WO2013084472A1 - Heat utilization system - Google Patents

Heat utilization system Download PDF

Info

Publication number
WO2013084472A1
WO2013084472A1 PCT/JP2012/007756 JP2012007756W WO2013084472A1 WO 2013084472 A1 WO2013084472 A1 WO 2013084472A1 JP 2012007756 W JP2012007756 W JP 2012007756W WO 2013084472 A1 WO2013084472 A1 WO 2013084472A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat
air
heat exchanger
auxiliary medium
Prior art date
Application number
PCT/JP2012/007756
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 吉毅
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2013084472A1 publication Critical patent/WO2013084472A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0214Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/0287Other particular headers or end plates having passages for different heat exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/02Arrangements of fins common to different heat exchange sections, the fins being in contact with different heat exchange media

Definitions

  • the present disclosure relates to a heat utilization system that uses cold and / or heat.
  • the present disclosure can be applied to, for example, a vehicle heat utilization system that supplies cold and warm heat in a vehicle.
  • Patent Document 1 discloses a vehicle heat pump cycle, which is one of heat utilization systems, and defrosting control of the evaporator.
  • Patent Documents 2 to 7 disclose a heat exchanger capable of flowing a plurality of media.
  • An object of the present disclosure is to provide a heat utilization system using a heat exchanger capable of flowing a refrigerant supplied from a refrigeration cycle and an auxiliary medium.
  • Another object of the present disclosure is to provide a heat utilization system that can realize temperature adjustment of air to be used by a refrigerant supplied from a refrigeration cycle and an auxiliary medium.
  • Another object of the present disclosure is to provide a heat utilization system with good drainage of condensed water generated by a cooling action by a refrigerant or an auxiliary medium.
  • Still another object of the present disclosure is to provide a heat utilization system suitable for use of the heat exchanger proposed by the inventors in Japanese Patent Application No. 2011-144501, Japanese Patent Application No. 2011-123199, or Japanese Patent Application No. 2011-82760. It is to be.
  • This disclosure employs the following technical means in order to achieve the above object.
  • a heat utilization system includes a compressor that supplies a high-pressure refrigerant by sucking and compressing low-pressure refrigerant, a refrigerant circuit that includes a decompressor that depressurizes the high-pressure refrigerant and supplies low-pressure refrigerant, and a refrigerant Heat exchange between the auxiliary medium circuit, which is configured separately from the circuit, in which the auxiliary medium circulates, the auxiliary medium circuit in which the auxiliary medium for adjusting the temperature of the heat generating device circulates, and the refrigerant and use air supplied from the refrigerant circuit
  • the refrigerant tube and the auxiliary medium tube are arranged in a row along a direction intersecting the flow direction of the utilization air, and the refrigerant tube and the auxiliary medium tube are heated in at least a part of the row. It is arranged to be able to communicate.
  • heat exchange between the three parties is provided in the use side heat exchanger.
  • One is heat exchange between the refrigerant in the refrigerant tube and the use air.
  • One is heat exchange between the auxiliary medium in the auxiliary medium tube and the use air.
  • Still another one is heat exchange between the auxiliary medium in the auxiliary medium tube and the refrigerant in the refrigerant tube.
  • the temperature adjustment of the utilization air utilized can be implement
  • the auxiliary medium is a medium for adjusting the temperature of the heat generating device.
  • a medium for controlling the temperature of the heat generating device can be used.
  • the use side heat exchanger includes fins arranged in an air passage formed between the refrigerant tube and the auxiliary medium tube, and the refrigerant tube and the auxiliary medium tube can transfer heat via the fins. .
  • heat exchange between the refrigerant tube and the use air can be promoted by the fins.
  • heat exchange between the auxiliary medium tube and the use air can be promoted by the fins.
  • heat exchange between the refrigerant and the auxiliary medium is possible by heat transfer through the fins.
  • the number of refrigerant tubes is larger than the number of auxiliary medium tubes. According to this configuration, a heat exchanger with relatively high heat exchange performance by the refrigerant tube is provided.
  • the refrigerant tubes and the auxiliary medium tubes are arranged so as to constitute at least an upstream row and a downstream row with respect to the flow direction of the air used, and the refrigerant tubes are a majority in the upstream row. According to this configuration, the generation of condensed water can be biased to the upstream line.
  • the refrigerant tubes and the auxiliary medium tubes are arranged so as to constitute at least an upstream row and a downstream row with respect to the flow direction of the use air, and the refrigerant tubes are a majority in the downstream row. According to this configuration, the generation of condensed water can be biased to the downstream line.
  • the control device controls the refrigerant circuit and the auxiliary medium circuit so as to adjust the temperature of the auxiliary medium with the refrigerant.
  • the temperature of the auxiliary medium is adjusted by heat exchange between the refrigerant and the auxiliary medium. For example, when the temperature of the refrigerant is lower than the temperature of the auxiliary medium, the auxiliary medium can be cooled by the refrigerant. Further, when the temperature of the refrigerant is higher than the temperature of the auxiliary medium, the auxiliary medium can be heated by the refrigerant.
  • an air volume adjusting device for adjusting the flow rate of the air used is provided.
  • the amount of heat exchange between the refrigerant and the auxiliary medium can be adjusted by the flow rate of the utilization air.
  • By reducing the flow rate of the use air it is possible to increase the cooling amount of the auxiliary medium by the refrigerant or increase the heating amount of the auxiliary medium by the refrigerant.
  • control device controls the auxiliary medium circuit so as to cool the use air by the auxiliary medium.
  • the use air can be cooled by the auxiliary medium.
  • use air can be cooled without depending only on the refrigerant circuit.
  • control device controls the auxiliary medium circuit so as to radiate heat from the auxiliary medium to the use air.
  • the auxiliary medium can be cooled by heat radiation from the auxiliary medium to the use air. Since the cooled auxiliary medium is supplied to the heat generating device, the heat generating device can be cooled by using the use air.
  • the control device controls the flow rate of the refrigerant or the flow rate of the auxiliary medium in response to the adhesion of frost in the use side heat exchanger.
  • the flow rate of the refrigerant or the auxiliary medium is adjusted in response to the adhesion of frost in the use side heat exchanger.
  • the control device decreases the refrigerant flow rate in response to the adhesion of frost.
  • the control device decreases the flow rate of the auxiliary medium.
  • the control device increases the flow rate of the auxiliary medium.
  • the control device increases the flow rate of the refrigerant.
  • the refrigerant circuit supplies low-pressure refrigerant to the refrigerant tube.
  • cooling of the use air and cooling of the auxiliary medium can be provided by the low-pressure refrigerant.
  • the auxiliary medium circuit includes an auxiliary medium heat exchanger that cools the auxiliary medium, and the auxiliary medium circuit cools the utilization air by supplying the auxiliary medium cooled by the auxiliary medium heat exchanger to the auxiliary medium tube. .
  • the use air can be cooled by the auxiliary medium.
  • the refrigerant circuit includes an outdoor refrigerant heat exchanger that exchanges heat between the unused air and the low-pressure refrigerant and absorbs heat to the low-pressure refrigerant, and the auxiliary medium heat exchanger uses the low-pressure refrigerant or the unused air in the outdoor refrigerant heat exchanger. Cool the auxiliary medium.
  • the auxiliary medium can be cooled by the low temperature obtained in the outdoor refrigerant heat exchanger by the refrigerant circuit or the low temperature of the unused air.
  • the refrigerant circuit includes a cycle switching device that switches a flow path between a heating application and a cooling application, and the outdoor refrigerant heat exchanger exchanges heat between unused air and low-pressure refrigerant in the heating application, and absorbs heat into the low-pressure refrigerant.
  • the refrigerant circuit can be used by switching between a heating application and a cooling application.
  • Outdoor refrigerant heat exchangers are used as heat absorbers in heating applications, and are used as radiators in cooling applications.
  • control device assists by increasing the flow rate of the auxiliary medium flowing to the auxiliary medium heat exchanger according to the performance degradation due to frost in the outdoor refrigerant heat exchanger or increasing the heat load of the use side heat exchanger. Increase the amount of heat given to the medium heat exchanger. According to this structure, the performance fall resulting from the frost adhering to an outdoor refrigerant
  • a temperature sensor for detecting the temperature in the use side heat exchanger is further provided, and the control device controls the refrigerant circuit in the cooling application based on the temperature detected by the temperature sensor and cools based on the temperature detected by the temperature sensor. Control the water circuit.
  • the temperature sensor for controlling the refrigerant circuit can be used for controlling the cooling water circuit.
  • it further includes a non-use side heat exchanger having a plurality of tubes arranged in a row along a direction intersecting the flow direction of non-use air, and the tubes are supplied from the refrigerant circuit.
  • Multiple refrigerant tubes that exchange heat between low-pressure refrigerant and unused air, and heat exchange between auxiliary medium and unused air supplied from the auxiliary medium circuit, so that heat can be transferred to the refrigerant tubes in at least a part of the row
  • a plurality of auxiliary media tubes are disposed.
  • the heat exchanger that exchanges heat between the refrigerant, the auxiliary medium, and the unused air is also used for the unused heat exchanger.
  • the apparatus further includes a use-side heat exchanger for high-pressure refrigerant having a plurality of tubes arranged in a row along a direction intersecting the flow direction of the use air, and the tubes are supplied from the refrigerant circuit.
  • a plurality of refrigerant tubes for exchanging heat between the high-pressure refrigerant to be used and the used air, and heat exchange between the auxiliary medium and the used air supplied from the auxiliary medium circuit so that heat can be transferred to the refrigerant tubes in at least a part of the row.
  • a plurality of auxiliary media tubes are disposed.
  • the heat exchanger which heat-exchanges a refrigerant
  • the refrigerant circuit supplies high-pressure refrigerant to the refrigerant tube.
  • heating of the utilization air and heating of the auxiliary medium can be provided by the high-pressure refrigerant.
  • the air used is air for air conditioning. According to this configuration, it is possible to provide air conditioning and temperature adjustment of the heat generating device.
  • the air used is the air in the cabinet that can accommodate the goods.
  • chamber and temperature control of a heat-emitting device can be provided.
  • the control device executes temperature control of the heat generating device by the auxiliary medium circuit in preference to temperature control of the use air by the use side heat exchanger.
  • priority is given to the temperature control of the heat generating device, and then the temperature control of the use air is executed.
  • the utilization device includes a battery charged by an external power source, and the control device controls the temperature of the battery by the auxiliary medium circuit in preference to the temperature control of the utilization air by the utilization side heat exchanger when the battery is charged. Execute. According to this configuration, priority is given to the temperature control of the battery, and then the temperature control of the use air is executed.
  • FIG. 4 is a partial cross-sectional view of the heat exchanger in the IV-IV cross section of FIG. 2.
  • 1 is a simplified exploded perspective view of a heat exchanger according to a first embodiment.
  • FIG. 4 is a partial cross-sectional view of the heat exchanger in the VI-VI cross section of FIG.
