WO2018168276A1 - Device temperature adjusting apparatus - Google Patents
Device temperature adjusting apparatus Download PDFInfo
- Publication number
- WO2018168276A1 WO2018168276A1 PCT/JP2018/004464 JP2018004464W WO2018168276A1 WO 2018168276 A1 WO2018168276 A1 WO 2018168276A1 JP 2018004464 W JP2018004464 W JP 2018004464W WO 2018168276 A1 WO2018168276 A1 WO 2018168276A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- working fluid
- heat exchanger
- temperature
- control device
- heat
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
- B60K1/04—Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K11/00—Arrangement in connection with cooling of propulsion units
- B60K11/02—Arrangement in connection with cooling of propulsion units with liquid cooling
- B60K11/04—Arrangement or mounting of radiators, radiator shutters, or radiator blinds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
- B60L58/26—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
- B60L58/27—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/615—Heating or keeping warm
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/617—Types of temperature control for achieving uniformity or desired distribution of temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/62—Heating or cooling; Temperature control specially adapted for specific applications
- H01M10/625—Vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6552—Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6556—Solid parts with flow channel passages or pipes for heat exchange
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6567—Liquids
- H01M10/6568—Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6569—Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/66—Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
- H01M10/663—Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
Definitions
- This disclosure relates to a device temperature control device that adjusts the temperature of a target device.
- thermosyphon method Conventionally, a device temperature control device that adjusts the temperature of a target device by a loop thermosyphon method is known.
- the apparatus temperature control apparatus described in Patent Document 1 includes an apparatus heat exchanger that exchanges heat between an assembled battery as a target apparatus and a working fluid, and a condenser that is disposed above the apparatus heat exchanger in the direction of gravity.
- the gas phase passage and the liquid phase passage connecting the heat exchanger for equipment and the condenser are provided.
- this apparatus temperature control apparatus is equipped with the heating part which can heat a working fluid inside the heat exchanger for apparatuses.
- the working fluid inside the apparatus heat exchanger absorbs heat from the assembled battery and evaporates, and flows into the condenser through the gas phase passage.
- the liquid-phase working fluid condensed by the condenser flows into the equipment heat exchanger through the liquid-phase passage.
- the device temperature control device is configured to cool the assembled battery by circulating the working fluid.
- the apparatus temperature control apparatus of patent document 1 heats a working fluid with the heating part provided inside the heat exchanger for apparatuses at the time of warming up of an assembled battery.
- the heated working fluid condenses by vaporizing inside the equipment heat exchanger and then radiating heat to the assembled battery.
- the device temperature control device is configured to heat the assembled battery by the phase change of the working fluid inside the device heat exchanger.
- the apparatus temperature control apparatus described in Patent Document 1 has a configuration in which a heating unit is provided inside the apparatus heat exchanger. Therefore, when the assembled battery is warmed up, the working fluid in the vicinity of the heating unit is locally vaporized inside the equipment heat exchanger, and the working fluid in a place away from the heating unit is not heated. Therefore, in this equipment temperature control device, the temperature variation of the working fluid becomes large inside the equipment heat exchanger, and the assembled battery cannot be warmed up uniformly. As a result, some battery cells constituting the assembled battery are not sufficiently warmed up, the input / output characteristics of the assembled battery are lowered, and the assembled battery may be deteriorated or damaged.
- the apparatus temperature control apparatus described in Patent Document 1 evaporates and condenses the working fluid only inside the apparatus heat exchanger when the assembled battery is warmed up. That is, inside the equipment heat exchanger, the working fluid heated and vaporized by the heating unit flows to the upper side in the gravity direction, and the working fluid radiated and condensed to the assembled battery flows to the lower side in the gravity direction. Therefore, since the liquid-phase working fluid and the gas-phase working fluid flow opposite to each other, there is a concern that the circulation of the working fluid is hindered inside the equipment heat exchanger and the warm-up efficiency of the assembled battery is deteriorated.
- the above-described problem is not limited to the case where the target device is an assembled battery, but may also occur in other devices as well.
- This disclosure aims to provide a device temperature control device capable of adjusting the temperature of a target device with high efficiency.
- a device temperature control device that adjusts the temperature of a target device by a phase change between a liquid phase and a gas phase of a working fluid
- a heat exchanger for equipment configured to allow heat exchange between the target device and the working fluid so that the working fluid evaporates when the target device is cooled and the working fluid is condensed when the target device is warmed up
- An upper connection provided in the upper part of the gravitational direction of the heat exchanger for equipment, and through which the working fluid flows in or out
- a lower connection part that is provided in a lower part of the heat exchanger for equipment than the upper connection part in the direction of gravity, and into which working fluid flows in or out
- a condenser that is disposed above the heat exchanger for equipment in the direction of gravity and that condenses the working fluid by dissipating the working fluid evaporated in the equipment heat exchanger
- a gas phase passage that communicates the inlet through which the gas phase working fluid flows into the condenser and the upper connection portion of the heat exchanger for equipment
- the working fluid condensed by the condenser flows into the heat exchanger for equipment from the lower connection portion through the liquid phase passage by its own weight.
- the working fluid absorbs heat from the target device inside the device heat exchanger and evaporates.
- the working fluid that has become a gas phase flows from the upper connection portion through the gas phase passage to the condenser.
- the working fluid is condensed again in the condenser, and flows into the heat exchanger for equipment through the liquid phase passage.
- the working fluid in the fluid passage evaporates and flows into the equipment heat exchanger from the upper connection section.
- the gas phase working fluid dissipates heat to the target equipment and condenses.
- the working fluid in the liquid phase flows from the lower connection portion to the fluid passage.
- the working fluid is heated by the heating section in the fluid passage, evaporates again, and flows into the equipment heat exchanger.
- This equipment temperature control device is configured to heat the working fluid in the fluid passage outside the equipment heat exchanger by the heating unit when the target equipment is warmed up. For this reason, the working fluid vapor evaporated in the fluid passage is supplied to the equipment heat exchanger, so that the variation in the steam temperature of the working fluid is suppressed inside the equipment heat exchanger. Therefore, this device temperature control device can warm up the target device uniformly. As a result, when the target device is an assembled battery, it is possible to prevent a decrease in input / output characteristics of the assembled battery, and to suppress deterioration and breakage of the assembled battery.
- this equipment temperature control device when the target equipment is cooled, the working fluid circulates in the order of condenser ⁇ liquid phase passage ⁇ lower connection portion ⁇ device heat exchanger ⁇ upper connection portion ⁇ gas phase passage ⁇ condenser.
- the working fluid circulates in the order of fluid passage ⁇ upper connection portion ⁇ device heat exchanger ⁇ lower connection portion ⁇ fluid passage. That is, in this device temperature control device, the flow path for the working fluid is formed in a loop shape both when the target device is cooled and when it is warmed up. Therefore, it is possible to prevent the liquid-phase working fluid and the gas-phase working fluid from flowing in the same flow path. Therefore, this apparatus temperature control apparatus can warm up and cool the target apparatus with high efficiency by smoothly circulating the working fluid.
- this device temperature control device secures a space for providing a heating portion in the height direction of the fluid passage connecting the upper connection portion and the lower connection portion of the heat exchanger for the device.
- the need to provide a heating unit or the like below the exchanger is reduced. Therefore, this apparatus temperature control apparatus can improve the mounting property to a vehicle.
- the device temperature adjustment device for adjusting the temperature of the target device by a phase change between the liquid phase and the gas phase of the working fluid
- a heat exchanger for equipment configured to allow heat exchange between the target equipment and the working fluid so that the working fluid is condensed when the target equipment is warmed up
- An upper connection provided in the upper part of the gravitational direction of the heat exchanger for equipment, and through which the working fluid flows in or out
- a lower connection part that is provided in a lower part of the heat exchanger for equipment than the upper connection part in the direction of gravity, and into which working fluid flows in or out
- a fluid passage communicating the upper connection portion and the lower connection portion of the equipment heat exchanger
- a heating unit capable of heating the liquid-phase working fluid flowing through the fluid passage
- a control device that operates the heating unit when warming up the target device.
- this apparatus temperature control apparatus is the structure which heats the working fluid of the fluid path in the outer side of the apparatus heat exchanger with a heating part at the time of warming up of object apparatus. For this reason, the working fluid vapor evaporated in the fluid passage is supplied to the equipment heat exchanger, so that the variation in the steam temperature of the working fluid is suppressed inside the equipment heat exchanger. Therefore, this device temperature control device can warm up the target device uniformly. As a result, when the target device is an assembled battery, it is possible to prevent a decrease in input / output characteristics of the assembled battery, and to suppress deterioration and breakage of the assembled battery.
- this equipment temperature control device when the target equipment is warmed up, the working fluid circulates in the order of the fluid passage ⁇ the upper connection portion ⁇ the equipment heat exchanger ⁇ the lower connection portion ⁇ the fluid passage. That is, in this device temperature control apparatus, the flow path through which the working fluid flows is formed in a loop when the target device is warmed up. Therefore, it is possible to prevent the liquid-phase working fluid and the gas-phase working fluid from flowing in the same flow path. Therefore, this device temperature control device can warm up the target device with high efficiency by smoothly circulating the working fluid.
- this device temperature control device secures a space for providing a heating portion in the height direction of the fluid passage connecting the upper connection portion and the lower connection portion of the heat exchanger for the device.
- the need to provide a heating unit or the like below the exchanger is reduced. Therefore, this apparatus temperature control apparatus can improve the mounting property to a vehicle.
- the device temperature adjustment device for adjusting the temperature of the target device by a phase change between the liquid phase and the gas phase of the working fluid
- a heat exchanger for equipment configured to allow heat exchange between the target device and the working fluid so that the working fluid evaporates when the target device is cooled and the working fluid is condensed when the target device is warmed up;
- An upper connection provided in the upper part of the gravitational direction of the heat exchanger for equipment, and through which the working fluid flows in or out;
- a lower connection part that is provided in a lower part of the heat exchanger for equipment than the upper connection part in the direction of gravity, and into which working fluid flows in or out;
- a supply member configured to allow heat exchange between the target device and the working fluid so that the working fluid evaporate
- the device temperature control device can perform both warm-up and cooling of the target device by selectively supplying cold heat or heat to the working fluid flowing through the fluid passage by the heat supply member. It is. Therefore, this equipment temperature control device can achieve downsizing, light weight, and low cost by reducing the number of parts and simplifying the configuration of piping and the like.
- the device temperature control device when cooling heat is supplied from the heat supply member to the working fluid flowing through the fluid passage when the target device is cooled, the working fluid in the fluid passage is condensed. Then, due to the head difference between the liquid-phase working fluid condensed in the fluid passage and the liquid-phase working fluid in the equipment heat exchanger, the liquid-phase working fluid in the fluid passage passes from the lower connection portion to the equipment heat exchanger. Flow into.
- the working fluid in the equipment heat exchanger absorbs heat from the target equipment and evaporates, and the working fluid in the gas phase flows from the upper connection portion to the fluid passage.
- the working fluid in the fluid passage is cooled by the heat supply member, condensed again, and flows into the equipment heat exchanger from the lower connection portion. By such circulation of the working fluid, the device temperature adjustment device can cool the target device.
- the working fluid in the fluid passage evaporates and flows into the equipment heat exchanger from the upper connection portion.
- the gas phase working fluid dissipates heat to the target equipment and condenses. Due to the head difference between the liquid-phase working fluid condensed in the equipment heat exchanger and the liquid-phase working fluid in the fluid passage, the liquid-phase working fluid in the equipment heat exchanger is transferred from the lower connection portion to the fluid passage. Flowing.
- the working fluid is heated by the heat supply member in the fluid passage, evaporates again, and flows into the equipment heat exchanger. By such a circulation of the working fluid, the device temperature control device can warm up the target device.
- This equipment temperature control device is configured to heat the working fluid in the fluid passage outside the equipment heat exchanger by the heat supply member when the target equipment is warmed up. For this reason, the working fluid vapor evaporated in the fluid passage is supplied to the equipment heat exchanger, so that the variation in the steam temperature of the working fluid is suppressed inside the equipment heat exchanger. Therefore, this device temperature control device can warm up the target device uniformly. As a result, when the target device is an assembled battery, it is possible to prevent a decrease in input / output characteristics of the assembled battery, and to suppress deterioration and breakage of the assembled battery.
- this equipment temperature control device when the target equipment is cooled, the working fluid circulates in the order of fluid passage ⁇ lower connection portion ⁇ device heat exchanger ⁇ upper connection portion ⁇ fluid passage. On the other hand, when the target device is warmed up, the working fluid circulates in the order of fluid passage ⁇ upper connection portion ⁇ device heat exchanger ⁇ lower connection portion ⁇ fluid passage. That is, in this device temperature control device, the flow path for the working fluid is formed in a loop shape both when the target device is cooled and when it is warmed up. Therefore, it is possible to prevent the liquid-phase working fluid and the gas-phase working fluid from flowing in the same flow path. Therefore, this apparatus temperature control apparatus can warm up and cool the target apparatus with high efficiency by smoothly circulating the working fluid.
- this device temperature control device secures a space for providing a heat supply member in the height direction of the fluid passage connecting the upper connection portion and the lower connection portion of the equipment heat exchanger. The need to provide piping and components below the heat exchanger is reduced. Therefore, this apparatus temperature control apparatus can improve the mounting property to a vehicle.
- the apparatus temperature control device of this embodiment is mounted on an electric vehicle (hereinafter simply referred to as “vehicle”) such as an electric vehicle or a hybrid vehicle.
- vehicle such as an electric vehicle or a hybrid vehicle.
- the device temperature control device 1 functions as a cooling device that cools a secondary battery 2 (hereinafter referred to as “assembled battery 2”) mounted on a vehicle.
- the apparatus temperature control apparatus 1 functions also as a warming-up apparatus which warms up the assembled battery 2.
- a power storage device in other words, a battery pack
- the assembled battery 2 self-heats when power is supplied while the vehicle is running.
- the assembled battery 2 becomes high temperature, not only cannot a sufficient function be exhibited, but also deterioration is promoted. Therefore, it is necessary to limit output and input so that self-heating is reduced. For this reason, in order to ensure the output and input of the assembled battery 2, a cooling device for maintaining the assembled battery 2 below a predetermined temperature is required.
- the battery temperature rises not only when the vehicle is running but also when parked.
- the assembled battery 2 is often arranged under the floor of a vehicle, under a trunk room, etc., and although the amount of heat per unit time given to the assembled battery 2 is small, the battery temperature gradually rises when left for a long time. If the assembled battery 2 is left in a high temperature state, the life of the assembled battery 2 is shortened. Therefore, it is desired to maintain the temperature of the assembled battery 2 at a predetermined temperature or less even during parking of the vehicle.
- the assembled battery 2 is composed of a plurality of battery cells 21.
- the assembled battery 2 if the temperature of each battery cell 21 varies, the deterioration of the battery cell 21 is biased, and the power storage performance decreases. This is because the input / output characteristics of the assembled battery 2 are determined in accordance with the characteristics of the battery cell 21 that is most deteriorated because the assembled battery 2 includes the series connection body of the battery cells 21. Therefore, in order to make the assembled battery 2 exhibit desired performance over a long period of time, it is important to equalize the temperature so as to reduce the temperature variation among the plurality of battery cells 21.
- an air-cooling cooling means using a blower and a cooling means using the cold heat of a vapor compression refrigeration cycle are generally used.
- the air-cooled cooling means using the blower since the air-cooled cooling means using the blower only blows air in the passenger compartment, the cooling capacity is low.
- the air blower cools the assembled battery 2 with the sensible heat of air, the temperature difference between the upstream and downstream of the air flow becomes large, and the temperature variation between the plurality of battery cells 21 cannot be sufficiently suppressed.
- the cooling means using the cold heat of the refrigeration cycle has a high cooling capacity, it is necessary to drive a compressor or the like that consumes a large amount of power while the vehicle is parked. This is undesirable because it leads to an increase in power consumption and an increase in noise.
- the device temperature control apparatus 1 of the present embodiment employs a thermosiphon system that adjusts the temperature of the assembled battery 2 by natural circulation of the working fluid without forcibly circulating the working fluid by a compressor.
- the device temperature control device 1 includes a fluid circulation circuit 4 through which a working fluid circulates and a control device 5 that controls the operation of the fluid circulation circuit 4.
- the fluid circulation circuit 4 is a heat pipe that performs heat transfer by evaporation and condensation of the working fluid. Specifically, the flow path through which the gas-phase working fluid flows and the flow path through which the liquid-phase working fluid flows are separated. It is a loop-type thermosiphon.
- the fluid circulation circuit 4 is configured as a closed fluid circuit in which the equipment heat exchanger 10, the condenser 30, the liquid phase passage 40, the gas phase passage 50, the fluid passage 60, and the like are connected to each other. Further, the fluid passage 60 is provided with a heating unit 61 for heating the working fluid.
- the fluid circulation circuit 4 is filled with a predetermined amount of working fluid in a state where the inside is evacuated.
- working fluid for example, a fluorocarbon refrigerant such as HFO-1234yf or HFC-134a used in a vapor compression refrigeration cycle is employed.
- An arrow DG in FIG. 1 indicates the direction of gravity in a state where the fluid circulation circuit 4 is mounted on the vehicle.
- the filling amount of the working fluid in the fluid circulation circuit 4 is adjusted so that the liquid level is formed in the vicinity of the center in the height direction of the equipment heat exchanger 10 during warm-up described later.
- FIG. 1 an example of the height of the liquid level during warm-up is indicated by a one-dot chain line FL.
- the equipment heat exchanger 10 has a cylindrical upper tank 11, a cylindrical lower tank 12, and a flow path that connects the upper tank 11 and the lower tank 12. It is composed of a plurality of tubes 131. Instead of the plurality of tubes 131, the upper tank 11 and the lower tank 12 may be connected by a plurality of flow paths formed inside the plate-like member.
- Each component of the equipment heat exchanger 10 is formed of a metal having high thermal conductivity such as aluminum or copper.
- each structural member of the heat exchanger 10 for apparatuses can also be comprised with materials with high heat conductivity other than a metal.
- the part comprised by the some tube 131 or the plate-shaped member among the heat exchangers 10 for apparatuses shall be called the heat exchange part 13.
- the upper tank 11 is provided at a position on the upper side in the gravity direction of the equipment heat exchanger 10.
- the lower tank 12 is provided in a position on the lower side in the gravity direction of the equipment heat exchanger 10.
- the assembled battery 2 is installed outside the heat exchanging unit 13 via an electrically insulating heat conductive sheet 14.
- the heat conductive sheet 14 ensures insulation between the heat exchanging unit 13 and the assembled battery 2 and reduces the thermal resistance between the heat exchanging unit 13 and the assembled battery 2.
- the surface 23 opposite to the surface 25 on which the terminals 22 are provided is installed in the heat exchange unit 13 via the heat conductive sheet 14.
- the plurality of battery cells 21 constituting the assembled battery 2 are arranged in a direction crossing the gravitational direction. Thus, the plurality of battery cells 21 are uniformly cooled and heated by heat exchange with the working fluid inside the equipment heat exchanger 10.
- the method for installing the assembled battery 2 is not limited to that shown in FIGS. 1 to 3, and the other surface of the assembled battery 2 is the heat conductive sheet 14. It may be installed in the heat exchange part 13 via. Note that the number, shape, and the like of each battery cell 21 constituting the assembled battery 2 are not limited to those shown in FIGS. 1 to 3, and any one can be adopted.
- the equipment heat exchanger 10 is provided with an upper connection portion 15 and a lower connection portion 16.
- Each of the upper connection portion 15 and the lower connection portion 16 is a pipe connection portion for allowing the working fluid to flow into the equipment heat exchanger 10 or for causing the working fluid to flow out from the equipment heat exchanger 10.
- the upper connection part 15 is provided in the site
- the upper connection portion 15 is provided on both sides of the upper tank 11.
- the upper connection portion 15 provided at one end of the upper tank 11 is referred to as a first upper connection portion 151
- the upper connection portion 15 provided at the other end of the upper tank 11 is referred to as a second upper connection portion 152. Call.
- the lower connection part 16 is provided in the site
- the lower connection portion 16 is provided on both sides of the lower tank 12.
- the lower connection portion 16 provided at one end of the lower tank 12 is referred to as a first lower connection portion 161
- the lower connection portion 16 provided at the other end of the lower tank 12 is referred to as a second lower connection portion 162. Call.
- the gas phase passage 50 is connected to the first upper connection portion 151.
- the gas phase passage 50 is a passage that communicates the inlet 31 of the condenser 30 and the first upper connection portion 151 of the equipment heat exchanger 10.
- the liquid phase passage 40 is connected to the first lower connection portion 161.
- the liquid phase passage 40 is a passage that communicates the outlet 32 of the condenser 30 with the first upper connection portion 151 of the equipment heat exchanger 10.
- the gas phase passage 50 and the liquid phase passage 40 are names for convenience, and do not mean a passage through which only a gas phase or liquid phase working fluid flows. That is, both the gas phase and the liquid phase working fluid may flow in both the gas phase passage 50 and the liquid phase passage 40.
- the shapes of the gas phase passage 50 and the liquid phase passage 40 can be appropriately changed in consideration of the mounting property on the vehicle.
- the condenser 30 is disposed above the apparatus heat exchanger 10 in the gravity direction.
- An inlet 31 is provided in the upper part of the condenser 30, and an outlet 32 is provided in the lower part of the condenser 30.
- the condenser 30 is a heat exchanger for exchanging heat between a gas-phase working fluid that has flowed into the condenser 30 from the inlet 31 through the gas-phase passage 50 and a predetermined heat-receiving fluid.
- the condenser 30 of this embodiment is an air-cooled heat exchanger that exchanges heat between the air blown from the blower fan 33 and the gas-phase working fluid. That is, in the present embodiment, the predetermined heat receiving fluid is air.
- the heat receiving fluid is not limited to air, and various fluids such as a refrigerant circulating in the refrigeration cycle or a cooling water circulating in the cooling water circuit may be adopted. Is possible.
- the blower fan 33 can flow air outside the passenger compartment or air inside the passenger compartment toward the condenser 30.
- the air blowing capacity of the blower fan 33 is controlled based on a control signal from the control device 5.
- the gas phase working fluid is condensed by releasing heat to the air passing through the condenser 30.
- the working fluid in the liquid phase flows down from the outlet 32 through the liquid phase passage 40 by its own weight, and flows into the equipment heat exchanger 10.
- a fluid control valve 70 capable of blocking the flow of the working fluid flowing through the liquid phase passage 40.
- the fluid control valve 70 of the present embodiment is an electromagnetic valve, and the flow path cross-sectional area is adjusted by a control signal transmitted from the control device 5.
- the fluid control valve 70 cuts off the flow of the working fluid flowing through the liquid phase passage 40, the liquid phase working fluid is accumulated from the liquid phase passage 40 above the fluid control valve 70 in the gravity direction to the condenser 30, and thereafter.
- the heat radiation of the working fluid by the condenser 30 is suppressed or substantially stopped. Therefore, the fluid control valve 70 functions as a heat dissipation suppression unit that can suppress the heat dissipation of the working fluid by the condenser 30.
- the fluid passage 60 is connected to the second upper connection portion 152 and the second lower connection portion 162. Since the fluid passage 60 is a passage connecting the upper connection portion 15 and the lower connection portion 16 of the equipment heat exchanger 10 without including the condenser 30 on the route, the fluid passage 60 is also referred to as a bypass passage. As will be described in a twentieth embodiment to be described later, the fluid passage 60 is not limited to connecting the second upper connection portion 152 and the second lower connection portion 162, and the middle of the gas phase passage 50 and the liquid phase passage. The middle of 40 may be connected.
- the fluid passage 60 is provided with a heating unit 61 capable of heating the liquid-phase working fluid flowing through the fluid passage 60.
- the heating unit 61 of the present embodiment is configured by an electric heater that generates heat when energized. On / off of energization to the heating unit 61 is controlled according to a control signal from the control device 5.
- the heating unit 61 is provided at a portion where the fluid passage 60 extends in the vertical direction. As a result, when the heating unit 61 heats the working fluid in the fluid passage 60, the working fluid that has become vapor flows through the fluid passage 60 upward in the direction of gravity and flows into the equipment heat exchanger 10 from the second upper connection portion 152. To do.
- the control device 5 includes a microcomputer including a processor and a memory (for example, ROM, RAM) and its peripheral circuits. Note that the memory of the control device 5 is composed of a non-transitional tangible storage medium.
- the control device 5 controls the operation of each device such as the heating unit 61, the blower fan 33, and the fluid control valve 70 included in the fluid circulation circuit 4 described above.
- the assembled battery 2 when the assembled battery 2 becomes cooler than a predetermined optimum temperature range, the internal resistance increases, and both the output characteristics and the input characteristics deteriorate. Further, when the assembled battery 2 becomes hotter than a predetermined optimum temperature range, both the output characteristics and the input characteristics are degraded, and there is a possibility that the battery pack 2 may be deteriorated or broken. Therefore, in order for the assembled battery 2 to exhibit the desired performance, the assembled battery 2 is warmed up when the assembled battery 2 becomes lower in temperature than the predetermined optimum temperature range, and the assembled battery 2 exceeds the predetermined optimum temperature range. However, it is necessary to cool the assembled battery 2 when the temperature becomes high.
- the flow of the working fluid when the device temperature control device 1 cools the assembled battery 2 is indicated by solid and broken arrows.
- the control device 5 turns off the power supply to the heating unit 61 and stops the operation of the heating unit 61. Further, the control device 5 opens the fluid control valve 70 so that the working fluid flows through the liquid phase passage 40. Furthermore, the control device 5 turns on the power of the blower fan 33 that blows air to the condenser 30 when the vehicle is stopped. However, when the vehicle is traveling, the control device 5 turns off the power of the blower fan 33 because the traveling wind flows into the condenser 30.
- the liquid-phase working fluid condensed in the condenser 30 flows through the liquid-phase passage 40 due to its own weight, and flows into the lower tank 12 of the equipment heat exchanger 10 from the first lower connection portion 161.
- the working fluid that has flowed into the lower tank 12 is divided into a plurality of tubes 131 that constitute the heat exchanging unit 13, and is evaporated by exchanging heat with the battery cells 21 that constitute the assembled battery 2.
- the battery cell 21 is cooled by the latent heat of vaporization of the working fluid.
- the working fluid that has become a gas phase joins in the upper tank 11 of the equipment heat exchanger 10, and flows from the first upper connection portion 151 through the gas phase passage 50 to the condenser 30.
- the flow of the working fluid during cooling of the assembled battery 2 is in the order of the condenser 30 ⁇ the liquid phase passage 40 ⁇ the lower tank 12 ⁇ the heat exchange unit 13 ⁇ the upper tank 11 ⁇ the gas phase passage 50 ⁇ the condenser 30.
- a loop-shaped flow path that passes through the equipment heat exchanger 10 and the condenser 30 is formed.
- the heating unit 61 When the heating unit 61 is operated, the working fluid in the fluid passage 60 is vaporized, and the working fluid that has become a vapor flows through the fluid passage 60 upward in the gravitational direction, and from the second upper connection portion 152, the equipment heat exchanger 10.
- the gas-phase working fluid is condensed by being divided into a plurality of tubes 131 in contact with the low-temperature battery cells 21 and exchanging heat with each of the low-temperature battery cells 21 due to the property of flowing in a lower temperature. In this process, the battery cell 21 is warmed up (ie, heated) by the latent heat of condensation of the working fluid.
- the working fluid in a liquid phase is merged in the lower tank 12 of the equipment heat exchanger 10 and flows from the second lower connecting portion 162 to the fluid passage 60.
- the flow of the working fluid when the assembled battery 2 is warmed up is in the order of the fluid passage 60 ⁇ the upper tank 11 ⁇ the heat exchange unit 13 ⁇ the lower tank 12 ⁇ the fluid passage 60. That is, a loop-shaped flow path that passes through the equipment heat exchanger 10 and the fluid passage 60 is formed without passing through the condenser 30.
- the liquid phase working fluid is accumulated from the liquid phase passage 40 above the fluid control valve 70 in the gravity direction to the condenser 30.
- the amount of the working fluid sealed in the fluid circulation circuit 4 and the mounting position of the fluid control valve 70 so that the liquid level FL is formed near the center of the heat exchanger 13 of the equipment heat exchanger 10. has been adjusted.
- the apparatus temperature control apparatus 1 of the present embodiment switches the flow of the working fluid flowing through the tube 131 of the apparatus heat exchanger 10 in the opposite direction during cooling and warming up, and flows through the apparatus heat exchanger 10.
- the temperature of the assembled battery 2 is adjusted by the phase change between the liquid phase and the gas phase of the working fluid.
- the equipment temperature control device 1 uses the equipment heat exchanger 10 as an evaporator at the time of cooling, and uses the equipment heat exchanger 10 as a condenser 30 at the time of warming up, so that the same equipment heat exchange is performed.
- the vessel 10 is used for cooling and warming up.
- the apparatus temperature control apparatus 1 of this embodiment demonstrated above has the following effects.
- the apparatus temperature control apparatus 1 of this embodiment is the structure which heats the working fluid which flows through the fluid channel
- FIG. . Therefore, since the vapor of the working fluid vaporized in the fluid passage 60 is supplied to the equipment heat exchanger 10, variation in the vapor temperature of the working fluid is suppressed inside the equipment heat exchanger 10. Therefore, this apparatus temperature control apparatus 1 can warm up the assembled battery 2 uniformly. As a result, the input / output characteristics of the assembled battery 2 can be prevented from being lowered, and the assembled battery 2 can be prevented from being degraded or damaged.
- the device temperature control device 1 of the present embodiment is configured such that the condenser 30 ⁇ the liquid phase passage 40 ⁇ the lower connection portion 16 ⁇ the device heat exchanger 10 ⁇ the upper connection portion 15 ⁇ the gas phase passage.
- the working fluid circulates in the order of 50 ⁇ condenser 30.
- the working fluid circulates in the order of the fluid passage 60 ⁇ the upper connection portion 15 ⁇ the equipment heat exchanger 10 ⁇ the lower connection portion 16 ⁇ the fluid passage 60. That is, in the device temperature control apparatus 1, the flow path through which the working fluid flows is formed in a loop shape regardless of whether the assembled battery 2 is cooled or warmed up. Therefore, it is possible to prevent the liquid-phase working fluid and the gas-phase working fluid from flowing in the same flow path. Therefore, this apparatus temperature control apparatus 1 can warm up and cool the assembled battery 2 with high efficiency by smoothly circulating the working fluid.
- the apparatus temperature control apparatus 1 of this embodiment is for providing the heating part 61 in the height direction of the fluid passage 60 that connects the upper connection part 15 and the lower connection part 16 of the apparatus heat exchanger 10. Since space is ensured, the necessity of providing the heating unit 61 below the heat exchanger for equipment 10 is reduced. Therefore, this equipment temperature control apparatus 1 can improve the mounting property to a vehicle.
- the device temperature control apparatus 1 of the present embodiment includes a fluid control valve 70 as a heat radiation suppressing unit capable of suppressing the heat radiation of the working fluid by the condenser 30. According to this, by closing the fluid control valve 70 when the assembled battery 2 is warmed up, liquid-phase working fluid is stored in the condenser 30 from the fluid control valve 70, and heat dissipation of the working fluid by the condenser 30 is suppressed. Is done. Accordingly, the circulation of the working fluid in the gas phase passage 50, the condenser 30 and the liquid phase passage 40 is suppressed. Therefore, when the assembled battery 2 is warmed up, it is possible to flow the working fluid through the loop on the fluid passage 60 side. Therefore, this apparatus temperature control apparatus 1 can warm up the assembled battery 2 with high efficiency by smoothly circulating the working fluid.
- a fluid control valve 70 as a heat radiation suppressing unit capable of suppressing the heat radiation of the working fluid by the condenser 30.
- the heating unit 61 is provided in a portion of the fluid passage 60 that extends vertically in the gravity direction. According to this, the working fluid heated and vaporized by the heating unit 61 quickly flows through the fluid passage 60 upward in the gravity direction. Therefore, the working fluid in the gas phase is prevented from flowing backward from the fluid passage 60 to the second lower connection portion 162 side. Therefore, this apparatus temperature control apparatus 1 can warm up the assembled battery 2 with high efficiency by smoothly circulating the working fluid.
- 2nd Embodiment changes the structure for cooling the working fluid of the apparatus temperature control apparatus 1 with respect to 1st Embodiment, Since it is the same as that of 1st Embodiment about others, 1st Only portions different from the embodiment will be described.
- the device temperature adjustment device 1 of the second embodiment includes a refrigeration cycle 8.
- the refrigeration cycle 8 includes a compressor 81, a high-pressure side heat exchanger 82, a first flow rate regulating unit 83, a first expansion valve 84, a refrigerant-working fluid heat exchanger 85, a second flow rate regulating unit 86, and a second expansion valve 87.
- the refrigerant used for the refrigeration cycle 8 may be the same as or different from the working fluid used in the device temperature control device 1.
- the compressor 81 sucks and compresses refrigerant from the refrigerant-working fluid heat exchanger 85 and the refrigerant pipe 89 on the low-pressure side heat exchanger 88 side.
- the compressor 81 is driven by power transmitted from a traveling engine or electric motor (not shown) of the vehicle.
- the high-pressure gas-phase refrigerant discharged from the compressor 81 flows into the high-pressure side heat exchanger 82.
- the high-pressure gas-phase refrigerant flowing into the high-pressure side heat exchanger 82 flows through the flow path of the high-pressure side heat exchanger 82, it dissipates heat and condenses by heat exchange with the outside air.
- a part of the liquid-phase refrigerant condensed in the high-pressure side heat exchanger 82 passes through the first flow rate restricting portion 83 and is reduced in pressure when passing through the first expansion valve 84 to be in a mist-like gas-liquid two-phase state. And flows into the refrigerant-working fluid heat exchanger 85.
- the first flow restricting unit 83 can adjust the amount of refrigerant flowing from the first expansion valve 84 into the refrigerant-working fluid heat exchanger 85.
- the working fluid flowing through 30 is cooled. That is, the condenser 30 of the fluid circulation circuit 4 of the device temperature control apparatus 1 of the present embodiment and the refrigerant-working fluid heat exchanger 85 of the refrigeration cycle 8 are configured integrally, and the working fluid flowing through the fluid circulation circuit 4 Heat exchange with the refrigerant flowing through the refrigeration cycle 8 is performed.
- the refrigerant that has passed through the refrigerant-working fluid heat exchanger 85 is sucked into the compressor 81 via an accumulator (not shown).
- the other part of the liquid-phase refrigerant condensed in the high-pressure side heat exchanger 82 passes through the second flow rate restricting portion 86 and is reduced in pressure when passing through the second expansion valve 87. It enters into a phase state and flows into the low pressure side heat exchanger 88.
- the second flow rate regulating unit 86 can adjust the amount of refrigerant flowing from the second expansion valve 87 into the low pressure side heat exchanger 88.
- the low-pressure side heat exchanger 88 is used, for example, in an air conditioner for performing air conditioning in the passenger compartment. In that case, the refrigerant flowing into the low-pressure side heat exchanger 88 cools the air blown into the passenger compartment by the latent heat of vaporization of the refrigerant.
- the refrigerant that has passed through the low-pressure side heat exchanger 88 is also sucked into the compressor 81 via an accumulator (not shown).
- the condenser 30 constituting the fluid circulation circuit 4 and the refrigerant-working fluid heat exchanger 85 constituting the refrigeration cycle 8 are integrally configured, and the working fluid flowing through the fluid circulation circuit 4 is The cooling is performed by heat exchange with the refrigerant flowing through the refrigeration cycle 8.
- the working fluid flowing through the condenser 30 of the device temperature control device 1 by adjusting the amount of refrigerant flowing through the refrigerant-working fluid heat exchanger 85 constituting the refrigeration cycle 8 by the first flow rate regulating unit 83 or the like. It is possible to adjust the amount of cooling heat supplied to. Therefore, in 2nd Embodiment, the cooling capacity of the assembled battery 2 by the apparatus temperature control apparatus 1 can be adjusted appropriately according to the emitted-heat amount of the assembled battery 2.
- the above-described refrigeration cycle 8 may be a heat pump cycle as well as a cooler cycle. Further, the above-described refrigeration cycle 8 may be a stand-alone for cooling the assembled battery 2 that is separated from the air conditioner for air conditioning in the passenger compartment.
- 3rd Embodiment changes the structure for cooling the working fluid of the apparatus temperature control apparatus 1 with respect to 1st and 2nd Embodiment, and others are the same as that of 1st and 2nd Embodiment. Therefore, only different parts from the first and second embodiments will be described.
- the device temperature control device 1 of the third embodiment includes a cooling water circuit 9.
- the cooling water circuit 9 includes a water pump 91, a cooling water radiator 92, a water-working fluid heat exchanger 93, and a cooling water pipe 94 connecting them. Cooling water flows through the cooling water circuit 9.
- the water pump 91 pumps the cooling water and circulates the cooling water in the cooling water circuit 9.
- the cooling water radiator 92 cools the cooling water flowing through the flow path of the cooling water radiator 92 by exchanging heat with the refrigerant flowing through the evaporator constituting the refrigeration cycle 8. That is, the cooling water radiator 92 of the cooling water circuit 9 of the present embodiment is a chiller configured integrally with the evaporator of the refrigeration cycle 8, and the cooling water flowing in the cooling water circuit 9 and the low-pressure refrigerant flowing in the refrigeration cycle 8. Heat exchange.
- the cooling water flowing out from the cooling water radiator 92 flows into the water-working fluid heat exchanger 93.
- the cooling water flowing into the water-working fluid heat exchanger 93 flows through the flow path of the water-working fluid heat exchanger 93, the cooling water flows through the condenser 30 constituting the fluid circulation circuit 4 of the device temperature control device 1. Cool the fluid. That is, the condenser 30 of the fluid circulation circuit 4 of the device temperature control apparatus 1 of the present embodiment and the water-working fluid heat exchanger 93 of the cooling water circuit 9 are integrally configured, and the working fluid that flows through the fluid circulation circuit 4. Heat exchange with the coolant flowing through the coolant circuit 9.
- the condenser 30 that constitutes the fluid circulation circuit 4 and the water-working fluid heat exchanger 93 that constitutes the cooling water circuit 9 are integrally configured, and the working fluid that flows through the fluid circulation circuit 4. Is cooled by heat exchange with the cooling water flowing through the cooling water circuit 9.
- the device temperature control device 1 can appropriately adjust the temperature of the low-pressure refrigerant flowing through the refrigeration cycle 8 and the temperature of the cooling water flowing through the cooling water circuit 9. Therefore, the amount of cooling heat supplied from the cooling water flowing through the cooling water circuit 9 to the working fluid flowing through the condenser 30 of the device temperature control device 1 is adjusted, and the cooling capacity of the battery pack 2 by the device temperature control device 1 is adjusted. Can be appropriately adjusted according to the amount of heat generated.
- the device temperature control apparatus 1 includes an air cooling radiator 95 in the cooling water circuit 9.
- the air cooling radiator 95 cools the cooling water flowing through the flow path of the air cooling radiator 95 by exchanging heat with the outside air.
- the air cooling radiator 95 and the cooling water radiator 92 are connected in parallel.
- the cooling capacity of the cooling water flowing through the cooling water circuit 9 can be increased. Therefore, this equipment temperature control apparatus 1 can improve the cooling capacity of the assembled battery 2.
- the fifth embodiment is obtained by changing a part of the configuration of the fluid circulation circuit 4 with respect to the first embodiment, and is otherwise the same as the first embodiment. Therefore, the fifth embodiment is different from the first embodiment. Only will be described.
- the device temperature control apparatus 1 of the fifth embodiment is not provided with the fluid control valve 70 in the middle of the liquid phase passage 40.
- a shutter 34 serving as a door member capable of blocking the flow of air passing through the condenser 30 is installed in the air-cooled condenser 30. The shutter 34 is controlled to open and close by a control signal transmitted from the control device 5.
- the shutter 34 when the shutter 34 is in a closed state, the flow of air passing through the condenser 30 is blocked. Thereby, the heat dissipation of the working fluid by the condenser 30 is suppressed or substantially stopped. Therefore, when the assembled battery 2 is warmed up, the working fluid flows through the fluid circulation circuit 4 of the device temperature control apparatus 1 in the order of the fluid passage 60 ⁇ the upper tank 11 ⁇ the heat exchange unit 13 ⁇ the lower tank 12 ⁇ the fluid passage 60. can do. Therefore, the shutter 34 according to the present embodiment functions as a heat dissipation suppression unit capable of suppressing the heat dissipation of the working fluid by the condenser 30.
- the fluid control valve 70 installed in the middle of the liquid phase passage 40 in the first to fourth embodiments can be eliminated. It is.
- the device temperature control apparatus 1 of the sixth embodiment is not provided with the fluid control valve 70 in the middle of the liquid phase passage 40. Therefore, in the sixth embodiment, when the assembled battery 2 is warmed up, instead of controlling the fluid control valve 70, the first flow regulating part 83 installed in the refrigeration cycle 8 causes the refrigerant-working fluid from the first expansion valve 84. The refrigerant flowing into the heat exchanger 85 is shut off. Thereby, the heat dissipation of the working fluid by the condenser 30 is suppressed or substantially stopped.
- the first flow rate restricting portion 83 of the present embodiment functions as a heat dissipation suppressing portion capable of suppressing the heat dissipation of the working fluid by the condenser 30.
- the operation of the compressor 81 may be stopped when the assembled battery 2 is warmed up.
- the fluid installed in the middle of the liquid phase passage 40 in the first to fourth embodiments is controlled by controlling the first flow rate restricting portion 83 to the closed state when the assembled battery 2 is warmed up.
- the control valve 70 can be eliminated.
- the device temperature control apparatus 1 of the seventh embodiment is not provided with the fluid control valve 70 in the middle of the liquid phase passage 40. Therefore, in the seventh embodiment, when the assembled battery 2 is warmed up, instead of controlling the fluid control valve 70, the water pump 91 installed in the cooling water circuit 9 is stopped and the water-working fluid heat exchanger 93 is stopped. Shut off the cooling water flow. Thereby, the heat dissipation of the working fluid by the condenser 30 is suppressed or substantially stopped. Therefore, when the assembled battery 2 is warmed up, the working fluid flows through the fluid circulation circuit 4 of the device temperature control apparatus 1 in the order of the fluid passage 60 ⁇ the upper tank 11 ⁇ the heat exchange unit 13 ⁇ the lower tank 12 ⁇ the fluid passage 60. can do. Therefore, the water pump 91 according to the present embodiment functions as a heat radiation suppressing unit capable of suppressing the heat radiation of the working fluid by the condenser 30.
- the fluid control valve 70 installed in the middle of the liquid phase passage 40 in the first to fourth embodiments is stopped by stopping the driving of the water pump 91 when the assembled battery 2 is warmed up. It can be abolished.
- the device temperature control apparatus 1 of the eighth embodiment is provided with a fluid control valve 70 in the middle of the gas phase passage 50. Therefore, in the eighth embodiment, when the fluid control valve 70 interrupts the flow of the working fluid flowing through the gas phase passage 50 when the assembled battery 2 is warmed up, the condensation of the working fluid by the condenser 30 is stopped. Therefore, when the assembled battery 2 is warmed up, the working fluid flows through the fluid circulation circuit 4 of the device temperature control apparatus 1 in the order of the fluid passage 60 ⁇ the upper tank 11 ⁇ the heat exchange unit 13 ⁇ the lower tank 12 ⁇ the fluid passage 60. can do.
- the ninth embodiment is obtained by changing a part of the configuration of the fluid circulation circuit 4 of the device temperature control device 1 with respect to the second embodiment, and is otherwise the same as the second embodiment. Only parts different from the second embodiment will be described.
- the device temperature control apparatus 1 of the ninth embodiment includes two types of condensers 30 a and 30 b in the fluid circulation circuit 4.
- One condenser 30a is the air-cooled condenser 30a described in the first embodiment or the like.
- the other condenser 30b is configured integrally with the refrigerant-working fluid heat exchanger 85 of the refrigeration cycle 8 described in the second embodiment and the like.
- the two types of condensers 30a and 30b are connected in parallel.
- the fluid control valve 70 is provided between the junction 47 of the liquid phase passage 40 extending from the two types of condensers 30 a and 30 b and the first lower connection 161 of the equipment heat exchanger 10.
- the apparatus temperature control apparatus 1 of 9th Embodiment can improve the cooling performance of the assembled battery 2 by improving the condensing capability of the working fluid by the condensers 30a and 30b.
- a fluid control valve 70 is provided between the air-cooled condenser 30a and the junction 47 of the liquid phase passage 40.
- the shutter 34 when the shutter 34 is not provided, heat exchange is performed by traveling wind or the like.
- the shutter 34 when the shutter 34 is provided for the air-cooled condenser 30a, a large space around the condenser 30 is required, and the mountability on the vehicle may be deteriorated. Therefore, in the tenth embodiment, by providing the fluid control valve 70 between the air-cooled condenser 30a and the junction 47 of the liquid phase passage 40, the physique of the device temperature control device 1 can be reduced in size, Mountability can be improved.
- the condenser 30b configured integrally with the refrigerant-working fluid heat exchanger 85 of the refrigeration cycle 8 suppresses or substantially eliminates the heat radiation of the working fluid by closing the first flow rate regulating unit 83 installed in the refrigeration cycle 8. It is possible to stop. Accordingly, also in the tenth embodiment, when the assembled battery 2 is warmed up, the fluid is controlled by controlling the fluid control valve 70 and the first flow rate restricting unit 83 so that the working fluid flows from the fluid passage 60 to the upper tank 11 to the heat exchange unit 13. It is possible to flow in the order of the lower tank 12 ⁇ the fluid passage 60.
- the liquid-phase working fluid is accumulated from the liquid phase passage 40 above the fluid control valve 70 in the gravity direction.
- the amount of the working fluid sealed in the fluid circulation circuit 4 and the mounting position of the fluid control valve 70 so that the liquid level FL is formed near the center of the heat exchanger 13 of the equipment heat exchanger 10. has been adjusted.
- the eleventh embodiment is obtained by changing the connection method of the two types of condensers 30 with respect to the ninth embodiment, and the other parts are the same as those of the ninth embodiment, and therefore different from the ninth embodiment. Only will be described.
- the device temperature control apparatus 1 of the eleventh embodiment includes two types of condensers 30 a and 30 b in the fluid circulation circuit 4.
- One condenser 30 a is an air-cooled condenser 30.
- the other condenser 30 b is configured integrally with the refrigerant-working fluid heat exchanger 85 of the refrigeration cycle 8.
- the two types of condensers 30a and 30b are connected in series.
- the number of the plurality of condensers 30a and 30b provided in the fluid circulation circuit 4 of the device temperature control device 1 is not limited to that shown in FIG. 19 and the like, and may be three or more.
- the connection method of the several condensers 30a and 30b is not restricted to what was shown in FIG. 19, etc., You may combine parallel and series.
- the apparatus temperature control apparatus 1 of 11th Embodiment can improve the cooling performance of the assembled battery 2 by improving the condensing capability of the working fluid by the condenser 30.
- FIG. 1 is a diagrammatic representation of the apparatus temperature control apparatus 1 of 11th Embodiment.
- a heating unit 61 is provided at a portion where the fluid passage 60 extends in a substantially horizontal direction. In this case, if the working fluid that has been heated by the heating unit 61 and turned into a vapor flows back through the fluid passage 60 toward the second lower connecting portion 162, the working fluid may be circulated.
- the fluid passage 60 includes a backflow suppression unit 62 extending downward in the gravitational direction from the heating unit 61 between the second lower connection unit 162 and the heating unit 61 of the equipment heat exchanger 10.
- a part of the fluid passage 60 is formed in a U shape.
- the portion on the heating unit 61 side from the center of the U-shape corresponds to the backflow suppressing unit 62.
- the backflow suppression unit 62 extends downward in the direction of gravity from the heating unit 61, so that the working fluid heated and vaporized by the heating unit 61 can be prevented from flowing back to the second lower connection unit 162 side. is there. Therefore, when the assembled battery 2 is warmed up, the device temperature control apparatus 1 can smoothly circulate the working fluid in the order of the fluid passage 60 ⁇ the upper tank 11 ⁇ the heat exchange unit 13 ⁇ the lower tank 12 ⁇ the fluid passage 60. it can.
- the thirteenth embodiment is different from the first embodiment in that it includes a plurality of device heat exchangers 10 and is otherwise the same as the first embodiment, and thus is different from the first embodiment. Only explained.
- the device temperature control apparatus 1 of the thirteenth embodiment includes a plurality of device heat exchangers 10a and 10b.
- the gas phase passage 50 has a first gas phase passage portion 51 and a second gas phase passage portion 52.
- the first gas phase passage portion 51 connects the first upper connection portion 151a of one equipment heat exchanger 10a and the first upper connection portion 151b of the other equipment heat exchanger 10b.
- the second gas phase passage portion 52 extends upward from the middle of the first gas phase passage portion 51 and is connected to the inlet 31 of the condenser 30.
- the liquid phase passage 40 includes a first liquid phase passage portion 41 and a second liquid phase passage portion 42.
- the first liquid phase passage portion 41 connects the first lower connection portion 161a of the one device heat exchanger 10a and the first lower connection portion 161b of the other device heat exchanger 10b.
- the second liquid phase passage portion 42 extends upward from the middle of the first liquid phase passage portion 41 and is connected to the outlet 32 of the condenser 30.
- the fluid passage 60a connects the second upper connection portion 152a and the second lower connection portion 162a of the one equipment heat exchanger 10a, and the fluid passage 60a is provided with a heating portion 61a.
- another fluid passage 60b connects the second upper connection portion 152b and the second lower connection portion 162b of the other equipment heat exchanger 10b, and another heating portion 61b is also provided in the other fluid passage 60b. It has been.
- the device temperature control apparatus 1 includes a plurality of device heat exchangers 10 according to the location of the assembled battery 2 even when the assembled battery 2 is disposed at multiple locations of the vehicle. Can be arranged.
- the fourteenth embodiment also includes a plurality of device heat exchangers 10 with respect to the first embodiment, and the other parts are the same as those of the first embodiment, and therefore different parts from the first embodiment. Only explained.
- the device temperature control apparatus 1 also includes a plurality of device heat exchangers 10a and 10b.
- the gas phase passage 50 includes a heat exchanger gas phase passage 53 and a condenser gas phase passage 54.
- the heat exchanger gas-phase passage 53 connects the first upper connection portion 151a of the one device heat exchanger 10a and the second upper connection portion 152b of the other device heat exchanger 10b.
- the condenser gas-phase passage 54 connects the first upper connection portion 151 b of the other equipment heat exchanger 10 b and the inlet 31 of the condenser 30.
- the liquid phase passage 40 has a heat exchanger liquid phase passage 43 and a condenser liquid phase passage 44.
- the liquid phase passage 43 for heat exchanger connects the first lower connection portion 161a of the one device heat exchanger 10a and the second lower connection portion 162b of the other device heat exchanger 10b.
- the condenser liquid phase passage 44 connects the first lower connection portion 161 b of the other equipment heat exchanger 10 b and the outlet 32 of the condenser 30.
- the fluid passage 60a connects the second upper connection portion 152a and the second lower connection portion 162a of the one equipment heat exchanger 10a, and the fluid passage 60a is provided with a heating portion 61a.
- the device temperature control apparatus 1 of the fourteenth embodiment has a plurality of device heat exchangers 10 depending on the location of the assembled battery 2 even when the assembled battery 2 is disposed at a plurality of locations of the vehicle. Can be arranged.
- the assembled battery 2 is installed such that the terminals 22 of the battery cells 21 constituting the assembled battery 2 are on the upper side in the gravity direction.
- a surface 24 perpendicular to the surface 25 on which the terminals 22 are provided is installed on the side surface of the heat exchange unit 13 of the equipment heat exchanger 10 via the heat conductive sheet 14.
- the assembled battery 2 is installed such that the terminals 22 of the battery cells 21 constituting the assembled battery 2 are in a direction intersecting with the direction of gravity.
- a surface 23 opposite to the surface 25 on which the terminals 22 are provided is installed on the side surface of the heat exchange unit 13 of the equipment heat exchanger 10 via the heat conductive sheet 14.
- the assembled battery 2 is installed only on one side surface of the heat exchanging unit 13, and is not installed on the other side surface.
- the equipment heat exchanger 10 includes two lower tanks 121 and 122 and one upper tank 11.
- the equipment heat exchanger 10 includes a horizontal heat exchange unit 132 that connects the two lower tanks 121 and 122, and a vertical heat exchange unit 133 that is provided perpendicular to the horizontal heat exchange unit 132.
- a portion of the vertical heat exchange unit 133 on the lower side in the gravity direction is connected to an intermediate position of the horizontal heat exchange unit 132, and a portion of the vertical heat exchange unit 133 on the lower side in the gravity direction is connected to the upper tank 11.
- the two lower tanks 121 and 122, the one upper tank 11, the horizontal heat exchange unit 132, and the vertical heat exchange unit 133 are integrally formed.
- the assembled battery 2 is installed such that the terminals 22 of the battery cells 21 constituting the assembled battery 2 are in a direction intersecting with the direction of gravity.
- a surface 24 perpendicular to the surface 25 on which the terminals 22 are provided is installed in the horizontal heat exchange unit 132 via the heat conductive sheet 14.
- the surface 23 opposite to the surface 25 on which the terminals 22 are provided is installed in the vertical heat exchange unit 133 via the heat conductive sheet 14.
- the device heat exchanger 10 includes a surface 24 perpendicular to the surface 25 on which the terminals 22 of the assembled battery 2 are provided, and a surface 23 opposite to the surface 25 on which the terminals 22 are provided. Can be cooled or warmed up simultaneously.
- the eighteenth embodiment includes a horizontal portion 134, a first inclined portion 135, and a second inclined portion 136.
- the horizontal part 134 extends in the horizontal direction.
- the first inclined portion 135 extends obliquely downward in the gravitational direction from one portion of the horizontal portion 134.
- the second inclined portion 136 extends obliquely upward in the gravitational direction from the other portion of the horizontal portion 134.
- the lower tank 12 is connected to a portion of the first inclined portion 135 opposite to the horizontal portion 134.
- the upper tank 11 is connected to a portion of the second inclined portion 136 opposite to the horizontal portion 134. That is, the upper tank 11 is arranged at a position higher than the lower tank 12.
- the horizontal part 134, the first inclined part 135, the second inclined part 136, the lower tank 12 and the upper tank 11 are integrally formed.
- the assembled battery 2 is installed such that the terminals 22 of the battery cells 21 constituting the assembled battery 2 are directed upward in the direction of gravity.
- the surface 23 opposite to the surface 25 on which the terminals 22 are provided is installed on the horizontal portion 134 of the heat exchanging portion 13 via the heat conductive sheet 14.
- the installation method of the assembled battery 2 is not limited to that shown in the first to eighteenth embodiments, and various installation methods can be employed.
- the number, shape, etc. of each battery cell 21 constituting the assembled battery 2 are not limited to those shown in the first to eighteenth embodiments, and any one can be adopted.
- the fluid passage 60 has a liquid storage portion 63 for storing a liquid-phase working fluid flowing through the fluid passage 60 in the middle of the passage. At least a part of the liquid storage part 63 is located within the height range of the upper connection part 15 and the lower connection part 16 of the equipment heat exchanger 10. Thereby, the apparatus temperature control apparatus 1 stores the amount of the working fluid necessary for cooling and warming up the assembled battery 2 in the liquid storage unit 63, and adjusting the height of the liquid level FL of the liquid storage unit 63. The height of the liquid level FL of the working fluid in the equipment heat exchanger 10 can be easily adjusted during heating and cooling of the assembled battery 2.
- FIG. 28 is a cross-sectional view of the equipment heat exchanger 10 and the fluid passage 60.
- the liquid reservoir 63 is formed by increasing the inner diameter of a part of the fluid passage 60. Thereby, the liquid storage part 63 can be provided in the fluid passage 60 with a simple configuration.
- the heating unit 61 is provided at a position where the liquid-phase working fluid stored in the liquid storage unit 63 can be heated. Thereby, the heating efficiency of the working fluid by the heating part 61 can be improved.
- the fluid passage 60 has a liquid storage portion 63.
- the liquid storage portion 63 included in the fluid passage 60 communicates with the liquid phase passage 40.
- a portion of the fluid passage 60 opposite to the liquid storage portion 63 communicates with the gas phase passage 50 via the three-way switching valve 71.
- the flow of the working fluid when the device temperature control device 1 cools the assembled battery 2 is indicated by solid and broken arrows.
- the control device 5 turns off the power supply to the heating unit 61 and stops the operation of the heating unit 61. Further, the control device 5 opens the fluid control valve 70 so that the working fluid flows through the liquid phase passage 40. Furthermore, the control device 5 turns on the power of the blower fan 33 that blows air to the condenser 30 when the vehicle is stopped. However, when the vehicle is traveling, the control device 5 turns off the power of the blower fan 33 because the traveling wind flows into the condenser 30.
- control device 5 controls the three-way switching valve 71 when the assembled battery 2 is cooled. Due to the operation of the three-way switching valve 71, the gas phase passage 50 on the upper connecting portion 15 side with respect to the three-way switching valve 71 and the gas phase passage 50 on the condenser 30 side with respect to the three-way switching valve 71 communicate with each other. And the gas phase passage 50 are disconnected.
- the flow of the working fluid at the time of cooling the assembled battery 2 is in the order of the condenser 30 ⁇ the liquid phase passage 40 ⁇ the lower tank 12 ⁇ the heat exchange unit 13 ⁇ the upper tank 11 ⁇ the gas phase passage 50 ⁇ the condenser 30. . That is, a loop-shaped flow path that passes through the equipment heat exchanger 10 and the condenser 30 is formed.
- the flow of the working fluid when the device temperature control device 1 warms up the assembled battery 2 is indicated by solid and broken arrows.
- the control device 5 turns on the energization of the heating unit 61 and operates the heating unit 61.
- the control device 5 closes the fluid control valve 70 and blocks the flow of the working fluid in the liquid phase passage 40.
- control device 5 controls the three-way switching valve 71 when the assembled battery 2 is warmed up.
- the gas-phase passage 50 and the fluid passage 60 on the upper connection side of the three-way switching valve 71 communicate with each other, and the gas-phase passage 50 and the fluid passage on the condenser 30 side of the three-way switching valve 71. Communication with 60 is cut off.
- the flow of the working fluid when the assembled battery 2 is warmed up is in the order of the fluid passage 60 ⁇ the upper tank 11 ⁇ the heat exchange unit 13 ⁇ the lower tank 12 ⁇ the fluid passage 60. That is, a loop-shaped flow path that passes through the equipment heat exchanger 10 and the fluid passage 60 is formed without passing through the condenser 30.
- a twenty-first embodiment will be described.
- the twenty-first embodiment is obtained by changing the configuration of the equipment heat exchanger 10 with respect to the first to twentieth embodiments, and is otherwise the same as the first to twentieth embodiments. Only parts different from the twentieth embodiment will be described.
- the equipment heat exchanger 10 of the 21st embodiment does not have an upper tank, a lower tank, and a plurality of tubes.
- the equipment heat exchanger 10 according to the twenty-first embodiment is configured by a single container 17.
- the device heat exchanger 10 according to the twenty-first embodiment can achieve the same effects as the device heat exchanger 10 described in the first to twentieth embodiments.
- the equipment heat exchanger 10 according to the twenty-second embodiment does not include the condenser 30, the liquid phase passage 40, and the gas phase passage 50.
- the fluid circulation circuit 4 included in the equipment heat exchanger 10 of the twenty-second embodiment is configured as a fluid circuit in which the equipment heat exchanger 10 and the fluid passage 60 are closed.
- the fluid passage 60 has one end connected to the upper connection portion 15 of the equipment heat exchanger 10 and the other end connected to the lower connection portion 16 of the equipment heat exchanger 10.
- the fluid passage 60 is provided with a heating unit 61 for heating the liquid-phase working fluid flowing through the fluid passage 60.
- the control device 5 turns on the power to the heating unit 61 and operates the heating unit 61.
- the working fluid that is heated by the heating unit 61 and becomes vapor flows in the fluid passage 60 upward in the gravity direction, and flows into the upper tank 11 of the equipment heat exchanger 10 from the upper connection unit 15.
- the gas-phase working fluid is condensed by being divided into a plurality of tubes 131 in contact with the low-temperature battery cells 21 and exchanging heat with each of the low-temperature battery cells 21 due to the property of flowing in a lower temperature. In this process, the battery cell 21 is warmed up (ie, heated) by the latent heat of condensation of the working fluid.
- the working fluid in a liquid phase joins in the lower tank 12 of the equipment heat exchanger 10 and flows from the lower connection portion 16 to the fluid passage 60.
- the flow of the working fluid when the assembled battery 2 is warmed up is in the order of the fluid passage 60 ⁇ the upper tank 11 ⁇ the heat exchange unit 13 ⁇ the lower tank 12 ⁇ the fluid passage 60. That is, a loop-shaped flow path that passes through the equipment heat exchanger 10 and the fluid passage 60 is formed.
- the device temperature adjustment device 1 of the 22nd embodiment can exhibit the same effect as the operation effect during the warm-up of the device temperature adjustment device 1 described in the first embodiment.
- the configuration described in the first to 21st embodiments can be appropriately combined with the configuration of the 22nd embodiment.
- the working fluid has a large amount of condensation in the upper part of the plurality of tubes 131, and the liquid-phase working fluid accumulates on the bottom and side walls in the lower part of the plurality of tubes 131. Therefore, the amount of condensation of the working fluid is small. Therefore, although the upper part of each battery cell 21 has a large heating amount due to the latent heat of condensation of the working fluid, the lower part of each battery cell 21 has a smaller heating amount than the upper part. As a result, when temperature variation (that is, temperature distribution) between the upper part and the lower part of the battery cell 21 increases, current concentration occurs in the upper part where the temperature of the battery cell 21 is high when the assembled battery 2 is charged and discharged. There are concerns about the occurrence.
- temperature variation that is, temperature distribution
- the twenty-third to twenty-sixth embodiments described below are intended to suppress the temperature distribution of the assembled battery 2 when the device temperature control device 1 warms up the assembled battery 2.
- the configuration of the device temperature adjustment device 1 of the present embodiment is the same as the configuration described in the eighth embodiment. That is, the heating unit 61 is configured by an electric heater that generates heat when energized.
- the control device 5 receives signals transmitted from one or more battery temperature sensors 101, working fluid temperature sensors 102, heater temperature sensors 103, and the like.
- One or more battery temperature sensors 101 detect the temperature of the battery.
- the working fluid temperature sensor 102 detects the temperature of the working fluid circulating in the thermosiphon circuit.
- the heater temperature sensor 103 detects the temperature of the heating unit 61.
- the control device 5 includes a temperature distribution determination unit 110 that determines the size of the temperature distribution of the assembled battery 2, a heater energization time detection unit 111 that detects an energization time to the heating unit 61, and electric power supplied to the heating unit 61.
- a heater power detection unit 112 for detecting.
- the control device 5, the temperature distribution determination unit 110, the heater energization time detection unit 111, the heater power detection unit 112, and the like may be configured integrally, or may be configured separately. This is the same in the embodiments described later.
- FIG. 34 and FIG. 36 show a state when the device temperature control device 1 is warming up the assembled battery 2.
- the control device 5 energizes the heating unit 61 and heats the working fluid by the heating unit 61.
- the control device 5 closes the fluid control valve 70 and blocks the flow of the working fluid in the gas phase passage 50.
- the flow of the working fluid when the assembled battery 2 is warmed up is indicated by solid and broken arrows.
- the heating unit 61 heats the working fluid in the fluid passage 60
- the working fluid in the fluid passage 60 evaporates and flows into the upper tank 11 of the equipment heat exchanger 10 from the upper connection portion 15.
- the gas phase working fluid dissipates heat to the assembled battery 2 and condenses.
- the battery cell 21 is warmed up (ie, heated) by the latent heat of condensation of the working fluid.
- the liquid phase working fluid of the equipment heat exchanger 10 flows from the lower tank 12.
- the fluid flows to the fluid passage 60 via the lower connection portion 16.
- the working fluid is heated by the heating unit 61 in the fluid passage 60 and evaporated again, and flows into the equipment heat exchanger 10.
- the device temperature control device 1 can warm up the assembled battery 2 by circulating such working fluid.
- the working fluid in the vapor phase is condensed in the plurality of tubes 131 of the equipment heat exchanger 10, and travels along the side wall 137 in the tubes 131 and moves downward in the gravity direction. Flows to the side. Therefore, the liquid film of the working fluid formed on the side wall 137 in the tube 131 gradually increases from the upper side to the lower side. Therefore, since the liquid film of the working fluid is thin above the apparatus heat exchanger 10, the heating capacity of the battery cells 21 due to the latent heat of condensation of the working fluid is relatively large.
- the heating capacity of the battery cell 21 due to the latent heat of condensation of the working fluid becomes relatively small.
