒸発器10の重力方向下方側に接続されている。また、第1液通路303の上流側端部は、第4コネクタ218を介して第1凝縮器21に接続されている。
The downstream end of the first liquid passage 303 is connected to the lower side of the evaporator 10 in the gravity direction. Further, the upstream end of the first liquid passage 303 is connected to the first condenser 21 via the fourth connector 218.
第2液通路304は、第2凝縮器22から流出した熱媒体を蒸発器10に導く液通路である。具体的には、第2液通路304は、第2凝縮器22の液流出口2231と後述する合流部305とを接続する通路である。
The second liquid passage 304 is a liquid passage that guides the heat medium flowing out from the second condenser 22 to the evaporator 10. Specifically, the second liquid passage 304 is a passage that connects the liquid outlet 2231 of the second condenser 22 and a merging portion 305 described later.
より詳細には、第2液通路304の下流側端部は、合流部305を介して蒸発器10に接続されている。合流部305は、第1液通路303と第2液通路304とが合流する部分である。したがって、第2凝縮器22から流出した熱媒体は、第2液通路304および第1液通路303を介して蒸発器10に導かれる。すなわち、第2凝縮器22から流出した熱媒体は、第2液通路304、合流部305、第1液通路303の順に流れて、蒸発器10に流入する。
More specifically, the downstream end of the second liquid passage 304 is connected to the evaporator 10 via the confluence portion 305. The merging portion 305 is a portion where the first liquid passage 303 and the second liquid passage 304 merge. Therefore, the heat medium flowing out from the second condenser 22 is guided to the evaporator 10 via the second liquid passage 304 and the first liquid passage 303. That is, the heat medium flowing out from the second condenser 22 flows into the evaporator 10 in the order of the second liquid passage 304, the joining portion 305, and the first liquid passage 303.
第2液通路304の上流側端部は、第2凝縮器22の重力方向下方側に接続されている。第1液通路303の下流側端部、すなわち合流部305は、凝縮器20よりも重力方向下方側に位置している。また、第2液通路304の上流側端部は、第5コネクタ227を介して第2凝縮器22に接続されている。
The upstream end of the second liquid passage 304 is connected to the lower side of the second condenser 22 in the gravity direction. The downstream end of the first liquid passage 303, that is, the confluence portion 305 is located below the condenser 20 in the gravity direction. In addition, the upstream end of the second liquid passage 304 is connected to the second condenser 22 via the fifth connector 227.
ここで、第1凝縮器21において、液流出口2132は、第1液通路303との接続部を構成している。すなわち、第1凝縮器21の液流出口2132は、第1液通路303との接続部の一例に相当している。そして、接続通路302の上流側端部は、第1凝縮器21のうち、第1液通路303との接続部である液流出口2132よりも重力方向上方側に接続されている。
Here, in the first condenser 21, the liquid outlet 2132 constitutes a connection portion with the first liquid passage 303. That is, the liquid outlet 2132 of the first condenser 21 corresponds to an example of a connecting portion with the first liquid passage 303. The upstream end of the connection passage 302 is connected to the upper side of the first condenser 21 in the gravity direction with respect to the liquid outlet 2132 which is a connection portion with the first liquid passage 303.
図6に示すように、第1凝縮器21は、蒸気通路301から流出した熱媒体が流入する入口側流路219を有している。本実施形態では、入口側流路219は、第1凝縮タンク212により形成されている。
As shown in FIG. 6, the first condenser 21 has an inlet-side flow passage 219 into which the heat medium flowing out from the steam passage 301 flows. In the present embodiment, the inlet side flow passage 219 is formed by the first condensing tank 212.
入口側流路219の流路断面積D2は、蒸気通路301の通路断面積D1より大きい。ここで、入口側流路219の流路断面積D2とは、入口側流路219における蒸気流入口2121から流入した熱媒体の流れ方向に垂直な断面の断面積をいう。本実施形態では、入口側流路219の流路断面積D2は、第1凝縮入口タンク212の内部空間における、第1凝縮チューブ211の長手方向に垂直な断面の断面積である。換言すると、入口側流路219の流路断面積D2は、第1凝縮入口タンク212の内部空間における、第2凝縮チューブ221の積層方向に垂直な断面の断面積である。すなわち、入口側流路219の流路断面積D2は、第1凝縮入口タンク212の内部空間における水平方向に垂直な断面の断面積である。
The cross-sectional area D 2 of the inlet-side flow passage 219 is larger than the cross-sectional area D 1 of the steam passage 301. Here, the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 refers to a cross-sectional area of a cross-section perpendicular to the flow direction of the heat medium flowing from the steam inlet 2121 in the inlet-side flow passage 219. In the present embodiment, the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 is a cross-sectional area of a cross section perpendicular to the longitudinal direction of the first condensation tube 211 in the internal space of the first condensation inlet tank 212. In other words, the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 is the cross-sectional area of the cross section perpendicular to the stacking direction of the second condensation tube 221 in the internal space of the first condensation inlet tank 212. That is, the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 is a cross-sectional area of a cross section perpendicular to the horizontal direction in the internal space of the first condensation inlet tank 212.
続いて、本実施形態における沸騰冷却装置の作動を、図5~図7に基づいて説明する。なお、図7において、破線矢印は気相熱媒体の流れを示し、実線矢印は液相熱媒体の流れを示し、点ハッチング部分は液相冷媒を示す。
Next, the operation of the boiling cooling device in this embodiment will be described based on FIGS. 5 to 7. In addition, in FIG. 7, a broken line arrow indicates the flow of the vapor phase heat medium, a solid line arrow indicates the flow of the liquid phase heat medium, and a dot-hatched portion indicates the liquid phase refrigerant.
蒸発器10において、高温の発熱体40と蒸発チューブ101内の液相熱媒体との間で、熱交換が行われる。これにより、発熱体40の熱量が液相熱媒体に移動して、液相熱媒体が沸騰して気相熱媒体となり、発熱体40が冷却される。
In the evaporator 10, heat exchange is performed between the high temperature heating element 40 and the liquid phase heat medium in the evaporation tube 101. As a result, the amount of heat of the heating element 40 moves to the liquid-phase heat medium, the liquid-phase heat medium boils and becomes the vapor-phase heat medium, and the heating element 40 is cooled.
そして、蒸発チューブ101内で蒸発した気相熱媒体は、蒸発出口タンク103に流入する。蒸発出口タンク103内の気相熱媒体は、蒸気通路301を介して、第1凝縮器21に流入する。
Then, the vapor-phase heat medium evaporated in the evaporation tube 101 flows into the evaporation outlet tank 103. The vapor-phase heat medium in the evaporation outlet tank 103 flows into the first condenser 21 via the vapor passage 301.
ここで、発熱体40の発熱量が増大すると、気液二相状態の熱媒体が、蒸発チューブ101から蒸発出口タンク103に流出する。このため、気液二相状態の熱媒体が、蒸発出口タンク103から蒸気通路301を介して第1凝縮器21に流入する。
Here, when the amount of heat generated by the heating element 40 increases, the heat medium in the gas-liquid two-phase state flows out from the evaporation tube 101 to the evaporation outlet tank 103. Therefore, the heat medium in the gas-liquid two-phase state flows from the evaporation outlet tank 103 into the first condenser 21 via the vapor passage 301.
このとき、第1凝縮器21における入口側流路219の流路断面積D2が蒸気通路301の通路断面積D1より大きいので、蒸気通路301から第1凝縮器21に流入した熱媒体の流速が低下する。これにより、第1凝縮器21の入口側流路219(すなわち第1凝縮入口タンク212)において、気液二相状態の熱媒体から液相熱媒体が分離・除去される。つまり、第1凝縮入口タンク212において、気液二相状態の熱媒体から液相熱媒体と気相熱媒体とに分離される。
At this time, since the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 in the first condenser 21 is larger than the passage cross-sectional area D 1 of the steam passage 301, the heat medium flowing from the steam passage 301 into the first condenser 21 The flow velocity decreases. As a result, the liquid-phase heat medium is separated and removed from the heat medium in the gas-liquid two-phase state in the inlet-side flow passage 219 of the first condenser 21 (that is, the first condensation inlet tank 212). That is, in the first condensation inlet tank 212, the heat medium in the gas-liquid two-phase state is separated into the liquid heat medium and the gas heat medium.
第1凝縮入口タンク212において気液分離された気相熱媒体は、複数の第1凝縮チューブ211のうち重力方向上方側の第1凝縮チューブ211を流れて、第1凝縮出口タンク213の重力方向上方側に流入する。そして、第1凝縮器21で気液分離された気相熱媒体は、第1凝縮出口タンク213から接続通路302を介して、第2凝縮器22の第2凝縮入口タンク222に流入する。
The gas-phase heat medium separated in the first condensing inlet tank 212 from the first condensing inlet tank 212 flows through the first condensing tube 211 of the plurality of first condensing tubes 211 on the upper side in the direction of gravity, and the direction of gravity of the first condensing outlet tank 213 in the direction of gravity. Inflow to the upper side. Then, the gas-phase heat medium separated into gas and liquid in the first condenser 21 flows from the first condensation outlet tank 213 into the second condensation inlet tank 222 of the second condenser 22 via the connection passage 302.
一方、第1凝縮入口タンク212において分離された液相熱媒体は、複数の第1凝縮チューブ211のうち重力方向下方側の第1凝縮チューブ211を流れて、第1凝縮出口タンク213の重力方向下方側に流入する。そして、第1凝縮器21で気液分離された液相熱媒体は、第1凝縮出口タンク213から第1液通路303を介して、蒸発器10の蒸発入口タンク102に流入する。
On the other hand, the liquid-phase heat medium separated in the first condensing inlet tank 212 flows through the first condensing tube 211 on the lower side in the direction of gravity of the plurality of first condensing tubes 211, and the direction of gravity in the first condensing outlet tank 213 is decreased. Inflow to the lower side. Then, the liquid-phase heat medium separated into gas and liquid in the first condenser 21 flows into the evaporation inlet tank 102 of the evaporator 10 from the first condensation outlet tank 213 via the first liquid passage 303.
このとき、第1凝縮器21では、第1放熱フィン215を介して、複数の第1凝縮チューブ211同士の間の空気通路を流れる空気と、第1凝縮チューブ211内の熱媒体との間で熱交換が行われる。これにより、熱媒体の有する熱が空気に放出される。
At this time, in the first condenser 21, between the air flowing in the air passage between the plurality of first condensing tubes 211 and the heat medium in the first condensing tube 211 via the first heat radiation fins 215. Heat exchange takes place. As a result, the heat of the heat medium is released to the air.
第2凝縮器22の第2凝縮入口タンク222に流入した気相熱媒体は、第2凝縮チューブ221に流入する。このとき、第2凝縮器22では、第2放熱フィン225を介して、複数の第2凝縮チューブ221同士の間の空気通路を流れる空気と、第2凝縮チューブ221内の気相熱媒体との間で熱交換が行われる。これにより、気相熱媒体が凝縮して液相熱媒体となり、熱媒体の有する熱が空気に放出される。
The vapor-phase heat medium that has flowed into the second condensation inlet tank 222 of the second condenser 22 flows into the second condensation tube 221. At this time, in the second condenser 22, between the air flowing in the air passage between the plurality of second condensing tubes 221 and the gas phase heat medium in the second condensing tube 221 via the second radiating fins 225. Heat exchange takes place between them. As a result, the vapor phase heat medium is condensed to become the liquid phase heat medium, and the heat of the heat medium is released to the air.
第2凝縮チューブ221で凝縮した液相熱媒体は、第2凝縮出口タンク223に流入する。そして、第2凝縮チューブ221で凝縮した液相熱媒体は、第2凝縮出口タンク223から第2液通路304および第1液通路303を介して、蒸発器10の蒸発入口タンク102に流入する。
The liquid heat medium condensed in the second condensing tube 221 flows into the second condensing outlet tank 223. Then, the liquid-phase heat medium condensed in the second condensing tube 221 flows from the second condensing outlet tank 223 into the evaporation inlet tank 102 of the evaporator 10 via the second liquid passage 304 and the first liquid passage 303.
以上説明したように、本実施形態では、凝縮器20として、第1凝縮器21と、第1凝縮器21の重力方向上方側に配置される第2凝縮器22と、を設けている。第1凝縮器21において、気液二相状態の熱媒体から液相熱媒体を分離させる。さらに、第1凝縮器21において、液相熱媒体が分離された後の気相熱媒体を第2凝縮器22の蒸気流入口2221側へ流出させる。
As described above, in the present embodiment, as the condenser 20, the first condenser 21 and the second condenser 22 arranged on the upper side in the gravity direction of the first condenser 21 are provided. In the first condenser 21, the liquid-phase heat medium is separated from the gas-liquid two-phase heat medium. Further, in the first condenser 21, the vapor-phase heat medium after the liquid-phase heat medium is separated is caused to flow out to the vapor inlet 2221 side of the second condenser 22.
これによれば、第1凝縮器21および第2凝縮器22のうち、重力方向上方側に位置する第2凝縮器22には、気相熱媒体が流入する。つまり、気液二相状態の熱媒体を第2凝縮器22まで上昇させる(すなわち、持ち上げる)必要がない。したがって、気液二相状態の熱媒体の重力方向上方側への上昇高さを低くすることができるので、熱媒体の圧力損失を低減できる。
According to this, the gas-phase heat medium flows into the second condenser 22, which is located on the upper side in the gravity direction, of the first condenser 21 and the second condenser 22. That is, it is not necessary to raise (that is, raise) the heat medium in the gas-liquid two-phase state to the second condenser 22. Therefore, since the rising height of the heat medium in the gas-liquid two-phase state to the upper side in the direction of gravity can be reduced, the pressure loss of the heat medium can be reduced.
ここで、蒸発器10の蒸気流出口1031から流出した気液二相状態の熱媒体を第1凝縮器21の蒸気流入口2121まで上昇させる上昇高さを、二相持ち上げ高さH1という。第1凝縮器21の蒸気流出口2131から流出した気相冷媒を第2凝縮器22の蒸気流入口2221まで上昇させる上昇高さを、気相持ち上げ高さH2という。本実施形態では、二相持ち上げ高さH1は、気相持ち上げ高さH2よりも十分小さい。このため、熱媒体の圧力損失を十分低減できる。
Here, the rising height at which the vapor-liquid two-phase heat medium flowing out from the vapor outlet 1031 of the evaporator 10 is raised to the vapor inlet 2121 of the first condenser 21 is referred to as the two-phase lifting height H 1 . The rising height at which the vapor phase refrigerant flowing out from the vapor outlet 2131 of the first condenser 21 is raised to the vapor inlet 2221 of the second condenser 22 is referred to as vapor phase lifting height H 2 . In the present embodiment, the two-phase lift height H 1 is sufficiently smaller than the gas-phase lift height H 2 . Therefore, the pressure loss of the heat medium can be sufficiently reduced.
したがって、蒸発器10に対する凝縮器20の高さを高くする必要がない。このため、沸騰冷却装置の小型化を図ることができる。
Therefore, it is not necessary to increase the height of the condenser 20 with respect to the evaporator 10. Therefore, the boiling cooling device can be downsized.
ところで、上述した特許文献1の沸騰冷却装置では、蒸発器から気液二相状態の熱媒体が流出した場合、凝縮器内に液相熱媒体が流入する。これにより、凝縮器の熱交換部の重力方向下方側に液相熱媒体が存在する(すなわち、液没する)こととなり、凝縮器における熱媒体の放熱性が悪化する可能性がある。このため、凝縮器における熱媒体の放熱性を確保するためには、凝縮器の体格を大きくする必要がある。その結果、沸騰冷却装置が大型化してしまう。
By the way, in the boiling cooling device of Patent Document 1 described above, when the heat medium in the gas-liquid two-phase state flows out from the evaporator, the liquid phase heat medium flows into the condenser. As a result, the liquid-phase heat medium exists (that is, is submerged) on the lower side in the gravity direction of the heat exchange section of the condenser, which may deteriorate the heat dissipation of the heat medium in the condenser. Therefore, in order to secure the heat dissipation of the heat medium in the condenser, it is necessary to increase the size of the condenser. As a result, the boiling cooling device becomes large.
これに対し、本実施形態では、第1凝縮器21において、液相熱媒体が分離された後の気相熱媒体を第2凝縮器22の蒸気流入口2221側へ流出させるので、第2凝縮器22への液相熱媒体の流入を抑制できる。したがって、第2凝縮器22における熱媒体の放熱性を確保するために第2凝縮器22の体格を大きくする必要がない。このため、沸騰冷却装置の小型化を図ることができる。
On the other hand, in the present embodiment, in the first condenser 21, the vapor-phase heat medium after the liquid-phase heat medium is separated is caused to flow out to the vapor inlet port 2221 side of the second condenser 22, so that the second condenser The inflow of the liquid-phase heat medium into the container 22 can be suppressed. Therefore, it is not necessary to increase the size of the second condenser 22 in order to secure the heat dissipation of the heat medium in the second condenser 22. Therefore, the boiling cooling device can be downsized.
また、本実施形態では、第1凝縮器21における入口側流路219の流路断面積D2を、蒸気通路301の通路断面積D1より大きくしている。これによれば、蒸気通路301から第1凝縮器21に流入する熱媒体の流速を低下させることができる。このため、第1凝縮器21の入口側流路219において、気液二相状態の熱媒体から液相熱媒体を分離することができる。
Further, in the present embodiment, the flow path cross-sectional area D 2 of the inlet passage 219 in the first condenser 21 is made larger than the cross-sectional area D 1 of the steam path 301. According to this, the flow velocity of the heat medium flowing from the steam passage 301 into the first condenser 21 can be reduced. Therefore, in the inlet-side flow passage 219 of the first condenser 21, the liquid-phase heat medium can be separated from the gas-liquid two-phase heat medium.
ところで、上述したように、第1凝縮器21における入口側流路219の流路断面積D2は、第1凝縮入口タンク212の内部空間における水平方向に垂直な断面の断面積である。本実施形態の第1凝縮器21は、第1凝縮流路2110において熱媒体が水平方向に流れるように構成されているので、第1凝縮チューブ211は重力方向に複数配置されている。このため、複数の第1凝縮チューブ211が接続される第1凝縮入口タンク212は、重力方向の長さが長くなる。
By the way, as described above, the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 in the first condenser 21 is the cross-sectional area of the cross section perpendicular to the horizontal direction in the internal space of the first condensation inlet tank 212. The first condenser 21 of the present embodiment is configured such that the heat medium flows in the horizontal direction in the first condensing flow path 2110, and thus the plurality of first condensing tubes 211 are arranged in the gravity direction. Therefore, the first condensing inlet tank 212 to which the plurality of first condensing tubes 211 are connected has a long length in the gravity direction.
したがって、本実施形態では、第1凝縮入口タンク212の内部空間における水平方向に垂直な断面の断面積である入口側流路219の流路断面積D2が増大される。これにより、蒸気通路301から第1凝縮器21に流入する熱媒体の流速をより低下させることができる。このため、第1凝縮器21の入口側流路219において、気液二相状態の熱媒体から液相熱媒体を効率的に分離することができる。
Therefore, in the present embodiment, the flow passage cross-sectional area D 2 of the inlet-side flow passage 219, which is the cross-sectional area of the cross section perpendicular to the horizontal direction in the internal space of the first condensation inlet tank 212, is increased. Thereby, the flow velocity of the heat medium flowing from the steam passage 301 into the first condenser 21 can be further reduced. Therefore, in the inlet-side flow path 219 of the first condenser 21, the liquid-phase heat medium can be efficiently separated from the gas-liquid two-phase heat medium.
また、本実施形態では、第1凝縮器21に、複数の第1凝縮流路2110を設けている。すなわち、本実施形態では、第1凝縮器21に、複数の第1凝縮チューブ211を設けている。これによれば、第1凝縮器21における空気との伝熱面積(すなわち熱交換面積)が増大されて、熱媒体と空気との熱交換が促進される。このため、第1凝縮器21において、熱媒体と空気との熱交換効率が向上されるので、熱媒体の凝縮を効率的に行うことができる。
Further, in the present embodiment, the first condenser 21 is provided with a plurality of first condensation flow paths 2110. That is, in the present embodiment, the first condenser 21 is provided with the plurality of first condensation tubes 211. According to this, the heat transfer area with the air (that is, the heat exchange area) in the first condenser 21 is increased, and the heat exchange between the heat medium and the air is promoted. Therefore, in the first condenser 21, the heat exchange efficiency between the heat medium and the air is improved, so that the heat medium can be efficiently condensed.
また、本実施形態では、第1液通路303の上流側端部を、第1凝縮器21の重力方向下方側に接続している。これによれば、第1凝縮器21の内部に液相熱媒体が残留することを抑制できる。
Further, in the present embodiment, the upstream end of the first liquid passage 303 is connected to the lower side of the first condenser 21 in the gravity direction. According to this, it is possible to suppress the liquid-phase heat medium from remaining inside the first condenser 21.
また、本実施形態では、接続通路302の上流側端部を、第1凝縮器21のうち、第1液通路303との接続部である液流出口2132よりも重力方向上方側に接続している。これによれば、接続通路302に液相熱媒体が混入することを抑制できる。
Further, in the present embodiment, the upstream end of the connection passage 302 is connected to the upper side of the first condenser 21 in the gravity direction with respect to the liquid outlet 2132 which is a connection portion with the first liquid passage 303. There is. According to this, it is possible to prevent the liquid-phase heat medium from mixing into the connection passage 302.
(第4実施形態)
次に、本発明の第2実施形態について図8に基づいて説明する。本第4実施形態は、上記第3実施形態と比較して、第1凝縮器21の構成が異なるものである。 (Fourth Embodiment)
Next, a second embodiment of the present invention will be described based on FIG. The fourth embodiment is different from the third embodiment in the configuration of thefirst condenser 21.
次に、本発明の第2実施形態について図8に基づいて説明する。本第4実施形態は、上記第3実施形態と比較して、第1凝縮器21の構成が異なるものである。 (Fourth Embodiment)
Next, a second embodiment of the present invention will be described based on FIG. The fourth embodiment is different from the third embodiment in the configuration of the
図8に示すように、第1凝縮器21は、複数の第1凝縮流路2110が互いに接続される接続凝縮流路23を有している。接続凝縮流路23は、各第1凝縮流路2110の途中に接続されている。接続凝縮流路23は、重力方向(すなわち、車両上下方向)に延びている。
As shown in FIG. 8, the first condenser 21 has a connection condensation passage 23 in which a plurality of first condensation passages 2110 are connected to each other. The connection condensation flow path 23 is connected in the middle of each first condensation flow path 2110. The connection condensation flow path 23 extends in the direction of gravity (that is, the vehicle vertical direction).
接続凝縮流路23により、第1熱交換部210は複数の小熱交換部24に分割されている。複数の小熱交換部24は、水平方向(すなわち、重力方向に直交する方向)に配置されている。
The first heat exchange section 210 is divided into a plurality of small heat exchange sections 24 by the connection condensation flow path 23. The plurality of small heat exchange units 24 are arranged in the horizontal direction (that is, the direction orthogonal to the gravity direction).
以下、複数の小熱交換部24の配置方向を、熱交換部配置方向という。熱交換部配置方向は、水平方向に平行である。
Hereafter, the arrangement direction of the plurality of small heat exchange parts 24 is referred to as the heat exchange part arrangement direction. The heat exchange portion arrangement direction is parallel to the horizontal direction.
本実施形態では、第1凝縮器21は、2つの接続凝縮流路23を有している。2つの接続凝縮流路23は、互いに間隔を空けて配置されている。これにより、第1熱交換部210は、3つの小熱交換部24に分割されている。具体的には、小熱交換部24は、第1凝縮入口タンク212と接続凝縮流路23との間、2つの接続凝縮流路23同士の間、接続凝縮流路23と第1凝縮出口タンク213との間に、それぞれ配置されている。
In the present embodiment, the first condenser 21 has two connected condensation flow passages 23. The two connected condensing flow paths 23 are arranged at a distance from each other. As a result, the first heat exchange section 210 is divided into the three small heat exchange sections 24. Specifically, the small heat exchange unit 24 includes the first condensation inlet tank 212 and the connection condensation passage 23, the two connection condensation passages 23, the connection condensation passage 23 and the first condensation outlet tank. 213 and 213, respectively.
接続凝縮流路23の車両上下方向の長さ、第1凝縮入口タンク212の車両上下方向の長さ、および第1凝縮出口タンク213の車両上下方向の長さは、互いに同等である。
The vehicle vertical length of the connecting condensation flow path 23, the vehicle vertical length of the first condensation inlet tank 212, and the vehicle vertical length of the first condensation outlet tank 213 are equal to each other.
接続凝縮流路23の上端部は、水平方向から見たときに(すなわち、水平方向において)第1凝縮入口タンク212の上端部および第1凝縮出口タンク213の上端部とそれぞれ重合している。換言すると、接続凝縮流路23の上端部は、水平方向において、第1凝縮入口タンク212の上端部および第1凝縮出口タンク213の上端部とそれぞれ重なり合うように配置されている。また、接続凝縮流路23の下端部は、水平方向から見たときに第1凝縮入口タンク212の下端部および第1凝縮出口タンク213の下端部とそれぞれ重合している。
When viewed from the horizontal direction (that is, in the horizontal direction), the upper end of the connected condensing flow path 23 overlaps with the upper end of the first condensing inlet tank 212 and the upper end of the first condensing outlet tank 213, respectively. In other words, the upper end of the connecting condensing channel 23 is arranged so as to overlap the upper end of the first condensing inlet tank 212 and the upper end of the first condensing outlet tank 213 in the horizontal direction. Further, the lower end of the connected condensing flow path 23 is overlapped with the lower end of the first condensing inlet tank 212 and the lower end of the first condensing outlet tank 213 when viewed in the horizontal direction.
各小熱交換部24における熱交換部配置方向の長さは、互いに等しい。また、各小熱交換部24における第1凝縮流路2110の数は、互いに等しい。隣り合う小熱交換部24における第1凝縮流路2110は、熱交換部配置方向から見たときに互いに重合している。
The lengths of the small heat exchange parts 24 in the heat exchange part arrangement direction are equal to each other. Further, the number of the first condensation flow passages 2110 in each small heat exchange section 24 is equal to each other. The first condensation flow passages 2110 in the adjacent small heat exchange portions 24 overlap each other when viewed from the heat exchange portion arrangement direction.
以上説明したように、本実施形態では、第1凝縮器21に、複数の第1凝縮流路2110が互いに接続される接続凝縮流路23を設けている。これによれば、第1凝縮器21の入口側流路219において気液二相状態の熱媒体から分離された液相熱媒体、および、第1凝縮流路2110において凝縮した液相熱媒体を、重力によって第1凝縮器21の重力方向下方側に排出させることができる。
As described above, in the present embodiment, the first condenser 21 is provided with the connection condensing flow path 23 in which the plurality of first condensing flow paths 2110 are connected to each other. According to this, the liquid-phase heat medium separated from the heat medium in the gas-liquid two-phase state in the inlet-side flow passage 219 of the first condenser 21, and the liquid-phase heat medium condensed in the first condensation flow passage 2110 , Can be discharged to the lower side in the gravity direction of the first condenser 21.
(第5実施形態)
次に、本発明の第5実施形態について図9に基づいて説明する。本第5実施形態は、上記第4実施形態と比較して、接続凝縮流路23および小熱交換部24の構成が異なるものである。 (Fifth Embodiment)
Next, a fifth embodiment of the present invention will be described based on FIG. The fifth embodiment is different from the above-described fourth embodiment in the configurations of the connectioncondensation flow path 23 and the small heat exchange section 24.
次に、本発明の第5実施形態について図9に基づいて説明する。本第5実施形態は、上記第4実施形態と比較して、接続凝縮流路23および小熱交換部24の構成が異なるものである。 (Fifth Embodiment)
Next, a fifth embodiment of the present invention will be described based on FIG. The fifth embodiment is different from the above-described fourth embodiment in the configurations of the connection
図9に示すように、本実施形態の第1凝縮器21では、接続凝縮流路23の車両上下方向の長さは、第1凝縮入口タンク212の車両上下方向の長さより長い。接続凝縮流路23の車両上下方向の長さは、第1凝縮出口タンク213の車両上下方向の長さより長い。
As shown in FIG. 9, in the first condenser 21 of the present embodiment, the length of the connecting condensing flow path 23 in the vehicle vertical direction is longer than the length of the first condensation inlet tank 212 in the vehicle vertical direction. The length of the connecting condensation flow path 23 in the vehicle vertical direction is longer than the length of the first condensation outlet tank 213 in the vehicle vertical direction.
接続凝縮流路23の上端部は、第1凝縮入口タンク212の上端部よりも上方側に配置されている。接続凝縮流路23の上端部は、第1凝縮出口タンク213の上端部よりも上方側に配置されている。
The upper end of the connecting condensing flow path 23 is arranged above the upper end of the first condensing inlet tank 212. The upper end of the connecting condensing flow path 23 is arranged above the upper end of the first condensing outlet tank 213.
接続凝縮流路23の下端部は、第1凝縮入口タンク212の下端部よりも下方側に配置されている。接続凝縮流路23の下端部は、第1凝縮出口タンク213の下端部よりも下方側に配置されている。
The lower end of the connecting condensing flow path 23 is arranged below the lower end of the first condensing inlet tank 212. The lower end of the connecting condensing flow path 23 is arranged below the lower end of the first condensing outlet tank 213.
以下、3つの小熱交換部24のうち、中央に配置される小熱交換部24を中央熱交換部241といい、外側に配置される小熱交換部24を外側熱交換部242という。また、各小熱交換部24における複数の第1凝縮流路2110のうち、最も上方側に配置される第1凝縮流路2110を上側凝縮流路2111といい、最も下方側に配置される第1凝縮流路2110を下側凝縮流路2112という。
Of the three small heat exchange parts 24, the small heat exchange part 24 arranged in the center will be referred to as the central heat exchange part 241, and the small heat exchange part 24 arranged outside will be referred to as the outer heat exchange part 242. In addition, of the plurality of first condensing flow paths 2110 in each small heat exchange section 24, the first condensing flow path 2110 arranged at the uppermost side is referred to as an upper condensing flow path 2111, and the first condensing flow path 2111 is arranged at the lowermost side. The one condensing channel 2110 is referred to as the lower condensing channel 2112.
中央熱交換部241における第1凝縮流路2110の数は、外側熱交換部242における第1凝縮流路2110の数よりも多い。具体的には、中央熱交換部241における第1凝縮流路2110の数は5つであり、外側熱交換部242における第1凝縮流路2110の数は4つである。
The number of the first condensation flow passages 2110 in the central heat exchange unit 241 is larger than the number of the first condensation flow passages 2110 in the outer heat exchange unit 242. Specifically, the number of the first condensation flow passages 2110 in the central heat exchange unit 241 is five, and the number of the first condensation flow passages 2110 in the outer heat exchange unit 242 is four.
中央熱交換部241における各第1凝縮流路2110の流路断面積、および外側熱交換部242における各第1凝縮流路2110の流路断面積は、互いに等しい。中央熱交換部241における隣り合う第1凝縮流路2110同士の間隔、および外側熱交換部242における隣り合う第1凝縮流路2110同士の間隔は、互いに等しい。
The flow passage cross-sectional area of each first condensation flow passage 2110 in the central heat exchange unit 241 and the flow passage cross-sectional area of each first condensation flow passage 2110 in the outer heat exchange unit 242 are equal to each other. The interval between adjacent first condensing channels 2110 in the central heat exchange section 241 and the interval between adjacent first condensing channels 2110 in the outer heat exchange section 242 are equal to each other.
中央熱交換部241の上側凝縮流路2111は、外側熱交換部242の上側凝縮流路2111よりも上方側に配置されている。中央熱交換部241の下側凝縮流路2112は、外側熱交換部242の下側凝縮流路2112よりも下方側に配置されている。中央熱交換部241の第1凝縮流路2110および外側熱交換部242の第1凝縮流路2110は、熱交換部配置方向から見たときに互いに重合していない。
The upper condensation flow passage 2111 of the central heat exchange section 241 is arranged above the upper condensation flow passage 2111 of the outer heat exchange section 242. The lower condensation flow passage 2112 of the central heat exchange part 241 is arranged below the lower condensation flow passage 2112 of the outer heat exchange part 242. The first condensing flow path 2110 of the central heat exchange section 241 and the first condensing flow path 2110 of the outer heat exchange section 242 do not overlap each other when viewed from the heat exchange section arrangement direction.
その他の沸騰冷却装置の構成および作動は、第4実施形態と同様である。従って、本実施形態の沸騰冷却装置においても、第4実施形態と同様の効果を得ることができる。
Other configurations and operations of the boiling cooling device are the same as those in the fourth embodiment. Therefore, also in the boiling cooling device of this embodiment, the same effect as that of the fourth embodiment can be obtained.
(第6実施形態)
次に、本発明の第6実施形態について図10に基づいて説明する。本第6実施形態は、上記第3実施形態と比較して、第1熱交換部210の構成が異なるものである。 (Sixth Embodiment)
Next, a sixth embodiment of the present invention will be described based on FIG. The sixth embodiment is different from the third embodiment in the configuration of the firstheat exchange section 210.
次に、本発明の第6実施形態について図10に基づいて説明する。本第6実施形態は、上記第3実施形態と比較して、第1熱交換部210の構成が異なるものである。 (Sixth Embodiment)
Next, a sixth embodiment of the present invention will be described based on FIG. The sixth embodiment is different from the third embodiment in the configuration of the first
図10に示すように、本実施形態の第1凝縮器21では、複数の第1凝縮チューブ211は、互いに流路断面積が異なっている。すなわち、複数の第1凝縮流路2110は、互いに流路断面積が異なっている。
As shown in FIG. 10, in the first condenser 21 of the present embodiment, the plurality of first condensing tubes 211 have mutually different flow passage cross-sectional areas. That is, the plurality of first condensing channels 2110 have mutually different channel cross-sectional areas.