  • It is a disassembled perspective view of the heat exchanger of 2nd Embodiment of this indication. It is a fragmentary sectional view of the heat exchanger of a 2nd embodiment.
  • FIG. 20 is a transition diagram of condensed water in the section XX-XX in FIG. 19.
  • FIG. 20 is a transition diagram of condensed water in the XXI-XXI cross section of FIG. 19.
  • FIG. 23 is a transition diagram of condensed water in the section XXIII-XXIII in FIG. 16 is a flowchart of a fourteenth embodiment of the present disclosure.
  • 19 is a flowchart according to a fifteenth embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a vehicle air conditioner 1 that shows an example of a vehicle heat utilization system.
  • the air conditioner 1 includes a refrigerant circuit 10 constituting a refrigeration cycle for cooling.
  • the air conditioner 1 includes a heat exchanger 70 to which the disclosed invention is applied.
  • a cooling water circuit 40 for adjusting the temperature of the heat source HS mounted on the vehicle is mounted on the vehicle.
  • the refrigerant circuit 10 and the coolant circuit 40 are thermally related via the heat exchanger 70.
  • the air conditioner 1 is adapted to a so-called hybrid vehicle that obtains driving power from an internal combustion engine (engine) and a motor generator.
  • the air conditioner 1 can be used for any of a vehicle using only an engine as a power source, a hybrid vehicle, and a vehicle using only an electric motor as a power source.
  • the air conditioner 1 provides cooling by cold heat supplied by the refrigerant circuit 2.
  • the air conditioner 1 includes an air conditioning unit 30 that blows air UR toward a vehicle interior that is an air conditioning target space. In this embodiment, utilization air is the air UR for an air conditioning.
  • the air conditioner 1 includes a refrigerant circuit 10, a cooling water circuit 40, and a control device (CNTR) 100 that controls the air conditioning unit 30.
  • CNTR control device
  • the control device 100 is provided by a microcomputer provided with a computer-readable storage medium.
  • the storage medium stores a computer-readable program non-temporarily.
  • the storage medium can be provided by a semiconductor memory or a magnetic disk.
  • the program is executed by the control device 100 to cause the control device 100 to function as a device described in this specification, and to cause the control device 100 to function so as to execute the control method described in this specification.
  • the means provided by the control device 100 can also be referred to as a functional block or module that achieves a predetermined function.
  • the control device 100 controls the operation of the devices 11, 17, and 41.
  • the control device 100, the refrigerant circuit 10, and the cooling water circuit 40 are controlled.
  • a plurality of sensors are connected to the control device 100.
  • the control device 100 provides control means for controlling the amount of refrigerant flowing through the refrigerant circuit 10.
  • the amount of refrigerant is controlled by adjusting the refrigerant discharge capacity of the compressor 11.
  • the control apparatus 100 provides the control means which controls the flow of the cooling water in a cooling water circuit, and a flow path.
  • the flow of the cooling water is controlled by controlling the pump 41.
  • the control device 100 controls the cooling water circuit 40 so that the temperature of the cooling water WT falls below a predetermined upper limit temperature and exceeds a predetermined lower limit temperature.
  • the air conditioning unit 30 is arranged in the passenger compartment.
  • the air conditioning unit 30 includes a casing 31 that provides a duct for the air UR sent toward the passenger compartment.
  • the air conditioning unit 30 is configured by arranging components such as the blower 32, the heater core 12, and the indoor heat exchanger 20 in a casing 31.
  • An inside / outside air switching device 33 that introduces air in the passenger compartment and air outside the passenger compartment selectively or in a mixed manner is disposed at the most upstream portion in the casing 31.
  • a blower 32 for blowing air UR is disposed on the downstream side of the inside / outside air switching device 33.
  • the indoor heat exchanger 20 and the heater core 12 are arranged in this order with respect to the flow of the air UR.
  • the indoor heat exchanger 20 is disposed on the upstream side with respect to the heater core 12.
  • the indoor heat exchanger 20 includes a refrigerant heat exchanger 16 that exchanges heat between the refrigerant RF and the air UR.
  • the refrigerant heat exchanger 16 can also be referred to as an evaporator 16.
  • the refrigerant heat exchanger 16 is a cooling heat exchanger that cools the air UR by exchanging heat between the refrigerant RF and the air UR flowing through the refrigerant heat exchanger 16.
  • the refrigerant heat exchanger 16 is also a use-side heat exchanger for low-pressure refrigerant for using the cold supplied by the refrigerant RF flowing through the refrigerant circuit 10 for cooling the air UR.
  • the heater core 12 is a heat exchanger for heating that heats the air UR with the cooling water WT flowing inside the heater core 12 or an electric heater.
  • the air mix door 34 is disposed on the downstream side of the indoor heat exchanger 20 and on the upstream side of the heater core 12.
  • the air mix door 34 adjusts the ratio of passing through the heater core 12 in the air UR after passing through the indoor heat exchanger 20.
  • a mixing chamber 35 is provided on the downstream side of the heater core 12. The mixing chamber 35 mixes the air UR heated by the heater core 12 and the air UR that bypasses the heater core 12 and is not heated.
  • the downstream of the mixing chamber 35 communicates with the vehicle interior via a blowout port.
  • the refrigerant circuit 10 is provided by a vapor compression refrigeration cycle.
  • the refrigerant circuit 10 is a refrigerant cycle for cooling the air conditioner 1.
  • the refrigerant circuit 10 is also called a refrigerant system.
  • the refrigerant circuit 10 causes the refrigerant RF to flow through a refrigerant tube 16a described later, and takes heat from the air UR or the cooling water WT by evaporation of the refrigerant RF.
  • the refrigerant circuit 10 supplies low-pressure refrigerant to the refrigerant tube 16a.
  • the compressor 11 is disposed in the engine room.
  • the compressor 11 sucks low-pressure refrigerant in the refrigerant circuit 10 and compresses it to supply high-pressure refrigerant.
  • the compressor 11 includes a compression mechanism 11a such as a scroll type or a vane type, and an electric motor 11b that drives the compression mechanism 11a.
  • the electric motor 11b is controlled by the control device 100.
  • An outdoor heat exchanger 21 is provided on the discharge side of the compressor 11.
  • the outdoor heat exchanger 21 is disposed in the engine room.
  • the outdoor heat exchanger 21 is supplied with high-pressure refrigerant and radiates heat from the high-pressure refrigerant to the air AR.
  • the air AR is outdoor air and is also called non-use air.
  • the outdoor heat exchanger 21 is also called a condenser.
  • a receiver tank 22 for storing excess refrigerant is provided downstream of the outdoor heat exchanger 21.
  • the fan 17 is an electric blower.
  • the fan 17 provides an outdoor blowing unit that blows the air AR toward the outdoor heat exchanger 21.
  • An expansion valve 19 for cooling is provided downstream of the receiver tank 22.
  • the expansion valve 19 is a decompression unit.
  • the expansion valve 19 provides a decompressor that decompresses the high-pressure refrigerant and supplies the low-pressure refrigerant.
  • the decompressor can be provided by an orifice, a capillary tube, or the like.
  • An indoor heat exchanger 20 is provided downstream of the expansion valve 19. Further, a compressor 11 is provided downstream of the indoor heat exchanger 20.
  • a temperature sensor 23 for detecting the occurrence of freezing on the indoor heat exchanger 20 is provided on the outdoor heat exchanger 20, that is, on the downstream side of the heat exchanger 70 or on the surface of the heat exchanger 70.
  • the detection signal of the temperature sensor 23 is used to suppress a decrease in cooling performance due to frost on the surface of the indoor heat exchanger 20, that is, the heat exchanger 70.
  • the temperature sensor 23 is provided at a position where frost adhesion on the heat exchanger 70 is likely to appear in the temperature.
  • the temperature sensor 23 can be provided in the vicinity of the heat exchanger 70 and downstream of the air UR.
  • the cooling water circuit 40 can flow cooling water WT used as a heat carrying medium and a heat storage medium.
  • the heat source HS one of in-vehicle devices that generate heat during operation can be used.
  • the heat source HS is provided by at least one of an engine of a hybrid vehicle, a motor generator, an inverter circuit, a battery, a control circuit, and the like.
  • the heat source HS supplies heat to the cooling water WT.
  • the heat source HS is a heat generating device mounted on the vehicle.
  • the cooling water WT is an auxiliary medium for adjusting the temperature of the heat source HS.
  • the cooling water circuit 40 is an auxiliary medium circuit that is configured separately from the refrigerant circuit and in which the auxiliary medium circulates.
  • the cooling water circuit 40 is an auxiliary medium circuit in which an auxiliary medium for adjusting the temperature of the heat source HS circulates.
  • the cooling water circuit 40 is also a cooling system for cooling the heat source HS and keeping it at an appropriate temperature.
  • the cooling water circuit 40 including the heat source HS is called a water system or a heat generating equipment system.
  • the coolant circuit 40 is a coolant circulation circuit that circulates the coolant WT through the heat source HS and cools the heat source HS.
  • the cooling water circuit 40 includes components such as a pump 41 and a radiator 43.
  • the pump 41 is an electric pump that pumps cooling water to the cooling water circuit 40.
  • the radiator 43 is disposed in the casing 31 together with the indoor heat exchanger 20.
  • the radiator 43 is a heat dissipation heat exchanger that exchanges heat between the cooling water WT and the air UR.
  • the radiator 43 is also called a cooling water heat exchanger 43 that exchanges heat between the cooling water WT for the heat source HS and the air UR.
  • the pump 41 provides a flow rate regulator that regulates the flow rate of the cooling water WT supplied to the radiator 43.
  • the refrigerant heat exchanger 16 and the radiator 43 are integrally configured to constitute a heat exchanger 70.
  • the heat exchanger 70 is a heat exchanger unit that can be handled as an integral unit.
  • the refrigerant heat exchanger 16 and the radiator 43 can be disposed adjacent to each other. In the heat exchanger 70, the refrigerant heat exchanger 16 and the radiator 43 are thermally coupled.
  • the refrigerant heat exchanger 16 and the radiator 43 can be configured by being closely coupled mechanically and thermally via a member excellent in heat conduction.
  • coolant heat exchanger 16 and the radiator 43 are mechanically couple
  • the air conditioner 1 includes a cooling water circuit 60 that supplies hot water to the heater core 12.
  • the cooling water circuit 60 is a temperature adjustment circuit that cools the heat source HS such as an engine with a medium such as cooling water.
  • the cooling water circuit 60 can include a pump 61 for flowing the cooling water WT.
  • the cooling water circuit 60 and the cooling water circuit 40 can be independent circuits that use different heat sources HS.
  • the heat source HS of the coolant circuit 60 can be an engine
  • the heat source HS of the coolant circuit 40 can be an electrical device.
  • the cooling water circuit 60 and the cooling water circuit 40 can be provided by a common cooling water circuit.
  • the radiator 43 and the heater core 12 can be arranged in parallel or in series in the cooling water circuit 40.
  • a heat exchanger 70 is a so-called tank and tube type heat exchanger. Air UR is supplied to the core portion 71 of the heat exchanger 70. The air UR flows through the core portion 71.