- the liquid level FL of the working fluid is high below the equipment heat exchanger 10, and the heating capacity of the battery cell 21 due to the latent heat of condensation of the working fluid is very small below the liquid level FL. Therefore, as the warm-up time elapses, the temperature distribution of the upper part and the lower part of each battery cell 21 gradually increases.
- the control device 5 performs control to stop energization of the heating unit 61 after a predetermined time has elapsed from the start of warming up of the assembled battery 2. Thereby, the inflow of the working fluid from the fluid passage 60 to the equipment heat exchanger 10 is stopped. Therefore, there is no head difference between the liquid level FL in the equipment heat exchanger 10 and the liquid level FL in the fluid passage 60, so that the working fluid level FL in the equipment heat exchanger 10 as shown in FIG. Go down. 37, the liquid film on the side wall 137 in the tube 131 of the equipment heat exchanger 10 flows downward, and further, as shown by the arrow ⁇ , the liquid film on the upper side wall in the tube 131.
- the control device 5 starts energizing the heating unit 61 again after a certain time has elapsed since the energization of the heating unit 61 was stopped. In this way, the control device 5 can suppress an increase in the temperature distribution of the assembled battery 2 by warming up the assembled battery 2 while intermittently repeating driving and stopping of the heating unit 61.
- step S10 the control device 5 determines whether or not there is a warm-up request for the assembled battery 2. When there is a warm-up request for the assembled battery 2, the control device 5 moves the process to step S20.
- step S20 the control device 5 starts energizing the heating unit 61, and the process proceeds to step S30.
- step S30 the control device 5 determines whether or not the temperature distribution of the assembled battery 2 is equal to or greater than a predetermined first temperature threshold value.
- the first temperature threshold is a value that is set by, for example, experiments or the like and is stored in advance in the memory of the control device 5.
- the temperature distribution determination unit 110 included in the control device 5 can detect the size of the temperature distribution of the assembled battery 2 by the following method based on signals input from the sensors shown in FIG. Is possible.
- the control device 5 detects the size of the temperature distribution of the assembled battery 2 based on signals input from the plurality of battery temperature sensors 101 that detect the temperature of the battery.
- the plurality of battery temperature sensors 101 are preferably installed in the upper part and the lower part of the battery cell 21. Thereby, the control device 5 can directly detect the magnitude of the temperature distribution in the upper part and the lower part of the battery cell 21.
- the control device 5 detects the size of the temperature distribution of the assembled battery 2 based on the signals input from the heater temperature sensor 103 and the working fluid temperature sensor 102.
- the heater temperature sensor 103 detects the temperature of the heating unit 61.
- the working fluid temperature sensor 102 detects the temperature of the working fluid circulating in the thermosiphon circuit of the device temperature control device 1. The higher the temperature of the heating unit 61 with respect to the temperature of the working fluid circulating in the thermosiphon circuit, the greater the heating capacity of the assembled battery 2 by the device temperature control device 1, and thus the temperature distribution of the assembled battery 2 becomes larger.
- the control device 5 detects the size of the temperature distribution of the assembled battery 2 based on the time during which the heating unit 61 is continuously operated.
- the time during which the heating unit 61 is continuously operated is the continuous energization on-time for the heating unit 61 detected by the heater energization time detection unit 111. The longer the time during which the heating unit 61 is operating continuously, the greater the temperature distribution of the assembled battery 2.
- control apparatus 5 can also detect the magnitude
- the time during which the heating unit 61 continuously stops operating is the continuous energization off time to the heating unit 61 detected by the heater energization time detection unit 111. The longer the time during which the heating unit 61 is continuously stopped, the smaller the temperature distribution of the assembled battery 2.
- the control device 5 detects the size of the temperature distribution of the assembled battery 2 based on the power supplied to the heating unit 61.
- the power supplied to the heating unit 61 is detected by the heater power detection unit 112.
- the heating capacity of the assembled battery 2 by the device temperature control device 1 becomes larger, and the temperature distribution of the assembled battery 2 becomes larger.
- the smaller the electric power supplied to the heating unit 61 the smaller the heating capacity of the assembled battery 2 by the device temperature control device 1, and thus the temperature distribution of the assembled battery 2 becomes smaller.
- step S30 of FIG. 38 determines in step S30 of FIG. 38 that the temperature distribution of the assembled battery 2 is equal to or greater than a predetermined first temperature threshold, the process proceeds to step S40.
- step S40 the control device 5 stops energizing the heating unit 61. Thereby, the inflow of the working fluid from the fluid passage 60 to the equipment heat exchanger 10 is stopped, and the flow of the working fluid is stopped. For this reason, as shown in FIG. 37, the liquid level FL of the working fluid in the equipment heat exchanger 10 is lowered, and the liquid film on the side wall 137 in the tube 131 is thinned. The area exposed to the phase working fluid is increased. Therefore, the working fluid can be condensed in a wide range from the upper part to the lower part in the tube 131, and the temperature distribution of the upper part and the lower part of each battery cell 21 is gradually reduced. Moreover, since heat conduction also occurs inside each battery cell 21, the temperature distribution of each battery cell 21 becomes smaller with the passage of time.
- step S50 the control device 5 determines whether or not the temperature variation of the assembled battery 2 has been eliminated. Specifically, the control device 5 determines whether or not the temperature distribution of the assembled battery 2 is equal to or less than a predetermined second temperature threshold value.
- the second temperature threshold is a value that is set, for example, by an experiment or the like and stored in advance in the memory of the control device 5. If the control device 5 determines that the temperature distribution of the assembled battery 2 is greater than the predetermined second temperature threshold, the process proceeds to step S60, assuming that the temperature variation of the assembled battery 2 has not been eliminated. In step S60, the control device 5 maintains a state where the energization to the heating unit 61 is stopped, and the process proceeds to step S50. Steps S50 and S60 are repeated until the temperature distribution of the assembled battery 2 is equal to or lower than a predetermined second temperature threshold.
- step S50 determines in step S50 that the temperature distribution of the assembled battery 2 is equal to or lower than the predetermined second temperature threshold
- the process proceeds to step S70 assuming that the temperature variation of the assembled battery 2 has been eliminated.
- step S ⁇ b> 70 the control device 5 resumes energization to the heating unit 61 and ends the process once. And after predetermined time progress, the control apparatus 5 repeats the process mentioned above from step S10 again.
- step S10 when there is no warming-up request
- step S30 when the control device 5 determines in step S30 described above that the temperature distribution of the assembled battery 2 is smaller than the predetermined first temperature threshold, the process proceeds to step S90, and energization of the heating unit 61 is continued. The process is temporarily terminated. And after predetermined time progress, a process is repeated from step S10 again.
- the transition of the temperature distribution of the assembled battery 2 when the warm-up control process of the present embodiment is performed is shown by a solid line TD1.
- the solid line TD2 shows the transition of the temperature distribution of the assembled battery 2 when the warm-up control process of the present embodiment is not performed and the energization of the heating unit 61 is continuously turned on during warm-up.
- the temperature distribution of the assembled battery 2 is timed from time t1 to time t3. It grows with time. At time t3, the temperature distribution of the assembled battery 2 is maximum.
- the energization to the heating unit 61 is stopped, so that the temperature distribution of the assembled battery 2 decreases with time.
- the heating unit 61 when the warm-up control process of the present embodiment is performed, the heating unit 61 is energized from time t1 to t2, from t4 to t5, and from t6 to t7, and from time t2. Energization to the heating unit 61 is stopped after t4 and t5 to t6 and after t7.
- the control device 5 warms up the assembled battery 2 while suppressing an increase in the temperature distribution of the assembled battery 2 by intermittently repeating driving and stopping of the heating unit 61 when the assembled battery 2 is warmed up.
- the device temperature control apparatus 1 prevents current concentration from occurring in a high temperature portion in the battery cell 21, and causes deterioration or breakage of the assembled battery 2. Can be prevented.
- the configuration of the device temperature adjustment device 1 of the present embodiment is the same as the configuration described in the twenty-third embodiment. However, the present embodiment differs from the above-described twenty-third embodiment in the warm-up control process by the control device 5.
- the control device 5 suppresses an increase in the temperature distribution of the assembled battery 2 by controlling to intermittently turn on and off the energization of the heating unit 61 when the assembled battery 2 is warmed up. .
- the control device 5 suppresses an increase in the temperature distribution of the assembled battery 2 by controlling to repeatedly increase and decrease the heating capacity of the heating unit 61 when the assembled battery 2 is warmed up. is there.
- FIG. 41 shows a state before the device temperature control device 1 warms up the assembled battery 2.
- the control device 5 stops energizing the heating unit 61.
- the liquid level FL of the working fluid in the equipment heat exchanger 10 is at a relatively low position in the height direction of the battery cell 21.
- FIG. 42 shows a state where the device temperature control device 1 is warming up the assembled battery 2.
- the control device 5 energizes the heating unit 61 and heats the working fluid by the heating unit 61.
- the gas-phase working fluid is condensed in the plurality of tubes 131 of the equipment heat exchanger 10, flows along the side wall 137 in the tubes 131, and flows downward in the gravity direction. Therefore, the liquid film of the working fluid formed on the side wall 137 in the tube 131 gradually increases from the upper side to the lower side. Therefore, since the liquid film of the working fluid is thin above the apparatus heat exchanger 10, the heating capacity of the battery cell 21 by the condensation latent heat of the working fluid is large.
- the heating capacity of the battery cell 21 due to the latent heat of condensation of the working fluid becomes relatively small.
- the liquid level FL of the working fluid is high below the equipment heat exchanger 10, and the heating capacity of the battery cell 21 due to the latent heat of condensation of the working fluid is very small below the liquid level FL. Therefore, as the warm-up time elapses, the temperature distribution of the upper part and the lower part of each battery cell 21 gradually increases.
- the control device 5 performs control to reduce the heating capacity of the heating unit 61.
- the inflow amount of the working fluid from the fluid passage 60 to the equipment heat exchanger 10 is reduced, and the flow of the working fluid becomes gentle. Therefore, as shown in FIG. 43, the liquid level FL of the working fluid in the equipment heat exchanger 10 is lowered.
- the liquid film on the side wall 137 in the tube 131 of the equipment heat exchanger 10 becomes thin, the difference in heating ability due to the latent heat of condensation of the working fluid is reduced between the upper part and the lower part in the tube 131.
- the control device 5 performs control to increase the heating capacity of the heating unit 61 again after a certain time has elapsed since the heating capacity of the heating unit 61 was decreased.
- the control device 5 can suppress an increase in the temperature distribution of the assembled battery 2 by warming up the assembled battery 2 while repeatedly increasing and decreasing the heating capacity of the heating unit 61.
- step S10 to step S30 is the same as the processing described in the twenty-third embodiment.
- step S41 the control device 5 reduces the amount of power supplied to the heating unit 61 and decreases the heating capacity of the heating unit 61. Thereby, the inflow amount of the gaseous working fluid from the fluid passage 60 to the equipment heat exchanger 10 is reduced, and the flow of the working fluid becomes gentle. Therefore, as shown in FIG. 43, the liquid level FL of the working fluid in the equipment heat exchanger 10 is lowered.
- each battery cell 21 gradually decreases in temperature distribution in the upper part and the lower part as time passes.
- step S50 the control device 5 determines whether or not the temperature variation of the assembled battery 2 has been eliminated. If the control device 5 determines that the temperature variation of the assembled battery 2 has not been eliminated, the process proceeds to step S61. In step S61, the control device 5 maintains a state where the heating capacity of the heating unit 61 is reduced. The process of step S50 and step S61 is repeatedly performed until the temperature variation of the assembled battery 2 is eliminated.
- step S71 the control device 5 increases the heating capacity of the heating unit 61 again. Specifically, the control device 5 increases the amount of power supplied to the heating unit 61. After step S71, the process is temporarily terminated. And after predetermined time progress, the control apparatus 5 repeats a process from step S10 again.
- step S30 determines with the temperature distribution of the assembled battery 2 being smaller than the predetermined 1st temperature threshold value by step S30 mentioned above, a process will transfer to step S91 and the heating capability of the heating part 61 will be maintained continuously. To do. And after predetermined time progress, a process is repeated from step S10 again.
- the warm-up control process described in this embodiment can achieve the same effects as the warm-up control process of the 23rd embodiment described above.
- a twenty-fifth embodiment will be described with reference to FIG.
- a Peltier element 64 is used instead of the electric heater in the twenty-third and twenty-fourth embodiments described above.
- FIG. 44 illustrates each sensor connected to the control device 5. Signals transmitted from the battery temperature sensor 101, the working fluid temperature sensor 102, the Peltier element temperature sensor 104 that detects the temperature of the Peltier element 64, and the like are input to the control device 5.
- the control device 5 also includes a temperature distribution determination unit 110, a Peltier element energization time detection unit 113 that detects energization time to the Peltier element 64, and a Peltier element power detection unit 114 that detects power supplied to the Peltier element 64. Etc.
- the warm-up control process performed by the control device 5 of the present embodiment is the same as the warm-up control process described in the 23rd and 24th embodiments described above.
- the temperature distribution determination unit 110 included in the control device 5 determines the size of the temperature distribution of the assembled battery 2 based on the signal input from each sensor illustrated in FIG. Can be detected.
- the control device 5 detects the size of the temperature distribution of the assembled battery 2 based on signals input from the plurality of battery temperature sensors 101 that detect the temperature of the battery. Thereby, the control device 5 can directly detect the magnitude of the temperature distribution in the upper part and the lower part of the battery cell 21.
- the control device 5 detects the size of the temperature distribution of the assembled battery 2 based on signals input from the Peltier element temperature sensor 104 and the working fluid temperature sensor 102.
- the control device 5 determines the temperature distribution of the assembled battery 2 based on the time during which the Peltier element 64 is continuously operated or the time when the Peltier element 64 is continuously stopped. Detect the size. The longer the time that the Peltier element 64 is operating continuously, the greater the temperature distribution of the assembled battery 2. The longer the time during which the Peltier element 64 has stopped operating, the smaller the temperature distribution of the battery pack 2 becomes.
- the control device 5 detects the size of the temperature distribution of the assembled battery 2 based on the power supplied to the Peltier element 64. As the electric power supplied to the Peltier element 64 is larger, the heating capacity of the assembled battery 2 by the device temperature control device 1 is increased, and thus the temperature distribution of the assembled battery 2 is increased.
- This embodiment can also provide the same operational effects as the above-described twenty-third and twenty-fourth embodiments.
- the heating unit 61 of the present embodiment is a water-working fluid heat exchanger 93 and is configured such that warm water flows when the assembled battery 2 is warmed up.
- the equipment temperature control device 1 of the present embodiment uses a cooling water circuit 9.
- the cooling water circuit 9 has a water pump 91, a hot water heater 96, a water-working fluid heat exchanger 93, and a cooling water pipe 94 connecting them. Water flows through the cooling water circuit 9.
- the water pump 91 pumps water and circulates water through the cooling water circuit 9 as shown by an arrow WF in FIG.
- the hot water heater 96 can heat the water flowing through the cooling water circuit 9 to make the water warm.
- the hot water flowing out from the hot water heater 96 flows into the water-working fluid heat exchanger 93.
- the water-working fluid heat exchanger 93 is a heat exchanger that exchanges heat between the working fluid flowing through the fluid passage 60 of the device temperature control apparatus 1 and the hot water flowing through the cooling water circuit 9. That is, the water-working fluid heat exchanger 93 as the heating unit 61 of the present embodiment can heat the working fluid flowing through the fluid passage 60 of the device temperature control apparatus 1 with the hot water flowing through the cooling water circuit 9. is there.
- each sensor connected to the control device 5 is illustrated.
- the control device 5 includes a battery temperature sensor 101, a working fluid temperature sensor 102, a water-working fluid temperature sensor 105 that detects a water temperature flowing through the water-working fluid heat exchanger 93, and a flow rate of water flowing through the cooling water circuit 9.
- a signal transmitted from the water circuit flow sensor 106 or the like that detects the above is input.
- the control device 5 includes a temperature distribution determination unit 110, a water pump energization time detection unit 115 that detects a time during which the water pump 91 is energized, and the like.
- the warm-up control process performed by the control device 5 of the present embodiment is the same as the warm-up control process described in the 23rd and 24th embodiments described above.
- the temperature distribution determination unit 110 included in the control device 5 determines the size of the temperature distribution of the assembled battery 2 based on a signal input from each sensor illustrated in FIG. Can be detected.
- the control device 5 detects the size of the temperature distribution of the assembled battery 2 based on signals input from the plurality of battery temperature sensors 101 that detect the temperature of the battery. Thereby, the control device 5 can directly detect the magnitude of the temperature distribution in the upper part and the lower part of the battery cell 21.
- the control device 5 calculates the water temperature flowing through the water-working fluid heat exchanger 93 detected by the water-working fluid temperature sensor 105 and the temperature of the assembled battery 2 detected by the battery temperature sensor 101. Based on the difference, the size of the temperature distribution of the assembled battery 2 is detected. As the temperature of the water flowing through the water-working fluid heat exchanger 93 (that is, the temperature of the hot water) is higher than the temperature of the assembled battery 2, the heating capacity of the assembled battery 2 is larger, and the temperature distribution of the assembled battery 2 becomes larger.
- the control device 5 in addition to the difference between the water temperature flowing through the water-working fluid heat exchanger 93 and the temperature of the assembled battery 2, further, based on the flow rate of water flowing through the cooling water circuit 9, The magnitude of the temperature distribution of the assembled battery 2 is detected.
- the water temperature flowing through the water-working fluid heat exchanger 93 is detected by a water-working fluid temperature sensor 105.
- the temperature of the assembled battery 2 is detected by the battery temperature sensor 101.
- the flow rate of water flowing through the cooling water circuit 9 is detected by the water circuit flow rate sensor 106. As the flow rate of water flowing through the cooling water circuit 9 increases, the heating capacity of the assembled battery 2 increases, so that the temperature distribution of the assembled battery 2 increases.
- the control device 5 determines the magnitude of the temperature distribution of the assembled battery 2 based on the difference between the water temperature flowing through the water-working fluid heat exchanger 93 and the temperature of the working fluid circulating in the thermosiphon circuit. Is detected.
- the temperature of the water flowing through the water-working fluid heat exchanger 93 is detected by the control device 5 by a water-working fluid temperature sensor 105.
- the temperature of the working fluid circulating through the thermosiphon circuit is detected by the working fluid temperature sensor 102. The higher the water temperature flowing through the water-working fluid heat exchanger 93 with respect to the temperature of the working fluid circulating in the thermosiphon circuit, the greater the heating capacity of the assembled battery 2, so the temperature distribution of the assembled battery 2 increases.
- the control device 5 detects the size of the temperature distribution of the assembled battery 2 based on the time during which the heating unit 61 is continuously operating.
- the time during which the heating unit 61 is continuously operating is the continuous energization on time of the water pump 91 detected by the water pump energization time detection unit 115.
- the longer the time that the water pump 91 is operating continuously the greater the temperature distribution of the assembled battery 2.
- the longer the time during which the water pump 91 is continuously stopped the smaller the temperature distribution of the assembled battery 2 becomes.
- the decrease in the heating capacity of the heating unit 61 performed by the control device 5 when the temperature distribution of the assembled battery 2 becomes larger is specifically described. This is performed by reducing the flow rate of the water pump 91 or reducing the heating capacity of the hot water heater 96.
- the operation stop of the heating unit 61 performed by the control device 5 when the temperature distribution of the assembled battery 2 becomes larger is specifically performed by operation stop of the water pump 91 or the like.
- This embodiment can also provide the same operational effects as the above-described twenty-third to twenty-fifth embodiments.
- FIG. 46 A twenty-seventh embodiment will be described with reference to FIGS. 46 and 47.
- FIG. 46 the configuration relating to the heating unit 61 is changed from the above-described twenty-third to twenty-sixth embodiments.
- the heating unit 61 of the present embodiment is a refrigerant-working fluid heat exchanger 200 and is configured such that a high-temperature refrigerant flows when the assembled battery 2 is warmed up.
- FIG. 46 in order to prevent the drawing from becoming complicated, the signal lines connecting the control device 5 and each device, the control device 5 and sensors are omitted. The configurations of the control device 5 and sensors are shown in FIG.
- the device temperature control apparatus 1 of the present embodiment uses a heat pump cycle 201.
- the heat pump cycle 201 includes a compressor 202, an indoor condenser 203, a first expansion valve 204, an outdoor unit 205, a check valve 206, a second expansion valve 207, an evaporator 208, an accumulator 209, and a refrigerant pipe connecting them. ing.
- a bypass pipe 220 connects a first branch portion 211 provided between the outdoor unit 205 and the check valve 206 and a second branch portion 212 provided between the evaporator 208 and the accumulator 209.
- a first solenoid valve 221 is provided in the bypass pipe 220, and a second solenoid valve 222 is provided in the refrigerant pipe connecting the check valve 206 and the second expansion valve 207.
- a first pipe 231 and a second pipe 232 for supplying the refrigerant to the refrigerant-working fluid heat exchanger 200 are connected to the refrigerant-working fluid heat exchanger 200 as the heating unit 61.
- One end of the first pipe 231 is connected to the refrigerant-working fluid heat exchanger 200, and the other end is a third branch 213 provided in the middle of the refrigerant pipe connecting the check valve 206 and the second electromagnetic valve 222. It is connected to the.
- a pipe 243 extending from a first three-way valve 241 provided between the indoor condenser 203 and the first expansion valve 204 is connected to the fourth branch part 214 provided in the middle of the first pipe 231.
- a third expansion valve 233 is provided between the fourth branch portion 214 and the refrigerant-working fluid heat exchanger 200.
- a third electromagnetic valve 223 is provided in the middle of the first pipe 231 between the fourth branch portion 214 and the third branch portion 213.
- the second pipe 232 has one end connected to the refrigerant-working fluid heat exchanger 200 and the other end connected to the evaporator 208 and the second branch part 212.
- the fifth branch part 215 provided in the middle of the refrigerant pipe. It is connected to the.
- a second three-way valve 242 is provided in the middle of the second pipe 232.
- a pipe 244 extending from the second three-way valve 242 is connected to a sixth branch 216 provided between the first three-way valve 241 and the first expansion valve 204.
- the indoor condenser 203 and the evaporator 208 included in the heat pump cycle 201 constitute a part of an HVAC (Heating, “Ventilation” and “Air-Conditioning”) unit 250 for air conditioning in the vehicle interior.
- the HVAC unit 250 cools the wind flowing in the ventilation path in the air conditioning case 252 by the air conditioning blower 251 by the evaporator 208 and heats it by the indoor condenser 203 to blow out the conditioned air into the vehicle interior.
- the HVAC unit 250 has an air mix door 253 between the evaporator 208 and the indoor condenser 203.
- the HVAC unit 250 may include a heater core 254.
- FIG. 46 the flow of the working fluid and the refrigerant when the device temperature control device 1 warms up the assembled battery 2 is indicated by solid and broken arrows.
- the control device 5 switches the first three-way valve 241 so that a part of the refrigerant flows from the indoor condenser 203 to the fourth branch part 214, and the second three-way valve 242 is connected to the second pipe by the refrigerant. It switches so that it may flow from 232 to the 6th branch part 216.
- FIG. the control device 5 throttles the first expansion valve 204, opens the first electromagnetic valve 221, closes the second electromagnetic valve 222 and the third electromagnetic valve 223, and opens the third expansion valve 233 or an appropriate opening degree.
- the compressor 202 is turned on.
- the refrigerant discharged from the compressor 202 circulates in the heat pump cycle 201 in the order of the indoor condenser 203 of the heat pump cycle 201 ⁇ the first expansion valve 204 ⁇ the outdoor unit 205 ⁇ the first electromagnetic valve 221 ⁇ the accumulator 209 ⁇ the compressor 202. Further, a part of the refrigerant circulating in the heat pump cycle 201 is transferred from the first three-way valve 241 to the first pipe 231 ⁇ the third expansion valve 233 ⁇ the refrigerant-working fluid heat exchanger 200 ⁇ the second pipe 232 ⁇ the second three-way valve 242. ⁇ Flows through the sixth branch 216.
- the refrigerant flowing into the refrigerant-working fluid heat exchanger 200 from the first pipe 231 is depressurized by the third expansion valve 233 so that the temperature becomes an appropriate temperature for battery warm-up, and the fluid passage 60 of the device temperature adjustment device 1.
- the working fluid flowing through is heated.
- the working fluid flowing through the fluid passage 60 of the device temperature control apparatus 1 evaporates (that is, vaporizes) in the refrigerant-working fluid heat exchanger 200, flows upward, and passes from the upper connection portion 15 to the device heat exchanger 10. Supplied. Thereafter, the working fluid inside the equipment heat exchanger 10 dissipates heat to the battery cell 21 and condenses.
- the third expansion Adjustment of the opening degree of the valve 233 is required.
- the refrigerant discharge amount of the compressor 202 is adjusted to be the refrigerant amount necessary for warming up the assembled battery 2
- the third expansion valve 233 may be opened.
- the heat pump cycle 201 used for vehicle interior air conditioning was used, it is not restricted to this, A dedicated heat pump cycle is provided in the heating part 61 of the apparatus temperature control apparatus 1 separated from vehicle interior air conditioning. It may be used.
- the working fluid flowing through the fluid passage 60 of the device temperature control apparatus 1 can be cooled by the refrigerant flowing through the refrigerant-working fluid heat exchanger 200 using the heat pump cycle 201.
- the description is omitted in this specification.
- each sensor connected to the control device 5 is illustrated. Signals transmitted from the battery temperature sensor 101, the working fluid temperature sensor 102, the refrigerant temperature sensor 107, the refrigerant flow rate sensor 108, and the like are input to the control device 5.
- the refrigerant temperature sensor 107 detects the temperature of the refrigerant flowing through the refrigerant-working fluid heat exchanger 200.
- the refrigerant flow rate sensor 108 detects the flow rate of the refrigerant flowing through the heat pump cycle 201.
- the control device 5 includes a temperature distribution determination unit 110, a compressor operation time detection unit 116, a compressor rotation speed detection unit 117, a refrigerant circulation time detection unit 118, and the like.
- the compressor operation time detection unit 116 detects the operation time of the compressor 202.
- the compressor rotation speed detection unit 117 detects the rotation speed of the compressor 202.
- the refrigerant circulation time detection unit 118 detects the refrigerant circulation time of the refrigerant-working fluid heat exchanger 200.
- the warm-up control process performed by the control device 5 of the present embodiment is the same as the warm-up control process described in the 23rd and 24th embodiments described above.
- the temperature distribution determination unit 110 included in the control device 5 determines the size of the temperature distribution of the assembled battery 2 based on the signal input from each sensor shown in FIG. Can be detected.
- the control device 5 detects the size of the temperature distribution of the assembled battery 2 based on signals input from the plurality of battery temperature sensors 101 that detect the temperature of the battery. Thereby, the control device 5 can directly detect the magnitude of the temperature distribution in the upper part and the lower part of the battery cell 21.
- the control device 5 determines the difference between the temperature of the refrigerant flowing through the refrigerant-working fluid heat exchanger 200 detected by the refrigerant temperature sensor 107 and the temperature of the assembled battery 2 detected by the battery temperature sensor 101. Based on the above, the magnitude of the temperature distribution of the assembled battery 2 is detected. The higher the temperature of the refrigerant flowing through the refrigerant-working fluid heat exchanger 200 with respect to the temperature of the assembled battery 2, the greater the heating capacity of the assembled battery 2, so the temperature distribution of the assembled battery 2 increases.
- the control device 5 based on the difference between the temperature of the refrigerant flowing through the refrigerant-working fluid heat exchanger 200 and the temperature of the assembled battery 2, and further based on the flow rate of the refrigerant flowing through the heat pump cycle, The magnitude of the temperature distribution of the assembled battery 2 is detected.
- the refrigerant temperature flowing through the refrigerant-working fluid heat exchanger 200 is detected by a refrigerant temperature sensor 107.
- the temperature of the assembled battery 2 is detected by the battery temperature sensor 101.
- the flow rate of the refrigerant flowing through the heat pump cycle is detected by the refrigerant flow rate sensor 108.
- the heating capacity of the assembled battery 2 increases, so that the temperature distribution of the assembled battery 2 increases.
- the smaller the flow rate of the refrigerant flowing through the heat pump cycle the smaller the temperature distribution of the assembled battery 2.
- the control device 5 determines the temperature distribution of the assembled battery 2 based on the difference between the temperature of the refrigerant flowing through the refrigerant-working fluid heat exchanger 200 and the temperature of the working fluid circulating in the thermosiphon circuit. Detect the size.
- the refrigerant temperature flowing through the refrigerant-working fluid heat exchanger 200 is detected by a refrigerant temperature sensor 107.
- the temperature of the working fluid circulating through the thermosiphon circuit is detected by the working fluid temperature sensor 102.
- the control device 5 detects the size of the temperature distribution of the assembled battery 2 based on the time during which the heating unit 61 is continuously operating.
- the time during which the heating unit 61 operates continuously is the continuous operation time of the compressor 202 detected by the compressor operation time detection unit 116.
- the longer the time during which the compressor 202 is operating continuously the greater the temperature distribution of the assembled battery 2.
- the longer the time during which the compressor 202 is continuously stopped the smaller the temperature distribution of the battery pack 2 becomes.
- the control device 5 detects the size of the temperature distribution of the assembled battery 2 based on the rotation speed of the compressor 202.
- the rotation speed of the compressor 202 is detected by the compressor rotation speed detector 117. The higher the rotation speed of the compressor 202, the larger the temperature distribution of the assembled battery 2. On the other hand, the lower the rotation speed of the compressor 202, the smaller the temperature distribution of the assembled battery 2.
- the control device 5 detects the magnitude of the temperature distribution of the assembled battery 2 based on the circulation time of the refrigerant flowing in the refrigerant-working fluid heat exchanger 200.
- the refrigerant circulation time flowing through the refrigerant-working fluid heat exchanger 200 is detected by the refrigerant circulation time detection unit 118.
- the longer the circulation time of the refrigerant flowing through the refrigerant-working fluid heat exchanger 200 the greater the temperature distribution of the assembled battery 2.
- the longer the distribution interruption time of the refrigerant flowing through the refrigerant-working fluid heat exchanger 200 the smaller the temperature distribution of the assembled battery 2.
- the decrease in the heating capacity of the heating unit 61 performed by the control device 5 when the temperature distribution of the assembled battery 2 becomes larger is specifically a compressor. This is performed by reducing the number of revolutions 202 or the like. Further, when the temperature distribution of the assembled battery 2 becomes large, the operation of the heating unit 61 performed by the control device 5 is specifically performed by stopping the operation of the compressor 202 or the like.
- This embodiment can achieve the same effects as the above-described twenty-third to twenty-sixth embodiments.
- the device temperature control device 1 includes a device heat exchanger 10, an upper connection portion 15, a lower connection portion 16, a fluid passage 60, and a heat supply member 100.
- the equipment heat exchanger 10 may be configured by a single container 17 as described in the twenty-first embodiment.
- the equipment heat exchanger 10 includes the upper tank 11, the lower tank 12, and the heat exchange unit 13 having a plurality of tubes as described in the embodiments other than the twenty-first embodiment. Also good.
- the upper connection part 15 is provided in the position which becomes the gravity direction upper side among the heat exchangers 10 for apparatuses
- the lower connection part 16 is provided in the position which becomes the gravity direction lower side among the heat exchangers 10 for apparatuses.
- Each of the upper connection portion 15 and the lower connection portion 16 is a pipe connection portion for allowing the working fluid to flow into the equipment heat exchanger 10 or for causing the working fluid to flow out from the equipment heat exchanger 10.
- the fluid passage 60 is connected so that the upper connection part 15 and the lower connection part 16 are connected.
- the heat supply member 100 provided in the fluid passage 60 is configured to selectively supply cold or warm heat to the working fluid flowing through the fluid passage 60.
- a water-working fluid heat exchanger, a refrigerant-working fluid heat exchanger, a Peltier element, or the like can be adopted as will be described in an embodiment described later.
- the heat supply member 100 is provided in the fluid passage 60 at a position in the height direction that straddles the height of the liquid level FL of the working fluid inside the heat exchanger for equipment 10. Therefore, the heat supply member 100 can supply cold heat to the vapor-phase working fluid flowing in the fluid passage 60 to condense the working fluid.
- the heat supply member 100 can also supply warm heat to the liquid-phase working fluid flowing in the fluid passage 60 to evaporate the working fluid.
- the flow of the working fluid during cooling of the assembled battery is as follows: fluid passage 60 ⁇ lower connection portion 16 ⁇ equipment heat exchanger 10 ⁇ upper connection portion 15 ⁇ fluid passage 60. That is, a loop-shaped flow path that passes through the equipment heat exchanger 10 and the fluid passage 60 is formed.
- the flow of the working fluid when the assembled battery is warmed up is fluid passage 60 ⁇ upper connection portion 15 ⁇ equipment heat exchanger 10 ⁇ lower connection portion 16 ⁇ fluid passage 60. That is, a loop-shaped flow path that passes through the equipment heat exchanger 10 and the fluid passage 60 is formed.
- the apparatus temperature control apparatus 1 according to the twenty-eighth embodiment described above has the following operational effects.
- the apparatus temperature control apparatus 1 performs both warm-up and cooling of the assembled battery by selectively supplying cold or hot heat to the working fluid flowing through the fluid passage 60 by the heat supply member 100. It is possible. Therefore, this equipment temperature control device 1 can achieve downsizing, light weight, and low cost by reducing the number of parts and simplifying the configuration of piping and the like.
- the device temperature control device 1 also supplies the working fluid in the fluid passage 60 outside the device heat exchanger 10 to the heat supply member when the assembled battery is warmed up. It is the structure heated by 100. Therefore, since the vapor of the working fluid vaporized in the fluid passage 60 is supplied to the equipment heat exchanger 10, variation in the vapor temperature of the working fluid is suppressed inside the equipment heat exchanger 10. Therefore, this apparatus temperature control apparatus 1 can warm up an assembled battery uniformly. As a result, it is possible to prevent deterioration of the input / output characteristics of the assembled battery and to suppress deterioration and breakage of the assembled battery.
- this equipment temperature control device 1 the flow path through which the working fluid flows is formed in a loop shape both when the assembled battery is cooled and when it is warmed up. Therefore, it is possible to prevent the liquid-phase working fluid and the gas-phase working fluid from flowing in the same flow path. Therefore, this apparatus temperature control apparatus 1 can perform warming up and cooling of an assembled battery with high efficiency by circulating a working fluid smoothly.
- the device temperature control device 1 secures a space for providing the heat supply member 100 in the height direction of the fluid passage 60 that connects the upper connection portion 15 and the lower connection portion 16 of the device heat exchanger 10. Therefore, the necessity to provide piping and parts below the equipment heat exchanger 10 is reduced. Therefore, this equipment temperature control apparatus 1 can improve the mounting property to a vehicle.
- the heat supply member 100 of the present embodiment is a water-working fluid heat exchanger 93 and is configured to be selectively switched so that cold water flows when the assembled battery 2 is cooled and hot water flows when the assembled battery 2 is warmed up.
- the equipment heat exchanger 10 of the present embodiment includes an upper tank 11, a lower tank 12, and a heat exchange unit 13 having a plurality of tubes.
- the equipment temperature control device 1 of the present embodiment uses a cooling water circuit 9.
- the cooling water circuit 9 includes a water pump 91, a cooling water radiator 92, a hot water heater 96, a water-working fluid heat exchanger 93, and a cooling water pipe 94 connecting them. Cooling water flows through the cooling water circuit 9.
- the water pump 91 pumps the cooling water and circulates the cooling water in the cooling water circuit 9.
- the cooling water radiator 92 of the cooling water circuit 9 is a chiller configured integrally with the evaporator of the refrigeration cycle 8, and heat that exchanges heat between the cooling water flowing through the cooling water circuit 9 and the low-pressure refrigerant flowing through the refrigeration cycle 8. It is an exchanger. Therefore, the cooling water radiator 92 can cool the cooling water flowing through the flow path of the cooling water radiator 92 by heat exchange with the refrigerant flowing through the evaporator constituting the refrigeration cycle 8. The cooling water flowing out from the cooling water radiator 92 flows into the water-working fluid heat exchanger 93 via the hot water heater 96.
- the water-working fluid heat exchanger 93 is a heat exchanger that exchanges heat between the working fluid flowing through the fluid passage 60 of the device temperature control apparatus 1 and the cooling water flowing through the cooling water circuit 9.
- the heat supply member 100 of the device temperature control device 1 of the present embodiment is a water-working fluid heat exchanger 93 and can cool and heat the working fluid flowing through the fluid passage 60 of the device temperature control device 1. .
- FIG. 50 the flow of the working fluid and the cooling water when the device temperature control device 1 cools the assembled battery 2 is indicated by solid and broken arrows.
- the control device 5 turns on the compressor 81 of the refrigeration cycle 8, opens the first flow rate regulating unit 83, turns off the hot water heater 96, and turns on the water pump 91.
- the cooling water flowing through the cooling water circuit 9 is cooled by the cooling water radiator 92 integrally formed with the evaporator of the refrigeration cycle 8, and flows into the water-working fluid heat exchanger 93 through the cooling water circuit 9. Supplied.
- the working fluid flowing through the fluid passage 60 of the device temperature control apparatus 1 is condensed (that is, liquefied) in the water-working fluid heat exchanger 93, and the working fluid in the device heat exchanger 10 and the working fluid in the fluid passage 60 are used. Is supplied from the lower connection portion 16 to the equipment heat exchanger 10. Thereafter, the working fluid inside the device heat exchanger 10 absorbs heat from the battery cells 21 and evaporates, and returns from the upper connection portion 15 to the water-working fluid heat exchanger 93 through the fluid passage 60.
- FIG. 51 the flow of the working fluid and the cooling water when the device temperature control device 1 warms up the assembled battery 2 is indicated by solid and broken arrows.
- the control device 5 turns off the compressor 81 of the refrigeration cycle 8, turns on the hot water heater 96, and turns on the water pump 91.
- the cooling water flowing through the cooling water circuit 9 is heated by the hot water heater 96, flows through the cooling water circuit 9, and is supplied to the water-working fluid heat exchanger 93.
- the working fluid flowing through the fluid passage 60 of the device temperature control apparatus 1 evaporates (that is, vaporizes) in the water-working fluid heat exchanger 93, flows upward, and passes from the upper connection portion 15 to the device heat exchanger 10. Supplied. Thereafter, the working fluid in the gas phase inside the equipment heat exchanger 10 dissipates heat to the battery cell 21 and condenses. Then, due to the head difference between the working fluid condensed in the equipment heat exchanger 10 and the working fluid in the fluid passage 60, the liquid-phase working fluid in the equipment heat exchanger 10 passes from the lower connection portion 16 through the fluid passage 60. Return to water-working fluid heat exchanger 93.
- the device temperature control apparatus 1 can use the water-working fluid heat exchanger 93 as the heat supply member 100 that selectively supplies cold heat or heat. According to this, it is possible to set the temperature of the low-pressure refrigerant flowing through the refrigeration cycle 8 and the temperature of the cooling water flowing through the cooling water circuit 9 to different temperatures. Therefore, the device temperature control device 1 can appropriately adjust the temperature of the low-pressure refrigerant flowing through the refrigeration cycle 8 and the temperature of the cooling water flowing through the cooling water circuit 9. Therefore, the amount of cooling heat supplied from the cooling water flowing through the cooling water circuit 9 to the working fluid flowing through the condenser 30 of the device temperature control device 1 is adjusted, and the cooling capacity of the battery pack 2 by the device temperature control device 1 is adjusted. Can be appropriately adjusted according to the amount of heat generated.
- the device temperature control apparatus 1 selectively supplies cold heat or heat to the working fluid flowing through the fluid passage 60 by the water-working fluid heat exchanger 93 as the heat supply member 100, thereby Both warm-up and cooling can be performed. Therefore, this equipment temperature control device 1 can achieve downsizing, light weight, and low cost by reducing the number of parts and simplifying the configuration of piping and the like.
- the control device 5 turns off the compressor 81 of the refrigeration cycle 8 when the assembled battery 2 is warmed up.
- the cooling water is dissipated by turning on the compressor 81 and closing the first flow rate regulating portion 83.
- the refrigerant supply to the container 92 may be stopped.
- the means for heating the cooling water flowing through the cooling water circuit 9 is not limited to the hot water heater 96 described above, and a heat pump, waste heat from on-vehicle equipment, or the like may be used.
- a thirtieth embodiment will be described with reference to FIGS. 52 and 53.
- the 30th embodiment is a modification of the configuration relating to the heat supply member 100 to the 28th and 29th embodiments. 52 and 53, the control device 5 and signal lines that connect the control device 5 and each device are omitted in order to prevent the drawings from becoming complicated.
- the heat supply member 100 of the present embodiment is a refrigerant-working fluid heat exchanger 200 and is selectively configured so that a low-temperature and low-pressure refrigerant flows when the assembled battery 2 is cooled and a high-temperature and high-pressure refrigerant flows when the assembled battery 2 is warmed up. It is comprised so that it can switch to.
- the equipment heat exchanger 10 according to the present embodiment includes an upper tank 11, a lower tank 12, a heat exchange unit 13 having a plurality of tubes, and the like.
- the device temperature control apparatus 1 of the present embodiment uses a heat pump cycle 201.
- the heat pump cycle 201 includes a compressor 202, an indoor condenser 203, a first expansion valve 204, an outdoor unit 205, a check valve 206, a second expansion valve 207, an evaporator 208, an accumulator 209, and a refrigerant pipe connecting them. ing.
- a bypass pipe 220 connects a first branch portion 211 provided between the outdoor unit 205 and the check valve 206 and a second branch portion 212 provided between the evaporator 208 and the accumulator 209.
- a first solenoid valve 221 is provided in the bypass pipe 220, and a second solenoid valve 222 is provided in the refrigerant pipe connecting the check valve 206 and the second expansion valve 207.
- the refrigerant-working fluid heat exchanger 200 as the heat supply member 100 is connected to a first pipe 231 and a second pipe 232 for flowing the refrigerant through the refrigerant-working fluid heat exchanger 200.
- One end of the first pipe 231 is connected to the refrigerant-working fluid heat exchanger 200, and the other end is a third branch 213 provided in the middle of the refrigerant pipe connecting the check valve 206 and the second electromagnetic valve 222. It is connected to the.
- a pipe 243 extending from a first three-way valve 241 provided between the indoor condenser 203 and the first expansion valve 204 is connected to the fourth branch part 214 provided in the middle of the first pipe 231.
- a third expansion valve 233 is provided between the fourth branch portion 214 and the refrigerant-working fluid heat exchanger 200.
- a third electromagnetic valve 223 is provided in the middle of the first pipe 231 between the fourth branch portion 214 and the third branch portion 213.
- the second pipe 232 has one end connected to the refrigerant-working fluid heat exchanger 200 and the other end connected to the evaporator 208 and the second branch part 212.
- the fifth branch part 215 provided in the middle of the refrigerant pipe. It is connected to the.
- a second three-way valve 242 is provided in the middle of the second pipe 232.
- a pipe 244 extending from the second three-way valve 242 is connected to a sixth branch 216 provided between the first three-way valve 241 and the first expansion valve 204.
- the indoor condenser 203 and the evaporator 208 included in the heat pump cycle 201 constitute a part of the HVAC unit 250 for air conditioning in the vehicle interior.
- the HVAC unit cools the wind flowing in the ventilation path in the air conditioning case 252 by the air conditioning blower 251 by the evaporator 208 and heats it by the indoor condenser 203 to blow the conditioned air into the vehicle interior.
- the HVAC unit 250 has an air mix door 253 between the evaporator 208 and the indoor condenser 203. Note that the HVAC unit 250 may include a heater core 254.
- the flow of the working fluid and the refrigerant when the device temperature control device 1 cools the assembled battery 2 is indicated by solid and broken arrows.
- the control device 5 switches the first three-way valve 241 so that the refrigerant flows from the indoor condenser 203 to the first expansion valve 204, and the second three-way valve 242 uses the refrigerant-working fluid heat exchanger. Switching from 200 to the fifth branching section 215 is performed. Further, the control device 5 opens the first expansion valve 204, closes the first electromagnetic valve 221, opens the second electromagnetic valve 222 and the third electromagnetic valve 223, throttles the third expansion valve 233, and turns on the compressor 202. .
- the refrigerant discharged from the compressor 202 is converted into the indoor condenser 203 of the heat pump cycle 201 ⁇ the first expansion valve 204 ⁇ the outdoor unit 205 ⁇ the check valve 206 ⁇ the second electromagnetic valve 222 ⁇ the second expansion valve 207 ⁇ the evaporator 208 ⁇
- the heat pump cycle 201 is circulated in the order of accumulator 209 ⁇ compressor 202. Further, a part of the refrigerant circulating through the heat pump cycle 201 is supplied from the third branch 213 to the first pipe 231 ⁇ the third electromagnetic valve 223 ⁇ the third expansion valve 233 ⁇ the refrigerant-working fluid heat exchanger 200 ⁇ the second pipe 232. ⁇ Flows through the fifth branch 215.
- the refrigerant flowing into the refrigerant-working fluid heat exchanger 200 from the first pipe 231 is depressurized by the third expansion valve 233 to become low temperature and low pressure, and cools the working fluid flowing through the fluid passage 60 of the device temperature control device 1.
- the working fluid flowing through the fluid passage 60 is condensed (that is, liquefied) by the refrigerant-working fluid heat exchanger 200, and the head difference between the working fluid in the fluid passage 60 and the working fluid in the equipment heat exchanger 10.
- the heat is supplied from the lower connection portion 16 to the equipment heat exchanger 10.
- the working fluid inside the device heat exchanger 10 absorbs heat from the battery cells 21 and evaporates, and returns to the refrigerant-working fluid heat exchanger 200 from the upper connection portion 15 through the fluid passage 60.
- FIG. 53 the flow of the working fluid and the refrigerant when the device temperature control device 1 warms up the assembled battery 2 is indicated by solid and broken arrows.
- the control device 5 switches the first three-way valve 241 so that a part of the refrigerant flows from the indoor condenser 203 to the fourth branch part 214, and the second three-way valve 242 is connected to the second pipe by the refrigerant. It switches so that it may flow from 232 to the 6th branch part 216.
- FIG. the control device 5 throttles the first expansion valve 204, opens the first electromagnetic valve 221, closes the second electromagnetic valve 222 and the third electromagnetic valve 223, and opens the third expansion valve 233 or an appropriate opening degree.
- the compressor 202 is turned on.
- the refrigerant discharged from the compressor 202 circulates in the heat pump cycle 201 in the order of the indoor condenser 203 of the heat pump cycle 201 ⁇ the first expansion valve 204 ⁇ the outdoor unit 205 ⁇ the first electromagnetic valve 221 ⁇ the accumulator 209 ⁇ the compressor 202. Further, a part of the refrigerant circulating in the heat pump cycle 201 is transferred from the first three-way valve 241 to the first pipe 231 ⁇ the third expansion valve 233 ⁇ the refrigerant-working fluid heat exchanger 200 ⁇ the second pipe 232 ⁇ the second three-way valve 242. ⁇ Flows through the sixth branch 216.
- the refrigerant flowing into the refrigerant-working fluid heat exchanger 200 from the first pipe 231 is depressurized by the third expansion valve 233 so that the temperature becomes an appropriate temperature for battery warm-up, and the fluid passage 60 of the device temperature adjustment device 1.
- the working fluid flowing through is heated.
- the working fluid flowing through the fluid passage 60 of the device temperature control apparatus 1 evaporates (that is, vaporizes) in the refrigerant-working fluid heat exchanger 200, flows upward, and passes from the upper connection portion 15 to the device heat exchanger 10. Supplied. Thereafter, the working fluid inside the equipment heat exchanger 10 dissipates heat to the battery cell 21 and condenses.
- the third expansion Adjustment of the opening degree of the valve 233 is required.
- the refrigerant discharge amount of the compressor 202 is adjusted to be the refrigerant amount necessary for warming up the assembled battery 2
- the third expansion valve 233 may be opened.
- the device temperature adjustment device 1 can use the refrigerant-working fluid heat exchanger 200 as the heat supply member 100 that selectively supplies cold or hot heat. According to this, by adjusting the amount of refrigerant circulating in the heat pump cycle 201 or the amount of refrigerant flowing from the heat pump cycle 201 to the refrigerant-working fluid heat exchanger 200, the working fluid flowing through the fluid passage 60 of the device temperature control device 1 is adjusted. It is possible to adjust the amount of heat supplied. Also, the amount of heat supplied to the working fluid flowing through the fluid passage 60 of the device temperature control device 1 can be adjusted also by adjusting the opening of the third expansion valve 233. Therefore, in the thirtieth embodiment, the cooling capacity and warming power of the assembled battery 2 by the device temperature control device 1 can be appropriately adjusted according to the amount of heat generated by the assembled battery 2.
- the apparatus temperature control apparatus 1 can perform both warming up and cooling of the assembled battery 2 by selectively supplying cold heat or warm heat to the working fluid flowing through the fluid passage 60 by the heat supply member 100. Is possible. Therefore, this equipment temperature control device 1 can achieve downsizing, light weight, and low cost by reducing the number of parts and simplifying the configuration of piping and the like.
- the heat pump cycle 201 used for air conditioning in the vehicle interior is used.
- the heat pump cycle 201 is not limited thereto, and is dedicated to the heat supply member 100 of the device temperature control device 1 separated from the air conditioning in the vehicle interior.
- the heat pump cycle may be used.
- the heat supply member 100 of this embodiment includes a water-working fluid heat exchange unit 1010 and a refrigerant-working fluid heat exchange unit 1020.
- the water-working fluid heat exchange unit 1010 is arranged on the lower side in the gravity direction.
- the refrigerant-working fluid heat exchange unit 1020 is disposed on the upper side in the gravity direction.
- the water-working fluid heat exchange unit 1010 is configured so that warm water flows when the assembled battery 2 is warmed up. That is, the water-working fluid heat exchange unit 1010 is an example of a heat supply mechanism that can supply heat to the working fluid flowing through the fluid passage 60.
- the refrigerant-working fluid heat exchange unit 1020 is configured such that a low-temperature and low-pressure refrigerant flows when the assembled battery 2 is cooled. That is, the refrigerant-working fluid heat exchange unit 1020 is an example of a cold supply mechanism that can supply cold to the working fluid flowing through the fluid passage 60.
- FIG. 54 the flow of the working fluid and the refrigerant when the device temperature control device 1 cools the assembled battery 2 is indicated by solid and broken arrows.
- the control device 5 turns on the compressor 81 of the refrigeration cycle 8, opens the first flow rate restricting unit 83, and turns off the hot water heater 96 and the water pump 91.
- the refrigerant of the refrigeration cycle 8 flows in the order of the compressor 81 ⁇ the high-pressure side heat exchanger 82 ⁇ the first flow rate restricting unit 83 ⁇ the first expansion valve 84 ⁇ the refrigerant-working fluid heat exchanging unit 1020 ⁇ the compressor 81.
- the refrigerant radiated and condensed by the high-pressure side heat exchanger 82 is decompressed by the first expansion valve 84, becomes low temperature and low pressure, and is supplied to the refrigerant / working fluid heat exchange unit 1020 of the heat supply member 100.
- the gas phase working fluid flowing through the fluid passage 60 of the device temperature control apparatus 1 is condensed (ie, liquefied) by the refrigerant-working fluid heat exchange unit 1020 of the heat supply member 100.
- the working fluid inside the equipment heat exchanger 10 absorbs heat from the battery cells 21 and evaporates, and returns to the heat supply member 100 from the upper connection portion 15 through the fluid passage 60.
- FIG. 55 the flow of the working fluid and the cooling water when the device temperature control device 1 warms up the assembled battery 2 is indicated by solid and broken arrows.
- the control device 5 turns off the compressor 81 of the refrigeration cycle 8 and turns on the hot water heater 96 and the water pump 91. Accordingly, the high-temperature cooling water heated by the hot water heater 96 flows through the cooling water circuit 9 and is supplied to the water-working fluid heat exchange unit 1010 of the heat supply member 100.
- the liquid-phase working fluid flowing through the fluid passage 60 of the device temperature control device 1 evaporates (that is, vaporizes) in the water-working fluid heat exchange unit 1010 of the heat supply member 100, and heats the device from the upper connection unit 15. It is supplied to the exchanger 10. Thereafter, the working fluid in the gas phase inside the equipment heat exchanger 10 dissipates heat to the battery cell 21 and condenses. Then, due to the head difference between the working fluid condensed in the equipment heat exchanger 10 and the working fluid in the fluid passage 60, the liquid-phase working fluid in the equipment heat exchanger 10 passes from the lower connection portion 16 through the fluid passage 60. Return to the heat supply member 100.
- the device temperature control apparatus 1 uses the water-working fluid heat exchange unit 1010 and the refrigerant-working fluid heat exchange unit 1020 in combination as the heat supply member 100.
- the water-working fluid heat exchange unit 1010 that functions as a warm heat supply mechanism is disposed on the lower side in the gravity direction
- the refrigerant-working fluid heat exchange unit 1020 that functions as a cold heat supply mechanism is on the upper side in the gravity direction. Has been placed.
- the heat supply member 100 is provided in the fluid passage 60 at a position in the height direction across the height of the liquid level FL of the working fluid inside the equipment heat exchanger 10, Then, the upper side is a gas phase working fluid, and the lower side is a liquid phase working fluid. Therefore, at the time of cooling the assembled battery 2, by supplying cold heat above the heat supply member 100, cold heat can be reliably supplied to the vapor-phase working fluid, and condensation of the working fluid can be promoted. Further, when the assembled battery 2 is warmed up, by supplying warm heat below the heat supply member 100, warm heat can be reliably supplied to the liquid-phase working fluid, and evaporation of the working fluid can be promoted.
- FIG. 1 A thirty-second embodiment will be described with reference to FIGS. 56 and 57.
- FIG. 1 the configuration relating to the heat supply member 100 is changed.
- the heat supply member 100 of this embodiment uses a pneumatic heat exchanger 1030.
- the pneumatic heat exchanger 1030 When the assembled battery 2 is cooled, the pneumatic heat exchanger 1030 is supplied with cold air to the upper part of the heat supply member 100 in the direction of gravity, and when the assembled battery 2 is warmed up, the cold air is supplied to the lower part of the heat supply member 100 in the direction of gravity. It is comprised so that a warm air may be supplied to a site
- the air heat exchanger 1030 is disposed in the HVAC unit 250.
- An indoor capacitor 203 and an evaporator 208 are provided in the air conditioning case 252 of the HVAC unit 250.
- a heater core may be installed instead of the indoor capacitor 203, or a heater core may be installed together with the indoor capacitor 203.
- a partition plate 255 for separating the air flow is provided between the indoor condenser 203 and the evaporator 208.
- An air conditioning blower 251 and a ventilation path switching door 256 are provided upstream of the indoor condenser 203 and the evaporator 208.
- the air heat exchanger 1030 may be disposed outside the air conditioning case 252 of the HVAC unit 250.
- a duct is provided so that the wind passing through the indoor condenser 203 is supplied from the air conditioning case 252 to the pneumatic heat exchanger 1030, and the wind passing through the evaporator 208 is supplied from the air conditioning case 252 to the pneumatic heat exchanger 1030.
- a duct is provided.
- the gas phase working fluid flowing through the fluid passage 60 of the device temperature control apparatus 1 is condensed (that is, liquefied) by the air heat exchanger 1030, and the working fluid in the device heat exchanger 10 and the fluid passage 60 Due to the head difference from the working fluid, the heat is supplied from the lower connection portion 16 to the equipment heat exchanger 10. Thereafter, the working fluid inside the equipment heat exchanger 10 absorbs heat from the battery cells 21 and evaporates, and returns to the pneumatic heat exchanger 1030 from the upper connection portion 15 through the fluid passage 60.
- FIG. 57 the working fluid and the flow of wind when the device temperature control device 1 warms up the assembled battery 2 are indicated by solid and broken arrows.
- the control device 5 allows the air flow on the indoor condenser 203 side by the ventilation path switching door 256 and blocks the wind flow on the evaporator 208 side.
- wind flows in the air conditioning case 252 as indicated by an arrow AF2, and warm air is supplied to the pneumatic heat exchanger 1030 by the air heated by the indoor condenser 203.
- the liquid-phase working fluid flowing through the fluid passage 60 of the device temperature control apparatus 1 is evaporated (that is, vaporized) by the pneumatic heat exchanger 1030 and is supplied from the upper connection portion 15 to the device heat exchanger 10. .
- the working fluid in the gas phase inside the equipment heat exchanger 10 dissipates heat to the battery cell 21 and condenses.
- the liquid-phase working fluid in the equipment heat exchanger 10 passes from the lower connection portion 16 through the fluid passage 60. Return to pneumatic heat exchanger 1030.
- the device temperature adjustment device 1 can use the pneumatic heat exchanger 1030 as the heat supply member 100.
- the pneumatic heat exchanger 1030 is configured such that warm heat is supplied to the lower part in the direction of gravity and cold heat is supplied to the upper part in the direction of gravity. Since the heat supply member 100 is provided in the fluid passage 60 at a position in the height direction across the height of the liquid level FL of the working fluid inside the equipment heat exchanger 10, Then, the upper side is a gas phase working fluid, and the lower side is a liquid phase working fluid. Therefore, at the time of cooling the assembled battery 2, by supplying cold heat above the pneumatic heat exchanger 1030, it is possible to reliably supply cold heat to the gas-phase working fluid and promote condensation of the working fluid. . In addition, when the assembled battery 2 is warmed up, the warm heat is supplied to the lower side of the pneumatic heat exchanger 1030 so that the warm heat is reliably supplied to the liquid-phase working fluid and the evaporation of the working fluid is promoted. it can.
- the heat supply member 100 of this embodiment includes a thermoelectric element 1040.
- the thermoelectric element is, for example, a Peltier element.
- the heat supply member 100 can selectively supply cold or warm heat to the working fluid flowing through the fluid passage 60.
- FIG. 59 A thirty-fourth embodiment will be described. As shown in FIG. 59, in the thirty-fourth embodiment, a condenser 30, a liquid phase passage 40, and a gas phase passage 50 are added to the configuration described in the twenty-ninth embodiment. Since the configurations of the condenser 30, the liquid phase passage 40, and the gas phase passage 50 are the same as those described in the first embodiment, the description thereof is omitted.
- cooling by the condenser 30 or cooling by the heat supply member 100 can be selected according to the cooling capacity required by the assembled battery 2 or the state of the vehicle.
- the first to thirty-fourth embodiments described above can be arbitrarily combined.
- the heating unit 61 for example, a heat pump or a means capable of heating such as a Peltier element may be used. Further, the heating unit 61 may use waste heat of other in-vehicle heat generating devices such as SMR (system main relay).
- SMR system main relay
- the example of the assembled battery 2 is shown as the target device that the device temperature control device 1 adjusts the temperature.
- the target device may be another device that needs to be cooled and warmed up, such as a motor, an inverter, or a charger.
- the device temperature adjustment device that adjusts the temperature of the target device by the phase change between the liquid phase and the gas phase of the working fluid is An exchanger, an upper connection portion, a lower connection portion, a condenser, a gas phase passage, a liquid phase passage, a fluid passage, a heating portion, and a control device are provided.
- the equipment heat exchanger is configured such that the target equipment and the working fluid can exchange heat so that the working fluid evaporates when the target equipment is cooled and the working fluid is condensed when the target equipment is warmed up.
- An upper connection part is provided in the site
- a lower connection part is provided in the site
- the condenser is disposed above the equipment heat exchanger in the direction of gravity, and condenses the working fluid by dissipating the working fluid evaporated in the equipment heat exchanger.
- the gas phase passage communicates the inlet through which the gas phase working fluid flows into the condenser and the upper connection portion of the equipment heat exchanger.
- the liquid phase passage communicates the outlet that flows the liquid phase working fluid from the condenser and the lower connection portion of the heat exchanger for equipment.
- the fluid passage communicates the upper connection portion and the lower connection portion of the equipment heat exchanger without including the condenser on the path.
- the heating unit can heat the liquid-phase working fluid flowing through the fluid passage.
- the control device operates the heating unit when heating the target device, and stops the operation of the heating unit when cooling the target device.
- the heat dissipation suppression part which can suppress the heat dissipation of the working fluid by a condenser is further provided.
- the working fluid circulates from the heat exchanger for the device to the gas phase passage, the condenser, and the liquid phase passage by suppressing the heat radiation of the working fluid by the condenser by the heat radiation suppressing unit. Is suppressed. Therefore, when the target device is warmed up, the working fluid can flow through the fluid passage, the upper connection portion, the equipment heat exchanger, the lower connection portion, and the fluid passage. Therefore, this device temperature control device can warm up the target device with high efficiency by smoothly circulating the working fluid.
- the heat dissipation suppression unit is a fluid control valve provided in the liquid phase passage or the gas phase passage.
- the fluid control valve can suppress or substantially stop the heat radiation of the working fluid by the condenser by blocking the flow of the working fluid in the liquid phase passage or the gas phase passage.
- the heat dissipation suppressing portion is a door member capable of blocking the flow of air passing through the condenser. According to this, the door member can suppress or substantially stop the heat radiation of the working fluid by the condenser by blocking the flow of the air passing through the condenser.
- the device temperature control device further includes a refrigeration cycle having a compressor, a high-pressure side heat exchanger, an expansion valve, a refrigerant-working fluid heat exchanger, a refrigerant pipe, and a flow rate regulating unit.
- the compressor compresses the refrigerant.
- the high-pressure side heat exchanger dissipates heat from the refrigerant compressed by the compressor.
- the expansion valve depressurizes the refrigerant dissipated by the high pressure side heat exchanger.
- the refrigerant-working fluid heat exchanger exchanges heat between the refrigerant flowing out of the expansion valve and the working fluid flowing through the condenser.
- the refrigerant pipe connects the compressor, the high-pressure side heat exchanger, the expansion valve, and the refrigerant-working fluid heat exchanger.
- the flow rate regulating unit regulates the flow of the refrigerant flowing through the refrigerant pipe.
- the heat radiation suppressing unit is a flow rate regulating unit included in the refrigeration cycle, and can block the flow of the refrigerant flowing through the refrigerant pipe, thereby suppressing the heat radiation of the working fluid by the condenser.
- the device temperature control device further includes a water pump, a cooling water radiator, a water-working fluid heat exchanger, and a cooling water circuit having a cooling water pipe.
- the water pump pumps the cooling water.
- the cooling water radiator radiates the cooling water pumped by the water pump.
- the water-working fluid heat exchanger exchanges heat between the cooling water flowing out from the cooling water radiator and the working fluid flowing through the condenser.
- the cooling water pipe connects the water pump, the cooling water radiator, and the water-working fluid heat exchanger.
- the heat dissipation suppression unit is a water pump included in the cooling water circuit, and can block the flow of the cooling water flowing through the cooling water piping, thereby suppressing the heat dissipation of the working fluid by the condenser.
- the device temperature control device for adjusting the temperature of the target device by the phase change between the liquid phase and the gas phase of the working fluid includes a device heat exchanger, an upper connection portion, a lower connection portion, and a fluid passage. And a heating unit and a control device.
- the equipment heat exchanger is configured to exchange heat between the target equipment and the working fluid so that the working fluid is condensed when the target equipment is warmed up.
- An upper connection part is provided in the site
- a lower connection part is provided in the site
- the fluid passage communicates the upper connection portion and the lower connection portion of the equipment heat exchanger.
- the heating unit can heat the liquid-phase working fluid flowing through the fluid passage.
- the control device operates the heating unit when heating the target device.
- the heating unit is provided in a portion of the fluid passage that extends vertically in the gravity direction. According to this, the working fluid that has been heated and vaporized by the heating unit quickly flows through the fluid passage upward in the direction of gravity. Therefore, it is possible to prevent the gas-phase working fluid from flowing backward from the fluid passage to the lower connection portion side. Therefore, this device temperature control device can warm up the target device with high efficiency by smoothly circulating the working fluid.
- the fluid passage has a backflow suppressing portion extending downward from the heating portion in the direction of gravity between the lower connection portion of the heat exchanger for equipment and the heating portion.
- the backflow suppression unit extending downward in the gravitational direction from the heating unit can prevent the working fluid heated and vaporized by the heating unit from flowing back to the lower connection unit. Therefore, this device temperature control device can smoothly circulate the working fluid in the order of fluid passage ⁇ upper connection portion ⁇ equipment heat exchanger ⁇ lower connection portion ⁇ fluid passage when the target device is warmed up.
- the fluid passage has a liquid storage part for storing a liquid-phase working fluid flowing through the fluid passage in the middle of the passage.
- the device temperature control device can store the amount of working fluid necessary for cooling and warming up the target device in the liquid storage unit.
- the liquid storage part is formed by increasing the inner diameter of a part of the path of the fluid passage. According to this, the liquid storage part can be provided in the fluid passage with a simple configuration.
- the apparatus temperature control apparatus can adjust the liquid level of the working fluid in the apparatus heat exchanger easily by adjusting the liquid level of the liquid storage part.