具体的には、複数の第1凝縮流路2110において、下方側に配置された第1凝縮流路2110の流路断面積が、上方側に配置された第1凝縮流路2110の流路断面積よりも大きい。すなわち、複数の第1凝縮流路2110は、下方側に配置されたもの程、流路断面積が大きい。なお、複数の第1凝縮流路2110において、下方側に配置された第1凝縮流路2110の流路断面積を、上方側に配置された第1凝縮流路2110の流路断面積よりも小さくしてもよい。
Specifically, in the plurality of first condensing channels 2110, the channel cross-sectional area of the first condensing channel 2110 arranged on the lower side is equal to that of the first condensing channel 2110 arranged on the upper side. Greater than area. That is, the plurality of first condensing flow paths 2110, which are arranged on the lower side, have larger flow path cross-sectional areas. In the plurality of first condensing channels 2110, the channel cross-sectional area of the first condensing channel 2110 arranged on the lower side is smaller than the channel cross-sectional area of the first condensing channel 2110 arranged on the upper side. May be smaller.
その他の沸騰冷却装置の構成および作動は、第3実施形態と同様である。従って、本実施形態の沸騰冷却装置においても、第3実施形態と同様の効果を得ることができる。
Other configurations and operations of the boiling cooling device are similar to those of the third embodiment. Therefore, also in the boiling cooling device of this embodiment, the same effect as that of the third embodiment can be obtained.
さらに、本実施形態では、複数の第1凝縮流路2110の流路断面積を互いに異ならせている。これによれば、第1凝縮器21の内部において、液相熱媒体を含んだ流れおよび気相熱媒体のみを含む流れのうちいずれかの熱媒体流れを選択して、各第1凝縮流路2110に流すことができる。
Further, in the present embodiment, the flow passage cross-sectional areas of the plurality of first condensation flow passages 2110 are made different from each other. According to this, in the inside of the first condenser 21, any one of the flow containing the liquid phase heat medium and the flow containing only the gas phase heat medium is selected, and each first condensing flow path is selected. It can be flushed to 2110.
具体的には、本実施形態では、下方側に配置された第1凝縮流路2110の流路断面積を、上方側に配置された第1凝縮流路2110の流路断面積よりも大きくしている。このため、圧力損失が液相熱媒体よりも小さい気相熱媒体を多く含む流れが、流路断面積の小さい第1凝縮流路2110、すなわち上方側に配置された第1凝縮流路2110を流れる。また、圧力損失が気相熱媒体よりも大きい液相熱媒体を多く含む流れが、流路断面積の大きい第1凝縮流路2110、すなわち下方側に配置された第1凝縮流路2110を流れる。
Specifically, in the present embodiment, the flow passage cross-sectional area of the first condensation flow passage 2110 arranged on the lower side is made larger than the flow passage cross-sectional area of the first condensation flow passage 2110 arranged on the upper side. ing. Therefore, the flow containing a large amount of gas-phase heat medium having a smaller pressure loss than the liquid-phase heat medium flows through the first condensation flow passage 2110 having a small flow passage cross-sectional area, that is, the first condensation flow passage 2110 arranged on the upper side. Flowing. A flow containing a large amount of liquid-phase heat medium having a larger pressure loss than the gas-phase heat medium flows through the first condensing flow passage 2110 having a large flow passage cross-sectional area, that is, the first condensing flow passage 2110 arranged on the lower side. ..
このように、本実施形態では、上方側に配置された第1凝縮流路2110に気相熱媒体を多く含む流れを流すとともに、下方側に配置された第1凝縮流路2110に液相熱媒体を多く含む流れを流すことができる。これにより、第1凝縮器21において、熱媒体の気液分離を効率的に行うことができる。
As described above, in the present embodiment, a flow containing a large amount of the vapor phase heat medium is caused to flow through the first condensation flow passage 2110 arranged on the upper side, and the liquid phase heat is flown through the first condensation flow passage 2110 arranged on the lower side. A medium rich stream can be flowed. As a result, in the first condenser 21, gas-liquid separation of the heat medium can be efficiently performed.
(第7実施形態)
次に、本発明の第7実施形態について図11に基づいて説明する。本第7実施形態は、上記第4実施形態と比較して、第1熱交換部210の構成が異なるものである。 (Seventh embodiment)
Next, a seventh embodiment of the present invention will be described based on FIG. The seventh embodiment is different from the fourth embodiment in the configuration of the firstheat exchange section 210.
次に、本発明の第7実施形態について図11に基づいて説明する。本第7実施形態は、上記第4実施形態と比較して、第1熱交換部210の構成が異なるものである。 (Seventh embodiment)
Next, a seventh embodiment of the present invention will be described based on FIG. The seventh embodiment is different from the fourth embodiment in the configuration of the first
図11に示すように、本実施形態の第1凝縮器21では、各小熱交換部24において、複数の第1凝縮流路2110は、互いに流路断面積が異なっている。具体的には、各小熱交換部24における複数の第1凝縮流路2110において、下方側に配置された第1凝縮流路2110の流路断面積が、上方側に配置された第1凝縮流路2110の流路断面積よりも大きい。すなわち、各小熱交換部24における複数の第1凝縮流路2110は、下方側に配置されたもの程、流路断面積が大きい。
As shown in FIG. 11, in the first condenser 21 of the present embodiment, in each small heat exchange section 24, the plurality of first condensation flow passages 2110 have mutually different flow passage cross-sectional areas. Specifically, in the plurality of first condensation flow passages 2110 in each small heat exchange section 24, the flow passage cross-sectional area of the first condensation flow passage 2110 arranged on the lower side is the first condensation flow passage arranged on the upper side. It is larger than the flow passage cross-sectional area of the flow passage 2110. That is, the plurality of first condensing flow paths 2110 in each small heat exchange section 24 have a larger flow path cross-sectional area as they are arranged on the lower side.
その他の沸騰冷却装置の構成および作動は、第4実施形態と同様である。従って、本実施形態の沸騰冷却装置においても、第4実施形態と同様の効果を得ることができる。
Other configurations and operations of the boiling cooling device are the same as those in the fourth embodiment. Therefore, also in the boiling cooling device of this embodiment, the same effect as that of the fourth embodiment can be obtained.
さらに、本実施形態では、複数の第1凝縮流路2110の流路断面積を互いに異ならせている。これによれば、上記第6実施形態と同様に、第1凝縮器21の内部において、液相熱媒体を多く含む流れおよび気相熱媒体を多く含む流れのうちいずれかの熱媒体流れを選択して、各第1凝縮流路2110に流すことができる。
Further, in the present embodiment, the flow passage cross-sectional areas of the plurality of first condensation flow passages 2110 are made different from each other. According to this, similarly to the sixth embodiment, in the inside of the first condenser 21, any one of the flow containing a large amount of the liquid phase heat medium and the flow containing a large amount of the gas phase heat medium is selected. Then, it can flow into each of the first condensation flow paths 2110.
具体的には、本実施形態では、下方側に配置された第1凝縮流路2110の流路断面積を、上方側に配置された第1凝縮流路2110の流路断面積よりも大きくしている。これによれば、上記第6実施形態と同様に、上方側に配置された第1凝縮流路2110に気相熱媒体を多く含む流れを流すとともに、下方側に配置された第1凝縮流路2110に液相熱媒体を多く含む流れを流すことができる。これにより、第1凝縮器21において、熱媒体の気液分離を効率的に行うことができる。
Specifically, in the present embodiment, the flow passage cross-sectional area of the first condensation flow passage 2110 arranged on the lower side is made larger than the flow passage cross-sectional area of the first condensation flow passage 2110 arranged on the upper side. ing. According to this, similarly to the sixth embodiment, a flow containing a large amount of the vapor phase heat medium is caused to flow through the first condensing flow passage 2110 arranged on the upper side, and the first condensing flow passage arranged on the lower side. A flow containing a large amount of liquid-phase heat medium can be passed through the 2110. As a result, in the first condenser 21, gas-liquid separation of the heat medium can be efficiently performed.
(第8実施形態)
次に、本発明の第8実施形態について図12に基づいて説明する。本第8実施形態は、上記第5実施形態と比較して、第1熱交換部210の構成が異なるものである。 (Eighth Embodiment)
Next, an eighth embodiment of the invention will be described with reference to FIG. The eighth embodiment is different from the fifth embodiment in the configuration of the firstheat exchange section 210.
次に、本発明の第8実施形態について図12に基づいて説明する。本第8実施形態は、上記第5実施形態と比較して、第1熱交換部210の構成が異なるものである。 (Eighth Embodiment)
Next, an eighth embodiment of the invention will be described with reference to FIG. The eighth embodiment is different from the fifth embodiment in the configuration of the first
図12に示すように、本実施形態の第1凝縮器21では、中央熱交換部241において、複数の第1凝縮流路2110は、互いに流路断面積が異なっている。また、各外側熱交換部242において、複数の第1凝縮流路2110は、互いに流路断面積が異なっている。
As shown in FIG. 12, in the first condenser 21 of the present embodiment, in the central heat exchange section 241, the plurality of first condensation flow passages 2110 have different flow passage cross-sectional areas. Further, in each of the outer heat exchange sections 242, the plurality of first condensing channels 2110 have mutually different channel cross-sectional areas.
具体的には、中央熱交換部241における複数の第1凝縮流路2110において、下方側に配置された第1凝縮流路2110の流路断面積が、上方側に配置された第1凝縮流路2110の流路断面積よりも大きい。すなわち、中央熱交換部241における複数の第1凝縮流路2110は、下方側に配置されたもの程、流路断面積が大きい。
Specifically, in the plurality of first condensing channels 2110 in the central heat exchange section 241, the channel cross-sectional area of the first condensing channel 2110 arranged on the lower side is the first condensing flow arranged on the upper side. It is larger than the flow passage cross-sectional area of the passage 2110. That is, the plurality of first condensation flow passages 2110 in the central heat exchange section 241 have a larger flow passage cross-sectional area as they are arranged on the lower side.
同様に、各外側熱交換部242における複数の第1凝縮流路2110において、下方側に配置された第1凝縮流路2110の流路断面積が、上方側に配置された第1凝縮流路2110の流路断面積よりも大きい。すなわち、各外側熱交換部242における複数の第1凝縮流路2110は、下方側に配置されたもの程、流路断面積が大きい。
Similarly, in the plurality of first condensing channels 2110 in each outer heat exchange section 242, the channel cross-sectional area of the first condensing channel 2110 arranged on the lower side is the first condensing channel arranged on the upper side. It is larger than the flow passage cross-sectional area of 2110. That is, the plurality of first condensing flow paths 2110 in each outer heat exchange section 242 have a larger flow path cross-sectional area as they are arranged on the lower side.
その他の沸騰冷却装置の構成および作動は、第5実施形態と同様である。従って、本実施形態の沸騰冷却装置においても、第5実施形態と同様の効果を得ることができる。
Other configurations and operations of the boiling cooling device are similar to those of the fifth embodiment. Therefore, also in the boiling cooling device of this embodiment, the same effect as that of the fifth embodiment can be obtained.
さらに、本実施形態では、複数の第1凝縮流路2110の流路断面積を互いに異ならせている。これによれば、上記第6実施形態と同様に、第1凝縮器21の内部において、液相熱媒体を多く含む流れおよび気相熱媒体を多く含む流れのうちいずれかの熱媒体流れを選択して、各第1凝縮流路2110に流すことができる。
Further, in the present embodiment, the flow passage cross-sectional areas of the plurality of first condensation flow passages 2110 are made different from each other. According to this, similarly to the sixth embodiment, in the inside of the first condenser 21, any one of the flow containing a large amount of the liquid phase heat medium and the flow containing a large amount of the gas phase heat medium is selected. Then, it can flow into each of the first condensation flow paths 2110.
具体的には、本実施形態では、下方側に配置された第1凝縮流路2110の流路断面積を、上方側に配置された第1凝縮流路2110の流路断面積よりも大きくしている。これによれば、上記第6実施形態と同様に、上方側に配置された第1凝縮流路2110に気相熱媒体を多く含む流れを流すとともに、下方側に配置された第1凝縮流路2110に液相熱媒体を多く流れを流すことができる。これにより、第1凝縮器21において、熱媒体の気液分離を効率的に行うことができる。
Specifically, in the present embodiment, the flow passage cross-sectional area of the first condensation flow passage 2110 arranged on the lower side is made larger than the flow passage cross-sectional area of the first condensation flow passage 2110 arranged on the upper side. ing. According to this, similarly to the sixth embodiment, a flow containing a large amount of the vapor phase heat medium is caused to flow through the first condensing flow passage 2110 arranged on the upper side, and the first condensing flow passage arranged on the lower side. A large amount of liquid-phase heat medium can flow in the 2110. As a result, in the first condenser 21, gas-liquid separation of the heat medium can be efficiently performed.
(第9実施形態)
次に、本発明の第9実施形態について図13に基づいて説明する。本実施形態は、上記第3実施形態と比較して、第1熱交換部210の構成が異なるものである。 (9th Embodiment)
Next, a ninth embodiment of the present invention will be described based on FIG. The present embodiment is different from the third embodiment in the configuration of the firstheat exchange section 210.
次に、本発明の第9実施形態について図13に基づいて説明する。本実施形態は、上記第3実施形態と比較して、第1熱交換部210の構成が異なるものである。 (9th Embodiment)
Next, a ninth embodiment of the present invention will be described based on FIG. The present embodiment is different from the third embodiment in the configuration of the first
図13に示すように、本実施形態の第1熱交換部210では、第1凝縮チューブ211は、その長手方向が重力方向と略平行となるように配置されている。このため、第1凝縮流路2110は、熱媒体が重力方向に流れるように構成されている。第1凝縮チューブ211は、水平方向において、複数本平行に配置されている。
As shown in FIG. 13, in the first heat exchange section 210 of the present embodiment, the first condensing tube 211 is arranged so that its longitudinal direction is substantially parallel to the gravity direction. Therefore, the first condensing flow path 2110 is configured so that the heat medium flows in the gravity direction. A plurality of the first condensing tubes 211 are arranged in parallel in the horizontal direction.
第1凝縮入口タンク212および第1凝縮出口タンク213は、それぞれ、水平方向に延びている。第1凝縮入口タンク212は、第1凝縮チューブ211の重力方向上方側に配置されている。第1凝縮出口タンク213は、第1凝縮チューブ211の重力方向下方側に配置されている。
The first condensation inlet tank 212 and the first condensation outlet tank 213 each extend in the horizontal direction. The first condensing inlet tank 212 is arranged above the first condensing tube 211 in the gravity direction. The first condensation outlet tank 213 is arranged below the first condensation tube 211 in the gravity direction.
本実施形態では、第1凝縮入口タンク212は、蒸気通路301を形成する配管(以下、蒸気通路配管3010という)の一部により構成されている。具体的には、蒸気通路配管3010の一部に対して、複数の第1凝縮チューブ211が直接接続されている。この蒸気通路配管3010のうち、複数の第1凝縮チューブ211が接続されている部分により、第1凝縮入口タンク212が構成されている。
In the present embodiment, the first condensing inlet tank 212 is configured by a part of the pipe forming the steam passage 301 (hereinafter referred to as the steam passage pipe 3010). Specifically, the plurality of first condensing tubes 211 are directly connected to a part of the steam passage pipe 3010. A portion of the steam passage piping 3010 to which the plurality of first condensing tubes 211 are connected constitutes a first condensing inlet tank 212.
第1凝縮入口タンク212、すなわち蒸気通路配管3010における蒸発器10と反対側の端部には、第2コネクタ217が接続されている。なお、本実施形態では、第1コネクタ216を廃止している。第1凝縮出口タンク213の下端面における蒸発器10と反対側の端部には、液流出口2132が設けられている。
A second connector 217 is connected to the first condensation inlet tank 212, that is, the end of the steam passage pipe 3010 opposite to the evaporator 10. Note that the first connector 216 is omitted in this embodiment. A liquid outlet 2132 is provided at the end of the lower end surface of the first condensation outlet tank 213 opposite to the evaporator 10.
次に、上記構成を備える第1凝縮器21の作動を説明する。
Next, the operation of the first condenser 21 having the above configuration will be described.
第1凝縮器21に流入した気液二相状態の熱媒体のうち、気相熱媒体は、第1凝縮入口タンク212、および第1凝縮チューブ211の第1凝縮流路2110において凝縮する。そして、凝縮した液相熱媒体は、重力により第1凝縮流路2110を落下する。このとき、第1凝縮入口タンク212から第1凝縮流路2110に液相熱媒体が吸引されることで、 第1凝縮入口タンク212を流れる熱媒体の流速が低下する。
Of the heat medium in the gas-liquid two-phase state that has flowed into the first condenser 21, the gas-phase heat medium is condensed in the first condensation inlet tank 212 and the first condensation flow passage 2110 of the first condensation tube 211. Then, the condensed liquid heat medium drops in the first condensation flow path 2110 due to gravity. At this time, the liquid-phase heat medium is sucked from the first condensation inlet tank 212 into the first condensation flow passage 2110, so that the flow velocity of the heat medium flowing through the first condensation inlet tank 212 decreases.
これにより、第1凝縮入口タンク212において、気液二相状態の熱媒体から液相熱媒体が分離・除去される。つまり、第1凝縮入口タンク212において、気液二相状態の熱媒体から液相熱媒体と気相熱媒体とに分離される。
By this, in the first condensation inlet tank 212, the liquid-phase heat medium is separated and removed from the heat medium in the gas-liquid two-phase state. That is, in the first condensation inlet tank 212, the heat medium in the gas-liquid two-phase state is separated into the liquid heat medium and the gas heat medium.
第1凝縮入口タンク212において気液分離された気相熱媒体は、第1凝縮入口タンク212を水平方向に流れて、接続通路302を介して、第2凝縮器22に流入する。
The gas-phase heat medium separated in the first condensation inlet tank 212 in the horizontal direction flows through the first condensation inlet tank 212 and flows into the second condenser 22 via the connection passage 302.
一方、第1凝縮入口タンク212において分離された液相熱媒体は、複数の第1凝縮チューブ211内の第1凝縮流路2110を落下し、第1凝縮出口タンク213に流入する。そして、第1凝縮器21で気液分離された液相熱媒体は、第1凝縮出口タンク213から第1液通路303を介して、蒸発器10に流入する。
On the other hand, the liquid-phase heat medium separated in the first condensing inlet tank 212 drops through the first condensing passages 2110 in the plurality of first condensing tubes 211 and flows into the first condensing outlet tank 213. Then, the liquid-phase heat medium separated into gas and liquid in the first condenser 21 flows into the evaporator 10 from the first condensation outlet tank 213 via the first liquid passage 303.
このとき、第1凝縮器21では、第1放熱フィン215を介して、複数の第1凝縮チューブ211同士の間の空気通路を流れる空気と、第1凝縮チューブ211内の熱媒体との間で熱交換が行われる。これにより、熱媒体の有する熱が空気に放出される。
At this time, in the first condenser 21, between the air flowing in the air passage between the plurality of first condensing tubes 211 and the heat medium in the first condensing tube 211 via the first heat radiation fins 215. Heat exchange takes place. As a result, the heat of the heat medium is released to the air.
その他の沸騰冷却装置の構成および作動は、第3実施形態と同様である。従って、本実施形態の沸騰冷却装置においても、第3実施形態と同様の効果を得ることができる。
Other configurations and operations of the boiling cooling device are similar to those of the third embodiment. Therefore, also in the boiling cooling device of this embodiment, the same effect as that of the third embodiment can be obtained.
さらに、本実施形態では、第1凝縮流路2110を、熱媒体が重力方向に流れるように構成している。これによれば、第1凝縮流路2110において凝縮した液相熱媒体の下方側への排出(すなわち落下)を重力によって促進することができる。
Further, in the present embodiment, the first condensing flow path 2110 is configured so that the heat medium flows in the direction of gravity. According to this, the discharge (that is, the drop) of the liquid-phase heat medium condensed in the first condensation flow path 2110 to the lower side can be promoted by gravity.
(第10実施形態)
次に、本発明の第10実施形態について図14に基づいて説明する。本実施形態は、上記第9実施形態と比較して、第1凝縮入口タンク212の構成が異なるものである。 (10th Embodiment)
Next, a tenth embodiment of the invention will be described with reference to FIG. The present embodiment is different from the ninth embodiment in the configuration of the firstcondensation inlet tank 212.
次に、本発明の第10実施形態について図14に基づいて説明する。本実施形態は、上記第9実施形態と比較して、第1凝縮入口タンク212の構成が異なるものである。 (10th Embodiment)
Next, a tenth embodiment of the invention will be described with reference to FIG. The present embodiment is different from the ninth embodiment in the configuration of the first
図14に示すように、本実施形態では、第1凝縮入口タンク212は、蒸気通路配管3010とは別体のタンク部材212Aにより構成されている。第1凝縮入口タンク212の長手方向における蒸発器10側の端部には、蒸気流入口2121が設けられている。
As shown in FIG. 14, in the present embodiment, the first condensation inlet tank 212 is composed of a tank member 212A which is separate from the steam passage piping 3010. A vapor inlet 2121 is provided at the end of the first condensation inlet tank 212 on the evaporator 10 side in the longitudinal direction.
入口側流路219の流路断面積D2は、蒸気通路301の通路断面積D1より大きい。なお、入口側流路219の流路断面積D2は、第1凝縮出口タンク213の内部空間における、第1凝縮チューブ211の積層方向に垂直な断面の断面積D3よりも大きい。本実施形態では、入口側流路219の流路断面積D2は、第1凝縮入口タンク212の内部空間における、第1凝縮チューブ211の積層方向に垂直な断面の断面積である。
The cross-sectional area D 2 of the inlet-side flow passage 219 is larger than the cross-sectional area D 1 of the steam passage 301. The flow passage cross-sectional area D 2 of the inlet-side flow passage 219 is larger than the cross-sectional area D 3 of the cross section perpendicular to the stacking direction of the first condensation tube 211 in the internal space of the first condensation outlet tank 213. In the present embodiment, the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 is a cross-sectional area of a cross section perpendicular to the stacking direction of the first condensation tubes 211 in the internal space of the first condensation inlet tank 212.
その他の沸騰冷却装置の構成および作動は、第9実施形態と同様である。従って、本実施形態の沸騰冷却装置においても、第9実施形態と同様の効果を得ることができる。
The other configurations and operations of the boiling cooling device are similar to those of the ninth embodiment. Therefore, also in the boiling cooling device of this embodiment, the same effect as that of the ninth embodiment can be obtained.
さらに、本実施形態では、第1凝縮器21における入口側流路219の流路断面積D2を、蒸気通路301の通路断面積D1より大きくしている。これによれば、蒸気通路301から第1凝縮器21に流入する熱媒体の流速を低下させることができる。このため、第1凝縮器21の入口側流路219において、気液二相状態の熱媒体から液相熱媒体の分離を促進することができる。
Furthermore, in the present embodiment, the flow path cross-sectional area D 2 of the inlet passage 219 in the first condenser 21 is made larger than the cross-sectional area D 1 of the steam path 301. According to this, the flow velocity of the heat medium flowing from the steam passage 301 into the first condenser 21 can be reduced. Therefore, in the inlet-side flow passage 219 of the first condenser 21, the separation of the liquid-phase heat medium from the heat medium in the gas-liquid two-phase state can be promoted.
(第11実施形態)
次に、本発明の第11実施形態について図15に基づいて説明する。本実施形態は、上記第9実施形態と比較して、第1熱交換部210の構成が異なるものである。 (Eleventh embodiment)
Next, an eleventh embodiment of the invention will be described with reference to FIG. The present embodiment is different from the ninth embodiment in the configuration of the firstheat exchange section 210.
次に、本発明の第11実施形態について図15に基づいて説明する。本実施形態は、上記第9実施形態と比較して、第1熱交換部210の構成が異なるものである。 (Eleventh embodiment)
Next, an eleventh embodiment of the invention will be described with reference to FIG. The present embodiment is different from the ninth embodiment in the configuration of the first
図15に示すように、第1凝縮器21は、接続凝縮流路23を有している。接続凝縮流路23は、各第1凝縮流路2110の途中に接続されている。接続凝縮流路23は、水平方向に延びている。すなわち、接続凝縮流路23は、第1凝縮チューブ211の積層方向に延びている。
As shown in FIG. 15, the first condenser 21 has a connection condensation passage 23. The connection condensation flow path 23 is connected in the middle of each first condensation flow path 2110. The connecting condensing channel 23 extends in the horizontal direction. That is, the connection condensing flow path 23 extends in the stacking direction of the first condensing tubes 211.
以下、第1凝縮チューブ211の積層方向を、チューブ積層方向という。また、チューブ積層方向において、蒸発器10側をチューブ積層方向一方側といい、蒸発器10と反対側をチューブ積層方向他方側という。
Hereinafter, the stacking direction of the first condensing tube 211 is referred to as the tube stacking direction. Further, in the tube stacking direction, the side of the evaporator 10 is referred to as one side of the tube stacking direction, and the side opposite to the evaporator 10 is referred to as the other side of the tube stacking direction.
接続凝縮流路23により、第1熱交換部210は複数の小熱交換部24に分割されている。複数の小熱交換部24は、重力方向に配置されている。本実施形態では、第1凝縮器21は、1つの接続凝縮流路23を有している。接続凝縮流路23は、第1熱交換部210における重力方向の中央部に配置されている。
The first heat exchange section 210 is divided into a plurality of small heat exchange sections 24 by the connection condensation flow path 23. The plurality of small heat exchange units 24 are arranged in the gravity direction. In the present embodiment, the first condenser 21 has one connected condensing flow path 23. The connection condensing flow path 23 is arranged in the center of the first heat exchange unit 210 in the direction of gravity.
接続凝縮流路23のチューブ積層方向の長さ、第1凝縮入口タンク212のチューブ積層方向の長さ、および第1凝縮出口タンク213のチューブ積層方向の長さは、互いに同等である。
The length of the connecting condensing channel 23 in the tube stacking direction, the length of the first condensing inlet tank 212 in the tube stacking direction, and the length of the first condensing outlet tank 213 in the tube stacking direction are equal to each other.
接続凝縮流路23におけるチューブ積層方向一方側の端部は、重力方向から見たときに(すなわち重力方向において)、第1凝縮入口タンク212のチューブ積層方向一方側の端部および第1凝縮出口タンク213のチューブ積層方向一方側の端部とそれぞれ重合している。接続凝縮流路23におけるチューブ積層方向他方側の端部は、重力方向から見たときに、第1凝縮入口タンク212のチューブ積層方向他方側の端部および第1凝縮出口タンク213のチューブ積層方向他方側の端部とそれぞれ重合している。
The end of the connection condensation flow path 23 on one side of the tube stacking direction is, when viewed from the gravity direction (that is, in the gravity direction), the end of the first condensation inlet tank 212 on one side of the tube stacking direction and the first condensation outlet. The end portions of the tank 213 on one side in the tube stacking direction are overlapped with each other. The end portion on the other side of the tube stacking direction in the connection condensing flow path 23, when viewed from the gravity direction, is the end portion on the other side of the tube stacking direction of the first condensation inlet tank 212 and the tube stacking direction of the first condensation outlet tank 213. It overlaps with the other end.
各小熱交換部24における熱交換部配置方向(すなわち、重力方向)の長さは、互いに等しい。また、各小熱交換部24における第1凝縮流路2110の数は、互いに等しい。隣り合う小熱交換部24における第1凝縮流路2110は、熱交換部配置方向から見たときに互いに重合している。
The lengths of the small heat exchange units 24 in the heat exchange unit arrangement direction (that is, the gravity direction) are equal to each other. Further, the number of the first condensation flow passages 2110 in each small heat exchange section 24 is equal to each other. The first condensation flow passages 2110 in the adjacent small heat exchange portions 24 overlap each other when viewed from the heat exchange portion arrangement direction.
その他の沸騰冷却装置の構成および作動は、第9実施形態と同様である。従って、本実施形態の沸騰冷却装置においても、第9実施形態と同様の効果を得ることができる。
The other configurations and operations of the boiling cooling device are similar to those of the ninth embodiment. Therefore, also in the boiling cooling device of this embodiment, the same effect as that of the ninth embodiment can be obtained.
さらに、本実施形態では、第1凝縮器21に、複数の第1凝縮流路2110が互いに接続される接続凝縮流路23を設けている。これによれば、第1凝縮入口タンク212および第1凝縮流路2110において凝縮した液相熱媒体を、第1凝縮流路2110の途中において集合・分離させることができる。
Further, in the present embodiment, the first condenser 21 is provided with the connection condensation passage 23 in which the plurality of first condensation passages 2110 are connected to each other. According to this, the liquid heat medium condensed in the first condensation inlet tank 212 and the first condensation flow passage 2110 can be collected and separated in the middle of the first condensation flow passage 2110.
(第12実施形態)
次に、本発明の第12実施形態について図16に基づいて説明する。本実施形態は、上記第11実施形態と比較して、第1凝縮入口タンク212の構成が異なるものである。 (Twelfth Embodiment)
Next, a twelfth embodiment of the present invention will be described with reference to FIG. The present embodiment is different from the above eleventh embodiment in the configuration of the firstcondensation inlet tank 212.
次に、本発明の第12実施形態について図16に基づいて説明する。本実施形態は、上記第11実施形態と比較して、第1凝縮入口タンク212の構成が異なるものである。 (Twelfth Embodiment)
Next, a twelfth embodiment of the present invention will be described with reference to FIG. The present embodiment is different from the above eleventh embodiment in the configuration of the first
図16に示すように、本実施形態では、第1凝縮入口タンク212は、蒸気通路配管3010とは別体のタンク部材212Aにより構成されている。入口側流路219の流路断面積D2は、蒸気通路301の通路断面積D1より大きい。
As shown in FIG. 16, in the present embodiment, the first condensation inlet tank 212 is composed of a tank member 212A that is separate from the steam passage piping 3010. The cross-sectional area D 2 of the inlet-side flow passage 219 is larger than the cross-sectional area D 1 of the steam passage 301.
その他の沸騰冷却装置の構成および作動は、第11実施形態と同様である。従って、本実施形態の沸騰冷却装置においても、第11実施形態と同様の効果を得ることができる。
Other configurations and operations of the boiling cooling device are the same as those in the eleventh embodiment. Therefore, also in the boiling cooling device of this embodiment, the same effect as that of the eleventh embodiment can be obtained.
さらに、本実施形態では、第1凝縮器21における入口側流路219の流路断面積D2を、蒸気通路301の通路断面積D1より大きくしている。これによれば、上記第10実施形態と同様に、第1凝縮器21の入口側流路219において、気液二相状態の熱媒体から液相熱媒体の分離を促進することができる。
Furthermore, in the present embodiment, the flow path cross-sectional area D 2 of the inlet passage 219 in the first condenser 21 is made larger than the cross-sectional area D 1 of the steam path 301. According to this, similarly to the tenth embodiment, in the inlet-side flow passage 219 of the first condenser 21, the separation of the liquid-phase heat medium from the heat medium in the gas-liquid two-phase state can be promoted.
(第13実施形態)
次に、本発明の第13実施形態について図17に基づいて説明する。本実施形態は、上記第11実施形態と比較して、第1熱交換部210の構成が異なるものである。 (13th Embodiment)
Next, a thirteenth embodiment of the invention will be described with reference to FIG. The present embodiment is different from the above eleventh embodiment in the configuration of the firstheat exchange section 210.
次に、本発明の第13実施形態について図17に基づいて説明する。本実施形態は、上記第11実施形態と比較して、第1熱交換部210の構成が異なるものである。 (13th Embodiment)
Next, a thirteenth embodiment of the invention will be described with reference to FIG. The present embodiment is different from the above eleventh embodiment in the configuration of the first
図17に示すように、本実施形態では、蒸気通路301は、第1凝縮器21における第1凝縮流路2110の途中(すなわち、中間部)に接続されている。そして、第1凝縮器21における第1凝縮流路2110の途中部分に、蒸発器10から気液二相状態の熱媒体が流入する。
As shown in FIG. 17, in the present embodiment, the steam passage 301 is connected to the middle of the first condensing passage 2110 in the first condenser 21 (that is, the intermediate portion). Then, the heat medium in the gas-liquid two-phase state flows from the evaporator 10 into the middle portion of the first condensation flow path 2110 in the first condenser 21.
具体的には、蒸気通路301は、接続凝縮流路23に接続されている。このため、蒸発器10から流出した気液二相状態の熱媒体が、第1凝縮チューブ211を介さずに、接続凝縮流路23に直接流入する。
Specifically, the steam passage 301 is connected to the connection condensation flow path 23. Therefore, the heat medium in the gas-liquid two-phase state that has flowed out of the evaporator 10 directly flows into the connected condensing channel 23 without passing through the first condensing tube 211.
したがって、本実施形態では、接続凝縮流路23が、複数の第1凝縮チューブ211に対して熱媒体の分配を行う機能を果たす。すなわち、接続凝縮流路23により、第1凝縮入口タンク212が構成されている。換言すると、第1凝縮入口タンク212により、接続凝縮流路23が構成されている。なお、本実施形態では、第1コネクタ216を廃止している。
Therefore, in the present embodiment, the connection condensing flow path 23 has a function of distributing the heat medium to the plurality of first condensing tubes 211. That is, the connection condensation flow path 23 constitutes the first condensation inlet tank 212. In other words, the first condensation inlet tank 212 constitutes the connection condensation passage 23. Note that the first connector 216 is omitted in this embodiment.
以下、2つの小熱交換部24のうち、重力方向上方側に配置される小熱交換部24を上側熱交換部243といい、重力方向下方側に配置される小熱交換部24を下側熱交換部244という。
Hereinafter, of the two small heat exchange parts 24, the small heat exchange part 24 arranged on the upper side in the direction of gravity is referred to as the upper heat exchange part 243, and the small heat exchange part 24 arranged on the lower side in the direction of gravity is the lower side. It is called the heat exchange section 244.
本実施形態では、第1凝縮入口タンク212は、蒸気通路配管3010の一部により構成されている。具体的には、蒸気通路配管3010の下流側端部に対して、複数の第1凝縮チューブ211が直接接続されている。
In the present embodiment, the first condensation inlet tank 212 is configured by a part of the steam passage piping 3010. Specifically, the plurality of first condensing tubes 211 are directly connected to the downstream end of the steam passage pipe 3010.