  • the core portion 71 is formed in a thin plate shape having an upstream surface as an inlet side and a downstream surface as an outlet side with respect to the flow of the air UR.
  • the heat exchanger 70 provides heat exchange between the three of the refrigerant RF, the cooling water WT, and the air UR.
  • the heat exchanger 70 provides heat exchange between the refrigerant RF and the cooling water WT, between the refrigerant RF and the air UR, and between the cooling water WT and the air UR.
  • the refrigerant tube 16a and the water tube 43a are arranged in a line along a direction RD that intersects the flow direction CD of the air UR. Furthermore, the refrigerant
  • the plurality of tubes 16a and 43a are arranged in a row along a direction orthogonal to the flow direction of the air UR.
  • the column direction RD, the row direction CD, and the length direction LD of the tubes 16a and 43a are shown.
  • the column direction RD is also called a height direction or a width direction.
  • the column direction RD is also the length direction of the tank portions 72 and 75.
  • the row direction CD is also called a depth direction or a thickness direction.
  • the row direction CD is also the flow direction of the air UR.
  • the heat exchanger 70 is arranged in a plurality of tubes 16a for circulating the refrigerant RF, a plurality of tubes 43a for circulating the cooling water WT, and air passages 16b, 43b between the plurality of tubes 16a, 43a. And a plurality of fins 50 and parts such as a collection tank and a distribution tank disposed at both ends of the plurality of tubes.
  • the heat exchanger 70 has components as the refrigerant heat exchanger 16 and components as the radiator 43. Those parts are thermally coupled.
  • the heat exchanger 70 includes a core part 71 and tank parts 72 and 75.
  • the several tubes 16a and 43a are arrange
  • the plurality of tubes 16a and 43a include a plurality of refrigerant tubes 16a for the refrigerant supplied from the refrigeration cycle.
  • the plurality of tubes 16a and 43a include a plurality of water tubes 43a for the cooling water WT for adjusting the temperature of the heat source HS mounted on the vehicle.
  • the tank parts 72 and 75 are provided at both ends of the core part 71.
  • Each of the tank portions 72 and 75 includes water tanks 73 and 77 and refrigerant tanks 74 and 76.
  • the water tank 73 and the refrigerant tank 76 are also called outer tanks 73 and 76.
  • the refrigerant tank 74 and the water tank 77 are also called inner tanks 74 and 77.
  • Each of the water tanks 73 and 77 is connected so as to communicate with both ends of the water tube 43a.
  • Each of the refrigerant tanks 74 and 76 is connected to communicate with both ends of the refrigerant tube 16a.
  • coolant heat exchanger 16 as a refrigeration cycle evaporator is comprised by the some refrigerant
  • the plurality of water tubes 43a constitute a radiator 43 as a heat source radiator.
  • the refrigerant tube 16a is a heat exchange tube through which the refrigerant RF flows.
  • the refrigerant tube 16a is a flat tube having a flat cross-sectional shape perpendicular to the longitudinal direction.
  • the water tube 43a is a heat exchange tube through which a medium for adjusting the temperature of the heat source HS flows.
  • the water tube 43a is a flat tube having a flat cross-sectional shape perpendicular to the longitudinal direction.
  • the refrigerant tube 16a and the water tube 43a are referred to as tubes 16a and 43a.
  • the plurality of tubes 16a and 43a are arranged such that the wide flat surfaces of the outer surfaces thereof are substantially parallel to the flow of the air UR.
  • the plurality of tubes 16a and 43a are arranged at a predetermined interval from each other.
  • Air passages 16b and 43b through which the air UR flows are formed around the plurality of tubes 16a and 43a.
  • the air passages 16b and 43b are used as heat dissipation air passages.
  • Fins 50 are disposed in the air passages 16b and 43b.
  • the fin 50 is an outer fin for promoting heat exchange between the tubes 16a and 43a and the air UR.
  • the fin 50 is joined to the two tubes 16a and 43a adjacent in the row. Furthermore, the fin 50 is joined to the two tubes 16a and 43a located in the flow direction of the air UR. Therefore, at least four tubes 16 a and 43 a are joined to one fin 50.
  • the fin 50 integrates the refrigerant heat exchanger 16 and the radiator 43.
  • the fin 50 is made of a thin metal plate having excellent heat conductivity.
  • the fin 50 is a corrugated fin obtained by bending a thin plate into a wave shape. The fin 50 promotes heat exchange between the refrigerant RF and the air UR.
  • the fin 50 promotes heat exchange between the cooling water WT and the air UR. At least some of the fins 50 are joined to both the refrigerant tube 16a and the water tube 43a. Therefore, the fin 50 also functions to enable heat transfer between the refrigerant tube 16a and the water tube 43a.
  • the refrigerant tube 16 a and the water tube 43 a can transfer heat via the fins 50.
  • the plurality of tubes 16 a and 43 a are arranged to be thermally coupled to at least a part of the heat exchanger 70.
  • the two fins 50 arranged on both sides of one refrigerant tube 16a are corrugated fins in which a plurality of peaks are joined to both surfaces of the refrigerant tube 16a.
  • a plurality of tubes 16a and 43a and a plurality of fins 50 are laminated and joined to form a core portion.
  • the core portion 71 provides heat exchange between a plurality of, for example, three fluids including the refrigerant RF, the cooling water WT, and the air UR.
  • the core part 71 is also called a heat exchange part.
  • the tank parts 72 and 75 are arranged at both ends of the core part 71.
  • Each of the two tank parts 72, 75 has outer tanks 73, 76 located away from the core part 71 and inner tanks 74, 77 adjacent to the core part 71.
  • the inner tanks 74 and 77 are disposed between the outer tanks 73 and 76 and the core portion 71.
  • the outer tanks 73 and 76 and the inner tanks 74 and 77 extend so as to cover almost the entire end portion of the core portion 71 at the end portion of the core portion 71. Therefore, the outer tank 73 and the inner tank 74 are stacked on one end of the core portion 71.
  • An outer tank 76 and an inner tank 77 are also stacked on the other end of the core portion 71.
  • the outer tank 73 provides a distribution tank and a collecting tank for the cooling water WT.
  • the distribution tank distributes the cooling water WT to the plurality of water tubes 43a.
  • the collecting tank collects the cooling water WT from the plurality of water tubes 43a.
  • the outer tank 76 provides a distribution tank and a collection tank for the refrigerant RF.
  • the distribution tank distributes the refrigerant RF to the plurality of refrigerant tubes 16a.
  • the collecting tank collects the refrigerant RF from the plurality of refrigerant tubes 16a.
  • an outer tank 73 for the cooling water WT and an inner tank 74 for the refrigerant RF are arranged.
  • an outer tank 73 for the refrigerant RF and an inner tank 74 for the cooling water WT are arranged. That is, a tank for the refrigerant RF and a tank for the cooling water WT are arranged at both ends of the core portion 71.
  • the tank parts 72 and 75 enable the tubes 16a and 43a to be relatively freely arranged.
  • the tubes 16a or the tubes 43a are distributed and arranged in the upstream row 71c and the downstream row 71d along the flow direction of the air UR.
  • the entire downstream row 71d is occupied by the refrigerant tube 16a.
  • the upstream row 71c is occupied by the refrigerant tube 16a and the water tube 43a.
  • the tank of the refrigerant heat exchanger 16 and the tank of the radiator 43 can be formed at least partially by the same member.
  • the refrigerant tube 16a, the water tube 43a, the tank, and the fin 50 are made of an aluminum alloy. These parts are brazed.
  • a first tank 16c for collecting or distributing refrigerant and cooling water is arranged at one end in the longitudinal direction of the tubes 16a and 43a, and below in the drawing. Yes.
  • the first tank 16c is also referred to as a refrigerant tank because it accepts the refrigerant and discharges the refrigerant.
  • the 1st tank 16c also provides the connection part which guides cooling water from one water tube 43a to the other water tube 43a.
  • the first tank 16c includes a connection plate member 161 connected to the refrigerant tube 16a and the water tube 43a arranged in two rows, an intermediate plate member 162 fixed to the connection plate member 161, and a first tank member 163.
  • the connection plate member 161 is provided with a through-hole penetrating the front and back at portions corresponding to the plurality of tubes 16a and 43a. In these through holes, a plurality of tubes 16a, 16b are disposed and fixed.
  • middle plate member 162 is provided with the through-hole 162a which penetrates the front and back.
  • the refrigerant tube 16a is disposed through the through hole 162a.
  • the refrigerant tube 16a protrudes from the water tube 43a toward the first tank 16c.
  • the first tank member 163 is fixed to the connection plate member 161 and the intermediate plate member 162, thereby forming therein a collection chamber 163a for collecting refrigerant and a distribution chamber 163b for distributing refrigerant.
  • the first tank member 163 is formed in a W shape when viewed from the longitudinal direction by pressing a flat metal.
  • a central portion of the first tank member 163 is joined to the intermediate plate member 162.
  • the collecting chamber 163a and the distribution chamber 163b are partitioned as independent chambers.
  • the collecting chamber 163a is disposed on the upstream side of the air UR, and the distribution chamber 163b is disposed on the downstream side.
  • a plate-like lid member is fixed to both ends in the longitudinal direction of the first tank member 163.
  • One end of the distribution chamber 163b is connected to an inlet pipe 164 through which the refrigerant flows.
  • An outlet pipe 165 for allowing the refrigerant to flow out is connected to one end of the collecting chamber 163a.
  • a second tank 43c for collecting or distributing refrigerant and cooling water is disposed on the other end in the longitudinal direction of the plurality of tubes 16a and 43a, and in the upper part of the drawing.
  • the second tank is also called a water tank because it is responsible for receiving cooling water and discharging cooling water.
  • the second tank also provides a connecting portion for guiding the refrigerant from one refrigerant tube 16a to another refrigerant tube 16a.
  • the second tank 43c basically has the same configuration as the first tank 16c.
  • the second tank 43 c includes a connection plate member 431, an intermediate plate member 432, and a second tank member 433.
  • a portion of the intermediate plate member 432 corresponding to the water tube 43a is provided with a through hole 432a penetrating the front and back.
  • a water tube 43a is disposed through and fixed to the through hole 432a.
  • the second tank member 433 forms an upstream chamber 433b positioned upstream in the flow direction of the air UR and a downstream chamber 433a positioned downstream of the chamber 433b in the flow direction of the air UR. Since the chamber 433a distributes the cooling water, it is also called a distribution chamber 433a.
  • the chamber 433b is also referred to as a collecting chamber 433b because it collects cooling water.
  • a plate-like lid member is fixed to both ends of the second tank member 433 in the longitudinal direction.
  • An inlet pipe 435 through which cooling water flows is connected to one end of the distribution chamber 433a.
  • An outlet pipe 434 through which refrigerant flows out is connected to one end of the collecting chamber 433b.
  • the refrigerant RF flows into the distribution chamber 163b of the first tank 16c via the inlet pipe 164, and flows into the refrigerant tube 16a in the downstream row.