- the heating part is provided at a position where the liquid-phase working fluid stored in the liquid storage part can be heated. According to this, the heating efficiency of the working fluid by a heating part can be improved.
- the control device heats the target device while repeatedly increasing and decreasing the heating capacity of the heating unit. According to this, when warming up the target device, increasing the heating capacity of the heating unit promotes warming up of the target device, and decreasing the heating capability of the heating unit decreases the temperature distribution of the target device. Therefore, the control device can warm up the target device while suppressing the temperature distribution of the target device by repeatedly increasing and decreasing the heating capacity of the heating unit when heating the target device. Therefore, when the assembled battery is applied as the target device, this device temperature control device can prevent current concentration from occurring in a portion having a high temperature in the assembled battery when the assembled battery is charged and discharged. .
- the control device has a function of determining the size of the temperature distribution of the target device.
- the control device reduces the heating capability of the heating unit when the temperature distribution of the target device is equal to or higher than a predetermined first temperature threshold, and when the temperature distribution of the target device is equal to or lower than the predetermined second temperature threshold, Increase heating capacity. According to this, the control device can prevent the temperature distribution of the target device from becoming larger than the predetermined first temperature threshold.
- the control device determines the size of the temperature distribution of the target device based on the heating capability of the heating unit. According to this, the greater the heating capacity of the heating unit, the greater the heat flow supplied from the heating unit to the target device via the working fluid, and thus the temperature distribution of the target device increases. On the other hand, the smaller the heating capacity of the heating unit, the smaller the heat flow rate supplied from the heating unit to the target device via the working fluid, so the temperature distribution of the target device becomes smaller. Therefore, the control device can determine the size of the temperature distribution of the target device with a simple configuration by detecting the heating capability of the heating unit.
- the control device heats the target device while intermittently repeating driving and stopping of the heating unit. According to this, when warming up the target device, the warming-up of the target device is promoted by driving the heating unit, and the temperature equalization of the target device is promoted by stopping the driving of the heating unit. Therefore, the control device can warm up the target device while suppressing the temperature distribution of the target device by intermittently repeating driving and stopping of the heating unit when heating the target device.
- the control device has a function of determining the size of the temperature distribution of the target device.
- the control device stops the operation of the heating unit when the temperature distribution of the target device is equal to or higher than the predetermined first temperature threshold, and operates when the temperature distribution of the target device is equal to or lower than the predetermined second temperature threshold. To resume. According to this, the control device can prevent the temperature distribution of the target device from becoming larger than the predetermined first temperature threshold.
- the control device determines the magnitude of the temperature distribution of the target device based on the time during which the heating unit is continuously operated or the time during which the heating unit is continuously stopped. Determine. According to this, since the amount of heat supplied from the heating unit to the target device via the working fluid increases as the time during which the heating unit continuously operates, the temperature distribution of the target device increases. On the other hand, as the time during which the heating unit is continuously stopped is longer, the temperature of each part of the target device is averaged, and the temperature distribution of the target device becomes smaller. Therefore, the control device can determine the size of the temperature distribution of the target device with a simple configuration by detecting the time during which the heating unit is continuously activated or stopped.
- the control device determines the size of the temperature distribution of the target device based on the power supplied to the heating unit.
- the heating unit is, for example, a heater or a Peltier element
- the larger the electric power supplied to the heating unit the larger the heat flow supplied from the heating unit to the target device via the working fluid.
- the temperature distribution of the equipment increases.
- the smaller the electric power supplied to the heating unit the smaller the heat flow supplied from the heating unit to the target device via the working fluid, so the temperature distribution of the target device becomes smaller. Therefore, the control device can determine the size of the temperature distribution of the target device with a simple configuration by detecting the power supplied to the heating unit.
- the heating unit is a water-working fluid heat exchanger configured such that warm water flows when the target device is warmed up.
- the control device determines the size of the temperature distribution of the target device based on the heating capability of the working fluid by the water-working fluid heat exchanger. According to this, the greater the heating capacity of the working fluid by the water-working fluid heat exchanger, the greater the heat flow rate supplied from the water-working fluid heat exchanger to the target device via the working fluid. The temperature distribution increases. On the other hand, the smaller the heating capacity of the working fluid by the water-working fluid heat exchanger, the smaller the heat flow supplied from the water-working fluid heat exchanger to the target device via the working fluid. Becomes smaller. Therefore, the control device can determine the size of the temperature distribution of the target device with a simple configuration by detecting the heating capability of the working fluid by the water-working fluid heat exchanger.
- the control device determines the size of the temperature distribution of the target device based on the difference between the water temperature flowing through the water-working fluid heat exchanger and the temperature of the target device. According to this, as the temperature of the water flowing through the water-working fluid heat exchanger (that is, the temperature of the hot water) is higher than the temperature of the target device, the heat flow supplied from the water-working fluid heat exchanger to the target device is higher. Since it becomes large, the temperature distribution of an object apparatus becomes large. On the other hand, the smaller the difference between the water temperature flowing through the water-working fluid heat exchanger and the temperature of the target device, the smaller the heat flow supplied from the water-working fluid heat exchanger to the target device. Becomes smaller. Therefore, the control device can determine the size of the temperature distribution of the target device with a simple configuration by detecting the temperature of the water flowing through the water-working fluid heat exchanger and the temperature of the target device.
- the control device is based on the difference between the temperature of the water flowing through the water-working fluid heat exchanger and the temperature of the target device, and the flow rate of the water flowing through the water-working fluid heat exchanger, Determine the temperature distribution of the target device. According to this, the difference between the temperature of the water flowing through the water-working fluid heat exchanger and the temperature of the target device is large, and the greater the flow rate of water flowing through the water-working fluid heat exchanger, Since the heat flow supplied to the target device is increased, the temperature distribution of the target device is increased.
- the control device detects the temperature of the water flowing through the water-working fluid heat exchanger, the temperature of the target device, and the flow rate of the water flowing through the water-working fluid heat exchanger. It is possible to determine the size of the distribution.
- the heating unit is a refrigerant-working fluid heat exchanger configured such that a high-temperature refrigerant flows when the target device is warmed up.
- the control device determines the size of the temperature distribution of the target device based on the heating capability of the working fluid by the refrigerant-working fluid heat exchanger. According to this, the larger the heating capacity of the working fluid by the refrigerant-working fluid heat exchanger, the larger the heat flow rate supplied from the refrigerant-working fluid heat exchanger to the target device via the working fluid. The temperature distribution increases.
- the control device can determine the magnitude of the temperature distribution of the target device with a simple configuration by detecting the heating ability of the working fluid by the refrigerant-working fluid heat exchanger.
- the control device determines the size of the temperature distribution of the target device based on the difference between the temperature of the refrigerant flowing through the refrigerant-working fluid heat exchanger and the temperature of the target device. According to this, the greater the difference between the temperature of the refrigerant flowing through the refrigerant-working fluid heat exchanger and the temperature of the target device, the greater the heat flow supplied from the refrigerant-working fluid heat exchanger to the target device. The temperature distribution of the target equipment increases. On the other hand, the smaller the difference between the temperature of the refrigerant flowing through the refrigerant-working fluid heat exchanger and the temperature of the target device, the smaller the heat flow supplied from the refrigerant-working fluid heat exchanger to the target device. The temperature distribution becomes smaller. Therefore, the control device can determine the size of the temperature distribution of the target device with a simple configuration by detecting the temperature of the refrigerant flowing through the refrigerant-working fluid heat exchanger and the temperature of the target device. .
- the control device is based on the difference between the temperature of the refrigerant flowing through the refrigerant-working fluid heat exchanger and the temperature of the target device, and the flow rate of the refrigerant flowing through the refrigerant-working fluid heat exchanger, Determine the temperature distribution of the target device. According to this, as the temperature of the refrigerant flowing through the refrigerant-working fluid heat exchanger is higher than the temperature of the target device and the flow rate of the refrigerant flowing through the refrigerant-working fluid heat exchanger is larger, the refrigerant-working fluid heat exchanger Since the heat flow supplied to the target device from becomes larger, the temperature distribution of the target device becomes larger.
- the control device detects the temperature of the refrigerant flowing through the refrigerant-working fluid heat exchanger, the temperature of the target device, and the flow rate of the refrigerant flowing through the refrigerant-working fluid heat exchanger, and has a simple configuration. It is possible to determine the size of the temperature distribution.
- the equipment heat exchanger is configured such that the target equipment and the working fluid can exchange heat so that the working fluid evaporates when the target equipment is cooled and the working fluid is condensed when the target equipment is warmed up.
- An upper connection part is provided in the site
- a lower connection part is provided in the site
- the fluid passage communicates the upper connection portion and the lower connection portion of the equipment heat exchanger.
- the heat supply member is provided in the fluid passage at a position in the height direction across the liquid level of the working fluid inside the equipment heat exchanger, and selectively selects cold or hot for the working fluid flowing through the fluid passage. Can be supplied.
- the heat supply member is a water-working fluid heat exchanger.
- This water-working fluid heat exchanger is selected so that cold water flows to supply cold heat to the working fluid when the target device is cooled, and hot water flows to supply hot heat to the working fluid when the target device is warmed up. It is configured to be switched automatically. According to this, it is possible to use a water-working fluid heat exchanger as a heat supply member that selectively supplies cold or warm heat.
- the heat supply member is a refrigerant-working fluid heat exchanger.
- a refrigerant-working fluid heat exchanger a low-temperature and low-pressure refrigerant for supplying cold to the working fluid flows when the target device is cooled, and a high-temperature and high-pressure for supplying warm temperature to the working fluid when the target device is warmed up.
- the refrigerant is selectively switched so as to flow. According to this, it is possible to use a refrigerant-working fluid heat exchanger as a heat supply member that selectively supplies cold or warm heat.
- the cold supply mechanism capable of supplying cold to the working fluid flowing in the fluid passage is disposed on the upper side in the gravity direction.
- the heat supply mechanism which can supply heat with respect to the working fluid which flows through a fluid channel in the heat supply member is arrange
- the cold supply mechanism is a refrigerant-working fluid heat exchange unit through which a low-temperature and low-pressure refrigerant flows when the target device is cooled.
- the warm heat supply mechanism is a water-working fluid heat exchange unit through which warm water flows when the target device is warmed up. According to this, it is possible to use the refrigerant-working fluid heat exchanger as the cold heat supply mechanism and use the water-working fluid heat exchanger as the warm heat supply mechanism.
- the heat supply member is a pneumatic heat exchanger, and cold air is supplied to the upper part of the heat supply member in the direction of gravity when the target device is cooled, and heat is supplied when the target device is warmed up. It is comprised so that a warm air may be supplied to the site
- the heat supply member is composed of a thermoelectric element. According to this, it is possible to use a thermoelectric element such as a Peltier element as a heat supply member that selectively supplies cold or warm heat.
- the device temperature control device further includes a condenser, a gas phase passage, and a liquid phase passage.
- the condenser is disposed above the equipment heat exchanger in the direction of gravity, and condenses the working fluid by dissipating the working fluid evaporated in the equipment heat exchanger.
- the gas phase passage communicates the inlet through which the gas phase working fluid flows into the condenser and the upper connection portion of the equipment heat exchanger.
- the liquid phase passage communicates the outlet that flows the liquid phase working fluid from the condenser and the lower connection portion of the heat exchanger for equipment.
- the fluid passage described above communicates the upper connection portion and the lower connection portion of the equipment heat exchanger without including a condenser on the path.
- the device temperature control device has the cooling function of the target device by the condenser arranged on the upper side in the gravity direction with respect to the device temperature control device. Can be added.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Transportation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Secondary Cells (AREA)
Abstract
In the present invention, a device heat exchanger (10) is configured such that heat can be exchanged between a target device and a working fluid. An upper connection part (15) is provided in an upper part of the device heat exchanger (10) in the direction of gravity, and a lower connection part (16) is provided in a lower part of the device heat exchanger (10) in the direction of gravity. A condenser (30) is disposed above the device heat exchanger (10) in the direction of gravity. A gas phase passage (50) allows the condenser (30) and the upper connection part (15) to communicate with each other, and a liquid phase passage (40) allows the condenser (30) and the lower connection part (16) to communicate with each other. A fluid passage (60) allows the upper connection part (15) and the lower connection part (16) of the device heat exchanger (10) to communicate with each other without the condenser (30) being included along the path thereof. A heating unit (61) can heat a liquid-phase working fluid that flows through the fluid passage (60). A control device (5) makes the heating unit (61) operate when a target device is to be heated, and halts operation of the heating unit (61) when the target device is to be cooled.
Description
本出願は、2017年3月16日に出願された日本特許出願番号2017-51489号と、2017年6月22日に出願された日本特許出願番号2017-122281号と、2017年7月12日に出願された日本特許出願番号2017-136552号と、2017年12月7日に出願された日本特許出願番号2017-235120号とに基づくもので、ここにその記載内容が参照により組み入れられる。
This application includes Japanese Patent Application No. 2017-51489 filed on March 16, 2017, Japanese Patent Application No. 2017-122281 filed on June 22, 2017, and July 12, 2017. Based on Japanese Patent Application No. 2017-136552 filed in Japan, and Japanese Patent Application No. 2017-235120 filed on Dec. 7, 2017, the contents of which are incorporated herein by reference.
本開示は、対象機器の温度を調整する機器温調装置に関するものである。
This disclosure relates to a device temperature control device that adjusts the temperature of a target device.
従来、ループ型のサーモサイフォン方式により、対象機器の温度を調整する機器温調装置が知られている。
Conventionally, a device temperature control device that adjusts the temperature of a target device by a loop thermosyphon method is known.
特許文献1に記載の機器温調装置は、対象機器としての組電池と作動流体とを熱交換させる機器用熱交換器と、その機器用熱交換器より重力方向上側に配置された凝縮器と、機器用熱交換器と凝縮器とを接続する気相通路および液相通路を備えている。また、この機器温調装置は、機器用熱交換器の内側に、作動流体を加熱することの可能な加熱部を備えている。
The apparatus temperature control apparatus described in Patent Document 1 includes an apparatus heat exchanger that exchanges heat between an assembled battery as a target apparatus and a working fluid, and a condenser that is disposed above the apparatus heat exchanger in the direction of gravity. The gas phase passage and the liquid phase passage connecting the heat exchanger for equipment and the condenser are provided. Moreover, this apparatus temperature control apparatus is equipped with the heating part which can heat a working fluid inside the heat exchanger for apparatuses.
特許文献1に記載の機器温調装置は、組電池の冷却時に、機器用熱交換器の内側の作動流体が組電池から吸熱して蒸発し、気相通路を通って凝縮器に流入する。凝縮器で凝縮した液相の作動流体は、液相通路を通り機器用熱交換器に流入する。このように、機器温調装置は、作動流体の循環により組電池を冷却する構成となっている。
In the apparatus temperature control apparatus described in Patent Document 1, when the assembled battery is cooled, the working fluid inside the apparatus heat exchanger absorbs heat from the assembled battery and evaporates, and flows into the condenser through the gas phase passage. The liquid-phase working fluid condensed by the condenser flows into the equipment heat exchanger through the liquid-phase passage. Thus, the device temperature control device is configured to cool the assembled battery by circulating the working fluid.
また、特許文献1に記載の機器温調装置は、組電池の暖機時に、機器用熱交換器の内側に設けられた加熱部により作動流体を加熱する。加熱された作動流体は、機器用熱交換器の内側で気化した後、組電池に放熱することで、凝縮する。このように、機器温調装置は、機器用熱交換器の内側での作動流体の相変化により組電池を加熱する構成となっている。
Moreover, the apparatus temperature control apparatus of patent document 1 heats a working fluid with the heating part provided inside the heat exchanger for apparatuses at the time of warming up of an assembled battery. The heated working fluid condenses by vaporizing inside the equipment heat exchanger and then radiating heat to the assembled battery. Thus, the device temperature control device is configured to heat the assembled battery by the phase change of the working fluid inside the device heat exchanger.
しかしながら、特許文献1に記載の機器温調装置は、機器用熱交換器の内側に加熱部が設けられている構成である。そのため、組電池の暖機時に、機器用熱交換器の内側で加熱部の近傍の作動流体が局所的に気化し、加熱部から離れた場所の作動流体が加熱されない。したがって、この機器温調装置は、機器用熱交換器の内側で作動流体の温度のばらつきが大きくなり、組電池を均一に暖機することができない。その結果、組電池を構成する一部の電池セルが十分に暖機されず、組電池の入出力特性が低下し、組電池の劣化や破損に至るおそれがある。
However, the apparatus temperature control apparatus described in Patent Document 1 has a configuration in which a heating unit is provided inside the apparatus heat exchanger. Therefore, when the assembled battery is warmed up, the working fluid in the vicinity of the heating unit is locally vaporized inside the equipment heat exchanger, and the working fluid in a place away from the heating unit is not heated. Therefore, in this equipment temperature control device, the temperature variation of the working fluid becomes large inside the equipment heat exchanger, and the assembled battery cannot be warmed up uniformly. As a result, some battery cells constituting the assembled battery are not sufficiently warmed up, the input / output characteristics of the assembled battery are lowered, and the assembled battery may be deteriorated or damaged.
また、特許文献1に記載の機器温調装置は、組電池の暖機時に、作動流体の蒸発と凝縮が機器用熱交換器の内側のみで行われる。すなわち、機器用熱交換器の内側で、加熱部により加熱されて気化した作動流体が重力方向上側に流れ、組電池に放熱して凝縮した作動流体が重力方向下側に流れる。したがって、液相の作動流体と気相の作動流体とが対向して流れるので、機器用熱交換器の内側で作動流体の循環が阻害され、組電池の暖機効率が悪化することが懸念される。なお、上述した問題は、対象機器が組電池である場合に限らず、その他の機器についても同様に生じると考えられる。
Moreover, the apparatus temperature control apparatus described in Patent Document 1 evaporates and condenses the working fluid only inside the apparatus heat exchanger when the assembled battery is warmed up. That is, inside the equipment heat exchanger, the working fluid heated and vaporized by the heating unit flows to the upper side in the gravity direction, and the working fluid radiated and condensed to the assembled battery flows to the lower side in the gravity direction. Therefore, since the liquid-phase working fluid and the gas-phase working fluid flow opposite to each other, there is a concern that the circulation of the working fluid is hindered inside the equipment heat exchanger and the warm-up efficiency of the assembled battery is deteriorated. The Note that the above-described problem is not limited to the case where the target device is an assembled battery, but may also occur in other devices as well.
本開示は、対象機器の温度調整を高効率に行うことの可能な機器温調装置を提供することを目的とする。
This disclosure aims to provide a device temperature control device capable of adjusting the temperature of a target device with high efficiency.
本開示の1つの観点によれば、作動流体の液相と気相との相変化により対象機器の温度を調整する機器温調装置であって、
対象機器の冷却時に作動流体が蒸発し、対象機器の暖機時に作動流体が凝縮するように、対象機器と作動流体とが熱交換可能に構成された機器用熱交換器と、
機器用熱交換器のうち重力方向上側の部位に設けられ、作動流体が流入または流出する上接続部と、
機器用熱交換器のうち上接続部よりも重力方向下側の部位に設けられ、作動流体が流入または流出する下接続部と、
機器用熱交換器より重力方向上側に配置され、機器用熱交換器で蒸発した作動流体を放熱させることにより作動流体を凝縮させる凝縮器と、
凝縮器に気相の作動流体が流入する流入口と機器用熱交換器の上接続部とを連通する気相通路と、
凝縮器から液相の作動流体を流出する流出口と機器用熱交換器の下接続部とを連通する液相通路と、
凝縮器を経路上に含むことなく、機器用熱交換器の上接続部と下接続部とを連通する流体通路と、
流体通路を流れる液相の作動流体を加熱可能な加熱部と、
対象機器を暖機するときに加熱部を作動させ、対象機器を冷却するときに加熱部の作動を停止する制御装置と、を備える。 According to one aspect of the present disclosure, there is provided a device temperature control device that adjusts the temperature of a target device by a phase change between a liquid phase and a gas phase of a working fluid,
A heat exchanger for equipment configured to allow heat exchange between the target device and the working fluid so that the working fluid evaporates when the target device is cooled and the working fluid is condensed when the target device is warmed up;
An upper connection provided in the upper part of the gravitational direction of the heat exchanger for equipment, and through which the working fluid flows in or out;
A lower connection part that is provided in a lower part of the heat exchanger for equipment than the upper connection part in the direction of gravity, and into which working fluid flows in or out;
A condenser that is disposed above the heat exchanger for equipment in the direction of gravity and that condenses the working fluid by dissipating the working fluid evaporated in the equipment heat exchanger;
A gas phase passage that communicates the inlet through which the gas phase working fluid flows into the condenser and the upper connection portion of the heat exchanger for equipment;
A liquid-phase passage that communicates the outlet from which the liquid-phase working fluid flows out of the condenser and the lower connection portion of the equipment heat exchanger;
A fluid passage that communicates the upper connection portion and the lower connection portion of the equipment heat exchanger without including a condenser on the path;
A heating unit capable of heating the liquid-phase working fluid flowing through the fluid passage;
A control device that operates the heating unit when warming up the target device and stops the operation of the heating unit when cooling the target device.
対象機器の冷却時に作動流体が蒸発し、対象機器の暖機時に作動流体が凝縮するように、対象機器と作動流体とが熱交換可能に構成された機器用熱交換器と、
機器用熱交換器のうち重力方向上側の部位に設けられ、作動流体が流入または流出する上接続部と、
機器用熱交換器のうち上接続部よりも重力方向下側の部位に設けられ、作動流体が流入または流出する下接続部と、
機器用熱交換器より重力方向上側に配置され、機器用熱交換器で蒸発した作動流体を放熱させることにより作動流体を凝縮させる凝縮器と、
凝縮器に気相の作動流体が流入する流入口と機器用熱交換器の上接続部とを連通する気相通路と、
凝縮器から液相の作動流体を流出する流出口と機器用熱交換器の下接続部とを連通する液相通路と、
凝縮器を経路上に含むことなく、機器用熱交換器の上接続部と下接続部とを連通する流体通路と、
流体通路を流れる液相の作動流体を加熱可能な加熱部と、
対象機器を暖機するときに加熱部を作動させ、対象機器を冷却するときに加熱部の作動を停止する制御装置と、を備える。 According to one aspect of the present disclosure, there is provided a device temperature control device that adjusts the temperature of a target device by a phase change between a liquid phase and a gas phase of a working fluid,
A heat exchanger for equipment configured to allow heat exchange between the target device and the working fluid so that the working fluid evaporates when the target device is cooled and the working fluid is condensed when the target device is warmed up;
An upper connection provided in the upper part of the gravitational direction of the heat exchanger for equipment, and through which the working fluid flows in or out;
A lower connection part that is provided in a lower part of the heat exchanger for equipment than the upper connection part in the direction of gravity, and into which working fluid flows in or out;
A condenser that is disposed above the heat exchanger for equipment in the direction of gravity and that condenses the working fluid by dissipating the working fluid evaporated in the equipment heat exchanger;
A gas phase passage that communicates the inlet through which the gas phase working fluid flows into the condenser and the upper connection portion of the heat exchanger for equipment;
A liquid-phase passage that communicates the outlet from which the liquid-phase working fluid flows out of the condenser and the lower connection portion of the equipment heat exchanger;
A fluid passage that communicates the upper connection portion and the lower connection portion of the equipment heat exchanger without including a condenser on the path;
A heating unit capable of heating the liquid-phase working fluid flowing through the fluid passage;
A control device that operates the heating unit when warming up the target device and stops the operation of the heating unit when cooling the target device.
これによれば、加熱部の作動が停止しているとき、凝縮器で凝縮した作動流体が自重により液相通路を通り下接続部から機器用熱交換器に流入する。その作動流体は、機器用熱交換器の内側で対象機器から吸熱して蒸発する。気相となった作動流体は上接続部から気相通路を通り凝縮器に流れる。その作動流体は、凝縮器で再び凝縮し、液相通路を通り機器用熱交換器に流入する。このような作動流体の循環により、機器温調装置は、対象機器の冷却を行うことが可能である。
According to this, when the operation of the heating unit is stopped, the working fluid condensed by the condenser flows into the heat exchanger for equipment from the lower connection portion through the liquid phase passage by its own weight. The working fluid absorbs heat from the target device inside the device heat exchanger and evaporates. The working fluid that has become a gas phase flows from the upper connection portion through the gas phase passage to the condenser. The working fluid is condensed again in the condenser, and flows into the heat exchanger for equipment through the liquid phase passage. By such circulation of the working fluid, the device temperature adjustment device can cool the target device.
一方、加熱部が作動すると、流体通路の作動流体が蒸発し、上接続部から機器用熱交換器に流入する。機器用熱交換器の内側で気相の作動流体は対象機器に放熱して凝縮する。液相となった作動流体は下接続部から流体通路に流れる。その作動流体は、流体通路で加熱部に加熱されて再び蒸発し、機器用熱交換器に流入する。このような作動流体の循環により、機器温調装置は、対象機器の暖機を行うことが可能である。
On the other hand, when the heating section is activated, the working fluid in the fluid passage evaporates and flows into the equipment heat exchanger from the upper connection section. Inside the equipment heat exchanger, the gas phase working fluid dissipates heat to the target equipment and condenses. The working fluid in the liquid phase flows from the lower connection portion to the fluid passage. The working fluid is heated by the heating section in the fluid passage, evaporates again, and flows into the equipment heat exchanger. By such a circulation of the working fluid, the device temperature control device can warm up the target device.
この機器温調装置は、対象機器の暖機時に、機器用熱交換器の外側にある流体通路の作動流体を加熱部により加熱する構成である。そのため、流体通路で気化した作動流体の蒸気が機器用熱交換器に供給されるため、機器用熱交換器の内側で作動流体の蒸気温度のばらつきが抑制される。したがって、この機器温調装置は、対象機器を均一に暖機することが可能である。その結果、対象機器が組電池である場合、組電池の入出力特性の低下を防ぎ、その組電池の劣化や破損を抑制することができる。
This equipment temperature control device is configured to heat the working fluid in the fluid passage outside the equipment heat exchanger by the heating unit when the target equipment is warmed up. For this reason, the working fluid vapor evaporated in the fluid passage is supplied to the equipment heat exchanger, so that the variation in the steam temperature of the working fluid is suppressed inside the equipment heat exchanger. Therefore, this device temperature control device can warm up the target device uniformly. As a result, when the target device is an assembled battery, it is possible to prevent a decrease in input / output characteristics of the assembled battery, and to suppress deterioration and breakage of the assembled battery.
また、この機器温調装置は、対象機器の冷却時に、凝縮器→液相通路→下接続部→機器用熱交換器→上接続部→気相通路→凝縮器の順に作動流体が循環する。一方、対象機器の暖機時に、流体通路→上接続部→機器用熱交換器→下接続部→流体通路の順に作動流体が循環する。すなわち、この機器温調装置は、対象機器の冷却時と暖機時のいずれにおいても、作動流体の流れる流路がループ状に形成される。そのため、液相の作動流体と気相の作動流体とが一つの流路を対向して流れることが防がれる。したがって、この機器温調装置は、作動流体を円滑に循環させることで、対象機器の暖機と冷却を高効率に行うことができる。
Also, in this equipment temperature control device, when the target equipment is cooled, the working fluid circulates in the order of condenser → liquid phase passage → lower connection portion → device heat exchanger → upper connection portion → gas phase passage → condenser. On the other hand, when the target device is warmed up, the working fluid circulates in the order of fluid passage → upper connection portion → device heat exchanger → lower connection portion → fluid passage. That is, in this device temperature control device, the flow path for the working fluid is formed in a loop shape both when the target device is cooled and when it is warmed up. Therefore, it is possible to prevent the liquid-phase working fluid and the gas-phase working fluid from flowing in the same flow path. Therefore, this apparatus temperature control apparatus can warm up and cool the target apparatus with high efficiency by smoothly circulating the working fluid.
さらに、この機器温調装置は、機器用熱交換器の上接続部と下接続部とを接続する流体通路の高さ方向に、加熱部を設けるための空間が確保されるので、機器用熱交換器より下側に加熱部等を設ける必要性が低減される。したがって、この機器温調装置は、車両への搭載性を向上することができる。
Furthermore, this device temperature control device secures a space for providing a heating portion in the height direction of the fluid passage connecting the upper connection portion and the lower connection portion of the heat exchanger for the device. The need to provide a heating unit or the like below the exchanger is reduced. Therefore, this apparatus temperature control apparatus can improve the mounting property to a vehicle.
また、別の観点によれば、作動流体の液相と気相との相変化により対象機器の温度を調整する機器温調装置であって、
対象機器の暖機時に作動流体が凝縮するように、対象機器と作動流体とが熱交換可能に構成された機器用熱交換器と、
機器用熱交換器のうち重力方向上側の部位に設けられ、作動流体が流入または流出する上接続部と、
機器用熱交換器のうち上接続部よりも重力方向下側の部位に設けられ、作動流体が流入または流出する下接続部と、
機器用熱交換器の上接続部と下接続部とを連通する流体通路と、
流体通路を流れる液相の作動流体を加熱可能な加熱部と、
対象機器を暖機するときに加熱部を作動する制御装置と、を備える。 Further, according to another aspect, the device temperature adjustment device for adjusting the temperature of the target device by a phase change between the liquid phase and the gas phase of the working fluid,
A heat exchanger for equipment configured to allow heat exchange between the target equipment and the working fluid so that the working fluid is condensed when the target equipment is warmed up;
An upper connection provided in the upper part of the gravitational direction of the heat exchanger for equipment, and through which the working fluid flows in or out;
A lower connection part that is provided in a lower part of the heat exchanger for equipment than the upper connection part in the direction of gravity, and into which working fluid flows in or out;
A fluid passage communicating the upper connection portion and the lower connection portion of the equipment heat exchanger;
A heating unit capable of heating the liquid-phase working fluid flowing through the fluid passage;
And a control device that operates the heating unit when warming up the target device.
対象機器の暖機時に作動流体が凝縮するように、対象機器と作動流体とが熱交換可能に構成された機器用熱交換器と、
機器用熱交換器のうち重力方向上側の部位に設けられ、作動流体が流入または流出する上接続部と、
機器用熱交換器のうち上接続部よりも重力方向下側の部位に設けられ、作動流体が流入または流出する下接続部と、
機器用熱交換器の上接続部と下接続部とを連通する流体通路と、
流体通路を流れる液相の作動流体を加熱可能な加熱部と、
対象機器を暖機するときに加熱部を作動する制御装置と、を備える。 Further, according to another aspect, the device temperature adjustment device for adjusting the temperature of the target device by a phase change between the liquid phase and the gas phase of the working fluid,
A heat exchanger for equipment configured to allow heat exchange between the target equipment and the working fluid so that the working fluid is condensed when the target equipment is warmed up;
An upper connection provided in the upper part of the gravitational direction of the heat exchanger for equipment, and through which the working fluid flows in or out;
A lower connection part that is provided in a lower part of the heat exchanger for equipment than the upper connection part in the direction of gravity, and into which working fluid flows in or out;
A fluid passage communicating the upper connection portion and the lower connection portion of the equipment heat exchanger;
A heating unit capable of heating the liquid-phase working fluid flowing through the fluid passage;
And a control device that operates the heating unit when warming up the target device.
これによれば、この機器温調装置は、対象機器の暖機時に、機器用熱交換器の外側にある流体通路の作動流体を加熱部により加熱する構成である。そのため、流体通路で気化した作動流体の蒸気が機器用熱交換器に供給されるため、機器用熱交換器の内側で作動流体の蒸気温度のばらつきが抑制される。したがって、この機器温調装置は、対象機器を均一に暖機することが可能である。その結果、対象機器が組電池である場合、組電池の入出力特性の低下を防ぎ、その組電池の劣化や破損を抑制することができる。
According to this, this apparatus temperature control apparatus is the structure which heats the working fluid of the fluid path in the outer side of the apparatus heat exchanger with a heating part at the time of warming up of object apparatus. For this reason, the working fluid vapor evaporated in the fluid passage is supplied to the equipment heat exchanger, so that the variation in the steam temperature of the working fluid is suppressed inside the equipment heat exchanger. Therefore, this device temperature control device can warm up the target device uniformly. As a result, when the target device is an assembled battery, it is possible to prevent a decrease in input / output characteristics of the assembled battery, and to suppress deterioration and breakage of the assembled battery.
また、この機器温調装置は、対象機器の暖機時に、流体通路→上接続部→機器用熱交換器→下接続部→流体通路の順に作動流体が循環する。すなわち、この機器温調装置は、対象機器の暖機時に、作動流体の流れる流路がループ状に形成される。そのため、液相の作動流体と気相の作動流体とが一つの流路を対向して流れることが防がれる。したがって、この機器温調装置は、作動流体を円滑に循環させることで、対象機器の暖機を高効率に行うことができる。
Also, in this equipment temperature control device, when the target equipment is warmed up, the working fluid circulates in the order of the fluid passage → the upper connection portion → the equipment heat exchanger → the lower connection portion → the fluid passage. That is, in this device temperature control apparatus, the flow path through which the working fluid flows is formed in a loop when the target device is warmed up. Therefore, it is possible to prevent the liquid-phase working fluid and the gas-phase working fluid from flowing in the same flow path. Therefore, this device temperature control device can warm up the target device with high efficiency by smoothly circulating the working fluid.
さらに、この機器温調装置は、機器用熱交換器の上接続部と下接続部とを接続する流体通路の高さ方向に、加熱部を設けるための空間が確保されるので、機器用熱交換器より下側に加熱部等を設ける必要性が低減される。したがって、この機器温調装置は、車両への搭載性を向上することができる。
Furthermore, this device temperature control device secures a space for providing a heating portion in the height direction of the fluid passage connecting the upper connection portion and the lower connection portion of the heat exchanger for the device. The need to provide a heating unit or the like below the exchanger is reduced. Therefore, this apparatus temperature control apparatus can improve the mounting property to a vehicle.
また、別の観点によれば、作動流体の液相と気相との相変化により対象機器の温度を調整する機器温調装置であって、
対象機器の冷却時に作動流体が蒸発し、対象機器の暖機時に作動流体が凝縮するように、対象機器と作動流体とが熱交換可能に構成された機器用熱交換器と、
機器用熱交換器のうち重力方向上側の部位に設けられ、作動流体が流入または流出する上接続部と、
機器用熱交換器のうち上接続部よりも重力方向下側の部位に設けられ、作動流体が流入または流出する下接続部と、
機器用熱交換器の上接続部と下接続部とを連通する流体通路と、
機器用熱交換器の内側にある作動流体の液面の高さを跨ぐ高さ方向の位置で流体通路に設けられ、流体通路を流れる作動流体に対し冷熱または温熱を選択的に供給可能な熱供給部材と、を備える。 Further, according to another aspect, the device temperature adjustment device for adjusting the temperature of the target device by a phase change between the liquid phase and the gas phase of the working fluid,
A heat exchanger for equipment configured to allow heat exchange between the target device and the working fluid so that the working fluid evaporates when the target device is cooled and the working fluid is condensed when the target device is warmed up;
An upper connection provided in the upper part of the gravitational direction of the heat exchanger for equipment, and through which the working fluid flows in or out;
A lower connection part that is provided in a lower part of the heat exchanger for equipment than the upper connection part in the direction of gravity, and into which working fluid flows in or out;
A fluid passage communicating the upper connection portion and the lower connection portion of the equipment heat exchanger;
Heat that is provided in the fluid passage at a height position across the level of the working fluid level inside the equipment heat exchanger, and that can selectively supply cold or hot heat to the working fluid that flows through the fluid passage. A supply member.
対象機器の冷却時に作動流体が蒸発し、対象機器の暖機時に作動流体が凝縮するように、対象機器と作動流体とが熱交換可能に構成された機器用熱交換器と、
機器用熱交換器のうち重力方向上側の部位に設けられ、作動流体が流入または流出する上接続部と、
機器用熱交換器のうち上接続部よりも重力方向下側の部位に設けられ、作動流体が流入または流出する下接続部と、
機器用熱交換器の上接続部と下接続部とを連通する流体通路と、
機器用熱交換器の内側にある作動流体の液面の高さを跨ぐ高さ方向の位置で流体通路に設けられ、流体通路を流れる作動流体に対し冷熱または温熱を選択的に供給可能な熱供給部材と、を備える。 Further, according to another aspect, the device temperature adjustment device for adjusting the temperature of the target device by a phase change between the liquid phase and the gas phase of the working fluid,
A heat exchanger for equipment configured to allow heat exchange between the target device and the working fluid so that the working fluid evaporates when the target device is cooled and the working fluid is condensed when the target device is warmed up;
An upper connection provided in the upper part of the gravitational direction of the heat exchanger for equipment, and through which the working fluid flows in or out;
A lower connection part that is provided in a lower part of the heat exchanger for equipment than the upper connection part in the direction of gravity, and into which working fluid flows in or out;
A fluid passage communicating the upper connection portion and the lower connection portion of the equipment heat exchanger;
Heat that is provided in the fluid passage at a height position across the level of the working fluid level inside the equipment heat exchanger, and that can selectively supply cold or hot heat to the working fluid that flows through the fluid passage. A supply member.
これによれば、機器温調装置は、熱供給部材により、流体通路を流れる作動流体に対し冷熱または温熱を選択的に供給することで、対象機器の暖機と冷却のどちらも行うことが可能である。したがって、この機器温調装置は、部品点数を少なくし、配管等の構成を簡素にすることで、小型化、軽量、低コストを実現できる。
According to this, the device temperature control device can perform both warm-up and cooling of the target device by selectively supplying cold heat or heat to the working fluid flowing through the fluid passage by the heat supply member. It is. Therefore, this equipment temperature control device can achieve downsizing, light weight, and low cost by reducing the number of parts and simplifying the configuration of piping and the like.
具体的には、機器温調装置は、対象機器の冷却時に、流体通路を流れる作動流体に対し熱供給部材から冷熱が供給されると、流体通路の作動流体が凝縮する。そして、その流体通路で凝縮した液相の作動流体と機器用熱交換器内の液相の作動流体とのヘッド差により、流体通路の液相の作動流体は下接続部から機器用熱交換器に流入する。機器用熱交換器内の作動流体は、対象機器から吸熱して蒸発し、その気相となった作動流体は上接続部から流体通路に流れる。流体通路の作動流体は、熱供給部材により冷却されて再び凝縮し、下接続部から機器用熱交換器に流入する。このような作動流体の循環により、機器温調装置は、対象機器の冷却を行うことが可能である。
Specifically, in the device temperature control device, when cooling heat is supplied from the heat supply member to the working fluid flowing through the fluid passage when the target device is cooled, the working fluid in the fluid passage is condensed. Then, due to the head difference between the liquid-phase working fluid condensed in the fluid passage and the liquid-phase working fluid in the equipment heat exchanger, the liquid-phase working fluid in the fluid passage passes from the lower connection portion to the equipment heat exchanger. Flow into. The working fluid in the equipment heat exchanger absorbs heat from the target equipment and evaporates, and the working fluid in the gas phase flows from the upper connection portion to the fluid passage. The working fluid in the fluid passage is cooled by the heat supply member, condensed again, and flows into the equipment heat exchanger from the lower connection portion. By such circulation of the working fluid, the device temperature adjustment device can cool the target device.
一方、対象機器の暖機時に、流体通路を流れる作動流体に対し熱供給部材から温熱が供給されると、流体通路の作動流体が蒸発し、上接続部から機器用熱交換器に流入する。機器用熱交換器の内側で気相の作動流体は対象機器に放熱して凝縮する。そして、機器用熱交換器内で凝縮した液相の作動流体と流体通路の液相の作動流体とのヘッド差により、機器用熱交換器の液相の作動流体は下接続部から流体通路に流れる。その作動流体は、流体通路で熱供給部材により加熱されて再び蒸発し、機器用熱交換器に流入する。このような作動流体の循環により、機器温調装置は、対象機器の暖機を行うことが可能である。
On the other hand, when the heat is supplied from the heat supply member to the working fluid flowing through the fluid passage when the target device is warmed up, the working fluid in the fluid passage evaporates and flows into the equipment heat exchanger from the upper connection portion. Inside the equipment heat exchanger, the gas phase working fluid dissipates heat to the target equipment and condenses. Due to the head difference between the liquid-phase working fluid condensed in the equipment heat exchanger and the liquid-phase working fluid in the fluid passage, the liquid-phase working fluid in the equipment heat exchanger is transferred from the lower connection portion to the fluid passage. Flowing. The working fluid is heated by the heat supply member in the fluid passage, evaporates again, and flows into the equipment heat exchanger. By such a circulation of the working fluid, the device temperature control device can warm up the target device.
この機器温調装置は、対象機器の暖機時に、機器用熱交換器の外側にある流体通路の作動流体を熱供給部材により加熱する構成である。そのため、流体通路で気化した作動流体の蒸気が機器用熱交換器に供給されるため、機器用熱交換器の内側で作動流体の蒸気温度のばらつきが抑制される。したがって、この機器温調装置は、対象機器を均一に暖機することが可能である。その結果、対象機器が組電池である場合、組電池の入出力特性の低下を防ぎ、その組電池の劣化や破損を抑制することができる。
This equipment temperature control device is configured to heat the working fluid in the fluid passage outside the equipment heat exchanger by the heat supply member when the target equipment is warmed up. For this reason, the working fluid vapor evaporated in the fluid passage is supplied to the equipment heat exchanger, so that the variation in the steam temperature of the working fluid is suppressed inside the equipment heat exchanger. Therefore, this device temperature control device can warm up the target device uniformly. As a result, when the target device is an assembled battery, it is possible to prevent a decrease in input / output characteristics of the assembled battery, and to suppress deterioration and breakage of the assembled battery.
また、この機器温調装置は、対象機器の冷却時に、流体通路→下接続部→機器用熱交換器→上接続部→流体通路の順に作動流体が循環する。一方、対象機器の暖機時に、流体通路→上接続部→機器用熱交換器→下接続部→流体通路の順に作動流体が循環する。すなわち、この機器温調装置は、対象機器の冷却時と暖機時のいずれにおいても、作動流体の流れる流路がループ状に形成される。そのため、液相の作動流体と気相の作動流体とが一つの流路を対向して流れることが防がれる。したがって、この機器温調装置は、作動流体を円滑に循環させることで、対象機器の暖機と冷却を高効率に行うことができる。
Also, in this equipment temperature control device, when the target equipment is cooled, the working fluid circulates in the order of fluid passage → lower connection portion → device heat exchanger → upper connection portion → fluid passage. On the other hand, when the target device is warmed up, the working fluid circulates in the order of fluid passage → upper connection portion → device heat exchanger → lower connection portion → fluid passage. That is, in this device temperature control device, the flow path for the working fluid is formed in a loop shape both when the target device is cooled and when it is warmed up. Therefore, it is possible to prevent the liquid-phase working fluid and the gas-phase working fluid from flowing in the same flow path. Therefore, this apparatus temperature control apparatus can warm up and cool the target apparatus with high efficiency by smoothly circulating the working fluid.
また、この機器温調装置は、機器用熱交換器の上接続部と下接続部とを接続する流体通路の高さ方向に、熱供給部材を設けるための空間が確保されるので、機器用熱交換器より下側に配管や部品を設ける必要性が低減される。したがって、この機器温調装置は、車両への搭載性を向上することができる。
In addition, this device temperature control device secures a space for providing a heat supply member in the height direction of the fluid passage connecting the upper connection portion and the lower connection portion of the equipment heat exchanger. The need to provide piping and components below the heat exchanger is reduced. Therefore, this apparatus temperature control apparatus can improve the mounting property to a vehicle.
以下、本開示の実施形態について図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付し、その説明を省略する。
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other are given the same reference numerals, and descriptions thereof are omitted.
(第1実施形態)
本実施形態の機器温調装置は、電気自動車やハイブリッド車などの電動車両(以下、単に「車両」という)に搭載されるものである。図1に示すように、機器温調装置1は、車両に搭載される二次電池2(以下、「組電池2」という)を冷却する冷却装置として機能する。また、機器温調装置1は、組電池2を暖機する暖機装置としても機能する。 (First embodiment)
The apparatus temperature control device of this embodiment is mounted on an electric vehicle (hereinafter simply referred to as “vehicle”) such as an electric vehicle or a hybrid vehicle. As shown in FIG. 1, the devicetemperature control device 1 functions as a cooling device that cools a secondary battery 2 (hereinafter referred to as “assembled battery 2”) mounted on a vehicle. Moreover, the apparatus temperature control apparatus 1 functions also as a warming-up apparatus which warms up the assembled battery 2. FIG.
本実施形態の機器温調装置は、電気自動車やハイブリッド車などの電動車両(以下、単に「車両」という)に搭載されるものである。図1に示すように、機器温調装置1は、車両に搭載される二次電池2(以下、「組電池2」という)を冷却する冷却装置として機能する。また、機器温調装置1は、組電池2を暖機する暖機装置としても機能する。 (First embodiment)
The apparatus temperature control device of this embodiment is mounted on an electric vehicle (hereinafter simply referred to as “vehicle”) such as an electric vehicle or a hybrid vehicle. As shown in FIG. 1, the device
まず、機器温調装置1が温度調整を行う対象機器としての組電池2について説明する。
First, a description will be given of the assembled battery 2 as a target device for which the device temperature control device 1 performs temperature adjustment.
機器温調装置1を搭載する車両では、組電池2を主要構成部品として含む蓄電装置(言い換えれば、電池パック)に蓄えた電力がインバータなどを介して車両走行用モータに供給される。組電池2は車両走行中などに電力供給等を行うと自己発熱する。組電池2は高温になると、十分な機能を発揮できないだけでなく、劣化が促進されることから、自己発熱が少なくなるように出力および入力を制限する必要がある。このため、組電池2の出力および入力を確保するためには、組電池2を所定の温度以下に維持するための冷却装置が必要となる。
In a vehicle equipped with the device temperature control device 1, electric power stored in a power storage device (in other words, a battery pack) including the assembled battery 2 as a main component is supplied to a vehicle driving motor via an inverter or the like. The assembled battery 2 self-heats when power is supplied while the vehicle is running. When the assembled battery 2 becomes high temperature, not only cannot a sufficient function be exhibited, but also deterioration is promoted. Therefore, it is necessary to limit output and input so that self-heating is reduced. For this reason, in order to ensure the output and input of the assembled battery 2, a cooling device for maintaining the assembled battery 2 below a predetermined temperature is required.
また、夏季などの外気温が高い季節では、車両走行中だけでなく、駐車放置中などにも電池温度は上昇する。また、組電池2は車両の床下やトランクルーム下などに配置されることが多く、組電池2に与えられる単位時間当たりの熱量は小さいものの、長時間の放置により電池温度は徐々に上昇する。組電池2を高温状態で放置すると組電池2の寿命が短くなるので、車両の駐車中等にも組電池2の温度を所定の温度以下に維持することが望まれている。
In addition, in high seasons such as summer, the battery temperature rises not only when the vehicle is running but also when parked. In addition, the assembled battery 2 is often arranged under the floor of a vehicle, under a trunk room, etc., and although the amount of heat per unit time given to the assembled battery 2 is small, the battery temperature gradually rises when left for a long time. If the assembled battery 2 is left in a high temperature state, the life of the assembled battery 2 is shortened. Therefore, it is desired to maintain the temperature of the assembled battery 2 at a predetermined temperature or less even during parking of the vehicle.
さらに、組電池2は、複数の電池セル21により構成されている。組電池2は、各電池セル21の温度にばらつきがあると電池セル21の劣化に偏りが生じ、蓄電性能が低下してしまう。これは、組電池2が電池セル21の直列接続体を含んでいることで、最も劣化した電池セル21の特性に合わせて組電池2の入出力特性が決まるからである。そのため、長期間にわたって組電池2に所望の性能を発揮させるためには、複数の電池セル21相互間の温度ばらつきを低減させる均温化が重要となる。
Furthermore, the assembled battery 2 is composed of a plurality of battery cells 21. In the assembled battery 2, if the temperature of each battery cell 21 varies, the deterioration of the battery cell 21 is biased, and the power storage performance decreases. This is because the input / output characteristics of the assembled battery 2 are determined in accordance with the characteristics of the battery cell 21 that is most deteriorated because the assembled battery 2 includes the series connection body of the battery cells 21. Therefore, in order to make the assembled battery 2 exhibit desired performance over a long period of time, it is important to equalize the temperature so as to reduce the temperature variation among the plurality of battery cells 21.
また、一般に、組電池2を冷却する他の冷却装置として、送風機による空冷式の冷却手段、蒸気圧縮式の冷凍サイクルの冷熱を利用した冷却手段が一般的である。しかし、送風機による空冷式の冷却手段は、車室内の空気を送風するだけなので、冷却能力は低い。また、送風機による送風は、空気の顕熱で組電池2を冷却するので、空気流れの上流と下流との間で温度差が大きくなり、複数の電池セル21同士の温度ばらつきを十分に抑制できない。また、冷凍サイクルの冷熱を利用した冷却手段は、冷却能力は高いものの、車両の駐車中に、電力消費量の多いコンプレッサ等を駆動させることが必要となる。このことは、電力消費量の増大、騒音の増大等を招くことになるため好ましくない。
In general, as other cooling devices for cooling the assembled battery 2, an air-cooling cooling means using a blower and a cooling means using the cold heat of a vapor compression refrigeration cycle are generally used. However, since the air-cooled cooling means using the blower only blows air in the passenger compartment, the cooling capacity is low. Moreover, since the air blower cools the assembled battery 2 with the sensible heat of air, the temperature difference between the upstream and downstream of the air flow becomes large, and the temperature variation between the plurality of battery cells 21 cannot be sufficiently suppressed. . Moreover, although the cooling means using the cold heat of the refrigeration cycle has a high cooling capacity, it is necessary to drive a compressor or the like that consumes a large amount of power while the vehicle is parked. This is undesirable because it leads to an increase in power consumption and an increase in noise.
そこで、本実施形態の機器温調装置1は、作動流体をコンプレッサにより強制循環させることなく、作動流体の自然循環によって組電池2の温度を調整するサーモサイフォン方式を採用している。
Therefore, the device temperature control apparatus 1 of the present embodiment employs a thermosiphon system that adjusts the temperature of the assembled battery 2 by natural circulation of the working fluid without forcibly circulating the working fluid by a compressor.
次に、機器温調装置1の構成について説明する。
Next, the configuration of the device temperature control device 1 will be described.
図1に示すように、機器温調装置1は、作動流体が循環する流体循環回路4と、その流体循環回路4の動作を制御する制御装置5を備えている。
As shown in FIG. 1, the device temperature control device 1 includes a fluid circulation circuit 4 through which a working fluid circulates and a control device 5 that controls the operation of the fluid circulation circuit 4.
流体循環回路4は、作動流体の蒸発および凝縮により熱移動を行うヒートパイプであり、詳細には、気相の作動流体が流れる流路と液相の作動流体が流れる流路とが分離されたループ型のサーモサイフォンである。流体循環回路4は、機器用熱交換器10、凝縮器30、液相通路40、気相通路50および流体通路60などが互いに接続され、閉じられた流体回路として構成されている。また、流体通路60には、作動流体を加熱するための加熱部61が設けられている。
The fluid circulation circuit 4 is a heat pipe that performs heat transfer by evaporation and condensation of the working fluid. Specifically, the flow path through which the gas-phase working fluid flows and the flow path through which the liquid-phase working fluid flows are separated. It is a loop-type thermosiphon. The fluid circulation circuit 4 is configured as a closed fluid circuit in which the equipment heat exchanger 10, the condenser 30, the liquid phase passage 40, the gas phase passage 50, the fluid passage 60, and the like are connected to each other. Further, the fluid passage 60 is provided with a heating unit 61 for heating the working fluid.
流体循環回路4には、その内部が真空排気された状態で、所定量の作動流体が封入されている。作動流体として、例えば、蒸気圧縮式の冷凍サイクルで利用されるHFO-1234yfまたはHFC-134aなどのフロン系冷媒が採用される。なお、図1の矢印DGは、流体循環回路4が車両に搭載された状態における重力方向を示している。
The fluid circulation circuit 4 is filled with a predetermined amount of working fluid in a state where the inside is evacuated. As the working fluid, for example, a fluorocarbon refrigerant such as HFO-1234yf or HFC-134a used in a vapor compression refrigeration cycle is employed. An arrow DG in FIG. 1 indicates the direction of gravity in a state where the fluid circulation circuit 4 is mounted on the vehicle.
流体循環回路4の作動流体の充填量は、後述する暖機時に、機器用熱交換器10の高さ方向の中央付近に液面が形成されるように調整されている。図1では、暖機時の液面の高さの一例を、一点鎖線FLで示している。
The filling amount of the working fluid in the fluid circulation circuit 4 is adjusted so that the liquid level is formed in the vicinity of the center in the height direction of the equipment heat exchanger 10 during warm-up described later. In FIG. 1, an example of the height of the liquid level during warm-up is indicated by a one-dot chain line FL.
図2~図4に示すように、機器用熱交換器10は、筒状の上タンク11と、筒状の下タンク12と、その上タンク11と下タンク12とを連通する流路を有する複数のチューブ131により構成されている。なお、複数のチューブ131に代えて、板状の部材の内側に複数の流路を形成したものにより、上タンク11と下タンク12とを接続してもよい。機器用熱交換器10の各構成部材は、例えばアルミニウム、銅等の熱伝導性の高い金属から形成されている。なお、機器用熱交換器10の各構成部材は、金属以外の熱伝導性の高い材料により構成することも可能である。機器用熱交換器10のうち、複数のチューブ131または板状の部材により構成された部位を、熱交換部13ということとする。
As shown in FIGS. 2 to 4, the equipment heat exchanger 10 has a cylindrical upper tank 11, a cylindrical lower tank 12, and a flow path that connects the upper tank 11 and the lower tank 12. It is composed of a plurality of tubes 131. Instead of the plurality of tubes 131, the upper tank 11 and the lower tank 12 may be connected by a plurality of flow paths formed inside the plate-like member. Each component of the equipment heat exchanger 10 is formed of a metal having high thermal conductivity such as aluminum or copper. In addition, each structural member of the heat exchanger 10 for apparatuses can also be comprised with materials with high heat conductivity other than a metal. The part comprised by the some tube 131 or the plate-shaped member among the heat exchangers 10 for apparatuses shall be called the heat exchange part 13. FIG.
上タンク11は、機器用熱交換器10のうち重力方向上側となる位置に設けられる。下タンク12は、機器用熱交換器10のうち重力方向下側となる位置に設けられる。
The upper tank 11 is provided at a position on the upper side in the gravity direction of the equipment heat exchanger 10. The lower tank 12 is provided in a position on the lower side in the gravity direction of the equipment heat exchanger 10.
熱交換部13の外側には、電気絶縁性の熱伝導シート14を介して、組電池2が設置される。熱伝導シート14により、熱交換部13と組電池2との間の絶縁が保障されると共に、熱交換部13と組電池2との間の熱抵抗が小さいものとなる。本実施形態では、組電池2は、端子22が設けられた面25とは反対側の面23が、熱伝導シート14を介して、熱交換部13に設置されている。組電池2を構成する複数の電池セル21は、重力方向に交差する方向に並べられている。これにより、複数の電池セル21は、機器用熱交換器10の内側の作動流体との熱交換により、均等に冷却および加熱される。
The assembled battery 2 is installed outside the heat exchanging unit 13 via an electrically insulating heat conductive sheet 14. The heat conductive sheet 14 ensures insulation between the heat exchanging unit 13 and the assembled battery 2 and reduces the thermal resistance between the heat exchanging unit 13 and the assembled battery 2. In the present embodiment, in the assembled battery 2, the surface 23 opposite to the surface 25 on which the terminals 22 are provided is installed in the heat exchange unit 13 via the heat conductive sheet 14. The plurality of battery cells 21 constituting the assembled battery 2 are arranged in a direction crossing the gravitational direction. Thus, the plurality of battery cells 21 are uniformly cooled and heated by heat exchange with the working fluid inside the equipment heat exchanger 10.
なお、後述する第15~第18実施形態で説明するように、組電池2の設置方法は、図1~図3に示したものに限らず、組電池2の他の面が熱伝導シート14を介して熱交換部13に設置されていてもよい。なお、組電池2を構成する各電池セル21の個数、形状なども、図1~図3に示したものに限らず、任意のものを採用することができる。
As will be described in the fifteenth to eighteenth embodiments to be described later, the method for installing the assembled battery 2 is not limited to that shown in FIGS. 1 to 3, and the other surface of the assembled battery 2 is the heat conductive sheet 14. It may be installed in the heat exchange part 13 via. Note that the number, shape, and the like of each battery cell 21 constituting the assembled battery 2 are not limited to those shown in FIGS. 1 to 3, and any one can be adopted.
機器用熱交換器10には、上接続部15と下接続部16が設けられている。上接続部15と下接続部16はいずれも、機器用熱交換器10に作動流体を流入させ、または、機器用熱交換器10から作動流体を流出させるための配管接続部である。
The equipment heat exchanger 10 is provided with an upper connection portion 15 and a lower connection portion 16. Each of the upper connection portion 15 and the lower connection portion 16 is a pipe connection portion for allowing the working fluid to flow into the equipment heat exchanger 10 or for causing the working fluid to flow out from the equipment heat exchanger 10.
上接続部15は、機器用熱交換器10のうち重力方向上側の部位に設けられる。本実施形態では、上接続部15は、上タンク11の両側に設けられている。以下の説明では、上タンク11の一端に設けられた上接続部15を第1上接続部151と呼び、上タンク11の他端に設けられた上接続部15を第2上接続部152と呼ぶ。
The upper connection part 15 is provided in the site | part of the gravity direction upper side among the heat exchangers 10 for apparatuses. In the present embodiment, the upper connection portion 15 is provided on both sides of the upper tank 11. In the following description, the upper connection portion 15 provided at one end of the upper tank 11 is referred to as a first upper connection portion 151, and the upper connection portion 15 provided at the other end of the upper tank 11 is referred to as a second upper connection portion 152. Call.
一方、下接続部16は、機器用熱交換器10のうち重力方向下側の部位に設けられる。本実施形態では、下接続部16は、下タンク12の両側に設けられている。以下の説明では、下タンク12の一端に設けられた下接続部16を第1下接続部161と呼び、下タンク12の他端に設けられた下接続部16を第2下接続部162と呼ぶ。
On the other hand, the lower connection part 16 is provided in the site | part of the gravity direction lower side among the heat exchangers 10 for apparatuses. In the present embodiment, the lower connection portion 16 is provided on both sides of the lower tank 12. In the following description, the lower connection portion 16 provided at one end of the lower tank 12 is referred to as a first lower connection portion 161, and the lower connection portion 16 provided at the other end of the lower tank 12 is referred to as a second lower connection portion 162. Call.
第1上接続部151には、気相通路50が接続されている。気相通路50は、凝縮器30の流入口31と、機器用熱交換器10の第1上接続部151とを連通する通路である。一方、第1下接続部161には、液相通路40が接続されている。液相通路40は、凝縮器30の流出口32と、機器用熱交換器10の第1上接続部151とを連通する通路である。なお、気相通路50と液相通路40は、便宜上の呼び名であり、気相または液相の作動流体のみが流れる通路という意味ではない。すなわち、気相通路50と液相通路40のいずれにも、気相と液相の両方の作動流体が流れることがある。また、気相通路50と液相通路40の形状等は、車両への搭載性を考慮して適宜変更可能である。
The gas phase passage 50 is connected to the first upper connection portion 151. The gas phase passage 50 is a passage that communicates the inlet 31 of the condenser 30 and the first upper connection portion 151 of the equipment heat exchanger 10. On the other hand, the liquid phase passage 40 is connected to the first lower connection portion 161. The liquid phase passage 40 is a passage that communicates the outlet 32 of the condenser 30 with the first upper connection portion 151 of the equipment heat exchanger 10. The gas phase passage 50 and the liquid phase passage 40 are names for convenience, and do not mean a passage through which only a gas phase or liquid phase working fluid flows. That is, both the gas phase and the liquid phase working fluid may flow in both the gas phase passage 50 and the liquid phase passage 40. In addition, the shapes of the gas phase passage 50 and the liquid phase passage 40 can be appropriately changed in consideration of the mounting property on the vehicle.
凝縮器30は、機器用熱交換器10より重力方向上側に配置される。凝縮器30のうち上側の部位に流入口31が設けられ、凝縮器30のうち下側の部位に流出口32が設けられている。凝縮器30は、気相通路50を通って流入口31から凝縮器30の内側に流入した気相の作動流体と、所定の受熱流体とを熱交換させるための熱交換器である。本実施形態の凝縮器30は、送風ファン33から送風された空気と気相の作動流体とを熱交換させる空冷式の熱交換器である。すなわち、本実施形態では、所定の受熱流体は空気である。なお、後述する実施形態で説明するように、受熱流体は空気に限るものではなく、例えば冷凍サイクルを循環する冷媒、または、冷却水回路を循環する冷却水など、種々の流体を採用することが可能である。
The condenser 30 is disposed above the apparatus heat exchanger 10 in the gravity direction. An inlet 31 is provided in the upper part of the condenser 30, and an outlet 32 is provided in the lower part of the condenser 30. The condenser 30 is a heat exchanger for exchanging heat between a gas-phase working fluid that has flowed into the condenser 30 from the inlet 31 through the gas-phase passage 50 and a predetermined heat-receiving fluid. The condenser 30 of this embodiment is an air-cooled heat exchanger that exchanges heat between the air blown from the blower fan 33 and the gas-phase working fluid. That is, in the present embodiment, the predetermined heat receiving fluid is air. As will be described in the embodiments described later, the heat receiving fluid is not limited to air, and various fluids such as a refrigerant circulating in the refrigeration cycle or a cooling water circulating in the cooling water circuit may be adopted. Is possible.
送風ファン33は、車室外の空気または車室内の空気を凝縮器30に向けて流すことが可能である。送風ファン33は、制御装置5からの制御信号に基づいて送風能力が制御される。気相の作動流体は、凝縮器30を通過する空気に放熱することで凝縮する。液相となった作動流体は、自重によって、流出口32から液相通路40を流下し、機器用熱交換器10に流入する。
The blower fan 33 can flow air outside the passenger compartment or air inside the passenger compartment toward the condenser 30. The air blowing capacity of the blower fan 33 is controlled based on a control signal from the control device 5. The gas phase working fluid is condensed by releasing heat to the air passing through the condenser 30. The working fluid in the liquid phase flows down from the outlet 32 through the liquid phase passage 40 by its own weight, and flows into the equipment heat exchanger 10.
液相通路40の途中には、液相通路40を流れる作動流体の流れを遮断することの可能な流体制御弁70が設けられている。本実施形態の流体制御弁70は、電磁弁であり、制御装置5から伝送される制御信号により、流路断面積が調整される。流体制御弁70が液相通路40を流れる作動流体の流れを遮断すると、流体制御弁70より重力方向上側の液相通路40から凝縮器30に亘って液相の作動流体が貯まり、それ以降、凝縮器30による作動流体の放熱が抑制されるか、または略停止される。したがって、流体制御弁70は、凝縮器30による作動流体の放熱を抑制可能な放熱抑制部として機能するものである。
In the middle of the liquid phase passage 40, a fluid control valve 70 capable of blocking the flow of the working fluid flowing through the liquid phase passage 40 is provided. The fluid control valve 70 of the present embodiment is an electromagnetic valve, and the flow path cross-sectional area is adjusted by a control signal transmitted from the control device 5. When the fluid control valve 70 cuts off the flow of the working fluid flowing through the liquid phase passage 40, the liquid phase working fluid is accumulated from the liquid phase passage 40 above the fluid control valve 70 in the gravity direction to the condenser 30, and thereafter. The heat radiation of the working fluid by the condenser 30 is suppressed or substantially stopped. Therefore, the fluid control valve 70 functions as a heat dissipation suppression unit that can suppress the heat dissipation of the working fluid by the condenser 30.
第2上接続部152と第2下接続部162には、流体通路60が接続されている。流体通路60は、その経路上に凝縮器30を含むことなく、機器用熱交換器10の上接続部15と下接続部16とを接続する通路であるので、バイパス通路とも呼ばれる。後述する第20実施形態で説明するように、流体通路60は、第2上接続部152と第2下接続部162とを接続するものに限定されず、気相通路50の途中と液相通路40の途中とを接続してもよい。
The fluid passage 60 is connected to the second upper connection portion 152 and the second lower connection portion 162. Since the fluid passage 60 is a passage connecting the upper connection portion 15 and the lower connection portion 16 of the equipment heat exchanger 10 without including the condenser 30 on the route, the fluid passage 60 is also referred to as a bypass passage. As will be described in a twentieth embodiment to be described later, the fluid passage 60 is not limited to connecting the second upper connection portion 152 and the second lower connection portion 162, and the middle of the gas phase passage 50 and the liquid phase passage. The middle of 40 may be connected.