より詳細には、蒸気通路配管3010の下流側端部における重力方向上方側に、上側熱交換部243を構成する複数の第1凝縮チューブ211が接続されている。蒸気通路配管3010の下流側端部における重力方向下方側に、下側熱交換部244を構成する複数の第1凝縮チューブ211が接続されている。
More specifically, a plurality of first condensing tubes 211 forming the upper heat exchange section 243 are connected to the downstream end of the steam passage pipe 3010 on the upper side in the direction of gravity. A plurality of first condensing tubes 211 that constitute the lower heat exchange section 244 are connected to the downstream end of the steam passage pipe 3010 in the direction of gravity.
第1凝縮器21は、複数の第1凝縮チューブ211から主に気相状態の熱媒体の集合を行う第1蒸気出口タンク214を有している。第1蒸気出口タンク214は、上側熱交換部243を構成する第1凝縮チューブ211における重力方向上方側に配置されている。
The first condenser 21 has a first vapor outlet tank 214 that mainly collects the heat medium in the vapor phase from the plurality of first condenser tubes 211. The first steam outlet tank 214 is arranged on the upper side in the gravity direction of the first condensing tube 211 that constitutes the upper heat exchange section 243.
第1蒸気出口タンク214は、蒸気流出口2131を有している。蒸気流出口2131は、第1蒸気出口タンク214におけるチューブ積層方向他方側の端部に配置されている。すなわち、蒸気流出口2131は、第1蒸気出口タンク214の長手方向における蒸発器10と反対側の端部に配置されている。
The first steam outlet tank 214 has a steam outlet 2131. The steam outlet 2131 is arranged at the end of the first steam outlet tank 214 on the other side in the tube stacking direction. That is, the steam outlet 2131 is arranged at the end of the first steam outlet tank 214 on the side opposite to the evaporator 10 in the longitudinal direction.
その他の沸騰冷却装置の構成および作動は、第11実施形態と同様である。従って、本実施形態の沸騰冷却装置においても、第11実施形態と同様の効果を得ることができる。
Other configurations and operations of the boiling cooling device are the same as those in the eleventh embodiment. Therefore, also in the boiling cooling device of this embodiment, the same effect as that of the eleventh embodiment can be obtained.
さらに、本実施形態では、蒸気通路301を、第1凝縮器21における第1凝縮流路2110の中間部に接続している。これによれば、気液二相状態の熱媒体の重力方向上方側への上昇高さをより低くすることができるので、熱媒体の圧力損失を確実に低減できる。
Further, in the present embodiment, the steam passage 301 is connected to the intermediate portion of the first condensation flow passage 2110 in the first condenser 21. According to this, the rising height of the heat medium in the gas-liquid two-phase state to the upper side in the direction of gravity can be made lower, so that the pressure loss of the heat medium can be reliably reduced.
また、本実施形態では、接続凝縮流路23よりも重力方向上方側に位置する第1蒸気出口タンク214に、蒸気流出口2131を設けている。これによれば、第1凝縮器21内で凝縮した液相熱媒体は第1凝縮流路2110を落下し、気相熱媒体が第1蒸気出口タンク214に流入して、蒸気流出口2131から第2凝縮器22へ流出する。このため、気液二相状態の熱媒体から液相熱媒体の分離を促進することができる。
Further, in the present embodiment, the steam outlet 2131 is provided in the first steam outlet tank 214 located on the upper side in the gravity direction with respect to the connected condensation flow path 23. According to this, the liquid-phase heat medium condensed in the first condenser 21 drops through the first condensation flow path 2110, the vapor-phase heat medium flows into the first vapor outlet tank 214, and the vapor outflow port 2131 It flows into the second condenser 22. Therefore, the separation of the liquid-phase heat medium from the heat medium in the gas-liquid two-phase state can be promoted.
(第14実施形態)
次に、本発明の第14実施形態について図18に基づいて説明する。本実施形態は、上記第13実施形態と比較して、第1凝縮入口タンク212の構成が異なるものである。 (14th Embodiment)
Next, a fourteenth embodiment of the invention will be described with reference to FIG. The present embodiment is different from the thirteenth embodiment in the configuration of the firstcondensation inlet tank 212.
次に、本発明の第14実施形態について図18に基づいて説明する。本実施形態は、上記第13実施形態と比較して、第1凝縮入口タンク212の構成が異なるものである。 (14th Embodiment)
Next, a fourteenth embodiment of the invention will be described with reference to FIG. The present embodiment is different from the thirteenth embodiment in the configuration of the first
図18に示すように、本実施形態では、接続凝縮流路23を形成する第1凝縮入口タンク212は、蒸気通路配管3010とは別体のタンク部材212Aにより構成されている。第1凝縮入口タンク212の長手方向における蒸発器10側の端部には、蒸気流入口2121が設けられている。すなわち、第1凝縮入口タンク212におけるチューブ積層方向一方側の端部には、蒸気流入口2121が設けられている。
As shown in FIG. 18, in the present embodiment, the first condensing inlet tank 212 forming the connecting condensing flow path 23 is composed of a tank member 212A which is separate from the steam passage pipe 3010. A vapor inlet 2121 is provided at the end of the first condensation inlet tank 212 on the evaporator 10 side in the longitudinal direction. That is, the steam inlet 2121 is provided at the end of the first condensation inlet tank 212 on one side in the tube stacking direction.
入口側流路219の流路断面積D2は、蒸気通路301の通路断面積D1より大きい。本実施形態では、入口側流路219の流路断面積D2は、第1凝縮入口タンク212の内部空間における、チューブ積層方向に垂直な断面の断面積である。
The cross-sectional area D 2 of the inlet-side flow passage 219 is larger than the cross-sectional area D 1 of the steam passage 301. In the present embodiment, the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 is the cross-sectional area of the cross section perpendicular to the tube stacking direction in the internal space of the first condensation inlet tank 212.
その他の沸騰冷却装置の構成および作動は、第13実施形態と同様である。従って、本実施形態の沸騰冷却装置においても、第13実施形態と同様の効果を得ることができる。
Other configurations and operations of the boiling cooling device are similar to those of the thirteenth embodiment. Therefore, also in the boiling cooling device of this embodiment, the same effect as that of the thirteenth embodiment can be obtained.
さらに、本実施形態では、第1凝縮器21における入口側流路219の流路断面積D2を、蒸気通路301の通路断面積D1より大きくしている。これによれば、上記第10実施形態と同様に、第1凝縮器21の入口側流路219において、気液二相状態の熱媒体から液相熱媒体の分離を促進することができる。
Furthermore, in the present embodiment, the flow path cross-sectional area D 2 of the inlet passage 219 in the first condenser 21 is made larger than the cross-sectional area D 1 of the steam path 301. According to this, similarly to the tenth embodiment, in the inlet-side flow passage 219 of the first condenser 21, the separation of the liquid-phase heat medium from the heat medium in the gas-liquid two-phase state can be promoted.
(第15実施形態)
次に、本発明の第15実施形態について図19に基づいて説明する。本実施形態は、上記第13実施形態と比較して、第1蒸気出口タンク214の構成が異なるものである。 (15th Embodiment)
Next, a fifteenth embodiment of the invention will be described with reference to FIG. The present embodiment is different from the thirteenth embodiment in the configuration of the firststeam outlet tank 214.
次に、本発明の第15実施形態について図19に基づいて説明する。本実施形態は、上記第13実施形態と比較して、第1蒸気出口タンク214の構成が異なるものである。 (15th Embodiment)
Next, a fifteenth embodiment of the invention will be described with reference to FIG. The present embodiment is different from the thirteenth embodiment in the configuration of the first
図19に示すように、本実施形態の蒸気流出口2131は、第1蒸気出口タンク214におけるチューブ積層方向一方側の端部に配置されている。すなわち、蒸気流出口2131は、第1蒸気出口タンク214の長手方向における蒸発器10側の端部に配置されている。
As shown in FIG. 19, the steam outlet 2131 of the present embodiment is arranged at the end of the first steam outlet tank 214 on one side in the tube stacking direction. That is, the steam outlet 2131 is arranged at the end of the first steam outlet tank 214 on the evaporator 10 side in the longitudinal direction.
その他の沸騰冷却装置の構成および作動は、第13実施形態と同様である。従って、本実施形態の沸騰冷却装置においても、第13実施形態と同様の効果を得ることができる。
Other configurations and operations of the boiling cooling device are similar to those of the thirteenth embodiment. Therefore, also in the boiling cooling device of this embodiment, the same effect as that of the thirteenth embodiment can be obtained.
(第16実施形態)
次に、本発明の第16実施形態について図20に基づいて説明する。本実施形態は、上記第14実施形態と比較して、第1蒸気出口タンク214の構成が異なるものである。 (16th Embodiment)
Next, a sixteenth embodiment of the invention will be described with reference to FIG. The present embodiment is different from the fourteenth embodiment in the configuration of the firststeam outlet tank 214.
次に、本発明の第16実施形態について図20に基づいて説明する。本実施形態は、上記第14実施形態と比較して、第1蒸気出口タンク214の構成が異なるものである。 (16th Embodiment)
Next, a sixteenth embodiment of the invention will be described with reference to FIG. The present embodiment is different from the fourteenth embodiment in the configuration of the first
図20に示すように、本実施形態の蒸気流出口2131は、第1蒸気出口タンク214におけるチューブ積層方向一方側の端部に配置されている。すなわち、蒸気流出口2131は、第1蒸気出口タンク214の長手方向における蒸発器10側の端部に配置されている。
As shown in FIG. 20, the steam outlet 2131 of the present embodiment is arranged at the end of the first steam outlet tank 214 on one side in the tube stacking direction. That is, the steam outlet 2131 is arranged at the end of the first steam outlet tank 214 on the evaporator 10 side in the longitudinal direction.
その他の沸騰冷却装置の構成および作動は、第14実施形態と同様である。従って、本実施形態の沸騰冷却装置においても、第14実施形態と同様の効果を得ることができる。
Other configurations and operations of the boiling cooling device are the same as those in the fourteenth embodiment. Therefore, also in the boiling cooling device of this embodiment, the same effect as that of the fourteenth embodiment can be obtained.
(第17実施形態)
次に、本発明の第17実施形態について図21に基づいて説明する。本実施形態は、上記第11実施形態と比較して、第1熱交換部210の構成が異なるものである。 (17th Embodiment)
Next, a seventeenth embodiment of the invention will be described with reference to FIG. The present embodiment is different from the above eleventh embodiment in the configuration of the firstheat exchange section 210.
次に、本発明の第17実施形態について図21に基づいて説明する。本実施形態は、上記第11実施形態と比較して、第1熱交換部210の構成が異なるものである。 (17th Embodiment)
Next, a seventeenth embodiment of the invention will be described with reference to FIG. The present embodiment is different from the above eleventh embodiment in the configuration of the first
図21に示すように、上側熱交換部243おける第1凝縮流路2110の数は、下側熱交換部244における第1凝縮流路2110の数よりも多い。具体的には、上側熱交換部243における第1凝縮流路2110の数は7つであり、下側熱交換部244における第1凝縮流路2110の数は4つである。
As shown in FIG. 21, the number of first condensation flow passages 2110 in the upper heat exchange unit 243 is larger than the number of first condensation flow passages 2110 in the lower heat exchange unit 244. Specifically, the number of the first condensation flow passages 2110 in the upper heat exchange unit 243 is seven, and the number of the first condensation flow passages 2110 in the lower heat exchange unit 244 is four.
下側熱交換部244における各第1凝縮流路2110の流路断面積は、上側熱交換部243における各第1凝縮流路2110の流路断面積より大きい。下側熱交換部244における隣り合う第1凝縮流路2110同士の間隔は、上側熱交換部243における隣り合う第1凝縮流路2110同士の間隔よりも広い。
The flow passage cross-sectional area of each first condensation flow passage 2110 in the lower heat exchange unit 244 is larger than the flow passage cross-sectional area of each first condensation flow passage 2110 in the upper heat exchange unit 243. The distance between the adjacent first condensation flow passages 2110 in the lower heat exchange section 244 is wider than the distance between the adjacent first condensation flow passages 2110 in the upper heat exchange section 243.
以下、各小熱交換部24における複数の第1凝縮流路2110のうち、チューブ積層方向一方側の端部に配置される第1凝縮流路2110を一方側凝縮流路2113といい、チューブ積層方向他方側の端部に配置される第1凝縮流路2110を他方側凝縮流路2114という。
Hereinafter, of the plurality of first condensing flow paths 2110 in each small heat exchange section 24, the first condensing flow path 2110 arranged at one end in the tube stacking direction is referred to as one side condensing flow path 2113, and the tube stacking The first condensation flow passage 2110 arranged at the end portion on the other side in the direction is referred to as the other side condensation flow passage 2114.
上側熱交換部243の一方側凝縮流路2113は、下側熱交換部244の一方側凝縮流路2113よりもチューブ積層方向一方側(すなわち、蒸発器10側)に配置されている。上側熱交換部243の他方側凝縮流路2114は、下側熱交換部244の他方側凝縮流路2114よりもチューブ積層方向他方側(すなわち、蒸発器10と反対側)に配置されている。
The one-side condensation flow passage 2113 of the upper heat exchange unit 243 is arranged on one side of the one-side condensation flow passage 2113 of the lower heat exchange unit 244 in the tube stacking direction (that is, the evaporator 10 side). The other side condensing channel 2114 of the upper heat exchanging part 243 is arranged on the other side (that is, the side opposite to the evaporator 10) in the tube stacking direction than the other side condensing channel 2114 of the lower heat exchanging part 244.
その他の沸騰冷却装置の構成および作動は、第11実施形態と同様である。従って、本実施形態の沸騰冷却装置においても、第11実施形態と同様の効果を得ることができる。
Other configurations and operations of the boiling cooling device are the same as those in the eleventh embodiment. Therefore, also in the boiling cooling device of this embodiment, the same effect as that of the eleventh embodiment can be obtained.
さらに、本実施形態では、下側熱交換部244における各第1凝縮流路2110の流路断面積を、上側熱交換部243における各第1凝縮流路2110の流路断面積より大きくしている。これによれば、第1凝縮器21において、気液分離された液相熱媒体、および凝縮された液相熱媒体が、重力方向下方側の第1凝縮流路2110において目詰まりすることを抑制できる。
Further, in the present embodiment, the flow passage cross-sectional area of each first condensation flow passage 2110 in the lower heat exchange section 244 is made larger than the flow passage cross-sectional area of each first condensation flow passage 2110 in the upper heat exchange portion 243. There is. According to this, in the first condenser 21, the liquid-phase heat medium separated into gas and liquid and the condensed liquid-phase heat medium are suppressed from being clogged in the first condensation flow path 2110 on the lower side in the gravity direction. it can.
(第18実施形態)
次に、本発明の第18実施形態について図22に基づいて説明する。本実施形態は、上記第17実施形態と比較して、第1凝縮入口タンク212の構成が異なるものである。 (Eighteenth embodiment)
Next, an eighteenth embodiment of the invention will be described with reference to FIG. The present embodiment is different from the seventeenth embodiment in the configuration of the firstcondensation inlet tank 212.
次に、本発明の第18実施形態について図22に基づいて説明する。本実施形態は、上記第17実施形態と比較して、第1凝縮入口タンク212の構成が異なるものである。 (Eighteenth embodiment)
Next, an eighteenth embodiment of the invention will be described with reference to FIG. The present embodiment is different from the seventeenth embodiment in the configuration of the first
図22に示すように、本実施形態の第1凝縮入口タンク212は、蒸気通路配管3010とは別体のタンク部材212Aにより構成されている。入口側流路219の流路断面積D2は、蒸気通路301の通路断面積D1より大きい。
As shown in FIG. 22, the first condensation inlet tank 212 of the present embodiment is composed of a tank member 212A that is separate from the steam passage piping 3010. The cross-sectional area D 2 of the inlet-side flow passage 219 is larger than the cross-sectional area D 1 of the steam passage 301.
その他の沸騰冷却装置の構成および作動は、第17実施形態と同様である。従って、本実施形態の沸騰冷却装置においても、第17実施形態と同様の効果を得ることができる。
Other configurations and operations of the boiling cooling device are similar to those of the seventeenth embodiment. Therefore, also in the boiling cooling device of the present embodiment, the same effect as that of the seventeenth embodiment can be obtained.
さらに、本実施形態では、第1凝縮器21における入口側流路219の流路断面積D2を、蒸気通路301の通路断面積D1より大きくしている。これによれば、上記第10実施形態と同様に、第1凝縮器21の入口側流路219において、気液二相状態の熱媒体から液相熱媒体の分離を促進することができる。
Furthermore, in the present embodiment, the flow path cross-sectional area D 2 of the inlet passage 219 in the first condenser 21 is made larger than the cross-sectional area D 1 of the steam path 301. According to this, similarly to the tenth embodiment, in the inlet-side flow passage 219 of the first condenser 21, the separation of the liquid-phase heat medium from the heat medium in the gas-liquid two-phase state can be promoted.
(第19実施形態)
次に、本発明の第19実施形態について図23に基づいて説明する。本実施形態は、上記第13実施形態と比較して、第1熱交換部210の構成が異なるものである。 (19th Embodiment)
Next, a nineteenth embodiment of the invention will be described with reference to FIG. The present embodiment is different from the thirteenth embodiment in the configuration of the firstheat exchange section 210.
次に、本発明の第19実施形態について図23に基づいて説明する。本実施形態は、上記第13実施形態と比較して、第1熱交換部210の構成が異なるものである。 (19th Embodiment)
Next, a nineteenth embodiment of the invention will be described with reference to FIG. The present embodiment is different from the thirteenth embodiment in the configuration of the first
図23に示すように、上側熱交換部243おける第1凝縮流路2110の数は、下側熱交換部244における第1凝縮流路2110の数よりも少ない。具体的には、上側熱交換部243における第1凝縮流路2110の数は7つであり、下側熱交換部244における第1凝縮流路2110の数は8つである。
As shown in FIG. 23, the number of first condensation flow passages 2110 in the upper heat exchange unit 243 is smaller than the number of first condensation flow passages 2110 in the lower heat exchange unit 244. Specifically, the number of the first condensation flow passages 2110 in the upper heat exchange unit 243 is seven, and the number of the first condensation flow passages 2110 in the lower heat exchange unit 244 is eight.
上側熱交換部243における各第1凝縮流路2110の流路断面積、および下側熱交換部244における各第1凝縮流路2110の流路断面積は、互いに等しい。上側熱交換部243における隣り合う第1凝縮流路2110同士の間隔、および下側熱交換部244における隣り合う第1凝縮流路2110同士の間隔は、互いに等しい。
The flow passage cross-sectional area of each first condensation flow passage 2110 in the upper heat exchange section 243 and the flow passage cross-sectional area of each first condensation flow passage 2110 in the lower heat exchange portion 244 are equal to each other. The interval between the adjacent first condensation flow passages 2110 in the upper heat exchange section 243 and the interval between the adjacent first condensation flow passages 2110 in the lower heat exchange section 244 are equal to each other.
上側熱交換部243の一方側凝縮流路2113は、下側熱交換部244の一方側凝縮流路2113よりもチューブ積層方向一方側に配置されている。上側熱交換部243の他方側凝縮流路2114は、下側熱交換部244の他方側凝縮流路2114よりもチューブ積層方向他方側に配置されている。上側熱交換部243の第1凝縮流路2110および下側熱交換部244の第1凝縮流路2110は、重力方向から見たときに互いに重合していない。
The one-side condensation flow passage 2113 of the upper heat exchange unit 243 is arranged on the one side in the tube stacking direction with respect to the one-side condensation flow passage 2113 of the lower heat exchange unit 244. The other side condensation flow passage 2114 of the upper heat exchange portion 243 is arranged on the other side in the tube stacking direction than the other side condensation flow passage 2114 of the lower heat exchange portion 244. The first condensation flow passage 2110 of the upper heat exchange portion 243 and the first condensation flow passage 2110 of the lower heat exchange portion 244 do not overlap with each other when viewed from the direction of gravity.
その他の沸騰冷却装置の構成および作動は、第13実施形態と同様である。従って、本実施形態の沸騰冷却装置においても、第13実施形態と同様の効果を得ることができる。
Other configurations and operations of the boiling cooling device are similar to those of the thirteenth embodiment. Therefore, also in the boiling cooling device of this embodiment, the same effect as that of the thirteenth embodiment can be obtained.
(第20実施形態)
次に、本発明の第20実施形態について図24に基づいて説明する。本実施形態は、上記第19実施形態と比較して、第1凝縮入口タンク212の構成が異なるものである。 (Twentieth Embodiment)
Next, a twentieth embodiment of the present invention will be described with reference to FIG. The present embodiment is different from the nineteenth embodiment in the configuration of the firstcondensation inlet tank 212.
次に、本発明の第20実施形態について図24に基づいて説明する。本実施形態は、上記第19実施形態と比較して、第1凝縮入口タンク212の構成が異なるものである。 (Twentieth Embodiment)
Next, a twentieth embodiment of the present invention will be described with reference to FIG. The present embodiment is different from the nineteenth embodiment in the configuration of the first
図24に示すように、本実施形態では、第1凝縮入口タンク212は、蒸気通路配管3010とは別体のタンク部材212Aにより構成されている。入口側流路219の流路断面積D2は、蒸気通路301の通路断面積D1より大きい。
As shown in FIG. 24, in the present embodiment, the first condensation inlet tank 212 is composed of a tank member 212A that is separate from the steam passage piping 3010. The cross-sectional area D 2 of the inlet-side flow passage 219 is larger than the cross-sectional area D 1 of the steam passage 301.
その他の沸騰冷却装置の構成および作動は、第19実施形態と同様である。従って、本実施形態の沸騰冷却装置においても、第19実施形態と同様の効果を得ることができる。
Other configurations and operations of the boiling cooling device are the same as those of the nineteenth embodiment. Therefore, also in the boiling cooling device of this embodiment, the same effect as that of the nineteenth embodiment can be obtained.
さらに、本実施形態では、第1凝縮器21における入口側流路219の流路断面積D2を、蒸気通路301の通路断面積D1より大きくしている。これによれば、上記第10実施形態と同様に、第1凝縮器21の入口側流路219において、気液二相状態の熱媒体から液相熱媒体の分離を促進することができる。
Furthermore, in the present embodiment, the flow path cross-sectional area D 2 of the inlet passage 219 in the first condenser 21 is made larger than the cross-sectional area D 1 of the steam path 301. According to this, similarly to the tenth embodiment, in the inlet-side flow passage 219 of the first condenser 21, the separation of the liquid-phase heat medium from the heat medium in the gas-liquid two-phase state can be promoted.
(第21実施形態)
次に、本発明の第21実施形態について図25に基づいて説明する。本実施形態は、上記第20実施形態と比較して、第1凝縮入口タンク212および第1蒸気出口タンク214の構成が異なるものである。 (Twenty-first embodiment)
Next, a twenty-first embodiment of the present invention will be described with reference to FIG. The present embodiment is different from the twentieth embodiment in the configurations of the firstcondensation inlet tank 212 and the first vapor outlet tank 214.
次に、本発明の第21実施形態について図25に基づいて説明する。本実施形態は、上記第20実施形態と比較して、第1凝縮入口タンク212および第1蒸気出口タンク214の構成が異なるものである。 (Twenty-first embodiment)
Next, a twenty-first embodiment of the present invention will be described with reference to FIG. The present embodiment is different from the twentieth embodiment in the configurations of the first
図25に示すように、本実施形態では、第1凝縮入口タンク212の入口側流路219の流路断面積D2は、第1凝縮出口タンク213の内部空間における、第1凝縮チューブ211の積層方向に垂直な断面の断面積D3と同等である。また、第1凝縮入口タンク212の入口側流路219の流路断面積D2は、第1蒸気出口タンク214の内部空間における、第1凝縮チューブ211の積層方向に垂直な断面の断面積D4と同等である。
As shown in FIG. 25, in the present embodiment, the flow passage cross-sectional area D 2 of the inlet side flow passage 219 of the first condensation inlet tank 212 is equal to that of the first condensation tube 211 in the internal space of the first condensation outlet tank 213. It is equivalent to the cross-sectional area D 3 of the cross section perpendicular to the stacking direction. Further, the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 of the first condensation inlet tank 212 is a cross-sectional area D of a cross section perpendicular to the stacking direction of the first condensation tube 211 in the internal space of the first vapor outlet tank 214. It is equivalent to 4 .
本実施形態の蒸気流出口2131は、第1蒸気出口タンク214におけるチューブ積層方向一方側の端部に配置されている。すなわち、蒸気流出口2131は、第1蒸気出口タンク214の長手方向における蒸発器10側の端部に配置されている。
The steam outlet 2131 of this embodiment is arranged at the end of the first steam outlet tank 214 on one side in the tube stacking direction. That is, the steam outlet 2131 is arranged at the end of the first steam outlet tank 214 on the evaporator 10 side in the longitudinal direction.
その他の沸騰冷却装置の構成および作動は、第20実施形態と同様である。従って、本実施形態の沸騰冷却装置においても、第20実施形態と同様の効果を得ることができる。
Other configurations and operations of the boiling cooling device are the same as those in the twentieth embodiment. Therefore, also in the boiling cooling device of the present embodiment, the same effect as in the twentieth embodiment can be obtained.
(第22実施形態)
次に、本発明の第22実施形態について図26に基づいて説明する。本実施形態は、上記第20実施形態と比較して、第1蒸気出口タンク214の構成が異なるものである。 (22nd Embodiment)
Next, a twenty-second embodiment of the present invention will be described with reference to FIG. The present embodiment is different from the twentieth embodiment in the configuration of the firststeam outlet tank 214.
次に、本発明の第22実施形態について図26に基づいて説明する。本実施形態は、上記第20実施形態と比較して、第1蒸気出口タンク214の構成が異なるものである。 (22nd Embodiment)
Next, a twenty-second embodiment of the present invention will be described with reference to FIG. The present embodiment is different from the twentieth embodiment in the configuration of the first
図26に示すように、本実施形態の蒸気流出口2131は、第1蒸気出口タンク214におけるチューブ積層方向一方側の端部に配置されている。すなわち、蒸気流出口2131は、第1蒸気出口タンク214の長手方向における蒸発器10側の端部に配置されている。
As shown in FIG. 26, the steam outlet 2131 of the present embodiment is arranged at the end of the first steam outlet tank 214 on one side in the tube stacking direction. That is, the steam outlet 2131 is arranged at the end of the first steam outlet tank 214 on the evaporator 10 side in the longitudinal direction.
その他の沸騰冷却装置の構成および作動は、第20実施形態と同様である。従って、本実施形態の沸騰冷却装置においても、第20実施形態と同様の効果を得ることができる。
Other configurations and operations of the boiling cooling device are the same as those in the twentieth embodiment. Therefore, also in the boiling cooling device of the present embodiment, the same effect as in the twentieth embodiment can be obtained.
(第23実施形態)
次に、本発明の第23実施形態について図27に基づいて説明する。本実施形態は、上記第10実施形態と比較して、凝縮器20の一部の構成が異なるものである。 (23rd Embodiment)
Next, a twenty-third embodiment of the present invention will be described with reference to FIG. The present embodiment is different from the tenth embodiment in the configuration of a part of thecondenser 20.
次に、本発明の第23実施形態について図27に基づいて説明する。本実施形態は、上記第10実施形態と比較して、凝縮器20の一部の構成が異なるものである。 (23rd Embodiment)
Next, a twenty-third embodiment of the present invention will be described with reference to FIG. The present embodiment is different from the tenth embodiment in the configuration of a part of the
図27に示すように、本実施形態の凝縮器20では、第1凝縮器21における第1凝縮流路2110の平均流路断面積は、第2凝縮器22における第2凝縮流路2210の平均流路断面積よりも大きい。
As shown in FIG. 27, in the condenser 20 of the present embodiment, the average flow passage cross-sectional area of the first condensation flow passage 2110 in the first condenser 21 is the average of the second condensation flow passage 2210 in the second condenser 22. It is larger than the flow passage cross-sectional area.
より詳細には、第1凝縮器21における複数の第1凝縮流路2110の流路断面積は、互いに等しい。第2凝縮器22における複数の第2凝縮流路2210の流路断面積は、互いに等しい。したがって、本実施形態では、各第1凝縮流路2110の流路断面積は、各第2凝縮流路2210の流路断面積よりも大きい。
More specifically, the flow passage cross-sectional areas of the plurality of first condensation flow passages 2110 in the first condenser 21 are equal to each other. The flow passage cross-sectional areas of the plurality of second condensation flow passages 2210 in the second condenser 22 are equal to each other. Therefore, in the present embodiment, the flow passage cross-sectional area of each first condensation flow passage 2110 is larger than the flow passage cross-sectional area of each second condensation flow passage 2210.
また、本実施形態の第1凝縮器21では、入口側流路219の流路断面積D2は、第1凝縮出口タンク213の内部空間における、第1凝縮チューブ211の積層方向に垂直な断面の断面積D3と同等である。また、液流出口2132は、第1凝縮出口タンク213におけるチューブ積層方向一方側の端部に配置されている。すなわち、液流出口2132は、第1凝縮出口タンク213の長手方向における蒸発器10側の端部に配置されている。
Further, in the first condenser 21 of the present embodiment, the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 is a cross section perpendicular to the stacking direction of the first condensation tubes 211 in the internal space of the first condensation outlet tank 213. It is equivalent to the cross-sectional area D 3 of. The liquid outlet 2132 is arranged at the end of the first condensation outlet tank 213 on one side in the tube stacking direction. That is, the liquid outlet 2132 is arranged at the end of the first condensation outlet tank 213 on the evaporator 10 side in the longitudinal direction.
本実施形態の第2凝縮器22では、液流出口2231は、第2凝縮出口タンク223におけるチューブ積層方向一方側の端部に配置されている。すなわち、液流出口2231は、第2凝縮出口タンク223の長手方向における蒸発器10側の端部に配置されている。
In the second condenser 22 of the present embodiment, the liquid outlet 2231 is arranged at the end of the second condensation outlet tank 223 on one side in the tube stacking direction. That is, the liquid outlet 2231 is arranged at the end of the second condensation outlet tank 223 on the evaporator 10 side in the longitudinal direction.
その他の沸騰冷却装置の構成および作動は、第10実施形態と同様である。従って、本実施形態の沸騰冷却装置においても、第10実施形態と同様の効果を得ることができる。
The other configurations and operations of the boiling cooling device are similar to those of the tenth embodiment. Therefore, also in the boiling cooling device of this embodiment, the same effect as that of the tenth embodiment can be obtained.
ところで、上記特許文献1に記載のような沸騰冷却装置では、一般的に、凝縮器全体で凝縮チューブの流路径を小さくするとともに、凝縮チューブの本数を多くしている。すなわち、凝縮器全体において、凝縮チューブ内の凝縮流路の平均流路断面積を小さくしている。これにより、凝縮器において空気との伝熱面積を増大させて、凝縮器の凝縮能力を増大させることができるので、発熱体の最大発熱状態に対応可能となる。しかしながら、凝縮器における凝縮流路の流路抵抗が大きくなるため、発熱体の発熱量が少ない場合、熱媒体の循環が行われなくなる可能性がある。
By the way, in the boiling cooling device as described in Patent Document 1, generally, the flow path diameter of the condensing tubes is made small and the number of the condensing tubes is increased in the entire condenser. That is, in the entire condenser, the average flow passage cross-sectional area of the condensation flow passage in the condensation tube is reduced. As a result, the heat transfer area with the air in the condenser can be increased, and the condensation capacity of the condenser can be increased, so that the maximum heat generation state of the heating element can be dealt with. However, since the flow path resistance of the condensation flow path in the condenser becomes large, there is a possibility that the heat medium will not be circulated when the heat generation amount of the heating element is small.
これに対し、本実施形態では、凝縮器20として、第1凝縮器21および第2凝縮器22を設けている。そして、蒸発器10で蒸発した熱媒体が流入する第1凝縮器21における第1凝縮流路2110の平均流路断面積を、第2凝縮器22における第2凝縮流路2210の平均流路断面積よりも大きくしている。
On the other hand, in the present embodiment, as the condenser 20, a first condenser 21 and a second condenser 22 are provided. Then, the average flow path cross-sectional area of the first condensation flow path 2110 in the first condenser 21 into which the heat medium evaporated in the evaporator 10 flows is calculated as the average flow path cross-section of the second condensation flow path 2210 in the second condenser 22. It is larger than the area.
これによれば、第1凝縮器21における第1凝縮流路2110の流路抵抗を小さくすることができる。このため、発熱体40の発熱量が少ない場合でも、沸騰冷却装置内において熱媒体を循環させることができる。
According to this, the flow resistance of the first condensation flow path 2110 in the first condenser 21 can be reduced. Therefore, even when the heat generation amount of the heating element 40 is small, the heat medium can be circulated in the boiling cooling device.
(第24実施形態)
次に、本発明の第24実施形態について図28に基づいて説明する。本実施形態は、上記第23実施形態と比較して、第1凝縮器21の構成が異なるものである。 (24th Embodiment)
Next, a twenty-fourth embodiment of the present invention will be described with reference to FIG. The present embodiment is different from the twenty-third embodiment in the configuration of thefirst condenser 21.
次に、本発明の第24実施形態について図28に基づいて説明する。本実施形態は、上記第23実施形態と比較して、第1凝縮器21の構成が異なるものである。 (24th Embodiment)
Next, a twenty-fourth embodiment of the present invention will be described with reference to FIG. The present embodiment is different from the twenty-third embodiment in the configuration of the
図28に示すように、第1凝縮器21は、接続凝縮流路23を有している。接続凝縮流路23は、各第1凝縮流路2110の途中に接続されている。接続凝縮流路23は、水平方向に延びている。すなわち、接続凝縮流路23は、第1凝縮チューブ211の積層方向に延びている。
As shown in FIG. 28, the first condenser 21 has a connection condensation passage 23. The connection condensation flow path 23 is connected in the middle of each first condensation flow path 2110. The connecting condensing channel 23 extends in the horizontal direction. That is, the connection condensing flow path 23 extends in the stacking direction of the first condensing tubes 211.