  • the refrigerant flows from the bottom to the top in the drawing in the refrigerant tubes 16a in the downstream row.
  • the refrigerant that has flowed out of the downstream-line refrigerant tube 16a flows into the upstream-line refrigerant tube 16a through the chamber of the second tank 43c.
  • the refrigerant flows from the upper side to the lower side of the refrigerant tube 16a in the upstream row.
  • the refrigerant that has flowed out of the refrigerant tube 16a in the upstream row flows out from the outlet pipe 165 after collecting in the collecting chamber 163a of the first tank 16c. Therefore, in the heat exchanger 70, the refrigerant flows in a U-turn shape from the downstream row to the upstream row.
  • the cooling water WT flows into the distribution chamber 433a of the second tank 43c via the inlet pipe 435 and flows into the downstream water tube 43a.
  • the cooling water flows from the top to the bottom in the figure in the downstream water tube 43a.
  • the refrigerant that has flowed out of the downstream water tube 43a flows into the upstream water tube 43a through the chamber of the first tank 16c.
  • the cooling water flows from the bottom to the top of the water tube 43a in the upstream row.
  • the cooling water flowing out from the upstream water tube 43a collects in the collecting chamber 433b of the second tank 43c and then flows out from the outlet pipe 434. Therefore, in the heat exchanger 70, the cooling water flows in a U-turn shape from the downstream row to the upstream row.
  • FIG. 4 shows a cross section of the second tank 43 c, that is, the tank portion 72.
  • the first tank 16c that is, the tank portion 75 also has the same structure.
  • the tank part 72 includes a first tank member 431 facing the core part 71 and a second tank member 433 facing the outside. Further, the tank unit 72 includes an intermediate plate member 432 provided between the first tank member 431 and the second tank member 433. These members 431, 432, and 433 are joined so as to partition the outer tank 73 and the inner tank 74 therebetween.
  • the second tank member 433 is provided by a member having a W-shaped cross section.
  • the second tank member 433 is located on the upstream side with respect to the flow direction of the air UR, the upstream ridge that provides the chamber 433b, and the downstream ridge that is located on the downstream side of the upstream ridge and provides the chamber 433a. And have. It can be said that the second tank member 433 forms an upstream chamber UPC and a downstream chamber DWC with respect to the flow direction of the air UR. As illustrated, the upstream chamber UPC and the downstream chamber DWC are partitioned. Therefore, the second tank member 433 partitions the upstream chamber UPC and the downstream chamber DWC extending in the row direction RD in the two protrusions.
  • the tank portions 72 and 75 and the plurality of tubes 16a and 43a are connected to flow the refrigerant RF and the cooling water WT.
  • a part of the plurality of tubes 16 a and 43 a is connected to communicate with the inside of the outer tanks 73 and 76.
  • the remaining portions of the plurality of tubes 16 a and 43 a are connected to communicate with the inside of the inner tanks 74 and 77.
  • the partial tubes 16a and 43a pass through the walls of the inner tanks 74 and 77, that is, the first tank member 431, and further extend across the inner tanks 74 and 77. Has been inserted.
  • the water tube 43 a is connected so as to communicate with the inside of the outer tank 73.
  • the refrigerant tube 16 a is connected so as to communicate with the inside of the inner tank 74.
  • the water tube 43 a passes through the wall of the inner tank 74, that is, the first tank member 431, extends further across the inner tank 74, and is inserted into the outer tank 73.
  • the solid line arrows indicate the flow of the refrigerant RF.
  • Dashed arrows indicate the flow of the cooling water WT.
  • the refrigerant RF supplied to the heat exchanger 70 flows through the refrigerant tubes 16a in the upstream row 71c after flowing through the refrigerant tubes 16a in the downstream row 71d. For this reason, it is possible to efficiently exchange heat with the air UR.
  • the flow path cross-sectional area provided by the tanks 72 and 75 and the plurality of refrigerant tubes 16a increases continuously or stepwise from upstream to downstream of the flow of the refrigerant RF. Is set as follows.
  • the cooling water WT supplied to the heat exchanger 70 flows through the water tube 43a in the upstream row 71c after flowing through the water tube 43a in the downstream row 71d. For this reason, it is possible to efficiently exchange heat with the air UR. Moreover, when the cooling water WT is low temperature, the leeward side of the core part 71 tends to become low temperature. For this reason, generation
  • the refrigerant RF and the cooling water WT flow as counterflows in most parts of the heat exchanger 70. For this reason, efficient heat exchange can be provided also between refrigerant
  • the plurality of tubes 16a and 43a are arranged in a row in a direction orthogonal to the flow of the air UR. Furthermore, the plurality of tubes 16a and 43a are arranged in multiple rows along the flow direction of the air UR. The plurality of tubes 16a and 43a form a plurality of rows including at least the upstream row 71c and the downstream row 71d with respect to the flow direction of the air UR. The plurality of tubes 16a and 43a can be arranged in two rows. The plurality of tubes 16a and 43a are arranged so as to form an upstream row 71c located on the upstream side in the flow direction of the air UR and a downstream row 71d located on the downstream side of the upstream row 71c.
  • the refrigerant tubes 16a and the water tubes 43a are alternately arranged in both the upstream row 71c and the downstream row 71d. Therefore, the air passage 16b for heat absorption and the air passage 43b for heat dissipation are shared. Fins 50 are disposed in the common passages 16b and 43b.
  • the refrigerant tube 16a and the water tube 43a are adjacent to each other.
  • the water tubes 43a can be positioned on both sides of the refrigerant tube 16a.
  • the refrigerant tubes 16a can be positioned on both sides of the water tube 43a.
  • the refrigerant tubes 16a and the water tubes 43a can be alternately positioned.
  • the refrigerant tubes 16a and the water tubes 43a are alternately arranged so that the water tubes 43a are positioned on both sides of the refrigerant tube 16a.
  • the water tubes 43a are positioned on both sides of the refrigerant tube 16a on the inflow side of the air UR, and they are arranged side by side. According to this configuration, the refrigerant tubes 16a can be dispersed in a wide range.
  • the refrigerant tube 16a and the water tube 43a are arranged next to one refrigerant tube 16a so that one water tube 43a is located via the fin 50.
  • one refrigerant tube 16a is disposed between the two water tubes 43a.
  • one water tube 43a is disposed between the two refrigerant tubes 16a.
  • the refrigerant tubes 16a and the water tubes 43a are alternately arranged at least in the upstream row 71c.
  • the refrigerant tubes 16a and the water tubes 43a can be alternately arranged also in the downstream row 71d.
  • the refrigerant tubes 16a and the water tubes 43a are arranged in the row direction RD. Further, in at least a part of the upstream row 71c, the refrigerant tubes 16a and the water tubes 43a are arranged side by side in the row direction RD. In other words, the refrigerant tube 16a and the water tube 43a are positioned at the same position with respect to the flow direction of the air UR.
  • the refrigerant tube 16a and the water tube 43a are arranged side by side in the column direction RD in at least a part of the downstream column 71d.
  • This configuration is advantageous for detecting the influence from both the refrigerant tube 16a and the water tube 43a by the temperature sensor 23.
  • the average temperature can be detected without being biased to either the low temperature of the refrigerant tube 16a or the low temperature of the water tube 43a.
  • the heat exchanger 70 is arranged so that the wide side surfaces of the plurality of tubes 16a and 43a spread along the vertical direction of the gravity direction.
  • the condensed water adheres to the heat exchanger 70, the condensed water is generated in a low temperature portion.
  • the refrigerant RF functions as a low temperature medium.
  • Condensed water adheres to the surface of the refrigerant tube 16a at an early stage. A large amount of condensed water is generated on the surface of the refrigerant tube 16a. The condensed water flows and spreads on the refrigerant tube 16a. For this reason, a water film is formed on the surface of the refrigerant tube 16a. Condensed water flows along the water film from top to bottom and is discharged.
  • the refrigerant tube 16 a provides a drainage path for the condensed water in the heat exchanger 70.
  • the water tube 43a is relatively hot. For this reason, the condensed water which generate
  • coolant tube 163a is arrange
  • the refrigerant tubes 16a are arranged in both the upstream row 71c and the downstream row 71d. Therefore, the drainage path for the condensed water is formed in both the upstream row 71c and the downstream row 71d, so that the drop of water droplets into the air UR flow is suppressed.
  • the refrigerant circuit 10 When the refrigerant circuit 10 is operated, the passenger compartment is cooled.
  • the cooling operation is activated by a switch operated by a vehicle user.
  • the refrigerant flows through the refrigerant circuit 10 as indicated by solid line arrows.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the outdoor heat exchanger 21.
  • the high-pressure refrigerant that has flowed into the outdoor heat exchanger 21 radiates heat to the air AR blown by the fan 17.
  • the refrigerant flowing out of the outdoor heat exchanger 21 is decompressed and expanded by the expansion valve 19.
  • the refrigerant flowing out of the expansion valve 19 flows into the indoor heat exchanger 20, absorbs heat from the air UR, and evaporates. Thereby, the air UR is cooled.
  • the refrigerant flowing out of the indoor heat exchanger 20 is sucked into the compressor 11 and compressed again.
  • the control device 100 operates the refrigerant circuit 10 in order to provide the cooling operation.
  • the refrigerant circuit 10 When the refrigerant circuit 10 is operated, the refrigerant evaporates in the refrigerant heat exchanger 16.
  • the air UR is cooled by the evaporative refrigerant.
  • cooling in the passenger compartment is provided.
  • the operation of the compressor 11 is controlled based on the temperature detected by the temperature sensor 23, and the generation of frost in the heat exchanger 70 is suppressed.
  • the control device 100 operates the cooling water circuit 40 so as to maintain the temperature of the heat source HS in a desired temperature range.
  • the cooling water WT circulates in the cooling water circuit 40.
  • the control device 100 controls the cooling water circuit 40 so as to maintain the temperature of the cooling water WT near the reference temperature.
  • the cooling water WT exchanges heat with the air UR in the radiator 43.
  • the radiator 43 functions as a cooler that cools the air UR or a heater that heats the air UR according to the temperature of the cooling water WT.
  • the cooling water WT also exchanges heat with the refrigerant heat exchanger 16, that is, the refrigerant RF, in the radiator 43.
  • the radiator 43 functions as a radiator that cools the cooling water WT with the refrigerant RF.
  • the control device 100 can be configured to control the cooling water circuit 40 so as to radiate heat from the cooling water WT to the air UR.
  • the cooling water WT can be cooled by heat radiation from the cooling water WT to the air UR. Since the cooled cooling water WT is supplied to the heat source HS, the heat source HS can be cooled using the air UR.
  • the control device 100 can be configured to cool the heat source HS without considering air conditioning when there is no user in the vehicle. For example, when charging the battery during parking, the temperature of the battery as the heat source HS can be adjusted using the blower 32.
  • the control device 100 can operate the cooling water circuit 40 so as to use the temperature of the cooling water WT for adjusting the temperature of the air UR.
  • the radiator 43 functions as a cooler that cools the air UR or a heater that heats the air UR in accordance with the temperature of the cooling water WT.