流体通路60には、流体通路60を流れる液相の作動流体を加熱することの可能な加熱部61が設けられている。本実施形態の加熱部61は、通電により発熱する電気ヒータで構成されている。加熱部61への通電のオンオフは、制御装置5からの制御信号に応じて制御される。加熱部61は、流体通路60が上下方向に延びている部位に設けられている。これにより、加熱部61が流体通路60の作動流体を加熱すると、蒸気となった作動流体は、流体通路60を重力方向上側に流れ、第2上接続部152から機器用熱交換器10に流入する。
The fluid passage 60 is provided with a heating unit 61 capable of heating the liquid-phase working fluid flowing through the fluid passage 60. The heating unit 61 of the present embodiment is configured by an electric heater that generates heat when energized. On / off of energization to the heating unit 61 is controlled according to a control signal from the control device 5. The heating unit 61 is provided at a portion where the fluid passage 60 extends in the vertical direction. As a result, when the heating unit 61 heats the working fluid in the fluid passage 60, the working fluid that has become vapor flows through the fluid passage 60 upward in the direction of gravity and flows into the equipment heat exchanger 10 from the second upper connection portion 152. To do.
制御装置5は、プロセッサ、メモリ(例えば、ROM、RAM)を含むマイクロコンピュータと、その周辺回路から構成されている。なお、制御装置5のメモリは、非遷移的実体的記憶媒体で構成されている。制御装置5は、上述した流体循環回路4が備える加熱部61、送風ファン33、および流体制御弁70などの各機器の作動を制御する。
The control device 5 includes a microcomputer including a processor and a memory (for example, ROM, RAM) and its peripheral circuits. Note that the memory of the control device 5 is composed of a non-transitional tangible storage medium. The control device 5 controls the operation of each device such as the heating unit 61, the blower fan 33, and the fluid control valve 70 included in the fluid circulation circuit 4 described above.
続いて、機器温調装置1の作動について説明する。
Subsequently, the operation of the device temperature control device 1 will be described.
図5および図6に示すように、組電池2は、所定の最適温度範囲よりも低温になると、内部抵抗が増加し、出力特性と入力特性が共に低下する。また、組電池2は、所定の最適温度範囲よりも高温になると、出力特性と入力特性が共に低下すると共に、劣化や破損に至るおそれがある。そのため、組電池2に所望の性能を発揮させるためには、組電池2が所定の最適温度範囲よりも低温となるときに組電池2を暖機し、組電池2が所定の最適温度範囲よりも高温となるときに組電池2を冷却することが必要である。
As shown in FIG. 5 and FIG. 6, when the assembled battery 2 becomes cooler than a predetermined optimum temperature range, the internal resistance increases, and both the output characteristics and the input characteristics deteriorate. Further, when the assembled battery 2 becomes hotter than a predetermined optimum temperature range, both the output characteristics and the input characteristics are degraded, and there is a possibility that the battery pack 2 may be deteriorated or broken. Therefore, in order for the assembled battery 2 to exhibit the desired performance, the assembled battery 2 is warmed up when the assembled battery 2 becomes lower in temperature than the predetermined optimum temperature range, and the assembled battery 2 exceeds the predetermined optimum temperature range. However, it is necessary to cool the assembled battery 2 when the temperature becomes high.
<冷却時の作動>
図7では、機器温調装置1が組電池2を冷却するときの作動流体の流れを実線および破線の矢印で示している。組電池2の冷却時、制御装置5は、加熱部61への通電をオフし、加熱部61の作動を停止させる。また、制御装置5は、流体制御弁70を開弁し、液相通路40に作動流体が流れるようにする。さらに、制御装置5は、車両が停車中の時には、凝縮器30に送風する送風ファン33の電源をオンする。ただし、制御装置5は、車両が走行中の時には、走行風が凝縮器30に流れるため、送風ファン33の電源をオフする。 <Operation during cooling>
In FIG. 7, the flow of the working fluid when the devicetemperature control device 1 cools the assembled battery 2 is indicated by solid and broken arrows. At the time of cooling the assembled battery 2, the control device 5 turns off the power supply to the heating unit 61 and stops the operation of the heating unit 61. Further, the control device 5 opens the fluid control valve 70 so that the working fluid flows through the liquid phase passage 40. Furthermore, the control device 5 turns on the power of the blower fan 33 that blows air to the condenser 30 when the vehicle is stopped. However, when the vehicle is traveling, the control device 5 turns off the power of the blower fan 33 because the traveling wind flows into the condenser 30.
図7では、機器温調装置1が組電池2を冷却するときの作動流体の流れを実線および破線の矢印で示している。組電池2の冷却時、制御装置5は、加熱部61への通電をオフし、加熱部61の作動を停止させる。また、制御装置5は、流体制御弁70を開弁し、液相通路40に作動流体が流れるようにする。さらに、制御装置5は、車両が停車中の時には、凝縮器30に送風する送風ファン33の電源をオンする。ただし、制御装置5は、車両が走行中の時には、走行風が凝縮器30に流れるため、送風ファン33の電源をオフする。 <Operation during cooling>
In FIG. 7, the flow of the working fluid when the device
これにより、凝縮器30で凝縮した液相の作動流体は、自重により液相通路40を流れ、第1下接続部161から機器用熱交換器10の下タンク12に流入する。下タンク12に流入した作動流体は、熱交換部13を構成する複数のチューブ131に分流し、組電池2を構成する各電池セル21と熱交換することにより蒸発する。この過程で電池セル21は、作動流体の蒸発潜熱により冷却される。その後、気相となった作動流体は機器用熱交換器10の上タンク11で合流し、第1上接続部151から気相通路50を通り、凝縮器30に流れる。
Thereby, the liquid-phase working fluid condensed in the condenser 30 flows through the liquid-phase passage 40 due to its own weight, and flows into the lower tank 12 of the equipment heat exchanger 10 from the first lower connection portion 161. The working fluid that has flowed into the lower tank 12 is divided into a plurality of tubes 131 that constitute the heat exchanging unit 13, and is evaporated by exchanging heat with the battery cells 21 that constitute the assembled battery 2. In this process, the battery cell 21 is cooled by the latent heat of vaporization of the working fluid. Thereafter, the working fluid that has become a gas phase joins in the upper tank 11 of the equipment heat exchanger 10, and flows from the first upper connection portion 151 through the gas phase passage 50 to the condenser 30.
上述の通り、組電池2の冷却時の作動流体の流れは、凝縮器30→液相通路40→下タンク12→熱交換部13→上タンク11→気相通路50→凝縮器30の順となる。すなわち、機器用熱交換器10と凝縮器30を通るループ状の流路が形成される。
As described above, the flow of the working fluid during cooling of the assembled battery 2 is in the order of the condenser 30 → the liquid phase passage 40 → the lower tank 12 → the heat exchange unit 13 → the upper tank 11 → the gas phase passage 50 → the condenser 30. Become. That is, a loop-shaped flow path that passes through the equipment heat exchanger 10 and the condenser 30 is formed.
なお、組電池2の冷却時に、作動流体の一部は流体通路60にも供給されるが、加熱部61への通電をオフしていることから、流体通路60では作動流体が気化しないため、流体通路60に作動流体の流れは殆ど生じない。
In addition, when the assembled battery 2 is cooled, a part of the working fluid is also supplied to the fluid passage 60, but since the energization to the heating unit 61 is turned off, the working fluid is not vaporized in the fluid passage 60. There is almost no flow of working fluid in the fluid passage 60.
<暖機時の作動>
図8では、機器温調装置1が組電池2を暖機するときの作動流体の流れを実線および破線の矢印で示している。組電池2の暖機時、制御装置5は、加熱部61への通電をオンし、加熱部61を作動させる。また、制御装置5は、流体制御弁70を閉弁し、液相通路40の作動流体の流れを遮断する。 <Operation during warm-up>
In FIG. 8, the flow of the working fluid when the devicetemperature control device 1 warms up the assembled battery 2 is indicated by solid and broken arrows. When the assembled battery 2 is warmed up, the control device 5 turns on the energization of the heating unit 61 and operates the heating unit 61. In addition, the control device 5 closes the fluid control valve 70 and blocks the flow of the working fluid in the liquid phase passage 40.
図8では、機器温調装置1が組電池2を暖機するときの作動流体の流れを実線および破線の矢印で示している。組電池2の暖機時、制御装置5は、加熱部61への通電をオンし、加熱部61を作動させる。また、制御装置5は、流体制御弁70を閉弁し、液相通路40の作動流体の流れを遮断する。 <Operation during warm-up>
In FIG. 8, the flow of the working fluid when the device
加熱部61が作動することにより、流体通路60の作動流体が気化し、蒸気となった作動流体は、流体通路60を重力方向上側に流れ、第2上接続部152から機器用熱交換器10の上タンク11に流入する。気相の作動流体は、温度が低い方へ流れる性質から、低温の電池セル21が接触している複数のチューブ131に分流し、低温の各電池セル21と熱交換することにより凝縮する。この過程で電池セル21は、作動流体の凝縮潜熱により暖機(すなわち加熱)される。その後、液相となった作動流体は機器用熱交換器10の下タンク12で合流し、第2下接続部162から流体通路60に流れる。上述の通り、組電池2の暖機時の作動流体の流れは、流体通路60→上タンク11→熱交換部13→下タンク12→流体通路60の順となる。すなわち、凝縮器30を通ることなく、機器用熱交換器10と流体通路60を通るループ状の流路が形成される。
When the heating unit 61 is operated, the working fluid in the fluid passage 60 is vaporized, and the working fluid that has become a vapor flows through the fluid passage 60 upward in the gravitational direction, and from the second upper connection portion 152, the equipment heat exchanger 10. Into the upper tank 11. The gas-phase working fluid is condensed by being divided into a plurality of tubes 131 in contact with the low-temperature battery cells 21 and exchanging heat with each of the low-temperature battery cells 21 due to the property of flowing in a lower temperature. In this process, the battery cell 21 is warmed up (ie, heated) by the latent heat of condensation of the working fluid. Thereafter, the working fluid in a liquid phase is merged in the lower tank 12 of the equipment heat exchanger 10 and flows from the second lower connecting portion 162 to the fluid passage 60. As described above, the flow of the working fluid when the assembled battery 2 is warmed up is in the order of the fluid passage 60 → the upper tank 11 → the heat exchange unit 13 → the lower tank 12 → the fluid passage 60. That is, a loop-shaped flow path that passes through the equipment heat exchanger 10 and the fluid passage 60 is formed without passing through the condenser 30.
なお、組電池2の暖機時に、気相の作動流体の一部は気相通路50と凝縮器30にも供給されるが、流体制御弁70を閉弁しているので、流体制御弁70より重力方向上側の液相通路40から凝縮器30に亘り液相の作動流体が貯まる。これにより、凝縮器30による作動流体の放熱が抑制または略停止され、気相通路50と液相通路40に作動流体の流れは殆ど生じない。
When the assembled battery 2 is warmed up, a part of the gas-phase working fluid is also supplied to the gas-phase passage 50 and the condenser 30, but since the fluid control valve 70 is closed, the fluid control valve 70 A liquid-phase working fluid accumulates from the liquid-phase passage 40 on the upper side in the gravity direction to the condenser 30. Thereby, the heat radiation of the working fluid by the condenser 30 is suppressed or substantially stopped, and the flow of the working fluid hardly occurs in the gas phase passage 50 and the liquid phase passage 40.
上述したように、暖機時には、流体制御弁70より重力方向上側の液相通路40から凝縮器30に亘り液相の作動流体が貯まった状態となる。この状態で、機器用熱交換器10の熱交換部13の中央部付近に液面FLが形成されるよう、流体循環回路4への作動流体の封入量、および、流体制御弁70の取付位置が調整されている。
As described above, at the time of warming up, the liquid phase working fluid is accumulated from the liquid phase passage 40 above the fluid control valve 70 in the gravity direction to the condenser 30. In this state, the amount of the working fluid sealed in the fluid circulation circuit 4 and the mounting position of the fluid control valve 70 so that the liquid level FL is formed near the center of the heat exchanger 13 of the equipment heat exchanger 10. Has been adjusted.
本実施形態の機器温調装置1は、冷却時と暖機時で、機器用熱交換器10のチューブ131を流れる作動流体の流れを逆方向にするよう切り替え、機器用熱交換器10を流れる作動流体の液相と気相との相変化により組電池2の温度を調整する。その際、機器温調装置1は、冷却時には機器用熱交換器10を蒸発器として使用し、暖機時には機器用熱交換器10を凝縮器30として使用することで、同一の機器用熱交換器10を使用して冷却と暖機を可能としている。
The apparatus temperature control apparatus 1 of the present embodiment switches the flow of the working fluid flowing through the tube 131 of the apparatus heat exchanger 10 in the opposite direction during cooling and warming up, and flows through the apparatus heat exchanger 10. The temperature of the assembled battery 2 is adjusted by the phase change between the liquid phase and the gas phase of the working fluid. At that time, the equipment temperature control device 1 uses the equipment heat exchanger 10 as an evaporator at the time of cooling, and uses the equipment heat exchanger 10 as a condenser 30 at the time of warming up, so that the same equipment heat exchange is performed. The vessel 10 is used for cooling and warming up.
以上説明した本実施形態の機器温調装置1は、次の作用効果を奏する。
The apparatus temperature control apparatus 1 of this embodiment demonstrated above has the following effects.
(1)本実施形態の機器温調装置1は、組電池2の暖機時に、機器用熱交換器10の外側に設けた流体通路60を流れる作動流体を加熱部61により加熱する構成である。そのため、流体通路60で気化した作動流体の蒸気が機器用熱交換器10に供給されるため、機器用熱交換器10の内側で作動流体の蒸気温度のばらつきが抑制される。したがって、この機器温調装置1は、組電池2を均一に暖機することが可能である。その結果、組電池2の入出力特性の低下を防ぎ、その組電池2の劣化や破損を抑制することができる。
(1) The apparatus temperature control apparatus 1 of this embodiment is the structure which heats the working fluid which flows through the fluid channel | path 60 provided in the outer side of the apparatus heat exchanger 10 with the heating part 61 at the time of warming-up of the assembled battery 2. FIG. . Therefore, since the vapor of the working fluid vaporized in the fluid passage 60 is supplied to the equipment heat exchanger 10, variation in the vapor temperature of the working fluid is suppressed inside the equipment heat exchanger 10. Therefore, this apparatus temperature control apparatus 1 can warm up the assembled battery 2 uniformly. As a result, the input / output characteristics of the assembled battery 2 can be prevented from being lowered, and the assembled battery 2 can be prevented from being degraded or damaged.
(2)本実施形態の機器温調装置1は、組電池2の冷却時に、凝縮器30→液相通路40→下接続部16→機器用熱交換器10→上接続部15→気相通路50→凝縮器30の順に作動流体が循環する。一方、組電池2の暖機時に、流体通路60→上接続部15→機器用熱交換器10→下接続部16→流体通路60の順に作動流体が循環する。すなわち、この機器温調装置1は、組電池2の冷却時と暖機時のいずれにおいても、作動流体の流れる流路がループ状に形成される。そのため、液相の作動流体と気相の作動流体とが一つの流路を対向して流れることが防がれる。したがって、この機器温調装置1は、作動流体を円滑に循環させることで、組電池2の暖機と冷却を高効率に行うことができる。
(2) When the assembled battery 2 is cooled, the device temperature control device 1 of the present embodiment is configured such that the condenser 30 → the liquid phase passage 40 → the lower connection portion 16 → the device heat exchanger 10 → the upper connection portion 15 → the gas phase passage. The working fluid circulates in the order of 50 → condenser 30. On the other hand, when the assembled battery 2 is warmed up, the working fluid circulates in the order of the fluid passage 60 → the upper connection portion 15 → the equipment heat exchanger 10 → the lower connection portion 16 → the fluid passage 60. That is, in the device temperature control apparatus 1, the flow path through which the working fluid flows is formed in a loop shape regardless of whether the assembled battery 2 is cooled or warmed up. Therefore, it is possible to prevent the liquid-phase working fluid and the gas-phase working fluid from flowing in the same flow path. Therefore, this apparatus temperature control apparatus 1 can warm up and cool the assembled battery 2 with high efficiency by smoothly circulating the working fluid.
(3)本実施形態の機器温調装置1は、機器用熱交換器10の上接続部15と下接続部16とを接続する流体通路60の高さ方向に、加熱部61を設けるための空間が確保されるので、機器用熱交換器10より下側に加熱部61を設ける必要性が低減される。したがって、この機器温調装置1は、車両への搭載性を向上することができる。
(3) The apparatus temperature control apparatus 1 of this embodiment is for providing the heating part 61 in the height direction of the fluid passage 60 that connects the upper connection part 15 and the lower connection part 16 of the apparatus heat exchanger 10. Since space is ensured, the necessity of providing the heating unit 61 below the heat exchanger for equipment 10 is reduced. Therefore, this equipment temperature control apparatus 1 can improve the mounting property to a vehicle.
(4)本実施形態の機器温調装置1は、凝縮器30による作動流体の放熱を抑制可能な放熱抑制部としての流体制御弁70を備えている。これによれば、組電池2の暖機時に流体制御弁70を閉弁することで、流体制御弁70から凝縮器30に液相の作動流体が貯まり、凝縮器30による作動流体の放熱が抑制される。それに伴い、気相通路50、凝縮器30および液相通路40の作動流体の循環が抑制される。そのため、組電池2の暖機時に、流体通路60側のループに作動流体を流すことが可能である。したがって、この機器温調装置1は、作動流体を円滑に循環させることで、組電池2の暖機を高効率に行うことができる。
(4) The device temperature control apparatus 1 of the present embodiment includes a fluid control valve 70 as a heat radiation suppressing unit capable of suppressing the heat radiation of the working fluid by the condenser 30. According to this, by closing the fluid control valve 70 when the assembled battery 2 is warmed up, liquid-phase working fluid is stored in the condenser 30 from the fluid control valve 70, and heat dissipation of the working fluid by the condenser 30 is suppressed. Is done. Accordingly, the circulation of the working fluid in the gas phase passage 50, the condenser 30 and the liquid phase passage 40 is suppressed. Therefore, when the assembled battery 2 is warmed up, it is possible to flow the working fluid through the loop on the fluid passage 60 side. Therefore, this apparatus temperature control apparatus 1 can warm up the assembled battery 2 with high efficiency by smoothly circulating the working fluid.
(5)本実施形態では、加熱部61は、流体通路60のうち、重力方向上下に延びている部位に設けられる。これによれば、加熱部61により加熱されて気化した作動流体は、流体通路60を重力方向上側に速やかに流れる。そのため、気相の作動流体が流体通路60から第2下接続部162側へ逆流することが防がれる。したがって、この機器温調装置1は、作動流体を円滑に循環させることで、組電池2の暖機を高効率に行うことができる。
(5) In the present embodiment, the heating unit 61 is provided in a portion of the fluid passage 60 that extends vertically in the gravity direction. According to this, the working fluid heated and vaporized by the heating unit 61 quickly flows through the fluid passage 60 upward in the gravity direction. Therefore, the working fluid in the gas phase is prevented from flowing backward from the fluid passage 60 to the second lower connection portion 162 side. Therefore, this apparatus temperature control apparatus 1 can warm up the assembled battery 2 with high efficiency by smoothly circulating the working fluid.
(第2実施形態)
第2実施形態について説明する。第2実施形態は、第1実施形態に対して、機器温調装置1の作動流体の冷却するための構成を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。 (Second Embodiment)
A second embodiment will be described. 2nd Embodiment changes the structure for cooling the working fluid of the apparatustemperature control apparatus 1 with respect to 1st Embodiment, Since it is the same as that of 1st Embodiment about others, 1st Only portions different from the embodiment will be described.
第2実施形態について説明する。第2実施形態は、第1実施形態に対して、機器温調装置1の作動流体の冷却するための構成を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。 (Second Embodiment)
A second embodiment will be described. 2nd Embodiment changes the structure for cooling the working fluid of the apparatus
図9に示すように、第2実施形態の機器温調装置1は、冷凍サイクル8を備えている。冷凍サイクル8は、圧縮機81、高圧側熱交換器82、第1流量規制部83、第1膨張弁84、冷媒―作動流体熱交換器85、第2流量規制部86、第2膨張弁87、低圧側熱交換器88、および、それらを接続する冷媒配管89などを有している。冷凍サイクル8に使用する冷媒は、機器温調装置1に用いられる作動流体と同一のものであってもよく、または、異なるものであってもよい。
As shown in FIG. 9, the device temperature adjustment device 1 of the second embodiment includes a refrigeration cycle 8. The refrigeration cycle 8 includes a compressor 81, a high-pressure side heat exchanger 82, a first flow rate regulating unit 83, a first expansion valve 84, a refrigerant-working fluid heat exchanger 85, a second flow rate regulating unit 86, and a second expansion valve 87. , A low-pressure side heat exchanger 88, a refrigerant pipe 89 connecting them, and the like. The refrigerant used for the refrigeration cycle 8 may be the same as or different from the working fluid used in the device temperature control device 1.
圧縮機81は、冷媒―作動流体熱交換器85および低圧側熱交換器88側の冷媒配管89から冷媒を吸引し圧縮する。圧縮機81は、図示していない車両の走行用エンジンまたは電動機等から動力が伝達されて駆動する。
The compressor 81 sucks and compresses refrigerant from the refrigerant-working fluid heat exchanger 85 and the refrigerant pipe 89 on the low-pressure side heat exchanger 88 side. The compressor 81 is driven by power transmitted from a traveling engine or electric motor (not shown) of the vehicle.
圧縮機81から吐出された高圧の気相冷媒は高圧側熱交換器82に流入する。高圧側熱交換器82に流入した高圧の気相冷媒は、高圧側熱交換器82の流路を流れる際、外気との熱交換により放熱して凝縮する。
The high-pressure gas-phase refrigerant discharged from the compressor 81 flows into the high-pressure side heat exchanger 82. When the high-pressure gas-phase refrigerant flowing into the high-pressure side heat exchanger 82 flows through the flow path of the high-pressure side heat exchanger 82, it dissipates heat and condenses by heat exchange with the outside air.
高圧側熱交換器82で凝縮された液相冷媒の一部は、第1流量規制部83を通り、第1膨張弁84を通過する際に減圧され、霧状の気液二相状態となって冷媒―作動流体熱交換器85に流入する。第1流量規制部83は、第1膨張弁84から冷媒―作動流体熱交換器85に流入する冷媒量を調整可能である。冷媒―作動流体熱交換器85に流入した冷媒は、冷媒―作動流体熱交換器85の流路を流れる際、冷媒の蒸発潜熱により、機器温調装置1の流体循環回路4を構成する凝縮器30を流れる作動流体を冷却する。すなわち、本実施形態の機器温調装置1の流体循環回路4の凝縮器30と、冷凍サイクル8の冷媒―作動流体熱交換器85とは一体に構成され、流体循環回路4を流れる作動流体と冷凍サイクル8を流れる冷媒とを熱交換させるものである。冷媒―作動流体熱交換器85を通過した冷媒は、図示していないアキュムレータを経由して圧縮機81に吸引される。
A part of the liquid-phase refrigerant condensed in the high-pressure side heat exchanger 82 passes through the first flow rate restricting portion 83 and is reduced in pressure when passing through the first expansion valve 84 to be in a mist-like gas-liquid two-phase state. And flows into the refrigerant-working fluid heat exchanger 85. The first flow restricting unit 83 can adjust the amount of refrigerant flowing from the first expansion valve 84 into the refrigerant-working fluid heat exchanger 85. When the refrigerant that has flowed into the refrigerant-working fluid heat exchanger 85 flows through the flow path of the refrigerant-working fluid heat exchanger 85, the condenser that constitutes the fluid circulation circuit 4 of the device temperature control device 1 by the latent heat of vaporization of the refrigerant. The working fluid flowing through 30 is cooled. That is, the condenser 30 of the fluid circulation circuit 4 of the device temperature control apparatus 1 of the present embodiment and the refrigerant-working fluid heat exchanger 85 of the refrigeration cycle 8 are configured integrally, and the working fluid flowing through the fluid circulation circuit 4 Heat exchange with the refrigerant flowing through the refrigeration cycle 8 is performed. The refrigerant that has passed through the refrigerant-working fluid heat exchanger 85 is sucked into the compressor 81 via an accumulator (not shown).
一方、高圧側熱交換器82で凝縮された液相冷媒の他の一部は、第2流量規制部86を通り、第2膨張弁87を通過する際に減圧され、霧状の気液二相状態となって低圧側熱交換器88に流入する。第2流量規制部86は、第2膨張弁87から低圧側熱交換器88に流入する冷媒量を調整可能である。低圧側熱交換器88は、例えば車室内の空気調和を行うための空調装置に用いられる。その場合、低圧側熱交換器88に流入した冷媒は、冷媒の蒸発潜熱により、車室内に送風される空気を冷却する。低圧側熱交換器88を通過した冷媒も、図示していないアキュムレータを経由して圧縮機81に吸引される。
On the other hand, the other part of the liquid-phase refrigerant condensed in the high-pressure side heat exchanger 82 passes through the second flow rate restricting portion 86 and is reduced in pressure when passing through the second expansion valve 87. It enters into a phase state and flows into the low pressure side heat exchanger 88. The second flow rate regulating unit 86 can adjust the amount of refrigerant flowing from the second expansion valve 87 into the low pressure side heat exchanger 88. The low-pressure side heat exchanger 88 is used, for example, in an air conditioner for performing air conditioning in the passenger compartment. In that case, the refrigerant flowing into the low-pressure side heat exchanger 88 cools the air blown into the passenger compartment by the latent heat of vaporization of the refrigerant. The refrigerant that has passed through the low-pressure side heat exchanger 88 is also sucked into the compressor 81 via an accumulator (not shown).
以上説明した第2実施形態では、流体循環回路4を構成する凝縮器30と冷凍サイクル8を構成する冷媒―作動流体熱交換器85とが一体に構成され、流体循環回路4を流れる作動流体が冷凍サイクル8を流れる冷媒との熱交換により冷却される構成である。
In the second embodiment described above, the condenser 30 constituting the fluid circulation circuit 4 and the refrigerant-working fluid heat exchanger 85 constituting the refrigeration cycle 8 are integrally configured, and the working fluid flowing through the fluid circulation circuit 4 is The cooling is performed by heat exchange with the refrigerant flowing through the refrigeration cycle 8.
これによれば、冷凍サイクル8を構成する冷媒―作動流体熱交換器85に流れる冷媒量を第1流量規制部83などにより調整することで、機器温調装置1の凝縮器30を流れる作動流体に供給する冷熱量を調整することが可能である。したがって、第2実施形態では、機器温調装置1による組電池2の冷却能力を、組電池2の発熱量に応じて適切に調整することができる。
According to this, the working fluid flowing through the condenser 30 of the device temperature control device 1 by adjusting the amount of refrigerant flowing through the refrigerant-working fluid heat exchanger 85 constituting the refrigeration cycle 8 by the first flow rate regulating unit 83 or the like. It is possible to adjust the amount of cooling heat supplied to. Therefore, in 2nd Embodiment, the cooling capacity of the assembled battery 2 by the apparatus temperature control apparatus 1 can be adjusted appropriately according to the emitted-heat amount of the assembled battery 2. FIG.
なお、上述した冷凍サイクル8は、クーラサイクルだけでなく、ヒートポンプサイクルとしてもよい。また、上述した冷凍サイクル8は、車室内の空気調和を行うための空調装置とは切り離された、組電池2の冷却に用いるためのスタンドアローンとしてもよい。
Note that the above-described refrigeration cycle 8 may be a heat pump cycle as well as a cooler cycle. Further, the above-described refrigeration cycle 8 may be a stand-alone for cooling the assembled battery 2 that is separated from the air conditioner for air conditioning in the passenger compartment.
(第3実施形態)
第3実施形態について説明する。第3実施形態は、第1および第2実施形態に対して、機器温調装置1の作動流体の冷却するための構成を変更したものであり、その他については第1および第2実施形態と同様であるため、第1および第2実施形態と異なる部分についてのみ説明する。 (Third embodiment)
A third embodiment will be described. 3rd Embodiment changes the structure for cooling the working fluid of the apparatustemperature control apparatus 1 with respect to 1st and 2nd Embodiment, and others are the same as that of 1st and 2nd Embodiment. Therefore, only different parts from the first and second embodiments will be described.
第3実施形態について説明する。第3実施形態は、第1および第2実施形態に対して、機器温調装置1の作動流体の冷却するための構成を変更したものであり、その他については第1および第2実施形態と同様であるため、第1および第2実施形態と異なる部分についてのみ説明する。 (Third embodiment)
A third embodiment will be described. 3rd Embodiment changes the structure for cooling the working fluid of the apparatus
図10に示すように、第3実施形態の機器温調装置1は、冷却水回路9を備えている。冷却水回路9は、ウォータポンプ91、冷却水放熱器92、水―作動流体熱交換器93、および、それらを接続する冷却水配管94を有している。冷却水回路9には、冷却水が流れる。
As shown in FIG. 10, the device temperature control device 1 of the third embodiment includes a cooling water circuit 9. The cooling water circuit 9 includes a water pump 91, a cooling water radiator 92, a water-working fluid heat exchanger 93, and a cooling water pipe 94 connecting them. Cooling water flows through the cooling water circuit 9.
ウォータポンプ91は、冷却水を圧送し、冷却水回路9に冷却水を循環させる。冷却水放熱器92は、その冷却水放熱器92の流路を流れる冷却水を、冷凍サイクル8を構成する蒸発器を流れる冷媒との熱交換により冷却する。すなわち、本実施形態の冷却水回路9の冷却水放熱器92は、冷凍サイクル8の蒸発器と一体に構成されたチラーであり、冷却水回路9を流れる冷却水と冷凍サイクル8を流れる低圧冷媒とを熱交換させるものである。冷却水放熱器92から流出した冷却水は、水―作動流体熱交換器93に流入する。
The water pump 91 pumps the cooling water and circulates the cooling water in the cooling water circuit 9. The cooling water radiator 92 cools the cooling water flowing through the flow path of the cooling water radiator 92 by exchanging heat with the refrigerant flowing through the evaporator constituting the refrigeration cycle 8. That is, the cooling water radiator 92 of the cooling water circuit 9 of the present embodiment is a chiller configured integrally with the evaporator of the refrigeration cycle 8, and the cooling water flowing in the cooling water circuit 9 and the low-pressure refrigerant flowing in the refrigeration cycle 8. Heat exchange. The cooling water flowing out from the cooling water radiator 92 flows into the water-working fluid heat exchanger 93.
水―作動流体熱交換器93に流入した冷却水は、その水―作動流体熱交換器93の流路を流れる際、機器温調装置1の流体循環回路4を構成する凝縮器30を流れる作動流体を冷却する。すなわち、本実施形態の機器温調装置1の流体循環回路4の凝縮器30と、冷却水回路9の水―作動流体熱交換器93とは一体に構成され、流体循環回路4を流れる作動流体と冷却水回路9を流れる冷却水とを熱交換させるものである。
When the cooling water flowing into the water-working fluid heat exchanger 93 flows through the flow path of the water-working fluid heat exchanger 93, the cooling water flows through the condenser 30 constituting the fluid circulation circuit 4 of the device temperature control device 1. Cool the fluid. That is, the condenser 30 of the fluid circulation circuit 4 of the device temperature control apparatus 1 of the present embodiment and the water-working fluid heat exchanger 93 of the cooling water circuit 9 are integrally configured, and the working fluid that flows through the fluid circulation circuit 4. Heat exchange with the coolant flowing through the coolant circuit 9.
以上説明した第3実施形態では、流体循環回路4を構成する凝縮器30と冷却水回路9を構成する水―作動流体熱交換器93とが一体に構成され、流体循環回路4を流れる作動流体が冷却水回路9を流れる冷却水との熱交換により冷却される構成である。
In the third embodiment described above, the condenser 30 that constitutes the fluid circulation circuit 4 and the water-working fluid heat exchanger 93 that constitutes the cooling water circuit 9 are integrally configured, and the working fluid that flows through the fluid circulation circuit 4. Is cooled by heat exchange with the cooling water flowing through the cooling water circuit 9.
これによれば、冷凍サイクル8を流れる低圧冷媒の温度と、冷却水回路9を流れる冷却水の温度を異なる温度に設定することが可能である。そのため、この機器温調装置1は、冷凍サイクル8を流れる低圧冷媒の温度と、冷却水回路9を流れる冷却水の温度をそれぞれ適切に調整することが可能である。したがって、冷却水回路9を流れる冷却水から機器温調装置1の凝縮器30を流れる作動流体に供給する冷熱量を調整し、機器温調装置1による組電池2の冷却能力を、組電池2の発熱量に応じて適切に調整することができる。
According to this, it is possible to set the temperature of the low-pressure refrigerant flowing through the refrigeration cycle 8 and the temperature of the cooling water flowing through the cooling water circuit 9 to different temperatures. Therefore, the device temperature control device 1 can appropriately adjust the temperature of the low-pressure refrigerant flowing through the refrigeration cycle 8 and the temperature of the cooling water flowing through the cooling water circuit 9. Therefore, the amount of cooling heat supplied from the cooling water flowing through the cooling water circuit 9 to the working fluid flowing through the condenser 30 of the device temperature control device 1 is adjusted, and the cooling capacity of the battery pack 2 by the device temperature control device 1 is adjusted. Can be appropriately adjusted according to the amount of heat generated.
(第4実施形態)
第4実施形態について説明する。第4実施形態は、第3実施形態に対して、冷却水回路9の構成の一部を変更したものであり、その他については第3実施形態と同様であるため、第3実施形態と異なる部分についてのみ説明する。 (Fourth embodiment)
A fourth embodiment will be described. In the fourth embodiment, a part of the configuration of the coolingwater circuit 9 is changed with respect to the third embodiment, and the other parts are the same as those in the third embodiment. Therefore, the fourth embodiment is different from the third embodiment. Only will be described.
第4実施形態について説明する。第4実施形態は、第3実施形態に対して、冷却水回路9の構成の一部を変更したものであり、その他については第3実施形態と同様であるため、第3実施形態と異なる部分についてのみ説明する。 (Fourth embodiment)
A fourth embodiment will be described. In the fourth embodiment, a part of the configuration of the cooling
図11に示すように、第4実施形態の機器温調装置1は、冷却水回路9に空冷放熱器95を備えている。空冷放熱器95は、その空冷放熱器95の流路を流れる冷却水を、外気との熱交換により冷却する。冷却水回路9の中で、空冷放熱器95と冷却水放熱器92とは、並列に接続されている。
As shown in FIG. 11, the device temperature control apparatus 1 according to the fourth embodiment includes an air cooling radiator 95 in the cooling water circuit 9. The air cooling radiator 95 cools the cooling water flowing through the flow path of the air cooling radiator 95 by exchanging heat with the outside air. In the cooling water circuit 9, the air cooling radiator 95 and the cooling water radiator 92 are connected in parallel.
第4実施形態では、冷却水回路9を流れる冷却水の冷却能力を高めることが可能である。そのため、この機器温調装置1は、組電池2の冷却能力を向上することができる。
In the fourth embodiment, the cooling capacity of the cooling water flowing through the cooling water circuit 9 can be increased. Therefore, this equipment temperature control apparatus 1 can improve the cooling capacity of the assembled battery 2.
(第5実施形態)
第5実施形態について説明する。第5実施形態は、第1実施形態に対して、流体循環回路4の構成の一部を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。 (Fifth embodiment)
A fifth embodiment will be described. The fifth embodiment is obtained by changing a part of the configuration of thefluid circulation circuit 4 with respect to the first embodiment, and is otherwise the same as the first embodiment. Therefore, the fifth embodiment is different from the first embodiment. Only will be described.
第5実施形態について説明する。第5実施形態は、第1実施形態に対して、流体循環回路4の構成の一部を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。 (Fifth embodiment)
A fifth embodiment will be described. The fifth embodiment is obtained by changing a part of the configuration of the
図12および図13に示すように、第5実施形態の機器温調装置1は、液相通路40の途中に流体制御弁70が設けられていない。その代り、第5実施形態では、空冷式の凝縮器30に対し、その凝縮器30を通過する空気の流通を遮断可能な扉部材としてのシャッタ34を設置している。シャッタ34は、制御装置5から伝送される制御信号により、開閉動作が制御される。
As shown in FIGS. 12 and 13, the device temperature control apparatus 1 of the fifth embodiment is not provided with the fluid control valve 70 in the middle of the liquid phase passage 40. Instead, in the fifth embodiment, a shutter 34 serving as a door member capable of blocking the flow of air passing through the condenser 30 is installed in the air-cooled condenser 30. The shutter 34 is controlled to open and close by a control signal transmitted from the control device 5.
図12に示すように、シャッタ34が開いた状態となると、凝縮器30を通過する空気の流通が許容される。そのため、送風ファン33による送風空気または走行風が凝縮器30を通過し、凝縮器30による作動流体の放熱が行われる。そのため、組電池2の冷却時に、機器温調装置1の流体循環回路4を作動流体が、凝縮器30→液相通路40→下タンク12→熱交換部13→上タンク11→気相通路50→凝縮器30の順に流れるようにすることができる。
As shown in FIG. 12, when the shutter 34 is in an open state, air circulation through the condenser 30 is allowed. Therefore, air blown by the blower fan 33 or traveling wind passes through the condenser 30, and the working fluid is radiated by the condenser 30. Therefore, when the assembled battery 2 is cooled, the working fluid flows through the fluid circulation circuit 4 of the device temperature control device 1 into the condenser 30 → the liquid phase passage 40 → the lower tank 12 → the heat exchange unit 13 → the upper tank 11 → the gas phase passage 50. → The condenser 30 can be flowed in this order.
一方、図13に示すように、シャッタ34が閉じた状態となると、凝縮器30を通過する空気の流通が遮断される。これにより、凝縮器30による作動流体の放熱が抑制されるか、または略停止される。そのため、組電池2の暖機時に、機器温調装置1の流体循環回路4を作動流体が、流体通路60→上タンク11→熱交換部13→下タンク12→流体通路60の順に流れるようにすることができる。したがって、本実施形態のシャッタ34は、凝縮器30による作動流体の放熱を抑制可能な放熱抑制部として機能するものである。
On the other hand, as shown in FIG. 13, when the shutter 34 is in a closed state, the flow of air passing through the condenser 30 is blocked. Thereby, the heat dissipation of the working fluid by the condenser 30 is suppressed or substantially stopped. Therefore, when the assembled battery 2 is warmed up, the working fluid flows through the fluid circulation circuit 4 of the device temperature control apparatus 1 in the order of the fluid passage 60 → the upper tank 11 → the heat exchange unit 13 → the lower tank 12 → the fluid passage 60. can do. Therefore, the shutter 34 according to the present embodiment functions as a heat dissipation suppression unit capable of suppressing the heat dissipation of the working fluid by the condenser 30.
以上説明した第5実施形態では、空冷式の凝縮器30にシャッタ34を設けることで、第1~第4実施形態において液相通路40の途中に設置した流体制御弁70を廃止することが可能である。
In the fifth embodiment described above, by providing the shutter 34 in the air-cooled condenser 30, the fluid control valve 70 installed in the middle of the liquid phase passage 40 in the first to fourth embodiments can be eliminated. It is.
(第6実施形態)
第6実施形態について説明する。第6実施形態は、第2実施形態に対して、流体循環回路4の構成の一部を変更したものであり、その他については第2実施形態と同様であるため、第2実施形態と異なる部分についてのみ説明する。 (Sixth embodiment)
A sixth embodiment will be described. In the sixth embodiment, a part of the configuration of thefluid circulation circuit 4 is changed with respect to the second embodiment, and the other parts are the same as those in the second embodiment. Therefore, the sixth embodiment is different from the second embodiment. Only will be described.
第6実施形態について説明する。第6実施形態は、第2実施形態に対して、流体循環回路4の構成の一部を変更したものであり、その他については第2実施形態と同様であるため、第2実施形態と異なる部分についてのみ説明する。 (Sixth embodiment)
A sixth embodiment will be described. In the sixth embodiment, a part of the configuration of the
図14に示すように、第6実施形態の機器温調装置1は、液相通路40の途中に流体制御弁70が設けられていない。そのため、第6実施形態では、組電池2の暖機時に、流体制御弁70の制御に代えて、冷凍サイクル8に設置した第1流量規制部83により、第1膨張弁84から冷媒―作動流体熱交換器85に流入する冷媒を遮断する。これにより、凝縮器30による作動流体の放熱が抑制されるか、または略停止される。そのため、組電池2の暖機時に、機器温調装置1の流体循環回路4を作動流体が、流体通路60→上タンク11→熱交換部13→下タンク12→流体通路60の順に流れるようにすることができる。したがって、本実施形態の第1流量規制部83は、凝縮器30による作動流体の放熱を抑制可能な放熱抑制部として機能するものである。
As shown in FIG. 14, the device temperature control apparatus 1 of the sixth embodiment is not provided with the fluid control valve 70 in the middle of the liquid phase passage 40. Therefore, in the sixth embodiment, when the assembled battery 2 is warmed up, instead of controlling the fluid control valve 70, the first flow regulating part 83 installed in the refrigeration cycle 8 causes the refrigerant-working fluid from the first expansion valve 84. The refrigerant flowing into the heat exchanger 85 is shut off. Thereby, the heat dissipation of the working fluid by the condenser 30 is suppressed or substantially stopped. Therefore, when the assembled battery 2 is warmed up, the working fluid flows through the fluid circulation circuit 4 of the device temperature control apparatus 1 in the order of the fluid passage 60 → the upper tank 11 → the heat exchange unit 13 → the lower tank 12 → the fluid passage 60. can do. Therefore, the first flow rate restricting portion 83 of the present embodiment functions as a heat dissipation suppressing portion capable of suppressing the heat dissipation of the working fluid by the condenser 30.
なお、第6実施形態では、低圧側熱交換器88を使用していない場合、組電池2の暖機時に、圧縮機81の作動を停止してもよい。
In the sixth embodiment, when the low-pressure side heat exchanger 88 is not used, the operation of the compressor 81 may be stopped when the assembled battery 2 is warmed up.
以上説明した第6実施形態では、組電池2の暖機時に、第1流量規制部83を閉状態に制御することにより、第1~第4実施形態において液相通路40の途中に設置した流体制御弁70を廃止することが可能である。
In the sixth embodiment described above, the fluid installed in the middle of the liquid phase passage 40 in the first to fourth embodiments is controlled by controlling the first flow rate restricting portion 83 to the closed state when the assembled battery 2 is warmed up. The control valve 70 can be eliminated.
(第7実施形態)
第7実施形態について説明する。第7実施形態は、第3実施形態に対して、流体循環回路4の構成の一部を変更したものであり、その他については第3実施形態と同様であるため、第3実施形態と異なる部分についてのみ説明する。 (Seventh embodiment)
A seventh embodiment will be described. In the seventh embodiment, a part of the configuration of thefluid circulation circuit 4 is changed with respect to the third embodiment, and the other parts are the same as those in the third embodiment. Therefore, the seventh embodiment is different from the third embodiment. Only will be described.
第7実施形態について説明する。第7実施形態は、第3実施形態に対して、流体循環回路4の構成の一部を変更したものであり、その他については第3実施形態と同様であるため、第3実施形態と異なる部分についてのみ説明する。 (Seventh embodiment)
A seventh embodiment will be described. In the seventh embodiment, a part of the configuration of the
図15に示すように、第7実施形態の機器温調装置1は、液相通路40の途中に流体制御弁70が設けられていない。そのため、第7実施形態では、組電池2の暖機時に、流体制御弁70の制御に代えて、冷却水回路9に設置したウォータポンプ91の駆動を停止し、水―作動流体熱交換器93の冷却水の流れを遮断する。これにより、凝縮器30による作動流体の放熱が抑制されるか、または略停止される。そのため、組電池2の暖機時に、機器温調装置1の流体循環回路4を作動流体が、流体通路60→上タンク11→熱交換部13→下タンク12→流体通路60の順に流れるようにすることができる。したがって、本実施形態のウォータポンプ91は、凝縮器30による作動流体の放熱を抑制可能な放熱抑制部として機能するものである。
As shown in FIG. 15, the device temperature control apparatus 1 of the seventh embodiment is not provided with the fluid control valve 70 in the middle of the liquid phase passage 40. Therefore, in the seventh embodiment, when the assembled battery 2 is warmed up, instead of controlling the fluid control valve 70, the water pump 91 installed in the cooling water circuit 9 is stopped and the water-working fluid heat exchanger 93 is stopped. Shut off the cooling water flow. Thereby, the heat dissipation of the working fluid by the condenser 30 is suppressed or substantially stopped. Therefore, when the assembled battery 2 is warmed up, the working fluid flows through the fluid circulation circuit 4 of the device temperature control apparatus 1 in the order of the fluid passage 60 → the upper tank 11 → the heat exchange unit 13 → the lower tank 12 → the fluid passage 60. can do. Therefore, the water pump 91 according to the present embodiment functions as a heat radiation suppressing unit capable of suppressing the heat radiation of the working fluid by the condenser 30.
以上説明した第7実施形態では、組電池2の暖機時に、ウォータポンプ91の駆動を停止することにより、第1~第4実施形態において液相通路40の途中に設置した流体制御弁70を廃止することが可能である。
In the seventh embodiment described above, the fluid control valve 70 installed in the middle of the liquid phase passage 40 in the first to fourth embodiments is stopped by stopping the driving of the water pump 91 when the assembled battery 2 is warmed up. It can be abolished.
(第8実施形態)
第8実施形態について説明する。第8実施形態は、第1実施形態に対して、流体制御弁70の取付位置を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。 (Eighth embodiment)
An eighth embodiment will be described. In the eighth embodiment, the attachment position of thefluid control valve 70 is changed with respect to the first embodiment, and the other parts are the same as those in the first embodiment. Therefore, only the parts different from the first embodiment are described. explain.
第8実施形態について説明する。第8実施形態は、第1実施形態に対して、流体制御弁70の取付位置を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。 (Eighth embodiment)
An eighth embodiment will be described. In the eighth embodiment, the attachment position of the
図16に示すように、第8実施形態の機器温調装置1は、気相通路50の途中に流体制御弁70が設けられている。そのため、第8実施形態では、組電池2の暖機時に、流体制御弁70が気相通路50を流れる作動流体の流れを遮断すると、凝縮器30による作動流体の凝縮が停止する。そのため、組電池2の暖機時に、機器温調装置1の流体循環回路4を作動流体が、流体通路60→上タンク11→熱交換部13→下タンク12→流体通路60の順に流れるようにすることができる。
As shown in FIG. 16, the device temperature control apparatus 1 of the eighth embodiment is provided with a fluid control valve 70 in the middle of the gas phase passage 50. Therefore, in the eighth embodiment, when the fluid control valve 70 interrupts the flow of the working fluid flowing through the gas phase passage 50 when the assembled battery 2 is warmed up, the condensation of the working fluid by the condenser 30 is stopped. Therefore, when the assembled battery 2 is warmed up, the working fluid flows through the fluid circulation circuit 4 of the device temperature control apparatus 1 in the order of the fluid passage 60 → the upper tank 11 → the heat exchange unit 13 → the lower tank 12 → the fluid passage 60. can do.
(第9実施形態)
第9実施形態について説明する。第9実施形態は、第2実施形態に対して、機器温調装置1の流体循環回路4の構成の一部を変更したものであり、その他については第2実施形態と同様であるため、第2実施形態と異なる部分についてのみ説明する。 (Ninth embodiment)
A ninth embodiment will be described. The ninth embodiment is obtained by changing a part of the configuration of thefluid circulation circuit 4 of the device temperature control device 1 with respect to the second embodiment, and is otherwise the same as the second embodiment. Only parts different from the second embodiment will be described.
第9実施形態について説明する。第9実施形態は、第2実施形態に対して、機器温調装置1の流体循環回路4の構成の一部を変更したものであり、その他については第2実施形態と同様であるため、第2実施形態と異なる部分についてのみ説明する。 (Ninth embodiment)
A ninth embodiment will be described. The ninth embodiment is obtained by changing a part of the configuration of the
図17に示すように、第9実施形態の機器温調装置1は、流体循環回路4に2種類の凝縮器30a、30bを備えている。一方の凝縮器30aは、第1実施形態などで説明した空冷式の凝縮器30aである。他方の凝縮器30bは、第2実施形態などで説明した冷凍サイクル8の冷媒―作動流体熱交換器85と一体に構成されたものである。この2種類の凝縮器30a、30bは、並列に接続されている。なお、流体制御弁70は、2種類の凝縮器30a、30bから延びる液相通路40の合流部47と、機器用熱交換器10の第1下接続部161との間に設けられている。
As shown in FIG. 17, the device temperature control apparatus 1 of the ninth embodiment includes two types of condensers 30 a and 30 b in the fluid circulation circuit 4. One condenser 30a is the air-cooled condenser 30a described in the first embodiment or the like. The other condenser 30b is configured integrally with the refrigerant-working fluid heat exchanger 85 of the refrigeration cycle 8 described in the second embodiment and the like. The two types of condensers 30a and 30b are connected in parallel. The fluid control valve 70 is provided between the junction 47 of the liquid phase passage 40 extending from the two types of condensers 30 a and 30 b and the first lower connection 161 of the equipment heat exchanger 10.
第9実施形態の機器温調装置1は、凝縮器30a、30bによる作動流体の凝縮能力を高めることで、組電池2の冷却性能を向上することができる。
The apparatus temperature control apparatus 1 of 9th Embodiment can improve the cooling performance of the assembled battery 2 by improving the condensing capability of the working fluid by the condensers 30a and 30b.
なお、機器温調装置1の流体循環回路4に設けられる複数の凝縮器30a、30bの組み合わせは、図17に示したものに限らず、種々の組み合わせを採用することができる。
In addition, the combination of the several condensers 30a and 30b provided in the fluid circulation circuit 4 of the apparatus temperature control apparatus 1 is not restricted to what was shown in FIG. 17, A various combination is employable.
(第10実施形態)
第10実施形態について説明する。第10実施形態は、第9実施形態に対して、流体制御弁70の取付位置を変更したものであり、その他については第9実施形態と同様であるため、第9実施形態と異なる部分についてのみ説明する。 (10th Embodiment)
A tenth embodiment will be described. In the tenth embodiment, the attachment position of thefluid control valve 70 is changed with respect to the ninth embodiment, and the other parts are the same as those in the ninth embodiment. Therefore, only the parts different from the ninth embodiment are described. explain.
第10実施形態について説明する。第10実施形態は、第9実施形態に対して、流体制御弁70の取付位置を変更したものであり、その他については第9実施形態と同様であるため、第9実施形態と異なる部分についてのみ説明する。 (10th Embodiment)
A tenth embodiment will be described. In the tenth embodiment, the attachment position of the
図18に示すように、第10実施形態では、空冷式の凝縮器30aと液相通路40の合流部47との間に流体制御弁70が設けられている。
As shown in FIG. 18, in the tenth embodiment, a fluid control valve 70 is provided between the air-cooled condenser 30a and the junction 47 of the liquid phase passage 40.
空冷式の凝縮器30aでは、シャッタ34が設けていない場合、走行風などにより熱交換が行われることとなる。しかし、空冷式の凝縮器30aに対してシャッタ34を設ける場合、凝縮器30の周りに大きなスペースが必要となり、車両への搭載性が悪化する場合が考えられる。そこで、第10実施形態では、空冷式の凝縮器30aと液相通路40の合流部47との間に流体制御弁70を設けることで、機器温調装置1の体格を小型化し、車両への搭載性を向上することができる。
In the air-cooled condenser 30a, when the shutter 34 is not provided, heat exchange is performed by traveling wind or the like. However, when the shutter 34 is provided for the air-cooled condenser 30a, a large space around the condenser 30 is required, and the mountability on the vehicle may be deteriorated. Therefore, in the tenth embodiment, by providing the fluid control valve 70 between the air-cooled condenser 30a and the junction 47 of the liquid phase passage 40, the physique of the device temperature control device 1 can be reduced in size, Mountability can be improved.
一方、冷凍サイクル8の冷媒―作動流体熱交換器85と一体に構成された凝縮器30bは、冷凍サイクル8に設置した第1流量規制部83を閉じることで、作動流体の放熱を抑制または略停止することが可能である。したがって、第10実施形態においても、組電池2の暖機時に、流体制御弁70と第1流量規制部83を制御することで、作動流体が、流体通路60→上タンク11→熱交換部13→下タンク12→流体通路60の順に流れるようにすることができる。
On the other hand, the condenser 30b configured integrally with the refrigerant-working fluid heat exchanger 85 of the refrigeration cycle 8 suppresses or substantially eliminates the heat radiation of the working fluid by closing the first flow rate regulating unit 83 installed in the refrigeration cycle 8. It is possible to stop. Accordingly, also in the tenth embodiment, when the assembled battery 2 is warmed up, the fluid is controlled by controlling the fluid control valve 70 and the first flow rate restricting unit 83 so that the working fluid flows from the fluid passage 60 to the upper tank 11 to the heat exchange unit 13. It is possible to flow in the order of the lower tank 12 → the fluid passage 60.
なお、第10実施形態においても、第1実施形態と同様、組電池2の暖機時に、流体制御弁70より重力方向上側の液相通路40から上側に液相の作動流体が貯まる。この状態で、機器用熱交換器10の熱交換部13の中央部付近に液面FLが形成されるよう、流体循環回路4への作動流体の封入量、および、流体制御弁70の取付位置が調整されている。
In the tenth embodiment as well, as in the first embodiment, when the assembled battery 2 is warmed up, the liquid-phase working fluid is accumulated from the liquid phase passage 40 above the fluid control valve 70 in the gravity direction. In this state, the amount of the working fluid sealed in the fluid circulation circuit 4 and the mounting position of the fluid control valve 70 so that the liquid level FL is formed near the center of the heat exchanger 13 of the equipment heat exchanger 10. Has been adjusted.
(第11実施形態)
第11実施形態について説明する。第11実施形態は、第9実施形態に対して、2種類の凝縮器30の接続方法を変更したものであり、その他については第9実施形態と同様であるため、第9実施形態と異なる部分についてのみ説明する。 (Eleventh embodiment)
An eleventh embodiment will be described. The eleventh embodiment is obtained by changing the connection method of the two types ofcondensers 30 with respect to the ninth embodiment, and the other parts are the same as those of the ninth embodiment, and therefore different from the ninth embodiment. Only will be described.
第11実施形態について説明する。第11実施形態は、第9実施形態に対して、2種類の凝縮器30の接続方法を変更したものであり、その他については第9実施形態と同様であるため、第9実施形態と異なる部分についてのみ説明する。 (Eleventh embodiment)
An eleventh embodiment will be described. The eleventh embodiment is obtained by changing the connection method of the two types of
図19に示すように、第11実施形態の機器温調装置1は、流体循環回路4に2種類の凝縮器30a、30bを備えている。一方の凝縮器30aは、空冷式の凝縮器30である。他方の凝縮器30bは、冷凍サイクル8の冷媒―作動流体熱交換器85と一体に構成されたものである。この2種類の凝縮器30a、30bは、直列に接続されている。
As shown in FIG. 19, the device temperature control apparatus 1 of the eleventh embodiment includes two types of condensers 30 a and 30 b in the fluid circulation circuit 4. One condenser 30 a is an air-cooled condenser 30. The other condenser 30 b is configured integrally with the refrigerant-working fluid heat exchanger 85 of the refrigeration cycle 8. The two types of condensers 30a and 30b are connected in series.
なお、機器温調装置1の流体循環回路4に設けられる複数の凝縮器30a、30bの数は、図19などに示したものに限らず、3個以上としてもよい。また、複数の凝縮器30a、30bの接続方法も、図19などに示したものに限らず、並列と直列とを組み合わせてもよい。
Note that the number of the plurality of condensers 30a and 30b provided in the fluid circulation circuit 4 of the device temperature control device 1 is not limited to that shown in FIG. 19 and the like, and may be three or more. Moreover, the connection method of the several condensers 30a and 30b is not restricted to what was shown in FIG. 19, etc., You may combine parallel and series.
第11実施形態の機器温調装置1は、凝縮器30による作動流体の凝縮能力を高めることで、組電池2の冷却性能を向上することができる。
The apparatus temperature control apparatus 1 of 11th Embodiment can improve the cooling performance of the assembled battery 2 by improving the condensing capability of the working fluid by the condenser 30. FIG.
(第12実施形態)
第12実施形態について説明する。第12実施形態は、第1実施形態に対して、流体通路60と加熱部61の構成を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。 (Twelfth embodiment)
A twelfth embodiment will be described. In the twelfth embodiment, the configurations of thefluid passage 60 and the heating unit 61 are changed with respect to the first embodiment, and the other parts are the same as those in the first embodiment, and therefore different from the first embodiment. Only will be described.
第12実施形態について説明する。第12実施形態は、第1実施形態に対して、流体通路60と加熱部61の構成を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。 (Twelfth embodiment)
A twelfth embodiment will be described. In the twelfth embodiment, the configurations of the
図20に示すように、第12実施形態では、流体通路60が略水平方向に延びている部位に加熱部61が設けられている。この場合、仮に、加熱部61により加熱されて蒸気となった作動流体が流体通路60を第2下接続部162側へ逆流すると、作動流体の循環が悪化することが考えられる。
As shown in FIG. 20, in the twelfth embodiment, a heating unit 61 is provided at a portion where the fluid passage 60 extends in a substantially horizontal direction. In this case, if the working fluid that has been heated by the heating unit 61 and turned into a vapor flows back through the fluid passage 60 toward the second lower connecting portion 162, the working fluid may be circulated.
そこで、第12実施形態では、流体通路60は、機器用熱交換器10の第2下接続部162と加熱部61との間に、加熱部61より重力方向下側に延びる逆流抑制部62を有している。具体的には、第12実施形態では、流体通路60の一部がU字状に形成されている。流体通路60のU字状の部位のうち、そのU字状の中央から加熱部61側の部分が逆流抑制部62に相当している。
Therefore, in the twelfth embodiment, the fluid passage 60 includes a backflow suppression unit 62 extending downward in the gravitational direction from the heating unit 61 between the second lower connection unit 162 and the heating unit 61 of the equipment heat exchanger 10. Have. Specifically, in the twelfth embodiment, a part of the fluid passage 60 is formed in a U shape. Of the U-shaped portion of the fluid passage 60, the portion on the heating unit 61 side from the center of the U-shape corresponds to the backflow suppressing unit 62.
逆流抑制部62は、加熱部61より重力方向下側に延びていることで、加熱部61により加熱されて気化した作動流体が第2下接続部162側へ逆流することを防ぐことが可能である。したがって、この機器温調装置1は、組電池2の暖機時に、流体通路60→上タンク11→熱交換部13→下タンク12→流体通路60の順に、作動流体を円滑に循環させることができる。
The backflow suppression unit 62 extends downward in the direction of gravity from the heating unit 61, so that the working fluid heated and vaporized by the heating unit 61 can be prevented from flowing back to the second lower connection unit 162 side. is there. Therefore, when the assembled battery 2 is warmed up, the device temperature control apparatus 1 can smoothly circulate the working fluid in the order of the fluid passage 60 → the upper tank 11 → the heat exchange unit 13 → the lower tank 12 → the fluid passage 60. it can.
(第13実施形態)
第13実施形態について説明する。第13実施形態は、第1実施形態に対して、複数の機器用熱交換器10を備えたものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。 (13th Embodiment)
A thirteenth embodiment will be described. The thirteenth embodiment is different from the first embodiment in that it includes a plurality ofdevice heat exchangers 10 and is otherwise the same as the first embodiment, and thus is different from the first embodiment. Only explained.
第13実施形態について説明する。第13実施形態は、第1実施形態に対して、複数の機器用熱交換器10を備えたものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。 (13th Embodiment)
A thirteenth embodiment will be described. The thirteenth embodiment is different from the first embodiment in that it includes a plurality of
図21に示すように、第13実施形態の機器温調装置1は、複数の機器用熱交換器10a、10bを備えている。気相通路50は、第1気相通路部51と第2気相通路部52とを有している。第1気相通路部51は、一方の機器用熱交換器10aの第1上接続部151aと、他方の機器用熱交換器10bの第1上接続部151bとを接続する。第2気相通路部52は、その第1気相通路部51の途中から上方に延びて凝縮器30の流入口31に接続される。また、液相通路40は、第1液相通路部41と第2液相通路部42とを有している。第1液相通路部41は、一方の機器用熱交換器10aの第1下接続部161aと、他方の機器用熱交換器10bの第1下接続部161bとを接続する。第2液相通路部42は、その第1液相通路部41の途中から上方に延びて凝縮器30の流出口32に接続される。
As shown in FIG. 21, the device temperature control apparatus 1 of the thirteenth embodiment includes a plurality of device heat exchangers 10a and 10b. The gas phase passage 50 has a first gas phase passage portion 51 and a second gas phase passage portion 52. The first gas phase passage portion 51 connects the first upper connection portion 151a of one equipment heat exchanger 10a and the first upper connection portion 151b of the other equipment heat exchanger 10b. The second gas phase passage portion 52 extends upward from the middle of the first gas phase passage portion 51 and is connected to the inlet 31 of the condenser 30. Further, the liquid phase passage 40 includes a first liquid phase passage portion 41 and a second liquid phase passage portion 42. The first liquid phase passage portion 41 connects the first lower connection portion 161a of the one device heat exchanger 10a and the first lower connection portion 161b of the other device heat exchanger 10b. The second liquid phase passage portion 42 extends upward from the middle of the first liquid phase passage portion 41 and is connected to the outlet 32 of the condenser 30.
一方の機器用熱交換器10aの第2上接続部152aと第2下接続部162aとを流体通路60aが接続し、その流体通路60aに加熱部61aが設けられている。また、他方の機器用熱交換器10bの第2上接続部152bと第2下接続部162bとを別の流体通路60bが接続し、その別の流体通路60bにも別の加熱部61bが設けられている。
The fluid passage 60a connects the second upper connection portion 152a and the second lower connection portion 162a of the one equipment heat exchanger 10a, and the fluid passage 60a is provided with a heating portion 61a. In addition, another fluid passage 60b connects the second upper connection portion 152b and the second lower connection portion 162b of the other equipment heat exchanger 10b, and another heating portion 61b is also provided in the other fluid passage 60b. It has been.
この構成により、第13実施形態の機器温調装置1は、車両の複数個所に組電池2が配置されている場合でも、その組電池2の場所に応じて複数の機器用熱交換器10を配置することができる。
With this configuration, the device temperature control apparatus 1 according to the thirteenth embodiment includes a plurality of device heat exchangers 10 according to the location of the assembled battery 2 even when the assembled battery 2 is disposed at multiple locations of the vehicle. Can be arranged.
(第14実施形態)
第14実施形態について説明する。第14実施形態も、第1実施形態に対して、複数の機器用熱交換器10を備えたものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。 (14th Embodiment)
A fourteenth embodiment will be described. The fourteenth embodiment also includes a plurality ofdevice heat exchangers 10 with respect to the first embodiment, and the other parts are the same as those of the first embodiment, and therefore different parts from the first embodiment. Only explained.
第14実施形態について説明する。第14実施形態も、第1実施形態に対して、複数の機器用熱交換器10を備えたものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。 (14th Embodiment)
A fourteenth embodiment will be described. The fourteenth embodiment also includes a plurality of
図22に示すように、第14実施形態の機器温調装置1も、複数の機器用熱交換器10a、10bを備えている。気相通路50は、熱交換器用気相通路53と凝縮器用気相通路54とを有している。熱交換器用気相通路53は、一方の機器用熱交換器10aの第1上接続部151aと、他方の機器用熱交換器10bの第2上接続部152bとを接続する。凝縮器用気相通路54は、他方の機器用熱交換器10bの第1上接続部151bと、凝縮器30の流入口31とを接続する。また、液相通路40は、熱交換器用液相通路43と凝縮器用液相通路44とを有している。熱交換器用液相通路43は、一方の機器用熱交換器10aの第1下接続部161aと、他方の機器用熱交換器10bの第2下接続部162bとを接続する。凝縮器用液相通路44は、他方の機器用熱交換器10bの第1下接続部161bと凝縮器30の流出口32とを接続する。
As shown in FIG. 22, the device temperature control apparatus 1 according to the fourteenth embodiment also includes a plurality of device heat exchangers 10a and 10b. The gas phase passage 50 includes a heat exchanger gas phase passage 53 and a condenser gas phase passage 54. The heat exchanger gas-phase passage 53 connects the first upper connection portion 151a of the one device heat exchanger 10a and the second upper connection portion 152b of the other device heat exchanger 10b. The condenser gas-phase passage 54 connects the first upper connection portion 151 b of the other equipment heat exchanger 10 b and the inlet 31 of the condenser 30. Further, the liquid phase passage 40 has a heat exchanger liquid phase passage 43 and a condenser liquid phase passage 44. The liquid phase passage 43 for heat exchanger connects the first lower connection portion 161a of the one device heat exchanger 10a and the second lower connection portion 162b of the other device heat exchanger 10b. The condenser liquid phase passage 44 connects the first lower connection portion 161 b of the other equipment heat exchanger 10 b and the outlet 32 of the condenser 30.