接続凝縮流路23により、第1熱交換部210は、重力方向に複数の小熱交換部24に分割されている。すなわち、複数の小熱交換部24は、重力方向に配置されている。接続凝縮流路23の上方側および下方側には、それぞれ、小熱交換部24が接続されている。
The first heat exchange section 210 is divided into a plurality of small heat exchange sections 24 in the direction of gravity by the connected condensing flow path 23. That is, the plurality of small heat exchange units 24 are arranged in the gravity direction. The small heat exchange section 24 is connected to the upper side and the lower side of the connection condensation flow path 23, respectively.
具体的には、第1凝縮器21は、1つの接続凝縮流路23を有している。これにより、第1熱交換部210は、上側熱交換部243および下側熱交換部244に分割されている。接続凝縮流路23は、第1熱交換部210における重力方向の中央部に配置されている。
Specifically, the first condenser 21 has one connected condensing flow path 23. As a result, the first heat exchange section 210 is divided into the upper heat exchange section 243 and the lower heat exchange section 244. The connection condensing flow path 23 is arranged in the center of the first heat exchange unit 210 in the direction of gravity.
接続凝縮流路23のチューブ積層方向の長さ、第1凝縮入口タンク212のチューブ積層方向の長さ、および第1凝縮出口タンク213のチューブ積層方向の長さは、互いに同等である。
The length of the connecting condensing channel 23 in the tube stacking direction, the length of the first condensing inlet tank 212 in the tube stacking direction, and the length of the first condensing outlet tank 213 in the tube stacking direction are equal to each other.
接続凝縮流路23におけるチューブ積層方向一方側の端部は、重力方向から見たときに(すなわち重力方向において)、第1凝縮入口タンク212のチューブ積層方向一方側の端部および第1凝縮出口タンク213のチューブ積層方向一方側の端部とそれぞれ重合している。接続凝縮流路23におけるチューブ積層方向他方側の端部は、重力方向から見たときに、第1凝縮入口タンク212のチューブ積層方向他方側の端部および第1凝縮出口タンク213のチューブ積層方向他方側の端部とそれぞれ重合している。
The end of the connection condensation flow path 23 on one side of the tube stacking direction is, when viewed from the gravity direction (that is, in the gravity direction), the end of the first condensation inlet tank 212 on one side of the tube stacking direction and the first condensation outlet. The end portions of the tank 213 on one side in the tube stacking direction are overlapped with each other. The end portion on the other side of the tube stacking direction in the connection condensing flow path 23, when viewed from the gravity direction, is the end portion on the other side of the tube stacking direction of the first condensation inlet tank 212 and the tube stacking direction of the first condensation outlet tank 213. It overlaps with the other end.
上側熱交換部243および下側熱交換部244は、それぞれ、第1凝縮流路2110を有している。上側熱交換部243おける第1凝縮流路2110の数は、下側熱交換部244における第1凝縮流路2110の数よりも少ない。具体的には、上側熱交換部243における第1凝縮流路2110の数は6つであり、下側熱交換部244における第1凝縮流路2110の数は7つである。
The upper heat exchange section 243 and the lower heat exchange section 244 each have a first condensation flow path 2110. The number of first condensation flow passages 2110 in the upper heat exchange portion 243 is smaller than the number of first condensation flow passages 2110 in the lower heat exchange portion 244. Specifically, the number of the first condensation flow passages 2110 in the upper heat exchange unit 243 is six, and the number of the first condensation flow passages 2110 in the lower heat exchange unit 244 is seven.
複数の小熱交換部24における第1凝縮流路2110の平均流路断面積は、互いに異なる。上側熱交換部243における複数の第1凝縮流路2110の平均流路断面積は、下側熱交換部244における複数の第1凝縮流路2110の平均流路断面積よりも大きい。
The average flow passage cross-sectional areas of the first condensation flow passages 2110 in the plurality of small heat exchange portions 24 are different from each other. An average channel cross-sectional area of the plurality of first condensation channels 2110 in the upper heat exchange section 243 is larger than an average channel cross-sectional area of the plurality of first condensation channels 2110 in the lower heat exchange section 244.
また、下側熱交換部244における複数の第1凝縮流路2110の平均流路断面積は、第2凝縮器22における第2凝縮流路2210の平均流路断面積よりも大きい。したがって、本実施形態においても、第1凝縮器21における第1凝縮流路2110の平均流路断面積は、第2凝縮器22における第2凝縮流路2210の平均流路断面積よりも大きい。
The average flow passage cross-sectional area of the plurality of first condensation flow passages 2110 in the lower heat exchange section 244 is larger than the average flow passage cross-sectional area of the second condensation flow passage 2210 in the second condenser 22. Therefore, also in the present embodiment, the average flow passage cross-sectional area of the first condensation flow passage 2110 in the first condenser 21 is larger than the average flow passage cross-sectional area of the second condensation flow passage 2210 in the second condenser 22.
より詳細には、上側熱交換部243における複数の第1凝縮流路2110の流路断面積は、互いに等しい。下側熱交換部244における複数の第1凝縮流路2110の流路断面積は、互いに等しい。したがって、本実施形態では、上側熱交換部243における各第1凝縮流路2110の流路断面積は、下側熱交換部244における各第1凝縮流路2110の流路断面積よりも大きい。
More specifically, the flow passage cross-sectional areas of the plurality of first condensation flow passages 2110 in the upper heat exchange section 243 are equal to each other. The flow passage cross-sectional areas of the plurality of first condensation flow passages 2110 in the lower heat exchange section 244 are equal to each other. Therefore, in the present embodiment, the flow passage cross-sectional area of each first condensation flow passage 2110 in the upper heat exchange unit 243 is larger than the flow passage cross-sectional area of each first condensation flow passage 2110 in the lower heat exchange unit 244.
その他の沸騰冷却装置の構成および作動は、第23実施形態と同様である。従って、本実施形態の沸騰冷却装置においても、第23実施形態と同様の効果を得ることができる。
Other configurations and operations of the boiling cooling device are the same as those in the 23rd embodiment. Therefore, also in the boiling cooling device of this embodiment, the same effect as that of the 23rd embodiment can be obtained.
さらに、本実施形態では、第1凝縮器21に、複数の第1凝縮流路2110が互いに接続される接続凝縮流路23を設けている。これによれば、第1凝縮入口タンク212および第1凝縮流路2110において凝縮した液相熱媒体を、第1凝縮流路2110の途中において集合・分離させることができる。
Further, in the present embodiment, the first condenser 21 is provided with the connection condensation passage 23 in which the plurality of first condensation passages 2110 are connected to each other. According to this, the liquid heat medium condensed in the first condensation inlet tank 212 and the first condensation flow passage 2110 can be collected and separated in the middle of the first condensation flow passage 2110.
(第25実施形態)
次に、本発明の第25実施形態について図29に基づいて説明する。本実施形態は、上記第24実施形態と比較して、下側熱交換部244の構成が異なるものである。 (25th Embodiment)
Next, a twenty-fifth embodiment of the present invention will be described with reference to FIG. The present embodiment is different from the above-described twenty-fourth embodiment in the configuration of the lowerheat exchange section 244.
次に、本発明の第25実施形態について図29に基づいて説明する。本実施形態は、上記第24実施形態と比較して、下側熱交換部244の構成が異なるものである。 (25th Embodiment)
Next, a twenty-fifth embodiment of the present invention will be described with reference to FIG. The present embodiment is different from the above-described twenty-fourth embodiment in the configuration of the lower
図29に示すように、本実施形態では、下側熱交換部244における第1凝縮流路2110の数は、上側熱交換部243おける第1凝縮流路2110の数よりも少ない。具体的には、下側熱交換部244における第1凝縮流路2110の数は4つであり、上側熱交換部243における第1凝縮流路2110の数は6つである。
As shown in FIG. 29, in the present embodiment, the number of first condensation flow passages 2110 in the lower heat exchange unit 244 is smaller than the number of first condensation flow passages 2110 in the upper heat exchange unit 243. Specifically, the number of the first condensation flow passages 2110 in the lower heat exchange unit 244 is four, and the number of the first condensation flow passages 2110 in the upper heat exchange unit 243 is six.
複数の小熱交換部24において、下方側に配置された小熱交換部24における第1凝縮流路2110の平均流路断面積が、上方側に配置された小熱交換部24における第1凝縮流路2110の平均流路断面積よりも大きい。換言すると、下側熱交換部244における複数の第1凝縮流路2110の平均流路断面積は、上側熱交換部243における複数の第1凝縮流路2110の平均流路断面積よりも大きい。
In the plurality of small heat exchange parts 24, the average flow passage cross-sectional area of the first condensation flow passages 2110 in the small heat exchange parts 24 arranged on the lower side is equal to the first condensation in the small heat exchange parts 24 arranged on the upper side. It is larger than the average channel cross-sectional area of the channel 2110. In other words, the average channel cross-sectional area of the plurality of first condensation channels 2110 in the lower heat exchange section 244 is larger than the average channel cross-sectional area of the plurality of first condensation channels 2110 in the upper heat exchange section 243.
なお、上側熱交換部243における複数の第1凝縮流路2110の平均流路断面積は、第2凝縮器22における第2凝縮流路2210の平均流路断面積よりも大きい。したがって、本実施形態においても、第1凝縮器21における第1凝縮流路2110の平均流路断面積は、第2凝縮器22における第2凝縮流路2210の平均流路断面積よりも大きい。
The average flow passage cross-sectional area of the plurality of first condensation flow passages 2110 in the upper heat exchange section 243 is larger than the average flow passage cross-sectional area of the second condensation flow passage 2210 in the second condenser 22. Therefore, also in the present embodiment, the average flow passage cross-sectional area of the first condensation flow passage 2110 in the first condenser 21 is larger than the average flow passage cross-sectional area of the second condensation flow passage 2210 in the second condenser 22.
その他の沸騰冷却装置の構成および作動は、第24実施形態と同様である。従って、本実施形態の沸騰冷却装置においても、第24実施形態と同様の効果を得ることができる。
The other configurations and operations of the boiling cooling device are the same as those in the 24th embodiment. Therefore, also in the boiling cooling device of this embodiment, the same effect as that of the twenty-fourth embodiment can be obtained.
さらに、本実施形態では、下側熱交換部244における各第1凝縮流路2110の流路断面積を、上側熱交換部243における各第1凝縮流路2110の流路断面積より大きくしている。これによれば、第1凝縮器21において、気液分離された液相熱媒体、および凝縮された液相熱媒体が、重力方向下方側の第1凝縮流路2110において目詰まりすることを抑制できる。
Further, in the present embodiment, the flow passage cross-sectional area of each first condensation flow passage 2110 in the lower heat exchange section 244 is made larger than the flow passage cross-sectional area of each first condensation flow passage 2110 in the upper heat exchange portion 243. There is. According to this, in the first condenser 21, the liquid-phase heat medium separated into gas and liquid and the condensed liquid-phase heat medium are suppressed from being clogged in the first condensation flow path 2110 on the lower side in the gravity direction. it can.
(第26実施形態)
次に、本発明の第26実施形態について図30に基づいて説明する。本実施形態は、上記第23実施形態と比較して、第1凝縮器21の構成が異なるものである。 (Twenty-sixth embodiment)
Next, a twenty-sixth embodiment of the present invention will be described with reference to FIG. The present embodiment is different from the twenty-third embodiment in the configuration of thefirst condenser 21.
次に、本発明の第26実施形態について図30に基づいて説明する。本実施形態は、上記第23実施形態と比較して、第1凝縮器21の構成が異なるものである。 (Twenty-sixth embodiment)
Next, a twenty-sixth embodiment of the present invention will be described with reference to FIG. The present embodiment is different from the twenty-third embodiment in the configuration of the
図30に示すように、第1凝縮器21は、複数の第1凝縮流路2110が互いに接続される接続凝縮流路23を有している。接続凝縮流路23は、各第1凝縮流路2110の途中に接続されている。接続凝縮流路23は、重力方向に延びている。接続凝縮流路23により、第1熱交換部210は複数の小熱交換部24に分割されている。複数の小熱交換部24は、水平方向に配置されている。
As shown in FIG. 30, the first condenser 21 has a connection condensation flow path 23 in which a plurality of first condensation flow paths 2110 are connected to each other. The connection condensation flow path 23 is connected in the middle of each first condensation flow path 2110. The connecting condensing flow path 23 extends in the gravity direction. The first heat exchange section 210 is divided into a plurality of small heat exchange sections 24 by the connection condensation flow path 23. The plurality of small heat exchange units 24 are arranged in the horizontal direction.
本実施形態では、第1凝縮器21は、2つの接続凝縮流路23を有している。2つの接続凝縮流路23は、互いに間隔を空けて配置されている。これにより、第1熱交換部210は、3つの小熱交換部24に分割されている。具体的には、小熱交換部24は、第1凝縮入口タンク212と接続凝縮流路23との間、2つの接続凝縮流路23同士の間、接続凝縮流路23と第1凝縮出口タンク213との間に、それぞれ配置されている。
In the present embodiment, the first condenser 21 has two connected condensation flow passages 23. The two connected condensing flow paths 23 are arranged at a distance from each other. As a result, the first heat exchange section 210 is divided into the three small heat exchange sections 24. Specifically, the small heat exchange unit 24 includes the first condensation inlet tank 212 and the connection condensation passage 23, the two connection condensation passages 23, the connection condensation passage 23 and the first condensation outlet tank. 213 and 213, respectively.
接続凝縮流路23の車両上下方向の長さ、第1凝縮入口タンク212の車両上下方向の長さ、および第1凝縮出口タンク213の車両上下方向の長さは、互いに同等である。接続凝縮流路23の上端部は、水平方向から見たときに、第1凝縮入口タンク212の上端部および第1凝縮出口タンク213の上端部とそれぞれ重合している。接続凝縮流路23の下端部は、水平方向から見たときに第1凝縮入口タンク212の下端部および第1凝縮出口タンク213の下端部とそれぞれ重合している。
The vehicle vertical length of the connecting condensation flow path 23, the vehicle vertical length of the first condensation inlet tank 212, and the vehicle vertical length of the first condensation outlet tank 213 are equal to each other. When viewed in the horizontal direction, the upper end of the connecting condensing flow path 23 overlaps with the upper end of the first condensing inlet tank 212 and the upper end of the first condensing outlet tank 213, respectively. The lower end of the connecting condensing flow path 23 overlaps with the lower end of the first condensing inlet tank 212 and the lower end of the first condensing outlet tank 213 when viewed in the horizontal direction.
各小熱交換部24における熱交換部配置方向の長さは、互いに等しい。また、各小熱交換部24における第1凝縮流路2110の数は、互いに等しい。隣り合う小熱交換部24における第1凝縮流路2110は、熱交換部配置方向から見たときに互いに重合している。
The lengths of the small heat exchange parts 24 in the heat exchange part arrangement direction are equal to each other. Further, the number of the first condensation flow passages 2110 in each small heat exchange section 24 is equal to each other. The first condensation flow passages 2110 in the adjacent small heat exchange portions 24 overlap each other when viewed from the heat exchange portion arrangement direction.
その他の沸騰冷却装置の構成および作動は、第23実施形態と同様である。従って、本実施形態の沸騰冷却装置においても、第23実施形態と同様の効果を得ることができる。
Other configurations and operations of the boiling cooling device are the same as those in the 23rd embodiment. Therefore, also in the boiling cooling device of this embodiment, the same effect as that of the 23rd embodiment can be obtained.
さらに、本実施形態では、第1凝縮器21に、複数の第1凝縮流路2110が互いに接続される接続凝縮流路23を設けている。これによれば、第1凝縮入口タンク212および第1凝縮流路2110において凝縮した液相熱媒体を、第1凝縮流路2110の途中において集合・分離させることができる。
Further, in the present embodiment, the first condenser 21 is provided with the connection condensation passage 23 in which the plurality of first condensation passages 2110 are connected to each other. According to this, the liquid heat medium condensed in the first condensation inlet tank 212 and the first condensation flow passage 2110 can be collected and separated in the middle of the first condensation flow passage 2110.
(第27実施形態)
次に、本発明の第27実施形態について図31に基づいて説明する。本第27実施形態は、上記第26実施形態と比較して、第1熱交換部210の構成が異なるものである。 (Twenty-seventh embodiment)
Next, a twenty-seventh embodiment of the present invention will be described with reference to FIG. The twenty-seventh embodiment is different from the twenty-sixth embodiment in the configuration of the firstheat exchange section 210.
次に、本発明の第27実施形態について図31に基づいて説明する。本第27実施形態は、上記第26実施形態と比較して、第1熱交換部210の構成が異なるものである。 (Twenty-seventh embodiment)
Next, a twenty-seventh embodiment of the present invention will be described with reference to FIG. The twenty-seventh embodiment is different from the twenty-sixth embodiment in the configuration of the first
図31に示すように、本実施形態の第1凝縮器21では、各小熱交換部24において、複数の第1凝縮流路2110は、互いに流路断面積が異なっている。具体的には、各小熱交換部24における複数の第1凝縮流路2110において、下方側に配置された第1凝縮流路2110の流路断面積が、上方側に配置された第1凝縮流路2110の流路断面積よりも大きい。すなわち、各小熱交換部24における複数の第1凝縮流路2110は、下方側に配置されたもの程、流路断面積が大きい。
As shown in FIG. 31, in the first condenser 21 of the present embodiment, in each small heat exchange section 24, the plurality of first condensation flow passages 2110 have different flow passage cross-sectional areas. Specifically, in the plurality of first condensation flow passages 2110 in each small heat exchange section 24, the flow passage cross-sectional area of the first condensation flow passage 2110 arranged on the lower side is the first condensation flow passage arranged on the upper side. It is larger than the flow passage cross-sectional area of the flow passage 2110. That is, the plurality of first condensing flow paths 2110 in each small heat exchange section 24 have a larger flow path cross-sectional area as they are arranged on the lower side.
その他の沸騰冷却装置の構成および作動は、第26実施形態と同様である。従って、本実施形態の沸騰冷却装置においても、第26実施形態と同様の効果を得ることができる。
Other configurations and operations of the boiling cooling device are similar to those of the 26th embodiment. Therefore, also in the boiling cooling device of this embodiment, the same effects as in the twenty-sixth embodiment can be obtained.
さらに、本実施形態では、複数の第1凝縮流路2110の流路断面積を互いに異ならせている。これによれば、第1凝縮器21の内部において、液相熱媒体を多く含む流れおよび気相熱媒体を多く含む流れのうちいずれかの熱媒体流れを選択して、各第1凝縮流路2110に流すことができる。
Further, in the present embodiment, the flow passage cross-sectional areas of the plurality of first condensation flow passages 2110 are made different from each other. According to this, in the inside of the first condenser 21, any one of the flow containing a large amount of the liquid phase heat medium and the flow containing a large amount of the gas phase heat medium is selected, and each first condensing flow path is selected. It can be flushed to 2110.
具体的には、本実施形態では、下方側に配置された第1凝縮流路2110の流路断面積を、上方側に配置された第1凝縮流路2110の流路断面積よりも大きくしている。このため、圧力損失が液相熱媒体よりも小さい気相熱媒体を多く含む流れが、流路断面積の小さい第1凝縮流路2110、すなわち上方側に配置された第1凝縮流路2110を流れる。また、圧力損失が気相熱媒体よりも大きい液相熱媒体を多く含む流れが、流路断面積の大きい第1凝縮流路2110、すなわち下方側に配置された第1凝縮流路2110を流れる。
Specifically, in the present embodiment, the flow passage cross-sectional area of the first condensation flow passage 2110 arranged on the lower side is made larger than the flow passage cross-sectional area of the first condensation flow passage 2110 arranged on the upper side. ing. Therefore, the flow containing a large amount of gas-phase heat medium having a smaller pressure loss than the liquid-phase heat medium flows through the first condensation flow passage 2110 having a small flow passage cross-sectional area, that is, the first condensation flow passage 2110 arranged on the upper side. Flowing. A flow containing a large amount of liquid-phase heat medium having a larger pressure loss than the gas-phase heat medium flows through the first condensing flow passage 2110 having a large flow passage cross-sectional area, that is, the first condensing flow passage 2110 arranged on the lower side. ..
このように、本実施形態では、上方側に配置された第1凝縮流路2110に気相熱媒体を多く含む流れを流すとともに、下方側に配置された第1凝縮流路2110に液相熱媒体を多く含む流れを流すことができる。これにより、第1凝縮器21において、熱媒体の気液分離を効率的に行うことができる。
As described above, in the present embodiment, a flow containing a large amount of the vapor phase heat medium is caused to flow through the first condensation flow passage 2110 arranged on the upper side, and the liquid phase heat is flown through the first condensation flow passage 2110 arranged on the lower side. A medium rich stream can be flowed. As a result, in the first condenser 21, gas-liquid separation of the heat medium can be efficiently performed.
(第28実施形態)
次に、本発明の第28実施形態について図32~図34に基づいて説明する。本実施形態は、上記第10実施形態と比較して、凝縮器20の構成が異なるものである。 (28th Embodiment)
Next, a twenty-eighth embodiment of the present invention will be described with reference to FIGS. 32 to 34. The present embodiment is different from the tenth embodiment in the configuration of thecondenser 20.
次に、本発明の第28実施形態について図32~図34に基づいて説明する。本実施形態は、上記第10実施形態と比較して、凝縮器20の構成が異なるものである。 (28th Embodiment)
Next, a twenty-eighth embodiment of the present invention will be described with reference to FIGS. 32 to 34. The present embodiment is different from the tenth embodiment in the configuration of the
図32および図33に示すように、本実施形態の凝縮器20では、第1凝縮器21および第2凝縮器22が、空気流れ方向に配置されている。すなわち、第1凝縮器21および第2凝縮器22が、各凝縮器21、22の厚み方向に配置されている。
As shown in FIGS. 32 and 33, in the condenser 20 of this embodiment, the first condenser 21 and the second condenser 22 are arranged in the air flow direction. That is, the first condenser 21 and the second condenser 22 are arranged in the thickness direction of the condensers 21 and 22.
第1凝縮器21の重力方向上端部は、第2凝縮器22の重力方向上端部と同等の高さに配置されている。すなわち、第1凝縮器21の重力方向上端部は、第2凝縮器22の重力方向上端部と、重力方向において同等の高さに配置されている。換言すると、第1凝縮器21の重力方向上端部は、水平方向から見たときに第2凝縮器22の重力方向上端部と重合している。
The upper end of the first condenser 21 in the gravity direction is arranged at the same height as the upper end of the second condenser 22 in the gravity direction. That is, the upper end of the first condenser 21 in the direction of gravity is arranged at the same height as the upper end of the second condenser 22 in the direction of gravity. In other words, the upper end of the first condenser 21 in the direction of gravity overlaps the upper end of the second condenser 22 in the direction of gravity when viewed in the horizontal direction.
図33に示すように、本実施形態の第1凝縮器21では、入口側流路219の流路断面積D2は、第1凝縮出口タンク213の内部空間における、第1凝縮チューブ211の積層方向に垂直な断面の断面積D3と同等である。
As shown in FIG. 33, in the first condenser 21 of the present embodiment, the flow passage cross-sectional area D 2 of the inlet side flow passage 219 is such that the first condensing tubes 211 are stacked in the internal space of the first condensing outlet tank 213. It is equivalent to the cross-sectional area D 3 of the cross section perpendicular to the direction.
第1凝縮器21の液流出口2132は、第1凝縮出口タンク213におけるチューブ積層方向一方側の端部に設けられている。すなわち、第1凝縮器21の液流出口2132は、第1凝縮出口タンク213の長手方向における蒸発器10側の端部に設けられている。
The liquid outlet 2132 of the first condenser 21 is provided at the end of the first condenser outlet tank 213 on one side in the tube stacking direction. That is, the liquid outlet 2132 of the first condenser 21 is provided at the end of the first condenser outlet tank 213 on the evaporator 10 side in the longitudinal direction.
第2凝縮器22の液流出口2231は、第2凝縮出口タンク223におけるチューブ積層方向一方側の端部に設けられている。すなわち、第2凝縮器22の液流出口2231は、第2凝縮出口タンク223の長手方向における蒸発器10側の端部に設けられている。
The liquid outlet 2231 of the second condenser 22 is provided at the end of the second condenser outlet tank 223 on one side of the tube stacking direction. That is, the liquid outlet 2231 of the second condenser 22 is provided at the end of the second condensation outlet tank 223 on the evaporator 10 side in the longitudinal direction.
接続通路302の上流側端部は、第1凝縮器21の重力方向上方側に接続されている。接続通路302の下流側端部は、第2凝縮器22の重力方向上方側に接続されている。第1液通路303の上流側端部は、第1凝縮器21の重力方向下方側に接続されている。第2液通路304の上流側端部は、第2凝縮器22の重力方向下方側に接続されている。
The upstream end of the connection passage 302 is connected to the upper side of the first condenser 21 in the gravity direction. The downstream end of the connection passage 302 is connected to the upper side of the second condenser 22 in the gravity direction. The upstream end of the first liquid passage 303 is connected to the lower side of the first condenser 21 in the gravity direction. The upstream end of the second liquid passage 304 is connected to the lower side of the second condenser 22 in the gravity direction.
図32に示すように、本実施形態の蒸発器10では、各蒸発チューブ(図示せず)における扁平面の両側に、発熱体40がそれぞれ接合されている。発熱体40は、蒸発器10の厚み方向一方側および他方側のそれぞれにおいて、複数積層されている。なお、蒸発器10の厚み方向は、凝縮器20の空気流れ方向に平行である。
As shown in FIG. 32, in the evaporator 10 of the present embodiment, the heating elements 40 are joined to both sides of the flat surface of each evaporation tube (not shown). A plurality of heating elements 40 are laminated on each of one side and the other side in the thickness direction of the evaporator 10. The thickness direction of the evaporator 10 is parallel to the air flow direction of the condenser 20.
次に、上記構成を備える第1凝縮器21の作動を図33および図34に基づいて説明する。
Next, the operation of the first condenser 21 having the above configuration will be described based on FIGS. 33 and 34.
第1凝縮器21に流入した気液二相状態の熱媒体のうち、気相熱媒体は、第1凝縮入口タンク212、および第1凝縮チューブ211の第1凝縮流路2110において凝縮する。そして、凝縮した液相熱媒体は、重力により第1凝縮流路2110を落下する。このとき、第1凝縮入口タンク212から第1凝縮流路2110に液相熱媒体が吸引されることで、 第1凝縮入口タンク212を流れる熱媒体の流速が低下する。
Of the heat medium in the gas-liquid two-phase state that has flowed into the first condenser 21, the gas-phase heat medium is condensed in the first condensation inlet tank 212 and the first condensation flow passage 2110 of the first condensation tube 211. Then, the condensed liquid heat medium drops in the first condensation flow path 2110 due to gravity. At this time, the liquid-phase heat medium is sucked from the first condensation inlet tank 212 into the first condensation flow passage 2110, so that the flow velocity of the heat medium flowing through the first condensation inlet tank 212 decreases.
これにより、第1凝縮入口タンク212において、気液二相状態の熱媒体から液相熱媒体が分離・除去される。つまり、第1凝縮入口タンク212において、気液二相状態の熱媒体から液相熱媒体と気相熱媒体とに分離される。
By this, in the first condensation inlet tank 212, the liquid-phase heat medium is separated and removed from the heat medium in the gas-liquid two-phase state. That is, in the first condensation inlet tank 212, the heat medium in the gas-liquid two-phase state is separated into the liquid heat medium and the gas heat medium.
第1凝縮入口タンク212において気液分離された気相熱媒体は、第1凝縮入口タンク212を水平方向に流れて、接続通路302を介して、第2凝縮器22に流入する。
The gas-phase heat medium separated in the first condensation inlet tank 212 in the horizontal direction flows through the first condensation inlet tank 212 and flows into the second condenser 22 via the connection passage 302.
一方、第1凝縮入口タンク212において分離された液相熱媒体は、複数の第1凝縮チューブ211内の第1凝縮流路2110を落下し、第1凝縮出口タンク213に流入する。そして、第1凝縮器21で気液分離された液相熱媒体は、第1凝縮出口タンク213から第1液通路303を介して、蒸発器10に流入する。
On the other hand, the liquid-phase heat medium separated in the first condensing inlet tank 212 drops through the first condensing passages 2110 in the plurality of first condensing tubes 211 and flows into the first condensing outlet tank 213. Then, the liquid-phase heat medium separated into gas and liquid in the first condenser 21 flows into the evaporator 10 from the first condensation outlet tank 213 via the first liquid passage 303.
このとき、第1凝縮器21では、第1放熱フィン215を介して、複数の第1凝縮チューブ211同士の間の空気通路を流れる空気と、第1凝縮チューブ211内の熱媒体との間で熱交換が行われる。これにより、熱媒体の有する熱が空気に放出される。
At this time, in the first condenser 21, between the air flowing in the air passage between the plurality of first condensing tubes 211 and the heat medium in the first condensing tube 211 via the first heat radiation fins 215. Heat exchange takes place. As a result, the heat of the heat medium is released to the air.
以上説明したように、本実施形態では、凝縮器20として、第1凝縮器21および第2凝縮器22を設けている。第1凝縮器21および第2凝縮器22を、空気流れ方向に配置されている。第1凝縮器21において、気液二相状態の熱媒体から液相熱媒体を分離させる。第1凝縮器21において、液相熱媒体が分離された後の気相熱媒体を第2凝縮器22の蒸気流入口2221側へ流出させる。
As described above, in the present embodiment, the first condenser 21 and the second condenser 22 are provided as the condenser 20. The first condenser 21 and the second condenser 22 are arranged in the air flow direction. In the first condenser 21, the liquid-phase heat medium is separated from the gas-liquid two-phase heat medium. In the first condenser 21, the vapor-phase heat medium after the liquid-phase heat medium is separated is caused to flow to the vapor inlet 2221 side of the second condenser 22.
これによれば、第1凝縮器21および第2凝縮器22を空気流れ方向に並列に配置しているので、沸騰冷却装置全体の高さを低くすることができる。このため、沸騰冷却装置の小型化を図ることができる。
According to this, since the first condenser 21 and the second condenser 22 are arranged in parallel in the air flow direction, it is possible to reduce the height of the entire boil cooling apparatus. Therefore, the boiling cooling device can be downsized.
ところで、上述した特許文献1の沸騰冷却装置では、蒸発器から気液二相状態の熱媒体が流出した場合、凝縮器内に液相熱媒体が流入する。これにより、凝縮器の熱交換部に液相熱媒体が存在することとなり、凝縮器における熱媒体の放熱性が悪化する可能性がある。このため、凝縮器における熱媒体の放熱性を確保するためには、凝縮器の体格を大きくする必要がある。その結果、沸騰冷却装置が大型化してしまう。
By the way, in the boiling cooling device of Patent Document 1 described above, when the heat medium in the gas-liquid two-phase state flows out from the evaporator, the liquid phase heat medium flows into the condenser. As a result, the liquid-phase heat medium exists in the heat exchange section of the condenser, which may deteriorate the heat dissipation of the heat medium in the condenser. Therefore, in order to secure the heat dissipation of the heat medium in the condenser, it is necessary to increase the size of the condenser. As a result, the boiling cooling device becomes large.
これに対し、本実施形態の沸騰冷却装置では、第1凝縮器21および第2凝縮器22を空気流れ方向に並列に配置している。このため、第1凝縮出口タンク213および第2凝縮出口タンク223において、各凝縮器21、22の熱交換部210、220にて凝縮した液相熱媒体を集合させることができる。したがって、各凝縮器21、22の熱交換部210、220にて凝縮した液相熱媒体を集合させる部分(以下、液タンクという)が2つになるため、特許文献1の沸騰冷却装置に対して、液タンクの容量が増加する。
On the other hand, in the boiling cooling device of the present embodiment, the first condenser 21 and the second condenser 22 are arranged in parallel in the air flow direction. Therefore, in the first condensation outlet tank 213 and the second condensation outlet tank 223, it is possible to collect the liquid phase heat medium condensed in the heat exchange sections 210 and 220 of the condensers 21 and 22. Therefore, since there are two parts (hereinafter, referred to as liquid tanks) for collecting the liquid-phase heat medium condensed in the heat exchange parts 210 and 220 of the condensers 21 and 22, the boiling cooling device of Patent Document 1 is different. As a result, the capacity of the liquid tank increases.
これにより、本実施形態の沸騰冷却装置では、各凝縮器21、22内部における液相熱媒体の液面の上昇を抑えることができる。このため、各凝縮器21、22における熱媒体の放熱性の悪化を抑制できるので、蒸発器10に対する各凝縮器21、22の高さを低くすることが可能となる。
Thereby, in the boiling cooling device of the present embodiment, it is possible to suppress the rise of the liquid level of the liquid phase heat medium inside each of the condensers 21 and 22. For this reason, since it is possible to suppress deterioration of heat dissipation of the heat medium in each of the condensers 21 and 22, it is possible to reduce the height of each of the condensers 21 and 22 with respect to the evaporator 10.
(第29実施形態)
次に、本発明の第29実施形態について図35および図36に基づいて説明する。本実施形態は、上記第28実施形態と比較して、第1凝縮器21の構成が異なるものである。 (Twenty-ninth Embodiment)
Next, a twenty-ninth embodiment of the present invention will be described with reference to FIGS. 35 and 36. The present embodiment is different from the 28th embodiment in the configuration of thefirst condenser 21.
次に、本発明の第29実施形態について図35および図36に基づいて説明する。本実施形態は、上記第28実施形態と比較して、第1凝縮器21の構成が異なるものである。 (Twenty-ninth Embodiment)
Next, a twenty-ninth embodiment of the present invention will be described with reference to FIGS. 35 and 36. The present embodiment is different from the 28th embodiment in the configuration of the
図35および図36に示すように、本実施形態の第1凝縮器21では、第1凝縮チューブ211は、その長手方向が水平方向と略平行となるように配置されている。このため、第1凝縮流路2110は、熱媒体が水平方向に流れるように構成されている。第1凝縮チューブ211は、重力方向において、複数本平行に配置されている。
As shown in FIGS. 35 and 36, in the first condenser 21 of this embodiment, the first condensing tube 211 is arranged such that its longitudinal direction is substantially parallel to the horizontal direction. Therefore, the first condensing flow path 2110 is configured so that the heat medium flows in the horizontal direction. A plurality of the first condensing tubes 211 are arranged in parallel in the gravity direction.