  • the control device 100 can be configured to control the cooling water circuit 40 so as to cool the air UR with the cooling water WT. According to this configuration, the air UR can be cooled by the cooling water WT. As a result, the air UR can be cooled without depending on the refrigerant circuit 10 alone.
  • the control device 100 can adjust the rotation speed of the pump 41 based on the temperature detected by the temperature sensor 23. For example, when the temperature of the heat exchanger 70 becomes low enough to cause frost, the control device 100 increases the amount of heat released from the heat source HS to the radiator 43 by increasing the number of rotations of the pump 41, and the frost adheres. , Growth can be suppressed. For example, when the temperature of the heat exchanger 70 becomes excessively high, the control device 100 can suppress the amount of heat released from the heat source HS to the radiator 43 by reducing the rotation speed of the pump 41.
  • the air conditioner 1 includes a temperature sensor 23 that detects the temperature in the use-side heat exchanger 16.
  • the control device 100 controls the refrigerant circuit 10 in the cooling application based on the temperature detected by the temperature sensor 23 and controls the cooling water circuit 40 based on the temperature detected by the temperature sensor 23.
  • the temperature sensor for controlling the refrigerant circuit 10 can be used for controlling the cooling water circuit 40.
  • the control device 100 can operate both the refrigerant circuit 10 and the cooling water circuit 40.
  • the air UR can be heated or cooled by the radiator 34 while the air UR is cooled by the refrigerant evaporated in the refrigerant heat exchanger 16.
  • the coolant WT of the radiator 43 can be cooled by the refrigerant evaporated in the refrigerant heat exchanger 16.
  • the heat source HS can be cooled by the refrigerant circuit 10 and the cooling water circuit 40.
  • the control device 100 can stop the supply of the cooling water WT to the radiator 43 by the cooling water circuit 40 and operate only the refrigerant circuit 10. In this case, the maximum cooling performance is exhibited.
  • the control device 100 can be configured to control the refrigerant circuit 10 and the cooling water circuit 40 so as to adjust the temperature of the cooling water WT by the refrigerant RF.
  • the temperature of the cooling water WT is adjusted by heat exchange between the refrigerant RF and the cooling water WT.
  • the cooling water WT can be cooled by the refrigerant RF.
  • the cooling water WT can be heated by the refrigerant RF.
  • air conditioning by adjusting the temperature of the air UR and temperature control of the heat source HS by adjusting the temperature of the cooling water WT can be performed simultaneously.
  • the control device 100 can operate the cooling water circuit 40 during and / or after the operation of the refrigerant circuit 10 in order to remove frost from the heat exchanger 70 and / or frost.
  • the heat exchanger 70 is heated by the radiator 34.
  • frost adhesion and growth on the heat exchanger 70 can be suppressed.
  • the control device 100 can reduce the flow rate of the air UR or stop the flow of the air UR in order to promote heat exchange between the refrigerant RF and the cooling water WT in the heat exchanger 70. In this case, heat exchange between the refrigerant RF and the air UR and heat exchange between the cooling water WT and the air UR are suppressed, and heat exchange between the refrigerant RF and the air UR can be increased.
  • the control device 100 can include a control unit that suppresses the flow rate of the air UR from the flow rate required for air conditioning in order to promote cooling of the heat source HS.
  • the air conditioner 1 can include an air volume adjusting device that adjusts the flow rate of the air UR in order to adjust the amount of heat exchange between the refrigerant RF and the cooling water WT.
  • the wind regulation device can be provided by the blower 32 and the control device 100. According to this configuration, the amount of heat exchange between the refrigerant RF and the cooling water WT can be adjusted by the flow rate of the air UR. By reducing the flow rate of the air UR, it is possible to increase the cooling amount of the cooling water WT by the refrigerant RF or increase the heating amount of the cooling water WT by the refrigerant RF.
  • the cooling water circuit 60 When the cooling water circuit 60 is operated, the cooling water circulates in the cooling water circuit 60.
  • the heater core 12 heats the air UR with the hot water supplied from the cooling water circuit 60 to the heater core 12. Thereby, heating of a vehicle interior is possible.
  • the control device 100 can be configured to control the flow rate of the refrigerant RF or the flow rate of the cooling water WT in response to the adhesion of frost in the heat exchanger 70. According to this configuration, the flow rate of the refrigerant RF or the cooling water WT is adjusted in response to the adhesion of frost in the heat exchanger 70. For example, when the refrigerant RF cools the air UR, the control device 100 decreases the refrigerant flow rate in response to the attachment of frost. When cooling water WT is cooling air UR, control device 100 reduces the flow rate of cooling water WT.
  • the control device 100 increases the flow rate of the cooling water WT.
  • the control device 100 increases the flow rate of the refrigerant RF.
  • the plurality of tubes 16a and 43a and the tank portions 72 and 73 provide a flow path between the refrigerant RF and the cooling water WT as illustrated in FIGS.
  • a chamber 433b upstream of the outer tank 73 provides an inlet and an outlet for the cooling water WT.
  • a partition 73 a is provided in the upstream chamber 433 b of the outer tank 73.
  • the partition 73a divides the heat exchanger 70 left and right, that is, in the column direction RD.
  • the chamber 163a upstream of the outer tank 77 provides a communication part for allowing the cooling water WT to flow in a U-shape. As a result, the flow path of the cooling water WT is U-shaped when the core portion 71 is viewed from the front.
  • the chamber 163b downstream of the outer tank 76 provides an inlet and an outlet for the refrigerant RF.
  • a partition 76 a is provided in the downstream chamber 163 b of the outer tank 76.
  • the partition 76a divides the heat exchanger 70 left and right, that is, in the column direction RD.
  • the chamber 433a downstream of the outer tank 73 provides a communication part for flowing the refrigerant RF in a U shape. As a result, the flow path of the refrigerant RF is U-shaped when the core portion 71 is viewed from the front.
  • the inner tank 74 communicates with a chamber 433a downstream of the outer tank 73.
  • the inner tank 77 communicates with a chamber 163b downstream of the outer tank 76.
  • the inner tanks 74 and 77 communicate with each other at both ends of the two refrigerant tubes 16a arranged in the flow direction of the air UR. Therefore, the inner tanks 74 and 77 are connected in parallel with the two refrigerant tubes 16a arranged in the row direction CD.
  • the refrigerant tubes 16a and the water tubes 43a are alternately arranged.
  • the downstream row 71d only the refrigerant tube 16a is disposed.
  • the number of refrigerant tubes 16a is greater than the number of water tubes 43a.
  • the total heat transfer area RFS of the refrigerant RF is set to be larger than the total heat transfer area WTS of the cooling water WT, that is, RFS> WTS.
  • This configuration preferentially provides performance as a use side heat exchanger for cold pressure refrigerant.
  • the number of refrigerant tubes 16a in the downstream row 71d is larger than the number of water tubes 43a in the downstream row 71d.
  • the number of water tubes 43a in the downstream row 71d is zero.
  • the refrigerant tubes 16a are majority in the downstream row 71d. Therefore, the generation of condensed water can be biased toward the downstream row 71d. Many paths for condensed water are formed early in the downstream row 71d. By forming the drainage path in the downstream row 71d, the splash of water droplets into the flow of the air UR is suppressed.
  • the refrigerant RF flows into the plurality of refrigerant tubes 16 a in the right half of the core portion 71 in the drawing via the downstream chamber 163 b and the inner tank 77. At this time, in one row, the refrigerant is supplied to the two refrigerant tubes 16a. Further, in the row adjacent to the row, the refrigerant is supplied to one refrigerant tube 16a located in the downstream column 71d. The refrigerant RF flows through the left half of the core 71 and then flows out of the heat exchanger 70.
  • the cooling water WT flows from the upstream chamber 433b into the plurality of water tubes 43a in the right half of the core portion 71 in the drawing.
  • the cooling water WT flows through the left half of the core 71 after flowing through the right half of the core 71 and exits from the heat exchanger 70.
  • the refrigerant tubes 16a and the water tubes 43a are arranged in the upstream row 71c, and only the refrigerant tubes 16a are arranged in the downstream row 71d.
  • the refrigerant tubes 16a and the water tubes 43a may be arranged in the downstream row 71d.
  • the refrigerant RF flow direction and the cooling water WT flow direction are opposite in the adjacent refrigerant tube 16a and water tube 43a.
  • the flow directions of the refrigerant RF and the cooling water WT are the same.
  • the cooling water WT flows from the upstream chamber 433b into the plurality of water tubes 43a in the left half of the core portion 71 in the drawing.
  • the cooling water WT flows through the left half of the core portion 71, then flows through the right half, and exits from the heat exchanger 70.
  • the refrigerant tubes 16a and the water tubes 43a are alternately arranged in the upstream row 71c.
  • a refrigerant tube group including a plurality of refrigerant tubes 16 a and a water tube group including a plurality of water tubes 43 a are alternately arranged.
  • a refrigerant tube group composed of two refrigerant tubes 16a and a water tube group composed of three water tubes 43a are alternately arranged.
  • the refrigerant tube 16a and the water tube 43a are arranged in the column direction RD. According to this configuration, a temperature distribution can be given in the upstream row 71c.
  • one refrigerant tube 16a and a group of water tubes may be alternately arranged. Moreover, you may arrange
  • coolant tube 16a and the water tube 43a were arrange
  • both the refrigerant tube 16a and the water tube 43a are arranged in both the upstream row 71c and the downstream row 71d.
  • the refrigerant tube 16a and the water tube 43a are disposed adjacent to the upstream row 71c. Furthermore, the refrigerant tube 16a and the water tube 43a are also arranged adjacent to the downstream row 71d. Furthermore, the refrigerant
  • the temperature sensor 23 can detect the influence from both the refrigerant RF and the cooling water WT.
  • the plurality of tubes 16a and 43a are arranged so as to form a plurality of rows.
  • the refrigerant tube 16a and the water tube 43a are arranged to form a single row.
  • the refrigerant tube 16a and the water tube 43a are disposed adjacent to each other in the column direction RD.
  • the fins 50 are disposed between the refrigerant tube 16a and the water tube 43a.
  • a refrigerant tube 16a and a water tube 43a may be arranged.
  • two refrigerant tubes 16a and one water tube 43a are alternately arranged.
  • the heat exchanger 70 that exchanges heat between the refrigerant RF, the cooling water WT, and the air UR is used only for the indoor heat exchanger 20.
  • a similar heat exchanger 70 (270) can be adopted for the outdoor heat exchanger 21.
  • the outdoor heat exchanger 21 having the same components as the heat exchanger 70 described above is referred to as a heat exchanger 270.
  • the air conditioner 1 includes a heat pump cycle 2 to which the disclosed invention is applied.
  • the heat pump cycle 2 includes a heat exchanger 270 to which the disclosed invention is applied.
  • the heat pump cycle 2 includes a refrigerant circuit 10 and a cooling water circuit 40. This embodiment provides a heat pump cycle 2 that can effectively use waste heat from a power source to suppress frost and / or defrost the outdoor heat exchanger 21.