一方の機器用熱交換器10aの第2上接続部152aと第2下接続部162aとを流体通路60aが接続し、その流体通路60aに加熱部61aが設けられている。
The fluid passage 60a connects the second upper connection portion 152a and the second lower connection portion 162a of the one equipment heat exchanger 10a, and the fluid passage 60a is provided with a heating portion 61a.
この構成によっても、第14実施形態の機器温調装置1は、車両の複数個所に組電池2が配置されている場合でも、その組電池2の場所に応じて複数の機器用熱交換器10を配置することができる。
Even with this configuration, the device temperature control apparatus 1 of the fourteenth embodiment has a plurality of device heat exchangers 10 depending on the location of the assembled battery 2 even when the assembled battery 2 is disposed at a plurality of locations of the vehicle. Can be arranged.
(第15実施形態)
第15実施形態について説明する。以下に説明する第15および第16実施形態は、上述した第1~第14実施形態に対して、機器用熱交換器10に対する組電池2の設置方法を変更したものであり、その他については第1~第14実施形態と同様である。そのため、第15および第16実施形態は、第1~第14実施形態と異なる部分についてのみ説明する。 (Fifteenth embodiment)
A fifteenth embodiment is described. In the fifteenth and sixteenth embodiments described below, the installation method of the assembledbattery 2 with respect to the equipment heat exchanger 10 is changed with respect to the first to fourteenth embodiments described above. The same as in the first to fourteenth embodiments. Therefore, the fifteenth and sixteenth embodiments will be described only with respect to portions different from the first to fourteenth embodiments.
第15実施形態について説明する。以下に説明する第15および第16実施形態は、上述した第1~第14実施形態に対して、機器用熱交換器10に対する組電池2の設置方法を変更したものであり、その他については第1~第14実施形態と同様である。そのため、第15および第16実施形態は、第1~第14実施形態と異なる部分についてのみ説明する。 (Fifteenth embodiment)
A fifteenth embodiment is described. In the fifteenth and sixteenth embodiments described below, the installation method of the assembled
図23に示すように、第15実施形態では、組電池2は、その組電池2を構成する各電池セル21の端子22が重力方向上側となるように設置されている。組電池2は、端子22が設けられた面25に対して垂直な面24が、機器用熱交換器10の熱交換部13の側面に、熱伝導シート14を介して設置されている。
23, in the fifteenth embodiment, the assembled battery 2 is installed such that the terminals 22 of the battery cells 21 constituting the assembled battery 2 are on the upper side in the gravity direction. In the assembled battery 2, a surface 24 perpendicular to the surface 25 on which the terminals 22 are provided is installed on the side surface of the heat exchange unit 13 of the equipment heat exchanger 10 via the heat conductive sheet 14.
(第16実施形態)
図24に示すように、第16実施形態では、組電池2は、その組電池2を構成する各電池セル21の端子22が重力方向に対して交差する向きとなるように設置されている。組電池2は、端子22が設けられた面25とは反対側の面23が、機器用熱交換器10の熱交換部13の側面に、熱伝導シート14を介して設置されている。なお、組電池2は、熱交換部13の一方の側面にのみ設置されており、他方の側面には設置されていない。 (Sixteenth embodiment)
As shown in FIG. 24, in the sixteenth embodiment, the assembledbattery 2 is installed such that the terminals 22 of the battery cells 21 constituting the assembled battery 2 are in a direction intersecting with the direction of gravity. In the assembled battery 2, a surface 23 opposite to the surface 25 on which the terminals 22 are provided is installed on the side surface of the heat exchange unit 13 of the equipment heat exchanger 10 via the heat conductive sheet 14. In addition, the assembled battery 2 is installed only on one side surface of the heat exchanging unit 13, and is not installed on the other side surface.
図24に示すように、第16実施形態では、組電池2は、その組電池2を構成する各電池セル21の端子22が重力方向に対して交差する向きとなるように設置されている。組電池2は、端子22が設けられた面25とは反対側の面23が、機器用熱交換器10の熱交換部13の側面に、熱伝導シート14を介して設置されている。なお、組電池2は、熱交換部13の一方の側面にのみ設置されており、他方の側面には設置されていない。 (Sixteenth embodiment)
As shown in FIG. 24, in the sixteenth embodiment, the assembled
(第17実施形態)
第17実施形態について説明する。以下に説明する第17および第18実施形態は、上述した第1~第14実施形態に対して、機器用熱交換器10の構成と、それに対する組電池2の設置方法を変更したものであり、その他については第1~第14実施形態と同様である。そのため、第17および第18実施形態は、第1~第14実施形態と異なる部分についてのみ説明する。 (17th Embodiment)
A seventeenth embodiment will be described. In the seventeenth and eighteenth embodiments described below, the configuration of theequipment heat exchanger 10 and the installation method of the assembled battery 2 are changed with respect to the first to fourteenth embodiments described above. Others are the same as those in the first to fourteenth embodiments. Therefore, in the seventeenth and eighteenth embodiments, only portions different from the first to fourteenth embodiments will be described.
第17実施形態について説明する。以下に説明する第17および第18実施形態は、上述した第1~第14実施形態に対して、機器用熱交換器10の構成と、それに対する組電池2の設置方法を変更したものであり、その他については第1~第14実施形態と同様である。そのため、第17および第18実施形態は、第1~第14実施形態と異なる部分についてのみ説明する。 (17th Embodiment)
A seventeenth embodiment will be described. In the seventeenth and eighteenth embodiments described below, the configuration of the
図25に示すように、第17実施形態では、機器用熱交換器10は、2本の下タンク121、122と、1本の上タンク11とを有している。また、この機器用熱交換器10は、2本の下タンク121、122同士を接続する水平熱交換部132と、その水平熱交換部132に対し垂直に設けられた垂直熱交換部133とを有している。垂直熱交換部133のうち重力方向下側の部位は水平熱交換部132の中間位置に接続されており、垂直熱交換部133のうち重力方向下側の部位は上タンク11に接続されている。なお、2本の下タンク121、122、1本の上タンク11、水平熱交換部132および垂直熱交換部133は一体に形成されている。
As shown in FIG. 25, in the seventeenth embodiment, the equipment heat exchanger 10 includes two lower tanks 121 and 122 and one upper tank 11. In addition, the equipment heat exchanger 10 includes a horizontal heat exchange unit 132 that connects the two lower tanks 121 and 122, and a vertical heat exchange unit 133 that is provided perpendicular to the horizontal heat exchange unit 132. Have. A portion of the vertical heat exchange unit 133 on the lower side in the gravity direction is connected to an intermediate position of the horizontal heat exchange unit 132, and a portion of the vertical heat exchange unit 133 on the lower side in the gravity direction is connected to the upper tank 11. . The two lower tanks 121 and 122, the one upper tank 11, the horizontal heat exchange unit 132, and the vertical heat exchange unit 133 are integrally formed.
組電池2は、その組電池2を構成する各電池セル21の端子22が重力方向に対して交差する向きとなるように設置されている。組電池2は、端子22が設けられた面25に対して垂直な面24が、熱伝導シート14を介して、水平熱交換部132に設置されている。また、組電池2は、端子22が設けられた面25とは反対側の面23が、熱伝導シート14を介して、垂直熱交換部133に設置されている。
The assembled battery 2 is installed such that the terminals 22 of the battery cells 21 constituting the assembled battery 2 are in a direction intersecting with the direction of gravity. In the assembled battery 2, a surface 24 perpendicular to the surface 25 on which the terminals 22 are provided is installed in the horizontal heat exchange unit 132 via the heat conductive sheet 14. In the assembled battery 2, the surface 23 opposite to the surface 25 on which the terminals 22 are provided is installed in the vertical heat exchange unit 133 via the heat conductive sheet 14.
第17実施形態では、機器用熱交換器10は、組電池2の端子22が設けられた面25に対して垂直な面24と、端子22が設けられた面25とは反対側の面23を、同時に冷却または暖機することができる。
In the seventeenth embodiment, the device heat exchanger 10 includes a surface 24 perpendicular to the surface 25 on which the terminals 22 of the assembled battery 2 are provided, and a surface 23 opposite to the surface 25 on which the terminals 22 are provided. Can be cooled or warmed up simultaneously.
(第18実施形態)
図26に示すように、第18実施形態では、水平部134と、第1傾斜部135と、第2傾斜部136とを有している。水平部134は、水平方向に延びる。第1傾斜部135は、その水平部134の一方の部位から重力方向斜め下に延びる。第2傾斜部136は、水平部134の他方の部位から重力方向斜め上に延びる。第1傾斜部135のうち水平部134とは反対側の部位に下タンク12が接続されている。第2傾斜部136のうち水平部134とは反対側の部位に上タンク11が接続されている。すなわち、上タンク11は、下タンク12より高い位置に配置されている。水平部134、第1傾斜部135、第2傾斜部136、下タンク12および上タンク11は一体に形成されている。 (Eighteenth embodiment)
As shown in FIG. 26, the eighteenth embodiment includes ahorizontal portion 134, a first inclined portion 135, and a second inclined portion 136. The horizontal part 134 extends in the horizontal direction. The first inclined portion 135 extends obliquely downward in the gravitational direction from one portion of the horizontal portion 134. The second inclined portion 136 extends obliquely upward in the gravitational direction from the other portion of the horizontal portion 134. The lower tank 12 is connected to a portion of the first inclined portion 135 opposite to the horizontal portion 134. The upper tank 11 is connected to a portion of the second inclined portion 136 opposite to the horizontal portion 134. That is, the upper tank 11 is arranged at a position higher than the lower tank 12. The horizontal part 134, the first inclined part 135, the second inclined part 136, the lower tank 12 and the upper tank 11 are integrally formed.
図26に示すように、第18実施形態では、水平部134と、第1傾斜部135と、第2傾斜部136とを有している。水平部134は、水平方向に延びる。第1傾斜部135は、その水平部134の一方の部位から重力方向斜め下に延びる。第2傾斜部136は、水平部134の他方の部位から重力方向斜め上に延びる。第1傾斜部135のうち水平部134とは反対側の部位に下タンク12が接続されている。第2傾斜部136のうち水平部134とは反対側の部位に上タンク11が接続されている。すなわち、上タンク11は、下タンク12より高い位置に配置されている。水平部134、第1傾斜部135、第2傾斜部136、下タンク12および上タンク11は一体に形成されている。 (Eighteenth embodiment)
As shown in FIG. 26, the eighteenth embodiment includes a
組電池2は、その組電池2を構成する各電池セル21の端子22が重力方向上向きとなるように設置されている。組電池2は、端子22が設けられた面25とは反対側の面23が、熱伝導シート14を介して、熱交換部13の水平部134に設置されている。
The assembled battery 2 is installed such that the terminals 22 of the battery cells 21 constituting the assembled battery 2 are directed upward in the direction of gravity. In the assembled battery 2, the surface 23 opposite to the surface 25 on which the terminals 22 are provided is installed on the horizontal portion 134 of the heat exchanging portion 13 via the heat conductive sheet 14.
なお、組電池2の設置方法は、第1~第18実施形態で示したものに限らず、種々の設置方法を採用することが可能である。なお、組電池2を構成する各電池セル21の個数、形状なども、第1~第18実施形態で示したものに限らず、任意のものを採用することが可能である。
The installation method of the assembled battery 2 is not limited to that shown in the first to eighteenth embodiments, and various installation methods can be employed. The number, shape, etc. of each battery cell 21 constituting the assembled battery 2 are not limited to those shown in the first to eighteenth embodiments, and any one can be adopted.
(第19実施形態)
第19実施形態について説明する。第19実施形態は、第1実施形態に対して、流体通路60の構成の一部を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。 (Nineteenth embodiment)
A nineteenth embodiment will be described. In the nineteenth embodiment, a part of the configuration of thefluid passage 60 is changed with respect to the first embodiment, and the other parts are the same as those in the first embodiment, and therefore, different parts from the first embodiment. Only explained.
第19実施形態について説明する。第19実施形態は、第1実施形態に対して、流体通路60の構成の一部を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。 (Nineteenth embodiment)
A nineteenth embodiment will be described. In the nineteenth embodiment, a part of the configuration of the
図27および図28に示すように、第19実施形態では、流体通路60は、経路の途中に、流体通路60を流れる液相の作動流体を貯める貯液部63を有している。貯液部63は、少なくとも一部が、機器用熱交換器10の上接続部15と下接続部16との高さ範囲内に位置している。これにより、機器温調装置1は、組電池2の冷却および暖機に必要な作動流体の量を貯液部63に貯め、その貯液部63の液面FLの高さを調整することで、組電池2の加熱時と冷却時で、機器用熱交換器10の作動流体の液面FLの高さを容易に調整可能である。
As shown in FIGS. 27 and 28, in the nineteenth embodiment, the fluid passage 60 has a liquid storage portion 63 for storing a liquid-phase working fluid flowing through the fluid passage 60 in the middle of the passage. At least a part of the liquid storage part 63 is located within the height range of the upper connection part 15 and the lower connection part 16 of the equipment heat exchanger 10. Thereby, the apparatus temperature control apparatus 1 stores the amount of the working fluid necessary for cooling and warming up the assembled battery 2 in the liquid storage unit 63, and adjusting the height of the liquid level FL of the liquid storage unit 63. The height of the liquid level FL of the working fluid in the equipment heat exchanger 10 can be easily adjusted during heating and cooling of the assembled battery 2.
図28は、機器用熱交換器10と流体通路60の断面図である。貯液部63は、流体通路60の経路のうち一部の内径を大きくすることで形成されている。これにより、流体通路60に対し、貯液部63を簡素な構成で設けることができる。
FIG. 28 is a cross-sectional view of the equipment heat exchanger 10 and the fluid passage 60. The liquid reservoir 63 is formed by increasing the inner diameter of a part of the fluid passage 60. Thereby, the liquid storage part 63 can be provided in the fluid passage 60 with a simple configuration.
また、加熱部61は、貯液部63に貯められた液相の作動流体を加熱可能な位置に設けられている。これにより、加熱部61による作動流体の加熱効率を高めることができる。
Further, the heating unit 61 is provided at a position where the liquid-phase working fluid stored in the liquid storage unit 63 can be heated. Thereby, the heating efficiency of the working fluid by the heating part 61 can be improved.
(第20実施形態)
第20実施形態について説明する。第20実施形態は、第1実施形態に対して、流体通路60の構成等を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。 (20th embodiment)
A twentieth embodiment will be described. In the twentieth embodiment, the configuration and the like of thefluid passage 60 are changed with respect to the first embodiment, and the other parts are the same as those in the first embodiment. Therefore, only the parts different from the first embodiment are described. To do.
第20実施形態について説明する。第20実施形態は、第1実施形態に対して、流体通路60の構成等を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。 (20th embodiment)
A twentieth embodiment will be described. In the twentieth embodiment, the configuration and the like of the
図29および図30に示すように、第20実施形態では、流体通路60は、貯液部63を有している。流体通路60が有する貯液部63は、液相通路40に連通している。また、流体通路60のうち、貯液部63とは反対側の部位は、三方切替弁71を介して気相通路50に連通している。
As shown in FIGS. 29 and 30, in the twentieth embodiment, the fluid passage 60 has a liquid storage portion 63. The liquid storage portion 63 included in the fluid passage 60 communicates with the liquid phase passage 40. In addition, a portion of the fluid passage 60 opposite to the liquid storage portion 63 communicates with the gas phase passage 50 via the three-way switching valve 71.
図29では、機器温調装置1が組電池2を冷却するときの作動流体の流れを実線および破線の矢印で示している。第1実施形態で説明したように、組電池2の冷却時、制御装置5は、加熱部61への通電をオフし、加熱部61の作動を停止させる。また、制御装置5は、流体制御弁70を開弁し、液相通路40に作動流体が流れるようにする。さらに、制御装置5は、車両が停車中の時には、凝縮器30に送風する送風ファン33の電源をオンする。ただし、制御装置5は、車両が走行中の時には、走行風が凝縮器30に流れるため、送風ファン33の電源をオフする。
29, the flow of the working fluid when the device temperature control device 1 cools the assembled battery 2 is indicated by solid and broken arrows. As described in the first embodiment, when the assembled battery 2 is cooled, the control device 5 turns off the power supply to the heating unit 61 and stops the operation of the heating unit 61. Further, the control device 5 opens the fluid control valve 70 so that the working fluid flows through the liquid phase passage 40. Furthermore, the control device 5 turns on the power of the blower fan 33 that blows air to the condenser 30 when the vehicle is stopped. However, when the vehicle is traveling, the control device 5 turns off the power of the blower fan 33 because the traveling wind flows into the condenser 30.
さらに、第20実施形態では、組電池2の冷却時、制御装置5は、三方切替弁71を制御する。三方切替弁71の動作により、三方切替弁71よりも上接続部15側の気相通路50と、三方切替弁71よりも凝縮器30側の気相通路50とが連通すると共に、流体通路60と気相通路50との連通が遮断される。
Furthermore, in the twentieth embodiment, the control device 5 controls the three-way switching valve 71 when the assembled battery 2 is cooled. Due to the operation of the three-way switching valve 71, the gas phase passage 50 on the upper connecting portion 15 side with respect to the three-way switching valve 71 and the gas phase passage 50 on the condenser 30 side with respect to the three-way switching valve 71 communicate with each other. And the gas phase passage 50 are disconnected.
これにより、組電池2の冷却時の作動流体の流れは、凝縮器30→液相通路40→下タンク12→熱交換部13→上タンク11→気相通路50→凝縮器30の順となる。すなわち、機器用熱交換器10と凝縮器30を通るループ状の流路が形成される。
Thereby, the flow of the working fluid at the time of cooling the assembled battery 2 is in the order of the condenser 30 → the liquid phase passage 40 → the lower tank 12 → the heat exchange unit 13 → the upper tank 11 → the gas phase passage 50 → the condenser 30. . That is, a loop-shaped flow path that passes through the equipment heat exchanger 10 and the condenser 30 is formed.
これに対し、図30では、機器温調装置1が組電池2を暖機するときの作動流体の流れを実線および破線の矢印で示している。第1実施形態で説明したように、組電池2の暖機時、制御装置5は、加熱部61への通電をオンし、加熱部61を作動させる。また、制御装置5は、流体制御弁70を閉弁し、液相通路40の作動流体の流れを遮断する。
On the other hand, in FIG. 30, the flow of the working fluid when the device temperature control device 1 warms up the assembled battery 2 is indicated by solid and broken arrows. As described in the first embodiment, when the assembled battery 2 is warmed up, the control device 5 turns on the energization of the heating unit 61 and operates the heating unit 61. In addition, the control device 5 closes the fluid control valve 70 and blocks the flow of the working fluid in the liquid phase passage 40.
さらに、第20実施形態では、組電池2の暖機時、制御装置5は、三方切替弁71を制御する。三方切替弁71の動作により、三方切替弁71よりも上接続側の気相通路50と流体通路60とが連通すると共に、三方切替弁71よりも凝縮器30側の気相通路50と流体通路60との連通が遮断される。
Furthermore, in the twentieth embodiment, the control device 5 controls the three-way switching valve 71 when the assembled battery 2 is warmed up. By the operation of the three-way switching valve 71, the gas-phase passage 50 and the fluid passage 60 on the upper connection side of the three-way switching valve 71 communicate with each other, and the gas-phase passage 50 and the fluid passage on the condenser 30 side of the three-way switching valve 71. Communication with 60 is cut off.
これにより、組電池2の暖機時の作動流体の流れは、流体通路60→上タンク11→熱交換部13→下タンク12→流体通路60の順となる。すなわち、凝縮器30を通ることなく、機器用熱交換器10と流体通路60を通るループ状の流路が形成される。
Thereby, the flow of the working fluid when the assembled battery 2 is warmed up is in the order of the fluid passage 60 → the upper tank 11 → the heat exchange unit 13 → the lower tank 12 → the fluid passage 60. That is, a loop-shaped flow path that passes through the equipment heat exchanger 10 and the fluid passage 60 is formed without passing through the condenser 30.
(第21実施形態)
第21実施形態について説明する。第21実施形態は、第1~第20実施形態に対して、機器用熱交換器10の構成を変更したものであり、その他については第1~第20実施形態と同様であるため、第1~第20実施形態と異なる部分についてのみ説明する。 (21st Embodiment)
A twenty-first embodiment will be described. The twenty-first embodiment is obtained by changing the configuration of theequipment heat exchanger 10 with respect to the first to twentieth embodiments, and is otherwise the same as the first to twentieth embodiments. Only parts different from the twentieth embodiment will be described.
第21実施形態について説明する。第21実施形態は、第1~第20実施形態に対して、機器用熱交換器10の構成を変更したものであり、その他については第1~第20実施形態と同様であるため、第1~第20実施形態と異なる部分についてのみ説明する。 (21st Embodiment)
A twenty-first embodiment will be described. The twenty-first embodiment is obtained by changing the configuration of the
図31に示すように、第21実施形態の機器用熱交換器10は、上タンク、下タンクおよび複数のチューブを有していない。第21実施形態の機器用熱交換器10は、単一の容器17により構成されている。このような第21実施形態の機器用熱交換器10でも、第1~第20実施形態で説明した機器用熱交換器10と同様の作用効果を奏することができる。
As shown in FIG. 31, the equipment heat exchanger 10 of the 21st embodiment does not have an upper tank, a lower tank, and a plurality of tubes. The equipment heat exchanger 10 according to the twenty-first embodiment is configured by a single container 17. The device heat exchanger 10 according to the twenty-first embodiment can achieve the same effects as the device heat exchanger 10 described in the first to twentieth embodiments.
(第22実施形態)
第22実施形態について説明する。第22実施形態は、第1実施形態に対して、機器温調装置1の冷却機能を除いたものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。 (Twenty-second embodiment)
A twenty-second embodiment will be described. The twenty-second embodiment is the same as the first embodiment except for the cooling function of the devicetemperature control device 1 with respect to the first embodiment, and the other parts are the same as the first embodiment. Only explained.
第22実施形態について説明する。第22実施形態は、第1実施形態に対して、機器温調装置1の冷却機能を除いたものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。 (Twenty-second embodiment)
A twenty-second embodiment will be described. The twenty-second embodiment is the same as the first embodiment except for the cooling function of the device
図32に示すように、第22実施形態の機器用熱交換器10は、凝縮器30、液相通路40、気相通路50を備えていない。第22実施形態の機器用熱交換器10が備える流体循環回路4は、機器用熱交換器10と流体通路60とが閉じられた流体回路として構成されている。
32, the equipment heat exchanger 10 according to the twenty-second embodiment does not include the condenser 30, the liquid phase passage 40, and the gas phase passage 50. The fluid circulation circuit 4 included in the equipment heat exchanger 10 of the twenty-second embodiment is configured as a fluid circuit in which the equipment heat exchanger 10 and the fluid passage 60 are closed.
流体通路60は、一端が機器用熱交換器10の上接続部15に接続され、他端が機器用熱交換器10の下接続部16に接続されている。流体通路60には、流体通路60を流れる液相の作動流体を加熱するための加熱部61が設けられている。
The fluid passage 60 has one end connected to the upper connection portion 15 of the equipment heat exchanger 10 and the other end connected to the lower connection portion 16 of the equipment heat exchanger 10. The fluid passage 60 is provided with a heating unit 61 for heating the liquid-phase working fluid flowing through the fluid passage 60.
組電池2の暖機時、制御装置5は、加熱部61への通電をオンし、加熱部61を作動させる。加熱部61により加熱されて蒸気となった作動流体は、流体通路60を重力方向上側に流れ、上接続部15から機器用熱交換器10の上タンク11に流入する。気相の作動流体は、温度が低い方へ流れる性質から、低温の電池セル21が接触している複数のチューブ131に分流し、低温の各電池セル21と熱交換することにより凝縮する。この過程で電池セル21は、作動流体の凝縮潜熱により暖機(すなわち加熱)される。その後、液相となった作動流体は機器用熱交換器10の下タンク12で合流し、下接続部16から流体通路60に流れる。上述の通り、組電池2の暖機時の作動流体の流れは、流体通路60→上タンク11→熱交換部13→下タンク12→流体通路60の順となる。すなわち、機器用熱交換器10と流体通路60を通るループ状の流路が形成される。
When the assembled battery 2 is warmed up, the control device 5 turns on the power to the heating unit 61 and operates the heating unit 61. The working fluid that is heated by the heating unit 61 and becomes vapor flows in the fluid passage 60 upward in the gravity direction, and flows into the upper tank 11 of the equipment heat exchanger 10 from the upper connection unit 15. The gas-phase working fluid is condensed by being divided into a plurality of tubes 131 in contact with the low-temperature battery cells 21 and exchanging heat with each of the low-temperature battery cells 21 due to the property of flowing in a lower temperature. In this process, the battery cell 21 is warmed up (ie, heated) by the latent heat of condensation of the working fluid. Thereafter, the working fluid in a liquid phase joins in the lower tank 12 of the equipment heat exchanger 10 and flows from the lower connection portion 16 to the fluid passage 60. As described above, the flow of the working fluid when the assembled battery 2 is warmed up is in the order of the fluid passage 60 → the upper tank 11 → the heat exchange unit 13 → the lower tank 12 → the fluid passage 60. That is, a loop-shaped flow path that passes through the equipment heat exchanger 10 and the fluid passage 60 is formed.
第22実施形態の機器温調装置1は、上述した第1実施形態で説明した機器温調装置1の暖機時の作用効果と、同様の作用効果を奏することが可能である。また、第22実施形態の構成に対し、上述した第1~第21実施形態で説明した構成を適宜組み合わせることも可能である。
The device temperature adjustment device 1 of the 22nd embodiment can exhibit the same effect as the operation effect during the warm-up of the device temperature adjustment device 1 described in the first embodiment. In addition, the configuration described in the first to 21st embodiments can be appropriately combined with the configuration of the 22nd embodiment.
(第23実施形態)
第23実施形態について図33~図39を参照して説明する。上述の第1~第22実施形態で説明したように、機器温調装置1が対象機器としての組電池2の暖機を行う際、加熱部61により加熱されて気相となった作動流体は、流体通路60から上接続部15を経由して機器用熱交換器10に流入する。その気相の作動流体は、機器用熱交換器10内で低温の各電池セル21に放熱して凝縮し、液相となる。その際、機器用熱交換器10内では、複数のチューブ131内の上方部分で作動流体の凝縮量が多く、複数のチューブ131内の下方部分では液相の作動流体が底部および側壁に溜まることから作動流体の凝縮量が少ない。そのため、各電池セル21の上方部分は作動流体の凝縮潜熱による加熱量が大きいが、各電池セル21の下方部分は上方部分に比べて加熱量が小さい。その結果、電池セル21の上方部分と下方部分とで温度のばらつき(すなわち温度分布)が大きくなると、組電池2が充放電を行う際に、電池セル21の温度の高い上方部分に電流集中が発生することが懸念される。 (23rd Embodiment)
A twenty-third embodiment will be described with reference to FIGS. As described in the first to twenty-second embodiments, when the devicetemperature control apparatus 1 warms up the assembled battery 2 as the target device, the working fluid heated to the gas phase by the heating unit 61 is Then, the fluid flows from the fluid passage 60 into the equipment heat exchanger 10 via the upper connection portion 15. The working fluid in the gas phase dissipates heat to the low-temperature battery cells 21 in the equipment heat exchanger 10 and condenses into a liquid phase. At that time, in the equipment heat exchanger 10, the working fluid has a large amount of condensation in the upper part of the plurality of tubes 131, and the liquid-phase working fluid accumulates on the bottom and side walls in the lower part of the plurality of tubes 131. Therefore, the amount of condensation of the working fluid is small. Therefore, although the upper part of each battery cell 21 has a large heating amount due to the latent heat of condensation of the working fluid, the lower part of each battery cell 21 has a smaller heating amount than the upper part. As a result, when temperature variation (that is, temperature distribution) between the upper part and the lower part of the battery cell 21 increases, current concentration occurs in the upper part where the temperature of the battery cell 21 is high when the assembled battery 2 is charged and discharged. There are concerns about the occurrence.
第23実施形態について図33~図39を参照して説明する。上述の第1~第22実施形態で説明したように、機器温調装置1が対象機器としての組電池2の暖機を行う際、加熱部61により加熱されて気相となった作動流体は、流体通路60から上接続部15を経由して機器用熱交換器10に流入する。その気相の作動流体は、機器用熱交換器10内で低温の各電池セル21に放熱して凝縮し、液相となる。その際、機器用熱交換器10内では、複数のチューブ131内の上方部分で作動流体の凝縮量が多く、複数のチューブ131内の下方部分では液相の作動流体が底部および側壁に溜まることから作動流体の凝縮量が少ない。そのため、各電池セル21の上方部分は作動流体の凝縮潜熱による加熱量が大きいが、各電池セル21の下方部分は上方部分に比べて加熱量が小さい。その結果、電池セル21の上方部分と下方部分とで温度のばらつき(すなわち温度分布)が大きくなると、組電池2が充放電を行う際に、電池セル21の温度の高い上方部分に電流集中が発生することが懸念される。 (23rd Embodiment)
A twenty-third embodiment will be described with reference to FIGS. As described in the first to twenty-second embodiments, when the device
そこで、以下に説明する第23実施形態から第26実施形態は、機器温調装置1が組電池2の暖機を行う際に、組電池2の温度分布を抑制することを目的としている。
Therefore, the twenty-third to twenty-sixth embodiments described below are intended to suppress the temperature distribution of the assembled battery 2 when the device temperature control device 1 warms up the assembled battery 2.
図33に示すように、本実施形態の機器温調装置1の構成は、第8実施形態で説明した構成と同じである。すなわち、加熱部61は、通電により発熱する電気ヒータで構成されている。
As shown in FIG. 33, the configuration of the device temperature adjustment device 1 of the present embodiment is the same as the configuration described in the eighth embodiment. That is, the heating unit 61 is configured by an electric heater that generates heat when energized.
なお、図33では、制御装置5に接続される各センサおよび制御装置5の構成が例示されている。制御装置5には、1個または複数の電池温度センサ101、作動流体温度センサ102、および、ヒータ温度センサ103などから伝送される信号が入力される。1個または複数の電池温度センサ101は、電池の温度を検出するものである。作動流体温度センサ102は、サーモサイフォン回路を循環する作動流体の温度を検出するものである。ヒータ温度センサ103は、加熱部61の温度を検出するものである。また、制御装置5は、組電池2の温度分布の大きさを判定する温度分布判定部110、加熱部61への通電時間を検出するヒータ通電時間検出部111、加熱部61へ供給される電力を検出するヒータ電力検出部112などを有している。なお、制御装置5、温度分布判定部110、ヒータ通電時間検出部111、ヒータ電力検出部112などは、一体に構成されていてもよく、それぞれが別々に構成されていてもよい。このことは、後述する実施形態でも同じである。
In addition, in FIG. 33, the structure of each sensor connected to the control apparatus 5 and the control apparatus 5 is illustrated. The control device 5 receives signals transmitted from one or more battery temperature sensors 101, working fluid temperature sensors 102, heater temperature sensors 103, and the like. One or more battery temperature sensors 101 detect the temperature of the battery. The working fluid temperature sensor 102 detects the temperature of the working fluid circulating in the thermosiphon circuit. The heater temperature sensor 103 detects the temperature of the heating unit 61. In addition, the control device 5 includes a temperature distribution determination unit 110 that determines the size of the temperature distribution of the assembled battery 2, a heater energization time detection unit 111 that detects an energization time to the heating unit 61, and electric power supplied to the heating unit 61. And a heater power detection unit 112 for detecting. Note that the control device 5, the temperature distribution determination unit 110, the heater energization time detection unit 111, the heater power detection unit 112, and the like may be configured integrally, or may be configured separately. This is the same in the embodiments described later.
図33および図35は、機器温調装置1が組電池2の暖機を行う前の状態を示している。制御装置5は、加熱部61への通電を停止している。この状態で、図35に示すように、機器用熱交換器10内の作動流体の液面FLは、電池セル21の高さ方向で比較的低い位置にある。
33 and 35 show a state before the device temperature control device 1 warms up the assembled battery 2. The control device 5 stops energizing the heating unit 61. In this state, as shown in FIG. 35, the liquid level FL of the working fluid in the equipment heat exchanger 10 is at a relatively low position in the height direction of the battery cell 21.
次に、図34および図36は、機器温調装置1が組電池2の暖機を行っているときの状態を示している。組電池2の暖機時、制御装置5は、加熱部61への通電を行い、加熱部61により作動流体を加熱する。また、制御装置5は、流体制御弁70を閉弁し、気相通路50の作動流体の流れを遮断する。
Next, FIG. 34 and FIG. 36 show a state when the device temperature control device 1 is warming up the assembled battery 2. When the assembled battery 2 is warmed up, the control device 5 energizes the heating unit 61 and heats the working fluid by the heating unit 61. In addition, the control device 5 closes the fluid control valve 70 and blocks the flow of the working fluid in the gas phase passage 50.
図34では、組電池2の暖機時の作動流体の流れを実線および破線の矢印で示している。加熱部61が流体通路60の作動流体を加熱すると、流体通路60の作動流体は蒸発し、上接続部15から機器用熱交換器10の上タンク11に流入する。機器用熱交換器10の複数のチューブ131内で気相の作動流体は組電池2に放熱して凝縮する。この過程で電池セル21は、作動流体の凝縮潜熱により暖機(すなわち加熱)される。機器用熱交換器10内で凝縮した作動流体の液面FLと流体通路60の作動流体の液面FLとのヘッド差により、機器用熱交換器10の液相の作動流体は下タンク12から下接続部16を経由して流体通路60に流れる。その作動流体は、流体通路60で加熱部61により加熱されて再び蒸発し、機器用熱交換器10に流入する。このような作動流体の循環により、機器温調装置1は、組電池2の暖機を行うことが可能である。
34, the flow of the working fluid when the assembled battery 2 is warmed up is indicated by solid and broken arrows. When the heating unit 61 heats the working fluid in the fluid passage 60, the working fluid in the fluid passage 60 evaporates and flows into the upper tank 11 of the equipment heat exchanger 10 from the upper connection portion 15. In the plurality of tubes 131 of the equipment heat exchanger 10, the gas phase working fluid dissipates heat to the assembled battery 2 and condenses. In this process, the battery cell 21 is warmed up (ie, heated) by the latent heat of condensation of the working fluid. Due to the head difference between the liquid level FL of the working fluid condensed in the equipment heat exchanger 10 and the liquid level FL of the working fluid in the fluid passage 60, the liquid phase working fluid of the equipment heat exchanger 10 flows from the lower tank 12. The fluid flows to the fluid passage 60 via the lower connection portion 16. The working fluid is heated by the heating unit 61 in the fluid passage 60 and evaporated again, and flows into the equipment heat exchanger 10. The device temperature control device 1 can warm up the assembled battery 2 by circulating such working fluid.
図36に示すように、組電池2の暖機時、機器用熱交換器10の複数のチューブ131内では、気相の作動流体が凝縮され、チューブ131内の側壁137を伝って重力方向下側へ流れる。そのため、チューブ131内の側壁137に形成される作動流体の液膜は、上方から下方に向かって次第に厚くなる。したがって、機器用熱交換器10内の上方では作動流体の液膜が薄いので電池セル21に対する作動流体の凝縮潜熱による加熱能力が比較的大きい。これに対し、機器用熱交換器10の下方では作動流体の液膜が厚くなることから電池セル21に対する作動流体の凝縮潜熱による加熱能力が比較的小さくなる。また、機器用熱交換器10の下方では作動流体の液面FLが高くなり、その液面FLより下では電池セル21に対する作動流体の凝縮潜熱による加熱能力が非常に小さくなる。そのため、暖機時間の経過と共に、各電池セル21は、上方部分と下方部分の温度分布が次第に大きくなる。
As shown in FIG. 36, when the assembled battery 2 is warmed up, the working fluid in the vapor phase is condensed in the plurality of tubes 131 of the equipment heat exchanger 10, and travels along the side wall 137 in the tubes 131 and moves downward in the gravity direction. Flows to the side. Therefore, the liquid film of the working fluid formed on the side wall 137 in the tube 131 gradually increases from the upper side to the lower side. Therefore, since the liquid film of the working fluid is thin above the apparatus heat exchanger 10, the heating capacity of the battery cells 21 due to the latent heat of condensation of the working fluid is relatively large. On the other hand, since the liquid film of the working fluid is thicker below the equipment heat exchanger 10, the heating capacity of the battery cell 21 due to the latent heat of condensation of the working fluid becomes relatively small. In addition, the liquid level FL of the working fluid is high below the equipment heat exchanger 10, and the heating capacity of the battery cell 21 due to the latent heat of condensation of the working fluid is very small below the liquid level FL. Therefore, as the warm-up time elapses, the temperature distribution of the upper part and the lower part of each battery cell 21 gradually increases.
そこで、本実施形態では、組電池2の暖機開始から一定時間経過後、制御装置5は、加熱部61への通電を停止する制御を行う。これにより、流体通路60から機器用熱交換器10への作動流体の流入が停止する。そのため、機器用熱交換器10内の液面FLと流体通路60の液面FLとのヘッド差がなくなるので、図37に示すように、機器用熱交換器10内の作動流体の液面FLが下がる。また、図37の矢印αに示すように機器用熱交換器10のチューブ131内の側壁137の液膜は下方に流下し、さらに、矢印βに示すようにチューブ131内の上部側壁の液膜は電池セル21のうちそれまでに加熱された部位との熱交換により蒸発する。したがって、チューブ131内の側壁137の液膜が薄くなり、チューブ131内の側壁137が気相の作動流体に露出する面積が広くなる。これにより、チューブ131内の上部から下部に亘り広い範囲で作動流体の凝縮が可能になる。そのため、チューブ131内の上方の比較的高温な部位で蒸発した作動流体が、チューブ131内の下方の比較的低温な部位で凝縮し、各電池セル21は、上方部分と下方部分の温度分布が次第に小さくなる。また、各電池セル21内部での熱伝導も生じることから、時間の経過と共に各電池セル21の均温化が促進される。
Therefore, in the present embodiment, the control device 5 performs control to stop energization of the heating unit 61 after a predetermined time has elapsed from the start of warming up of the assembled battery 2. Thereby, the inflow of the working fluid from the fluid passage 60 to the equipment heat exchanger 10 is stopped. Therefore, there is no head difference between the liquid level FL in the equipment heat exchanger 10 and the liquid level FL in the fluid passage 60, so that the working fluid level FL in the equipment heat exchanger 10 as shown in FIG. Go down. 37, the liquid film on the side wall 137 in the tube 131 of the equipment heat exchanger 10 flows downward, and further, as shown by the arrow β, the liquid film on the upper side wall in the tube 131. Evaporates by heat exchange with the part of the battery cell 21 that has been heated up to that point. Therefore, the liquid film on the side wall 137 in the tube 131 is thinned, and the area where the side wall 137 in the tube 131 is exposed to the gas-phase working fluid is increased. Thereby, the working fluid can be condensed in a wide range from the upper part to the lower part in the tube 131. Therefore, the working fluid evaporated at a relatively high temperature portion above the tube 131 is condensed at a relatively low temperature portion below the tube 131, and each battery cell 21 has a temperature distribution in the upper portion and the lower portion. It becomes smaller gradually. Moreover, since heat conduction also occurs in each battery cell 21, the temperature equalization of each battery cell 21 is promoted with the passage of time.
制御装置5は、加熱部61への通電停止から一定時間経過後、再び加熱部61への通電を開始する。このように、制御装置5は、加熱部61の駆動と停止を間欠的に繰り返しながら組電池2の暖機を行うことで、組電池2の温度分布の増大を抑制することが可能である。
The control device 5 starts energizing the heating unit 61 again after a certain time has elapsed since the energization of the heating unit 61 was stopped. In this way, the control device 5 can suppress an increase in the temperature distribution of the assembled battery 2 by warming up the assembled battery 2 while intermittently repeating driving and stopping of the heating unit 61.
次に、本実施形態の制御装置5が行う暖機制御処理について、図38のフローチャートを参照して説明する。
Next, the warm-up control process performed by the control device 5 of the present embodiment will be described with reference to the flowchart of FIG.
まず、ステップS10で制御装置5は、組電池2の暖機要求があるか否かを判定する。組電池2の暖機要求がある場合、制御装置5は処理をステップS20に移行する。
First, in step S10, the control device 5 determines whether or not there is a warm-up request for the assembled battery 2. When there is a warm-up request for the assembled battery 2, the control device 5 moves the process to step S20.
ステップS20で制御装置5は、加熱部61への通電を開始し、処理をステップS30に移行する。
In step S20, the control device 5 starts energizing the heating unit 61, and the process proceeds to step S30.
ステップS30で制御装置5は、組電池2の温度分布が所定の第1温度閾値以上であるか否かを判定する。第1温度閾値は、例えば実験等により設定され、制御装置5のメモリに予め記憶してある値である。
In step S30, the control device 5 determines whether or not the temperature distribution of the assembled battery 2 is equal to or greater than a predetermined first temperature threshold value. The first temperature threshold is a value that is set by, for example, experiments or the like and is stored in advance in the memory of the control device 5.
ここで、制御装置5が有する温度分布判定部110は、図33に示した各センサから入力される信号等に基づき、組電池2の温度分布の大きさを、次の方法により検出することが可能である。
Here, the temperature distribution determination unit 110 included in the control device 5 can detect the size of the temperature distribution of the assembled battery 2 by the following method based on signals input from the sensors shown in FIG. Is possible.
第1の方法として、制御装置5は、電池の温度を検出する複数の電池温度センサ101から入力される信号に基づいて、組電池2の温度分布の大きさを検出する。複数の電池温度センサ101は、電池セル21の上方部分と下方部分に設置することが好ましい。これにより、制御装置5は、電池セル21の上方部分と下方部分の温度分布の大きさを直接検出することが可能である。
As a first method, the control device 5 detects the size of the temperature distribution of the assembled battery 2 based on signals input from the plurality of battery temperature sensors 101 that detect the temperature of the battery. The plurality of battery temperature sensors 101 are preferably installed in the upper part and the lower part of the battery cell 21. Thereby, the control device 5 can directly detect the magnitude of the temperature distribution in the upper part and the lower part of the battery cell 21.
第2の方法として、制御装置5は、ヒータ温度センサ103と、作動流体温度センサ102から入力される信号に基づいて、組電池2の温度分布の大きさを検出する。ヒータ温度センサ103は、加熱部61の温度を検出するものである。作動流体温度センサ102は、機器温調装置1のサーモサイフォン回路を循環する作動流体の温度を検出するものである。サーモサイフォン回路を循環する作動流体の温度に対し、加熱部61の温度が高いほど、機器温調装置1による組電池2の加熱能力が大きいので、組電池2の温度分布が大きくなる。
As a second method, the control device 5 detects the size of the temperature distribution of the assembled battery 2 based on the signals input from the heater temperature sensor 103 and the working fluid temperature sensor 102. The heater temperature sensor 103 detects the temperature of the heating unit 61. The working fluid temperature sensor 102 detects the temperature of the working fluid circulating in the thermosiphon circuit of the device temperature control device 1. The higher the temperature of the heating unit 61 with respect to the temperature of the working fluid circulating in the thermosiphon circuit, the greater the heating capacity of the assembled battery 2 by the device temperature control device 1, and thus the temperature distribution of the assembled battery 2 becomes larger.
第3の方法として、制御装置5は、加熱部61が連続して作動している時間に基づいて、組電池2の温度分布の大きさを検出する。加熱部61が連続して作動している時間は、ヒータ通電時間検出部111により検出される加熱部61への連続通電オン時間である。加熱部61が連続して作動している時間が長いほど、組電池2の温度分布が大きくなる。
As a third method, the control device 5 detects the size of the temperature distribution of the assembled battery 2 based on the time during which the heating unit 61 is continuously operated. The time during which the heating unit 61 is continuously operated is the continuous energization on-time for the heating unit 61 detected by the heater energization time detection unit 111. The longer the time during which the heating unit 61 is operating continuously, the greater the temperature distribution of the assembled battery 2.
なお、制御装置5は、加熱部61が連続して作動を停止している時間に基づいて、組電池2の温度分布の大きさを検出することも可能である。加熱部61が連続して作動を停止している時間は、ヒータ通電時間検出部111により検出される加熱部61への連続通電オフ時間である。加熱部61が連続して作動を停止している時間が長いほど、組電池2の温度分布が小さくなる。
In addition, the control apparatus 5 can also detect the magnitude | size of the temperature distribution of the assembled battery 2 based on the time when the heating part 61 has stopped operation | movement continuously. The time during which the heating unit 61 continuously stops operating is the continuous energization off time to the heating unit 61 detected by the heater energization time detection unit 111. The longer the time during which the heating unit 61 is continuously stopped, the smaller the temperature distribution of the assembled battery 2.
第4の方法として、制御装置5は、加熱部61に供給される電力に基づいて、組電池2の温度分布の大きさを検出する。加熱部61に供給される電力は、ヒータ電力検出部112により検出される。加熱部61に供給される電力が大きいほど、機器温調装置1による組電池2の加熱能力が大きくなるので、組電池2の温度分布が大きくなる。一方、加熱部61に供給される電力が小さいほど、機器温調装置1による組電池2の加熱能力が小さくなるので、組電池2の温度分布が小さくなる。
As a fourth method, the control device 5 detects the size of the temperature distribution of the assembled battery 2 based on the power supplied to the heating unit 61. The power supplied to the heating unit 61 is detected by the heater power detection unit 112. As the electric power supplied to the heating unit 61 is larger, the heating capacity of the assembled battery 2 by the device temperature control device 1 becomes larger, and the temperature distribution of the assembled battery 2 becomes larger. On the other hand, the smaller the electric power supplied to the heating unit 61, the smaller the heating capacity of the assembled battery 2 by the device temperature control device 1, and thus the temperature distribution of the assembled battery 2 becomes smaller.
図38のステップS30で制御装置5は、組電池2の温度分布が所定の第1温度閾値以上であると判定すると、処理をステップS40に移行する。
38. When the control device 5 determines in step S30 of FIG. 38 that the temperature distribution of the assembled battery 2 is equal to or greater than a predetermined first temperature threshold, the process proceeds to step S40.
ステップS40で制御装置5は、加熱部61への通電を停止する。これにより、流体通路60から機器用熱交換器10への作動流体の流入が停止し、作動流体の流れが停止する。そのため、図37に示したように、機器用熱交換器10内の作動流体の液面FLが下がり、チューブ131内の側壁137の液膜が薄くなることで、チューブ131内の側壁137が気相の作動流体に露出する面積が広くなる。したがって、チューブ131内の上部から下部に亘り広い範囲で作動流体の凝縮が可能になり、各電池セル21は、上方部分と下方部分の温度分布が次第に小さくなる。また、各電池セル21内部での熱伝導も生じることから、時間の経過と共に各電池セル21の温度分布が小さくなる。
In step S40, the control device 5 stops energizing the heating unit 61. Thereby, the inflow of the working fluid from the fluid passage 60 to the equipment heat exchanger 10 is stopped, and the flow of the working fluid is stopped. For this reason, as shown in FIG. 37, the liquid level FL of the working fluid in the equipment heat exchanger 10 is lowered, and the liquid film on the side wall 137 in the tube 131 is thinned. The area exposed to the phase working fluid is increased. Therefore, the working fluid can be condensed in a wide range from the upper part to the lower part in the tube 131, and the temperature distribution of the upper part and the lower part of each battery cell 21 is gradually reduced. Moreover, since heat conduction also occurs inside each battery cell 21, the temperature distribution of each battery cell 21 becomes smaller with the passage of time.
ステップS40に続くステップS50で制御装置5は、組電池2の温度ばらつきが解消したか否かを判定する。具体的には、制御装置5は、組電池2の温度分布が所定の第2温度閾値以下か否かを判定する。第2温度閾値は、例えば実験等により設定され、制御装置5のメモリに予め記憶してある値である。制御装置5は、組電池2の温度分布が所定の第2温度閾値より大きいと判定すると、組電池2の温度ばらつきが解消していないとして、処理をステップS60に移行する。ステップS60で制御装置5は、加熱部61への通電を停止した状態を維持し、処理をステップS50に移行する。ステップS50とステップS60の処理は、組電池2の温度分布が所定の第2温度閾値以下になるまで繰り返し行われる。
In step S50 following step S40, the control device 5 determines whether or not the temperature variation of the assembled battery 2 has been eliminated. Specifically, the control device 5 determines whether or not the temperature distribution of the assembled battery 2 is equal to or less than a predetermined second temperature threshold value. The second temperature threshold is a value that is set, for example, by an experiment or the like and stored in advance in the memory of the control device 5. If the control device 5 determines that the temperature distribution of the assembled battery 2 is greater than the predetermined second temperature threshold, the process proceeds to step S60, assuming that the temperature variation of the assembled battery 2 has not been eliminated. In step S60, the control device 5 maintains a state where the energization to the heating unit 61 is stopped, and the process proceeds to step S50. Steps S50 and S60 are repeated until the temperature distribution of the assembled battery 2 is equal to or lower than a predetermined second temperature threshold.
一方、ステップS50で制御装置5は、組電池2の温度分布が所定の第2温度閾値以下であると判定すると、組電池2の温度ばらつきが解消したとして、処理をステップS70に移行する。ステップS70で制御装置5は、加熱部61への通電を再開し、処理を一旦終了する。そして、所定時間経過後、制御装置5は再びステップS10から上述した処理を繰り返す。
On the other hand, if the control device 5 determines in step S50 that the temperature distribution of the assembled battery 2 is equal to or lower than the predetermined second temperature threshold, the process proceeds to step S70 assuming that the temperature variation of the assembled battery 2 has been eliminated. In step S <b> 70, the control device 5 resumes energization to the heating unit 61 and ends the process once. And after predetermined time progress, the control apparatus 5 repeats the process mentioned above from step S10 again.
なお、上述したステップS10で組電池2の暖機要求がない場合、制御装置5は処理をステップS80に移行し、加熱部61への通電を停止した状態として、処理を一旦終了する。そして、所定時間経過後、再びステップS10から処理を繰り返す。
In addition, when there is no warming-up request | requirement of the assembled battery 2 by step S10 mentioned above, the control apparatus 5 transfers a process to step S80, makes the state which stopped the electricity supply to the heating part 61, and once complete | finishes a process. And after predetermined time progress, a process is repeated from step S10 again.
また、上述したステップS30で制御装置5は、組電池2の温度分布が所定の第1温度閾値より小さいと判定すると、処理をステップS90に移行し、加熱部61への通電を継続して、処理を一旦終了する。そして、所定時間経過後、再びステップS10から処理を繰り返す。
In addition, when the control device 5 determines in step S30 described above that the temperature distribution of the assembled battery 2 is smaller than the predetermined first temperature threshold, the process proceeds to step S90, and energization of the heating unit 61 is continued. The process is temporarily terminated. And after predetermined time progress, a process is repeated from step S10 again.
本実施形態の暖機制御処理による作用効果を、図39のグラフを参照して説明する。
The operation and effect of the warm-up control process of this embodiment will be described with reference to the graph of FIG.
図39では、本実施形態の暖機制御処理を行った場合の組電池2の温度分布の推移を実線TD1に示している。一方、本実施形態の暖機制御処理を行わず、暖機時に加熱部61への通電を継続してオンした場合の組電池2の温度分布の推移を実線TD2に示している。
In FIG. 39, the transition of the temperature distribution of the assembled battery 2 when the warm-up control process of the present embodiment is performed is shown by a solid line TD1. On the other hand, the solid line TD2 shows the transition of the temperature distribution of the assembled battery 2 when the warm-up control process of the present embodiment is not performed and the energization of the heating unit 61 is continuously turned on during warm-up.
実線TD2に示すように、本実施形態の暖機制御処理を行わず、暖機時に加熱部61への通電を継続してオンした場合、時刻t1から時刻t3にかけて組電池2の温度分布は時間経過とともに大きくなる。時刻t3で組電池2の温度分布は最大となっている。時刻t3で組電池2の暖機が完了すると、加熱部61への通電が停止されるので、組電池2の温度分布は時間経過とともに小さくなる。
As shown by the solid line TD2, when the warm-up control process of the present embodiment is not performed and the energization of the heating unit 61 is continuously turned on during warm-up, the temperature distribution of the assembled battery 2 is timed from time t1 to time t3. It grows with time. At time t3, the temperature distribution of the assembled battery 2 is maximum. When the warming-up of the assembled battery 2 is completed at time t3, the energization to the heating unit 61 is stopped, so that the temperature distribution of the assembled battery 2 decreases with time.
これに対し、実線TD1に示すように、本実施形態の暖機制御処理を行った場合、時刻t1からt2、t4からt5、t6からt7で加熱部61への通電が行われ、時刻t2からt4、t5からt6、t7以降で加熱部61への通電が停止されている。このように、暖機時に加熱部61への通電のオンオフを間欠的に繰り返した場合、組電池2の温度分布は一定の範囲内で推移する。したがって、制御装置5は、組電池2の暖機時に加熱部61の駆動と停止を間欠的に繰り返すことで、組電池2の温度分布の増大を抑制しつつ、組電池2を暖機することが可能である。その結果、この機器温調装置1は、組電池2が充放電を行う際に、電池セル21の中の温度の高い部分に電流集中が発生することを防ぎ、組電池2の劣化や破損を防ぐことができる。
On the other hand, as shown by the solid line TD1, when the warm-up control process of the present embodiment is performed, the heating unit 61 is energized from time t1 to t2, from t4 to t5, and from t6 to t7, and from time t2. Energization to the heating unit 61 is stopped after t4 and t5 to t6 and after t7. As described above, when the energization of the heating unit 61 is intermittently repeated during warm-up, the temperature distribution of the assembled battery 2 changes within a certain range. Therefore, the control device 5 warms up the assembled battery 2 while suppressing an increase in the temperature distribution of the assembled battery 2 by intermittently repeating driving and stopping of the heating unit 61 when the assembled battery 2 is warmed up. Is possible. As a result, when the assembled battery 2 performs charging / discharging, the device temperature control apparatus 1 prevents current concentration from occurring in a high temperature portion in the battery cell 21, and causes deterioration or breakage of the assembled battery 2. Can be prevented.
(第24実施形態)
第24実施形態について図40~図43を参照して説明する。本実施形態の機器温調装置1の構成は、第23実施形態で説明した構成と同じである。ただし、本実施形態は、上述した第23実施形態に対し、制御装置5による暖機制御処理が異なっている。上述した第23実施形態では、制御装置5は、組電池2の暖機時に、加熱部61への通電のオン、オフを間欠的に行う制御により、組電池2の温度分布の増大を抑制した。これに対し、本実施形態では、制御装置5は、組電池2の暖機時に、加熱部61の加熱能力の増大と低下を繰り返す制御により、組電池2の温度分布の増大を抑制するものである。 (24th Embodiment)
A twenty-fourth embodiment will be described with reference to FIGS. The configuration of the devicetemperature adjustment device 1 of the present embodiment is the same as the configuration described in the twenty-third embodiment. However, the present embodiment differs from the above-described twenty-third embodiment in the warm-up control process by the control device 5. In the twenty-third embodiment described above, the control device 5 suppresses an increase in the temperature distribution of the assembled battery 2 by controlling to intermittently turn on and off the energization of the heating unit 61 when the assembled battery 2 is warmed up. . On the other hand, in the present embodiment, the control device 5 suppresses an increase in the temperature distribution of the assembled battery 2 by controlling to repeatedly increase and decrease the heating capacity of the heating unit 61 when the assembled battery 2 is warmed up. is there.
第24実施形態について図40~図43を参照して説明する。本実施形態の機器温調装置1の構成は、第23実施形態で説明した構成と同じである。ただし、本実施形態は、上述した第23実施形態に対し、制御装置5による暖機制御処理が異なっている。上述した第23実施形態では、制御装置5は、組電池2の暖機時に、加熱部61への通電のオン、オフを間欠的に行う制御により、組電池2の温度分布の増大を抑制した。これに対し、本実施形態では、制御装置5は、組電池2の暖機時に、加熱部61の加熱能力の増大と低下を繰り返す制御により、組電池2の温度分布の増大を抑制するものである。 (24th Embodiment)
A twenty-fourth embodiment will be described with reference to FIGS. The configuration of the device
図41は、機器温調装置1が組電池2の暖機を行う前の状態を示している。制御装置5が加熱部61への通電を停止している。この状態で、機器用熱交換器10内の作動流体の液面FLは、電池セル21の高さ方向で比較的低い位置にある。
FIG. 41 shows a state before the device temperature control device 1 warms up the assembled battery 2. The control device 5 stops energizing the heating unit 61. In this state, the liquid level FL of the working fluid in the equipment heat exchanger 10 is at a relatively low position in the height direction of the battery cell 21.
次に、図42は、機器温調装置1が組電池2の暖機を行っているときの状態を示している。組電池2の暖機時、制御装置5は、加熱部61への通電を行い、加熱部61により作動流体を加熱する。組電池2の暖機時、機器用熱交換器10の複数のチューブ131内では、気相の作動流体が凝縮され、チューブ131内の側壁137を伝って重力方向下側へ流れる。そのため、チューブ131内の側壁137に形成される作動流体の液膜は、上方から下方に向かって次第に厚くなる。したがって、機器用熱交換器10内の上方では作動流体の液膜が薄いので電池セル21に対する作動流体の凝縮潜熱による加熱能力が大きい。これに対し、機器用熱交換器10の下方では作動流体の液膜が厚くなることから電池セル21に対する作動流体の凝縮潜熱による加熱能力が比較的小さくなる。また、機器用熱交換器10の下方では作動流体の液面FLが高くなり、その液面FLより下では電池セル21に対する作動流体の凝縮潜熱による加熱能力が非常に小さくなる。そのため、暖機時間の経過と共に、各電池セル21は、上方部分と下方部分の温度分布が次第に大きくなる。
Next, FIG. 42 shows a state where the device temperature control device 1 is warming up the assembled battery 2. When the assembled battery 2 is warmed up, the control device 5 energizes the heating unit 61 and heats the working fluid by the heating unit 61. When the assembled battery 2 is warmed up, the gas-phase working fluid is condensed in the plurality of tubes 131 of the equipment heat exchanger 10, flows along the side wall 137 in the tubes 131, and flows downward in the gravity direction. Therefore, the liquid film of the working fluid formed on the side wall 137 in the tube 131 gradually increases from the upper side to the lower side. Therefore, since the liquid film of the working fluid is thin above the apparatus heat exchanger 10, the heating capacity of the battery cell 21 by the condensation latent heat of the working fluid is large. On the other hand, since the liquid film of the working fluid is thicker below the equipment heat exchanger 10, the heating capacity of the battery cell 21 due to the latent heat of condensation of the working fluid becomes relatively small. In addition, the liquid level FL of the working fluid is high below the equipment heat exchanger 10, and the heating capacity of the battery cell 21 due to the latent heat of condensation of the working fluid is very small below the liquid level FL. Therefore, as the warm-up time elapses, the temperature distribution of the upper part and the lower part of each battery cell 21 gradually increases.
そこで、本実施形態では、組電池2の暖機開始から一定時間経過後、制御装置5は、加熱部61の加熱能力を低下させる制御を行う。これにより、流体通路60から機器用熱交換器10への作動流体の流入量が減少し、作動流体の流れが穏やかになる。そのため、図43に示すように、機器用熱交換器10内の作動流体の液面FLが下がる。また、機器用熱交換器10のチューブ131内の側壁137の液膜は薄くなるので、チューブ131内の上部と下部で作動流体の凝縮潜熱による加熱能力の差が縮小する。すなわち、チューブ131内の上部と下部で熱交換量の差が縮小する。また、各電池セル21内部での熱伝導も生じる。したがって、加熱能力の低下開始から時間の経過と共に、各電池セル21は、上方部分と下方部分の温度分布が次第に小さくなる。
Therefore, in the present embodiment, after a predetermined time has elapsed since the warm-up of the assembled battery 2 has started, the control device 5 performs control to reduce the heating capacity of the heating unit 61. Thereby, the inflow amount of the working fluid from the fluid passage 60 to the equipment heat exchanger 10 is reduced, and the flow of the working fluid becomes gentle. Therefore, as shown in FIG. 43, the liquid level FL of the working fluid in the equipment heat exchanger 10 is lowered. In addition, since the liquid film on the side wall 137 in the tube 131 of the equipment heat exchanger 10 becomes thin, the difference in heating ability due to the latent heat of condensation of the working fluid is reduced between the upper part and the lower part in the tube 131. That is, the difference in the amount of heat exchange between the upper part and the lower part in the tube 131 is reduced. In addition, heat conduction occurs in each battery cell 21. Therefore, with the passage of time from the start of the decrease in heating capacity, the temperature distribution of the upper part and the lower part of each battery cell 21 gradually decreases.
制御装置5は、加熱部61の加熱能力を減少してから一定時間経過後、再び加熱部61の加熱能力を増大する制御を行う。このように、制御装置5は、加熱部61の加熱能力の増大と低下を繰り返しながら組電池2の暖機を行うことで、組電池2の温度分布の増大を抑制することが可能である。
The control device 5 performs control to increase the heating capacity of the heating unit 61 again after a certain time has elapsed since the heating capacity of the heating unit 61 was decreased. Thus, the control device 5 can suppress an increase in the temperature distribution of the assembled battery 2 by warming up the assembled battery 2 while repeatedly increasing and decreasing the heating capacity of the heating unit 61.
本実施形態の制御装置5が行う暖機制御処理について、図40のフローチャートを参照して説明する。
The warm-up control process performed by the control device 5 of the present embodiment will be described with reference to the flowchart of FIG.
ステップS10からステップS30までの処理は、第23実施形態で説明した処理と同じである。
The processing from step S10 to step S30 is the same as the processing described in the twenty-third embodiment.
ステップS30で制御装置5は、組電池2の温度分布が所定の第1温度閾値以上であると判定すると、処理をステップS41に移行する。ステップS41で制御装置5は、加熱部61へ供給する電力量を低減し、加熱部61の加熱能力を減少させる。これにより、流体通路60から機器用熱交換器10への気相の作動流体の流入量が減少し、作動流体の流れが穏やかになる。そのため、図43に示すように、機器用熱交換器10内の作動流体の液面FLが下がる。また、機器用熱交換器10のチューブ131内の側壁137の液膜は薄くなり、チューブ131内の上部と下部の熱交換量の差が縮小する。また、各電池セル21内部での熱伝導も生じる。したがって、各電池セル21は、時間の経過と共に上方部分と下方部分の温度分布が次第に小さくなる。
When the control device 5 determines in step S30 that the temperature distribution of the assembled battery 2 is equal to or greater than the predetermined first temperature threshold, the process proceeds to step S41. In step S <b> 41, the control device 5 reduces the amount of power supplied to the heating unit 61 and decreases the heating capacity of the heating unit 61. Thereby, the inflow amount of the gaseous working fluid from the fluid passage 60 to the equipment heat exchanger 10 is reduced, and the flow of the working fluid becomes gentle. Therefore, as shown in FIG. 43, the liquid level FL of the working fluid in the equipment heat exchanger 10 is lowered. In addition, the liquid film on the side wall 137 in the tube 131 of the equipment heat exchanger 10 becomes thin, and the difference in the heat exchange amount between the upper part and the lower part in the tube 131 is reduced. In addition, heat conduction occurs in each battery cell 21. Accordingly, each battery cell 21 gradually decreases in temperature distribution in the upper part and the lower part as time passes.
ステップS41に続くステップS50で制御装置5は、組電池2の温度ばらつきが解消したか否かを判定する。制御装置5は、組電池2の温度ばらつきが解消していないと判定すると、処理をステップS61に移行する。ステップS61で制御装置5は、加熱部61の加熱能力を減少した状態を維持する。ステップS50とステップS61の処理は、組電池2の温度ばらつきが解消するまで繰り返し行われる。
In step S50 following step S41, the control device 5 determines whether or not the temperature variation of the assembled battery 2 has been eliminated. If the control device 5 determines that the temperature variation of the assembled battery 2 has not been eliminated, the process proceeds to step S61. In step S61, the control device 5 maintains a state where the heating capacity of the heating unit 61 is reduced. The process of step S50 and step S61 is repeatedly performed until the temperature variation of the assembled battery 2 is eliminated.
一方、ステップS50で制御装置5は、組電池2の温度ばらつきが解消したと判定すると、処理をステップS71に移行する。ステップS71で制御装置5は、加熱部61の加熱能力を再び増大する。具体的には、制御装置5は、加熱部61へ供給する電力量を増大する。ステップS71の後、処理は一旦終了する。そして、所定時間経過後、制御装置5は再びステップS10から処理を繰り返す。
On the other hand, if the control device 5 determines in step S50 that the temperature variation of the assembled battery 2 has been eliminated, the process proceeds to step S71. In step S71, the control device 5 increases the heating capacity of the heating unit 61 again. Specifically, the control device 5 increases the amount of power supplied to the heating unit 61. After step S71, the process is temporarily terminated. And after predetermined time progress, the control apparatus 5 repeats a process from step S10 again.