第1凝縮入口タンク212および第1凝縮出口タンク213は、それぞれ、重力方向に延びている。第1凝縮入口タンク212は、第1凝縮チューブ211の長手方向における蒸発器10に近い側の端部に接続されている。第1凝縮出口タンク213は、第1凝縮チューブ211の長手方向における蒸発器10から遠い側の端部に接続されている。また、第1凝縮入口タンク212入口側流路219の流路断面積D2は、蒸気通路301の通路断面積D1より大きい。
The first condensation inlet tank 212 and the first condensation outlet tank 213 each extend in the gravity direction. The first condensation inlet tank 212 is connected to the end of the first condensation tube 211 on the side closer to the evaporator 10 in the longitudinal direction. The first condensation outlet tank 213 is connected to the end of the first condensation tube 211 on the side farther from the evaporator 10 in the longitudinal direction. Further, the flow path cross-sectional area D 2 of the first condenser inlet tank 212 inlet passage 219 is greater than the cross-sectional area D 1 of the steam path 301.
第1凝縮器21の蒸気流入口2121は、第1凝縮入口タンク212における重力方向上方側に配置されている。第1凝縮器21の蒸気流出口2131は、第1凝縮出口タンク213における重力方向上方側に設けられている。第1凝縮器21の液流出口2132は、第1凝縮出口タンク213における重力方向下端面に配置されている。
The vapor inlet 2121 of the first condenser 21 is arranged on the upper side in the gravity direction of the first condenser inlet tank 212. The vapor outlet 2131 of the first condenser 21 is provided on the upper side in the gravity direction of the first condenser outlet tank 213. The liquid outlet 2132 of the first condenser 21 is arranged on the lower end surface of the first condenser outlet tank 213 in the gravity direction.
ここで、図36に示すように、蒸発器10から流出した気液二相状態の熱媒体は、蒸気通路301を介して第1凝縮器21に流入する。このとき、第1凝縮器21における入口側流路219の流路断面積D2が蒸気通路301の通路断面積D1より大きいので、蒸気通路301から第1凝縮器21に流入した熱媒体の流速が低下する。これにより、第1凝縮器21の入口側流路219(すなわち第1凝縮入口タンク212)において、気液二相状態の熱媒体から液相熱媒体が分離・除去される。つまり、第1凝縮入口タンク212において、気液二相状態の熱媒体から液相熱媒体と気相熱媒体とに分離される。
Here, as shown in FIG. 36, the heat medium in the gas-liquid two-phase state that has flowed out of the evaporator 10 flows into the first condenser 21 via the vapor passage 301. At this time, since the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 in the first condenser 21 is larger than the passage cross-sectional area D 1 of the steam passage 301, the heat medium flowing from the steam passage 301 into the first condenser 21 The flow velocity decreases. As a result, the liquid-phase heat medium is separated and removed from the heat medium in the gas-liquid two-phase state in the inlet-side flow passage 219 of the first condenser 21 (that is, the first condensation inlet tank 212). That is, in the first condensation inlet tank 212, the heat medium in the gas-liquid two-phase state is separated into the liquid heat medium and the gas heat medium.
その他の沸騰冷却装置の構成および作動は、第28実施形態と同様である。従って、本実施形態の沸騰冷却装置においても、第28実施形態と同様の効果を得ることができる。
Other configurations and operations of the boiling cooling device are the same as those in the 28th embodiment. Therefore, also in the boiling cooling device of this embodiment, the same effects as in the 28th embodiment can be obtained.
(第30実施形態)
本発明の第30実施形態について図37~図39に基づいて説明する。以下の図37、および後述する図40は、車両の上下方向が重力方向と平行になっている状態を示している。 (30th Embodiment)
A thirtieth embodiment of the present invention will be described with reference to FIGS. 37 to 39. FIG. 37 below and FIG. 40 described later show a state in which the vertical direction of the vehicle is parallel to the gravity direction.
本発明の第30実施形態について図37~図39に基づいて説明する。以下の図37、および後述する図40は、車両の上下方向が重力方向と平行になっている状態を示している。 (30th Embodiment)
A thirtieth embodiment of the present invention will be described with reference to FIGS. 37 to 39. FIG. 37 below and FIG. 40 described later show a state in which the vertical direction of the vehicle is parallel to the gravity direction.
図37に示すように、本実施形態の沸騰冷却装置1においては、蒸発器10および凝縮器20は、車両の前後方向に配置されている。本実施形態では、蒸発器10は、凝縮器20よりも車両後方側に位置している。
As shown in FIG. 37, in the boiling cooling device 1 of this embodiment, the evaporator 10 and the condenser 20 are arranged in the front-rear direction of the vehicle. In the present embodiment, the evaporator 10 is located on the vehicle rear side of the condenser 20.
次に、蒸発器10の構成について説明する。蒸発器10は、いわゆるタンクアンドチューブ型の熱交換器である。蒸発器10は、蒸発チューブ101と、蒸発タンク102、103とを備えている。
Next, the structure of the evaporator 10 will be described. The evaporator 10 is a so-called tank-and-tube type heat exchanger. The evaporator 10 includes an evaporation tube 101 and evaporation tanks 102 and 103.
蒸発チューブ101は、熱媒体が流れる流路を形成する管状部材である。蒸発チューブ101は、扁平板状(すなわち断面扁平形状)に形成された扁平チューブである。蒸発チューブ101は、その長手方向が重力方向と略平行となるように配置されている。蒸発チューブ101は、水平方向において、複数本平行に配置されている。
The evaporation tube 101 is a tubular member that forms a flow path through which a heat medium flows. The evaporation tube 101 is a flat tube formed in a flat plate shape (that is, a flat cross section). The evaporation tube 101 is arranged such that its longitudinal direction is substantially parallel to the direction of gravity. A plurality of evaporation tubes 101 are arranged in parallel in the horizontal direction.
複数の蒸発チューブ101は、同一平面を形成している。すなわち、複数の蒸発チューブ101は、蒸発チューブ101の両側の扁平面がそれぞれ同一平面上に配置されるように、一列に並んで配置されている。
The plurality of evaporation tubes 101 form the same plane. That is, the plurality of evaporation tubes 101 are arranged in a line so that flat surfaces on both sides of the evaporation tubes 101 are arranged on the same plane.
複数の蒸発チューブ101における扁平面には、発熱体40が接合されている。このため、蒸発チューブ101内の熱媒体には、発熱体40からの熱が伝わる。
The heating element 40 is joined to the flat surfaces of the plurality of evaporation tubes 101. Therefore, the heat from the heating element 40 is transferred to the heat medium in the evaporation tube 101.
蒸発タンク102、103は、複数の蒸発チューブ101と連通している。蒸発タンク102、103は、複数の蒸発チューブ101に対して熱媒体の集合または分配を行う。
The evaporation tanks 102 and 103 communicate with a plurality of evaporation tubes 101. The evaporation tanks 102 and 103 collect or distribute the heat medium with respect to the plurality of evaporation tubes 101.
蒸発タンク102、103は、蒸発チューブ101における長手方向の両端部に一つずつ設けられている。すなわち、蒸発タンク102、103は、蒸発チューブ101における重力方向上端部および下端部に一つずつ設けられている。
The evaporation tanks 102 and 103 are provided one at each end of the evaporation tube 101 in the longitudinal direction. That is, the evaporation tanks 102 and 103 are respectively provided at the upper end and the lower end in the gravity direction of the evaporation tube 101.
蒸発タンク102、103は、蒸発チューブ101の長手方向と直交する方向に延びている。すなわち、蒸発タンク102、103は、水平方向に延びている。蒸発タンク102、103には、蒸発チューブ101が挿入された状態で接合されている。
The evaporation tanks 102 and 103 extend in a direction orthogonal to the longitudinal direction of the evaporation tube 101. That is, the evaporation tanks 102 and 103 extend in the horizontal direction. An evaporation tube 101 is inserted and joined to the evaporation tanks 102 and 103.
ここで、二つの蒸発タンク102、103のうち、重力方向下方側に配置されるとともに蒸発チューブ101に対して熱媒体の分配を行うものを、蒸発入口タンク102という。また、二つの蒸発タンク102、103のうち、重力方向上方側に配置されるとともに、蒸発チューブ101から流出する熱媒体の集合を行うものを、蒸発出口タンク103という。
Here, of the two evaporation tanks 102 and 103, the one arranged on the lower side in the direction of gravity and distributing the heat medium to the evaporation tube 101 is called an evaporation inlet tank 102. Further, one of the two evaporation tanks 102 and 103, which is arranged on the upper side in the gravity direction and collects the heat medium flowing out from the evaporation tube 101, is called an evaporation outlet tank 103.
蒸発入口タンク102は、後述する凝縮器20にて凝縮した液相熱媒体を蒸発入口タンク102内に流入させる蒸発側液流入口1021を有している。蒸発側液流入口1021は、蒸発入口タンク102における長手方向の一端側に設けられている。
The evaporation inlet tank 102 has an evaporation side liquid inflow port 1021 through which a liquid phase heat medium condensed in a condenser 20 described later flows into the evaporation inlet tank 102. The evaporation side liquid inlet 1021 is provided at one end side in the longitudinal direction of the evaporation inlet tank 102.
蒸発出口タンク103は、蒸発側蒸気流出口1031を有している。蒸発側蒸気流出口1031は、蒸発出口タンク103内の熱媒体を凝縮器20の第1蒸気流入口2120側へ流出させる。換言すると、蒸発側蒸気流出口1031は、蒸発チューブ101にて蒸発した気相熱媒体を含む気液二相状態の熱媒体を、凝縮器20の第1蒸気流入口2120側へ流出させる。
The evaporation outlet tank 103 has an evaporation side vapor outlet 1031. The vaporization side vapor outlet 1031 causes the heat medium in the vaporization outlet tank 103 to flow out to the first vapor inlet 2120 side of the condenser 20. In other words, the evaporation-side vapor outlet 1031 causes the heat medium in the gas-liquid two-phase state including the vapor-phase heat medium evaporated in the evaporation tube 101 to flow out to the first vapor inlet 2120 side of the condenser 20.
蒸発側蒸気流出口1031は、蒸発出口タンク103における長手方向の一端側に設けられている。本実施形態では、蒸発側蒸気流出口1031は、蒸発出口タンク103の長手方向における蒸発側液流入口1021と同一側の端部に設けられている。
The evaporation side vapor outlet 1031 is provided at one end side in the longitudinal direction of the evaporation outlet tank 103. In the present embodiment, the evaporation side vapor outlet 1031 is provided at the end of the evaporation outlet tank 103 on the same side as the evaporation side liquid inlet 1021.
次に、凝縮器20の構成について説明する。凝縮器20は、第1凝縮器21および第2凝縮器22を有している。第2凝縮器22は、第1凝縮器21の重力方向上方側に配置されている。本実施形態では、第1凝縮器21および第2凝縮器22は一体に形成されている。なお、第1凝縮器21および第2凝縮器22を別体として形成してもよい。
Next, the configuration of the condenser 20 will be described. The condenser 20 has a first condenser 21 and a second condenser 22. The second condenser 22 is arranged above the first condenser 21 in the direction of gravity. In this embodiment, the first condenser 21 and the second condenser 22 are integrally formed. The first condenser 21 and the second condenser 22 may be formed as separate bodies.
第1凝縮器21は、蒸発器10から流出した気液二相状態の熱媒体から少なくとも一部の液相熱媒体を分離する。第1凝縮器21は、気液二相状態の熱媒体から少なくとも一部の液相熱媒体が分離された後の熱媒体を、第2凝縮器22の流入口側へ流出させる。
The first condenser 21 separates at least a part of the liquid-phase heat medium from the gas-liquid two-phase heat medium flowing out from the evaporator 10. The first condenser 21 causes the heat medium after at least a part of the liquid-phase heat medium is separated from the heat medium in the gas-liquid two-phase state to flow out to the inlet side of the second condenser 22.
次に、第1凝縮器21の構成について説明する。第1凝縮器21は、熱媒体と空気とを熱交換させる第1熱交換部210を有している。より詳細には、第1熱交換部210は、蒸発器10から流出した気液二相状態の熱媒体と空気とを熱交換させて、気液二相状態の熱媒体の少なくとも一部を凝縮させる。
Next, the configuration of the first condenser 21 will be described. The first condenser 21 has a first heat exchange section 210 for exchanging heat between the heat medium and air. More specifically, the first heat exchange unit 210 heat-exchanges the heat medium in the gas-liquid two-phase state and the air flowing out from the evaporator 10 to condense at least a part of the heat medium in the gas-liquid two-phase state. Let
第1熱交換部210は、第1凝縮チューブ211および第1放熱フィン215を有している。換言すると、第1凝縮チューブ211および第1放熱フィン215により、第1熱交換部210が構成されている。
The first heat exchange section 210 has a first condensing tube 211 and a first radiating fin 215. In other words, the first heat exchange section 210 is configured by the first condensing tube 211 and the first heat radiation fin 215.
具体的には、第1凝縮器21は、いわゆるタンクアンドチューブ型の熱交換器である。第1凝縮器21は、第1凝縮チューブ211と、第1凝縮タンク212、213と、第1放熱フィン215とを備えている。
Specifically, the first condenser 21 is a so-called tank-and-tube heat exchanger. The first condenser 21 includes a first condensing tube 211, first condensing tanks 212 and 213, and a first radiating fin 215.
第1凝縮チューブ211は、熱媒体が流れる第1凝縮流路2110を形成する管状部材である。具体的には、第1凝縮チューブ211は、扁平板状に形成された扁平チューブである。
The first condensing tube 211 is a tubular member that forms a first condensing channel 2110 through which the heat medium flows. Specifically, the first condensing tube 211 is a flat tube formed in a flat plate shape.
第1凝縮チューブ211は、その長手方向が水平方向と略垂直となるように配置されている。すなわち、第1凝縮チューブ211は、その長手方向が重力方向と略平行となるように配置されている。したがって、第1凝縮器21は、第1凝縮流路2110において熱媒体が重力方向に流れるように構成されている。
The first condensing tube 211 is arranged so that its longitudinal direction is substantially vertical to the horizontal direction. That is, the first condensing tube 211 is arranged such that its longitudinal direction is substantially parallel to the gravity direction. Therefore, the first condenser 21 is configured such that the heat medium flows in the gravity direction in the first condensation flow path 2110.
第1凝縮器21は、複数の第1凝縮チューブ211を有している。したがって、第1凝縮器21は、複数の第1凝縮流路2110を有している。本例では、第1凝縮チューブ211は、水平方向において、複数本平行に配置されている。
The first condenser 21 has a plurality of first condensing tubes 211. Therefore, the first condenser 21 has a plurality of first condensation flow paths 2110. In this example, the first condensing tubes 211 are arranged in parallel in the horizontal direction.
複数の第1凝縮チューブ211は所定の間隔で互いに積層されている。複数の第1凝縮チューブ211同士の間には、空気が流れるようになっている。複数の第1凝縮チューブ211同士の間の空気通路には、第1放熱フィン215が設けられている。本実施形態では、第1放熱フィン215は、波状(すなわちコルゲート状)に形成されている。これにより、複数の第1凝縮チューブ211内を流れる熱媒体と、複数の第1凝縮チューブ211間を流れる空気とが熱交換される。
The plurality of first condensing tubes 211 are laminated at a predetermined interval. Air flows between the plurality of first condensing tubes 211. First radiating fins 215 are provided in the air passage between the plurality of first condensing tubes 211. In the present embodiment, the first radiating fins 215 are formed in a wavy shape (that is, a corrugated shape). As a result, the heat medium flowing in the plurality of first condensing tubes 211 and the air flowing between the plurality of first condensing tubes 211 are heat-exchanged.
第1凝縮タンク212、213は、複数の第1凝縮チューブ211と連通している。第1凝縮タンク212、213は、複数の第1凝縮チューブ211に対して熱媒体の集合または分配を行う。第1凝縮タンク212、213は、第1凝縮チューブ211における長手方向の両端部に一つずつ設けられている。
The first condensing tanks 212 and 213 communicate with the plurality of first condensing tubes 211. The first condensing tanks 212 and 213 collect or distribute the heat medium with respect to the plurality of first condensing tubes 211. The first condensing tanks 212 and 213 are provided one at each end of the first condensing tube 211 in the longitudinal direction.
第1凝縮タンク212、213は、第1凝縮チューブ211の長手方向と直交する方向に延びている。すなわち、第1凝縮タンク212、213は、水平方向に延びている。具体的には、第1凝縮タンク212、213は、車両前後方向に延びている。第1凝縮タンク212、213には、第1凝縮チューブ211が挿入された状態で接合されている。
The first condensing tanks 212 and 213 extend in a direction orthogonal to the longitudinal direction of the first condensing tube 211. That is, the first condensing tanks 212 and 213 extend in the horizontal direction. Specifically, the first condensing tanks 212 and 213 extend in the vehicle front-rear direction. The first condensing tubes 211 are joined to the first condensing tanks 212 and 213 while being inserted therein.
ここで、二つの第1凝縮タンク212、213のうち、重力方向上方側に配置されるとともに、第1凝縮チューブ211に対して熱媒体の分配を行うものを、第1凝縮入口タンク212という。また、二つの第1凝縮タンク212、213のうち、重力方向下方側に配置されるとともに、第1凝縮チューブ211から流出する熱媒体の集合を行うものを、第1凝縮出口タンク213という。
Here, of the two first condensing tanks 212 and 213, the one arranged on the upper side in the direction of gravity and distributing the heat medium to the first condensing tube 211 is referred to as a first condensing inlet tank 212. Further, one of the two first condensing tanks 212 and 213, which is arranged on the lower side in the gravity direction and collects the heat medium flowing out from the first condensing tube 211, is referred to as a first condensing outlet tank 213.
第1凝縮入口タンク212は、第1蒸気流入口2120および凝縮側蒸気流出口2123を有している。第1蒸気流入口2120は、蒸発器10から流出した気液二相状態の熱媒体を第1凝縮入口タンク212内に流入させる。凝縮側蒸気流出口2123は、第1凝縮出口タンク213内の気相熱媒体を、後述する第2凝縮器22の第2蒸気流入口2220側へ流出させる。
The first condensation inlet tank 212 has a first vapor inlet 2120 and a condensation side vapor outlet 2123. The first vapor inlet 2120 causes the heat medium in the gas-liquid two-phase state that has flowed out of the evaporator 10 to flow into the first condensation inlet tank 212. The condensation-side vapor outlet 2123 causes the vapor-phase heat medium in the first condensation outlet tank 213 to flow to the second vapor inlet 2220 side of the second condenser 22 described later.
第1蒸気流入口2120は、第1凝縮入口タンク212における水平方向の一端部に設けられている。具体的には、第1蒸気流入口2120は、第1凝縮入口タンク212における車両後方側の端部に設けられている。また、第1蒸気流入口2120は、蒸発器10の蒸発側蒸気流出口1031よりも重力方向上方側に配置されている。
The first steam inlet 2120 is provided at one horizontal end of the first condensation inlet tank 212. Specifically, the first steam inlet 2120 is provided at the end of the first condensation inlet tank 212 on the vehicle rear side. The first steam inlet 2120 is arranged above the evaporation side steam outlet 1031 of the evaporator 10 in the gravity direction.
凝縮側蒸気流出口2123は、第1凝縮入口タンク212における水平方向の他端部に設けられている。具体的には、凝縮側蒸気流出口2123は、第1凝縮入口タンク212における車両前方側の端部に設けられている。
The condensation-side vapor outlet 2123 is provided at the other horizontal end of the first condensation inlet tank 212. Specifically, the condensation-side vapor outlet 2123 is provided at the end of the first condensation inlet tank 212 on the vehicle front side.
第1凝縮出口タンク213は、第1液流出口213a、第2液流出口213b、第1液流入口213cおよび第2液流入口213dを有している。第1液流出口213aおよび第2液流出口213bは、第1凝縮出口タンク213内の液相熱媒体を、蒸発器10の蒸発側液流入口1021側へ流出させる。第1液流入口213cおよび第2液流入口213dは、第2凝縮器22から流出した液相熱媒体を第1凝縮出口タンク213内に流入させる。
The first condensation outlet tank 213 has a first liquid outlet 213a, a second liquid outlet 213b, a first liquid inlet 213c and a second liquid inlet 213d. The first liquid outlet 213a and the second liquid outlet 213b cause the liquid heat medium in the first condensation outlet tank 213 to flow to the evaporation side liquid inlet 1021 side of the evaporator 10. The first liquid inlet 213c and the second liquid inlet 213d cause the liquid-phase heat medium flowing out from the second condenser 22 to flow into the first condensation outlet tank 213.
ここで、第1凝縮出口タンク213における重力方向下方側の端面を、第1凝縮出口タンク213の下端面2130という。
Here, the lower end surface of the first condensation outlet tank 213 in the direction of gravity is referred to as the lower end surface 2130 of the first condensation outlet tank 213.
第1液流出口213aは、第1凝縮出口タンク213の下端面2130における水平方向の一端部に設けられている。具体的には、第1液流出口213aは、第1凝縮出口タンク213の下端面2130における車両後方側の端部に設けられている。
The first liquid outlet 213a is provided at one horizontal end of the lower end surface 2130 of the first condensation outlet tank 213. Specifically, the first liquid outlet 213a is provided at an end of the lower end surface 2130 of the first condensation outlet tank 213 on the vehicle rear side.
第2液流出口213bは、第1凝縮出口タンク213の下端面2130における水平方向の他端部に設けられている。具体的には、第2液流出口213bは、第1凝縮出口タンク213の下端面2130における車両前方側の端部に設けられている。
The second liquid outlet 213b is provided at the other horizontal end of the lower end surface 2130 of the first condensation outlet tank 213. Specifically, the second liquid outlet 213b is provided at the end of the lower end surface 2130 of the first condensation outlet tank 213 on the vehicle front side.
第1液流入口213cは、第1凝縮出口タンク213における水平方向の一端部に設けられている。具体的には、第1液流入口213cは、第1凝縮出口タンク213における車両後方側の端部に設けられている。また、第1液流入口213cは、第1液流出口213aよりも重力方向上方側に配置されている。
The first liquid inlet 213c is provided at one horizontal end of the first condensation outlet tank 213. Specifically, the first liquid inlet 213c is provided at the end of the first condensation outlet tank 213 on the vehicle rear side. The first liquid inlet 213c is arranged on the upper side in the gravity direction than the first liquid outlet 213a.
第2液流入口213dは、第1凝縮出口タンク213における水平方向の他端部に設けられている。具体的には、第2液流入口213dは、第1凝縮出口タンク213における車両前方側の端部に設けられている。また、第2液流入口213dは、第2液流出口213bよりも重力方向上方側に配置されている。
The second liquid inlet 213d is provided at the other horizontal end of the first condensation outlet tank 213. Specifically, the second liquid inlet 213d is provided at the end of the first condensation outlet tank 213 on the vehicle front side. The second liquid inflow port 213d is arranged above the second liquid outflow port 213b in the gravity direction.
次に、第2凝縮器22の構成について説明する。第2凝縮器22は、熱媒体と空気とを熱交換させる第2熱交換部220を有している。より詳細には、第2熱交換部220は、第1凝縮器21から流出した気相状態の熱媒体と空気とを熱交換させて、気相状態の熱媒体を凝縮させる。
Next, the configuration of the second condenser 22 will be described. The second condenser 22 has a second heat exchange section 220 that exchanges heat between the heat medium and air. More specifically, the second heat exchange unit 220 heat-exchanges the heat medium in the vapor phase state and the air flowing out from the first condenser 21 with each other to condense the heat medium in the vapor phase state.
第2熱交換部220は、第2凝縮チューブ221および第2放熱フィン225を有している。換言すると、第2凝縮チューブ221および第2放熱フィン225により、第2熱交換部220が構成されている。
The second heat exchange section 220 has a second condensing tube 221 and a second radiating fin 225. In other words, the second condensing tube 221 and the second radiating fin 225 form the second heat exchange section 220.
具体的には、第2凝縮器22は、いわゆるタンクアンドチューブ型の熱交換器である。第2凝縮器22は、第2凝縮チューブ221と、第2凝縮タンク222、223と、第2放熱フィン225とを備えている。
Specifically, the second condenser 22 is a so-called tank-and-tube heat exchanger. The second condenser 22 includes a second condensing tube 221, second condensing tanks 222 and 223, and a second radiating fin 225.
第2凝縮チューブ221は、熱媒体が流れる第2凝縮流路2210を形成する管状部材である。具体的には、第2凝縮チューブ221は、扁平板状に形成された扁平チューブである。
The second condensing tube 221 is a tubular member that forms the second condensing channel 2210 through which the heat medium flows. Specifically, the second condensing tube 221 is a flat tube formed in a flat plate shape.
第2凝縮チューブ221は、その長手方向が重力方向と略平行となるように配置されている。第2凝縮チューブ221は、水平方向において、複数本平行に配置されている。
The second condensing tube 221 is arranged so that its longitudinal direction is substantially parallel to the gravity direction. The second condensing tubes 221 are arranged in parallel in the horizontal direction.
複数の第2凝縮チューブ221は所定の間隔で互いに積層されている。複数の第2凝縮チューブ221同士の間には、空気が流れるようになっている。複数の第2凝縮チューブ221同士の間の空気通路には、第2放熱フィン225が設けられている。本実施形態では、第2放熱フィン225は、波状に形成されている。複数の第2凝縮チューブ221内を流れる熱媒体と、複数の第2凝縮チューブ221間を流れる空気とが熱交換される。
The plurality of second condensing tubes 221 are laminated at a predetermined interval. Air flows between the plurality of second condensing tubes 221. Second radiating fins 225 are provided in the air passage between the plurality of second condensing tubes 221. In the present embodiment, the second heat radiation fin 225 is formed in a wave shape. The heat medium flowing in the plurality of second condensing tubes 221 and the air flowing between the plurality of second condensing tubes 221 are heat-exchanged.
第2凝縮タンク222、223は、複数の第2凝縮チューブ221と連通している。第2凝縮タンク222、223は、複数の第2凝縮チューブ221に対して熱媒体の集合または分配を行う。第2凝縮タンク222、223は、第2凝縮チューブ221における長手方向の両端部に一つずつ設けられている。すなわち、第2凝縮タンク222、223は、第2凝縮チューブ221における重力方向上端部および下端部に一つずつ設けられている。
The second condensing tanks 222 and 223 communicate with a plurality of second condensing tubes 221. The second condensing tanks 222 and 223 collect or distribute the heat medium with respect to the plurality of second condensing tubes 221. The second condensing tanks 222 and 223 are provided one at each end of the second condensing tube 221 in the longitudinal direction. That is, the second condensing tanks 222 and 223 are respectively provided at the upper end and the lower end in the gravity direction of the second condensing tube 221.
第2凝縮タンク222、223は、第2凝縮チューブ221の長手方向と直交する方向に延びている。すなわち、第2凝縮タンク222、223は、水平方向に延びている。具体的には、第2凝縮タンク222、223は、車両前後方向に延びている。第2凝縮タンク222、223には、第2凝縮チューブ221が挿入された状態で接合されている。
The second condensing tanks 222 and 223 extend in a direction orthogonal to the longitudinal direction of the second condensing tube 221. That is, the second condensing tanks 222 and 223 extend in the horizontal direction. Specifically, the second condensing tanks 222 and 223 extend in the vehicle front-rear direction. A second condensing tube 221 is inserted and joined to the second condensing tanks 222 and 223.
ここで、二つの第2凝縮タンク222、223のうち、重力方向の上方側に配置されるとともに、第2凝縮チューブ221に対して熱媒体の分配を行うものを、第2凝縮入口タンク222という。また、二つの第2凝縮タンク222、223のうち、重力方向の下方側に配置されるとともに、第2凝縮チューブ221から流出する熱媒体の集合を行うものを、第2凝縮出口タンク223という。
Here, one of the two second condensing tanks 222 and 223, which is arranged on the upper side in the gravity direction and which distributes the heat medium to the second condensing tube 221, is referred to as a second condensing inlet tank 222. .. Further, one of the two second condensing tanks 222 and 223, which is arranged on the lower side in the direction of gravity and collects the heat medium flowing out from the second condensing tube 221, is referred to as a second condensing outlet tank 223.
第2凝縮入口タンク222は、第1凝縮器21から流出した気相熱媒体を第2凝縮入口タンク222内に流入させる第2蒸気流入口2220を有している。第2蒸気流入口2220は、第2凝縮入口タンク222における水平方向の他端部に設けられている。具体的には、第2蒸気流入口2220は、第2凝縮入口タンク222における車両前方側の端部に設けられている。
The second condensation inlet tank 222 has a second vapor inlet 2220 that allows the vapor-phase heat medium flowing out of the first condenser 21 to flow into the second condensation inlet tank 222. The second vapor inlet 2220 is provided at the other horizontal end of the second condensation inlet tank 222. Specifically, the second steam inlet 2220 is provided at the end of the second condensation inlet tank 222 on the vehicle front side.
第2凝縮出口タンク223は、第3液流出口2231および第4液流出口2232を有している。第3液流出口2231は、第2凝縮出口タンク223内の液相熱媒体を、第1凝縮器21の第1液流入口213c側へ流出させる。第4液流出口2232は、第2凝縮出口タンク223内の液相熱媒体を、第1凝縮器21の第2液流入口213d側へ流出させる。
The second condensation outlet tank 223 has a third liquid outlet 2231 and a fourth liquid outlet 2232. The third liquid outlet 2231 causes the liquid heat medium in the second condensation outlet tank 223 to flow to the first liquid inlet 213c side of the first condenser 21. The fourth liquid outlet 2232 causes the liquid heat medium in the second condensation outlet tank 223 to flow out to the second liquid inlet 213d side of the first condenser 21.
第3液流出口2231は、第2凝縮出口タンク223における水平方向の一端部に設けられている。具体的には、第3液流出口2231は、第2凝縮出口タンク223における車両後方側の端部に設けられている。
The third liquid outlet 2231 is provided at one horizontal end of the second condensation outlet tank 223. Specifically, the third liquid outlet 2231 is provided at the end of the second condensation outlet tank 223 on the vehicle rear side.
第4液流出口2232は、第2凝縮出口タンク223における水平方向の他端部に設けられている。具体的には、第4液流出口2232は、第2凝縮出口タンク223における車両前方側の端部に設けられている。
The fourth liquid outlet 2232 is provided at the other horizontal end of the second condensation outlet tank 223. Specifically, the fourth liquid outlet 2232 is provided at the end of the second condensation outlet tank 223 on the vehicle front side.
ところで、第2凝縮出口タンク223の下端面には、第1凝縮器21の第1凝縮入口タンク212の上端面が接合されている。これにより、第1凝縮器21および第2凝縮器22が一体化されている。
By the way, the upper end surface of the first condensing inlet tank 212 of the first condenser 21 is joined to the lower end surface of the second condensing outlet tank 223. As a result, the first condenser 21 and the second condenser 22 are integrated.
次に、熱媒体通路30の構成について説明する。熱媒体通路30は、蒸気通路301、接続通路302、複数の第1液通路303a、303b、および複数の第2液通路304a、304bを備えている。各通路303a、303b、304a、304bは、例えば金属製の配管により形成されている。
Next, the structure of the heat medium passage 30 will be described. The heat medium passage 30 includes a vapor passage 301, a connection passage 302, a plurality of first liquid passages 303a and 303b, and a plurality of second liquid passages 304a and 304b. Each of the passages 303a, 303b, 304a, 304b is formed of, for example, a metal pipe.
蒸気通路301は、蒸発器10から流出した熱媒体を第1凝縮器21に導く通路である。具体的には、蒸気通路301は、蒸発器10の蒸発側蒸気流出口1031と第1凝縮器21の第1蒸気流入口2120とを接続する通路である。
The steam passage 301 is a passage that guides the heat medium flowing out of the evaporator 10 to the first condenser 21. Specifically, the vapor passage 301 is a passage that connects the vaporization side vapor outlet 1031 of the evaporator 10 and the first vapor inlet 2120 of the first condenser 21.
蒸気通路301の上流側端部(すなわち入口側端部)は、蒸発器10の重力方向の中央より上方側に接続されている。蒸気通路301の下流側端部(すなわち出口側端部)は、第1凝縮器21における重力方向の中央より上方側に接続されている。また、蒸気通路301の下流側端部は、第1コネクタ401を介して第1凝縮器21に接続されている。
The upstream end (that is, the inlet end) of the steam passage 301 is connected to the upper side of the center of the evaporator 10 in the gravity direction. The downstream end (that is, the outlet end) of the steam passage 301 is connected to the upper side of the center of the first condenser 21 in the gravity direction. The downstream end of the steam passage 301 is connected to the first condenser 21 via the first connector 401.
接続通路302は、第1凝縮器21から流出した熱媒体を第2凝縮器22に導く通路である。具体的には、接続通路302は、第1凝縮器21の凝縮側蒸気流出口2123と第2凝縮器22の第2蒸気流入口2220とを接続する通路である。
The connection passage 302 is a passage that guides the heat medium flowing out from the first condenser 21 to the second condenser 22. Specifically, the connection passage 302 is a passage that connects the condensation-side vapor outlet 2123 of the first condenser 21 and the second vapor inlet 2220 of the second condenser 22.
接続通路302の上流側端部は、第1凝縮器21の重力方向上方側に接続されている。接続通路302の下流側端部は、第2凝縮器22の重力方向上方側に接続されている。
The upstream end of the connection passage 302 is connected to the upper side of the first condenser 21 in the gravity direction. The downstream end of the connection passage 302 is connected to the upper side of the second condenser 22 in the gravity direction.
接続通路302の上流側端部は、第2コネクタ402を介して第1凝縮器21に接続されている。接続通路302の下流側端部は、第3コネクタ403を介して第2凝縮器22に接続されている。
The upstream end of the connection passage 302 is connected to the first condenser 21 via the second connector 402. The downstream end of the connection passage 302 is connected to the second condenser 22 via the third connector 403.