  • the air conditioner 1 is a device that uses heat pumped from the air by the heat pump cycle 2.
  • the indoor heat exchanger 20 is also referred to as an indoor evaporator 20.
  • the indoor evaporator 20 is the heat exchanger 70 described above.
  • the heater core 12 is provided by an indoor condenser.
  • the heater core 12 is referred to as an indoor condenser 12.
  • the indoor condenser 12 is a heating heat exchanger that exchanges heat between the high-temperature and high-pressure refrigerant flowing through the indoor condenser 12 and the air UR after passing through the indoor evaporator 20.
  • the refrigerant circuit 10 is provided by a vapor compression refrigeration cycle capable of reversible operation.
  • the refrigerant circuit 10 serves as both a heating refrigerant cycle of the air conditioner 1 and a cooling refrigeration cycle.
  • the refrigerant circuit 10 provides a narrowly defined heat pump cycle that uses the air AR outside the passenger compartment as a heat source.
  • the refrigerant circuit 10 causes the refrigerant RF to flow through a refrigerant tube 16a described later, and supplies the heat absorbed by the refrigerant RF to the use side heat exchanger 12.
  • the refrigerant RF flowing through the refrigerant circuit 10 is a main medium for drawing up heat from the heat source.
  • the refrigerant circuit 10 is also called a main medium circuit 10.
  • frost suppression suppressing frost adhesion in the outdoor heat exchanger 21 of the refrigerant circuit 10, that is, the heat source side heat exchanger, and suppressing the growth of the attached frost are referred to as frost suppression.
  • defrosting melting and removing frost adhering to the outdoor heat exchanger 21 is called defrosting.
  • anti-frosting performance the performance which opposes the fall of the heat exchange performance resulting from frost is called anti-frosting performance.
  • anti-frosting performance is provided by frost suppression and / or defrosting.
  • the refrigerant circuit 10 heats or cools the air UR blown into the passenger compartment.
  • the refrigerant circuit 10 can perform a heating operation for heating the air UR by heating the air UR and a cooling operation for cooling the air UR by cooling the air UR by switching the flow path.
  • the refrigerant circuit 10 can perform a defrosting operation that melts and removes frost attached to the outdoor heat exchanger 21 during the heating operation.
  • the refrigerant circuit 10 can execute a waste heat recovery operation in which the heat of the heat source HS is absorbed by the refrigerant during the heating operation.
  • the plurality of operation modes are switched by the control device 100.
  • An indoor condenser 12 is provided on the discharge side of the compressor 11.
  • the indoor condenser 12 provides a use side heat exchanger to which high-pressure refrigerant is supplied and heat is supplied from the high-pressure refrigerant.
  • An expansion valve 213 for heating is provided downstream of the indoor condenser 12.
  • the expansion valve 213 decompresses and expands the refrigerant that has flowed out of the indoor condenser 12 during the heating operation.
  • the expansion valve 213 is a decompression unit for heating operation.
  • the expansion valve 213 provides a decompressor that decompresses the high-pressure refrigerant and supplies the low-pressure refrigerant.
  • the expansion valve 213 is driven to a fully opened state when the refrigerant circuit 10 is cooled.
  • An outdoor heat exchanger 21 is provided downstream of the expansion valve 213.
  • the outdoor heat exchanger 21 functions as an evaporator that evaporates low-pressure refrigerant and exerts an endothermic effect during heating operation.
  • the outdoor heat exchanger 21 provides an endothermic heat exchanger that exchanges heat between the air AR and the low-pressure refrigerant so that the low-pressure refrigerant absorbs heat.
  • the outdoor heat exchanger 21 functions as a heat radiator that radiates high-pressure refrigerant during cooling operation.
  • the outdoor heat exchanger 21 is provided by a heat exchanger 270 configured as a heat exchanger unit that can be handled as an integral unit.
  • the heat exchanger 270 includes a refrigerant heat exchanger 216 and a radiator 243.
  • the refrigerant heat exchanger 216 is provided by the outdoor heat exchanger 21.
  • the radiator 243 is also referred to as a second radiator 243.
  • the radiator 43 of the heat exchanger 70 is called the first radiator 43.
  • the heat exchanger 270 has the configuration illustrated in FIG. In these configurations, the refrigerant tubes 16a occupy the majority in the downstream row 71d of the heat exchanger 270. Therefore, in the heat exchanger 270, the radiator 243 provided by the water tube 43a is disposed upstream of the outdoor refrigerant heat exchanger 216 provided by the refrigerant tube 16a. According to this configuration, the heat acquired by the cooling water WT in the use side heat exchanger 16 can be given to the low-pressure refrigerant of the outdoor refrigerant heat exchanger 216 in the heat exchanger 270.
  • the refrigerant tube 16a and the water tube 43a are thermally coupled by fins. Moreover, it is desirable that the refrigerant tube 16a and the water tube 43a are disposed adjacent to each other in at least a part of the upstream row or the downstream row. According to this configuration, the heat acquired by the cooling water WT in the usage-side heat exchanger 16 can be given to the low-pressure refrigerant of the outdoor refrigerant heat exchanger 216 via the fins in the heat exchanger 270.
  • the cooling water WT flows through the radiator 243.
  • the radiator 243 exchanges heat between the cooling water WT of the cooling water circuit 40 and the air AR. Further, the radiator 243 supplies the heat of the cooling water WT to the outdoor heat exchanger 21 and the heat exchanger 270 including the outdoor heat exchanger 21.
  • the radiator 243 holds an auxiliary medium that stores heat and supplies the stored heat to the endothermic heat exchanger, that is, the cooling water WT.
  • the radiator 243 provides an auxiliary heat exchanger disposed adjacent to the outdoor heat exchanger 21.
  • An electric three-way valve 15b is connected downstream of the outdoor heat exchanger 21.
  • the three-way valve 15b is controlled by the control device 100.
  • the three-way valve 15b constitutes a refrigerant channel switching means.
  • the three-way valve 15b directly connects the outlet of the outdoor heat exchanger 21 and the inlet of the accumulator 18 without a heat exchanger during heating operation.
  • the three-way valve 15b connects the outlet of the outdoor heat exchanger 21 and the inlet of the cooling expansion valve 19 during cooling operation.
  • the control device 100 provides control means for controlling the amount of refrigerant flowing in the refrigerant circuit 10 and the flow path. The amount of refrigerant is controlled by adjusting the refrigerant discharge capacity of the compressor 11.
  • the flow path of the refrigerant is switched and controlled by controlling the expansion valve 213 and the three-way valve 15b.
  • the heat pump cycle 2 includes cycle switching devices 213 and 15b that switch the flow path between a heating application and a cooling application.
  • the cycle switching devices 213 and 15b control the flow paths so that the outdoor refrigerant heat exchanger 216 functions as an endothermic heat exchanger during heating, and the outdoor refrigerant heat exchanger 216 functions as a radiant heat exchanger during cooling.
  • Heating is a heating application for heating an object.
  • Cooling is a cooling application for cooling an object.
  • the refrigerant circuit 10 can be switched between a heating application and a cooling application.
  • control device 100 provides a control means for controlling the flow and flow path of the cooling water in the cooling water circuit.
  • the cooling water is controlled by controlling the pump 41 and the flow rate adjusting valve 45.
  • An indoor evaporator 20 is provided downstream of the expansion valve 19.
  • An accumulator 18 is provided downstream of the indoor evaporator 20.
  • the flow path that is formed by the three-way valve 15b during the heating operation and directly communicates with the accumulator 18 from the three-way valve 15b constitutes a passage 20a that allows the refrigerant downstream of the outdoor heat exchanger 21 to flow around the indoor evaporator 20. ing.
  • the accumulator 18 is a gas-liquid separator for low-pressure refrigerant that separates the gas-liquid of the refrigerant that has flowed into the accumulator 18 and stores excess refrigerant in the cycle.
  • a compressor 11 is provided downstream of the gas-phase refrigerant outlet of the accumulator 18. The accumulator 18 functions to prevent liquid compression of the compressor 11 by suppressing the suction of the liquid phase refrigerant into the compressor 11.
  • the cooling water circuit 40 may supply heat to the refrigerant circuit 10.
  • the cooling water WT flowing in the cooling water circuit 40 is an auxiliary medium for assisting the pumping of heat by the main medium circuit 10.
  • the cooling water circuit 40 is also referred to as an auxiliary medium circuit 40.
  • the cooling water circuit 40 is also a heat source that supplies heat for suppressing frost.
  • the cooling water circuit 40 is also called a frost suppression medium circuit 40 for flowing a medium for suppressing frost.
  • the cooling water circuit 40 flows cooling water WT for suppressing frost to a water tube 43a described later.
  • the cooling water circuit 40 is also a heat source that supplies heat to the heat exchanger 70 for defrosting.
  • the cooling water circuit 40 is also referred to as a defrosting medium circuit 40 for flowing a medium for defrosting.
  • the cooling water circuit 40 flows the cooling water WT for defrosting to the water tube 43a.
  • the cooling water circuit 40 maintains the temperature of the cooling water WT and the temperature of the heat source HS at a temperature higher than the temperature at which the refrigerant in the refrigerant tube 16a absorbs heat.
  • the cooling water circuit 40 includes components such as a bypass passage 44 for bypassing the radiator 43 and flowing cooling water, and an electric flow rate adjustment 45.
  • the bypass passage 44 provides a flow path that bypasses the radiator 43.
  • the cooling water circuit 40 provides a first flow path that passes through the heat source HS and the radiator 43 and a second flow path that passes through the heat source HS and the bypass passage 44.
  • the flow rate adjustment valve 45 adjusts the flow rate through the bypass passage 44.
  • the bypass passage 44 and the flow rate adjustment valve 45 provide a flow rate regulator that adjusts the flow rate of the cooling water WT supplied to the radiator 43.
  • the flow rate adjuster includes a bypass passage 44 that bypasses the radiator 43 and flows the cooling water WT, and a valve device 45 that reduces the flow rate flowing through the radiator 43 by flowing the cooling water WT through the bypass passage 44.
  • the heat exchanger 270 provides heat exchange between the refrigerant RF, the cooling water WT, and the air AR.
  • the heat exchanger 270 provides heat exchange between the refrigerant RF and the cooling water WT, between the refrigerant RF and the air AR, and between the cooling water WT and the air AR.
  • the heat exchanger 270 has the same components as the heat exchanger 70 described above.
  • the air conditioner 1 of this embodiment includes a plurality of tubes 16a and 43a arranged in rows along a direction RD that intersects the flow direction CD of the unused air AR. 270.
  • the plurality of tubes include a plurality of refrigerant tubes 16a and a plurality of water tubes 43a.
  • the refrigerant tube 16a exchanges heat between the low-pressure refrigerant supplied from the refrigerant circuit 10 and the air AR.
  • the water tube 43a exchanges heat between the cooling water WT supplied from the cooling water circuit 40 and the air AR.