なお、上述したステップS30で制御装置5は、組電池2の温度分布が所定の第1温度閾値より小さいと判定すると、処理をステップS91に移行し、加熱部61の加熱能力を継続して維持する。そして、所定時間経過後、再びステップS10から処理を繰り返す。
In addition, if the control apparatus 5 determines with the temperature distribution of the assembled battery 2 being smaller than the predetermined 1st temperature threshold value by step S30 mentioned above, a process will transfer to step S91 and the heating capability of the heating part 61 will be maintained continuously. To do. And after predetermined time progress, a process is repeated from step S10 again.
本実施形態で説明した暖機制御処理は、上述した第23実施形態の暖機制御処理と同様の作用効果を奏することができる。
The warm-up control process described in this embodiment can achieve the same effects as the warm-up control process of the 23rd embodiment described above.
(第25実施形態)
第25実施形態について図44を参照して説明する。第25実施形態は、上述した第23および第24実施形態に対し、加熱部61を電気ヒータに代えてペルチェ素子64を採用したものである。 (25th Embodiment)
A twenty-fifth embodiment will be described with reference to FIG. In the twenty-fifth embodiment, a Peltier element 64 is used instead of the electric heater in the twenty-third and twenty-fourth embodiments described above.
第25実施形態について図44を参照して説明する。第25実施形態は、上述した第23および第24実施形態に対し、加熱部61を電気ヒータに代えてペルチェ素子64を採用したものである。 (25th Embodiment)
A twenty-fifth embodiment will be described with reference to FIG. In the twenty-fifth embodiment, a Peltier element 64 is used instead of the electric heater in the twenty-third and twenty-fourth embodiments described above.
図44では、制御装置5に接続される各センサが例示されている。制御装置5には、電池温度センサ101、作動流体温度センサ102、および、ペルチェ素子64の温度を検出するペルチェ素子温度センサ104などから伝送される信号が入力される。また、制御装置5は、温度分布判定部110、ペルチェ素子64への通電時間を検出するペルチェ素子通電時間検出部113、および、ペルチェ素子64へ供給される電力を検出するペルチェ素子電力検出部114などを有している。
FIG. 44 illustrates each sensor connected to the control device 5. Signals transmitted from the battery temperature sensor 101, the working fluid temperature sensor 102, the Peltier element temperature sensor 104 that detects the temperature of the Peltier element 64, and the like are input to the control device 5. The control device 5 also includes a temperature distribution determination unit 110, a Peltier element energization time detection unit 113 that detects energization time to the Peltier element 64, and a Peltier element power detection unit 114 that detects power supplied to the Peltier element 64. Etc.
本実施形態の制御装置5が行う暖機制御処理は、上述した第23および第24実施形態で説明した暖機制御処理と同じである。
The warm-up control process performed by the control device 5 of the present embodiment is the same as the warm-up control process described in the 23rd and 24th embodiments described above.
ここで、本実施形態では、制御装置5が有する温度分布判定部110は、図44に示した各センサから入力される信号等に基づき、組電池2の温度分布の大きさを、次の方法により検出することが可能である。
Here, in the present embodiment, the temperature distribution determination unit 110 included in the control device 5 determines the size of the temperature distribution of the assembled battery 2 based on the signal input from each sensor illustrated in FIG. Can be detected.
第1の方法として、制御装置5は、電池の温度を検出する複数の電池温度センサ101から入力される信号に基づいて、組電池2の温度分布の大きさを検出する。これにより、制御装置5は、電池セル21の上方部分と下方部分の温度分布の大きさを直接検出することが可能である。
As a first method, the control device 5 detects the size of the temperature distribution of the assembled battery 2 based on signals input from the plurality of battery temperature sensors 101 that detect the temperature of the battery. Thereby, the control device 5 can directly detect the magnitude of the temperature distribution in the upper part and the lower part of the battery cell 21.
第2の方法として、制御装置5は、ペルチェ素子温度センサ104と作動流体温度センサ102から入力される信号に基づいて、組電池2の温度分布の大きさを検出する。サーモサイフォン回路を循環する作動流体の温度に対し、ペルチェ素子64の温度が高いほど、機器温調装置1による組電池2の加熱能力が大きいので、組電池2の温度分布が大きくなる。
As a second method, the control device 5 detects the size of the temperature distribution of the assembled battery 2 based on signals input from the Peltier element temperature sensor 104 and the working fluid temperature sensor 102. The higher the temperature of the Peltier element 64 relative to the temperature of the working fluid circulating in the thermosiphon circuit, the greater the heating capacity of the assembled battery 2 by the device temperature control device 1, and thus the temperature distribution of the assembled battery 2 increases.
第3の方法として、制御装置5は、ペルチェ素子64が連続して作動している時間、またはペルチェ素子64が連続して作動を停止している時間に基づいて、組電池2の温度分布の大きさを検出する。ペルチェ素子64が連続して作動している時間が長いほど、組電池2の温度分布が大きくなる。ペルチェ素子64が作動を停止している時間が長いほど、組電池2の温度分布が小さくなる。
As a third method, the control device 5 determines the temperature distribution of the assembled battery 2 based on the time during which the Peltier element 64 is continuously operated or the time when the Peltier element 64 is continuously stopped. Detect the size. The longer the time that the Peltier element 64 is operating continuously, the greater the temperature distribution of the assembled battery 2. The longer the time during which the Peltier element 64 has stopped operating, the smaller the temperature distribution of the battery pack 2 becomes.
第4の方法として、制御装置5は、ペルチェ素子64に供給される電力に基づいて、組電池2の温度分布の大きさを検出する。ペルチェ素子64に供給される電力が大きいほど、機器温調装置1による組電池2の加熱能力が大きくなるので、組電池2の温度分布が大きくなる。
As a fourth method, the control device 5 detects the size of the temperature distribution of the assembled battery 2 based on the power supplied to the Peltier element 64. As the electric power supplied to the Peltier element 64 is larger, the heating capacity of the assembled battery 2 by the device temperature control device 1 is increased, and thus the temperature distribution of the assembled battery 2 is increased.
本実施形態も、上述した第23および第24実施形態と同様の作用効果を奏することができる。
This embodiment can also provide the same operational effects as the above-described twenty-third and twenty-fourth embodiments.
(第26実施形態)
第26実施形態について図45を参照して説明する。本実施形態は、上述した第23~第25実施形態に対し、加熱部61に関する構成を変更したものである。本実施形態の加熱部61は、水―作動流体熱交換器93であり、組電池2の暖機時に温水が流れるように構成されている。 (26th Embodiment)
A twenty-sixth embodiment will be described with reference to FIG. In the present embodiment, the configuration relating to theheating unit 61 is changed from the above-described twenty-third to twenty-fifth embodiments. The heating unit 61 of the present embodiment is a water-working fluid heat exchanger 93 and is configured such that warm water flows when the assembled battery 2 is warmed up.
第26実施形態について図45を参照して説明する。本実施形態は、上述した第23~第25実施形態に対し、加熱部61に関する構成を変更したものである。本実施形態の加熱部61は、水―作動流体熱交換器93であり、組電池2の暖機時に温水が流れるように構成されている。 (26th Embodiment)
A twenty-sixth embodiment will be described with reference to FIG. In the present embodiment, the configuration relating to the
本実施形態の機器温調装置1は、冷却水回路9を利用している。冷却水回路9は、ウォータポンプ91、温水ヒータ96、水―作動流体熱交換器93、および、それらを接続する冷却水配管94を有している。冷却水回路9には、水が流れる。
The equipment temperature control device 1 of the present embodiment uses a cooling water circuit 9. The cooling water circuit 9 has a water pump 91, a hot water heater 96, a water-working fluid heat exchanger 93, and a cooling water pipe 94 connecting them. Water flows through the cooling water circuit 9.
ウォータポンプ91は、水を圧送し、図45の矢印WFに示すように、冷却水回路9に水を循環させる。温水ヒータ96は、冷却水回路9を流れる水を加熱し、水を温水にすることが可能である。温水ヒータ96から流出した温水は、水―作動流体熱交換器93に流入する。水―作動流体熱交換器93は、機器温調装置1の流体通路60を流れる作動流体と冷却水回路9を流れる温水とを熱交換させる熱交換器である。すなわち、本実施形態の加熱部61としての水―作動流体熱交換器93は、冷却水回路9を流れる温水により、機器温調装置1の流体通路60を流れる作動流体を加熱することが可能である。
The water pump 91 pumps water and circulates water through the cooling water circuit 9 as shown by an arrow WF in FIG. The hot water heater 96 can heat the water flowing through the cooling water circuit 9 to make the water warm. The hot water flowing out from the hot water heater 96 flows into the water-working fluid heat exchanger 93. The water-working fluid heat exchanger 93 is a heat exchanger that exchanges heat between the working fluid flowing through the fluid passage 60 of the device temperature control apparatus 1 and the hot water flowing through the cooling water circuit 9. That is, the water-working fluid heat exchanger 93 as the heating unit 61 of the present embodiment can heat the working fluid flowing through the fluid passage 60 of the device temperature control apparatus 1 with the hot water flowing through the cooling water circuit 9. is there.
図45では、制御装置5に接続される各センサが例示されている。制御装置5には、電池温度センサ101、作動流体温度センサ102、水―作動流体熱交換器93を流れる水温を検出する水―作動流体温度センサ105、及び、冷却水回路9を流れる水の流量を検出する水回路流量センサ106等から伝送される信号が入力される。また、制御装置5は、温度分布判定部110、および、ウォータポンプ91に通電する時間を検出するウォータポンプ通電時間検出部115などを有している。
In FIG. 45, each sensor connected to the control device 5 is illustrated. The control device 5 includes a battery temperature sensor 101, a working fluid temperature sensor 102, a water-working fluid temperature sensor 105 that detects a water temperature flowing through the water-working fluid heat exchanger 93, and a flow rate of water flowing through the cooling water circuit 9. A signal transmitted from the water circuit flow sensor 106 or the like that detects the above is input. In addition, the control device 5 includes a temperature distribution determination unit 110, a water pump energization time detection unit 115 that detects a time during which the water pump 91 is energized, and the like.
本実施形態の制御装置5が行う暖機制御処理は、上述した第23および第24実施形態で説明した暖機制御処理と同じである。
The warm-up control process performed by the control device 5 of the present embodiment is the same as the warm-up control process described in the 23rd and 24th embodiments described above.
ここで、本実施形態では、制御装置5が有する温度分布判定部110は、図45に示した各センサから入力される信号等に基づき、組電池2の温度分布の大きさを、次の方法により検出することが可能である。
Here, in the present embodiment, the temperature distribution determination unit 110 included in the control device 5 determines the size of the temperature distribution of the assembled battery 2 based on a signal input from each sensor illustrated in FIG. Can be detected.
第1の方法として、制御装置5は、電池の温度を検出する複数の電池温度センサ101から入力される信号に基づいて、組電池2の温度分布の大きさを検出する。これにより、制御装置5は、電池セル21の上方部分と下方部分の温度分布の大きさを直接検出することが可能である。
As a first method, the control device 5 detects the size of the temperature distribution of the assembled battery 2 based on signals input from the plurality of battery temperature sensors 101 that detect the temperature of the battery. Thereby, the control device 5 can directly detect the magnitude of the temperature distribution in the upper part and the lower part of the battery cell 21.
第2の方法として、制御装置5は、水―作動流体温度センサ105により検出される水―作動流体熱交換器93を流れる水温と、電池温度センサ101により検出される組電池2の温度との差に基づいて、組電池2の温度分布の大きさを検出する。組電池2の温度に対し、水―作動流体熱交換器93を流れる水温(すなわち、温水の温度)が高いほど、組電池2の加熱能力が大きいので、組電池2の温度分布が大きくなる。
As a second method, the control device 5 calculates the water temperature flowing through the water-working fluid heat exchanger 93 detected by the water-working fluid temperature sensor 105 and the temperature of the assembled battery 2 detected by the battery temperature sensor 101. Based on the difference, the size of the temperature distribution of the assembled battery 2 is detected. As the temperature of the water flowing through the water-working fluid heat exchanger 93 (that is, the temperature of the hot water) is higher than the temperature of the assembled battery 2, the heating capacity of the assembled battery 2 is larger, and the temperature distribution of the assembled battery 2 becomes larger.
第3の方法として、制御装置5は、水―作動流体熱交換器93を流れる水温と、組電池2の温度との差に加え、さらに、冷却水回路9を流れる水の流量に基づいて、組電池2の温度分布の大きさを検出する。水―作動流体熱交換器93を流れる水温は、水―作動流体温度センサ105により検出される。組電池2の温度は、電池温度センサ101により検出される。冷却水回路9を流れる水の流量は、水回路流量センサ106により検出される。冷却水回路9を流れる水の流量が多いほど、組電池2の加熱能力が大きいので、組電池2の温度分布が大きくなる。一方、冷却水回路9を流れる水の流量が少ないほど、組電池2の温度分布が小さくなる。
As a third method, the control device 5, in addition to the difference between the water temperature flowing through the water-working fluid heat exchanger 93 and the temperature of the assembled battery 2, further, based on the flow rate of water flowing through the cooling water circuit 9, The magnitude of the temperature distribution of the assembled battery 2 is detected. The water temperature flowing through the water-working fluid heat exchanger 93 is detected by a water-working fluid temperature sensor 105. The temperature of the assembled battery 2 is detected by the battery temperature sensor 101. The flow rate of water flowing through the cooling water circuit 9 is detected by the water circuit flow rate sensor 106. As the flow rate of water flowing through the cooling water circuit 9 increases, the heating capacity of the assembled battery 2 increases, so that the temperature distribution of the assembled battery 2 increases. On the other hand, the smaller the flow rate of the water flowing through the cooling water circuit 9, the smaller the temperature distribution of the assembled battery 2.
第4の方法として、制御装置5は、水―作動流体熱交換器93を流れる水温と、サーモサイフォン回路を循環する作動流体の温度との差に基づいて、組電池2の温度分布の大きさを検出する。水―作動流体熱交換器93を流れる水温は、制御装置5は、水―作動流体温度センサ105により検出される。サーモサイフォン回路を循環する作動流体の温度は、と、作動流体温度センサ102により検出される。サーモサイフォン回路を循環する作動流体の温度に対し、水―作動流体熱交換器93を流れる水温が高いほど、組電池2の加熱能力が大きいので、組電池2の温度分布が大きくなる。
As a fourth method, the control device 5 determines the magnitude of the temperature distribution of the assembled battery 2 based on the difference between the water temperature flowing through the water-working fluid heat exchanger 93 and the temperature of the working fluid circulating in the thermosiphon circuit. Is detected. The temperature of the water flowing through the water-working fluid heat exchanger 93 is detected by the control device 5 by a water-working fluid temperature sensor 105. The temperature of the working fluid circulating through the thermosiphon circuit is detected by the working fluid temperature sensor 102. The higher the water temperature flowing through the water-working fluid heat exchanger 93 with respect to the temperature of the working fluid circulating in the thermosiphon circuit, the greater the heating capacity of the assembled battery 2, so the temperature distribution of the assembled battery 2 increases.
第5の方法として、制御装置5は、加熱部61が連続して作動している時間に基づいて、組電池2の温度分布の大きさを検出する。加熱部61が連続して作動している時間は、ウォータポンプ通電時間検出部115により検出されるウォータポンプ91への連続通電オン時間である。ウォータポンプ91が連続して作動している時間が長いほど、組電池2の温度分布が大きくなる。一方、ウォータポンプ91が連続して作動を停止している時間が長いほど、組電池2の温度分布が小さくなる。
As a fifth method, the control device 5 detects the size of the temperature distribution of the assembled battery 2 based on the time during which the heating unit 61 is continuously operating. The time during which the heating unit 61 is continuously operating is the continuous energization on time of the water pump 91 detected by the water pump energization time detection unit 115. The longer the time that the water pump 91 is operating continuously, the greater the temperature distribution of the assembled battery 2. On the other hand, the longer the time during which the water pump 91 is continuously stopped, the smaller the temperature distribution of the assembled battery 2 becomes.
なお、本実施形態の制御装置5が行う暖機制御処理の中で、組電池2の温度分布が大きくなったときに制御装置5が行う加熱部61の加熱能力の減少は、具体的には、ウォータポンプ91の流量減少または温水ヒータ96の加熱能力減少などにより行われる。組電池2の温度分布が大きくなったときに制御装置5が行う加熱部61の作動停止は、具体的には、ウォータポンプ91の作動停止などにより行われる。
In addition, in the warm-up control process performed by the control device 5 of the present embodiment, the decrease in the heating capacity of the heating unit 61 performed by the control device 5 when the temperature distribution of the assembled battery 2 becomes larger is specifically described. This is performed by reducing the flow rate of the water pump 91 or reducing the heating capacity of the hot water heater 96. The operation stop of the heating unit 61 performed by the control device 5 when the temperature distribution of the assembled battery 2 becomes larger is specifically performed by operation stop of the water pump 91 or the like.
本実施形態も、上述した第23~第25実施形態と同様の作用効果を奏することができる。
This embodiment can also provide the same operational effects as the above-described twenty-third to twenty-fifth embodiments.
(第27実施形態)
第27実施形態について図46および図47を参照して説明する。本実施形態は、上述した第23~第26実施形態に対し、加熱部61に関する構成を変更したものである。本実施形態の加熱部61は、冷媒―作動流体熱交換器200であり、組電池2の暖機時に温度の高い冷媒が流れるように構成されている。なお、図46では、図が煩雑になることを防ぐため、制御装置5と各機器とを接続する信号線、制御装置5およびセンサ類の記載を省略している。制御装置5とセンサ類の構成は、図47に記載している。 (27th Embodiment)
A twenty-seventh embodiment will be described with reference to FIGS. 46 and 47. FIG. In the present embodiment, the configuration relating to theheating unit 61 is changed from the above-described twenty-third to twenty-sixth embodiments. The heating unit 61 of the present embodiment is a refrigerant-working fluid heat exchanger 200 and is configured such that a high-temperature refrigerant flows when the assembled battery 2 is warmed up. In FIG. 46, in order to prevent the drawing from becoming complicated, the signal lines connecting the control device 5 and each device, the control device 5 and sensors are omitted. The configurations of the control device 5 and sensors are shown in FIG.
第27実施形態について図46および図47を参照して説明する。本実施形態は、上述した第23~第26実施形態に対し、加熱部61に関する構成を変更したものである。本実施形態の加熱部61は、冷媒―作動流体熱交換器200であり、組電池2の暖機時に温度の高い冷媒が流れるように構成されている。なお、図46では、図が煩雑になることを防ぐため、制御装置5と各機器とを接続する信号線、制御装置5およびセンサ類の記載を省略している。制御装置5とセンサ類の構成は、図47に記載している。 (27th Embodiment)
A twenty-seventh embodiment will be described with reference to FIGS. 46 and 47. FIG. In the present embodiment, the configuration relating to the
本実施形態の機器温調装置1は、ヒートポンプサイクル201を利用している。ヒートポンプサイクル201は、コンプレッサ202、室内コンデンサ203、第1膨張弁204、室外器205、逆止弁206、第2膨張弁207、エバポレータ208、アキュムレータ209、および、それらを接続する冷媒配管などを備えている。
The device temperature control apparatus 1 of the present embodiment uses a heat pump cycle 201. The heat pump cycle 201 includes a compressor 202, an indoor condenser 203, a first expansion valve 204, an outdoor unit 205, a check valve 206, a second expansion valve 207, an evaporator 208, an accumulator 209, and a refrigerant pipe connecting them. ing.
室外器205と逆止弁206との間に設けられた第1分岐部211と、エバポレータ208とアキュムレータ209との間に設けられた第2分岐部212とをバイパス配管220が接続している。そのバイパス配管220に第1電磁弁221が設けられ、逆止弁206と第2膨張弁207とを接続する冷媒配管に第2電磁弁222が設けられている。
A bypass pipe 220 connects a first branch portion 211 provided between the outdoor unit 205 and the check valve 206 and a second branch portion 212 provided between the evaporator 208 and the accumulator 209. A first solenoid valve 221 is provided in the bypass pipe 220, and a second solenoid valve 222 is provided in the refrigerant pipe connecting the check valve 206 and the second expansion valve 207.
加熱部61としての冷媒―作動流体熱交換器200には、その冷媒―作動流体熱交換器200に冷媒を供給するための第1配管231と第2配管232とが接続されている。第1配管231は、一端が冷媒―作動流体熱交換器200に接続され、他端が逆止弁206と第2電磁弁222とを接続する冷媒配管の途中に設けられた第3分岐部213に接続されている。第1配管231の途中に設けられた第4分岐部214には、室内コンデンサ203と第1膨張弁204との間に設けられた第1三方弁241から延びる配管243が接続されている。第1配管231の途中には、第4分岐部214と冷媒―作動流体熱交換器200との間に、第3膨張弁233が設けられている。また、第1配管231の途中には、第4分岐部214と第3分岐部213との間に、第3電磁弁223が設けられている。
A first pipe 231 and a second pipe 232 for supplying the refrigerant to the refrigerant-working fluid heat exchanger 200 are connected to the refrigerant-working fluid heat exchanger 200 as the heating unit 61. One end of the first pipe 231 is connected to the refrigerant-working fluid heat exchanger 200, and the other end is a third branch 213 provided in the middle of the refrigerant pipe connecting the check valve 206 and the second electromagnetic valve 222. It is connected to the. A pipe 243 extending from a first three-way valve 241 provided between the indoor condenser 203 and the first expansion valve 204 is connected to the fourth branch part 214 provided in the middle of the first pipe 231. In the middle of the first pipe 231, a third expansion valve 233 is provided between the fourth branch portion 214 and the refrigerant-working fluid heat exchanger 200. A third electromagnetic valve 223 is provided in the middle of the first pipe 231 between the fourth branch portion 214 and the third branch portion 213.
一方、第2配管232は、一端が冷媒―作動流体熱交換器200に接続され、他端がエバポレータ208と第2分岐部212とを接続する冷媒配管の途中に設けられた第5分岐部215に接続されている。第2配管232の途中には第2三方弁242が設けられている。第2三方弁242から延びる配管244は、第1三方弁241と第1膨張弁204との間に設けられた第6分岐部216に接続されている。
On the other hand, the second pipe 232 has one end connected to the refrigerant-working fluid heat exchanger 200 and the other end connected to the evaporator 208 and the second branch part 212. The fifth branch part 215 provided in the middle of the refrigerant pipe. It is connected to the. A second three-way valve 242 is provided in the middle of the second pipe 232. A pipe 244 extending from the second three-way valve 242 is connected to a sixth branch 216 provided between the first three-way valve 241 and the first expansion valve 204.
ヒートポンプサイクル201が備える室内コンデンサ203およびエバポレータ208は、車室内空調用のHVAC(Heating, Ventilation and Air-Conditioning)ユニット250の一部を構成している。HVACユニット250は、空調用ブロア251により空調ケース252内の通風路に流れる風をエバポレータ208により冷却し、また、室内コンデンサ203により加熱することで、車室内に空調風を吹き出すものである。HVACユニット250は、エバポレータ208と室内コンデンサ203との間にエアミックスドア253を有している。なお、HVACユニット250は、ヒータコア254を備えていてもよい。
The indoor condenser 203 and the evaporator 208 included in the heat pump cycle 201 constitute a part of an HVAC (Heating, “Ventilation” and “Air-Conditioning”) unit 250 for air conditioning in the vehicle interior. The HVAC unit 250 cools the wind flowing in the ventilation path in the air conditioning case 252 by the air conditioning blower 251 by the evaporator 208 and heats it by the indoor condenser 203 to blow out the conditioned air into the vehicle interior. The HVAC unit 250 has an air mix door 253 between the evaporator 208 and the indoor condenser 203. Note that the HVAC unit 250 may include a heater core 254.
<暖機時の作動>
図46では、機器温調装置1が組電池2を暖機するときの作動流体および冷媒の流れを実線および破線の矢印で示している。組電池2の暖機時、制御装置5は、第1三方弁241を冷媒の一部が室内コンデンサ203から第4分岐部214へ流れるように切り替え、第2三方弁242を冷媒が第2配管232から第6分岐部216へ流れるように切り替える。また、制御装置5は、第1膨張弁204を絞り、第1電磁弁221を開き、第2電磁弁222と第3電磁弁223を閉じ、第3膨張弁233を開くか又は適切な開度に絞り、コンプレッサ202をオンする。 <Operation during warm-up>
In FIG. 46, the flow of the working fluid and the refrigerant when the devicetemperature control device 1 warms up the assembled battery 2 is indicated by solid and broken arrows. When the assembled battery 2 is warmed up, the control device 5 switches the first three-way valve 241 so that a part of the refrigerant flows from the indoor condenser 203 to the fourth branch part 214, and the second three-way valve 242 is connected to the second pipe by the refrigerant. It switches so that it may flow from 232 to the 6th branch part 216. FIG. In addition, the control device 5 throttles the first expansion valve 204, opens the first electromagnetic valve 221, closes the second electromagnetic valve 222 and the third electromagnetic valve 223, and opens the third expansion valve 233 or an appropriate opening degree. The compressor 202 is turned on.
図46では、機器温調装置1が組電池2を暖機するときの作動流体および冷媒の流れを実線および破線の矢印で示している。組電池2の暖機時、制御装置5は、第1三方弁241を冷媒の一部が室内コンデンサ203から第4分岐部214へ流れるように切り替え、第2三方弁242を冷媒が第2配管232から第6分岐部216へ流れるように切り替える。また、制御装置5は、第1膨張弁204を絞り、第1電磁弁221を開き、第2電磁弁222と第3電磁弁223を閉じ、第3膨張弁233を開くか又は適切な開度に絞り、コンプレッサ202をオンする。 <Operation during warm-up>
In FIG. 46, the flow of the working fluid and the refrigerant when the device
これにより、コンプレッサ202から吐き出された冷媒は、ヒートポンプサイクル201の室内コンデンサ203→第1膨張弁204→室外器205→第1電磁弁221→アキュムレータ209→コンプレッサ202の順にヒートポンプサイクル201を循環する。また、ヒートポンプサイクル201を循環する冷媒の一部は、第1三方弁241から第1配管231→第3膨張弁233→冷媒―作動流体熱交換器200→第2配管232→第2三方弁242→第6分岐部216を流れる。第1配管231から冷媒―作動流体熱交換器200に流入する冷媒は、第3膨張弁233により電池暖機のために適切な温度となるように減圧され、機器温調装置1の流体通路60を流れる作動流体を加熱する。この際、機器温調装置1の流体通路60を流れる作動流体は、冷媒―作動流体熱交換器200で蒸発(すなわち気化)し、上方へ流れ、上接続部15から機器用熱交換器10に供給される。その後、機器用熱交換器10の内側の作動流体は、電池セル21に放熱して凝縮する。そして、機器用熱交換器10内で凝縮した作動流体と流体通路60の作動流体とのヘッド差により、機器用熱交換器10の液相の作動流体は、下接続部16から流体通路60を通じて冷媒―作動流体熱交換器200に戻る。
Thereby, the refrigerant discharged from the compressor 202 circulates in the heat pump cycle 201 in the order of the indoor condenser 203 of the heat pump cycle 201 → the first expansion valve 204 → the outdoor unit 205 → the first electromagnetic valve 221 → the accumulator 209 → the compressor 202. Further, a part of the refrigerant circulating in the heat pump cycle 201 is transferred from the first three-way valve 241 to the first pipe 231 → the third expansion valve 233 → the refrigerant-working fluid heat exchanger 200 → the second pipe 232 → the second three-way valve 242. → Flows through the sixth branch 216. The refrigerant flowing into the refrigerant-working fluid heat exchanger 200 from the first pipe 231 is depressurized by the third expansion valve 233 so that the temperature becomes an appropriate temperature for battery warm-up, and the fluid passage 60 of the device temperature adjustment device 1. The working fluid flowing through is heated. At this time, the working fluid flowing through the fluid passage 60 of the device temperature control apparatus 1 evaporates (that is, vaporizes) in the refrigerant-working fluid heat exchanger 200, flows upward, and passes from the upper connection portion 15 to the device heat exchanger 10. Supplied. Thereafter, the working fluid inside the equipment heat exchanger 10 dissipates heat to the battery cell 21 and condenses. Then, due to the head difference between the working fluid condensed in the equipment heat exchanger 10 and the working fluid in the fluid passage 60, the liquid-phase working fluid in the equipment heat exchanger 10 passes from the lower connection portion 16 through the fluid passage 60. Return to refrigerant-working fluid heat exchanger 200.
なお、HVACユニット250による車室内の暖房と組電池2の暖機を同時に行う場合、室内コンデンサ203に必要な温度と組電池2の暖機に必要な温度とに差があるため、第3膨張弁233の開度の調整が必要となる。一方、HVACユニット250による車室内の空調を行わず、組電池2の暖機のみを行う場合、コンプレッサ202の冷媒吐出量が組電池2の暖機に必要な冷媒量となるように調整し、第3膨張弁233を開いてもよい。
When heating the vehicle interior by the HVAC unit 250 and warming up the assembled battery 2 at the same time, there is a difference between the temperature required for the indoor condenser 203 and the temperature necessary for warming up the assembled battery 2, so that the third expansion Adjustment of the opening degree of the valve 233 is required. On the other hand, when only the warming up of the assembled battery 2 is performed without air conditioning the vehicle interior by the HVAC unit 250, the refrigerant discharge amount of the compressor 202 is adjusted to be the refrigerant amount necessary for warming up the assembled battery 2, The third expansion valve 233 may be opened.
なお、本実施形態では、車室内空調用に使用されるヒートポンプサイクル201を用いたが、これに限らず、車室内空調とは切り離した機器温調装置1の加熱部61に専用のヒートポンプサイクルを用いてもよい。
In addition, in this embodiment, although the heat pump cycle 201 used for vehicle interior air conditioning was used, it is not restricted to this, A dedicated heat pump cycle is provided in the heating part 61 of the apparatus temperature control apparatus 1 separated from vehicle interior air conditioning. It may be used.
また、本実施形態では、ヒートポンプサイクル201を用いて、冷媒―作動流体熱交換器200を流れる冷媒により、機器温調装置1の流体通路60を流れる作動流体を冷却することも可能であるが、本明細書ではその説明を省略する。
In the present embodiment, the working fluid flowing through the fluid passage 60 of the device temperature control apparatus 1 can be cooled by the refrigerant flowing through the refrigerant-working fluid heat exchanger 200 using the heat pump cycle 201. The description is omitted in this specification.
図47では、制御装置5に接続される各センサが例示されている。制御装置5には、電池温度センサ101、作動流体温度センサ102、冷媒温度センサ107、および、冷媒流量センサ108などから伝送される信号が入力される。冷媒温度センサ107は、冷媒―作動流体熱交換器200を流れる冷媒の温度を検出するものである。冷媒流量センサ108は、ヒートポンプサイクル201を流れる冷媒の流量を検出するものである。また、制御装置5は、温度分布判定部110、コンプレッサ作動時間検出部116、コンプレッサ回転数検出部117、および、冷媒流通時間検出部118などを有している。コンプレッサ作動時間検出部116は、コンプレッサ202の作動時間を検出するものである。コンプレッサ回転数検出部117は、コンプレッサ202の回転数を検出するものである。冷媒流通時間検出部118は、冷媒―作動流体熱交換器200の冷媒流通時間を検出するものである。
47, each sensor connected to the control device 5 is illustrated. Signals transmitted from the battery temperature sensor 101, the working fluid temperature sensor 102, the refrigerant temperature sensor 107, the refrigerant flow rate sensor 108, and the like are input to the control device 5. The refrigerant temperature sensor 107 detects the temperature of the refrigerant flowing through the refrigerant-working fluid heat exchanger 200. The refrigerant flow rate sensor 108 detects the flow rate of the refrigerant flowing through the heat pump cycle 201. Further, the control device 5 includes a temperature distribution determination unit 110, a compressor operation time detection unit 116, a compressor rotation speed detection unit 117, a refrigerant circulation time detection unit 118, and the like. The compressor operation time detection unit 116 detects the operation time of the compressor 202. The compressor rotation speed detection unit 117 detects the rotation speed of the compressor 202. The refrigerant circulation time detection unit 118 detects the refrigerant circulation time of the refrigerant-working fluid heat exchanger 200.
本実施形態の制御装置5が行う暖機制御処理は、上述した第23および第24実施形態で説明した暖機制御処理と同じである。
The warm-up control process performed by the control device 5 of the present embodiment is the same as the warm-up control process described in the 23rd and 24th embodiments described above.
ここで、本実施形態では、制御装置5が有する温度分布判定部110は、図47に示した各センサから入力される信号等に基づき、組電池2の温度分布の大きさを、次の方法により検出することが可能である。
Here, in the present embodiment, the temperature distribution determination unit 110 included in the control device 5 determines the size of the temperature distribution of the assembled battery 2 based on the signal input from each sensor shown in FIG. Can be detected.
第1の方法として、制御装置5は、電池の温度を検出する複数の電池温度センサ101から入力される信号に基づいて、組電池2の温度分布の大きさを検出する。これにより、制御装置5は、電池セル21の上方部分と下方部分の温度分布の大きさを直接検出することが可能である。
As a first method, the control device 5 detects the size of the temperature distribution of the assembled battery 2 based on signals input from the plurality of battery temperature sensors 101 that detect the temperature of the battery. Thereby, the control device 5 can directly detect the magnitude of the temperature distribution in the upper part and the lower part of the battery cell 21.
第2の方法として、制御装置5は、冷媒温度センサ107により検出される冷媒―作動流体熱交換器200を流れる冷媒の温度と、電池温度センサ101により検出される組電池2の温度との差に基づいて、組電池2の温度分布の大きさを検出する。組電池2の温度に対し、冷媒―作動流体熱交換器200を流れる冷媒の温度が高いほど、組電池2の加熱能力が大きいので、組電池2の温度分布が大きくなる。
As a second method, the control device 5 determines the difference between the temperature of the refrigerant flowing through the refrigerant-working fluid heat exchanger 200 detected by the refrigerant temperature sensor 107 and the temperature of the assembled battery 2 detected by the battery temperature sensor 101. Based on the above, the magnitude of the temperature distribution of the assembled battery 2 is detected. The higher the temperature of the refrigerant flowing through the refrigerant-working fluid heat exchanger 200 with respect to the temperature of the assembled battery 2, the greater the heating capacity of the assembled battery 2, so the temperature distribution of the assembled battery 2 increases.
第3の方法として、制御装置5は、冷媒―作動流体熱交換器200を流れる冷媒の温度と、組電池2の温度との差に加え、さらに、ヒートポンプサイクルを流れる冷媒の流量に基づいて、組電池2の温度分布の大きさを検出する。冷媒―作動流体熱交換器200を流れる冷媒の温度は、冷媒温度センサ107により検出される。組電池2の温度は、電池温度センサ101により検出される。ヒートポンプサイクルを流れる冷媒の流量は、冷媒流量センサ108により検出される。ヒートポンプサイクルを流れる冷媒の流量が多いほど、組電池2の加熱能力が大きいので、組電池2の温度分布が大きくなる。一方、ヒートポンプサイクルを流れる冷媒の流量が少ないほど、組電池2の温度分布が小さくなる。
As a third method, the control device 5, based on the difference between the temperature of the refrigerant flowing through the refrigerant-working fluid heat exchanger 200 and the temperature of the assembled battery 2, and further based on the flow rate of the refrigerant flowing through the heat pump cycle, The magnitude of the temperature distribution of the assembled battery 2 is detected. The refrigerant temperature flowing through the refrigerant-working fluid heat exchanger 200 is detected by a refrigerant temperature sensor 107. The temperature of the assembled battery 2 is detected by the battery temperature sensor 101. The flow rate of the refrigerant flowing through the heat pump cycle is detected by the refrigerant flow rate sensor 108. As the flow rate of the refrigerant flowing through the heat pump cycle increases, the heating capacity of the assembled battery 2 increases, so that the temperature distribution of the assembled battery 2 increases. On the other hand, the smaller the flow rate of the refrigerant flowing through the heat pump cycle, the smaller the temperature distribution of the assembled battery 2.
第4の方法として、制御装置5は、冷媒―作動流体熱交換器200を流れる冷媒の温度と、サーモサイフォン回路を循環する作動流体の温度との差に基づいて、組電池2の温度分布の大きさを検出する。冷媒―作動流体熱交換器200を流れる冷媒の温度は、冷媒温度センサ107により検出される。サーモサイフォン回路を循環する作動流体の温度は、作動流体温度センサ102により検出される。サーモサイフォン回路を循環する作動流体の温度に対し、冷媒―作動流体熱交換器200を流れる冷媒の温度が高いほど、組電池2の加熱能力が大きいので、組電池2の温度分布が大きくなる。
As a fourth method, the control device 5 determines the temperature distribution of the assembled battery 2 based on the difference between the temperature of the refrigerant flowing through the refrigerant-working fluid heat exchanger 200 and the temperature of the working fluid circulating in the thermosiphon circuit. Detect the size. The refrigerant temperature flowing through the refrigerant-working fluid heat exchanger 200 is detected by a refrigerant temperature sensor 107. The temperature of the working fluid circulating through the thermosiphon circuit is detected by the working fluid temperature sensor 102. The higher the temperature of the refrigerant flowing through the refrigerant-working fluid heat exchanger 200 with respect to the temperature of the working fluid circulating in the thermosiphon circuit, the greater the heating capacity of the assembled battery 2, and thus the temperature distribution of the assembled battery 2 becomes larger.
第5の方法として、制御装置5は、加熱部61が連続して作動している時間に基づいて、組電池2の温度分布の大きさを検出する。加熱部61が連続して作動している時間は、コンプレッサ作動時間検出部116により検出されるコンプレッサ202の連続作動時間である。コンプレッサ202が連続して作動している時間が長いほど、組電池2の温度分布が大きくなる。一方、コンプレッサ202が連続して作動を停止している時間が長いほど、組電池2の温度分布が小さくなる。
As a fifth method, the control device 5 detects the size of the temperature distribution of the assembled battery 2 based on the time during which the heating unit 61 is continuously operating. The time during which the heating unit 61 operates continuously is the continuous operation time of the compressor 202 detected by the compressor operation time detection unit 116. The longer the time during which the compressor 202 is operating continuously, the greater the temperature distribution of the assembled battery 2. On the other hand, the longer the time during which the compressor 202 is continuously stopped, the smaller the temperature distribution of the battery pack 2 becomes.
第6の方法として、制御装置5は、コンプレッサ202の回転数に基づいて、組電池2の温度分布の大きさを検出する。コンプレッサ202の回転数は、コンプレッサ回転数検出部117により検出される。コンプレッサ202の回転数が高いほど、組電池2の温度分布が大きくなる。一方、コンプレッサ202の回転数が低いほど、組電池2の温度分布が小さくなる。
As a sixth method, the control device 5 detects the size of the temperature distribution of the assembled battery 2 based on the rotation speed of the compressor 202. The rotation speed of the compressor 202 is detected by the compressor rotation speed detector 117. The higher the rotation speed of the compressor 202, the larger the temperature distribution of the assembled battery 2. On the other hand, the lower the rotation speed of the compressor 202, the smaller the temperature distribution of the assembled battery 2.
第7の方法として、制御装置5は、冷媒―作動流体熱交換器200に流れる冷媒の流通時間に基づいて、組電池2の温度分布の大きさを検出する。冷媒―作動流体熱交換器200に流れる冷媒の流通時間は、冷媒流通時間検出部118により検出される。冷媒―作動流体熱交換器200に流れる冷媒の流通時間が長いほど、組電池2の温度分布が大きくなる。一方、冷媒―作動流体熱交換器200に流れる冷媒の流通遮断時間が長いほど、組電池2の温度分布が小さくなる。
As a seventh method, the control device 5 detects the magnitude of the temperature distribution of the assembled battery 2 based on the circulation time of the refrigerant flowing in the refrigerant-working fluid heat exchanger 200. The refrigerant circulation time flowing through the refrigerant-working fluid heat exchanger 200 is detected by the refrigerant circulation time detection unit 118. The longer the circulation time of the refrigerant flowing through the refrigerant-working fluid heat exchanger 200, the greater the temperature distribution of the assembled battery 2. On the other hand, the longer the distribution interruption time of the refrigerant flowing through the refrigerant-working fluid heat exchanger 200, the smaller the temperature distribution of the assembled battery 2.
なお、本実施形態の制御装置5が行う暖機制御処理において、組電池2の温度分布が大きくなったときに制御装置5が行う加熱部61の加熱能力の減少は、具体的には、コンプレッサ202の回転数減少などにより行われる。また、組電池2の温度分布が大きくなったときに制御装置5が行う加熱部61の作動停止は、具体的には、コンプレッサ202の作動停止などにより行われる。
Note that, in the warm-up control process performed by the control device 5 of the present embodiment, the decrease in the heating capacity of the heating unit 61 performed by the control device 5 when the temperature distribution of the assembled battery 2 becomes larger is specifically a compressor. This is performed by reducing the number of revolutions 202 or the like. Further, when the temperature distribution of the assembled battery 2 becomes large, the operation of the heating unit 61 performed by the control device 5 is specifically performed by stopping the operation of the compressor 202 or the like.
本実施形態も、上述した第23~第26実施形態と同様の作用効果を奏することができる。
This embodiment can achieve the same effects as the above-described twenty-third to twenty-sixth embodiments.
(第28実施形態)
第28実施形態について図48および図49を参照して説明する。第28実施形態では、機器温調装置1は、機器用熱交換器10、上接続部15、下接続部16、流体通路60および熱供給部材100を備えている。機器用熱交換器10は、第21実施形態で説明したような、単一の容器17により構成されるものであってもよい。或いは、機器用熱交換器10は、第21実施形態以外の実施形態で説明したような上タンク11、下タンク12、および複数のチューブを有する熱交換部13などにより構成されるものであってもよい。 (Twenty-eighth embodiment)
A twenty-eighth embodiment will be described with reference to FIGS. 48 and 49. FIG. In the twenty-eighth embodiment, the devicetemperature control device 1 includes a device heat exchanger 10, an upper connection portion 15, a lower connection portion 16, a fluid passage 60, and a heat supply member 100. The equipment heat exchanger 10 may be configured by a single container 17 as described in the twenty-first embodiment. Alternatively, the equipment heat exchanger 10 includes the upper tank 11, the lower tank 12, and the heat exchange unit 13 having a plurality of tubes as described in the embodiments other than the twenty-first embodiment. Also good.
第28実施形態について図48および図49を参照して説明する。第28実施形態では、機器温調装置1は、機器用熱交換器10、上接続部15、下接続部16、流体通路60および熱供給部材100を備えている。機器用熱交換器10は、第21実施形態で説明したような、単一の容器17により構成されるものであってもよい。或いは、機器用熱交換器10は、第21実施形態以外の実施形態で説明したような上タンク11、下タンク12、および複数のチューブを有する熱交換部13などにより構成されるものであってもよい。 (Twenty-eighth embodiment)
A twenty-eighth embodiment will be described with reference to FIGS. 48 and 49. FIG. In the twenty-eighth embodiment, the device
機器用熱交換器10のうち重力方向上側となる位置に上接続部15が設けられ、機器用熱交換器10のうち重力方向下側となる位置に下接続部16が設けられている。上接続部15と下接続部16はいずれも、機器用熱交換器10に作動流体を流入させ、または、機器用熱交換器10から作動流体を流出させるための配管接続部である。
The upper connection part 15 is provided in the position which becomes the gravity direction upper side among the heat exchangers 10 for apparatuses, and the lower connection part 16 is provided in the position which becomes the gravity direction lower side among the heat exchangers 10 for apparatuses. Each of the upper connection portion 15 and the lower connection portion 16 is a pipe connection portion for allowing the working fluid to flow into the equipment heat exchanger 10 or for causing the working fluid to flow out from the equipment heat exchanger 10.
上接続部15と下接続部16とを連通させるように流体通路60が接続されている。流体通路60に設けられた熱供給部材100は、流体通路60を流れる作動流体に対し冷熱または温熱を選択的に供給可能な構成である。熱供給部材100として、後述する実施形態で説明するように、水―作動流体熱交換器、冷媒―作動流体熱交換器、またはペルチェ素子などを採用することが可能である。この熱供給部材100は、機器用熱交換器10の内側にある作動流体の液面FLの高さを跨ぐ高さ方向の位置で流体通路60に設けられている。そのため、熱供給部材100は、流体通路60を流れる気相の作動流体に対し冷熱を供給し、その作動流体を凝縮させることが可能である。また、熱供給部材100は、流体通路60を流れる液相の作動流体に対し温熱を供給し、その作動流体を蒸発させることも可能である。
The fluid passage 60 is connected so that the upper connection part 15 and the lower connection part 16 are connected. The heat supply member 100 provided in the fluid passage 60 is configured to selectively supply cold or warm heat to the working fluid flowing through the fluid passage 60. As the heat supply member 100, a water-working fluid heat exchanger, a refrigerant-working fluid heat exchanger, a Peltier element, or the like can be adopted as will be described in an embodiment described later. The heat supply member 100 is provided in the fluid passage 60 at a position in the height direction that straddles the height of the liquid level FL of the working fluid inside the heat exchanger for equipment 10. Therefore, the heat supply member 100 can supply cold heat to the vapor-phase working fluid flowing in the fluid passage 60 to condense the working fluid. The heat supply member 100 can also supply warm heat to the liquid-phase working fluid flowing in the fluid passage 60 to evaporate the working fluid.
次に、第28実施形態の機器温調装置1の作動について説明する。
Next, the operation of the device temperature control apparatus 1 according to the 28th embodiment will be described.
<冷却時の作動>
図48では、機器温調装置1が組電池を冷却するときの作動流体の流れを実線の矢印で示している。なお、図48および図49では組電池を図示していない。組電池の冷却時、熱供給部材100は、流体通路60を流れる作動流体に対し冷熱を供給する。これにより、流体通路60の作動流体が凝縮すると、流体通路60で凝縮した液相の作動流体と機器用熱交換器10内の液相の作動流体とのヘッド差により、流体通路60の液相の作動流体は下接続部16から機器用熱交換器10に流入する。機器用熱交換器10内の作動流体は、組電池を構成する各電池セル21から吸熱することにより蒸発する。この過程で電池セル21は、作動流体の蒸発潜熱により冷却される。その後、気相となった作動流体は上接続部15から流体通路60に流れる。 <Operation during cooling>
In FIG. 48, the flow of the working fluid when the devicetemperature control device 1 cools the assembled battery is indicated by solid-line arrows. 48 and 49 do not show the assembled battery. When the assembled battery is cooled, the heat supply member 100 supplies cold heat to the working fluid flowing through the fluid passage 60. Thus, when the working fluid in the fluid passage 60 is condensed, the liquid phase in the fluid passage 60 is caused by a head difference between the liquid working fluid condensed in the fluid passage 60 and the liquid working fluid in the equipment heat exchanger 10. The working fluid flows into the equipment heat exchanger 10 from the lower connecting portion 16. The working fluid in the equipment heat exchanger 10 evaporates by absorbing heat from each battery cell 21 constituting the assembled battery. In this process, the battery cell 21 is cooled by the latent heat of vaporization of the working fluid. Thereafter, the working fluid that has become a gas phase flows from the upper connecting portion 15 to the fluid passage 60.
図48では、機器温調装置1が組電池を冷却するときの作動流体の流れを実線の矢印で示している。なお、図48および図49では組電池を図示していない。組電池の冷却時、熱供給部材100は、流体通路60を流れる作動流体に対し冷熱を供給する。これにより、流体通路60の作動流体が凝縮すると、流体通路60で凝縮した液相の作動流体と機器用熱交換器10内の液相の作動流体とのヘッド差により、流体通路60の液相の作動流体は下接続部16から機器用熱交換器10に流入する。機器用熱交換器10内の作動流体は、組電池を構成する各電池セル21から吸熱することにより蒸発する。この過程で電池セル21は、作動流体の蒸発潜熱により冷却される。その後、気相となった作動流体は上接続部15から流体通路60に流れる。 <Operation during cooling>
In FIG. 48, the flow of the working fluid when the device
組電池の冷却時の作動流体の流れは、流体通路60→下接続部16→機器用熱交換器10→上接続部15→流体通路60となる。すなわち、機器用熱交換器10と流体通路60を通るループ状の流路が形成される。
The flow of the working fluid during cooling of the assembled battery is as follows: fluid passage 60 → lower connection portion 16 → equipment heat exchanger 10 → upper connection portion 15 → fluid passage 60. That is, a loop-shaped flow path that passes through the equipment heat exchanger 10 and the fluid passage 60 is formed.
<暖機時の作動>
図49では、機器温調装置1が組電池を暖機するときの作動流体の流れを実線の矢印で示している。組電池の暖機時、熱供給部材100は、流体通路60を流れる作動流体に対し温熱を供給する。これにより、流体通路60の作動流体が蒸発し、上接続部15から機器用熱交換器10に流入する。機器用熱交換器10の内側で気相の作動流体は、組電池を構成する各電池セルに放熱し凝縮する。この過程で電池セルは暖機される。そして、機器用熱交換器10内で凝縮した液相の作動流体と流体通路60の液相の作動流体とのヘッド差により、機器用熱交換器10の液相の作動流体は下接続部16から流体通路60に流れる。 <Operation during warm-up>
In FIG. 49, the flow of the working fluid when the devicetemperature adjustment device 1 warms up the assembled battery is indicated by solid arrows. When the assembled battery is warmed up, the heat supply member 100 supplies heat to the working fluid flowing through the fluid passage 60. As a result, the working fluid in the fluid passage 60 evaporates and flows into the equipment heat exchanger 10 from the upper connection portion 15. The gas phase working fluid is dissipated and condensed in each battery cell constituting the assembled battery inside the equipment heat exchanger 10. In this process, the battery cell is warmed up. Then, due to the head difference between the liquid-phase working fluid condensed in the equipment heat exchanger 10 and the liquid-phase working fluid in the fluid passage 60, the liquid-phase working fluid in the equipment heat exchanger 10 becomes the lower connection portion 16. To the fluid passage 60.
図49では、機器温調装置1が組電池を暖機するときの作動流体の流れを実線の矢印で示している。組電池の暖機時、熱供給部材100は、流体通路60を流れる作動流体に対し温熱を供給する。これにより、流体通路60の作動流体が蒸発し、上接続部15から機器用熱交換器10に流入する。機器用熱交換器10の内側で気相の作動流体は、組電池を構成する各電池セルに放熱し凝縮する。この過程で電池セルは暖機される。そして、機器用熱交換器10内で凝縮した液相の作動流体と流体通路60の液相の作動流体とのヘッド差により、機器用熱交換器10の液相の作動流体は下接続部16から流体通路60に流れる。 <Operation during warm-up>
In FIG. 49, the flow of the working fluid when the device
組電池の暖機時の作動流体の流れは、流体通路60→上接続部15→機器用熱交換器10→下接続部16→流体通路60となる。すなわち、機器用熱交換器10と流体通路60を通るループ状の流路が形成される。
The flow of the working fluid when the assembled battery is warmed up is fluid passage 60 → upper connection portion 15 → equipment heat exchanger 10 → lower connection portion 16 → fluid passage 60. That is, a loop-shaped flow path that passes through the equipment heat exchanger 10 and the fluid passage 60 is formed.
以上説明した第28実施形態の機器温調装置1は、次の作用効果を奏する。
The apparatus temperature control apparatus 1 according to the twenty-eighth embodiment described above has the following operational effects.
第28実施形態の機器温調装置1は、熱供給部材100により、流体通路60を流れる作動流体に対し冷熱または温熱を選択的に供給することで、組電池の暖機と冷却のどちらも行うことが可能である。したがって、この機器温調装置1は、部品点数を少なくし、配管等の構成を簡素にすることで、小型化、軽量、低コストを実現できる。
The apparatus temperature control apparatus 1 according to the twenty-eighth embodiment performs both warm-up and cooling of the assembled battery by selectively supplying cold or hot heat to the working fluid flowing through the fluid passage 60 by the heat supply member 100. It is possible. Therefore, this equipment temperature control device 1 can achieve downsizing, light weight, and low cost by reducing the number of parts and simplifying the configuration of piping and the like.
また、この機器温調装置1も、上述した第1~第27実施形態と同様に、組電池の暖機時に、機器用熱交換器10の外側にある流体通路60の作動流体を熱供給部材100により加熱する構成である。そのため、流体通路60で気化した作動流体の蒸気が機器用熱交換器10に供給されるため、機器用熱交換器10の内側で作動流体の蒸気温度のばらつきが抑制される。したがって、この機器温調装置1は、組電池を均一に暖機することが可能である。その結果、組電池の入出力特性の低下を防ぎ、その組電池の劣化や破損を抑制することができる。
In addition, as in the first to twenty-seventh embodiments, the device temperature control device 1 also supplies the working fluid in the fluid passage 60 outside the device heat exchanger 10 to the heat supply member when the assembled battery is warmed up. It is the structure heated by 100. Therefore, since the vapor of the working fluid vaporized in the fluid passage 60 is supplied to the equipment heat exchanger 10, variation in the vapor temperature of the working fluid is suppressed inside the equipment heat exchanger 10. Therefore, this apparatus temperature control apparatus 1 can warm up an assembled battery uniformly. As a result, it is possible to prevent deterioration of the input / output characteristics of the assembled battery and to suppress deterioration and breakage of the assembled battery.
さらに、この機器温調装置1は、組電池の冷却時と暖機時のいずれにおいても、作動流体の流れる流路がループ状に形成される。そのため、液相の作動流体と気相の作動流体とが一つの流路を対向して流れることが防がれる。したがって、この機器温調装置1は、作動流体を円滑に循環させることで、組電池の暖機と冷却を高効率に行うことができる。
Furthermore, in this equipment temperature control device 1, the flow path through which the working fluid flows is formed in a loop shape both when the assembled battery is cooled and when it is warmed up. Therefore, it is possible to prevent the liquid-phase working fluid and the gas-phase working fluid from flowing in the same flow path. Therefore, this apparatus temperature control apparatus 1 can perform warming up and cooling of an assembled battery with high efficiency by circulating a working fluid smoothly.
また、この機器温調装置1は、機器用熱交換器10の上接続部15と下接続部16とを接続する流体通路60の高さ方向に、熱供給部材100を設けるための空間が確保されるので、機器用熱交換器10より下側に配管や部品を設ける必要性が低減される。したがって、この機器温調装置1は、車両への搭載性を向上することができる。
In addition, the device temperature control device 1 secures a space for providing the heat supply member 100 in the height direction of the fluid passage 60 that connects the upper connection portion 15 and the lower connection portion 16 of the device heat exchanger 10. Therefore, the necessity to provide piping and parts below the equipment heat exchanger 10 is reduced. Therefore, this equipment temperature control apparatus 1 can improve the mounting property to a vehicle.
(第29実施形態)
第29実施形態について図50および図51を参照して説明する。第29実施形態は、第28実施形態に対して、熱供給部材100に関する構成を変更したものである。 (Twenty-ninth embodiment)
The 29th embodiment will be described with reference to FIGS. 50 and 51. FIG. The twenty-ninth embodiment is different from the twenty-eighth embodiment in the configuration related to theheat supply member 100.
第29実施形態について図50および図51を参照して説明する。第29実施形態は、第28実施形態に対して、熱供給部材100に関する構成を変更したものである。 (Twenty-ninth embodiment)
The 29th embodiment will be described with reference to FIGS. 50 and 51. FIG. The twenty-ninth embodiment is different from the twenty-eighth embodiment in the configuration related to the
本実施形態の熱供給部材100は、水―作動流体熱交換器93であり、組電池2の冷却時には冷水が流れ、組電池2の暖機時には温水が流れるよう選択的に切り替えられるように構成されている。本実施形態の機器用熱交換器10は、上タンク11、下タンク12および、および複数のチューブを有する熱交換部13などにより構成されている。
The heat supply member 100 of the present embodiment is a water-working fluid heat exchanger 93 and is configured to be selectively switched so that cold water flows when the assembled battery 2 is cooled and hot water flows when the assembled battery 2 is warmed up. Has been. The equipment heat exchanger 10 of the present embodiment includes an upper tank 11, a lower tank 12, and a heat exchange unit 13 having a plurality of tubes.
本実施形態の機器温調装置1は、冷却水回路9を利用している。冷却水回路9は、ウォータポンプ91、冷却水放熱器92、温水ヒータ96、水―作動流体熱交換器93、および、それらを接続する冷却水配管94を有している。冷却水回路9には、冷却水が流れる。
The equipment temperature control device 1 of the present embodiment uses a cooling water circuit 9. The cooling water circuit 9 includes a water pump 91, a cooling water radiator 92, a hot water heater 96, a water-working fluid heat exchanger 93, and a cooling water pipe 94 connecting them. Cooling water flows through the cooling water circuit 9.
ウォータポンプ91は、冷却水を圧送し、冷却水回路9に冷却水を循環させる。冷却水回路9の冷却水放熱器92は、冷凍サイクル8の蒸発器と一体に構成されたチラーであり、冷却水回路9を流れる冷却水と冷凍サイクル8を流れる低圧冷媒とを熱交換させる熱交換器である。したがって、冷却水放熱器92は、その冷却水放熱器92の流路を流れる冷却水を、冷凍サイクル8を構成する蒸発器を流れる冷媒との熱交換により冷却することが可能である。冷却水放熱器92から流出した冷却水は、温水ヒータ96を経由し、水―作動流体熱交換器93に流入する。
The water pump 91 pumps the cooling water and circulates the cooling water in the cooling water circuit 9. The cooling water radiator 92 of the cooling water circuit 9 is a chiller configured integrally with the evaporator of the refrigeration cycle 8, and heat that exchanges heat between the cooling water flowing through the cooling water circuit 9 and the low-pressure refrigerant flowing through the refrigeration cycle 8. It is an exchanger. Therefore, the cooling water radiator 92 can cool the cooling water flowing through the flow path of the cooling water radiator 92 by heat exchange with the refrigerant flowing through the evaporator constituting the refrigeration cycle 8. The cooling water flowing out from the cooling water radiator 92 flows into the water-working fluid heat exchanger 93 via the hot water heater 96.
水―作動流体熱交換器93は、機器温調装置1の流体通路60を流れる作動流体と冷却水回路9を流れる冷却水とを熱交換させる熱交換器である。本実施形態の機器温調装置1の熱供給部材100は、水―作動流体熱交換器93であり、機器温調装置1の流体通路60を流れる作動流体を冷却および加熱することが可能である。
The water-working fluid heat exchanger 93 is a heat exchanger that exchanges heat between the working fluid flowing through the fluid passage 60 of the device temperature control apparatus 1 and the cooling water flowing through the cooling water circuit 9. The heat supply member 100 of the device temperature control device 1 of the present embodiment is a water-working fluid heat exchanger 93 and can cool and heat the working fluid flowing through the fluid passage 60 of the device temperature control device 1. .
<冷却時の作動>
図50では、機器温調装置1が組電池2を冷却するときの作動流体および冷却水の流れを実線および破線の矢印で示している。組電池2の冷却時、制御装置5は、冷凍サイクル8の圧縮機81をオンし、第1流量規制部83を開き、温水ヒータ96をオフし、ウォータポンプ91をオンする。これにより、冷却水回路9を流れる冷却水は、冷凍サイクル8の蒸発器と一体に構成された冷却水放熱器92により冷却され、冷却水回路9を流れて水―作動流体熱交換器93に供給される。そのため、機器温調装置1の流体通路60を流れる作動流体は、水―作動流体熱交換器93で凝縮(すなわち液化)し、機器用熱交換器10内の作動流体と流体通路60の作動流体とのヘッド差により、下接続部16から機器用熱交換器10に供給される。その後、機器用熱交換器10の内側の作動流体は、電池セル21から吸熱して蒸発し、上接続部15から流体通路60を通じて水―作動流体熱交換器93に戻る。 <Operation during cooling>
In FIG. 50, the flow of the working fluid and the cooling water when the devicetemperature control device 1 cools the assembled battery 2 is indicated by solid and broken arrows. When the assembled battery 2 is cooled, the control device 5 turns on the compressor 81 of the refrigeration cycle 8, opens the first flow rate regulating unit 83, turns off the hot water heater 96, and turns on the water pump 91. Thereby, the cooling water flowing through the cooling water circuit 9 is cooled by the cooling water radiator 92 integrally formed with the evaporator of the refrigeration cycle 8, and flows into the water-working fluid heat exchanger 93 through the cooling water circuit 9. Supplied. Therefore, the working fluid flowing through the fluid passage 60 of the device temperature control apparatus 1 is condensed (that is, liquefied) in the water-working fluid heat exchanger 93, and the working fluid in the device heat exchanger 10 and the working fluid in the fluid passage 60 are used. Is supplied from the lower connection portion 16 to the equipment heat exchanger 10. Thereafter, the working fluid inside the device heat exchanger 10 absorbs heat from the battery cells 21 and evaporates, and returns from the upper connection portion 15 to the water-working fluid heat exchanger 93 through the fluid passage 60.
図50では、機器温調装置1が組電池2を冷却するときの作動流体および冷却水の流れを実線および破線の矢印で示している。組電池2の冷却時、制御装置5は、冷凍サイクル8の圧縮機81をオンし、第1流量規制部83を開き、温水ヒータ96をオフし、ウォータポンプ91をオンする。これにより、冷却水回路9を流れる冷却水は、冷凍サイクル8の蒸発器と一体に構成された冷却水放熱器92により冷却され、冷却水回路9を流れて水―作動流体熱交換器93に供給される。そのため、機器温調装置1の流体通路60を流れる作動流体は、水―作動流体熱交換器93で凝縮(すなわち液化)し、機器用熱交換器10内の作動流体と流体通路60の作動流体とのヘッド差により、下接続部16から機器用熱交換器10に供給される。その後、機器用熱交換器10の内側の作動流体は、電池セル21から吸熱して蒸発し、上接続部15から流体通路60を通じて水―作動流体熱交換器93に戻る。 <Operation during cooling>
In FIG. 50, the flow of the working fluid and the cooling water when the device
<暖機時の作動>
図51では、機器温調装置1が組電池2を暖機するときの作動流体および冷却水の流れを実線および破線の矢印で示している。組電池2の暖機時、制御装置5は、冷凍サイクル8の圧縮機81をオフし、温水ヒータ96をオンし、ウォータポンプ91をオンする。これにより、冷却水回路9を流れる冷却水は、温水ヒータ96により加熱され、冷却水回路9を流れて水―作動流体熱交換器93に供給される。この際、機器温調装置1の流体通路60を流れる作動流体は、水―作動流体熱交換器93で蒸発(すなわち気化)し、上方へ流れ、上接続部15から機器用熱交換器10に供給される。その後、機器用熱交換器10の内側の気相の作動流体は、電池セル21に放熱して凝縮する。そして、機器用熱交換器10内で凝縮した作動流体と流体通路60の作動流体とのヘッド差により、機器用熱交換器10の液相の作動流体は、下接続部16から流体通路60を通じて水―作動流体熱交換器93に戻る。 <Operation during warm-up>
In FIG. 51, the flow of the working fluid and the cooling water when the devicetemperature control device 1 warms up the assembled battery 2 is indicated by solid and broken arrows. When the assembled battery 2 is warmed up, the control device 5 turns off the compressor 81 of the refrigeration cycle 8, turns on the hot water heater 96, and turns on the water pump 91. Thereby, the cooling water flowing through the cooling water circuit 9 is heated by the hot water heater 96, flows through the cooling water circuit 9, and is supplied to the water-working fluid heat exchanger 93. At this time, the working fluid flowing through the fluid passage 60 of the device temperature control apparatus 1 evaporates (that is, vaporizes) in the water-working fluid heat exchanger 93, flows upward, and passes from the upper connection portion 15 to the device heat exchanger 10. Supplied. Thereafter, the working fluid in the gas phase inside the equipment heat exchanger 10 dissipates heat to the battery cell 21 and condenses. Then, due to the head difference between the working fluid condensed in the equipment heat exchanger 10 and the working fluid in the fluid passage 60, the liquid-phase working fluid in the equipment heat exchanger 10 passes from the lower connection portion 16 through the fluid passage 60. Return to water-working fluid heat exchanger 93.