第1液通路303a、303bは、第1凝縮器21から流出した液相熱媒体を蒸発器10側に導く液通路である。複数の第1液通路303a、303bの上流側端部は、それぞれ、第1凝縮器21における重力方向の中央より下方側に接続されている。
The first liquid passages 303a and 303b are liquid passages that guide the liquid-phase heat medium flowing out of the first condenser 21 to the evaporator 10 side. The upstream ends of the plurality of first liquid passages 303a and 303b are connected to the lower side of the center of the first condenser 21 in the direction of gravity.
本実施形態では、複数の第1液通路303a、303bの上流側端部は、それぞれ第1凝縮器21における重力方向の下端面に接続されている。具体的には、複数の第1液通路303a、303bの上流側端部は、それぞれ、第1凝縮出口タンク213の下端面2130に接続されている。
In the present embodiment, the upstream ends of the plurality of first liquid passages 303a and 303b are connected to the lower end faces of the first condenser 21 in the gravity direction. Specifically, the upstream ends of the plurality of first liquid passages 303a and 303b are connected to the lower end surface 2130 of the first condensation outlet tank 213, respectively.
複数の第1液通路303a、303bは、車両の前後方向に配置されている。本実施形態の沸騰冷却装置1は、2つの第1液通路303a、303bを有している。ここで、2つの第1液通路303a、303bのうち、車両後方側に配置される第1液通路を第1後方液通路303aといい、車両前方側に配置される第1液通路を第1前方液通路303bという。
The plurality of first liquid passages 303a and 303b are arranged in the front-rear direction of the vehicle. The boiling cooling device 1 of this embodiment has two first liquid passages 303a and 303b. Here, of the two first liquid passages 303a and 303b, the first liquid passage arranged on the vehicle rear side is referred to as a first rear liquid passage 303a, and the first liquid passage arranged on the vehicle front side is the first. It is referred to as the front liquid passage 303b.
したがって、第1後方液通路303aは、複数の第1液通路のうち最も車両後方側に配置された第1液通路の一例に相当する。第1前方液通路303bは、複数の第1液通路のうち、最も車両前方側に配置された第1液通路の一例に相当する。
Therefore, the first rear liquid passage 303a corresponds to an example of the first liquid passage arranged on the rearmost side of the vehicle among the plurality of first liquid passages. The first front liquid passage 303b corresponds to an example of the first liquid passage arranged on the most front side of the vehicle among the plurality of first liquid passages.
第1後方液通路303aは、第1凝縮器21の第1液流出口213aと蒸発器10の蒸発側液流入口1021とを接続する液通路である。第1後方液通路303aの上流側端部は、第1凝縮器21における車両後方側の端部に接続されている。第1後方液通路303aの上流側端部は、第4コネクタ404を介して第1凝縮器21に接続されている。また、第1後方液通路303aの下流側端部は、蒸発器10における重力方向の中央より下方側に接続されている。
The first rear liquid passage 303a is a liquid passage that connects the first liquid outlet 213a of the first condenser 21 and the evaporation side liquid inlet 1021 of the evaporator 10. The upstream end of the first rear liquid passage 303a is connected to the end of the first condenser 21 on the vehicle rear side. The upstream end of the first rear liquid passage 303a is connected to the first condenser 21 via the fourth connector 404. The downstream end of the first rear liquid passage 303a is connected to the lower side of the center of the evaporator 10 in the gravity direction.
第1前方液通路303bは、第1凝縮器21の第2液流出口213bと後述する合流部307とを接続する液通路である。より詳細には、第1前方液通路303bの下流側端部は、合流部307を介して蒸発器10に接続されている。合流部307は、第1後方液通路303aと第1前方液通路303bとが合流する部分である。
The first front liquid passage 303b is a liquid passage that connects the second liquid outlet 213b of the first condenser 21 and a merging portion 307 described later. More specifically, the downstream end of the first front liquid passage 303b is connected to the evaporator 10 via the confluence portion 307. The merging portion 307 is a portion where the first rear liquid passage 303a and the first front liquid passage 303b merge.
したがって、第1凝縮器21の第2液流出口213bから流出した熱媒体は、第1前方液通路303bおよび第1後方液通路303aを介して蒸発器10に導かれる。すなわち、第2液流出口213bから流出した熱媒体は、第1前方液通路303b、合流部307、第1後方液通路303aの順に流れて、蒸発器10に流入する。
Therefore, the heat medium flowing out from the second liquid outlet 213b of the first condenser 21 is guided to the evaporator 10 via the first front liquid passage 303b and the first rear liquid passage 303a. That is, the heat medium flowing out from the second liquid outlet 213b flows in the order of the first front liquid passage 303b, the merging portion 307, and the first rear liquid passage 303a, and then flows into the evaporator 10.
第1前方液通路303bの上流側端部は、第1凝縮器21における車両前方側の端部に接続されている。第1前方液通路303bの上流側端部は、第5コネクタ405を介して第1凝縮器21に接続されている。また、第1前方液通路303bの下流側端部、すなわち合流部307は、凝縮器20よりも重力方向下方側に位置している。
The upstream end of the first front liquid passage 303b is connected to the end of the first condenser 21 on the vehicle front side. The upstream end of the first front liquid passage 303b is connected to the first condenser 21 via the fifth connector 405. Further, the downstream end of the first front liquid passage 303b, that is, the confluence portion 307 is located below the condenser 20 in the gravity direction.
第2液通路304a、304bは、第2凝縮器22から流出した液相熱媒体を第1凝縮器21の第1凝縮出口タンク213に導く液通路である。
The second liquid passages 304 a and 304 b are liquid passages that guide the liquid-phase heat medium flowing out from the second condenser 22 to the first condensation outlet tank 213 of the first condenser 21.
複数の第2液通路304a、304bの上流側端部は、それぞれ、第2凝縮器22における重力方向の中央より下方側に接続されている。本実施形態では、複数の第2液通路304a、304bの上流側端部は、それぞれ第2凝縮器22における重力方向の下端部に接続されている。具体的には、複数の第2液通路304a、304bの上流側端部は、それぞれ、第2凝縮出口タンク223に接続されている。
The upstream ends of the plurality of second liquid passages 304a and 304b are connected to the lower side of the center of the second condenser 22 in the gravity direction. In the present embodiment, the upstream end portions of the plurality of second liquid passages 304a and 304b are connected to the lower end portions of the second condenser 22 in the gravity direction. Specifically, the upstream ends of the plurality of second liquid passages 304a and 304b are connected to the second condensation outlet tank 223, respectively.
複数の第2液通路304a、304bの下流側端部は、それぞれ、第1凝縮器21における重力方向下方側の端部に接続されている。本実施形態では、複数の第2液通路304a、304bの下流側端部は、それぞれ、第1凝縮出口タンク213に接続されている。
The downstream ends of the plurality of second liquid passages 304a and 304b are connected to the lower ends of the first condenser 21 in the gravity direction. In the present embodiment, the downstream ends of the plurality of second liquid passages 304a and 304b are connected to the first condensation outlet tank 213, respectively.
第2凝縮器22から流出した液相熱媒体は、第2液通路304a、304b、第1凝縮出口タンク213、および第1液通路303a、303bを介して蒸発器10に導かれる。したがって、第2液通路304a、304bは、第2凝縮器22から流出した液相の熱媒体を蒸発器10側に導く液通路の一例に相当する。
The liquid-phase heat medium flowing out from the second condenser 22 is guided to the evaporator 10 via the second liquid passages 304a and 304b, the first condensation outlet tank 213, and the first liquid passages 303a and 303b. Therefore, the second liquid passages 304a and 304b correspond to an example of liquid passages that guide the liquid-phase heat medium flowing out from the second condenser 22 to the evaporator 10 side.
複数の第2液通路304a、304bは、車両の前後方向に配置されている。本実施形態の沸騰冷却装置1は、2つの第2液通路304a、304bを有している。ここで、2つの第2液通路304a、304bのうち、車両後方側に配置される第2液通路を第2後方液通路304aといい、車両前方側に配置される第2液通路を第2前方液通路304bという。
The plurality of second liquid passages 304a and 304b are arranged in the front-rear direction of the vehicle. The boiling cooling device 1 of the present embodiment has two second liquid passages 304a and 304b. Here, of the two second liquid passages 304a and 304b, the second liquid passage arranged on the vehicle rear side is referred to as a second rear liquid passage 304a, and the second liquid passage arranged on the vehicle front side is referred to as the second. It is called the front liquid passage 304b.
したがって、第2後方液通路304aは、複数の第2液通路のうち、最も車両後方側に配置された第2液通路の一例に相当する。第2前方液通路304bは、複数の第2液通路のうち、最も車両前方側に配置された第2液通路の一例に相当する。
Therefore, the second rear liquid passage 304a corresponds to an example of the second liquid passage disposed on the rearmost side of the vehicle among the plurality of second liquid passages. The second front liquid passage 304b corresponds to an example of the second liquid passage disposed on the most front side of the vehicle among the plurality of second liquid passages.
第2後方液通路304aは、第2凝縮器22の第3液流出口2231と第1凝縮器21の第1液流入口213cとを接続する液通路である。第2後方液通路304aの上流側端部は、第2凝縮器22における車両後方側の端部に接続されている。第2後方液通路304aの上流側端部は、第6コネクタ406を介して第2凝縮器22に接続されている。第2後方液通路304aの下流側端部は、第7コネクタ407を介して第1凝縮器21に接続されている。
The second rear liquid passage 304a is a liquid passage that connects the third liquid outlet 2231 of the second condenser 22 and the first liquid inlet 213c of the first condenser 21. The upstream end of the second rear liquid passage 304a is connected to the end of the second condenser 22 on the vehicle rear side. The upstream end of the second rear liquid passage 304a is connected to the second condenser 22 via the sixth connector 406. The downstream end of the second rear liquid passage 304a is connected to the first condenser 21 via the seventh connector 407.
第2前方液通路304bは、第2凝縮器22の第4液流出口2232と第1凝縮器21の第2液流入口213dとを接続する液通路である。第2前方液通路304bの上流側端部は、第2凝縮器22における車両前方側の端部に接続されている。第2前方液通路304bの上流側端部は、第8コネクタ408を介して第2凝縮器22に接続されている。第2前方液通路304bの下流側端部は、第9コネクタ409を介して第1凝縮器21に接続されている。
The second front liquid passage 304b is a liquid passage that connects the fourth liquid outlet 2232 of the second condenser 22 and the second liquid inlet 213d of the first condenser 21. The upstream end of the second front liquid passage 304b is connected to the end of the second condenser 22 on the vehicle front side. The upstream end of the second front liquid passage 304b is connected to the second condenser 22 via the eighth connector 408. The downstream end of the second front liquid passage 304b is connected to the first condenser 21 via the ninth connector 409.
続いて、車両が水平面に位置する場合における本実施形態の沸騰冷却装置1の作動を、図37に基づいて説明する。
Next, the operation of the boiling cooling device 1 of the present embodiment when the vehicle is located on the horizontal plane will be described with reference to FIG.
蒸発器10において、高温の発熱体40と蒸発チューブ101内の液相熱媒体との間で、熱交換が行われる。これにより、発熱体40の熱量が液相熱媒体に移動して、液相熱媒体が沸騰して気相熱媒体となり、発熱体40が冷却される。
In the evaporator 10, heat exchange is performed between the high temperature heating element 40 and the liquid phase heat medium in the evaporation tube 101. As a result, the amount of heat of the heating element 40 moves to the liquid-phase heat medium, the liquid-phase heat medium boils and becomes the vapor-phase heat medium, and the heating element 40 is cooled.
そして、蒸発チューブ101内で蒸発した気相熱媒体は、蒸発出口タンク103に流入する。蒸発出口タンク103内の気相熱媒体は、蒸気通路301を介して、第1凝縮器21に流入する。
Then, the vapor-phase heat medium evaporated in the evaporation tube 101 flows into the evaporation outlet tank 103. The vapor-phase heat medium in the evaporation outlet tank 103 flows into the first condenser 21 via the vapor passage 301.
ここで、発熱体40の発熱量が増大すると、気液二相状態の熱媒体が、蒸発チューブ101から蒸発出口タンク103に流出する。このため、気液二相状態の熱媒体が、蒸発出口タンク103から蒸気通路301を介して第1凝縮器21に流入する。
Here, when the amount of heat generated by the heating element 40 increases, the heat medium in the gas-liquid two-phase state flows out from the evaporation tube 101 to the evaporation outlet tank 103. Therefore, the heat medium in the gas-liquid two-phase state flows from the evaporation outlet tank 103 into the first condenser 21 via the vapor passage 301.
第1凝縮器21に流入した気液二相状態の熱媒体のうち、気相熱媒体は、第1凝縮入口タンク212、および第1凝縮チューブ211の第1凝縮流路2110において凝縮する。そして、凝縮した液相熱媒体は、重力により第1凝縮流路2110を落下する。このとき、第1凝縮入口タンク212から第1凝縮流路2110に液相熱媒体が吸引されることで、 第1凝縮入口タンク212を流れる熱媒体の流速が低下する。
Of the heat medium in the gas-liquid two-phase state that has flowed into the first condenser 21, the gas-phase heat medium is condensed in the first condensation inlet tank 212 and the first condensation flow passage 2110 of the first condensation tube 211. Then, the condensed liquid heat medium drops in the first condensation flow path 2110 due to gravity. At this time, the liquid-phase heat medium is sucked from the first condensation inlet tank 212 into the first condensation flow passage 2110, so that the flow velocity of the heat medium flowing through the first condensation inlet tank 212 decreases.
これにより、第1凝縮入口タンク212において、気液二相状態の熱媒体から液相熱媒体が分離・除去される。つまり、第1凝縮入口タンク212において、気液二相状態の熱媒体から液相熱媒体と気相熱媒体とに分離される。
By this, in the first condensation inlet tank 212, the liquid-phase heat medium is separated and removed from the heat medium in the gas-liquid two-phase state. That is, in the first condensation inlet tank 212, the heat medium in the gas-liquid two-phase state is separated into the liquid heat medium and the gas heat medium.
第1凝縮入口タンク212において気液分離された気相熱媒体は、第1凝縮入口タンク212を水平方向に流れて、接続通路302を介して、第2凝縮器22の第2凝縮入口タンク222に流入する。
The gas-phase heat medium separated into gas and liquid in the first condensation inlet tank 212 flows horizontally in the first condensation inlet tank 212 and passes through the connection passage 302 to the second condensation inlet tank 222 of the second condenser 22. Flow into.
第2凝縮器22の第2凝縮入口タンク222に流入した気相熱媒体は、第2凝縮チューブ221に流入する。このとき、第2凝縮器22では、第2放熱フィン225を介して、複数の第2凝縮チューブ221同士の間の空気通路を流れる空気と、第2凝縮チューブ221内の気相熱媒体との間で熱交換が行われる。これにより、気相熱媒体が凝縮して液相熱媒体となり、熱媒体の有する熱が空気に放出される。
The vapor-phase heat medium that has flowed into the second condensation inlet tank 222 of the second condenser 22 flows into the second condensation tube 221. At this time, in the second condenser 22, between the air flowing in the air passage between the plurality of second condensing tubes 221 and the gas phase heat medium in the second condensing tube 221 via the second radiating fins 225. Heat exchange takes place between them. As a result, the vapor phase heat medium is condensed to become the liquid phase heat medium, and the heat of the heat medium is released to the air.
第2凝縮チューブ221で凝縮した液相熱媒体は、第2凝縮出口タンク223に流入する。そして、第2凝縮チューブ221で凝縮した液相熱媒体は、第2凝縮出口タンク223から、第2後方液通路304aおよび第2前方液通路304bの少なくとも一方を介して、第1凝縮器21の第1凝縮出口タンク213に流入する。
The liquid heat medium condensed in the second condensing tube 221 flows into the second condensing outlet tank 223. Then, the liquid-phase heat medium condensed in the second condensing tube 221 is discharged from the second condensing outlet tank 223 through at least one of the second rear liquid passage 304a and the second front liquid passage 304b to the first condenser 21. It flows into the first condensation outlet tank 213.
一方、第1凝縮入口タンク212において分離された液相熱媒体は、複数の第1凝縮チューブ211内の第1凝縮流路2110を落下し、第1凝縮出口タンク213に流入する。このとき、第1凝縮器21では、第1放熱フィン215を介して、複数の第1凝縮チューブ211同士の間の空気通路を流れる空気と、第1凝縮チューブ211内の熱媒体との間で熱交換が行われる。これにより、熱媒体の有する熱が空気に放出される。
On the other hand, the liquid-phase heat medium separated in the first condensing inlet tank 212 drops through the first condensing passages 2110 in the plurality of first condensing tubes 211 and flows into the first condensing outlet tank 213. At this time, in the first condenser 21, between the air flowing in the air passage between the plurality of first condensing tubes 211 and the heat medium in the first condensing tube 211 via the first heat radiation fins 215. Heat exchange takes place. As a result, the heat of the heat medium is released to the air.
そして、第1凝縮器21で気液分離された液相熱媒体および第2凝縮器22から流入した液相熱媒体は、第1凝縮出口タンク213から、第1後方液通路303aおよび第1前方液通路303bの少なくとも一方を介して、蒸発器10の蒸発入口タンク102に流入する。
Then, the liquid-phase heat medium separated into gas and liquid in the first condenser 21 and the liquid-phase heat medium flowing in from the second condenser 22 are discharged from the first condensation outlet tank 213 into the first rear liquid passage 303a and the first front side. It flows into the evaporation inlet tank 102 of the evaporator 10 through at least one of the liquid passages 303b.
続いて、車両の登坂時における本実施形態の沸騰冷却装置1の作動を、図38に基づいて説明する。
Next, the operation of the boiling cooling device 1 of the present embodiment when the vehicle is climbing a slope will be described with reference to FIG.
車両の登坂時、沸騰冷却装置1は、車両の前方側が後方側より上方に位置するように傾斜する。換言すると、車両の登坂時、沸騰冷却装置1は、凝縮器20が蒸発器10より上方に位置するように傾斜する。このとき、第1凝縮器21および第2凝縮器22において、液相冷媒は車両後方側に流れるため、車両前方側には液相冷媒が存在しなくなる。
When the vehicle is climbing uphill, the boiling cooling device 1 is inclined so that the front side of the vehicle is located above the rear side. In other words, when the vehicle is climbing uphill, the boiling cooling device 1 is inclined so that the condenser 20 is located above the evaporator 10. At this time, in the first condenser 21 and the second condenser 22, since the liquid-phase refrigerant flows to the vehicle rear side, the liquid-phase refrigerant does not exist on the vehicle front side.
したがって、第2凝縮器22内の液相冷媒は、第2後方液通路304aおよび第2前方液通路304bのうち、登坂時に下方側に位置する第2後方液通路304aに流入し、第1凝縮器21側へ導かれる。そして、第1凝縮器21内の液相冷媒は、第1後方液通路303aおよび第1前方液通路303bのうち、登坂時に下方側に位置する第1後方液通路303aに流入し、蒸発器10側へ導かれる。
Therefore, the liquid-phase refrigerant in the second condenser 22 flows into the second rear liquid passage 304a and the second front liquid passage 304b, which are located on the lower side when climbing the slope, of the second rear liquid passage 304a and the first condensed liquid. Guided to the vessel 21 side. Then, the liquid-phase refrigerant in the first condenser 21 flows into the first rear liquid passage 303a and the first front liquid passage 303b, which are located on the lower side when climbing the slope, of the first rear liquid passage 303a and the first front liquid passage 303b, and the evaporator 10 Be guided to the side.
続いて、車両の降坂時における本実施形態の沸騰冷却装置1の作動を、図39に基づいて説明する。
Next, the operation of the boiling cooling device 1 of the present embodiment when the vehicle descends a slope will be described based on FIG. 39.
車両の降坂時、沸騰冷却装置1は、車両の前方側が後方側より下方に位置するように傾斜する。換言すると、車両の降坂時、沸騰冷却装置1は、凝縮器20が蒸発器10より下方側に位置するように傾斜する。このとき、第1凝縮器21および第2凝縮器22において、液相冷媒は車両前方側に流れるため、車両後方側には液相冷媒が存在しなくなる。
▽ When the vehicle descends, the boiling cooling system 1 is inclined so that the front side of the vehicle is located below the rear side. In other words, when the vehicle is downhill, the boiling cooling device 1 is inclined such that the condenser 20 is located below the evaporator 10. At this time, in the first condenser 21 and the second condenser 22, the liquid-phase refrigerant flows toward the front side of the vehicle, so that the liquid-phase refrigerant does not exist at the rear side of the vehicle.
したがって、第2凝縮器22内の液相冷媒は、第2後方液通路304aおよび第2前方液通路304bのうち、降坂時に下方側に位置する第2前方液通路304bに流入し、第1凝縮器21側へ導かれる。そして、第1凝縮器21内の液相冷媒は、第1後方液通路303aおよび第1前方液通路303bのうち、降坂時に下方側に位置する第1前方液通路303bに流入し、蒸発器10側へ導かれる。
Therefore, the liquid-phase refrigerant in the second condenser 22 flows into the second front liquid passage 304a and the second front liquid passage 304b, which are located in the second front liquid passage 304b located on the lower side at the time of descending the slope. It is guided to the condenser 21 side. Then, the liquid-phase refrigerant in the first condenser 21 flows into the first front liquid passage 303b, which is located on the lower side when descending the slope, of the first rear liquid passage 303a and the first front liquid passage 303b, and the evaporator It is led to the 10 side.
以上説明したように、本実施形態の沸騰冷却装置1は、凝縮器20として、第1凝縮器21と、第1凝縮器21の重力方向上方側に配置される第2凝縮器22と、を有している。第1凝縮器21は、気液二相状態の熱媒体から液相熱媒体を分離させる。さらに、第1凝縮器21は、液相熱媒体が分離された後の気相熱媒体を第2凝縮器22の第2蒸気流入口2220側へ流出させる。
As described above, the boiling cooling device 1 of the present embodiment includes, as the condenser 20, the first condenser 21 and the second condenser 22 arranged on the upper side in the gravity direction of the first condenser 21. Have The first condenser 21 separates the liquid-phase heat medium from the gas-liquid two-phase heat medium. Further, the first condenser 21 causes the vapor-phase heat medium after the liquid-phase heat medium is separated to flow out to the second vapor inflow port 2220 side of the second condenser 22.
これによれば、第1凝縮器21および第2凝縮器22のうち、重力方向上方側に位置する第2凝縮器22には、気相熱媒体が流入する。つまり、気液二相状態の熱媒体を第2凝縮器22まで上昇させる(すなわち、持ち上げる)必要がない。したがって、気液二相状態の熱媒体の重力方向上方側への上昇高さを低くすることができるので、熱媒体の圧力損失を低減できる。
According to this, the gas-phase heat medium flows into the second condenser 22, which is located on the upper side in the gravity direction, of the first condenser 21 and the second condenser 22. That is, it is not necessary to raise (that is, raise) the heat medium in the gas-liquid two-phase state to the second condenser 22. Therefore, since the rising height of the heat medium in the gas-liquid two-phase state to the upper side in the direction of gravity can be reduced, the pressure loss of the heat medium can be reduced.
ここで、蒸発器10の蒸発側蒸気流出口1031から流出した気液二相状態の熱媒体を第1凝縮器21の第1蒸気流入口2120まで上昇させる上昇高さを、二相持ち上げ高さH1という。第1凝縮器21の凝縮側蒸気流出口2123から流出した気相冷媒を第2凝縮器22の第2蒸気流入口2220まで上昇させる上昇高さを、気相持ち上げ高さH2という。本実施形態では、二相持ち上げ高さH1は、気相持ち上げ高さH2よりも十分小さい。このため、蒸気通路301を流通する熱媒体に生じる圧力損失を十分低減できる。
Here, the rising height for raising the vapor-liquid two-phase heat medium flowing out from the evaporation side vapor outlet 1031 of the evaporator 10 to the first vapor inlet 2120 of the first condenser 21 is the two-phase lifting height. It is called H 1 . The rising height at which the vapor-phase refrigerant flowing out from the condensation-side vapor outlet 2123 of the first condenser 21 is raised to the second vapor inlet 2220 of the second condenser 22 is called vapor-phase lifting height H 2 . In the present embodiment, the two-phase lift height H 1 is sufficiently smaller than the gas-phase lift height H 2 . Therefore, the pressure loss generated in the heat medium flowing through the steam passage 301 can be sufficiently reduced.
したがって、蒸発器10に対する凝縮器20の高さを高くする必要がない。このため、沸騰冷却装置1の小型化を図ることができる。
Therefore, it is not necessary to increase the height of the condenser 20 with respect to the evaporator 10. Therefore, the boiling cooling device 1 can be downsized.
ところで、上述した特許文献1の沸騰冷却装置では、蒸発器から気液二相状態の熱媒体が流出した場合、凝縮器内に液相熱媒体が流入する。これにより、凝縮器の熱交換部の重力方向下方側に液相熱媒体が存在する(すなわち、液没する)こととなり、凝縮器における熱媒体の放熱性が悪化する可能性がある。このため、凝縮器における熱媒体の放熱性を確保するためには、凝縮器の体格を大きくする必要がある。その結果、沸騰冷却装置が大型化してしまう。
By the way, in the boiling cooling device of Patent Document 1 described above, when the heat medium in the gas-liquid two-phase state flows out from the evaporator, the liquid phase heat medium flows into the condenser. As a result, the liquid-phase heat medium exists (that is, is submerged) on the lower side in the gravity direction of the heat exchange section of the condenser, which may deteriorate the heat dissipation of the heat medium in the condenser. Therefore, in order to secure the heat dissipation of the heat medium in the condenser, it is necessary to increase the size of the condenser. As a result, the boiling cooling device becomes large.
これに対し、本実施形態の沸騰冷却装置1は、第1凝縮器21において、液相熱媒体が分離された後の気相熱媒体を第2凝縮器22の第2蒸気流入口2220側へ流出させている。このため、第2凝縮器22への液相熱媒体の流入を抑制できる。したがって、第2凝縮器22における熱媒体の放熱性を確保するために第2凝縮器22の体格を大きくする必要がない。つまり、沸騰冷却装置1の小型化を図ることができる。
On the other hand, in the boiling cooling device 1 of the present embodiment, in the first condenser 21, the vapor-phase heat medium after the liquid-phase heat medium is separated is directed to the second vapor inlet 2220 side of the second condenser 22. It has been leaked. Therefore, the inflow of the liquid-phase heat medium into the second condenser 22 can be suppressed. Therefore, it is not necessary to increase the size of the second condenser 22 in order to secure the heat dissipation of the heat medium in the second condenser 22. That is, the boiling cooling device 1 can be downsized.
ところで、上述した特許文献1の沸騰冷却装置を車両に搭載した場合、坂路等において車両が傾斜すると、沸騰冷却装置全体が傾斜する。このとき、傾斜方向や傾斜角度によっては、凝縮器内に液相熱媒体が滞留し、冷却性能が低下するおそれがある。
By the way, when the boiling cooling device of Patent Document 1 described above is mounted on a vehicle, when the vehicle leans on a slope or the like, the entire boiling cooling device leans. At this time, depending on the inclination direction and inclination angle, the liquid-phase heat medium may stay in the condenser and the cooling performance may deteriorate.
これに対し、本実施形態の沸騰冷却装置1では、第1凝縮器21から流出した液相熱媒体を蒸発器10側に導く第1液通路303a、303bが複数設けられている。そして、複数の第1液通路(すなわち、第1後方液通路303aおよび第1前方液通路303b)の上流側端部は、それぞれ、第1凝縮器21における重力方向の中央より下方側に接続されている。
On the other hand, the boiling cooling device 1 of the present embodiment is provided with a plurality of first liquid passages 303a and 303b for guiding the liquid phase heat medium flowing out from the first condenser 21 to the evaporator 10 side. The upstream ends of the plurality of first liquid passages (that is, the first rear liquid passage 303a and the first front liquid passage 303b) are connected to the lower side of the center of the first condenser 21 in the gravity direction. ing.
これによれば、車両の登坂・降坂等により沸騰冷却装置1全体が傾斜した場合でも、複数の第1液通路303a、303bのうち、傾斜時に下方側に位置する第1液通路303a、303bによって、第1凝縮器21から蒸発器10側へ液相冷媒を供給することができる。このため、第1液通路を1つのみ有する沸騰冷却装置と比較して、傾斜時に第1凝縮器21内に液相熱媒体が滞留することを抑制できる。その結果、傾斜時における沸騰冷却装置1の冷却性能を確保することが可能となる。
According to this, even when the entire boiling cooling device 1 is inclined due to the uphill / downhill of the vehicle, among the plurality of first liquid passages 303a, 303b, the first liquid passages 303a, 303b located on the lower side at the time of the inclination. Thus, the liquid-phase refrigerant can be supplied from the first condenser 21 to the evaporator 10 side. Therefore, as compared with the boiling cooling device having only one first liquid passage, it is possible to suppress the liquid-phase heat medium from staying in the first condenser 21 at the time of inclination. As a result, it becomes possible to secure the cooling performance of the boiling cooling device 1 at the time of inclination.
また、本実施形態の沸騰冷却装置1は、第2凝縮器22から流出した液相熱媒体を第1凝縮器21側に導く第2液通路304a、304bを複数有している。そして、複数の第2液通路(すなわち、第2後方液通路304aおよび第2前方液通路304b)の上流側端部は、それぞれ、第2凝縮器22における重力方向の中央より下方側に接続されている。
Further, the boiling cooling device 1 of the present embodiment has a plurality of second liquid passages 304a and 304b for guiding the liquid phase heat medium flowing out from the second condenser 22 to the first condenser 21 side. The upstream ends of the plurality of second liquid passages (that is, the second rear liquid passage 304a and the second front liquid passage 304b) are connected to the lower side of the center of the second condenser 22 in the gravity direction. ing.
これによれば、車両の登坂・降坂等により沸騰冷却装置1全体が傾斜した場合でも、複数の第2液通路304a、304bのうち、傾斜時に下方側に位置する第2液通路304a、304bによって、第2凝縮器22から第1凝縮器21側へ液相冷媒を供給することができる。そして、第1凝縮器21へ供給された液相熱媒体を、複数の第1液通路303a、303bのうち、傾斜時に下方側に位置する第1液通路303a、303bによって、蒸発器10側へ供給することができる。
According to this, even when the entire boil cooling apparatus 1 is inclined due to the uphill / downhill of the vehicle, among the plurality of second liquid passages 304a, 304b, the second liquid passages 304a, 304b located on the lower side at the time of inclination. Thus, the liquid-phase refrigerant can be supplied from the second condenser 22 to the first condenser 21 side. Then, the liquid-phase heat medium supplied to the first condenser 21 is transferred to the evaporator 10 side by the first liquid passages 303a and 303b, which are located on the lower side when inclined, among the plurality of first liquid passages 303a and 303b. Can be supplied.
このため、第2液通路を1つのみ有する沸騰冷却装置と比較して、傾斜時に第2凝縮器22内に液相熱媒体が滞留することを抑制できる。その結果、傾斜時における沸騰冷却装置1の冷却性能を確保することが可能となる。
Therefore, as compared with a boiling cooling device having only one second liquid passage, it is possible to suppress the liquid-phase heat medium from staying in the second condenser 22 at the time of tilting. As a result, it becomes possible to secure the cooling performance of the boiling cooling device 1 at the time of inclination.
また、本実施形態の沸騰冷却装置1においては、複数の第1液通路303a、303bのうち、最も車両後方側に配置された第1後方液通路303aの上流側端部は、第1凝縮器21における車両後方側の端部に接続されている。
In addition, in the boiling cooling device 1 of the present embodiment, the upstream end of the first rear liquid passage 303a, which is the rearmost vehicle, of the plurality of first liquid passages 303a and 303b is the first condenser. It is connected to the end of the vehicle 21 on the rear side of the vehicle.
第1凝縮器21における車両後方側の端部は、車両の登坂時において、第1凝縮器21における最も下方側に位置する部位(すなわち、最下点)となる。このため、車両の登坂時には、第1凝縮器21における車両後方側の端部に、液相熱媒体が滞留する。
The end of the first condenser 21 on the rear side of the vehicle is a portion located on the lowest side of the first condenser 21 (that is, the lowest point) when the vehicle is climbing uphill. Therefore, when the vehicle climbs uphill, the liquid-phase heat medium stays at the end of the first condenser 21 on the vehicle rear side.
したがって、第1後方液通路303aの上流側端部を、第1凝縮器21における車両後方側の端部に接続することで、車両の登坂時において、第1凝縮器21内の液相冷媒を第1後方液通路303aから確実に排出させることができる。このため、車両の登坂時に第1凝縮器21内に液相冷媒が滞留することをより抑制できる。
Therefore, by connecting the upstream end of the first rear liquid passage 303a to the end of the first condenser 21 on the vehicle rear side, the liquid-phase refrigerant in the first condenser 21 is removed when the vehicle is climbing uphill. It is possible to reliably discharge the liquid from the first rear liquid passage 303a. Therefore, it is possible to further suppress the liquid-phase refrigerant from accumulating in the first condenser 21 when the vehicle climbs a slope.
また、本実施形態の沸騰冷却装置1においては、複数の第2液通路304a、304bのうち、最も車両後方側に配置された第2後方液通路304aの上流側端部は、第2凝縮器22における車両後方側の端部に接続されている。
Further, in the boiling cooling device 1 of the present embodiment, the upstream end of the second rear liquid passage 304a, which is the most rearward of the vehicle among the plurality of second liquid passages 304a and 304b, is the second condenser. It is connected to the end of the vehicle 22 on the rear side of the vehicle.
第2凝縮器22における車両後方側の端部は、車両の登坂時において、第2凝縮器22における最も下方側に位置する部位となる。このため、車両の登坂時には、第2凝縮器22における車両後方側の端部に、液相熱媒体が滞留する。
The end of the second condenser 22 on the rear side of the vehicle is a portion located on the lowermost side of the second condenser 22 when the vehicle is climbing uphill. Therefore, when the vehicle climbs uphill, the liquid-phase heat medium stays at the end of the second condenser 22 on the vehicle rear side.