  • the water tubes 43a are arranged to be able to transfer heat with the refrigerant tubes 16a in at least a part of the rows. According to this configuration, a heat exchanger that exchanges heat between the refrigerant, the cooling water, and air is also used for the non-use side heat exchanger.
  • the cooling water circuit 40 provides an auxiliary medium circuit 40.
  • the cooling water WT is an auxiliary medium.
  • the auxiliary medium circuit 40 includes an auxiliary medium heat exchanger 243 that cools the auxiliary medium.
  • the auxiliary medium circuit 40 can cool the utilization air UR by supplying the auxiliary medium cooled by the auxiliary medium heat exchanger 243 to the auxiliary medium tube 43 a of the utilization side heat exchanger 70.
  • the refrigerant circuit 10 includes an outdoor refrigerant heat exchanger 216 that exchanges heat between the unused air AR and the low-pressure refrigerant and absorbs heat by the low-pressure refrigerant.
  • the auxiliary medium heat exchanger 243 cools the auxiliary medium with the low-pressure refrigerant or the unused air AR in the outdoor refrigerant heat exchanger 216.
  • the auxiliary medium can be cooled by the low temperature obtained by the refrigerant circuit 10 in the outdoor refrigerant heat exchanger 216 or the low temperature of the unused air AR.
  • the outdoor refrigerant heat exchanger 216 exchanges heat between the unused air AR and the low-pressure refrigerant in the heating application, and absorbs heat by the low-pressure refrigerant.
  • the outdoor refrigerant heat exchanger 216 exchanges heat between the unused air AR and the high-pressure refrigerant in cooling applications, and dissipates heat from the high-pressure refrigerant.
  • the refrigerant circuit 10 can be used by switching between a heating application and a cooling application.
  • the outdoor refrigerant heat exchanger 216 is used as a heat absorber in a heating application, and is used as a radiator in a cooling application.
  • the control device 100 controls the air conditioner 1 so as to compensate for the performance degradation due to frost in the outdoor refrigerant heat exchanger 216.
  • the control device 100 increases the flow rate or temperature of the auxiliary medium flowing through the auxiliary medium heat exchanger 243.
  • the temperature of the auxiliary medium can be raised by increasing the heat load of the use side heat exchanger 70.
  • the control apparatus 100 can perform a cooling operation of the refrigerant circuit 10 so that the air UR is cooled by the refrigerant RF in the heat exchanger 70.
  • the control device 100 can operate the cooling water circuit 40 so as to adjust the temperature of the heat source HS.
  • the control device 100 can operate the cooling water circuit 40 so that the heat exchanger 70 is heated by the cooling water WT in the heat exchanger 70.
  • the cooling water WT defrosts the heat exchanger 70.
  • the control device 100 can control the cooling water circuit 40 so that the heat exchanger 270 takes heat from the refrigerant RF to the cooling water WT.
  • the cool-down performance can be improved.
  • the control apparatus 100 can control the cooling water circuit 40 so that the air UR is cooled by the cooling water WT in the heat exchanger 70.
  • the second radiator 243 exchanges heat with the air AR outside the vehicle.
  • the temperature of the cooling water WT may be comparable to the outside air temperature.
  • the low-temperature cooling water WT can be supplied to the first radiator 43. Therefore, when the temperature of the air UR is higher than the temperature of the cooling water WT, the air UR can be cooled and dehumidified by the cooling water WT.
  • the control device 100 can heat the refrigerant circuit 10 so that the air UR is heated by the indoor condenser 12. At the same time, the control device 100 can operate the cooling water circuit 40 so as to adjust the temperature of the heat source HS. Furthermore, the control device 100 can operate the cooling water circuit 40 so that the heat exchanger 270 is heated by the cooling water WT in the heat exchanger 270. For example, the cooling water WT defrosts the heat exchanger 270. Moreover, the control apparatus 100 can control the cooling water circuit 40 so that the air UR is heated by the cooling water WT in the heat exchanger 70. In this case, the waste heat of the heat source HS can be used for heating.
  • control device 100 performs the heating operation of the refrigerant circuit 10 so that the air UR is heated by the refrigerant RF in the indoor condenser 12, and cools the air UR by the cooling water WT in the heat exchanger 70.
  • the cooling water circuit 40 can be operated.
  • the second radiator 243 can cool the cooling water WT below the temperature of the air AR.
  • the low-temperature cooling water WT can be supplied to the first radiator 43.
  • the air UR can be cooled to a low temperature.
  • the indoor condenser 12 can heat the air UR at this time, it can be heated while dehumidifying the air UR.
  • the cooling water WT heated in the first radiator 43 is supplied again to the first radiator 243, the heat taken from the air UR can be recovered in the refrigerant circuit 10 in the outdoor heat exchanger 21. Therefore, efficient dehumidifying heating can be executed.
  • the refrigerant circuit 10 is heated for heating.
  • the cooling water WT cooled by the refrigerant RF or outside air in the heat exchanger 270, that is, the auxiliary medium, is supplied to the heat exchanger 70 to provide cooling, that is, a cooling action.
  • the cooling water WT, that is, the auxiliary medium functions as a low temperature medium.
  • the low temperature medium is supplied to the radiator 43.
  • condensed water is generated on the water tube 43a and grows. A large amount of condensed water is generated early on the surface of the water tube 43a through which the low-temperature medium flows. For this reason, the water tube 43 a provides a drainage path for condensed water in the heat exchanger 70.
  • the heater core 12 is provided by the indoor condenser of the refrigerant circuit 10.
  • a refrigerant-water heat exchanger 24 that exchanges heat with the cooling water WT may be provided.
  • the high-pressure refrigerant of the refrigerant circuit 10 is used as a heat source for the cooling water circuit 60.
  • the heat obtained by the heat pump cycle 2 was utilized for heating.
  • devices such as the battery BT may be warmed by the high-pressure refrigerant in the refrigerant circuit 10.
  • the cooling water WT in the cooling water circuit 65 is heated by the refrigerant-water heat exchanger 24.
  • the cooling water WT is circulated by the pump 66. Cooling water WT heats battery BT.
  • a large capacity battery such as a lithium ion battery mounted on an electric vehicle operates efficiently in a predetermined temperature range. According to this configuration, since the battery BT can be warmed, the temperature of the battery BT can be adjusted to a desired temperature range.
  • the indoor heat exchanger 20 is provided by the heat exchanger 70
  • the outdoor heat exchanger 21 is provided by the heat exchanger 270
  • the heater core 12 is also provided by a heat exchanger 370 similar to the heat exchanger 70.
  • the heat exchanger 370 is a use side heat exchanger for high-pressure refrigerant for heating the air UR.
  • the heater core 12 is provided by a heat exchanger 370 having the same configuration as the heat exchanger 70.
  • the heat exchanger 370 includes a refrigerant heat exchanger 316 that exchanges heat between the high-pressure refrigerant RF of the refrigerant circuit 10 and the air UR, and a third radiator 343 that exchanges heat between the cooling water WT and the air UR of the cooling water circuit 60. Is provided.
  • the air conditioner 1 includes a plurality of tubes 16a and 43a arranged in rows along a direction RD that intersects the flow direction CD of the air UR.
  • the plurality of tubes include a plurality of refrigerant tubes 16a and a plurality of water tubes 43a.
  • the plurality of refrigerant tubes 16a exchange heat between the high-pressure refrigerant supplied from the refrigerant circuit 10 and the air UR.
  • the plurality of water tubes 43a exchange heat between the cooling water WT supplied from the cooling water circuit 60 and the air UR.
  • the water tubes 43a are arranged to be able to transfer heat with the refrigerant tubes 16a in at least a part of the rows.
  • the refrigerant circuit 10 when performing the heating operation employs the heat exchangers 270 and 370 for both the use side heat exchanger 12 and the heat source side heat exchanger 21.
  • the refrigerant circuit 10 in the heating operation employs heat exchangers 270 and 370 for both the high-pressure side heat exchanger 12 and the low-pressure side heat exchanger 21.
  • the refrigerant circuit 10 supplies the high-pressure refrigerant to the refrigerant tube 16a of the use side heat exchanger 12.
  • heating of the air UR and heating of the cooling water WT can be provided by the high-pressure refrigerant.
  • the heat exchanger 370 can heat the air UR by the refrigerant circuit 10.
  • the heat exchanger 370 can heat the air UR with the cooling water WT of the cooling water circuit 60.
  • the coolant WT and the heat source HS of the coolant circuit 60 can be heated from the refrigerant circuit 10 via the heat exchanger 370.
  • the cooling water WT and the heat source HS of the cooling water circuit 60 can be heated by the air UR.
  • the cold heat obtained by the refrigerant circuit 10 was utilized for the air conditioning.
  • the cold energy obtained by the refrigerant circuit 10 may be used for cooling purposes other than air conditioning.
  • FIG. 18 shows an embodiment in which a heat exchanger 470 having the same configuration as that of the heat exchanger 70 is applied to a cold storage cabinet 80 for a vehicle.
  • the cold / hot warehouse 80 is mounted on a vehicle and has a small room for cooling or heating an article such as a beverage.
  • the cold / hot warehouse 80 includes a heat exchanger 470, a blower 81, and a pressure reducing valve 82.
  • the heat exchanger 470 includes a refrigerant heat exchanger 416 and a cooling water heat exchanger 443.
  • the refrigerant heat exchanger 416 exchanges heat between the refrigerant supplied from the refrigerant circuit 10 and the air in the warehouse.
  • the cooling water heat exchanger 443 exchanges heat between the cooling water WT supplied from the cooling water circuit 40 and the air in the warehouse. Furthermore, the refrigerant heat exchanger 416 and the cooling water heat exchanger 443 are thermally coupled to each other through members such as the fins 50 and air in the cabinet. Thus, the heat exchanger 470 also provides heat exchange between the refrigerant RF and the cooling water WT.
  • the blower 81 blows air so that the air in the warehouse passes through the heat exchanger 470.
  • the pressure reducing valve 82 is opened when the cold / hot warehouse 80 is used for cooling, and the pressure of the refrigerant RF is reduced and supplied to the refrigerant heat exchanger 416. The pressure reducing valve 82 is closed when the cold / hot warehouse 80 is not used for cooling purposes.
  • the refrigerant heat exchanger 416 cools the air in the warehouse.
  • the air in the warehouse is heated by the cooling water heat exchanger 443.
  • the heat source HS needs to be cooled, the coolant WT is cooled by the refrigerant heat exchanger 416, and the heat source HS is cooled.
  • the air used is the air in the cabinet that can store the articles.
  • chamber and temperature control of the heat source HS can be provided.
  • the cold heat obtained from the refrigerant circuit 10 is used for air cooling
  • the hot heat obtained from the heat source HS is used for air heating
  • the cold heat source HS obtained from the refrigerant circuit 10 is used.
  • FIG. 19 shows a part of the heat exchanger 70 according to this embodiment.
  • the illustrated arrangement is applicable to the heat exchangers 70, 270, 470 described above.
  • the plurality of tubes 16a and 43a are arranged so as to form a row in a direction orthogonal to the flow direction of the air UR.