図51では、機器温調装置1が組電池2を暖機するときの作動流体および冷却水の流れを実線および破線の矢印で示している。組電池2の暖機時、制御装置5は、冷凍サイクル8の圧縮機81をオフし、温水ヒータ96をオンし、ウォータポンプ91をオンする。これにより、冷却水回路9を流れる冷却水は、温水ヒータ96により加熱され、冷却水回路9を流れて水―作動流体熱交換器93に供給される。この際、機器温調装置1の流体通路60を流れる作動流体は、水―作動流体熱交換器93で蒸発(すなわち気化)し、上方へ流れ、上接続部15から機器用熱交換器10に供給される。その後、機器用熱交換器10の内側の気相の作動流体は、電池セル21に放熱して凝縮する。そして、機器用熱交換器10内で凝縮した作動流体と流体通路60の作動流体とのヘッド差により、機器用熱交換器10の液相の作動流体は、下接続部16から流体通路60を通じて水―作動流体熱交換器93に戻る。 <Operation during warm-up>
In FIG. 51, the flow of the working fluid and the cooling water when the device
以上説明した第29実施形態では、機器温調装置1は、冷熱または温熱を選択的に供給する熱供給部材100として、水―作動流体熱交換器93を使用することが可能である。これによれば、冷凍サイクル8を流れる低圧冷媒の温度と、冷却水回路9を流れる冷却水の温度を異なる温度に設定することが可能である。そのため、この機器温調装置1は、冷凍サイクル8を流れる低圧冷媒の温度と、冷却水回路9を流れる冷却水の温度をそれぞれ適切に調整することが可能である。したがって、冷却水回路9を流れる冷却水から機器温調装置1の凝縮器30を流れる作動流体に供給する冷熱量を調整し、機器温調装置1による組電池2の冷却能力を、組電池2の発熱量に応じて適切に調整することができる。
In the twenty-ninth embodiment described above, the device temperature control apparatus 1 can use the water-working fluid heat exchanger 93 as the heat supply member 100 that selectively supplies cold heat or heat. According to this, it is possible to set the temperature of the low-pressure refrigerant flowing through the refrigeration cycle 8 and the temperature of the cooling water flowing through the cooling water circuit 9 to different temperatures. Therefore, the device temperature control device 1 can appropriately adjust the temperature of the low-pressure refrigerant flowing through the refrigeration cycle 8 and the temperature of the cooling water flowing through the cooling water circuit 9. Therefore, the amount of cooling heat supplied from the cooling water flowing through the cooling water circuit 9 to the working fluid flowing through the condenser 30 of the device temperature control device 1 is adjusted, and the cooling capacity of the battery pack 2 by the device temperature control device 1 is adjusted. Can be appropriately adjusted according to the amount of heat generated.
また、機器温調装置1は、熱供給部材100としての水―作動流体熱交換器93により、流体通路60を流れる作動流体に対し冷熱または温熱を選択的に供給することで、組電池2の暖機と冷却のどちらも行うことが可能である。したがって、この機器温調装置1は、部品点数を少なくし、配管等の構成を簡素にすることで、小型化、軽量、低コストを実現できる。
In addition, the device temperature control apparatus 1 selectively supplies cold heat or heat to the working fluid flowing through the fluid passage 60 by the water-working fluid heat exchanger 93 as the heat supply member 100, thereby Both warm-up and cooling can be performed. Therefore, this equipment temperature control device 1 can achieve downsizing, light weight, and low cost by reducing the number of parts and simplifying the configuration of piping and the like.
なお、上述した第29実施形態では、組電池2の暖機時、制御装置5は、冷凍サイクル8の圧縮機81をオフした。これに対し、その変形例として、冷凍サイクル8の低圧側熱交換器88を車室内空調に使用したい場合には、圧縮機81をオンし、第1流量規制部83を閉じることで冷却水放熱器92への冷媒供給を停止させても良い。
In the 29th embodiment described above, the control device 5 turns off the compressor 81 of the refrigeration cycle 8 when the assembled battery 2 is warmed up. On the other hand, as a modification, when the low pressure side heat exchanger 88 of the refrigeration cycle 8 is to be used for vehicle interior air conditioning, the cooling water is dissipated by turning on the compressor 81 and closing the first flow rate regulating portion 83. The refrigerant supply to the container 92 may be stopped.
また、冷却水回路9を流れる冷却水の加熱手段は、上述した温水ヒータ96に限らず、ヒートポンプや、車載機器の廃熱などを利用しても良い。
Further, the means for heating the cooling water flowing through the cooling water circuit 9 is not limited to the hot water heater 96 described above, and a heat pump, waste heat from on-vehicle equipment, or the like may be used.
(第30実施形態)
第30実施形態について図52および図53を参照して説明する。第30実施形態は、第28および第29実施形態に対して、熱供給部材100に関する構成を変更したものである。なお、図52および図53では、図が煩雑になることを防ぐため、制御装置5およびその制御装置5と各機器とを接続する信号線の記載を省略している。 (Thirty Embodiment)
A thirtieth embodiment will be described with reference to FIGS. 52 and 53. The 30th embodiment is a modification of the configuration relating to theheat supply member 100 to the 28th and 29th embodiments. 52 and 53, the control device 5 and signal lines that connect the control device 5 and each device are omitted in order to prevent the drawings from becoming complicated.
第30実施形態について図52および図53を参照して説明する。第30実施形態は、第28および第29実施形態に対して、熱供給部材100に関する構成を変更したものである。なお、図52および図53では、図が煩雑になることを防ぐため、制御装置5およびその制御装置5と各機器とを接続する信号線の記載を省略している。 (Thirty Embodiment)
A thirtieth embodiment will be described with reference to FIGS. 52 and 53. The 30th embodiment is a modification of the configuration relating to the
本実施形態の熱供給部材100は、冷媒―作動流体熱交換器200であり、組電池2の冷却時には低温低圧の冷媒が流れ、組電池2の暖機時には高温高圧の冷媒が流れるよう選択的に切り替えられるように構成されている。本実施形態の機器用熱交換器10は、上タンク11、下タンク12、および複数のチューブを有する熱交換部13などにより構成されている。
The heat supply member 100 of the present embodiment is a refrigerant-working fluid heat exchanger 200 and is selectively configured so that a low-temperature and low-pressure refrigerant flows when the assembled battery 2 is cooled and a high-temperature and high-pressure refrigerant flows when the assembled battery 2 is warmed up. It is comprised so that it can switch to. The equipment heat exchanger 10 according to the present embodiment includes an upper tank 11, a lower tank 12, a heat exchange unit 13 having a plurality of tubes, and the like.
本実施形態の機器温調装置1は、ヒートポンプサイクル201を利用している。ヒートポンプサイクル201は、コンプレッサ202、室内コンデンサ203、第1膨張弁204、室外器205、逆止弁206、第2膨張弁207、エバポレータ208、アキュムレータ209、および、それらを接続する冷媒配管などを備えている。
The device temperature control apparatus 1 of the present embodiment uses a heat pump cycle 201. The heat pump cycle 201 includes a compressor 202, an indoor condenser 203, a first expansion valve 204, an outdoor unit 205, a check valve 206, a second expansion valve 207, an evaporator 208, an accumulator 209, and a refrigerant pipe connecting them. ing.
室外器205と逆止弁206との間に設けられた第1分岐部211と、エバポレータ208とアキュムレータ209との間に設けられた第2分岐部212とをバイパス配管220が接続している。そのバイパス配管220に第1電磁弁221が設けられ、逆止弁206と第2膨張弁207とを接続する冷媒配管に第2電磁弁222が設けられている。
A bypass pipe 220 connects a first branch portion 211 provided between the outdoor unit 205 and the check valve 206 and a second branch portion 212 provided between the evaporator 208 and the accumulator 209. A first solenoid valve 221 is provided in the bypass pipe 220, and a second solenoid valve 222 is provided in the refrigerant pipe connecting the check valve 206 and the second expansion valve 207.
熱供給部材100としての冷媒―作動流体熱交換器200には、その冷媒―作動流体熱交換器200に冷媒を流すための第1配管231と第2配管232とが接続されている。第1配管231は、一端が冷媒―作動流体熱交換器200に接続され、他端が逆止弁206と第2電磁弁222とを接続する冷媒配管の途中に設けられた第3分岐部213に接続されている。第1配管231の途中に設けられた第4分岐部214には、室内コンデンサ203と第1膨張弁204との間に設けられた第1三方弁241から延びる配管243が接続されている。第1配管231の途中には、第4分岐部214と冷媒―作動流体熱交換器200との間に、第3膨張弁233が設けられている。また、第1配管231の途中には、第4分岐部214と第3分岐部213との間に、第3電磁弁223が設けられている。
The refrigerant-working fluid heat exchanger 200 as the heat supply member 100 is connected to a first pipe 231 and a second pipe 232 for flowing the refrigerant through the refrigerant-working fluid heat exchanger 200. One end of the first pipe 231 is connected to the refrigerant-working fluid heat exchanger 200, and the other end is a third branch 213 provided in the middle of the refrigerant pipe connecting the check valve 206 and the second electromagnetic valve 222. It is connected to the. A pipe 243 extending from a first three-way valve 241 provided between the indoor condenser 203 and the first expansion valve 204 is connected to the fourth branch part 214 provided in the middle of the first pipe 231. In the middle of the first pipe 231, a third expansion valve 233 is provided between the fourth branch portion 214 and the refrigerant-working fluid heat exchanger 200. A third electromagnetic valve 223 is provided in the middle of the first pipe 231 between the fourth branch portion 214 and the third branch portion 213.
一方、第2配管232は、一端が冷媒―作動流体熱交換器200に接続され、他端がエバポレータ208と第2分岐部212とを接続する冷媒配管の途中に設けられた第5分岐部215に接続されている。第2配管232の途中には第2三方弁242が設けられている。第2三方弁242から延びる配管244は、第1三方弁241と第1膨張弁204との間に設けられた第6分岐部216に接続されている。
On the other hand, the second pipe 232 has one end connected to the refrigerant-working fluid heat exchanger 200 and the other end connected to the evaporator 208 and the second branch part 212. The fifth branch part 215 provided in the middle of the refrigerant pipe. It is connected to the. A second three-way valve 242 is provided in the middle of the second pipe 232. A pipe 244 extending from the second three-way valve 242 is connected to a sixth branch 216 provided between the first three-way valve 241 and the first expansion valve 204.
ヒートポンプサイクル201が備える室内コンデンサ203およびエバポレータ208は、車室内空調用のHVACユニット250の一部を構成している。HVACユニットは、空調用ブロア251により空調ケース252内の通風路に流れる風をエバポレータ208により冷却し、また、室内コンデンサ203により加熱することで、車室内に空調風を吹き出すものである。HVACユニット250は、エバポレータ208と室内コンデンサ203との間にエアミックスドア253を有している。なお、HVACユニット250は、ヒータコア254を備えていてもよい。
The indoor condenser 203 and the evaporator 208 included in the heat pump cycle 201 constitute a part of the HVAC unit 250 for air conditioning in the vehicle interior. The HVAC unit cools the wind flowing in the ventilation path in the air conditioning case 252 by the air conditioning blower 251 by the evaporator 208 and heats it by the indoor condenser 203 to blow the conditioned air into the vehicle interior. The HVAC unit 250 has an air mix door 253 between the evaporator 208 and the indoor condenser 203. Note that the HVAC unit 250 may include a heater core 254.
<冷却時の作動>
図52では、機器温調装置1が組電池2を冷却するときの作動流体および冷媒の流れを実線および破線の矢印で示している。組電池2の冷却時、制御装置5は、第1三方弁241を冷媒が室内コンデンサ203から第1膨張弁204へ流れるように切り替え、第2三方弁242を冷媒が冷媒―作動流体熱交換器200から第5分岐部215へ流れるように切り替える。また、制御装置5は、第1膨張弁204を開き、第1電磁弁221を閉じ、第2電磁弁222と第3電磁弁223を開き、第3膨張弁233を絞り、コンプレッサ202をオンする。 <Operation during cooling>
In FIG. 52, the flow of the working fluid and the refrigerant when the devicetemperature control device 1 cools the assembled battery 2 is indicated by solid and broken arrows. When the battery pack 2 is cooled, the control device 5 switches the first three-way valve 241 so that the refrigerant flows from the indoor condenser 203 to the first expansion valve 204, and the second three-way valve 242 uses the refrigerant-working fluid heat exchanger. Switching from 200 to the fifth branching section 215 is performed. Further, the control device 5 opens the first expansion valve 204, closes the first electromagnetic valve 221, opens the second electromagnetic valve 222 and the third electromagnetic valve 223, throttles the third expansion valve 233, and turns on the compressor 202. .
図52では、機器温調装置1が組電池2を冷却するときの作動流体および冷媒の流れを実線および破線の矢印で示している。組電池2の冷却時、制御装置5は、第1三方弁241を冷媒が室内コンデンサ203から第1膨張弁204へ流れるように切り替え、第2三方弁242を冷媒が冷媒―作動流体熱交換器200から第5分岐部215へ流れるように切り替える。また、制御装置5は、第1膨張弁204を開き、第1電磁弁221を閉じ、第2電磁弁222と第3電磁弁223を開き、第3膨張弁233を絞り、コンプレッサ202をオンする。 <Operation during cooling>
In FIG. 52, the flow of the working fluid and the refrigerant when the device
これにより、コンプレッサ202から吐き出された冷媒は、ヒートポンプサイクル201の室内コンデンサ203→第1膨張弁204→室外器205→逆止弁206→第2電磁弁222→第2膨張弁207→エバポレータ208→アキュムレータ209→コンプレッサ202の順にヒートポンプサイクル201を循環する。また、ヒートポンプサイクル201を循環する冷媒の一部は、第3分岐部213から第1配管231→第3電磁弁223→第3膨張弁233→冷媒―作動流体熱交換器200→第2配管232→第5分岐部215を流れる。第1配管231から冷媒―作動流体熱交換器200に流入する冷媒は、第3膨張弁233により減圧されて低温低圧となり、機器温調装置1の流体通路60を流れる作動流体を冷却する。この際、その流体通路60を流れる作動流体は、冷媒―作動流体熱交換器200で凝縮(すなわち液化)し、流体通路60の作動流体と機器用熱交換器10内の作動流体とのヘッド差により、下接続部16から機器用熱交換器10に供給される。その後、機器用熱交換器10の内側の作動流体は、電池セル21から吸熱して蒸発し、上接続部15から流体通路60を通じて冷媒―作動流体熱交換器200に戻る。
As a result, the refrigerant discharged from the compressor 202 is converted into the indoor condenser 203 of the heat pump cycle 201 → the first expansion valve 204 → the outdoor unit 205 → the check valve 206 → the second electromagnetic valve 222 → the second expansion valve 207 → the evaporator 208 → The heat pump cycle 201 is circulated in the order of accumulator 209 → compressor 202. Further, a part of the refrigerant circulating through the heat pump cycle 201 is supplied from the third branch 213 to the first pipe 231 → the third electromagnetic valve 223 → the third expansion valve 233 → the refrigerant-working fluid heat exchanger 200 → the second pipe 232. → Flows through the fifth branch 215. The refrigerant flowing into the refrigerant-working fluid heat exchanger 200 from the first pipe 231 is depressurized by the third expansion valve 233 to become low temperature and low pressure, and cools the working fluid flowing through the fluid passage 60 of the device temperature control device 1. At this time, the working fluid flowing through the fluid passage 60 is condensed (that is, liquefied) by the refrigerant-working fluid heat exchanger 200, and the head difference between the working fluid in the fluid passage 60 and the working fluid in the equipment heat exchanger 10. Thus, the heat is supplied from the lower connection portion 16 to the equipment heat exchanger 10. Thereafter, the working fluid inside the device heat exchanger 10 absorbs heat from the battery cells 21 and evaporates, and returns to the refrigerant-working fluid heat exchanger 200 from the upper connection portion 15 through the fluid passage 60.
<暖機時の作動>
図53では、機器温調装置1が組電池2を暖機するときの作動流体および冷媒の流れを実線および破線の矢印で示している。組電池2の暖機時、制御装置5は、第1三方弁241を冷媒の一部が室内コンデンサ203から第4分岐部214へ流れるように切り替え、第2三方弁242を冷媒が第2配管232から第6分岐部216へ流れるように切り替える。また、制御装置5は、第1膨張弁204を絞り、第1電磁弁221を開き、第2電磁弁222と第3電磁弁223を閉じ、第3膨張弁233を開くか又は適切な開度に絞り、コンプレッサ202をオンする。 <Operation during warm-up>
In FIG. 53, the flow of the working fluid and the refrigerant when the devicetemperature control device 1 warms up the assembled battery 2 is indicated by solid and broken arrows. When the assembled battery 2 is warmed up, the control device 5 switches the first three-way valve 241 so that a part of the refrigerant flows from the indoor condenser 203 to the fourth branch part 214, and the second three-way valve 242 is connected to the second pipe by the refrigerant. It switches so that it may flow from 232 to the 6th branch part 216. FIG. In addition, the control device 5 throttles the first expansion valve 204, opens the first electromagnetic valve 221, closes the second electromagnetic valve 222 and the third electromagnetic valve 223, and opens the third expansion valve 233 or an appropriate opening degree. The compressor 202 is turned on.
図53では、機器温調装置1が組電池2を暖機するときの作動流体および冷媒の流れを実線および破線の矢印で示している。組電池2の暖機時、制御装置5は、第1三方弁241を冷媒の一部が室内コンデンサ203から第4分岐部214へ流れるように切り替え、第2三方弁242を冷媒が第2配管232から第6分岐部216へ流れるように切り替える。また、制御装置5は、第1膨張弁204を絞り、第1電磁弁221を開き、第2電磁弁222と第3電磁弁223を閉じ、第3膨張弁233を開くか又は適切な開度に絞り、コンプレッサ202をオンする。 <Operation during warm-up>
In FIG. 53, the flow of the working fluid and the refrigerant when the device
これにより、コンプレッサ202から吐き出された冷媒は、ヒートポンプサイクル201の室内コンデンサ203→第1膨張弁204→室外器205→第1電磁弁221→アキュムレータ209→コンプレッサ202の順にヒートポンプサイクル201を循環する。また、ヒートポンプサイクル201を循環する冷媒の一部は、第1三方弁241から第1配管231→第3膨張弁233→冷媒―作動流体熱交換器200→第2配管232→第2三方弁242→第6分岐部216を流れる。第1配管231から冷媒―作動流体熱交換器200に流入する冷媒は、第3膨張弁233により電池暖機のために適切な温度となるように減圧され、機器温調装置1の流体通路60を流れる作動流体を加熱する。この際、機器温調装置1の流体通路60を流れる作動流体は、冷媒―作動流体熱交換器200で蒸発(すなわち気化)し、上方へ流れ、上接続部15から機器用熱交換器10に供給される。その後、機器用熱交換器10の内側の作動流体は、電池セル21に放熱して凝縮する。そして、機器用熱交換器10内で凝縮した作動流体と流体通路60の作動流体とのヘッド差により、機器用熱交換器10の液相の作動流体は、下接続部16から流体通路60を通じて冷媒―作動流体熱交換器200に戻る。
Thereby, the refrigerant discharged from the compressor 202 circulates in the heat pump cycle 201 in the order of the indoor condenser 203 of the heat pump cycle 201 → the first expansion valve 204 → the outdoor unit 205 → the first electromagnetic valve 221 → the accumulator 209 → the compressor 202. Further, a part of the refrigerant circulating in the heat pump cycle 201 is transferred from the first three-way valve 241 to the first pipe 231 → the third expansion valve 233 → the refrigerant-working fluid heat exchanger 200 → the second pipe 232 → the second three-way valve 242. → Flows through the sixth branch 216. The refrigerant flowing into the refrigerant-working fluid heat exchanger 200 from the first pipe 231 is depressurized by the third expansion valve 233 so that the temperature becomes an appropriate temperature for battery warm-up, and the fluid passage 60 of the device temperature adjustment device 1. The working fluid flowing through is heated. At this time, the working fluid flowing through the fluid passage 60 of the device temperature control apparatus 1 evaporates (that is, vaporizes) in the refrigerant-working fluid heat exchanger 200, flows upward, and passes from the upper connection portion 15 to the device heat exchanger 10. Supplied. Thereafter, the working fluid inside the equipment heat exchanger 10 dissipates heat to the battery cell 21 and condenses. Then, due to the head difference between the working fluid condensed in the equipment heat exchanger 10 and the working fluid in the fluid passage 60, the liquid-phase working fluid in the equipment heat exchanger 10 passes from the lower connection portion 16 through the fluid passage 60. Return to refrigerant-working fluid heat exchanger 200.
なお、HVACユニット250による車室内の暖房と組電池2の暖機を同時に行う場合、室内コンデンサ203に必要な温度と組電池2の暖機に必要な温度とに差があるため、第3膨張弁233の開度の調整が必要となる。一方、HVACユニット250による車室内の空調を行わず、組電池2の暖機のみを行う場合、コンプレッサ202の冷媒吐出量が組電池2の暖機に必要な冷媒量となるように調整し、第3膨張弁233を開いてもよい。
When heating the vehicle interior by the HVAC unit 250 and warming up the assembled battery 2 at the same time, there is a difference between the temperature required for the indoor condenser 203 and the temperature necessary for warming up the assembled battery 2, so that the third expansion Adjustment of the opening degree of the valve 233 is required. On the other hand, when only the warming up of the assembled battery 2 is performed without air conditioning the vehicle interior by the HVAC unit 250, the refrigerant discharge amount of the compressor 202 is adjusted to be the refrigerant amount necessary for warming up the assembled battery 2, The third expansion valve 233 may be opened.
以上説明した第30実施形態では、機器温調装置1は、冷熱または温熱を選択的に供給する熱供給部材100として、冷媒―作動流体熱交換器200を使用することが可能である。これによれば、ヒートポンプサイクル201を循環する冷媒量またはヒートポンプサイクル201から冷媒―作動流体熱交換器200に流れる冷媒量を調整することで、機器温調装置1の流体通路60を流れる作動流体に供給する熱量を調整することが可能である。また、第3膨張弁233の開度の調整によっても、機器温調装置1の流体通路60を流れる作動流体に供給する熱量を調整することが可能である。したがって、第30実施形態では、機器温調装置1による組電池2の冷却能力および暖機能力を、組電池2の発熱量に応じて適切に調整することができる。
In the thirtieth embodiment described above, the device temperature adjustment device 1 can use the refrigerant-working fluid heat exchanger 200 as the heat supply member 100 that selectively supplies cold or hot heat. According to this, by adjusting the amount of refrigerant circulating in the heat pump cycle 201 or the amount of refrigerant flowing from the heat pump cycle 201 to the refrigerant-working fluid heat exchanger 200, the working fluid flowing through the fluid passage 60 of the device temperature control device 1 is adjusted. It is possible to adjust the amount of heat supplied. Also, the amount of heat supplied to the working fluid flowing through the fluid passage 60 of the device temperature control device 1 can be adjusted also by adjusting the opening of the third expansion valve 233. Therefore, in the thirtieth embodiment, the cooling capacity and warming power of the assembled battery 2 by the device temperature control device 1 can be appropriately adjusted according to the amount of heat generated by the assembled battery 2.
また、機器温調装置1は、熱供給部材100により、流体通路60を流れる作動流体に対し冷熱または温熱を選択的に供給することで、組電池2の暖機と冷却のどちらも行うことが可能である。したがって、この機器温調装置1は、部品点数を少なくし、配管等の構成を簡素にすることで、小型化、軽量、低コストを実現できる。
Moreover, the apparatus temperature control apparatus 1 can perform both warming up and cooling of the assembled battery 2 by selectively supplying cold heat or warm heat to the working fluid flowing through the fluid passage 60 by the heat supply member 100. Is possible. Therefore, this equipment temperature control device 1 can achieve downsizing, light weight, and low cost by reducing the number of parts and simplifying the configuration of piping and the like.
なお、上述した第30実施形態では、車室内空調用に使用されるヒートポンプサイクル201を用いたが、これに限らず、車室内空調とは切り離した機器温調装置1の熱供給部材100に専用のヒートポンプサイクルを用いてもよい。
In the 30th embodiment described above, the heat pump cycle 201 used for air conditioning in the vehicle interior is used. However, the heat pump cycle 201 is not limited thereto, and is dedicated to the heat supply member 100 of the device temperature control device 1 separated from the air conditioning in the vehicle interior. The heat pump cycle may be used.
(第31実施形態)
第31実施形態について図54および図55を参照して説明する。第31実施形態は、第29実施形態に対して、熱供給部材100に関する構成を変更したものである。本実施形態の熱供給部材100は、水―作動流体熱交換部1010と冷媒―作動流体熱交換部1020とを含んで構成されている。熱供給部材100の中で、水―作動流体熱交換部1010は、重力方向下側に配置されている。一方、熱供給部材100の中で、冷媒―作動流体熱交換部1020は、重力方向上側に配置されている。 (Thirty-first embodiment)
A thirty-first embodiment will be described with reference to FIGS. 54 and 55. In the thirty-first embodiment, the configuration related to theheat supply member 100 is changed with respect to the twenty-ninth embodiment. The heat supply member 100 of this embodiment includes a water-working fluid heat exchange unit 1010 and a refrigerant-working fluid heat exchange unit 1020. In the heat supply member 100, the water-working fluid heat exchange unit 1010 is arranged on the lower side in the gravity direction. On the other hand, in the heat supply member 100, the refrigerant-working fluid heat exchange unit 1020 is disposed on the upper side in the gravity direction.
第31実施形態について図54および図55を参照して説明する。第31実施形態は、第29実施形態に対して、熱供給部材100に関する構成を変更したものである。本実施形態の熱供給部材100は、水―作動流体熱交換部1010と冷媒―作動流体熱交換部1020とを含んで構成されている。熱供給部材100の中で、水―作動流体熱交換部1010は、重力方向下側に配置されている。一方、熱供給部材100の中で、冷媒―作動流体熱交換部1020は、重力方向上側に配置されている。 (Thirty-first embodiment)
A thirty-first embodiment will be described with reference to FIGS. 54 and 55. In the thirty-first embodiment, the configuration related to the
水―作動流体熱交換部1010は、組電池2の暖機時に温水が流れるように構成されている。すなわち、水―作動流体熱交換部1010は、流体通路60を流れる作動流体に対し温熱を供給可能な温熱供給機構の一例である。一方、冷媒―作動流体熱交換部1020は、組電池2の冷却時に低温低圧の冷媒が流れるように構成されている。すなわち、冷媒―作動流体熱交換部1020は、流体通路60を流れる作動流体に対し冷熱を供給可能な冷熱供給機構の一例である。
The water-working fluid heat exchange unit 1010 is configured so that warm water flows when the assembled battery 2 is warmed up. That is, the water-working fluid heat exchange unit 1010 is an example of a heat supply mechanism that can supply heat to the working fluid flowing through the fluid passage 60. On the other hand, the refrigerant-working fluid heat exchange unit 1020 is configured such that a low-temperature and low-pressure refrigerant flows when the assembled battery 2 is cooled. That is, the refrigerant-working fluid heat exchange unit 1020 is an example of a cold supply mechanism that can supply cold to the working fluid flowing through the fluid passage 60.
<冷却時の作動>
図54では、機器温調装置1が組電池2を冷却するときの作動流体および冷媒の流れを実線および破線の矢印で示している。組電池2の冷却時、制御装置5は、冷凍サイクル8の圧縮機81をオンし、第1流量規制部83を開き、温水ヒータ96およびウォータポンプ91をオフする。これにより、冷凍サイクル8の冷媒は、圧縮機81→高圧側熱交換器82→第1流量規制部83→第1膨張弁84→冷媒―作動流体熱交換部1020→圧縮機81の順に流れる。したがって、高圧側熱交換器82で放熱し凝縮した冷媒は第1膨張弁84により減圧され、低温低圧となって熱供給部材100の冷媒―作動流体熱交換部1020に供給される。この際、機器温調装置1の流体通路60を流れる気相の作動流体は、熱供給部材100の冷媒―作動流体熱交換部1020で凝縮(すなわち液化)する。そして、機器用熱交換器10内の作動流体と流体通路60の作動流体とのヘッド差により、下接続部16から機器用熱交換器10に供給される。その後、機器用熱交換器10の内側の作動流体は、電池セル21から吸熱して蒸発し、上接続部15から流体通路60を通じて熱供給部材100に戻る。 <Operation during cooling>
In FIG. 54, the flow of the working fluid and the refrigerant when the devicetemperature control device 1 cools the assembled battery 2 is indicated by solid and broken arrows. When the assembled battery 2 is cooled, the control device 5 turns on the compressor 81 of the refrigeration cycle 8, opens the first flow rate restricting unit 83, and turns off the hot water heater 96 and the water pump 91. Thereby, the refrigerant of the refrigeration cycle 8 flows in the order of the compressor 81 → the high-pressure side heat exchanger 82 → the first flow rate restricting unit 83 → the first expansion valve 84 → the refrigerant-working fluid heat exchanging unit 1020 → the compressor 81. Therefore, the refrigerant radiated and condensed by the high-pressure side heat exchanger 82 is decompressed by the first expansion valve 84, becomes low temperature and low pressure, and is supplied to the refrigerant / working fluid heat exchange unit 1020 of the heat supply member 100. At this time, the gas phase working fluid flowing through the fluid passage 60 of the device temperature control apparatus 1 is condensed (ie, liquefied) by the refrigerant-working fluid heat exchange unit 1020 of the heat supply member 100. And it supplies to the heat exchanger 10 for apparatuses from the lower connection part 16 by the head difference of the working fluid in the heat exchanger 10 for apparatuses, and the working fluid of the fluid channel | path 60. FIG. Thereafter, the working fluid inside the equipment heat exchanger 10 absorbs heat from the battery cells 21 and evaporates, and returns to the heat supply member 100 from the upper connection portion 15 through the fluid passage 60.
図54では、機器温調装置1が組電池2を冷却するときの作動流体および冷媒の流れを実線および破線の矢印で示している。組電池2の冷却時、制御装置5は、冷凍サイクル8の圧縮機81をオンし、第1流量規制部83を開き、温水ヒータ96およびウォータポンプ91をオフする。これにより、冷凍サイクル8の冷媒は、圧縮機81→高圧側熱交換器82→第1流量規制部83→第1膨張弁84→冷媒―作動流体熱交換部1020→圧縮機81の順に流れる。したがって、高圧側熱交換器82で放熱し凝縮した冷媒は第1膨張弁84により減圧され、低温低圧となって熱供給部材100の冷媒―作動流体熱交換部1020に供給される。この際、機器温調装置1の流体通路60を流れる気相の作動流体は、熱供給部材100の冷媒―作動流体熱交換部1020で凝縮(すなわち液化)する。そして、機器用熱交換器10内の作動流体と流体通路60の作動流体とのヘッド差により、下接続部16から機器用熱交換器10に供給される。その後、機器用熱交換器10の内側の作動流体は、電池セル21から吸熱して蒸発し、上接続部15から流体通路60を通じて熱供給部材100に戻る。 <Operation during cooling>
In FIG. 54, the flow of the working fluid and the refrigerant when the device
<暖機時の作動>
図55では、機器温調装置1が組電池2を暖機するときの作動流体および冷却水の流れを実線および破線の矢印で示している。組電池2の暖機時、制御装置5は、冷凍サイクル8の圧縮機81をオフし、温水ヒータ96およびウォータポンプ91をオンする。これにより、温水ヒータ96により加熱された高温の冷却水が冷却水回路9を流れて熱供給部材100の水―作動流体熱交換部1010に供給される。この際、機器温調装置1の流体通路60を流れる液相の作動流体は、熱供給部材100の水―作動流体熱交換部1010で蒸発(すなわち気化)し、上接続部15から機器用熱交換器10に供給される。その後、機器用熱交換器10の内側の気相の作動流体は、電池セル21に放熱して凝縮する。そして、機器用熱交換器10内で凝縮した作動流体と流体通路60の作動流体とのヘッド差により、機器用熱交換器10の液相の作動流体は、下接続部16から流体通路60を通じて熱供給部材100に戻る。 <Operation during warm-up>
In FIG. 55, the flow of the working fluid and the cooling water when the devicetemperature control device 1 warms up the assembled battery 2 is indicated by solid and broken arrows. When the assembled battery 2 is warmed up, the control device 5 turns off the compressor 81 of the refrigeration cycle 8 and turns on the hot water heater 96 and the water pump 91. Accordingly, the high-temperature cooling water heated by the hot water heater 96 flows through the cooling water circuit 9 and is supplied to the water-working fluid heat exchange unit 1010 of the heat supply member 100. At this time, the liquid-phase working fluid flowing through the fluid passage 60 of the device temperature control device 1 evaporates (that is, vaporizes) in the water-working fluid heat exchange unit 1010 of the heat supply member 100, and heats the device from the upper connection unit 15. It is supplied to the exchanger 10. Thereafter, the working fluid in the gas phase inside the equipment heat exchanger 10 dissipates heat to the battery cell 21 and condenses. Then, due to the head difference between the working fluid condensed in the equipment heat exchanger 10 and the working fluid in the fluid passage 60, the liquid-phase working fluid in the equipment heat exchanger 10 passes from the lower connection portion 16 through the fluid passage 60. Return to the heat supply member 100.
図55では、機器温調装置1が組電池2を暖機するときの作動流体および冷却水の流れを実線および破線の矢印で示している。組電池2の暖機時、制御装置5は、冷凍サイクル8の圧縮機81をオフし、温水ヒータ96およびウォータポンプ91をオンする。これにより、温水ヒータ96により加熱された高温の冷却水が冷却水回路9を流れて熱供給部材100の水―作動流体熱交換部1010に供給される。この際、機器温調装置1の流体通路60を流れる液相の作動流体は、熱供給部材100の水―作動流体熱交換部1010で蒸発(すなわち気化)し、上接続部15から機器用熱交換器10に供給される。その後、機器用熱交換器10の内側の気相の作動流体は、電池セル21に放熱して凝縮する。そして、機器用熱交換器10内で凝縮した作動流体と流体通路60の作動流体とのヘッド差により、機器用熱交換器10の液相の作動流体は、下接続部16から流体通路60を通じて熱供給部材100に戻る。 <Operation during warm-up>
In FIG. 55, the flow of the working fluid and the cooling water when the device
以上説明した第31実施形態では、機器温調装置1は、熱供給部材100として、水―作動流体熱交換部1010と冷媒―作動流体熱交換部1020とを併用するものである。熱供給部材100の中で、温熱供給機構として機能する水―作動流体熱交換部1010は重力方向下側に配置され、冷熱供給機構として機能する冷媒―作動流体熱交換部1020は重力方向上側に配置されている。
In the thirty-first embodiment described above, the device temperature control apparatus 1 uses the water-working fluid heat exchange unit 1010 and the refrigerant-working fluid heat exchange unit 1020 in combination as the heat supply member 100. In the heat supply member 100, the water-working fluid heat exchange unit 1010 that functions as a warm heat supply mechanism is disposed on the lower side in the gravity direction, and the refrigerant-working fluid heat exchange unit 1020 that functions as a cold heat supply mechanism is on the upper side in the gravity direction. Has been placed.
熱供給部材100は、機器用熱交換器10の内側にある作動流体の液面FLの高さを跨ぐ高さ方向の位置で流体通路60に設けられていることから、熱供給部材100の中では、上方が気相の作動流体、下方が液相の作動流体となっている。そのため、組電池2の冷却時には、熱供給部材100の上方に冷熱を供給することで、気相の作動流体に対して確実に冷熱を供給し、作動流体の凝縮を促進させることができる。また、組電池2の暖機時には、熱供給部材100の下方に温熱を供給することで、液相の作動流体に対して確実に温熱を供給し、作動流体の蒸発を促進させることができる。
Since the heat supply member 100 is provided in the fluid passage 60 at a position in the height direction across the height of the liquid level FL of the working fluid inside the equipment heat exchanger 10, Then, the upper side is a gas phase working fluid, and the lower side is a liquid phase working fluid. Therefore, at the time of cooling the assembled battery 2, by supplying cold heat above the heat supply member 100, cold heat can be reliably supplied to the vapor-phase working fluid, and condensation of the working fluid can be promoted. Further, when the assembled battery 2 is warmed up, by supplying warm heat below the heat supply member 100, warm heat can be reliably supplied to the liquid-phase working fluid, and evaporation of the working fluid can be promoted.
(第32実施形態)
第32実施形態について図56および図57を参照して説明する。第32実施形態は、熱供給部材100に関する構成を変更したものである。本実施形態の熱供給部材100は、空気式熱交換器1030を用いている。この空気式熱交換器1030は、組電池2の冷却時には熱供給部材100のうち重力方向上側の部位に冷風が供給され、組電池2の暖機時には熱供給部材100のうち重力方向下側の部位に温風が供給されるように構成されている。 (Thirty-second embodiment)
A thirty-second embodiment will be described with reference to FIGS. 56 and 57. FIG. In the thirty-second embodiment, the configuration relating to theheat supply member 100 is changed. The heat supply member 100 of this embodiment uses a pneumatic heat exchanger 1030. When the assembled battery 2 is cooled, the pneumatic heat exchanger 1030 is supplied with cold air to the upper part of the heat supply member 100 in the direction of gravity, and when the assembled battery 2 is warmed up, the cold air is supplied to the lower part of the heat supply member 100 in the direction of gravity. It is comprised so that a warm air may be supplied to a site | part.
第32実施形態について図56および図57を参照して説明する。第32実施形態は、熱供給部材100に関する構成を変更したものである。本実施形態の熱供給部材100は、空気式熱交換器1030を用いている。この空気式熱交換器1030は、組電池2の冷却時には熱供給部材100のうち重力方向上側の部位に冷風が供給され、組電池2の暖機時には熱供給部材100のうち重力方向下側の部位に温風が供給されるように構成されている。 (Thirty-second embodiment)
A thirty-second embodiment will be described with reference to FIGS. 56 and 57. FIG. In the thirty-second embodiment, the configuration relating to the
空気式熱交換器1030は、HVACユニット250内に配置されている。HVACユニット250の空調ケース252内には、室内コンデンサ203とエバポレータ208が設けられている。なお、室内コンデンサ203に代えてヒータコアを設置してもよく、または、室内コンデンサ203と共にヒータコアを設置してもよい。室内コンデンサ203とエバポレータ208との間には、空気の流れを分離するための仕切板255が設けられている。また、室内コンデンサ203とエバポレータ208の上流側には、空調用ブロア251及び通風路切替ドア256が設けられている。
The air heat exchanger 1030 is disposed in the HVAC unit 250. An indoor capacitor 203 and an evaporator 208 are provided in the air conditioning case 252 of the HVAC unit 250. Note that a heater core may be installed instead of the indoor capacitor 203, or a heater core may be installed together with the indoor capacitor 203. A partition plate 255 for separating the air flow is provided between the indoor condenser 203 and the evaporator 208. An air conditioning blower 251 and a ventilation path switching door 256 are provided upstream of the indoor condenser 203 and the evaporator 208.
なお、空気式熱交換器1030は、HVACユニット250の空調ケース252の外側に配置されていてもよい。その場合、室内コンデンサ203を通過した風が空調ケース252から空気式熱交換器1030に供給されるようにダクトを設け、エバポレータ208を通過した風が空調ケース252から空気式熱交換器1030に供給されるようにダクトを設ける構成となる。
The air heat exchanger 1030 may be disposed outside the air conditioning case 252 of the HVAC unit 250. In that case, a duct is provided so that the wind passing through the indoor condenser 203 is supplied from the air conditioning case 252 to the pneumatic heat exchanger 1030, and the wind passing through the evaporator 208 is supplied from the air conditioning case 252 to the pneumatic heat exchanger 1030. As a result, a duct is provided.
<冷却時の作動>
図56では、機器温調装置1が組電池2を冷却するときの作動流体および風の流れを実線および破線の矢印で示している。組電池2の冷却時、制御装置5は、通風路切替ドア256により室内コンデンサ203側の風流れを遮断し、エバポレータ208側の風流れを許容する。これにより、空調ケース252内に、矢印AF1に示すように風が流れ、エバポレータ208で冷やされた空気により空気式熱交換器1030に冷熱が供給される。この際、機器温調装置1の流体通路60を流れる気相の作動流体は、空気式熱交換器1030で凝縮(すなわち液化)し、機器用熱交換器10内の作動流体と流体通路60の作動流体とのヘッド差により、下接続部16から機器用熱交換器10に供給される。その後、機器用熱交換器10の内側の作動流体は、電池セル21から吸熱して蒸発し、上接続部15から流体通路60を通じて空気式熱交換器1030に戻る。 <Operation during cooling>
In FIG. 56, the flow of the working fluid and the wind when the devicetemperature control device 1 cools the assembled battery 2 are indicated by solid and broken arrows. When the assembled battery 2 is cooled, the control device 5 blocks the wind flow on the indoor condenser 203 side by the ventilation path switching door 256 and allows the wind flow on the evaporator 208 side. As a result, wind flows in the air conditioning case 252 as indicated by an arrow AF1, and cold air is supplied to the pneumatic heat exchanger 1030 by the air cooled by the evaporator 208. At this time, the gas phase working fluid flowing through the fluid passage 60 of the device temperature control apparatus 1 is condensed (that is, liquefied) by the air heat exchanger 1030, and the working fluid in the device heat exchanger 10 and the fluid passage 60 Due to the head difference from the working fluid, the heat is supplied from the lower connection portion 16 to the equipment heat exchanger 10. Thereafter, the working fluid inside the equipment heat exchanger 10 absorbs heat from the battery cells 21 and evaporates, and returns to the pneumatic heat exchanger 1030 from the upper connection portion 15 through the fluid passage 60.
図56では、機器温調装置1が組電池2を冷却するときの作動流体および風の流れを実線および破線の矢印で示している。組電池2の冷却時、制御装置5は、通風路切替ドア256により室内コンデンサ203側の風流れを遮断し、エバポレータ208側の風流れを許容する。これにより、空調ケース252内に、矢印AF1に示すように風が流れ、エバポレータ208で冷やされた空気により空気式熱交換器1030に冷熱が供給される。この際、機器温調装置1の流体通路60を流れる気相の作動流体は、空気式熱交換器1030で凝縮(すなわち液化)し、機器用熱交換器10内の作動流体と流体通路60の作動流体とのヘッド差により、下接続部16から機器用熱交換器10に供給される。その後、機器用熱交換器10の内側の作動流体は、電池セル21から吸熱して蒸発し、上接続部15から流体通路60を通じて空気式熱交換器1030に戻る。 <Operation during cooling>
In FIG. 56, the flow of the working fluid and the wind when the device
<暖機時の作動>
図57では、機器温調装置1が組電池2を暖機するときの作動流体および風の流れを実線および破線の矢印で示している。組電池2の暖機時、制御装置5は、通風路切替ドア256により室内コンデンサ203側の風流れを許容し、エバポレータ208側の風流れを遮断する。これにより、空調ケース252内に、矢印AF2に示すように風が流れ、室内コンデンサ203で加熱された空気により空気式熱交換器1030に温熱が供給される。この際、機器温調装置1の流体通路60を流れる液相の作動流体は、空気式熱交換器1030で蒸発(すなわち気化)し、上接続部15から機器用熱交換器10に供給される。その後、機器用熱交換器10の内側の気相の作動流体は、電池セル21に放熱して凝縮する。そして、機器用熱交換器10内で凝縮した作動流体と流体通路60の作動流体とのヘッド差により、機器用熱交換器10の液相の作動流体は、下接続部16から流体通路60を通じて空気式熱交換器1030に戻る。 <Operation during warm-up>
In FIG. 57, the working fluid and the flow of wind when the devicetemperature control device 1 warms up the assembled battery 2 are indicated by solid and broken arrows. When the assembled battery 2 is warmed up, the control device 5 allows the air flow on the indoor condenser 203 side by the ventilation path switching door 256 and blocks the wind flow on the evaporator 208 side. As a result, wind flows in the air conditioning case 252 as indicated by an arrow AF2, and warm air is supplied to the pneumatic heat exchanger 1030 by the air heated by the indoor condenser 203. At this time, the liquid-phase working fluid flowing through the fluid passage 60 of the device temperature control apparatus 1 is evaporated (that is, vaporized) by the pneumatic heat exchanger 1030 and is supplied from the upper connection portion 15 to the device heat exchanger 10. . Thereafter, the working fluid in the gas phase inside the equipment heat exchanger 10 dissipates heat to the battery cell 21 and condenses. Then, due to the head difference between the working fluid condensed in the equipment heat exchanger 10 and the working fluid in the fluid passage 60, the liquid-phase working fluid in the equipment heat exchanger 10 passes from the lower connection portion 16 through the fluid passage 60. Return to pneumatic heat exchanger 1030.
図57では、機器温調装置1が組電池2を暖機するときの作動流体および風の流れを実線および破線の矢印で示している。組電池2の暖機時、制御装置5は、通風路切替ドア256により室内コンデンサ203側の風流れを許容し、エバポレータ208側の風流れを遮断する。これにより、空調ケース252内に、矢印AF2に示すように風が流れ、室内コンデンサ203で加熱された空気により空気式熱交換器1030に温熱が供給される。この際、機器温調装置1の流体通路60を流れる液相の作動流体は、空気式熱交換器1030で蒸発(すなわち気化)し、上接続部15から機器用熱交換器10に供給される。その後、機器用熱交換器10の内側の気相の作動流体は、電池セル21に放熱して凝縮する。そして、機器用熱交換器10内で凝縮した作動流体と流体通路60の作動流体とのヘッド差により、機器用熱交換器10の液相の作動流体は、下接続部16から流体通路60を通じて空気式熱交換器1030に戻る。 <Operation during warm-up>
In FIG. 57, the working fluid and the flow of wind when the device
以上説明した第32実施形態では、機器温調装置1は、熱供給部材100として、空気式熱交換器1030を用いることが可能である。空気式熱交換器1030には、重力方向下側の部位に温熱が供給され、重力方向上側の部位に冷熱が供給されるように構成されている。熱供給部材100は、機器用熱交換器10の内側にある作動流体の液面FLの高さを跨ぐ高さ方向の位置で流体通路60に設けられていることから、熱供給部材100の中では、上方が気相の作動流体、下方が液相の作動流体となっている。そのため、組電池2の冷却時には、空気式熱交換器1030の上方に冷熱を供給することで、気相の作動流体に対して確実に冷熱を供給し、作動流体の凝縮を促進させることができる。また、組電池2の暖機時には、空気式熱交換器1030の下方に温熱を供給することで、液相の作動流体に対して確実に温熱を供給し、作動流体の蒸発を促進させることができる。
In the thirty-second embodiment described above, the device temperature adjustment device 1 can use the pneumatic heat exchanger 1030 as the heat supply member 100. The pneumatic heat exchanger 1030 is configured such that warm heat is supplied to the lower part in the direction of gravity and cold heat is supplied to the upper part in the direction of gravity. Since the heat supply member 100 is provided in the fluid passage 60 at a position in the height direction across the height of the liquid level FL of the working fluid inside the equipment heat exchanger 10, Then, the upper side is a gas phase working fluid, and the lower side is a liquid phase working fluid. Therefore, at the time of cooling the assembled battery 2, by supplying cold heat above the pneumatic heat exchanger 1030, it is possible to reliably supply cold heat to the gas-phase working fluid and promote condensation of the working fluid. . In addition, when the assembled battery 2 is warmed up, the warm heat is supplied to the lower side of the pneumatic heat exchanger 1030 so that the warm heat is reliably supplied to the liquid-phase working fluid and the evaporation of the working fluid is promoted. it can.
(第33実施形態)
第33実施形態について説明する。図58に示すように、本実施形態の熱供給部材100は、熱電素子1040により構成されている。具体的に、熱電素子は、例えばペルチェ素子である。この構成においても、熱供給部材100は、流体通路60を流れる作動流体に対し冷熱または温熱を選択的に供給することができる。 (Thirty-third embodiment)
A thirty-third embodiment will be described. As shown in FIG. 58, theheat supply member 100 of this embodiment includes a thermoelectric element 1040. Specifically, the thermoelectric element is, for example, a Peltier element. Also in this configuration, the heat supply member 100 can selectively supply cold or warm heat to the working fluid flowing through the fluid passage 60.
第33実施形態について説明する。図58に示すように、本実施形態の熱供給部材100は、熱電素子1040により構成されている。具体的に、熱電素子は、例えばペルチェ素子である。この構成においても、熱供給部材100は、流体通路60を流れる作動流体に対し冷熱または温熱を選択的に供給することができる。 (Thirty-third embodiment)
A thirty-third embodiment will be described. As shown in FIG. 58, the
(第34実施形態)
第34実施形態について説明する。図59に示すように、第34実施形態は、上述の第29実施形態で説明した構成に対して、凝縮器30、液相通路40および気相通路50を追加したものである。凝縮器30、液相通路40および気相通路50の構成は、第1実施形態などで説明した構成と同じであるので、説明を省略する。 (Thirty-fourth embodiment)
A thirty-fourth embodiment will be described. As shown in FIG. 59, in the thirty-fourth embodiment, acondenser 30, a liquid phase passage 40, and a gas phase passage 50 are added to the configuration described in the twenty-ninth embodiment. Since the configurations of the condenser 30, the liquid phase passage 40, and the gas phase passage 50 are the same as those described in the first embodiment, the description thereof is omitted.
第34実施形態について説明する。図59に示すように、第34実施形態は、上述の第29実施形態で説明した構成に対して、凝縮器30、液相通路40および気相通路50を追加したものである。凝縮器30、液相通路40および気相通路50の構成は、第1実施形態などで説明した構成と同じであるので、説明を省略する。 (Thirty-fourth embodiment)
A thirty-fourth embodiment will be described. As shown in FIG. 59, in the thirty-fourth embodiment, a
第34実施形態では、組電池2が必要とする冷却の能力または車両の状態などに応じて、凝縮器30による冷却、または、熱供給部材100による冷却を選択することが可能である。このように、上述した第1~第34実施形態は、任意に組み合わせることが可能なものである。
In the thirty-fourth embodiment, cooling by the condenser 30 or cooling by the heat supply member 100 can be selected according to the cooling capacity required by the assembled battery 2 or the state of the vehicle. Thus, the first to thirty-fourth embodiments described above can be arbitrarily combined.
(他の実施形態)
本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。 (Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be modified as appropriate. Further, the above embodiments are not irrelevant to each other, and can be combined as appropriate unless the combination is clearly impossible. In each of the above-described embodiments, it is needless to say that elements constituting the embodiment are not necessarily essential unless explicitly stated as essential and clearly considered essential in principle. Yes. Further, in each of the above embodiments, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is clearly limited to a specific number when clearly indicated as essential and in principle. The number is not limited to the specific number except for the case. Further, in each of the above embodiments, when referring to the shape, positional relationship, etc. of the component, etc., the shape, unless otherwise specified and in principle limited to a specific shape, positional relationship, etc. It is not limited to the positional relationship or the like.
本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。 (Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be modified as appropriate. Further, the above embodiments are not irrelevant to each other, and can be combined as appropriate unless the combination is clearly impossible. In each of the above-described embodiments, it is needless to say that elements constituting the embodiment are not necessarily essential unless explicitly stated as essential and clearly considered essential in principle. Yes. Further, in each of the above embodiments, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is clearly limited to a specific number when clearly indicated as essential and in principle. The number is not limited to the specific number except for the case. Further, in each of the above embodiments, when referring to the shape, positional relationship, etc. of the component, etc., the shape, unless otherwise specified and in principle limited to a specific shape, positional relationship, etc. It is not limited to the positional relationship or the like.
(1)上述した実施形態では、作動流体としてフロン系冷媒を採用する例について説明したが、この限りでは無い。作動流体は、例えばプロパン、二酸化炭素等の他の流体を採用してもよい。
(1) In the above-described embodiment, the example in which the chlorofluorocarbon refrigerant is employed as the working fluid has been described. Other fluids such as propane and carbon dioxide may be employed as the working fluid.
(2)上述した実施形態では、加熱部61として電気ヒータを採用する例について説明したが、この限りでは無い。加熱部61は、例えばヒートポンプや、ペルチェ素子等の加熱ができる手段を用いても良い。また、加熱部61は、例えばSMR(システムメインリレー)など、他の車載発熱機器の廃熱を用いても良い。
(2) In the above-described embodiment, the example in which the electric heater is employed as the heating unit 61 has been described. For the heating unit 61, for example, a heat pump or a means capable of heating such as a Peltier element may be used. Further, the heating unit 61 may use waste heat of other in-vehicle heat generating devices such as SMR (system main relay).
(3)上述した実施形態では、機器温調装置1が温度を調節する対象機器として組電池2の例を示したが、この限りでは無い。対象機器は、例えばモータ、インバータ、充電器など、冷却と暖機が必要な他の機器でも良い。
(3) In the above-described embodiment, the example of the assembled battery 2 is shown as the target device that the device temperature control device 1 adjusts the temperature. The target device may be another device that needs to be cooled and warmed up, such as a motor, an inverter, or a charger.
(まとめ)
上述の実施形態の一部または全部で示された第1の観点によれば、作動流体の液相と気相との相変化により対象機器の温度を調整する機器温調装置は、機器用熱交換器、上接続部、下接続部、凝縮器、気相通路、液相通路、流体通路、加熱部および制御装置を備える。機器用熱交換器は、対象機器の冷却時に作動流体が蒸発し、対象機器の暖機時に作動流体が凝縮するように、対象機器と作動流体とが熱交換可能に構成されたものである。上接続部は、機器用熱交換器のうち重力方向上側の部位に設けられ、作動流体が流入または流出する。下接続部は、機器用熱交換器のうち上接続部よりも重力方向下側の部位に設けられ、作動流体が流入または流出する。凝縮器は、機器用熱交換器より重力方向上側に配置され、機器用熱交換器で蒸発した作動流体を放熱させることにより作動流体を凝縮させる。気相通路は、凝縮器に気相の作動流体が流入する流入口と機器用熱交換器の上接続部とを連通する。液相通路は、凝縮器から液相の作動流体を流出する流出口と機器用熱交換器の下接続部とを連通する。流体通路は、凝縮器を経路上に含むことなく、機器用熱交換器の上接続部と下接続部とを連通する。加熱部は、流体通路を流れる液相の作動流体を加熱可能である。制御装置は、対象機器を加熱するときに加熱部を作動させ、対象機器を冷却するときに加熱部の作動を停止する。 (Summary)
According to the first aspect shown in part or all of the above-described embodiments, the device temperature adjustment device that adjusts the temperature of the target device by the phase change between the liquid phase and the gas phase of the working fluid is An exchanger, an upper connection portion, a lower connection portion, a condenser, a gas phase passage, a liquid phase passage, a fluid passage, a heating portion, and a control device are provided. The equipment heat exchanger is configured such that the target equipment and the working fluid can exchange heat so that the working fluid evaporates when the target equipment is cooled and the working fluid is condensed when the target equipment is warmed up. An upper connection part is provided in the site | part of the gravity direction upper side among the heat exchangers for apparatuses, and a working fluid flows in or out. A lower connection part is provided in the site | part below a gravity direction rather than an upper connection part among the heat exchangers for apparatuses, and a working fluid flows in or out. The condenser is disposed above the equipment heat exchanger in the direction of gravity, and condenses the working fluid by dissipating the working fluid evaporated in the equipment heat exchanger. The gas phase passage communicates the inlet through which the gas phase working fluid flows into the condenser and the upper connection portion of the equipment heat exchanger. The liquid phase passage communicates the outlet that flows the liquid phase working fluid from the condenser and the lower connection portion of the heat exchanger for equipment. The fluid passage communicates the upper connection portion and the lower connection portion of the equipment heat exchanger without including the condenser on the path. The heating unit can heat the liquid-phase working fluid flowing through the fluid passage. The control device operates the heating unit when heating the target device, and stops the operation of the heating unit when cooling the target device.
上述の実施形態の一部または全部で示された第1の観点によれば、作動流体の液相と気相との相変化により対象機器の温度を調整する機器温調装置は、機器用熱交換器、上接続部、下接続部、凝縮器、気相通路、液相通路、流体通路、加熱部および制御装置を備える。機器用熱交換器は、対象機器の冷却時に作動流体が蒸発し、対象機器の暖機時に作動流体が凝縮するように、対象機器と作動流体とが熱交換可能に構成されたものである。上接続部は、機器用熱交換器のうち重力方向上側の部位に設けられ、作動流体が流入または流出する。下接続部は、機器用熱交換器のうち上接続部よりも重力方向下側の部位に設けられ、作動流体が流入または流出する。凝縮器は、機器用熱交換器より重力方向上側に配置され、機器用熱交換器で蒸発した作動流体を放熱させることにより作動流体を凝縮させる。気相通路は、凝縮器に気相の作動流体が流入する流入口と機器用熱交換器の上接続部とを連通する。液相通路は、凝縮器から液相の作動流体を流出する流出口と機器用熱交換器の下接続部とを連通する。流体通路は、凝縮器を経路上に含むことなく、機器用熱交換器の上接続部と下接続部とを連通する。加熱部は、流体通路を流れる液相の作動流体を加熱可能である。制御装置は、対象機器を加熱するときに加熱部を作動させ、対象機器を冷却するときに加熱部の作動を停止する。 (Summary)
According to the first aspect shown in part or all of the above-described embodiments, the device temperature adjustment device that adjusts the temperature of the target device by the phase change between the liquid phase and the gas phase of the working fluid is An exchanger, an upper connection portion, a lower connection portion, a condenser, a gas phase passage, a liquid phase passage, a fluid passage, a heating portion, and a control device are provided. The equipment heat exchanger is configured such that the target equipment and the working fluid can exchange heat so that the working fluid evaporates when the target equipment is cooled and the working fluid is condensed when the target equipment is warmed up. An upper connection part is provided in the site | part of the gravity direction upper side among the heat exchangers for apparatuses, and a working fluid flows in or out. A lower connection part is provided in the site | part below a gravity direction rather than an upper connection part among the heat exchangers for apparatuses, and a working fluid flows in or out. The condenser is disposed above the equipment heat exchanger in the direction of gravity, and condenses the working fluid by dissipating the working fluid evaporated in the equipment heat exchanger. The gas phase passage communicates the inlet through which the gas phase working fluid flows into the condenser and the upper connection portion of the equipment heat exchanger. The liquid phase passage communicates the outlet that flows the liquid phase working fluid from the condenser and the lower connection portion of the heat exchanger for equipment. The fluid passage communicates the upper connection portion and the lower connection portion of the equipment heat exchanger without including the condenser on the path. The heating unit can heat the liquid-phase working fluid flowing through the fluid passage. The control device operates the heating unit when heating the target device, and stops the operation of the heating unit when cooling the target device.
第2の観点によれば、凝縮器による作動流体の放熱を抑制可能な放熱抑制部をさらに備える。これによれば、対象機器の暖機時に、凝縮器による作動流体の放熱を放熱抑制部によって抑制することで、機器用熱交換器から気相通路、凝縮器および液相通路に作動流体が循環することが抑制される。そのため、対象機器の暖機時に、流体通路、上接続部、機器用熱交換器、下接続部および流体通路に作動流体を流すことが可能である。したがって、この機器温調装置は、作動流体を円滑に循環させることで、対象機器の暖機を高効率に行うことができる。
According to the 2nd viewpoint, the heat dissipation suppression part which can suppress the heat dissipation of the working fluid by a condenser is further provided. According to this, when the target device is warmed up, the working fluid circulates from the heat exchanger for the device to the gas phase passage, the condenser, and the liquid phase passage by suppressing the heat radiation of the working fluid by the condenser by the heat radiation suppressing unit. Is suppressed. Therefore, when the target device is warmed up, the working fluid can flow through the fluid passage, the upper connection portion, the equipment heat exchanger, the lower connection portion, and the fluid passage. Therefore, this device temperature control device can warm up the target device with high efficiency by smoothly circulating the working fluid.
第3の観点によれば、放熱抑制部は、液相通路または気相通路に設けられた流体制御弁である。これによれば、流体制御弁は、液相通路または気相通路の作動流体の流れを遮断することで、凝縮器による作動流体の放熱を抑制または略停止することが可能である。
According to the third aspect, the heat dissipation suppression unit is a fluid control valve provided in the liquid phase passage or the gas phase passage. According to this, the fluid control valve can suppress or substantially stop the heat radiation of the working fluid by the condenser by blocking the flow of the working fluid in the liquid phase passage or the gas phase passage.
第4の観点によれば、放熱抑制部は、凝縮器を通過する空気の流通を遮断可能な扉部材である。これによれば、扉部材は、凝縮器を通過する空気の流通を遮断することで、凝縮器による作動流体の放熱を抑制または略停止することが可能である。
According to the fourth aspect, the heat dissipation suppressing portion is a door member capable of blocking the flow of air passing through the condenser. According to this, the door member can suppress or substantially stop the heat radiation of the working fluid by the condenser by blocking the flow of the air passing through the condenser.
第5の観点によれば、機器温調装置は、圧縮機、高圧側熱交換器、膨張弁、冷媒―作動流体熱交換器、冷媒配管および流量規制部を有する冷凍サイクルをさらに備える。圧縮機は、冷媒を圧縮する。高圧側熱交換器は、圧縮機により圧縮された冷媒を放熱させる。膨張弁は、高圧側熱交換器により放熱した冷媒を減圧する。冷媒―作動流体熱交換器は、膨張弁から流出する冷媒と凝縮器を流れる作動流体とを熱交換させる。冷媒配管は、圧縮機と高圧側熱交換器と膨張弁と冷媒―作動流体熱交換器とを接続する。流量規制部は、冷媒配管を流れる冷媒の流れを規制する。ここで、放熱抑制部は、冷凍サイクルが有する流量規制部であり、冷媒配管を流れる冷媒の流れを遮断することで、凝縮器による作動流体の放熱を抑制可能である。
According to a fifth aspect, the device temperature control device further includes a refrigeration cycle having a compressor, a high-pressure side heat exchanger, an expansion valve, a refrigerant-working fluid heat exchanger, a refrigerant pipe, and a flow rate regulating unit. The compressor compresses the refrigerant. The high-pressure side heat exchanger dissipates heat from the refrigerant compressed by the compressor. The expansion valve depressurizes the refrigerant dissipated by the high pressure side heat exchanger. The refrigerant-working fluid heat exchanger exchanges heat between the refrigerant flowing out of the expansion valve and the working fluid flowing through the condenser. The refrigerant pipe connects the compressor, the high-pressure side heat exchanger, the expansion valve, and the refrigerant-working fluid heat exchanger. The flow rate regulating unit regulates the flow of the refrigerant flowing through the refrigerant pipe. Here, the heat radiation suppressing unit is a flow rate regulating unit included in the refrigeration cycle, and can block the flow of the refrigerant flowing through the refrigerant pipe, thereby suppressing the heat radiation of the working fluid by the condenser.
第6の観点によれば、機器温調装置は、ウォータポンプ、冷却水放熱器、水―作動流体熱交換器、および、冷却水配管を有する冷却水回路をさらに備える。ウォータポンプは、冷却水を圧送する。冷却水放熱器は、ウォータポンプにより圧送された冷却水を放熱させる。水―作動流体熱交換器は、冷却水放熱器から流出する冷却水と凝縮器を流れる作動流体とを熱交換させる。冷却水配管は、ウォータポンプと冷却水放熱器と水―作動流体熱交換器とを接続する。ここで、放熱抑制部は、冷却水回路が有するウォータポンプであり、冷却水配管を流れる冷却水の流れを遮断することで、凝縮器による作動流体の放熱を抑制可能である。
According to a sixth aspect, the device temperature control device further includes a water pump, a cooling water radiator, a water-working fluid heat exchanger, and a cooling water circuit having a cooling water pipe. The water pump pumps the cooling water. The cooling water radiator radiates the cooling water pumped by the water pump. The water-working fluid heat exchanger exchanges heat between the cooling water flowing out from the cooling water radiator and the working fluid flowing through the condenser. The cooling water pipe connects the water pump, the cooling water radiator, and the water-working fluid heat exchanger. Here, the heat dissipation suppression unit is a water pump included in the cooling water circuit, and can block the flow of the cooling water flowing through the cooling water piping, thereby suppressing the heat dissipation of the working fluid by the condenser.
第7の観点によれば、作動流体の液相と気相との相変化により対象機器の温度を調整する機器温調装置は、機器用熱交換器、上接続部、下接続部、流体通路、加熱部および制御装置を備える。機器用熱交換器は、対象機器の暖機時に作動流体が凝縮するように、対象機器と作動流体とが熱交換可能に構成されている。上接続部は、機器用熱交換器のうち重力方向上側の部位に設けられ、作動流体が流入または流出する。下接続部は、機器用熱交換器のうち上接続部よりも重力方向下側の部位に設けられ、作動流体が流入または流出する。流体通路は、機器用熱交換器の上接続部と下接続部とを連通する。加熱部は、流体通路を流れる液相の作動流体を加熱可能である。制御装置は、対象機器を加熱するときに加熱部を作動する。
According to the seventh aspect, the device temperature control device for adjusting the temperature of the target device by the phase change between the liquid phase and the gas phase of the working fluid includes a device heat exchanger, an upper connection portion, a lower connection portion, and a fluid passage. And a heating unit and a control device. The equipment heat exchanger is configured to exchange heat between the target equipment and the working fluid so that the working fluid is condensed when the target equipment is warmed up. An upper connection part is provided in the site | part of the gravity direction upper side among the heat exchangers for apparatuses, and a working fluid flows in or out. A lower connection part is provided in the site | part below a gravity direction rather than an upper connection part among the heat exchangers for apparatuses, and a working fluid flows in or out. The fluid passage communicates the upper connection portion and the lower connection portion of the equipment heat exchanger. The heating unit can heat the liquid-phase working fluid flowing through the fluid passage. The control device operates the heating unit when heating the target device.