したがって、第2後方液通路304aの上流側端部を、第2凝縮器22における車両後方側の端部に接続することで、車両の登坂時において、第2凝縮器22内の液相冷媒を第2後方液通路304aから確実に排出させることができる。このため、車両の登坂時に第2凝縮器22内に液相冷媒が滞留することをより抑制できる。
Therefore, by connecting the upstream end of the second rear liquid passage 304a to the end of the second condenser 22 on the vehicle rear side, the liquid-phase refrigerant in the second condenser 22 is removed when the vehicle is climbing uphill. The liquid can be reliably discharged from the second rear liquid passage 304a. Therefore, it is possible to further suppress the liquid-phase refrigerant from accumulating in the second condenser 22 when the vehicle climbs uphill.
また、本実施形態の沸騰冷却装置1においては、複数の第1液通路303a、303bのうち、最も車両前方側に配置された第1前方液通路303bの上流側端部は、第1凝縮器21における車両前方側の端部に接続されている。
In addition, in the boiling cooling device 1 of the present embodiment, the upstream end of the first front liquid passage 303b, which is the most front of the vehicle among the plurality of first liquid passages 303a and 303b, is the first condenser. It is connected to an end of the vehicle 21 on the front side of the vehicle.
第1凝縮器21における車両前方側の端部は、車両の降坂時において、第1凝縮器21における最も下方側に位置する部位となる。このため、車両の降坂時には、第1凝縮器21における車両後方側の端部に、液相熱媒体が滞留する。
The end of the first condenser 21 on the front side of the vehicle is a portion located on the lowermost side of the first condenser 21 when the vehicle descends a slope. Therefore, when the vehicle descends, the liquid heat medium stays at the end of the first condenser 21 on the vehicle rear side.
したがって、第1前方液通路303bの上流側端部を、第1凝縮器21における車両前方側の端部に接続することで、車両の降坂時において、第1凝縮器21内の液相冷媒を第1前方液通路303bから確実に排出させることができる。このため、車両の降坂時に第1凝縮器21内に液相冷媒が滞留することをより抑制できる。
Therefore, by connecting the upstream end of the first front liquid passage 303b to the end of the first condenser 21 on the vehicle front side, the liquid-phase refrigerant in the first condenser 21 during the downhill of the vehicle. Can be reliably discharged from the first front liquid passage 303b. Therefore, it is possible to further suppress the liquid-phase refrigerant from accumulating in the first condenser 21 when the vehicle descends a slope.
また、本実施形態の沸騰冷却装置1においては、複数の第2液通路304a、304bのうち、最も車両前方側に配置された第2前方液通路304bの上流側端部は、第2凝縮器22における車両前方側の端部に接続されている。
Further, in the boiling cooling device 1 of the present embodiment, the upstream end of the second front liquid passage 304b, which is the most front of the vehicle among the plurality of second liquid passages 304a and 304b, is the second condenser. It is connected to an end of the vehicle 22 on the front side of the vehicle.
第2凝縮器22における車両前方側の端部は、車両の降坂時において、第2凝縮器22における最も下方側に位置する部位となる。このため、車両の降坂時には、第2凝縮器22における車両後方側の端部に、液相熱媒体が滞留する。
The end of the second condenser 22 on the front side of the vehicle is the lowermost portion of the second condenser 22 when the vehicle descends a slope. Therefore, when the vehicle descends, the liquid-phase heat medium stays at the end of the second condenser 22 on the vehicle rear side.
したがって、第2前方液通路304bの上流側端部を、第2凝縮器22における車両前方側の端部に接続することで、車両の降坂時において、第2凝縮器22内の液相冷媒を第2前方液通路304bから確実に排出させることができる。このため、車両の降坂時に第2凝縮器22内に液相冷媒が滞留することをより抑制できる。
Therefore, by connecting the upstream end of the second front liquid passage 304b to the end of the second condenser 22 on the front side of the vehicle, the liquid-phase refrigerant in the second condenser 22 during downhill of the vehicle. Can be reliably discharged from the second front liquid passage 304b. Therefore, it is possible to further suppress the liquid-phase refrigerant from accumulating in the second condenser 22 when the vehicle descends a slope.
また、本実施形態の沸騰冷却装置1においては、蒸気通路301の下流側端部は、第1凝縮器21における重力方向の中央より上方側に接続されている。これによれば、車両の傾斜時に、第1凝縮器21内の液相熱媒体が、蒸気通路301から蒸発器10側へ逆流することを抑制できる。
In the boiling cooling device 1 of the present embodiment, the downstream end of the steam passage 301 is connected to the upper side of the center of the first condenser 21 in the gravity direction. According to this, when the vehicle leans, it is possible to prevent the liquid-phase heat medium in the first condenser 21 from flowing backward from the vapor passage 301 to the evaporator 10 side.
また、本実施形態の沸騰冷却装置1においては、第2液通路304a、304bの下流側端部は、第1凝縮出口タンク213に接続されている。すなわち、第2液通路304a、304bの下流側端部は、第1凝縮器21における重力方向下方側の端部に接続されている。これによれば、第2液通路304a、304bを第1液通路303a、303bに直接接続させる場合と比較して、第2液通路304a、304bの長さが短くなる。このため、熱媒体が第2液通路304a、304bを流通する際に生じる圧力損失を低減することができる。
Further, in the boiling cooling device 1 of the present embodiment, the downstream end portions of the second liquid passages 304a and 304b are connected to the first condensation outlet tank 213. That is, the downstream end portions of the second liquid passages 304a and 304b are connected to the lower end portion of the first condenser 21 in the gravity direction. According to this, the length of the second liquid passages 304a and 304b becomes shorter than that in the case where the second liquid passages 304a and 304b are directly connected to the first liquid passages 303a and 303b. Therefore, the pressure loss that occurs when the heat medium flows through the second liquid passages 304a and 304b can be reduced.
(第31実施形態)
次に、本発明の第31実施形態について図40~図42に基づいて説明する。本第31実施形態は、上記第30実施形態と比較して、第1凝縮器21の構成が異なる。 (31st Embodiment)
Next, a thirty-first embodiment of the present invention will be described with reference to FIGS. 40 to 42. The 31st embodiment is different from the 30th embodiment in the configuration of thefirst condenser 21.
次に、本発明の第31実施形態について図40~図42に基づいて説明する。本第31実施形態は、上記第30実施形態と比較して、第1凝縮器21の構成が異なる。 (31st Embodiment)
Next, a thirty-first embodiment of the present invention will be described with reference to FIGS. 40 to 42. The 31st embodiment is different from the 30th embodiment in the configuration of the
図40に示すように、本実施形態の第1凝縮器21では、第1凝縮チューブ211は、その長手方向が車両前後方向と略平行となるように配置されている。このため、第1凝縮流路2110において、熱媒体は車両前後方向に流れる。具体的には、第1凝縮流路2110において、熱媒体は車両後方側から前方側に向かって流れる。第1凝縮チューブ211は、重力方向において、複数本平行に配置されている。
As shown in FIG. 40, in the first condenser 21 of this embodiment, the first condensing tube 211 is arranged such that its longitudinal direction is substantially parallel to the vehicle front-rear direction. Therefore, in the first condensing flow path 2110, the heat medium flows in the vehicle front-rear direction. Specifically, in the first condensation flow path 2110, the heat medium flows from the vehicle rear side toward the front side. A plurality of the first condensing tubes 211 are arranged in parallel in the gravity direction.
第1凝縮入口タンク212および第1凝縮出口タンク213は、それぞれ、重力方向に延びている。第1凝縮入口タンク212は、第1凝縮チューブ211の車両後方側の端部に接続されている。第1凝縮出口タンク213は、第1凝縮チューブ211の車両前方側の端部に接続されている。
The first condensation inlet tank 212 and the first condensation outlet tank 213 each extend in the direction of gravity. The first condensation inlet tank 212 is connected to the end of the first condensation tube 211 on the vehicle rear side. The first condensation outlet tank 213 is connected to the end of the first condensation tube 211 on the vehicle front side.
第1凝縮入口タンク212は、第1蒸気流入口2120、第1液流出口213aおよび第1液流入口213cを有している。
The first condensation inlet tank 212 has a first vapor inlet 2120, a first liquid outlet 213a, and a first liquid inlet 213c.
第1蒸気流入口2120は、第1凝縮入口タンク212における重力方向の中央部より上方側に設けられている。第1液流出口213aは、第1凝縮入口タンク212の下端面に設けられている。第1液流入口213cは、第1凝縮入口タンク212における重力方向の中央部より下方側に設けられている。
The first steam inlet 2120 is provided above the central portion of the first condensation inlet tank 212 in the gravity direction. The first liquid outlet 213a is provided on the lower end surface of the first condensation inlet tank 212. The first liquid inlet 213c is provided below the central portion of the first condensation inlet tank 212 in the direction of gravity.
第1凝縮出口タンク213は、凝縮側蒸気流出口2123、第2液流出口213bおよび第2液流入口213dを有している。
The first condensation outlet tank 213 has a condensation side vapor outlet 2123, a second liquid outlet 213b, and a second liquid inlet 213d.
凝縮側蒸気流出口2123は、第1凝縮出口タンク213における重力方向の中央部より上方側に設けられている。第2液流出口213bは、第1凝縮出口タンク213の下端面に設けられている。第2液流入口213dは、第1凝縮出口タンク213における重力方向の中央部より下方側に設けられている。
The condensation side vapor outlet 2123 is provided above the central portion of the first condensation outlet tank 213 in the gravity direction. The second liquid outlet 213b is provided on the lower end surface of the first condensation outlet tank 213. The second liquid inlet 213d is provided below the central portion of the first condensation outlet tank 213 in the direction of gravity.
本実施形態では、接続通路302の上流側端部は、第1凝縮出口タンク213に接続されている。第1後方液通路303aの上流側端部は、第1凝縮入口タンク212の下端面に接続されている。第1前方液通路303bの上流側端部は、第1凝縮出口タンク213の下端面に接続されている。第2後方液通路304aの下流側端部は、第1凝縮入口タンク212に接続されている。第2前方液通路304bの下流側端部は、第1凝縮出口タンク213に接続されている。
In the present embodiment, the upstream end of the connection passage 302 is connected to the first condensation outlet tank 213. The upstream end of the first rear liquid passage 303a is connected to the lower end surface of the first condensation inlet tank 212. The upstream end of the first front liquid passage 303b is connected to the lower end surface of the first condensation outlet tank 213. The downstream end of the second rear liquid passage 304a is connected to the first condensation inlet tank 212. The downstream end of the second front liquid passage 304b is connected to the first condensation outlet tank 213.
ところで、第1凝縮器21は、蒸気通路301から流出した熱媒体が流入する入口側流路219を有している。本実施形態では、入口側流路219は、第1凝縮入口タンク212により形成されている。
By the way, the first condenser 21 has an inlet side flow passage 219 into which the heat medium flowing out from the steam passage 301 flows. In the present embodiment, the inlet side flow passage 219 is formed by the first condensation inlet tank 212.
入口側流路219の流路断面積D2は、蒸気通路301の通路断面積D1より大きい。ここで、入口側流路219の流路断面積D2とは、入口側流路219における第1蒸気流入口2120から流入した熱媒体の流れ方向に垂直な断面の断面積をいう。
The cross-sectional area D 2 of the inlet-side flow passage 219 is larger than the cross-sectional area D 1 of the steam passage 301. Here, the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 refers to a cross-sectional area of a cross-section perpendicular to the flow direction of the heat medium flowing from the first steam inlet 2120 in the inlet-side flow passage 219.
本実施形態では、入口側流路219の流路断面積D2は、第1凝縮入口タンク212の内部空間における、第1凝縮チューブ211の長手方向に垂直な断面の断面積である。換言すると、入口側流路219の流路断面積D2は、第1凝縮入口タンク212の内部空間における水平方向(すなわち、車両前後方向)に垂直な断面の断面積である。
In the present embodiment, the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 is a cross-sectional area of a cross section perpendicular to the longitudinal direction of the first condensation tube 211 in the internal space of the first condensation inlet tank 212. In other words, the flow passage cross-sectional area D 2 of the inlet side flow passage 219 is a cross-sectional area of a cross section perpendicular to the horizontal direction (that is, the vehicle front-rear direction) in the internal space of the first condensation inlet tank 212.
ところで、第2凝縮出口タンク223の下端面には、第1凝縮器21における複数の第1凝縮チューブ211のうち、重力方向の最上方側に配置された第1凝縮チューブ211の上端面が接合されている。これにより、第1凝縮器21および第2凝縮器22が一体化されている。
By the way, the lower end surface of the second condensing outlet tank 223 is joined to the upper end surface of the first condensing tube 211 arranged on the uppermost side in the gravity direction among the plurality of first condensing tubes 211 in the first condenser 21. Has been done. As a result, the first condenser 21 and the second condenser 22 are integrated.
次に、上記構成を備える第1凝縮器21の作動を説明する。蒸発器10から流出した気液二相状態の熱媒体は、蒸気通路301および第1蒸気流入口2120を介して、第1凝縮器21の入口側流路219(すなわち、第1凝縮入口タンク212)に流入する。
Next, the operation of the first condenser 21 having the above configuration will be described. The heat medium in the gas-liquid two-phase state flowing out from the evaporator 10 passes through the steam passage 301 and the first steam inflow port 2120, and then the inlet side flow path 219 of the first condenser 21 (that is, the first condensation inlet tank 212). ) Flow into.
このとき、第1凝縮器21における入口側流路219の流路断面積D2が蒸気通路301の通路断面積D1より大きいので、蒸気通路301から第1凝縮器21に流入した熱媒体の流速が低下する。これにより、第1凝縮器21の入口側流路219において、気液二相状態の熱媒体から液相熱媒体が分離・除去される。つまり、第1凝縮入口タンク212において、気液二相状態の熱媒体から液相熱媒体と気相熱媒体とに分離される。
At this time, since the flow passage cross-sectional area D 2 of the inlet-side flow passage 219 in the first condenser 21 is larger than the passage cross-sectional area D 1 of the steam passage 301, the heat medium flowing from the steam passage 301 into the first condenser 21 The flow velocity decreases. As a result, in the inlet-side flow passage 219 of the first condenser 21, the liquid-phase heat medium is separated and removed from the heat medium in the gas-liquid two-phase state. That is, in the first condensation inlet tank 212, the heat medium in the gas-liquid two-phase state is separated into the liquid heat medium and the gas heat medium.
第1凝縮入口タンク212において気液分離された気相熱媒体は、複数の第1凝縮チューブ211のうち重力方向上方側の第1凝縮チューブ211を流れて、第1凝縮出口タンク213の重力方向上方側に流入する。そして、第1凝縮器21で気液分離された気相熱媒体は、第1凝縮出口タンク213から接続通路302を介して、第2凝縮器22の第2凝縮入口タンク222に流入する。
The gas-phase heat medium separated in the first condensing inlet tank 212 from the first condensing inlet tank 212 flows through the first condensing tube 211 of the plurality of first condensing tubes 211 on the upper side in the direction of gravity, and the direction of gravity of the first condensing outlet tank 213 in the direction of gravity. Inflow to the upper side. Then, the gas-phase heat medium separated into gas and liquid in the first condenser 21 flows from the first condensation outlet tank 213 into the second condensation inlet tank 222 of the second condenser 22 via the connection passage 302.
一方、第1凝縮入口タンク212において分離された液相熱媒体は、複数の第1凝縮チューブ211のうち重力方向下方側の第1凝縮チューブ211を流れて、第1凝縮出口タンク213の重力方向下方側に流入する。そして、第1凝縮器21で気液分離された液相熱媒体は、第1凝縮出口タンク213から第1前方液通路303bを介して、蒸発器10の蒸発入口タンク102に流入する。
On the other hand, the liquid-phase heat medium separated in the first condensing inlet tank 212 flows through the first condensing tube 211 on the lower side in the direction of gravity of the plurality of first condensing tubes 211, and the direction of gravity in the first condensing outlet tank 213 is decreased. Inflow to the lower side. Then, the liquid-phase heat medium separated into gas and liquid in the first condenser 21 flows into the evaporation inlet tank 102 of the evaporator 10 from the first condensation outlet tank 213 via the first front liquid passage 303b.
続いて、車両の登坂時における本実施形態の沸騰冷却装置1の作動を、図41に基づいて説明する。
Next, the operation of the boiling cooling device 1 of the present embodiment when the vehicle is climbing a slope will be described based on FIG. 41.
車両の登坂時、沸騰冷却装置1は、車両の前方側が後方側より上方に位置するように傾斜する。このとき、第1凝縮器21および第2凝縮器22において、液相冷媒は車両後方側に流れるため、車両前方側には液相冷媒が存在しなくなる。このため、第1凝縮器21においては、液相冷媒は、第1凝縮入口タンク212内に滞留する。
When the vehicle is climbing uphill, the boiling cooling device 1 is inclined so that the front side of the vehicle is located above the rear side. At this time, in the first condenser 21 and the second condenser 22, since the liquid-phase refrigerant flows to the vehicle rear side, the liquid-phase refrigerant does not exist on the vehicle front side. Therefore, in the first condenser 21, the liquid-phase refrigerant stays in the first condensation inlet tank 212.
第2凝縮器22内の液相冷媒は、第2後方液通路304aおよび第2前方液通路304bのうち、登坂時に下方側に位置する第2後方液通路304aに流入し、第1凝縮器21側へ導かれる。具体的には、第2凝縮器22内の液相冷媒は、第2後方液通路304aに流入し、第1凝縮器21の第1凝縮入口タンク212へ導かれる。
The liquid-phase refrigerant in the second condenser 22 flows into the second rear liquid passage 304a and the second front liquid passage 304b, which are located in the second rear liquid passage 304a located on the lower side when climbing the slope, and the first condenser 21 Be guided to the side. Specifically, the liquid-phase refrigerant in the second condenser 22 flows into the second rear liquid passage 304a and is guided to the first condensation inlet tank 212 of the first condenser 21.
そして、第1凝縮器21の第1凝縮入口タンク212内の液相冷媒は、第1後方液通路303aおよび第1前方液通路303bのうち、登坂時に下方側に位置する第1後方液通路303aによって、蒸発器10側へ導かれる。
The liquid-phase refrigerant in the first condensation inlet tank 212 of the first condenser 21 is the first rear liquid passage 303a, which is located on the lower side when climbing the slope, of the first rear liquid passage 303a and the first front liquid passage 303b. Is guided to the evaporator 10 side.
続いて、車両の降坂時における本実施形態の沸騰冷却装置1の作動を、図42に基づいて説明する。
Next, the operation of the boiling cooling device 1 of the present embodiment when the vehicle descends a slope will be described based on FIG. 42.
車両の降坂時、沸騰冷却装置1は、車両の前方側が後方側より下方に位置するように傾斜する。このとき、第1凝縮器21および第2凝縮器22において、液相冷媒は車両前方側に流れるため、車両後方側には液相冷媒が存在しなくなる。このため、第1凝縮器21においては、液相冷媒は、第1凝縮出口タンク213内に滞留する。
▽ When the vehicle descends, the boiling cooling system 1 is inclined so that the front side of the vehicle is located below the rear side. At this time, in the first condenser 21 and the second condenser 22, the liquid-phase refrigerant flows toward the front side of the vehicle, so that the liquid-phase refrigerant does not exist at the rear side of the vehicle. Therefore, in the first condenser 21, the liquid-phase refrigerant stays in the first condensation outlet tank 213.
第2凝縮器22内の液相冷媒は、第2後方液通路304aおよび第2前方液通路304bのうち、降坂時に下方側に位置する第2前方液通路304bに流入し、第1凝縮器21側へ導かれる。具体的には、第2凝縮器22内の液相冷媒は、第2後方液通路304aに流入し、第1凝縮器21の第1凝縮出口タンク213へ導かれる。
The liquid-phase refrigerant in the second condenser 22 flows into the second front liquid passage 304a and the second front liquid passage 304b, which are located on the lower side when descending the slope, of the second rear liquid passage 304a and the second front liquid passage 304b. It is led to 21 side. Specifically, the liquid-phase refrigerant in the second condenser 22 flows into the second rear liquid passage 304a and is guided to the first condensation outlet tank 213 of the first condenser 21.
そして、第1凝縮器21の第1凝縮出口タンク213内の液相冷媒は、第1後方液通路303aおよび第1前方液通路303bのうち、降坂時に下方側に位置する第1前方液通路303bによって、蒸発器10側へ導かれる。
Then, the liquid-phase refrigerant in the first condensation outlet tank 213 of the first condenser 21 is the first front liquid passage 303a and the first front liquid passage 303b, which are located on the lower side when descending the slope. It is guided to the evaporator 10 side by 303b.
以上説明したように、第31実施形態の沸騰冷却装置1によれば、第1凝縮器21の構成を変更した場合でも、第30実施形態と共通の構成及び作動から奏される作用効果を、第30実施形態と同様に得ることができる。
As described above, according to the boil cooling apparatus 1 of the thirty-first embodiment, even when the configuration of the first condenser 21 is changed, the operational effects obtained from the configuration and the operation common to the thirtieth embodiment, It can be obtained similarly to the thirtieth embodiment.
(他の実施形態)
本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、例えば以下のように種々変形可能である。 (Other embodiments)
The present disclosure is not limited to the above-described embodiments, and can be variously modified as described below, for example, within the scope of the gist of the present disclosure.
本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、例えば以下のように種々変形可能である。 (Other embodiments)
The present disclosure is not limited to the above-described embodiments, and can be variously modified as described below, for example, within the scope of the gist of the present disclosure.
上述の実施形態では、第1凝縮器21において、気液二相状態の熱媒体から液相熱媒体を分離・除去させるとともに、気相熱媒体を第2凝縮器22の蒸気流入口2221側へ流出させた例について説明したが、これに限定されない。
In the above-described embodiment, in the first condenser 21, the liquid-phase heat medium is separated and removed from the heat medium in the gas-liquid two-phase state, and the gas-phase heat medium is directed to the vapor inlet 2221 side of the second condenser 22. Although the example of the outflow has been described, the present invention is not limited to this.
例えば、第1凝縮器21において、気液二相状態の熱媒体から一部の液相熱媒体を分離・除去させてもよい。さらに、第1凝縮器21において、一部の液相冷媒が分離された後の熱媒体を第2凝縮器22の蒸気流入口2221側へ流出させてもよい。
For example, in the first condenser 21, a part of the liquid-phase heat medium may be separated and removed from the gas-liquid two-phase heat medium. Furthermore, in the first condenser 21, the heat medium after a part of the liquid-phase refrigerant is separated may be discharged to the vapor inlet 2221 side of the second condenser 22.
上述の実施形態では、第1凝縮器21および第2凝縮器22を一体に形成した例について説明したが、第1凝縮器21および第2凝縮器22の構成はこれに限定されない。例えば、第1凝縮器21および第2凝縮器22を別体として形成してもよい。
In the above-described embodiment, an example in which the first condenser 21 and the second condenser 22 are integrally formed has been described, but the configurations of the first condenser 21 and the second condenser 22 are not limited to this. For example, the first condenser 21 and the second condenser 22 may be formed as separate bodies.
上述の第2実施形態では、複数の蒸気通路301として、2つの蒸気通路301A、301Bを設けた例について説明したが、これに限定されない。例えば、複数の蒸気通路301として、3つ以上の蒸気通路301を設けてもよい。
In the above-described second embodiment, an example in which two steam passages 301A and 301B are provided as the plurality of steam passages 301 has been described, but the present invention is not limited to this. For example, as the plurality of steam passages 301, three or more steam passages 301 may be provided.
上述の実施形態では、第1凝縮器21に複数の第1凝縮流路2110を設けたが、この態様に限定されるものではない。例えば、第1凝縮器21の第1凝縮流路2110を1つとしてもよい。
In the above embodiment, the first condenser 21 is provided with the plurality of first condensing flow paths 2110, but the present invention is not limited to this mode. For example, the number of the first condensation flow paths 2110 of the first condenser 21 may be one.
上述の第30実施形態および第31実施形態では、複数の第1液通路303a、303bとして、第1後方液通路303aおよび第1前方液通路303bの2つを採用していたが、この態様に限定されない。例えば、第1液通路303a、303bを3つ以上設けてもよい。
In the thirtieth and thirty-first embodiments described above, the first rear liquid passage 303a and the first front liquid passage 303b are used as the plurality of first liquid passages 303a and 303b. Not limited. For example, three or more first liquid passages 303a and 303b may be provided.
上述の第30実施形態および第31実施形態では、複数の第2液通路304a、304bとして、第2後方液通路304aおよび第2前方液通路304bの2つを採用していたが、この態様に限定されない。例えば、第2液通路304a、304bを、1つとしてもよいし、3つ以上設けてもよい。
In the thirtieth embodiment and the thirty-first embodiment described above, the second rear liquid passage 304a and the second front liquid passage 304b are adopted as the plurality of second liquid passages 304a and 304b. Not limited. For example, the number of the second liquid passages 304a and 304b may be one, or may be three or more.
上述の第30実施形態および第31実施形態では、複数の第2液通路304a、304bの全ての下流側端部を、それぞれ、第1凝縮器21における重力方向下方側の端部に接続させたが、この態様に限定されない。
In the thirtieth and thirty-first embodiments described above, all the downstream side end portions of the plurality of second liquid passages 304a and 304b are respectively connected to the end portions on the lower side in the gravity direction of the first condenser 21. However, it is not limited to this mode.
複数の第2液通路304a、304bのうち少なくとも1つの下流側端部を、第1凝縮器21における重力方向下方側の端部に接続してもよい。複数の第2液通路304a、304bの少なくとも1つの下流側端部を、第1液通路303a、303bに接続してもよい。複数の第2液通路304a、304bの少なくともの1つの下流側端部を、蒸発器10に直接接続することも可能である。
At least one downstream end of the plurality of second liquid passages 304a, 304b may be connected to the lower end of the first condenser 21 in the gravity direction. At least one downstream end of the plurality of second liquid passages 304a and 304b may be connected to the first liquid passages 303a and 303b. It is also possible to directly connect at least one downstream end of the plurality of second liquid passages 304a and 304b to the evaporator 10.
上述の第30実施形態および第31実施形態では、第1後方液通路303aの上流側端部を、第1凝縮器21における車両後方側の端部に接続したが、この態様に限定されない。例えば、第1後方液通路303aの上流側端部を、第1凝縮器21における車両後方側の端部よりも車両前方側に接続してもよい。
In the thirtieth and thirty-first embodiments described above, the upstream end of the first rear liquid passage 303a is connected to the end of the first condenser 21 on the vehicle rear side, but the present invention is not limited to this mode. For example, the upstream end of the first rear liquid passage 303a may be connected to the vehicle front side with respect to the vehicle rear end of the first condenser 21.
上述の第30実施形態および第31実施形態では、第1前方液通路303bの上流側端部を、第1凝縮器21における車両前方側の端部に接続したが、この態様に限定されない。例えば、第1前方液通路303bの上流側端部を、第1凝縮器21における車両前方側の端部よりも車両後方側に接続してもよい。
In the thirtieth and thirty-first embodiments described above, the upstream end of the first front liquid passage 303b is connected to the end of the first condenser 21 on the vehicle front side, but the present invention is not limited to this mode. For example, the upstream end of the first front liquid passage 303b may be connected to the vehicle rear side with respect to the vehicle front end of the first condenser 21.
上述の第30実施形態および第31実施形態では、第2後方液通路304aの上流側端部を、第2凝縮器22における車両後方側の端部に接続したが、この態様に限定されない。例えば、第2後方液通路304aの上流側端部を、第2凝縮器22における車両後方側の端部よりも車両前方側に接続してもよい。
In the thirtieth and thirty-first embodiments described above, the upstream end of the second rear liquid passage 304a is connected to the end of the second condenser 22 on the vehicle rear side, but the present invention is not limited to this mode. For example, the upstream end of the second rear liquid passage 304a may be connected to the vehicle front side with respect to the vehicle rear end of the second condenser 22.
上述の第30実施形態および第31実施形態では、第2前方液通路304bの上流側端部を、第2凝縮器22における車両前方側の端部に接続したが、この態様に限定されない。例えば、第2前方液通路304bの上流側端部を、第2凝縮器22における車両前方側の端部よりも車両後方側に接続してもよい。
In the thirtieth and thirty-first embodiments described above, the upstream end of the second front liquid passage 304b is connected to the end of the second condenser 22 on the front side of the vehicle, but the embodiment is not limited to this. For example, the upstream end of the second front liquid passage 304b may be connected to the vehicle rear side with respect to the vehicle front end of the second condenser 22.
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
Although the present disclosure has been described according to the embodiments, it is understood that the present disclosure is not limited to the embodiments and the structure. The present disclosure also includes various modifications and modifications within an equivalent range. In addition, various combinations and forms, and other combinations and forms including only one element, more, or less than those, also fall within the scope and spirit of the present disclosure.
(本開示の実施の形態の概要)
本開示の第1の態様に係る沸騰冷却装置は、冷却対象物と熱媒体との熱交換により熱媒体を沸騰気化させることで冷却対象物を冷却する蒸発器と、熱媒体と外部流体との熱交換により熱媒体を凝縮させることで熱媒体の熱を外部流体に放熱する凝縮器と、を備える。さらに、沸騰冷却装置は、蒸発器と凝縮器とをループ状に連結して蒸発器と凝縮器との間で熱媒体を循環させる熱媒体通路を備える。凝縮器は、第1凝縮器と、第1凝縮器から流出した熱媒体が流入する第2凝縮器と、を有している。第1凝縮器は、第2凝縮器の重力方向下方側に配置されるとともに気液二相状態の熱媒体から少なくとも一部の液相熱媒体が分離されるように構成されている、または、第2凝縮器に対して外部流体の流れ方向において並列に配置されている。 (Outline of Embodiment of Present Disclosure)
A boiling cooling apparatus according to a first aspect of the present disclosure includes an evaporator that cools an object to be cooled by boiling and vaporizing the heat medium by heat exchange between the object to be cooled and the heat medium, and a heat medium and an external fluid. A condenser that radiates the heat of the heat medium to an external fluid by condensing the heat medium by heat exchange. Further, the boiling cooling device includes a heat medium passage that connects the evaporator and the condenser in a loop shape and circulates the heat medium between the evaporator and the condenser. The condenser includes a first condenser and a second condenser into which the heat medium flowing out from the first condenser flows. The first condenser is arranged on the lower side in the gravity direction of the second condenser, and is configured to separate at least a part of the liquid-phase heat medium from the heat medium in the gas-liquid two-phase state, or It is arranged in parallel to the second condenser in the flow direction of the external fluid.
本開示の第1の態様に係る沸騰冷却装置は、冷却対象物と熱媒体との熱交換により熱媒体を沸騰気化させることで冷却対象物を冷却する蒸発器と、熱媒体と外部流体との熱交換により熱媒体を凝縮させることで熱媒体の熱を外部流体に放熱する凝縮器と、を備える。さらに、沸騰冷却装置は、蒸発器と凝縮器とをループ状に連結して蒸発器と凝縮器との間で熱媒体を循環させる熱媒体通路を備える。凝縮器は、第1凝縮器と、第1凝縮器から流出した熱媒体が流入する第2凝縮器と、を有している。第1凝縮器は、第2凝縮器の重力方向下方側に配置されるとともに気液二相状態の熱媒体から少なくとも一部の液相熱媒体が分離されるように構成されている、または、第2凝縮器に対して外部流体の流れ方向において並列に配置されている。 (Outline of Embodiment of Present Disclosure)
A boiling cooling apparatus according to a first aspect of the present disclosure includes an evaporator that cools an object to be cooled by boiling and vaporizing the heat medium by heat exchange between the object to be cooled and the heat medium, and a heat medium and an external fluid. A condenser that radiates the heat of the heat medium to an external fluid by condensing the heat medium by heat exchange. Further, the boiling cooling device includes a heat medium passage that connects the evaporator and the condenser in a loop shape and circulates the heat medium between the evaporator and the condenser. The condenser includes a first condenser and a second condenser into which the heat medium flowing out from the first condenser flows. The first condenser is arranged on the lower side in the gravity direction of the second condenser, and is configured to separate at least a part of the liquid-phase heat medium from the heat medium in the gas-liquid two-phase state, or It is arranged in parallel to the second condenser in the flow direction of the external fluid.
本開示の第2の態様に係る沸騰冷却装置は、冷却対象物と熱媒体との熱交換により熱媒体を沸騰気化させることで冷却対象物を冷却する蒸発器と、熱媒体と外部流体との熱交換により熱媒体を凝縮させることで熱媒体の熱を外部流体に放熱する凝縮器と、を備える。さらに、沸騰冷却装置は、蒸発器と凝縮器とをループ状に連結して蒸発器と凝縮器との間で熱媒体を循環させる熱媒体通路を備える。凝縮器は、第1凝縮器と、第1凝縮器の重力方向上方側に配置される第2凝縮器と、を有している。第1凝縮器は、気液二相状態の熱媒体から少なくとも一部の液相熱媒体を分離するとともに、少なくとも一部の液相熱媒体が分離された後の熱媒体を第2凝縮器の流入口側へ流出させる。
A boiling cooling device according to a second aspect of the present disclosure includes an evaporator that cools an object to be cooled by boiling and vaporizing the heat medium by heat exchange between the object to be cooled and the heat medium, and a heat medium and an external fluid. A condenser that radiates the heat of the heat medium to an external fluid by condensing the heat medium by heat exchange. Further, the boiling cooling device includes a heat medium passage that connects the evaporator and the condenser in a loop shape and circulates the heat medium between the evaporator and the condenser. The condenser includes a first condenser and a second condenser arranged above the first condenser in the gravity direction. The first condenser separates at least a part of the liquid-phase heat medium from the heat medium in the gas-liquid two-phase state, and the heat medium after the at least a part of the liquid-phase heat medium is separated from the heat medium of the second condenser. Let it flow out to the inlet side.
第2の態様によれば、重力方向下方側に位置する第1凝縮器において、気液二相状態の熱媒体から少なくとも一部の液相熱媒体が分離される。このため、重力方向上方側に位置する第2凝縮器には、少なくとも一部の液相熱媒体が分離された後の熱媒体を流入させることになる。すなわち、気液二相状態の熱媒体を第2凝縮器まで上昇させる必要がない。したがって、気液二相状態の熱媒体の重力方向上方側への上昇高さを低くすることができるので、熱媒体の圧力損失を低減できる。このため、蒸発器に対する凝縮器の高さを高くする必要がないので、沸騰冷却装置の小型化を図ることができる。
According to the second aspect, at least part of the liquid-phase heat medium is separated from the heat medium in the gas-liquid two-phase state in the first condenser located on the lower side in the gravity direction. Therefore, the heat medium after at least a part of the liquid-phase heat medium has been separated flows into the second condenser located on the upper side in the gravity direction. That is, it is not necessary to raise the heat medium in the gas-liquid two-phase state to the second condenser. Therefore, since the rising height of the heat medium in the gas-liquid two-phase state to the upper side in the direction of gravity can be reduced, the pressure loss of the heat medium can be reduced. Therefore, it is not necessary to increase the height of the condenser with respect to the evaporator, so that the boiling cooling device can be downsized.
本開示の第3の態様に係る沸騰冷却装置は、冷却対象物と熱媒体との熱交換により熱媒体を沸騰気化させることで冷却対象物を冷却する蒸発器と、熱媒体と外部流体との熱交換により熱媒体を凝縮させることで熱媒体の熱を外部流体に放熱する凝縮器と、を備える。さらに、沸騰冷却装置は、蒸発器と凝縮器とをループ状に連結して蒸発器と凝縮器との間で熱媒体を循環させる熱媒体通路を備える。凝縮器は、第1凝縮器と、第1凝縮器の重力方向上方側に配置される第2凝縮器と、を有している。第1凝縮器には、蒸発器から流出した熱媒体が流入する。第2凝縮器には、第1凝縮器から流出した熱媒体が流入する。第1凝縮器は、熱媒体と外部流体とを熱交換させる熱交換部を有する。
A boiling cooling device according to a third aspect of the present disclosure includes an evaporator that cools an object to be cooled by boiling and vaporizing the heat medium by heat exchange between the object to be cooled and the heat medium, and a heat medium and an external fluid. A condenser that radiates the heat of the heat medium to an external fluid by condensing the heat medium by heat exchange. Further, the boiling cooling device includes a heat medium passage that connects the evaporator and the condenser in a loop shape and circulates the heat medium between the evaporator and the condenser. The condenser includes a first condenser and a second condenser arranged above the first condenser in the gravity direction. The heat medium flowing out from the evaporator flows into the first condenser. The heat medium flowing out from the first condenser flows into the second condenser. The first condenser has a heat exchange section that exchanges heat between the heat medium and the external fluid.
第3の態様によれば、上記第2の態様と同様の効果を得ることができる。
According to the third aspect, the same effect as that of the second aspect can be obtained.
本開示の第4の態様に係る沸騰冷却装置は、冷却対象物と熱媒体との熱交換により熱媒体を沸騰気化させることで冷却対象物を冷却する蒸発器と、熱媒体と外部流体との熱交換により熱媒体を凝縮させることで熱媒体の熱を外部流体に放熱する凝縮器と、を備える。さらに、沸騰冷却装置は、蒸発器と凝縮器とをループ状に連結して蒸発器と凝縮器との間で熱媒体を循環させる熱媒体通路を備える。凝縮器は、蒸発器から流出した熱媒体が流入する第1凝縮器と、第1凝縮器から流出した熱媒体が流入する第2凝縮器と、を有している。第1凝縮器および第2凝縮器は、外部流体の流れ方向に配置されている。
A boiling cooling apparatus according to a fourth aspect of the present disclosure includes an evaporator that cools an object to be cooled by boiling and vaporizing the heat medium by heat exchange between the object to be cooled and the heat medium, and a heat medium and an external fluid. A condenser that radiates the heat of the heat medium to an external fluid by condensing the heat medium by heat exchange. Further, the boiling cooling device includes a heat medium passage that connects the evaporator and the condenser in a loop and circulates the heat medium between the evaporator and the condenser. The condenser has a first condenser into which the heat medium flowing out from the evaporator flows, and a second condenser into which the heat medium flowing out from the first condenser flows. The first condenser and the second condenser are arranged in the flow direction of the external fluid.
第4の態様によれば、第1凝縮器および第2凝縮器を外部流体の流れ方向に配置することで、沸騰冷却装置全体の高さを低くすることができる。このため、沸騰冷却装置の小型化を図ることができる。
According to the fourth aspect, by arranging the first condenser and the second condenser in the flow direction of the external fluid, it is possible to reduce the height of the entire boiling cooling device. Therefore, the boiling cooling device can be downsized.
本開示の第5の態様に係る沸騰冷却装置は、冷却対象物と熱媒体との熱交換により熱媒体を沸騰気化させることで冷却対象物を冷却する蒸発器と、熱媒体と外部流体との熱交換により熱媒体を凝縮させることで熱媒体の熱を外部流体に放熱する凝縮器と、を備える。さらに、沸騰冷却装置は、蒸発器と凝縮器とをループ状に連結して蒸発器と凝縮器との間で熱媒体を循環させる熱媒体通路を備える。凝縮器は、第1凝縮器と、第1凝縮器の重力方向上方側に配置される第2凝縮器と、を有している。第1凝縮器には、蒸発器から流出した熱媒体が流入する。第2凝縮器には、第1凝縮器から流出した熱媒体が流入する。熱媒体通路は、第1凝縮器から流出した液相の熱媒体を蒸発器側に導く複数の第1液通路と、第2凝縮器から流出した液相の熱媒体を蒸発器側に導く第2液通路と、を含んでいる。複数の第1液通路の上流側端部は、それぞれ、第1凝縮器における重力方向の中央より下方側に接続されている。
A boiling cooling device according to a fifth aspect of the present disclosure includes an evaporator that cools an object to be cooled by evaporating the heat medium by boiling heat by heat exchange between the object to be cooled and the heat medium, and a heat medium and an external fluid. A condenser that radiates the heat of the heat medium to an external fluid by condensing the heat medium by heat exchange. Further, the boiling cooling device includes a heat medium passage that connects the evaporator and the condenser in a loop shape and circulates the heat medium between the evaporator and the condenser. The condenser includes a first condenser and a second condenser arranged above the first condenser in the gravity direction. The heat medium flowing out from the evaporator flows into the first condenser. The heat medium flowing out from the first condenser flows into the second condenser. The heat medium passage includes a plurality of first liquid passages for guiding the liquid-phase heat medium flowing out of the first condenser to the evaporator side, and a plurality of first liquid passages for guiding the liquid-phase heat medium flowing out of the second condenser to the evaporator side. And a two liquid passage. The upstream ends of the plurality of first liquid passages are connected to the lower side of the center of the first condenser in the direction of gravity.
第5の態様によれば、上記第2の態様および上記第3の態様と同様の効果を得ることができる。さらに、第1液通路を複数設けるとともに、複数の第1液通路の上流側端部を、それぞれ、第1凝縮器における重力方向の中央より下方側に接続することで、傾斜時における冷却性能を確保することができる。
According to the fifth aspect, it is possible to obtain the same effects as those of the second aspect and the third aspect. Furthermore, by providing a plurality of first liquid passages and connecting the upstream end portions of the plurality of first liquid passages to the lower side from the center of the first condenser in the direction of gravity, the cooling performance at the time of inclination is improved. Can be secured.
すなわち、沸騰冷却装置全体が傾斜した場合でも、複数の第1液通路のうち、傾斜時に下方側に位置する第1液通路によって、第1凝縮器から蒸発器側へ液相冷媒を供給することができる。このため、傾斜時において、第1凝縮器内に液相熱媒体が滞留することを抑制できる。その結果、傾斜時における沸騰冷却装置の冷却性能を確保することが可能となる。
That is, even when the entire boiling cooling device is inclined, the liquid refrigerant is supplied from the first condenser to the evaporator side by the first liquid passage that is located on the lower side at the time of inclination among the plurality of first liquid passages. You can Therefore, it is possible to prevent the liquid-phase heat medium from staying in the first condenser at the time of inclination. As a result, it becomes possible to secure the cooling performance of the boiling cooling device at the time of inclination.
Claims (35)
- 冷却対象物(40)と熱媒体との熱交換により前記熱媒体を沸騰気化させることで前記冷却対象物を冷却する蒸発器(10)と、
前記熱媒体と外部流体との熱交換により前記熱媒体を凝縮させることで前記熱媒体の熱を前記外部流体に放熱する凝縮器(20)と、
前記蒸発器と前記凝縮器とをループ状に連結して前記蒸発器と前記凝縮器との間で前記熱媒体を循環させる熱媒体通路(30)と、を備える沸騰冷却装置であって、
前記凝縮器は、第1凝縮器(21)と、前記第1凝縮器から流出した前記熱媒体が流入する第2凝縮器(22)と、を有しており、
前記第1凝縮器は、前記第2凝縮器の重力方向下方側に配置されるとともに気液二相状態の前記熱媒体から少なくとも一部の液相熱媒体が分離されるように構成されている、または、前記第2凝縮器に対して前記外部流体の流れ方向において並列に配置されている沸騰冷却装置。 An evaporator (10) that cools the object to be cooled by boiling and vaporizing the heat medium by heat exchange between the object to be cooled (40) and the heat medium;
A condenser (20) for radiating the heat of the heat medium to the external fluid by condensing the heat medium by heat exchange between the heat medium and an external fluid;
A boiling cooling device comprising: a heat medium passage (30) that connects the evaporator and the condenser in a loop and circulates the heat medium between the evaporator and the condenser.
The condenser includes a first condenser (21) and a second condenser (22) into which the heat medium flowing out of the first condenser flows.
The first condenser is arranged below the second condenser in the direction of gravity and is configured to separate at least a part of the liquid-phase heat medium from the heat medium in a gas-liquid two-phase state. Or a boiling cooling device arranged in parallel to the second condenser in the flow direction of the external fluid. - 前記第2凝縮器は、前記第1凝縮器の重力方向上方側に配置されており、
前記第1凝縮器は、気液二相状態の前記熱媒体から少なくとも一部の液相熱媒体を分離するとともに、前記少なくとも一部の液相熱媒体が分離された後の前記熱媒体を前記第2凝縮器の流入口(2221)側へ流出させる請求項1に記載の沸騰冷却装置。 The second condenser is arranged on the upper side in the gravity direction of the first condenser,
The first condenser separates at least a part of the liquid-phase heat medium from the heat medium in a gas-liquid two-phase state, and the heat medium after the at least a part of the liquid-phase heat medium is separated from the heat medium. The boiling cooling device according to claim 1, wherein the boiling cooling device is caused to flow to the inlet side (2221) side of the second condenser. - 前記第1凝縮器には、前記蒸発器から流出した気液二相状態の前記熱媒体が流入する請求項2に記載の沸騰冷却装置。 The boiling cooling device according to claim 2, wherein the heat medium in a gas-liquid two-phase state flowing out from the evaporator flows into the first condenser.
- 前記第1凝縮器における重力方向上方側には、前記第1凝縮器にて前記気液二相状態の熱媒体から少なくとも一部の液相熱媒体が分離された後の熱媒体を、前記第2凝縮器の前記流入口側へ流出させる流出口(2131)が設けられている請求項2または3に記載の沸騰冷却装置。 On the upper side in the direction of gravity in the first condenser, the heat medium after at least a part of the liquid-phase heat medium is separated from the heat medium in the gas-liquid two-phase state by the first condenser, The evaporative cooling device according to claim 2 or 3, further comprising an outlet (2131) for allowing the condenser to flow out to the inlet side.
- 前記熱媒体通路は、
前記第1凝縮器から流出した前記熱媒体を前記第2凝縮器に導く接続通路(302)と、
前記第2凝縮器から流出した前記熱媒体を前記蒸発器に導く液通路(304)と、を含んでおり、
前記接続通路の下流側端部は、前記第2凝縮器の重力方向上方側に接続されており、
前記液通路の上流側端部は、前記第2凝縮器の重力方向下方側に接続されている請求項2ないし4のいずれか1つに記載の沸騰冷却装置。 The heat medium passage is
A connection passageway (302) for guiding the heat medium flowing out of the first condenser to the second condenser;
A liquid passageway (304) for guiding the heat medium flowing out of the second condenser to the evaporator,
The downstream end of the connection passage is connected to the upper side in the gravity direction of the second condenser,
The boiling cooling device according to any one of claims 2 to 4, wherein an upstream end of the liquid passage is connected to a lower side in the gravity direction of the second condenser. - 前記接続通路の下流側端部は、前記第2凝縮器に接続されており、
前記液通路の上流側端部は、前記第2凝縮器における前記接続通路の下流側端部よりも重力方向下方側に接続されている請求項5に記載の沸騰冷却装置。 The downstream end of the connection passage is connected to the second condenser,
The boiling cooling device according to claim 5, wherein the upstream end of the liquid passage is connected to a lower side in the gravity direction than the downstream end of the connection passage in the second condenser. - 前記熱媒体通路は、前記蒸発器から流出した前記熱媒体を前記第1凝縮器に導く複数の蒸気通路(301A、301B)を含んでいる請求項2ないし6のいずれか1つに記載の沸騰冷却装置。 7. The boiling according to claim 2, wherein the heat medium passage includes a plurality of vapor passages (301A, 301B) that guide the heat medium flowing out of the evaporator to the first condenser. Cooling system.
- 前記第1凝縮器は、前記複数の蒸気通路から流出した前記熱媒体が流入する入口側流路(219)を有しており、
前記入口側流路の流路断面積(D2)は、前記複数の蒸気通路における通路断面積(D1A、D1B)の合計値より大きい請求項7に記載の沸騰冷却装置。 The first condenser has an inlet-side flow path (219) into which the heat medium flowing out from the plurality of steam passages flows,
The boiling cooling device according to claim 7, wherein a flow passage cross-sectional area (D 2 ) of the inlet-side flow passage is larger than a total value of passage cross-sectional areas (D 1A , D 1B ) in the plurality of steam passages. - 前記第2凝縮器は、前記第1凝縮器の重力方向上方側に配置されており、
前記第1凝縮器には、前記蒸発器から流出した前記熱媒体が流入し、
前記第1凝縮器は、前記熱媒体と前記外部流体とを熱交換させる熱交換部(210)を有する請求項1に記載の沸騰冷却装置。 The second condenser is arranged on the upper side in the gravity direction of the first condenser,
The heat medium flowing out of the evaporator flows into the first condenser,
The boiling cooling device according to claim 1, wherein the first condenser includes a heat exchange unit (210) for exchanging heat between the heat medium and the external fluid. - 前記第1凝縮器は、前記熱媒体が流れる複数の凝縮流路(2110)を有している請求項9に記載の沸騰冷却装置。 The boiling cooling device according to claim 9, wherein the first condenser has a plurality of condensation flow paths (2110) through which the heat medium flows.
- 前記複数の凝縮流路は、互いに流路断面積が異なる請求項10に記載の沸騰冷却装置。 The boiling cooling device according to claim 10, wherein the plurality of condensation flow passages have different flow passage cross-sectional areas.
- 前記複数の凝縮流路において、下方側に配置された前記凝縮流路の流路断面積が、上方側に配置された前記凝縮流路の流路断面積よりも大きい請求項11に記載の沸騰冷却装置。 The boiling according to claim 11, wherein in the plurality of condensation channels, the channel cross-sectional area of the condensation channel arranged on the lower side is larger than the channel cross-sectional area of the condensation channel arranged on the upper side. Cooling system.
- 前記第1凝縮器は、前記凝縮流路において前記熱媒体が水平方向に流れるように構成されている請求項10ないし12のいずれか1つに記載の沸騰冷却装置。 The boiling cooling device according to any one of claims 10 to 12, wherein the first condenser is configured such that the heat medium flows in a horizontal direction in the condensation flow path.
- 前記熱媒体通路は、前記第1凝縮器から流出した液相熱媒体を前記蒸発器に導く液通路(303)を含んでおり、
前記液通路の上流側端部は、前記第1凝縮器の重力方向下方側に接続されている請求項9ないし13のいずれか1つに記載の沸騰冷却装置。 The heat medium passage includes a liquid passage (303) for guiding the liquid phase heat medium flowing out from the first condenser to the evaporator,
The boiling cooling device according to any one of claims 9 to 13, wherein an upstream end of the liquid passage is connected to a lower side in the gravity direction of the first condenser. - 前記熱媒体通路は、前記第1凝縮器から流出した液相熱媒体を前記蒸発器に導く液通路(303)を含んでおり、
前記液通路の上流側端部は、前記凝縮流路における熱媒体流れ下流側に接続されている請求項10ないし12のいずれか1つに記載の沸騰冷却装置。 The heat medium passage includes a liquid passage (303) for guiding the liquid phase heat medium flowing out from the first condenser to the evaporator,
The boiling cooling device according to any one of claims 10 to 12, wherein an upstream end of the liquid passage is connected to a downstream side of the heat medium flow in the condensation passage. - 前記凝縮流路は、前記熱媒体が重力方向に流れるように構成されている請求項15に記載の沸騰冷却装置。 The boiling cooling device according to claim 15, wherein the condensation flow passage is configured so that the heat medium flows in the direction of gravity.
- 前記熱媒体通路は、前記第1凝縮器から流出した前記熱媒体を前記第2凝縮器に導く接続通路(302)を含んでおり、
前記接続通路の上流側端部は、前記第1凝縮器のうち、前記液通路との接続部(2132)よりも重力方向上方側に接続されている請求項14ないし16のいずれか1つに記載の沸騰冷却装置。 The heat medium passage includes a connection passage (302) for guiding the heat medium flowing out of the first condenser to the second condenser,
The upstream end of the connection passage is connected to the upper side of the first condenser in the gravity direction with respect to the connection portion (2132) with the liquid passage. The boiling cooling device described. - 前記第1凝縮器は、前記熱媒体が流れる複数の凝縮流路(2110)を有しており、
前記第1凝縮器は、複数の前記凝縮流路が互いに接続される接続凝縮流路(23)を有している請求項9ないし17のいずれか1つに記載の沸騰冷却装置。 The first condenser has a plurality of condensation flow paths (2110) through which the heat medium flows,
The evaporative cooling device according to any one of claims 9 to 17, wherein the first condenser has a connection condensing passage (23) in which the plurality of condensing passages are connected to each other. - 前記熱媒体通路は、前記蒸発器から流出した前記熱媒体を前記第1凝縮器に導く蒸気通路(301)を含んでおり、
前記第1凝縮器は、前記蒸気通路から流出した前記熱媒体が流入する入口側流路(219)を有しており、
前記入口側流路の流路断面積(D2)は、前記蒸気通路の通路断面積(D1)より大きい請求項2ないし18のいずれか1つに記載の沸騰冷却装置。 The heat medium passage includes a steam passage (301) for guiding the heat medium flowing out of the evaporator to the first condenser,
The first condenser has an inlet-side flow path (219) into which the heat medium that has flowed out of the steam passage flows,
The flow path cross-sectional area of the inlet passage (D 2) is cross-sectional area of the steam path (D 1) cooling apparatus according to any one of the larger claims 2 to 18. - 前記第1凝縮器は、前記熱媒体と前記外部流体とを熱交換させる第1熱交換部(210)を有しており、
前記第2凝縮器は、前記熱媒体と前記外部流体とを熱交換させる第2熱交換部(220)を有しており、
前記第1熱交換部は、前記熱媒体が流れる少なくとも1つの第1熱媒体流路(2110)を有しており、
前記第2熱交換部は、前記熱媒体が流れる少なくとも1つの第2熱媒体流路(2210)を有しており、
前記第1熱媒体流路の平均流路断面積は、前記第2熱媒体流路の平均流路断面積よりも大きい請求項9に記載の沸騰冷却装置。 The first condenser has a first heat exchange part (210) for exchanging heat between the heat medium and the external fluid,
The second condenser has a second heat exchange part (220) for exchanging heat between the heat medium and the external fluid,
The first heat exchange unit has at least one first heat medium flow path (2110) through which the heat medium flows,
The second heat exchange unit has at least one second heat medium flow path (2210) through which the heat medium flows,
The boiling cooling device according to claim 9, wherein an average flow passage cross-sectional area of the first heat medium flow passage is larger than an average flow passage cross-sectional area of the second heat medium flow passage. - 前記第1熱交換部は、複数の小熱交換部(24)を有しており、
前記複数の小熱交換部は、重力方向に配置されており、
前記複数の小熱交換部は、それぞれ、前記第1熱媒体流路を有しており、
前記複数の小熱交換部における前記第1熱媒体流路の平均流路断面積が互いに異なる請求項20に記載の沸騰冷却装置。 The first heat exchange section has a plurality of small heat exchange sections (24),
The plurality of small heat exchange units are arranged in the direction of gravity,
Each of the plurality of small heat exchange parts has the first heat medium flow path,
The boiling cooling device according to claim 20, wherein average flow passage cross-sectional areas of the first heat medium flow passages in the plurality of small heat exchange portions are different from each other. - 前記複数の小熱交換部において、下方側に配置された前記小熱交換部における前記第1熱媒体流路の平均流路断面積が、上方側に配置された前記小熱交換部における前記第1熱媒体流路の平均流路断面積よりも大きい請求項21に記載の沸騰冷却装置。 In the plurality of small heat exchange units, the average flow passage cross-sectional area of the first heat medium flow passage in the small heat exchange unit arranged on the lower side is the first in the small heat exchange unit arranged on the upper side. 22. The boiling cooling device according to claim 21, wherein the boiling channel is larger than the average channel cross-sectional area of one heat medium channel.
- 前記小熱交換部は、複数の前記第1熱媒体流路を有しているとともに、前記複数の第1熱媒体流路が互いに接続される接続凝縮流路(23)を有している請求項21に記載の沸騰冷却装置。 The small heat exchange unit has a plurality of the first heat medium flow passages, and also has a connection condensation flow passage (23) in which the plurality of first heat medium flow passages are connected to each other. Item 21. The boil cooling apparatus according to Item 21.
- 前記接続凝縮流路の上方側および下方側には、それぞれ、前記小熱交換部が接続されており、
前記接続凝縮流路の下方側に接続された前記小熱交換部における前記第1熱媒体流路の平均流路断面積が、前記接続凝縮流路の上方側に接続された前記小熱交換部における前記第1熱媒体流路の平均流路断面積よりも大きい請求項23に記載の沸騰冷却装置。 The small heat exchange section is connected to the upper side and the lower side of the connection condensation passage, respectively,
The small heat exchange section in which the average flow passage cross-sectional area of the first heat medium flow passage in the small heat exchange section connected to the lower side of the connection condensation flow path is connected to the upper side of the connection condensation flow path 24. The boiling cooling device according to claim 23, which is larger than an average flow passage cross-sectional area of the first heat medium flow passage in FIG. - 前記第1凝縮器には、前記蒸発器から流出した前記熱媒体が流入し、
前記第1凝縮器および前記第2凝縮器は、前記外部流体の流れ方向に配置されている請求項1に記載の沸騰冷却装置。 The heat medium flowing out of the evaporator flows into the first condenser,
The evaporative cooling device according to claim 1, wherein the first condenser and the second condenser are arranged in a flow direction of the external fluid. - 前記熱媒体通路は、
前記蒸発器から流出した前記熱媒体を前記第1凝縮器に導く蒸気通路(301)と、
前記第1凝縮器から流出した前記熱媒体を前記第2凝縮器に導く接続通路(302)と、
前記第1凝縮器から流出した前記熱媒体を前記蒸発器に導く第1液通路(303)と、
前記第2凝縮器から流出した前記熱媒体を前記蒸発器に導く第2液通路(304)と、を含んでおり、
前記接続通路の上流側端部は、前記第1凝縮器の重力方向上方側に接続されており、
前記接続通路の下流側端部は、前記第2凝縮器の重力方向上方側に接続されており、
前記第1液通路の上流側端部は、前記第1凝縮器の重力方向下方側に接続されており、
前記第2液通路の上流側端部は、前記第2凝縮器の重力方向下方側に接続されている請求項25に記載の沸騰冷却装置。 The heat medium passage is
A steam passage (301) for guiding the heat medium flowing out of the evaporator to the first condenser;
A connection passageway (302) for guiding the heat medium flowing out of the first condenser to the second condenser;
A first liquid passageway (303) for guiding the heat medium flowing out of the first condenser to the evaporator;
A second liquid passageway (304) for guiding the heat medium flowing out of the second condenser to the evaporator,
The upstream end of the connection passage is connected to the upper side in the gravity direction of the first condenser,
The downstream end of the connection passage is connected to the upper side in the gravity direction of the second condenser,
An upstream end of the first liquid passage is connected to a lower side in the gravity direction of the first condenser,
The boiling cooling device according to claim 25, wherein an upstream end of the second liquid passage is connected to a lower side in the gravity direction of the second condenser. - 前記第1凝縮器の重力方向上端部は、前記第2凝縮器の重力方向上端部と同等の高さに配置されている請求項25または26に記載の沸騰冷却装置。 The boiling cooling device according to claim 25 or 26, wherein an upper end in the gravity direction of the first condenser is arranged at a height equivalent to an upper end in the gravity direction of the second condenser.
- 前記第2凝縮器は、前記第1凝縮器の重力方向上方側に配置されており、
前記第1凝縮器には、前記蒸発器から流出した前記熱媒体が流入し、
前記熱媒体通路は、前記第1凝縮器から流出した液相の前記熱媒体を前記蒸発器側に導く複数の第1液通路(303a、303b)と、前記第2凝縮器から流出した液相の前記熱媒体を前記蒸発器側に導く第2液通路(304a、304b)と、を含んでおり、
前記複数の第1液通路の上流側端部は、それぞれ、前記第1凝縮器における重力方向の中央より下方側に接続されている請求項1に記載の沸騰冷却装置。 The second condenser is arranged on the upper side in the gravity direction of the first condenser,
The heat medium flowing out of the evaporator flows into the first condenser,
The heat medium passage includes a plurality of first liquid passages (303a, 303b) for guiding the heat medium in the liquid phase flowing out from the first condenser to the evaporator side, and a liquid phase flowing out from the second condenser. A second liquid passage (304a, 304b) for guiding the heat medium to the evaporator side,
The boiling cooling device according to claim 1, wherein upstream ends of the plurality of first liquid passages are connected to a lower side of a center of the first condenser in a gravity direction. - 車両に搭載される請求項28に記載の沸騰冷却装置であって、
前記複数の第1液通路のうち、最も車両後方側に配置された前記第1液通路である第1後方液通路(303a)の上流側端部は、前記第1凝縮器における車両後方側の端部に接続されている請求項28に記載の沸騰冷却装置。 29. The boiling cooling device according to claim 28, which is mounted on a vehicle.
Of the plurality of first liquid passages, the upstream end of the first rear liquid passage (303a), which is the first liquid passage arranged on the rearmost side of the vehicle, is located on the vehicle rear side of the first condenser. 29. The boil cooling apparatus according to claim 28, which is connected to an end portion. - 前記第2液通路は、複数設けられており、
複数の前記第2液通路の上流側端部は、それぞれ、前記第2凝縮器における重力方向の中央より下方側に接続されている請求項28または29に記載の沸騰冷却装置。 A plurality of the second liquid passages are provided,
The boiling cooling device according to claim 28 or 29, wherein upstream ends of the plurality of second liquid passages are connected to a lower side of a center of the second condenser in the gravity direction. - 車両に搭載される請求項30に記載の沸騰冷却装置であって、
前記複数の第2液通路のうち、最も車両後方側に配置された前記第2液通路である第2後方液通路(304a)の上流側端部は、前記第2凝縮器における車両後方側の端部に接続されている請求項30に記載の沸騰冷却装置。 The boiling cooling device according to claim 30, which is mounted on a vehicle,
Of the plurality of second liquid passages, the upstream end of the second rear liquid passage (304a), which is the second liquid passage arranged on the rearmost side of the vehicle, is located on the vehicle rear side of the second condenser. 31. The boil cooling device according to claim 30, which is connected to an end portion. - 前記熱媒体通路は、前記蒸発器から流出した前記熱媒体を前記第1凝縮器に導く蒸気通路(301)を含んでおり、
前記蒸気通路の下流側端部は、前記第1凝縮器における重力方向の中央より上方側に接続されている請求項28ないし31のいずれか1つに記載の沸騰冷却装置。 The heat medium passage includes a steam passage (301) for guiding the heat medium flowing out of the evaporator to the first condenser,
The evaporative cooling device according to any one of claims 28 to 31, wherein a downstream end of the steam passage is connected to an upper side of a center of the first condenser in a gravity direction. - 前記第2液通路の下流側端部は、前記第1凝縮器における重力方向下方側の端部に接続されている請求項28ないし32のいずれか1つに記載の沸騰冷却装置。 The boiling cooling device according to any one of claims 28 to 32, wherein a downstream end of the second liquid passage is connected to an end of the first condenser on a lower side in the gravity direction.
- 車両に搭載される請求項28ないし33のいずれか1つに記載の沸騰冷却装置であって、
前記複数の第1液通路のうち、最も車両前方側に配置された前記第1液通路である第1前方液通路(303b)の上流側端部は、前記第1凝縮器における車両前方側の端部に接続されている請求項28ないし33のいずれか1つに記載の沸騰冷却装置。 The boiling cooling device according to any one of claims 28 to 33, which is mounted on a vehicle,
Of the plurality of first liquid passages, the upstream end of the first front liquid passage (303b), which is the first liquid passage arranged closest to the vehicle front side, is located on the vehicle front side of the first condenser. 34. A boiling cooling device according to any one of claims 28 to 33, which is connected to the ends. - 車両に搭載される請求項28ないし34のいずれか1つに記載の沸騰冷却装置であって、
前記複数の第2液通路のうち、最も車両前方側に配置された前記第2液通路である第2前方液通路(304b)の上流側端部は、前記第2凝縮器における車両前方側の端部に接続されている請求項28ないし34のいずれか1つに記載の沸騰冷却装置。 The boiling cooling device according to any one of claims 28 to 34, which is mounted on a vehicle.
Of the plurality of second liquid passages, the upstream end of the second front liquid passage (304b), which is the second liquid passage disposed closest to the vehicle front side, is located on the vehicle front side of the second condenser. The boiling cooling device according to any one of claims 28 to 34, which is connected to an end portion.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-218983 | 2018-11-22 | ||
JP2018218983A JP2020085311A (en) | 2018-11-22 | 2018-11-22 | Ebullient cooling device |
JP2019074131A JP2020173051A (en) | 2019-04-09 | 2019-04-09 | Ebullient cooling device |
JP2019-074131 | 2019-04-09 | ||
JP2019-084004 | 2019-04-25 | ||
JP2019084004A JP2020180743A (en) | 2019-04-25 | 2019-04-25 | Ebullition cooler |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020105323A1 true WO2020105323A1 (en) | 2020-05-28 |
Family
ID=70773226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/040634 WO2020105323A1 (en) | 2018-11-22 | 2019-10-16 | Boiling cooling device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020105323A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5651848A (en) * | 1979-10-05 | 1981-05-09 | Hitachi Ltd | Condenser for boiling type cooling device |
JP2000065456A (en) * | 1998-08-20 | 2000-03-03 | Denso Corp | Ebullient cooler |
JP2000156447A (en) * | 1998-11-20 | 2000-06-06 | Denso Corp | Boiling cooling device |
US20160198591A1 (en) * | 2014-07-02 | 2016-07-07 | Embraer S.A. | Passive aircraft cooling systems and methods |
WO2018047534A1 (en) * | 2016-09-09 | 2018-03-15 | 株式会社デンソー | Instrument temperature adjustment device |
-
2019
- 2019-10-16 WO PCT/JP2019/040634 patent/WO2020105323A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5651848A (en) * | 1979-10-05 | 1981-05-09 | Hitachi Ltd | Condenser for boiling type cooling device |
JP2000065456A (en) * | 1998-08-20 | 2000-03-03 | Denso Corp | Ebullient cooler |
JP2000156447A (en) * | 1998-11-20 | 2000-06-06 | Denso Corp | Boiling cooling device |
US20160198591A1 (en) * | 2014-07-02 | 2016-07-07 | Embraer S.A. | Passive aircraft cooling systems and methods |
WO2018047534A1 (en) * | 2016-09-09 | 2018-03-15 | 株式会社デンソー | Instrument temperature adjustment device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW514714B (en) | Evaporator | |
US8826971B2 (en) | Micro-channel heat exchanger | |
US6431264B2 (en) | Heat exchanger with fluid-phase change | |
EP1998133A1 (en) | Heat exchanger and integrated-type heat exchanger | |
US10337808B2 (en) | Condenser | |
JP6120978B2 (en) | Heat exchanger and air conditioner using the same | |
JP6341099B2 (en) | Refrigerant evaporator | |
US7013952B2 (en) | Stack type heat exchanger | |
JP2024120080A (en) | Compact heat exchanger assembly for refrigeration systems | |
WO2020105323A1 (en) | Boiling cooling device | |
JP2020085311A (en) | Ebullient cooling device | |
EP3343160B1 (en) | Evaporator with redirected process fluid flow | |
JP6919511B2 (en) | Evaporator | |
WO2019087800A1 (en) | Equipment temperature control device | |
JP2020173051A (en) | Ebullient cooling device | |
JP2020180743A (en) | Ebullition cooler | |
CN110986639A (en) | Heat exchanger of thermosiphon | |
KR100858516B1 (en) | Receiver drier - integrated condenser | |
JP2018146153A (en) | Condenser | |
JP2021081116A (en) | Boiling cooling device | |
JP2021081115A (en) | Boiling cooling device | |
JPH0359364A (en) | Refrigerant condensor | |
JP7372778B2 (en) | Heat exchangers and air conditioners | |
JP4480539B2 (en) | Evaporator | |
JP2017223386A (en) | Heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19886092 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19886092 Country of ref document: EP Kind code of ref document: A1 |