第8の観点によれば、加熱部は、流体通路のうち、重力方向上下に延びている部位に設けられる。これによれば、加熱部により加熱されて気化した作動流体は、流体通路を重力方向上側に速やかに流れる。そのため、気相の作動流体が流体通路から下接続部側へ逆流することが防がれる。したがって、この機器温調装置は、作動流体を円滑に循環させることで、対象機器の暖機を高効率に行うことができる。
According to the eighth aspect, the heating unit is provided in a portion of the fluid passage that extends vertically in the gravity direction. According to this, the working fluid that has been heated and vaporized by the heating unit quickly flows through the fluid passage upward in the direction of gravity. Therefore, it is possible to prevent the gas-phase working fluid from flowing backward from the fluid passage to the lower connection portion side. Therefore, this device temperature control device can warm up the target device with high efficiency by smoothly circulating the working fluid.
第9の観点によれば、流体通路は、機器用熱交換器の下接続部と加熱部との間に、加熱部より重力方向下側に延びる逆流抑制部を有する。これによれば、加熱部より重力方向下側に延びる逆流抑制部は、加熱部により加熱されて気化した作動流体が下接続部側へ逆流することを防ぐことが可能である。したがって、この機器温調装置は、対象機器の暖機時に、流体通路→上接続部→機器用熱交換器→下接続部→流体通路の順に作動流体を円滑に循環させることができる。
According to the ninth aspect, the fluid passage has a backflow suppressing portion extending downward from the heating portion in the direction of gravity between the lower connection portion of the heat exchanger for equipment and the heating portion. According to this, the backflow suppression unit extending downward in the gravitational direction from the heating unit can prevent the working fluid heated and vaporized by the heating unit from flowing back to the lower connection unit. Therefore, this device temperature control device can smoothly circulate the working fluid in the order of fluid passage → upper connection portion → equipment heat exchanger → lower connection portion → fluid passage when the target device is warmed up.
第10の観点によれば、流体通路は、経路の途中に、流体通路を流れる液相の作動流体を貯める貯液部を有する。これによれば、機器温調装置は、対象機器の冷却および暖機に必要な作動流体の量を貯液部に貯めることができる。
According to the tenth aspect, the fluid passage has a liquid storage part for storing a liquid-phase working fluid flowing through the fluid passage in the middle of the passage. According to this, the device temperature control device can store the amount of working fluid necessary for cooling and warming up the target device in the liquid storage unit.
第11の観点によれば、貯液部は、流体通路の経路のうち一部の内径を大きくすることで形成されたものである。これによれば、流体通路に貯液部を簡素な構成で設けることができる。
According to the eleventh aspect, the liquid storage part is formed by increasing the inner diameter of a part of the path of the fluid passage. According to this, the liquid storage part can be provided in the fluid passage with a simple configuration.
第12の観点によれば、貯液部の少なくとも一部は、機器用熱交換器の上接続部と下接続部との高さ範囲内に位置している。これによれば、機器温調装置は、貯液部の液面の高さを調整することで、機器用熱交換器内の作動流体の液面の高さを容易に調整することができる。
According to the twelfth aspect, at least a part of the liquid storage part is located within the height range of the upper connection part and the lower connection part of the equipment heat exchanger. According to this, the apparatus temperature control apparatus can adjust the liquid level of the working fluid in the apparatus heat exchanger easily by adjusting the liquid level of the liquid storage part.
第13の観点によれば、加熱部は、貯液部に貯められた液相の作動流体を加熱可能な位置に設けられている。これによれば、加熱部による作動流体の加熱効率を高めることができる。
According to the thirteenth aspect, the heating part is provided at a position where the liquid-phase working fluid stored in the liquid storage part can be heated. According to this, the heating efficiency of the working fluid by a heating part can be improved.
第14の観点によれば、制御装置は、加熱部の加熱能力の増大と低下を繰り返しながら対象機器を加熱する。これによれば、対象機器を暖機する際、加熱部の加熱能力を増大すると対象機器の暖機が促進され、加熱部の加熱能力を低下すると対象機器の温度分布が小さくなる。そのため、制御装置は、対象機器を加熱する際、加熱部の加熱能力の増大と低下を繰り返すことで、対象機器の温度分布を抑制しつつ、対象機器を暖機することが可能である。したがって、この機器温調装置は、対象機器として組電池を適用した場合、組電池が充放電を行う際に、組電池の中の温度の高い部分に電流集中が発生することを防ぐことができる。
According to the fourteenth aspect, the control device heats the target device while repeatedly increasing and decreasing the heating capacity of the heating unit. According to this, when warming up the target device, increasing the heating capacity of the heating unit promotes warming up of the target device, and decreasing the heating capability of the heating unit decreases the temperature distribution of the target device. Therefore, the control device can warm up the target device while suppressing the temperature distribution of the target device by repeatedly increasing and decreasing the heating capacity of the heating unit when heating the target device. Therefore, when the assembled battery is applied as the target device, this device temperature control device can prevent current concentration from occurring in a portion having a high temperature in the assembled battery when the assembled battery is charged and discharged. .
第15の観点によれば、制御装置は、対象機器の温度分布の大きさを判定する機能を有する。制御装置は、対象機器の温度分布が、所定の第1温度閾値以上になると、加熱部の加熱能力を低下させ、対象機器の温度分布が、所定の第2温度閾値以下になると、加熱部の加熱能力を増大させる。これによれば、制御装置は、対象機器の温度分布が所定の第1温度閾値より大きくなることを防ぐことができる。
According to the fifteenth aspect, the control device has a function of determining the size of the temperature distribution of the target device. The control device reduces the heating capability of the heating unit when the temperature distribution of the target device is equal to or higher than a predetermined first temperature threshold, and when the temperature distribution of the target device is equal to or lower than the predetermined second temperature threshold, Increase heating capacity. According to this, the control device can prevent the temperature distribution of the target device from becoming larger than the predetermined first temperature threshold.
第16の観点によれば、制御装置は、加熱部の加熱能力に基づき、対象機器の温度分布の大きさを判定する。これによれば、加熱部の加熱能力が大きいほど、加熱部から作動流体を介して対象機器に供給される熱流量が大きくなるので、対象機器の温度分布が大きくなる。一方、加熱部の加熱能力が小さいほど、加熱部から作動流体を介して対象機器に供給される熱流量が小さくなるので、対象機器の温度分布は小さくなる。したがって、制御装置は、加熱部の加熱能力を検出することで、簡素な構成で、対象機器の温度分布の大きさを判定することが可能である。
According to the sixteenth aspect, the control device determines the size of the temperature distribution of the target device based on the heating capability of the heating unit. According to this, the greater the heating capacity of the heating unit, the greater the heat flow supplied from the heating unit to the target device via the working fluid, and thus the temperature distribution of the target device increases. On the other hand, the smaller the heating capacity of the heating unit, the smaller the heat flow rate supplied from the heating unit to the target device via the working fluid, so the temperature distribution of the target device becomes smaller. Therefore, the control device can determine the size of the temperature distribution of the target device with a simple configuration by detecting the heating capability of the heating unit.
第17の観点によれば、制御装置は、加熱部の駆動と停止を間欠的に繰り返しながら対象機器を加熱する。これによれば、対象機器を暖機する際、加熱部の駆動により対象機器の暖機が促進され、加熱部の駆動停止により対象機器の均温化が促進される。そのため、制御装置は、対象機器を加熱する際、加熱部の駆動と停止を間欠的に繰り返すことで、対象機器の温度分布を抑制しつつ、対象機器を暖機することが可能である。
According to the seventeenth aspect, the control device heats the target device while intermittently repeating driving and stopping of the heating unit. According to this, when warming up the target device, the warming-up of the target device is promoted by driving the heating unit, and the temperature equalization of the target device is promoted by stopping the driving of the heating unit. Therefore, the control device can warm up the target device while suppressing the temperature distribution of the target device by intermittently repeating driving and stopping of the heating unit when heating the target device.
第18の観点によれば、制御装置は、対象機器の温度分布の大きさを判定する機能を有する。制御装置は、対象機器の温度分布が、所定の第1温度閾値以上になると、加熱部の動作を停止し、対象機器の温度分布が、所定の第2温度閾値以下になると、加熱部の動作を再開する。これによれば、制御装置は、対象機器の温度分布が所定の第1温度閾値より大きくなることを防ぐことができる。
According to the eighteenth aspect, the control device has a function of determining the size of the temperature distribution of the target device. The control device stops the operation of the heating unit when the temperature distribution of the target device is equal to or higher than the predetermined first temperature threshold, and operates when the temperature distribution of the target device is equal to or lower than the predetermined second temperature threshold. To resume. According to this, the control device can prevent the temperature distribution of the target device from becoming larger than the predetermined first temperature threshold.
第19の観点によれば、制御装置は、加熱部が連続して作動している時間、または、加熱部が連続して作動を停止している時間に基づき、対象機器の温度分布の大きさを判定する。これによれば、加熱部が連続して作動している時間が長いほど、加熱部から作動流体を介して対象機器に供給される熱量が大きくなるので、対象機器の温度分布が大きくなる。一方、加熱部が連続して作動を停止している時間が長いほど、対象機器の各部の温度が平均化され、対象機器の温度分布は小さくなる。したがって、制御装置は、加熱部が連続して作動または停止している時間を検出することで、簡素な構成で、対象機器の温度分布の大きさを判定することが可能である。
According to the nineteenth aspect, the control device determines the magnitude of the temperature distribution of the target device based on the time during which the heating unit is continuously operated or the time during which the heating unit is continuously stopped. Determine. According to this, since the amount of heat supplied from the heating unit to the target device via the working fluid increases as the time during which the heating unit continuously operates, the temperature distribution of the target device increases. On the other hand, as the time during which the heating unit is continuously stopped is longer, the temperature of each part of the target device is averaged, and the temperature distribution of the target device becomes smaller. Therefore, the control device can determine the size of the temperature distribution of the target device with a simple configuration by detecting the time during which the heating unit is continuously activated or stopped.
第20の観点によれば、制御装置は、加熱部に供給される電力に基づき、対象機器の温度分布の大きさを判定する。これによれば、加熱部が例えばヒータまたはペルチェ素子などの場合、加熱部に供給される電力が大きいほど、加熱部から作動流体を介して対象機器に供給される熱流量が大きくなるので、対象機器の温度分布が大きくなる。一方、加熱部に供給される電力が小さいほど、加熱部から作動流体を介して対象機器に供給される熱流量が小さくなるので、対象機器の温度分布は小さくなる。したがって、制御装置は、加熱部に供給される電力を検出することで、簡素な構成で、対象機器の温度分布の大きさを判定することが可能である。
According to the twentieth aspect, the control device determines the size of the temperature distribution of the target device based on the power supplied to the heating unit. According to this, when the heating unit is, for example, a heater or a Peltier element, the larger the electric power supplied to the heating unit, the larger the heat flow supplied from the heating unit to the target device via the working fluid. The temperature distribution of the equipment increases. On the other hand, the smaller the electric power supplied to the heating unit, the smaller the heat flow supplied from the heating unit to the target device via the working fluid, so the temperature distribution of the target device becomes smaller. Therefore, the control device can determine the size of the temperature distribution of the target device with a simple configuration by detecting the power supplied to the heating unit.
第21の観点によれば、加熱部は、対象機器の暖機時に温水が流れるように構成されている水―作動流体熱交換器である。制御装置は、水―作動流体熱交換器による作動流体の加熱能力に基づき、対象機器の温度分布の大きさを判定する。これによれば、水―作動流体熱交換器による作動流体の加熱能力が大きいほど、水―作動流体熱交換器から作動流体を介して対象機器に供給される熱流量が大きくなるので、対象機器の温度分布が大きくなる。一方、水―作動流体熱交換器による作動流体の加熱能力が小さいほど、水―作動流体熱交換器から作動流体を介して対象機器に供給される熱流量が小さくなるので、対象機器の温度分布は小さくなる。したがって、制御装置は、水―作動流体熱交換器による作動流体の加熱能力を検出することで、簡素な構成で、対象機器の温度分布の大きさを判定することが可能である。
According to a twenty-first aspect, the heating unit is a water-working fluid heat exchanger configured such that warm water flows when the target device is warmed up. The control device determines the size of the temperature distribution of the target device based on the heating capability of the working fluid by the water-working fluid heat exchanger. According to this, the greater the heating capacity of the working fluid by the water-working fluid heat exchanger, the greater the heat flow rate supplied from the water-working fluid heat exchanger to the target device via the working fluid. The temperature distribution increases. On the other hand, the smaller the heating capacity of the working fluid by the water-working fluid heat exchanger, the smaller the heat flow supplied from the water-working fluid heat exchanger to the target device via the working fluid. Becomes smaller. Therefore, the control device can determine the size of the temperature distribution of the target device with a simple configuration by detecting the heating capability of the working fluid by the water-working fluid heat exchanger.
第22の観点によれば、制御装置は、水―作動流体熱交換器を流れる水温と対象機器の温度との差に基づき、対象機器の温度分布の大きさを判定する。これによれば、対象機器の温度に対し、水―作動流体熱交換器を流れる水温(すなわち、温水の温度)が高いほど、水―作動流体熱交換器から対象機器に供給される熱流量が大きくなるので、対象機器の温度分布が大きくなる。一方、水―作動流体熱交換器を流れる水温と対象機器の温度との差が小さいほど、水―作動流体熱交換器から対象機器に供給される熱流量が小さくなるので、対象機器の温度分布は小さくなる。したがって、制御装置は、水―作動流体熱交換器を流れる水温と対象機器の温度を検出することで、簡素な構成で、対象機器の温度分布の大きさを判定することが可能である。
According to the twenty-second aspect, the control device determines the size of the temperature distribution of the target device based on the difference between the water temperature flowing through the water-working fluid heat exchanger and the temperature of the target device. According to this, as the temperature of the water flowing through the water-working fluid heat exchanger (that is, the temperature of the hot water) is higher than the temperature of the target device, the heat flow supplied from the water-working fluid heat exchanger to the target device is higher. Since it becomes large, the temperature distribution of an object apparatus becomes large. On the other hand, the smaller the difference between the water temperature flowing through the water-working fluid heat exchanger and the temperature of the target device, the smaller the heat flow supplied from the water-working fluid heat exchanger to the target device. Becomes smaller. Therefore, the control device can determine the size of the temperature distribution of the target device with a simple configuration by detecting the temperature of the water flowing through the water-working fluid heat exchanger and the temperature of the target device.
第23の観点によれば、制御装置は、水―作動流体熱交換器を流れる水の温度と対象機器の温度との差、および、水―作動流体熱交換器を流れる水の流量に基づき、対象機器の温度分布の大きさを判定する。これによれば、水―作動流体熱交換器を流れる水温と対象機器の温度との差が大きく、水―作動流体熱交換器を流れる水の流量が多いほど、水―作動流体熱交換器から対象機器に供給される熱流量が大きくなるので、対象機器の温度分布が大きくなる。一方、水―作動流体熱交換器を流れる水温と対象機器の温度との差が小さく、水―作動流体熱交換器を流れる水の流量が少ないほど、水―作動流体熱交換器から対象機器に供給される熱流量が小さくなるので、対象機器の温度分布は小さくなる。したがって、制御装置は、水―作動流体熱交換器を流れる水温、対象機器の温度、および水―作動流体熱交換器を流れる水の流量を検出することで、簡素な構成で、対象機器の温度分布の大きさを判定することが可能である。
According to the twenty-third aspect, the control device is based on the difference between the temperature of the water flowing through the water-working fluid heat exchanger and the temperature of the target device, and the flow rate of the water flowing through the water-working fluid heat exchanger, Determine the temperature distribution of the target device. According to this, the difference between the temperature of the water flowing through the water-working fluid heat exchanger and the temperature of the target device is large, and the greater the flow rate of water flowing through the water-working fluid heat exchanger, Since the heat flow supplied to the target device is increased, the temperature distribution of the target device is increased. On the other hand, the smaller the difference between the temperature of the water flowing through the water-working fluid heat exchanger and the temperature of the target device and the smaller the flow rate of water flowing through the water-working fluid heat exchanger, the more the water-working fluid heat exchanger moves from the target device to the target device. Since the supplied heat flow becomes small, the temperature distribution of the target device becomes small. Therefore, the control device detects the temperature of the water flowing through the water-working fluid heat exchanger, the temperature of the target device, and the flow rate of the water flowing through the water-working fluid heat exchanger. It is possible to determine the size of the distribution.
第24の観点によれば、加熱部は、対象機器の暖機時に温度の高い冷媒が流れるように構成されている冷媒―作動流体熱交換器である。制御装置は、冷媒―作動流体熱交換器による作動流体の加熱能力に基づき、対象機器の温度分布の大きさを判定する。これによれば、冷媒―作動流体熱交換器による作動流体の加熱能力が大きいほど、冷媒―作動流体熱交換器から作動流体を介して対象機器に供給される熱流量が大きくなるので、対象機器の温度分布が大きくなる。一方、冷媒―作動流体熱交換器による作動流体の加熱能力が小さいほど、冷媒―作動流体熱交換器から作動流体を介して対象機器に供給される熱流量が小さくなるので、対象機器の温度分布は小さくなる。したがって、制御装置は、冷媒―作動流体熱交換器による作動流体の加熱能力を検出することで、簡素な構成で、対象機器の温度分布の大きさを判定することが可能である。
According to a twenty-fourth aspect, the heating unit is a refrigerant-working fluid heat exchanger configured such that a high-temperature refrigerant flows when the target device is warmed up. The control device determines the size of the temperature distribution of the target device based on the heating capability of the working fluid by the refrigerant-working fluid heat exchanger. According to this, the larger the heating capacity of the working fluid by the refrigerant-working fluid heat exchanger, the larger the heat flow rate supplied from the refrigerant-working fluid heat exchanger to the target device via the working fluid. The temperature distribution increases. On the other hand, the smaller the heating capacity of the working fluid by the refrigerant-working fluid heat exchanger, the smaller the heat flow supplied from the refrigerant-working fluid heat exchanger to the target device via the working fluid. Becomes smaller. Therefore, the control device can determine the magnitude of the temperature distribution of the target device with a simple configuration by detecting the heating ability of the working fluid by the refrigerant-working fluid heat exchanger.
第25の観点によれば、制御装置は、冷媒―作動流体熱交換器を流れる冷媒の温度と対象機器の温度との差に基づき、対象機器の温度分布の大きさを判定する。これによれば、冷媒―作動流体熱交換器を流れる冷媒の温度と対象機器の温度との差が大きいほど、冷媒―作動流体熱交換器から対象機器に供給される熱流量が大きくなるので、対象機器の温度分布が大きくなる。一方、冷媒―作動流体熱交換器を流れる冷媒の温度と対象機器の温度との差が小さいほど、冷媒―作動流体熱交換器から対象機器に供給される熱流量が小さくなるので、対象機器の温度分布は小さくなる。したがって、制御装置は、冷媒―作動流体熱交換器を流れる冷媒の温度と対象機器の温度を検出することで、簡素な構成で、対象機器の温度分布の大きさを判定することが可能である。
According to the twenty-fifth aspect, the control device determines the size of the temperature distribution of the target device based on the difference between the temperature of the refrigerant flowing through the refrigerant-working fluid heat exchanger and the temperature of the target device. According to this, the greater the difference between the temperature of the refrigerant flowing through the refrigerant-working fluid heat exchanger and the temperature of the target device, the greater the heat flow supplied from the refrigerant-working fluid heat exchanger to the target device. The temperature distribution of the target equipment increases. On the other hand, the smaller the difference between the temperature of the refrigerant flowing through the refrigerant-working fluid heat exchanger and the temperature of the target device, the smaller the heat flow supplied from the refrigerant-working fluid heat exchanger to the target device. The temperature distribution becomes smaller. Therefore, the control device can determine the size of the temperature distribution of the target device with a simple configuration by detecting the temperature of the refrigerant flowing through the refrigerant-working fluid heat exchanger and the temperature of the target device. .
第26の観点によれば、制御装置は、冷媒―作動流体熱交換器を流れる冷媒の温度と対象機器の温度との差、および、冷媒―作動流体熱交換器を流れる冷媒の流量に基づき、対象機器の温度分布の大きさを判定する。これによれば、対象機器の温度に対して冷媒―作動流体熱交換器を流れる冷媒の温度が高く、冷媒―作動流体熱交換器を流れる冷媒の流量が多いほど、冷媒―作動流体熱交換器から対象機器に供給される熱流量が大きくなるので、対象機器の温度分布が大きくなる。一方、冷媒―作動流体熱交換器を流れる冷媒の温度と対象機器の温度との差が小さく、冷媒―作動流体熱交換器を流れる冷媒の流量が少ないほど、冷媒―作動流体熱交換器から対象機器に供給される熱流量が小さくなるので、対象機器の温度分布は小さくなる。したがって、制御装置は、冷媒―作動流体熱交換器を流れる冷媒の温度、対象機器の温度、および冷媒―作動流体熱交換器を流れる冷媒の流量を検出することで、簡素な構成で、対象機器の温度分布の大きさを判定することが可能である。
According to a twenty-sixth aspect, the control device is based on the difference between the temperature of the refrigerant flowing through the refrigerant-working fluid heat exchanger and the temperature of the target device, and the flow rate of the refrigerant flowing through the refrigerant-working fluid heat exchanger, Determine the temperature distribution of the target device. According to this, as the temperature of the refrigerant flowing through the refrigerant-working fluid heat exchanger is higher than the temperature of the target device and the flow rate of the refrigerant flowing through the refrigerant-working fluid heat exchanger is larger, the refrigerant-working fluid heat exchanger Since the heat flow supplied to the target device from becomes larger, the temperature distribution of the target device becomes larger. On the other hand, the smaller the difference between the temperature of the refrigerant flowing through the refrigerant-working fluid heat exchanger and the temperature of the target device and the smaller the flow rate of the refrigerant flowing through the refrigerant-working fluid heat exchanger, the more from the refrigerant-working fluid heat exchanger. Since the heat flow supplied to the device is small, the temperature distribution of the target device is small. Therefore, the control device detects the temperature of the refrigerant flowing through the refrigerant-working fluid heat exchanger, the temperature of the target device, and the flow rate of the refrigerant flowing through the refrigerant-working fluid heat exchanger, and has a simple configuration. It is possible to determine the size of the temperature distribution.
第27の観点によれば、作動流体の液相と気相との相変化により対象機器の温度を調整する機器温調装置は、機器用熱交換器、上接続部、下接続部、流体通路および熱供給部材を備える。機器用熱交換器は、対象機器の冷却時に作動流体が蒸発し、対象機器の暖機時に作動流体が凝縮するように、対象機器と作動流体とが熱交換可能に構成されたものである。上接続部は、機器用熱交換器のうち重力方向上側の部位に設けられ、作動流体が流入または流出する。下接続部は、機器用熱交換器のうち上接続部よりも重力方向下側の部位に設けられ、作動流体が流入または流出する。流体通路は、機器用熱交換器の上接続部と下接続部とを連通する。熱供給部材は、機器用熱交換器の内側にある作動流体の液面の高さを跨ぐ高さ方向の位置で流体通路に設けられ、流体通路を流れる作動流体に対し冷熱または温熱を選択的に供給可能である。
According to a twenty-seventh aspect, an apparatus temperature control device that adjusts the temperature of a target apparatus by a phase change between a liquid phase and a gas phase of a working fluid includes an apparatus heat exchanger, an upper connection section, a lower connection section, and a fluid passage. And a heat supply member. The equipment heat exchanger is configured such that the target equipment and the working fluid can exchange heat so that the working fluid evaporates when the target equipment is cooled and the working fluid is condensed when the target equipment is warmed up. An upper connection part is provided in the site | part of the gravity direction upper side among the heat exchangers for apparatuses, and a working fluid flows in or out. A lower connection part is provided in the site | part below a gravity direction rather than an upper connection part among the heat exchangers for apparatuses, and a working fluid flows in or out. The fluid passage communicates the upper connection portion and the lower connection portion of the equipment heat exchanger. The heat supply member is provided in the fluid passage at a position in the height direction across the liquid level of the working fluid inside the equipment heat exchanger, and selectively selects cold or hot for the working fluid flowing through the fluid passage. Can be supplied.
第28の観点によれば、熱供給部材は、水―作動流体熱交換器である。この水―作動流体熱交換器は、対象機器の冷却時には作動流体に対し冷熱を供給するための冷水が流れ、対象機器の暖機時には作動流体に対し温熱を供給するための温水が流れるよう選択的に切り替えられるように構成されている。これによれば、冷熱または温熱を選択的に供給する熱供給部材として、水―作動流体熱交換器を使用することが可能である。
According to a twenty-eighth aspect, the heat supply member is a water-working fluid heat exchanger. This water-working fluid heat exchanger is selected so that cold water flows to supply cold heat to the working fluid when the target device is cooled, and hot water flows to supply hot heat to the working fluid when the target device is warmed up. It is configured to be switched automatically. According to this, it is possible to use a water-working fluid heat exchanger as a heat supply member that selectively supplies cold or warm heat.
第29の観点によれば、熱供給部材は、冷媒―作動流体熱交換器である。この冷媒―作動流体熱交換器は、対象機器の冷却時には作動流体に対し冷熱を供給するための低温低圧の冷媒が流れ、対象機器の暖機時には作動流体に対し温熱を供給するための高温高圧の冷媒が流れるよう選択的に切り替えられるように構成されている。これによれば、冷熱または温熱を選択的に供給する熱供給部材として、冷媒―作動流体熱交換器を使用することが可能である。
According to a twenty-ninth aspect, the heat supply member is a refrigerant-working fluid heat exchanger. In this refrigerant-working fluid heat exchanger, a low-temperature and low-pressure refrigerant for supplying cold to the working fluid flows when the target device is cooled, and a high-temperature and high-pressure for supplying warm temperature to the working fluid when the target device is warmed up. The refrigerant is selectively switched so as to flow. According to this, it is possible to use a refrigerant-working fluid heat exchanger as a heat supply member that selectively supplies cold or warm heat.
第30の観点によれば、熱供給部材の中で、流体通路を流れる作動流体に対し冷熱を供給可能な冷熱供給機構が重力方向上側に配置されている。また、熱供給部材の中で、流体通路を流れる作動流体に対し温熱を供給可能な温熱供給機構が重力方向下側に配置されている。これによれば、対象機器の冷却時に、流体通路を流れる気相の作動流体に対し、冷媒―作動流体熱交換部から確実に冷熱を供給し、作動流体の凝縮を促進させることができる。また、対象機器の暖機時に、流体通路を流れる液相の作動流体に対し、水―作動流体熱交換部から確実に温熱を供給し、作動流体の蒸発を促進させることができる。
According to the thirtieth aspect, in the heat supply member, the cold supply mechanism capable of supplying cold to the working fluid flowing in the fluid passage is disposed on the upper side in the gravity direction. Moreover, the heat supply mechanism which can supply heat with respect to the working fluid which flows through a fluid channel in the heat supply member is arrange | positioned at the gravity direction lower side. According to this, at the time of cooling the target device, it is possible to reliably supply cold heat from the refrigerant-working fluid heat exchange unit to the vapor-phase working fluid flowing through the fluid passage, thereby promoting the condensation of the working fluid. Further, when the target device is warmed up, it is possible to reliably supply warm heat from the water-working fluid heat exchange section to the liquid-phase working fluid flowing through the fluid passage, thereby promoting evaporation of the working fluid.
第31の観点によれば、冷熱供給機構は、対象機器の冷却時に低温低圧の冷媒が流れる冷媒―作動流体熱交換部である。一方、温熱供給機構は、前記対象機器の暖機時に温水が流れる水―作動流体熱交換部である。これによれば、冷熱供給機構として冷媒―作動流体熱交換器を使用し、温熱供給機構として水―作動流体熱交換器を使用することが可能である。
According to a thirty-first aspect, the cold supply mechanism is a refrigerant-working fluid heat exchange unit through which a low-temperature and low-pressure refrigerant flows when the target device is cooled. On the other hand, the warm heat supply mechanism is a water-working fluid heat exchange unit through which warm water flows when the target device is warmed up. According to this, it is possible to use the refrigerant-working fluid heat exchanger as the cold heat supply mechanism and use the water-working fluid heat exchanger as the warm heat supply mechanism.
第32の観点によれば、熱供給部材は、空気式熱交換器であり、対象機器の冷却時に熱供給部材のうち重力方向上側の部位に冷風が供給され、対象機器の暖機時に熱供給部材のうち重力方向下側の部位に温風が供給されるように構成されている。これによれば、対象機器の暖機時に、空気式熱交換器を流れる液相の作動流体を温風により加熱することができる。また、対象機器の冷却時に、空気式熱交換器を流れる気相の作動流体を冷風により冷却することができる。
According to the thirty-second aspect, the heat supply member is a pneumatic heat exchanger, and cold air is supplied to the upper part of the heat supply member in the direction of gravity when the target device is cooled, and heat is supplied when the target device is warmed up. It is comprised so that a warm air may be supplied to the site | part below a gravity direction among members. According to this, when the target device is warmed up, the liquid-phase working fluid flowing through the pneumatic heat exchanger can be heated by the hot air. In addition, when the target device is cooled, the gas-phase working fluid flowing through the pneumatic heat exchanger can be cooled by cold air.
第33の観点によれば、熱供給部材は、熱電素子により構成されている。これによれば、冷熱または温熱を選択的に供給する熱供給部材として、ペルチェ素子などの熱電素子を使用することが可能である。
According to the thirty-third aspect, the heat supply member is composed of a thermoelectric element. According to this, it is possible to use a thermoelectric element such as a Peltier element as a heat supply member that selectively supplies cold or warm heat.
第34の観点によれば、機器温調装置は、凝縮器、気相通路および液相通路をさらに備える。凝縮器は、機器用熱交換器より重力方向上側に配置され、機器用熱交換器で蒸発した作動流体を放熱させることにより作動流体を凝縮させる。気相通路は、凝縮器に気相の作動流体が流入する流入口と機器用熱交換器の上接続部とを連通する。液相通路は、凝縮器から液相の作動流体を流出する流出口と機器用熱交換器の下接続部とを連通する。上述の流体通路は、凝縮器を経路上に含むことなく、機器用熱交換器の上接続部と下接続部とを連通するものである。これによれば、機器温調装置は、熱供給部材による対象機器の暖機機能および冷却機能に対し、機器温調装置に対して重力方向上側に配置される凝縮器により対象機器の冷却機能を加えることができる。
According to a thirty-fourth aspect, the device temperature control device further includes a condenser, a gas phase passage, and a liquid phase passage. The condenser is disposed above the equipment heat exchanger in the direction of gravity, and condenses the working fluid by dissipating the working fluid evaporated in the equipment heat exchanger. The gas phase passage communicates the inlet through which the gas phase working fluid flows into the condenser and the upper connection portion of the equipment heat exchanger. The liquid phase passage communicates the outlet that flows the liquid phase working fluid from the condenser and the lower connection portion of the heat exchanger for equipment. The fluid passage described above communicates the upper connection portion and the lower connection portion of the equipment heat exchanger without including a condenser on the path. According to this, with respect to the warming-up function and the cooling function of the target device by the heat supply member, the device temperature control device has the cooling function of the target device by the condenser arranged on the upper side in the gravity direction with respect to the device temperature control device. Can be added.
Claims (34)
- 作動流体の液相と気相との相変化により対象機器(2)の温度を調整する機器温調装置であって、
前記対象機器の冷却時に作動流体が蒸発し、前記対象機器の暖機時に作動流体が凝縮するように、前記対象機器と作動流体とが熱交換可能に構成された機器用熱交換器(10、10a、10b)と、
前記機器用熱交換器のうち重力方向上側の部位に設けられ、作動流体が流入または流出する上接続部(15、151、151a、151b、152、152a、152b)と、
前記機器用熱交換器のうち前記上接続部よりも重力方向下側の部位に設けられ、作動流体が流入または流出する下接続部(16、161、161a、161b、162、162a、162b)と、
前記機器用熱交換器より重力方向上側に配置され、前記機器用熱交換器で蒸発した作動流体を放熱させることにより作動流体を凝縮させる凝縮器(30、30a、30b)と、
前記凝縮器に気相の作動流体が流入する流入口と前記機器用熱交換器の前記上接続部とを連通する気相通路(50~54)と
前記凝縮器から液相の作動流体を流出する流出口と前記機器用熱交換器の前記下接続部とを連通する液相通路(40~44)と、
前記凝縮器を経路上に含むことなく、前記機器用熱交換器の前記上接続部と前記下接続部とを連通する流体通路(60、60a、60b)と、
前記流体通路を流れる液相の作動流体を加熱可能な加熱部(61、61a、61b)と、
前記対象機器を加熱するときに前記加熱部を作動させ、前記対象機器を冷却するときに前記加熱部の作動を停止する制御装置(5)と、を備える機器温調装置。 A device temperature control device for adjusting the temperature of the target device (2) by the phase change between the liquid phase and the gas phase of the working fluid,
The equipment heat exchanger (10, 10) configured to allow heat exchange between the target device and the working fluid so that the working fluid evaporates when the target device is cooled and the working fluid is condensed when the target device is warmed up. 10a, 10b)
An upper connection (15, 151, 151a, 151b, 152, 152a, 152b) through which the working fluid flows in or out of the heat exchanger for equipment;
A lower connection portion (16, 161, 161a, 161b, 162, 162a, 162b) that is provided in a lower part of the apparatus heat exchanger than the upper connection portion in the direction of gravity, and into which working fluid flows in or out; ,
A condenser (30, 30a, 30b) that is disposed above the heat exchanger for equipment and that condenses the working fluid by dissipating the working fluid evaporated in the equipment heat exchanger;
A gas-phase passage (50 to 54) that communicates the inlet through which the gas-phase working fluid flows into the condenser and the upper connection portion of the equipment heat exchanger, and the liquid-phase working fluid flows out from the condenser A liquid phase passage (40 to 44) that communicates the outlet to be communicated with the lower connection portion of the equipment heat exchanger;
Fluid passages (60, 60a, 60b) communicating the upper connection portion and the lower connection portion of the heat exchanger for equipment without including the condenser on the path;
A heating section (61, 61a, 61b) capable of heating a liquid-phase working fluid flowing through the fluid passage;
A device temperature control apparatus comprising: a control device (5) that operates the heating unit when heating the target device and stops the operation of the heating unit when cooling the target device. - 前記凝縮器による作動流体の放熱を抑制可能な放熱抑制部(34、70、83、91)をさらに備える請求項1に記載の機器温調装置。 The device temperature control device according to claim 1, further comprising a heat radiation suppressing portion (34, 70, 83, 91) capable of suppressing heat radiation of the working fluid by the condenser.
- 前記放熱抑制部は、前記液相通路または前記気相通路に設けられた流体制御弁(70)である請求項2に記載の機器温調装置。 3. The apparatus temperature control device according to claim 2, wherein the heat radiation suppressing unit is a fluid control valve (70) provided in the liquid phase passage or the gas phase passage.
- 前記放熱抑制部は、前記凝縮器を通過する空気の流通を遮断可能な扉部材(34)である請求項2に記載の機器温調装置。 The device temperature adjusting device according to claim 2, wherein the heat radiation suppressing unit is a door member (34) capable of blocking a flow of air passing through the condenser.
- 冷媒を圧縮する圧縮機(81)、前記圧縮機により圧縮された冷媒を放熱させる高圧側熱交換器(82)、前記高圧側熱交換器により放熱した冷媒を減圧する膨張弁(84)、前記膨張弁から流出する冷媒と前記凝縮器を流れる作動流体とを熱交換させる冷媒―作動流体熱交換器(85)、前記圧縮機と前記高圧側熱交換器と前記膨張弁と前記冷媒―作動流体熱交換器とを接続する冷媒配管(89)、および、前記冷媒配管を流れる冷媒の流れを規制する流量規制部(83)を有する冷凍サイクル(8)をさらに備え、
前記放熱抑制部は、前記冷凍サイクルが有する前記流量規制部であり、前記冷媒配管を流れる冷媒の流れを遮断することで、前記凝縮器による作動流体の放熱を抑制可能である請求項2ないし4のいずれか1つに記載の機器温調装置。 A compressor (81) for compressing the refrigerant, a high-pressure side heat exchanger (82) for radiating heat of the refrigerant compressed by the compressor, an expansion valve (84) for depressurizing the refrigerant radiated by the high-pressure side heat exchanger, A refrigerant-working fluid heat exchanger (85) for exchanging heat between the refrigerant flowing out of the expansion valve and the working fluid flowing through the condenser, the compressor, the high-pressure heat exchanger, the expansion valve, and the refrigerant-working fluid. A refrigerant pipe (89) for connecting to the heat exchanger, and a refrigeration cycle (8) having a flow rate regulating part (83) for regulating the flow of the refrigerant flowing through the refrigerant pipe,
5. The heat release suppressing unit is the flow rate restricting unit of the refrigeration cycle, and is capable of suppressing heat dissipation of the working fluid by the condenser by blocking a flow of the refrigerant flowing through the refrigerant pipe. The apparatus temperature control apparatus as described in any one of these. - 冷却水を圧送するウォータポンプ(91)、前記ウォータポンプにより圧送された冷却水を放熱させる冷却水放熱器(92)、前記冷却水放熱器から流出する冷却水と前記凝縮器を流れる作動流体とを熱交換させる水―作動流体熱交換器(93)、および、前記ウォータポンプと前記冷却水放熱器と前記水―作動流体熱交換器とを接続する冷却水配管(94)を有する冷却水回路(9)をさらに備え、
前記放熱抑制部は、前記冷却水回路が有する前記ウォータポンプであり、前記冷却水配管を流れる冷却水の流れを遮断することで、前記凝縮器による作動流体の放熱を抑制可能である請求項2ないし5のいずれか1つに記載の機器温調装置。 A water pump (91) for pumping the cooling water, a cooling water radiator (92) for dissipating the cooling water pumped by the water pump, a cooling water flowing out from the cooling water radiator, and a working fluid flowing through the condenser Water-working fluid heat exchanger (93) for heat exchange, and a cooling water circuit having a cooling water pipe (94) connecting the water pump, the cooling water radiator, and the water-working fluid heat exchanger (9) is further provided,
The heat dissipation suppression unit is the water pump included in the cooling water circuit, and the heat dissipation of the working fluid by the condenser can be suppressed by blocking the flow of the cooling water flowing through the cooling water pipe. The apparatus temperature control apparatus as described in any one of thru | or 5. - 作動流体の液相と気相との相変化により対象機器(2)の温度を調整する機器温調装置であって、
前記対象機器の暖機時に作動流体が凝縮するように、前記対象機器と作動流体とが熱交換可能に構成された機器用熱交換器(10、10a、10b)と、
前記機器用熱交換器のうち重力方向上側の部位に設けられ、作動流体が流入または流出する上接続部(15、151、151a、151b、152、152a、152b)と、
前記機器用熱交換器のうち前記上接続部よりも重力方向下側の部位に設けられ、作動流体が流入または流出する下接続部(16、161、161a、161b、162、162a、162b)と、
前記機器用熱交換器の前記上接続部と前記下接続部とを連通する流体通路(60、60a、60b)と、
前記流体通路を流れる液相の作動流体を加熱可能な加熱部(61、61a、61b)と、
前記対象機器を加熱するときに前記加熱部を作動させる制御装置(5)と、を備える機器温調装置。 A device temperature control device for adjusting the temperature of the target device (2) by the phase change between the liquid phase and the gas phase of the working fluid,
A heat exchanger for equipment (10, 10a, 10b) configured to allow heat exchange between the target equipment and the working fluid so that the working fluid is condensed when the target equipment is warmed up;
An upper connection (15, 151, 151a, 151b, 152, 152a, 152b) through which the working fluid flows in or out of the heat exchanger for equipment;
A lower connection portion (16, 161, 161a, 161b, 162, 162a, 162b) that is provided in a lower part of the apparatus heat exchanger than the upper connection portion in the direction of gravity, and into which working fluid flows in or out; ,
Fluid passages (60, 60a, 60b) communicating the upper connection portion and the lower connection portion of the equipment heat exchanger;
A heating section (61, 61a, 61b) capable of heating a liquid-phase working fluid flowing through the fluid passage;
A device temperature control device comprising: a control device (5) that operates the heating unit when the target device is heated. - 前記加熱部は、前記流体通路のうち、重力方向上下に延びている部位に設けられる請求項1ないし7のいずれか1つに記載の機器温調装置。 The apparatus temperature control device according to any one of claims 1 to 7, wherein the heating unit is provided in a portion of the fluid passage that extends vertically in the gravity direction.
- 前記流体通路は、前記機器用熱交換器の前記下接続部と前記加熱部との間に、前記加熱部より重力方向下側に延びる逆流抑制部(62)を有する請求項1ないし8のいずれか1つに記載の機器温調装置。 The fluid passage has a backflow suppression part (62) extending downward in the gravity direction from the heating part between the lower connection part and the heating part of the equipment heat exchanger. The apparatus temperature control apparatus as described in any one.
- 前記流体通路は、経路の途中に、前記流体通路を流れる液相の作動流体を貯める貯液部(63)を有する請求項1ないし9のいずれか1つに記載の機器温調装置。 The device temperature control device according to any one of claims 1 to 9, wherein the fluid passage has a liquid storage portion (63) for storing a liquid-phase working fluid flowing through the fluid passage in the middle of the passage.
- 前記貯液部は、前記流体通路の経路のうち一部の内径を大きくすることで形成されたものである請求項10に記載の機器温調装置。 The device temperature control device according to claim 10, wherein the liquid storage part is formed by increasing a part of an inner diameter of the fluid passage.
- 前記貯液部の少なくとも一部は、前記機器用熱交換器の前記上接続部と前記下接続部との高さ範囲内に位置している請求項10または11に記載の機器温調装置。 The device temperature control device according to claim 10 or 11, wherein at least a part of the liquid storage unit is located within a height range of the upper connection portion and the lower connection portion of the device heat exchanger.
- 前記加熱部は、前記貯液部に貯められた液相の作動流体を加熱可能な位置に設けられている請求項10ないし12のいずれか1つに記載の機器温調装置。 The apparatus temperature control device according to any one of claims 10 to 12, wherein the heating unit is provided at a position where the liquid-phase working fluid stored in the liquid storage unit can be heated.
- 前記制御装置は、前記加熱部の加熱能力の増大と低下を繰り返しながら前記対象機器を加熱する、請求項1ないし13のいずれか1つに記載の機器温調装置。 The device temperature control device according to any one of claims 1 to 13, wherein the control device heats the target device while repeatedly increasing and decreasing a heating capacity of the heating unit.
- 前記制御装置は、前記対象機器の温度分布の大きさを判定する機能を有し、
前記対象機器の温度分布が、所定の第1温度閾値以上になると、前記加熱部の加熱能力を低下させ、
前記対象機器の温度分布が、所定の第2温度閾値以下になると、前記加熱部の加熱能力を増大させる、請求項14に記載の機器温調装置。 The control device has a function of determining the size of the temperature distribution of the target device,
When the temperature distribution of the target device is equal to or higher than a predetermined first temperature threshold, the heating capacity of the heating unit is reduced,
The device temperature control device according to claim 14, wherein when the temperature distribution of the target device is equal to or lower than a predetermined second temperature threshold value, the heating capacity of the heating unit is increased. - 前記制御装置は、前記加熱部の加熱能力に基づき、前記対象機器の温度分布の大きさを判定する、請求項14または15に記載の機器温調装置。 The device temperature control device according to claim 14 or 15, wherein the control device determines a size of a temperature distribution of the target device based on a heating capability of the heating unit.
- 前記制御装置は、前記加熱部の駆動と停止を間欠的に繰り返しながら前記対象機器を加熱する、請求項1ないし13のいずれか1つに記載の機器温調装置。 The device temperature control device according to any one of claims 1 to 13, wherein the control device heats the target device while intermittently repeating driving and stopping of the heating unit.
- 前記制御装置は、前記対象機器の温度分布の大きさを判定する機能を有し、
前記対象機器の温度分布が、所定の第1温度閾値以上になると、前記加熱部の動作を停止し、
前記対象機器の温度分布が、所定の第2温度閾値以下になると、前記加熱部の動作を再開する、請求項17に記載の機器温調装置。 The control device has a function of determining the size of the temperature distribution of the target device,
When the temperature distribution of the target device is equal to or higher than a predetermined first temperature threshold, the operation of the heating unit is stopped,
The device temperature control device according to claim 17, wherein when the temperature distribution of the target device is equal to or lower than a predetermined second temperature threshold value, the operation of the heating unit is resumed. - 前記制御装置は、前記加熱部が連続して作動している時間、または、前記加熱部が連続して作動を停止している時間に基づき、前記対象機器の温度分布の大きさを判定する、請求項17または18に記載の機器温調装置。 The control device determines the size of the temperature distribution of the target device based on the time during which the heating unit is continuously operated or the time during which the heating unit is continuously stopped. The apparatus temperature control apparatus according to claim 17 or 18.
- 前記制御装置は、前記加熱部に供給される電力に基づき、前記対象機器の温度分布の大きさを判定する、請求項14ないし19のいずれか1つに記載の機器温調装置。 The device temperature control device according to any one of claims 14 to 19, wherein the control device determines a size of a temperature distribution of the target device based on electric power supplied to the heating unit.
- 前記加熱部は、前記対象機器の暖機時に温水が流れるように構成されている水―作動流体熱交換器(93)であり、
前記制御装置は、前記水―作動流体熱交換器による作動流体の加熱能力に基づき、前記対象機器の温度分布の大きさを判定する、請求項14ないし19のいずれか1つに記載の機器温調装置。 The heating unit is a water-working fluid heat exchanger (93) configured to allow warm water to flow when the target device is warmed up,
The device temperature according to any one of claims 14 to 19, wherein the control device determines a size of a temperature distribution of the target device based on a heating capacity of the working fluid by the water-working fluid heat exchanger. Preparation device. - 前記制御装置は、前記水―作動流体熱交換器を流れる水温と前記対象機器の温度との差に基づき、前記対象機器の温度分布の大きさを判定する、請求項21に記載の機器温調装置。 The device temperature control according to claim 21, wherein the control device determines a size of a temperature distribution of the target device based on a difference between a water temperature flowing through the water-working fluid heat exchanger and a temperature of the target device. apparatus.
- 前記制御装置は、前記水―作動流体熱交換器を流れる水の温度と前記対象機器の温度との差、および、前記水―作動流体熱交換器を流れる水の流量に基づき、前記対象機器の温度分布の大きさを判定する、請求項21または22に記載の機器温調装置。 The control device is configured to control the target device based on a difference between a temperature of water flowing through the water-working fluid heat exchanger and a temperature of the target device, and a flow rate of water flowing through the water-working fluid heat exchanger. The apparatus temperature control apparatus of Claim 21 or 22 which determines the magnitude | size of temperature distribution.
- 前記加熱部は、前記対象機器の暖機時に温度の高い冷媒が流れるように構成されている冷媒―作動流体熱交換器(200)であり、
前記制御装置は、前記冷媒―作動流体熱交換器による作動流体の加熱能力に基づき、前記対象機器の温度分布の大きさを判定する、請求項14ないし19のいずれか1つに記載の機器温調装置。 The heating unit is a refrigerant-working fluid heat exchanger (200) configured to allow a refrigerant having a high temperature to flow when the target device is warmed up.
The device temperature according to any one of claims 14 to 19, wherein the control device determines a size of a temperature distribution of the target device based on a heating capacity of the working fluid by the refrigerant-working fluid heat exchanger. Preparation device. - 前記制御装置は、前記冷媒―作動流体熱交換器を流れる冷媒の温度と前記対象機器の温度との差に基づき、前記対象機器の温度分布の大きさを判定する、請求項24に記載の機器温調装置。 The device according to claim 24, wherein the control device determines the size of the temperature distribution of the target device based on a difference between a temperature of the refrigerant flowing through the refrigerant-working fluid heat exchanger and a temperature of the target device. Temperature control device.
- 前記制御装置は、前記冷媒―作動流体熱交換器を流れる冷媒の温度と前記対象機器の温度との差、および、前記冷媒―作動流体熱交換器を流れる冷媒の流量に基づき、前記対象機器の温度分布の大きさを判定する、請求項24または25に記載の機器温調装置。 The control device is configured to determine the difference between the temperature of the refrigerant flowing through the refrigerant-working fluid heat exchanger and the temperature of the target device, and the flow rate of the refrigerant flowing through the refrigerant-working fluid heat exchanger. The apparatus temperature control apparatus according to claim 24 or 25, wherein the temperature of the temperature distribution is determined.
- 作動流体の液相と気相との相変化により対象機器(2)の温度を調整する機器温調装置であって、
前記対象機器の冷却時に作動流体が蒸発し、前記対象機器の暖機時に作動流体が凝縮するように、前記対象機器と作動流体とが熱交換可能に構成された機器用熱交換器(10、10a、10b)と、
前記機器用熱交換器のうち重力方向上側の部位に設けられ、作動流体が流入または流出する上接続部(15、151、151a、151b、152、152a、152b)と、
前記機器用熱交換器のうち前記上接続部よりも重力方向下側の部位に設けられ、作動流体が流入または流出する下接続部(16、161、161a、161b、162、162a、162b)と、
前記機器用熱交換器の前記上接続部と前記下接続部とを連通する流体通路(60、60a、60b)と、
前記機器用熱交換器の内側にある作動流体の液面(FL)の高さを跨ぐ高さ方向の位置で前記流体通路に設けられ、前記流体通路を流れる作動流体に対し冷熱または温熱を選択的に供給可能な熱供給部材(85、93、100、1010、1020、1030、1040、200)と、を備える機器温調装置。 A device temperature control device for adjusting the temperature of the target device (2) by the phase change between the liquid phase and the gas phase of the working fluid,
The equipment heat exchanger (10, 10) configured to allow heat exchange between the target device and the working fluid so that the working fluid evaporates when the target device is cooled and the working fluid is condensed when the target device is warmed up. 10a, 10b)
An upper connection (15, 151, 151a, 151b, 152, 152a, 152b) through which the working fluid flows in or out of the heat exchanger for equipment;
A lower connection portion (16, 161, 161a, 161b, 162, 162a, 162b) that is provided in a lower part of the apparatus heat exchanger than the upper connection portion in the direction of gravity, and into which working fluid flows in or out; ,
Fluid passages (60, 60a, 60b) communicating the upper connection portion and the lower connection portion of the equipment heat exchanger;
Provided in the fluid passage at a position in the height direction across the level of the fluid level (FL) of the working fluid inside the equipment heat exchanger, and select cold or hot for the working fluid flowing through the fluid passage And a heat supply member (85, 93, 100, 1010, 1020, 1030, 1040, 200) that can be supplied automatically. - 前記熱供給部材は、水―作動流体熱交換器(93)であり、前記対象機器の冷却時には作動流体に対し冷熱を供給するための冷水が流れ、前記対象機器の暖機時には作動流体に対し温熱を供給するための温水が流れるよう選択的に切り替えられるように構成されている請求項27に記載の機器温調装置。 The heat supply member is a water-working fluid heat exchanger (93), cold water for supplying cold heat to the working fluid flows when the target device is cooled, and to the working fluid when the target device is warmed up. The apparatus temperature control device according to claim 27, wherein the device temperature control device is configured to be selectively switched so that hot water for supplying warm heat flows.
- 前記熱供給部材は、冷媒―作動流体熱交換器(85)であり、前記対象機器の冷却時には作動流体に対し冷熱を供給するための低温低圧の冷媒が流れ、前記対象機器の暖機時には作動流体に対し温熱を供給するための高温高圧の冷媒が流れるよう選択的に切り替えられるように構成されている請求項27に記載の機器温調装置。 The heat supply member is a refrigerant-working fluid heat exchanger (85). When the target device is cooled, a low-temperature and low-pressure refrigerant for supplying cold heat to the working fluid flows, and operates when the target device is warmed up. 28. The device temperature control device according to claim 27, wherein the device temperature control device is configured to be selectively switched so that a high-temperature and high-pressure refrigerant for supplying heat to the fluid flows.
- 前記熱供給部材の中で、前記流体通路を流れる作動流体に対し冷熱を供給可能な冷熱供給機構が重力方向上側に配置され、前記流体通路を流れる作動流体に対し温熱を供給可能な温熱供給機構が重力方向下側に配置されている請求項27ないし29のいずれか1つに記載の機器温調装置。 Among the heat supply members, a cold heat supply mechanism capable of supplying cold heat to the working fluid flowing through the fluid passage is disposed on the upper side in the direction of gravity, and a hot heat supply mechanism capable of supplying hot heat to the working fluid flowing through the fluid passage. 30. The apparatus temperature control device according to any one of claims 27 to 29, wherein the device temperature is disposed on the lower side in the gravity direction.
- 前記冷熱供給機構は、前記対象機器の冷却時に低温低圧の冷媒が流れる冷媒―作動流体熱交換部(1020)であり、
前記温熱供給機構は、前記対象機器の暖機時に温水が流れる水―作動流体熱交換部(1010)である請求項30に記載の機器温調装置。 The cold heat supply mechanism is a refrigerant-working fluid heat exchange unit (1020) through which a low-temperature and low-pressure refrigerant flows when the target device is cooled.
The device temperature control device according to claim 30, wherein the temperature supply mechanism is a water-working fluid heat exchange unit (1010) through which warm water flows when the target device is warmed up. - 前記熱供給部材は、空気式熱交換器(1030)であり、前記対象機器の冷却時に前記熱供給部材のうち重力方向上側の部位に冷風が供給され、前記対象機器の暖機時に前記熱供給部材のうち重力方向下側の部位に温風が供給されるように構成されている請求項27に記載の機器温調装置。 The heat supply member is a pneumatic heat exchanger (1030), and cold air is supplied to the upper part of the heat supply member in the direction of gravity when the target device is cooled, and the heat supply is performed when the target device is warmed up. The apparatus temperature control device according to claim 27, wherein the device is configured so that warm air is supplied to a lower portion of the member in the direction of gravity.
- 前記熱供給部材は、熱電素子(1040)により構成されている請求項27に記載の機器温調装置。 The apparatus temperature control device according to claim 27, wherein the heat supply member is constituted by a thermoelectric element (1040).
- 前記機器用熱交換器より重力方向上側に配置され、前記機器用熱交換器で蒸発した作動流体を放熱させることにより作動流体を凝縮させる凝縮器(30、30a、30b)と、
前記凝縮器に気相の作動流体が流入する流入口と前記機器用熱交換器の前記上接続部とを連通する気相通路(50~54)と、
前記凝縮器から液相の作動流体を流出する流出口と前記機器用熱交換器の前記下接続部とを連通する液相通路(40~44)と、をさらに備え、
前記流体通路は、前記凝縮器を経路上に含むことなく、前記機器用熱交換器の前記上接続部と前記下接続部とを連通するものである、請求項27ないし33のいずれか1つに記載の機器温調装置。 A condenser (30, 30a, 30b) that is disposed above the heat exchanger for equipment and that condenses the working fluid by dissipating the working fluid evaporated in the equipment heat exchanger;
A gas phase passageway (50 to 54) for communicating an inlet through which a gas phase working fluid flows into the condenser and the upper connection portion of the equipment heat exchanger;
A liquid phase passage (40 to 44) that communicates the outlet from which the liquid-phase working fluid flows out of the condenser and the lower connection portion of the equipment heat exchanger;
34. The fluid passage according to any one of claims 27 to 33, wherein the fluid passage does not include the condenser on the path and communicates the upper connection portion and the lower connection portion of the equipment heat exchanger. The apparatus temperature control apparatus as described in.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880018230.7A CN110418933B (en) | 2017-03-16 | 2018-02-08 | Equipment temperature adjusting device |
DE112018001381.2T DE112018001381T5 (en) | 2017-03-16 | 2018-02-08 | Device temperature controller |
US16/537,225 US20190363411A1 (en) | 2017-03-16 | 2019-08-09 | Device temperature regulator |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017051489 | 2017-03-16 | ||
JP2017-051489 | 2017-03-16 | ||
JP2017122281 | 2017-06-22 | ||
JP2017-122281 | 2017-06-22 | ||
JP2017136552 | 2017-07-12 | ||
JP2017-136552 | 2017-07-12 | ||
JP2017235120A JP6724888B2 (en) | 2017-03-16 | 2017-12-07 | Equipment temperature controller |
JP2017-235120 | 2017-12-07 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/537,225 Continuation US20190363411A1 (en) | 2017-03-16 | 2019-08-09 | Device temperature regulator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018168276A1 true WO2018168276A1 (en) | 2018-09-20 |
Family
ID=63522933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/004464 WO2018168276A1 (en) | 2017-03-16 | 2018-02-08 | Device temperature adjusting apparatus |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018168276A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109654926A (en) * | 2018-12-06 | 2019-04-19 | 深圳垒石热管理技术有限公司 | A kind of microchannel thermotube |
WO2019093230A1 (en) * | 2017-11-07 | 2019-05-16 | 株式会社デンソー | Device-temperature adjusting apparatus |
WO2019097913A1 (en) * | 2017-11-20 | 2019-05-23 | 株式会社デンソー | Machine temperature adjustment device |
WO2020110637A1 (en) * | 2018-11-26 | 2020-06-04 | 株式会社デンソー | Temperature adjustment system |
WO2020129645A1 (en) * | 2018-12-17 | 2020-06-25 | 株式会社デンソー | Equipment temperature regulating device |
CN111725587A (en) * | 2019-03-20 | 2020-09-29 | 上海汽车集团股份有限公司 | Temperature adjusting system of power battery and control method thereof |
WO2020203152A1 (en) * | 2019-03-29 | 2020-10-08 | 株式会社デンソー | Thermosiphon-type cooling device for vehicle |
WO2020218009A1 (en) * | 2019-04-26 | 2020-10-29 | 株式会社デンソー | Battery cooling device |
CN113540634A (en) * | 2020-04-14 | 2021-10-22 | 三星Sdi株式会社 | Battery pack |
WO2022048724A1 (en) * | 2020-09-04 | 2022-03-10 | Vestas Wind Systems A/S | Temperature control method for a battery storage system |
CN114303275A (en) * | 2019-09-10 | 2022-04-08 | 株式会社电装 | Battery temperature adjusting device |
EP4287356A1 (en) * | 2022-05-31 | 2023-12-06 | Kidde Technologies, Inc. | Combined thermal management and fire mitigation for large scale battery packages |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51123944A (en) * | 1975-04-21 | 1976-10-29 | Hitachi Ltd | Heat transmitter device |
JPH04287710A (en) * | 1991-03-15 | 1992-10-13 | Nissan Motor Co Ltd | Heat exchanger |
JPH09138030A (en) * | 1995-11-13 | 1997-05-27 | Daikin Ind Ltd | Heat conveying device |
JP2002174492A (en) * | 2000-12-07 | 2002-06-21 | Mitsubishi Electric Corp | Loop heat pipe |
JP2003148885A (en) * | 2001-11-09 | 2003-05-21 | Mitsubishi Electric Building Techno Service Co Ltd | Refrigerant natural circulation type heating system |
JP2004085151A (en) * | 2002-08-29 | 2004-03-18 | Mitsubishi Electric Corp | Cooling system |
JP2005249258A (en) * | 2004-03-03 | 2005-09-15 | Mitsubishi Electric Corp | Cooling system |
JP2006105430A (en) * | 2004-10-01 | 2006-04-20 | Toshiba Mitsubishi-Electric Industrial System Corp | Soaking device |
JP2010050000A (en) * | 2008-08-22 | 2010-03-04 | Sanyo Electric Co Ltd | Power source device for vehicle |
WO2012021104A1 (en) * | 2010-08-12 | 2012-02-16 | Scania Cv Ab | Arrangement for maintaining a desired operating temperature of a battery in a vehicle |
JP2015041418A (en) * | 2013-08-20 | 2015-03-02 | トヨタ自動車株式会社 | Battery temperature adjusting device |
-
2018
- 2018-02-08 WO PCT/JP2018/004464 patent/WO2018168276A1/en active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51123944A (en) * | 1975-04-21 | 1976-10-29 | Hitachi Ltd | Heat transmitter device |
JPH04287710A (en) * | 1991-03-15 | 1992-10-13 | Nissan Motor Co Ltd | Heat exchanger |
JPH09138030A (en) * | 1995-11-13 | 1997-05-27 | Daikin Ind Ltd | Heat conveying device |
JP2002174492A (en) * | 2000-12-07 | 2002-06-21 | Mitsubishi Electric Corp | Loop heat pipe |
JP2003148885A (en) * | 2001-11-09 | 2003-05-21 | Mitsubishi Electric Building Techno Service Co Ltd | Refrigerant natural circulation type heating system |
JP2004085151A (en) * | 2002-08-29 | 2004-03-18 | Mitsubishi Electric Corp | Cooling system |
JP2005249258A (en) * | 2004-03-03 | 2005-09-15 | Mitsubishi Electric Corp | Cooling system |
JP2006105430A (en) * | 2004-10-01 | 2006-04-20 | Toshiba Mitsubishi-Electric Industrial System Corp | Soaking device |
JP2010050000A (en) * | 2008-08-22 | 2010-03-04 | Sanyo Electric Co Ltd | Power source device for vehicle |
WO2012021104A1 (en) * | 2010-08-12 | 2012-02-16 | Scania Cv Ab | Arrangement for maintaining a desired operating temperature of a battery in a vehicle |
JP2015041418A (en) * | 2013-08-20 | 2015-03-02 | トヨタ自動車株式会社 | Battery temperature adjusting device |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019093230A1 (en) * | 2017-11-07 | 2019-05-16 | 株式会社デンソー | Device-temperature adjusting apparatus |
WO2019097913A1 (en) * | 2017-11-20 | 2019-05-23 | 株式会社デンソー | Machine temperature adjustment device |
WO2020110637A1 (en) * | 2018-11-26 | 2020-06-04 | 株式会社デンソー | Temperature adjustment system |
CN109654926A (en) * | 2018-12-06 | 2019-04-19 | 深圳垒石热管理技术有限公司 | A kind of microchannel thermotube |
CN109654926B (en) * | 2018-12-06 | 2020-08-25 | 深圳垒石热管理技术有限公司 | Micro-channel heat pipe |
WO2020129645A1 (en) * | 2018-12-17 | 2020-06-25 | 株式会社デンソー | Equipment temperature regulating device |
CN111725587A (en) * | 2019-03-20 | 2020-09-29 | 上海汽车集团股份有限公司 | Temperature adjusting system of power battery and control method thereof |
CN111725587B (en) * | 2019-03-20 | 2021-05-18 | 上海汽车集团股份有限公司 | Temperature adjusting system of power battery and control method thereof |
WO2020203152A1 (en) * | 2019-03-29 | 2020-10-08 | 株式会社デンソー | Thermosiphon-type cooling device for vehicle |
WO2020218009A1 (en) * | 2019-04-26 | 2020-10-29 | 株式会社デンソー | Battery cooling device |
CN114303275A (en) * | 2019-09-10 | 2022-04-08 | 株式会社电装 | Battery temperature adjusting device |
CN114303275B (en) * | 2019-09-10 | 2024-01-16 | 株式会社电装 | Battery temperature regulating device |
CN113540634A (en) * | 2020-04-14 | 2021-10-22 | 三星Sdi株式会社 | Battery pack |
WO2022048724A1 (en) * | 2020-09-04 | 2022-03-10 | Vestas Wind Systems A/S | Temperature control method for a battery storage system |
EP4287356A1 (en) * | 2022-05-31 | 2023-12-06 | Kidde Technologies, Inc. | Combined thermal management and fire mitigation for large scale battery packages |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6724888B2 (en) | Equipment temperature controller | |
WO2018168276A1 (en) | Device temperature adjusting apparatus | |
US20200254845A1 (en) | Equipment cooling device | |
JP5626194B2 (en) | Heat exchange system | |
JP6604442B2 (en) | Equipment temperature controller | |
JP5748000B2 (en) | Cooling device for electrical equipment | |
WO2015136768A1 (en) | In-vehicle temperature adjusting device, vehicle air-conditioning device, and battery temperature adjsuting device | |
KR102290776B1 (en) | Heat pump system for electric vehicle and control method thereof | |
WO2011155204A1 (en) | Heat pump cycle | |
CN109477696B (en) | Equipment temperature adjusting device | |
WO2020203151A1 (en) | Air conditioner | |
CN113646594B (en) | Air conditioner | |
JP2018058573A (en) | Vehicular air conditioner | |
JP2019034587A (en) | Air conditioner | |
WO2020004219A1 (en) | Apparatus temperature adjusting device | |
JP2019196839A (en) | Device temperature regulation device | |
WO2018047538A1 (en) | Device temperature control system | |
WO2019058805A1 (en) | Device temperature control device | |
WO2013084472A1 (en) | Heat utilization system | |
WO2020004574A1 (en) | Apparatus temperature adjusting device | |
WO2018070182A1 (en) | Appliance temperature regulating apparatus | |
JP2020008271A (en) | Apparatus temperature conditioning device | |
JP2024100489A (en) | On-vehicle temperature regulation system | |
JP2024100494A (en) | On-vehicle temperature regulation system | |
JP2020008270A (en) | Apparatus temperature conditioning device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18767896 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18767896 Country of ref document: EP Kind code of ref document: A1 |