  • the plurality of tubes 16a and 43a are arranged so as to form an upstream row 71c located on the upstream side in the flow direction of the air UR and a downstream row 71d located on the downstream side of the upstream row 71c.
  • the refrigerant tubes 16a are arranged in the upstream row 71c.
  • the refrigerant tube 16a and the water tube 43a are arranged in the downstream row 71d. In at least a part of the downstream row 71d, the refrigerant tube 16a and the water tube 43a are adjacent to each other.
  • the refrigerant tubes 16a and the water tubes 43a are alternately arranged over the entire downstream row 71d. In this embodiment, the two water tubes 43a are not adjacent in the direction orthogonal to the flow direction of the air UR. In the upstream row 71c, the refrigerant tubes 16a are adjacent to all the air passages 16b and 43b.
  • the refrigerant tubes 16a are adjacent to all the air passages 16b and 43b. Therefore, the refrigerant tubes 16a are adjacent to all the air passages 16b, 43b of all the rows 71c, 71d.
  • the adjacent water tubes 43 a in the upstream row 71 c are thermally coupled via the fins 50.
  • the adjacent refrigerant tubes 16a and water tubes 43a in the downstream row 71d are thermally coupled via the fins 50.
  • the fin 50 extends between the upstream row 71c and the downstream row 71d.
  • the fin 50 is a corrugated fin formed in a corrugated plate shape.
  • the fin 50 promotes heat exchange with the air UR.
  • a plurality of louvers 50 a having slit-like openings are formed on the fin 50.
  • the louver 50 a forms a plurality of slit-shaped openings on the fin 50.
  • the louver 50 a forms a large number of fine gaps on the fin 50.
  • the louver 50a promotes heat exchange with the air UR.
  • the number of refrigerant tubes 16a is larger than the number of water tubes 43a.
  • the refrigerant tube 16a is a majority in the upstream row 71c.
  • the number of refrigerant tubes 16a in the upstream row 71c is larger than the number of water tubes 43a in the upstream row 71c. According to this configuration, generation of condensed water can be biased toward the upstream row 71c. In this embodiment, the number of water tubes 43a in the upstream row 71c is zero.
  • the flow path cross-sectional area for the refrigerant RF provided by the plurality of refrigerant tubes 16a in the heat exchanger 70 is larger than the flow path cross-sectional area for the cooling water WT provided by the plurality of water tubes 43a in the heat exchanger 70.
  • the cooling water WT is a high temperature medium.
  • the refrigerant RF is a low temperature medium whose temperature is lower than that of the high temperature medium.
  • the condensed water in the XX-XX section gradually changes after the heat exchanger 70 is operated as an evaporator.
  • the first stage ST1, the second stage ST2, and the third stage ST3 in the figure correspond to the passage of time after the low-temperature medium starts flowing through the refrigerant tube 16a.
  • water droplets DRP are generated on the surface of the refrigerant tube 16a and the surface of the fin 50.
  • the number of water droplets DRP increases gradually, and the size of the water droplets DRP gradually increases.
  • the condensed water adhering to the surface of the refrigerant tube 16a flows in the direction of gravity.
  • the condensed water forms a continuous water film FLM on the surface of the refrigerant tube 16a.
  • the thickness of the water film FLM is thin.
  • the water droplet DRP further grows.
  • water droplets on the fins 50 flow together with the film FLM on the refrigerant tube 16a.
  • the water droplet DRP on the fin 50 contacts the film FLM before it grows large and flows away along the film FLM.
  • the state of the third stage ST3 is maintained. As a result, blockage of the air passage due to excessive growth of the water droplet DRP is avoided.
  • it is avoided that the water droplet DRP jumps out into the flow of the air UR.
  • the condensed water in the XXI-XXI section gradually changes after the heat exchanger 70 is operated as an evaporator.
  • water droplets DRP are generated on the surface of the refrigerant tube 16a and the surface of the fin 50.
  • the low temperature medium is not supplied to the water tube 43a.
  • the water tube 43a does not become a low temperature which produces condensed water.
  • the water droplet DRP is not generated on the surface of the water tube 43a, or a very small amount is generated.
  • the condensed water adhering to the surface of the refrigerant tube 16a flows in the direction of gravity.
  • the condensed water forms a continuous water film FLM on the surface of the refrigerant tube 16a.
  • the water droplet DRP further grows.
  • very few water droplets DRP may be generated on the surface of the water tube 43a.
  • water droplets on the fins 50 flow together with the film FLM on the refrigerant tube 16a.
  • the water droplet DRP on the fin 50 contacts the film FLM before it grows large and flows away along the film FLM. Very few water droplets DRP may remain on the surface of the water tube 43a.
  • the state of the third stage ST3 is maintained. As a result, blockage of the air passage due to excessive growth of the water droplet DRP is avoided. Moreover, it is avoided that the water droplet DRP jumps out into the flow of the air UR.
  • the water droplet DRP of the condensed water comes into contact with the film FLM formed on the surface of the refrigerant tube 16a and flows away before it grows to a size that closes the air passage. For this reason, jumping out of the water droplet DRP from the heat exchanger 70 can be suppressed.
  • FIG. 22 shows the arrangement of the plurality of tubes 16a and 43a in the heat exchanger CMP of the comparative example.
  • one of the upstream row 71c and the downstream row 71d is provided by arranging only a plurality of water tubes 43a.
  • the other of the upstream row 71c and the downstream row 71d is provided by arranging only a plurality of refrigerant tubes 16a.
  • only the plurality of refrigerant tubes 16a are arranged in the upstream row 71c.
  • Only a plurality of water tubes 43a are arranged in the downstream row 71d.
  • the condensed water in the section XX-XX in FIG. 22 changes as illustrated and described in FIG. FIG. 23 shows the transition of condensed water in the section XXIII-XXIII.
  • the fins 50 are cooled by the refrigerant tubes 16a arranged in the upstream row 71c.
  • the fin 50 In the downstream row 71d, the fin 50 has the lowest temperature.
  • water droplets DRP are generated on the surface of the fin 50.
  • the number of water droplets DRP increases gradually, and the size of the water droplets DRP gradually increases.
  • the water droplet DRP further grows on the fin 50.
  • the water droplet DRP grows greatly without flowing along the vertical direction.
  • the water droplet DRP on the fin 50 reaches a size that closes the air passage on the fin 50.
  • the water droplet DRP becomes large, it is difficult for the water droplet DRP to flow even if it contacts the surface of the water tube 43a. This is because the surface of the water tube 43a is not continuously wet. As a result, the air passage is blocked by excessive growth of the water droplet DRP.
  • the water droplet DRP is pushed by the flow of the air UR, and it becomes easy to jump out.
  • the heat exchanger CMP of the comparative example has a portion where the two water tubes 43a are adjacent to each other.
  • the condensed water tends to grow large.
  • the air passages 16b and 43b may be blocked by the water droplet DRP, or the water droplet DRP may be scattered.
  • the refrigerant tubes 16a are adjacent to all the air passages 16b and 43b. For this reason, in all of the air passages 16b and 43b, a condensed water discharge path extending along the surface of the refrigerant tube 16a is provided.
  • FIG. 24 shows a control process S1 applicable to any of the preceding embodiments.
  • the control process S2 includes cooling water control for adjusting the flow rate Gw of the cooling water for adjusting the temperature of the heat source HS.
  • the control process S2 includes air conditioning control for adjusting the flow rate Gu of the air UR to be used.
  • control device 100 determines whether or not the power for the air conditioner 1 is available. This process can be provided by determining whether the power switch or ignition switch of the vehicle is in the ON position or the OFF position. If power is not available, wait. When power becomes available, the process proceeds to S12.
  • the control device 100 determines whether or not the coolant temperature Tw exceeds a predetermined threshold temperature Tth.
  • the threshold temperature Tth is a temperature indicating that the heat source HS is in an abnormally high temperature state when power is available. It is desirable that the cooling water temperature Tw accurately reflects the temperature of the heat source HS. For example, the temperature of the cooling water at the inlet to the heat source HS or the outlet of the heat source HS can be used.
  • the heat source HS may reach an excessively high temperature.
  • the heat source HS may reach an excessively high temperature. Utilizing the heat source HS under such excessively high temperature conditions is not desirable in order to maintain the performance of the heat source HS over a long period of time. For example, when the heat source HS is a battery, charging / discharging of the battery under an excessively high temperature condition is not desirable.
  • the control device 100 executes normal cooling water control.
  • the flow rate Gw of the cooling water WT passing through the heat source HS and the heat exchangers 43, 243, and 443 is controlled.
  • the flow rate Gw is adjusted based on a predetermined control characteristic as illustrated.
  • the flow rate Gw is adjusted according to the cooling water temperature Tw. Thereby, the flow rate Gw is controlled so that the temperature of the heat source HS is maintained at a predetermined temperature.
  • the control device 100 starts normal air conditioning.
  • the normal air volume control is executed, and the air volume Gu of the air UR on the use side is adjusted.
  • the air volume Gu is adjusted based on a predetermined control characteristic as illustrated.
  • the air volume Gu is adjusted according to the heat load Qac of the air conditioner 1.
  • the air volume can be adjusted to increase as the heat load Qac for cooling or the heat load Qac for heating increases.
  • the control device 100 executes cooling water control adapted when the heat source HS is at an excessively high temperature.
  • the flow rate Gw increased so as to be larger than the flow rate Gw given in S13 is given.
  • the heat source HS is cooled by the increased flow rate Gw.
  • the control device 100 suspends the normal air conditioning control.
  • the air volume control adapted to the case where the heat source HS is at an excessively high temperature is executed.
  • the air volume Gu suppressed to be smaller than the air volume Gu given in S14 is given.
  • the air volume Gu is adjusted to be less than the control characteristic in S14.
  • the air volume Gu may be adjusted to zero. As a result, air conditioning such as cooling is suspended.
  • the flow rate Gw and the air volume Gu are controlled so as to quickly eliminate the excessively high temperature of the heat source HS. If the heat source HS has an excessively high temperature immediately after the power becomes available, first, S15 and S16 are executed. Therefore, the flow rate Gw increased from the normal control characteristic is supplied. At the same time, the air volume Gu that is suppressed by the normal control characteristics is supplied.
  • S17 is performed in the embodiment including the heat exchanger 270.
  • the control device 100 controls the air conditioner 1 to compensate for the deterioration in performance of the heating operation caused by frost attached to the outdoor refrigerant heat exchanger 216.
  • the control device 100 increases the flow rate of the auxiliary medium flowing through the radiator 243, that is, the auxiliary medium heat exchanger 243 in accordance with the performance degradation due to frost in the outdoor refrigerant heat exchanger 216.
  • the control device 100 increases the amount of heat given to the auxiliary medium heat exchanger 243 by increasing the heat load of the use side heat exchanger 70.
  • the heat load can be increased by increasing the air volume Gu of the utilization air UR and / or the temperature of the introduced air. Due to the increase in heat load, the radiator 43 can apply heat to the cooling water WT. As a result, heat is applied to the auxiliary medium heat exchanger 243 via the cooling water circuit 40, and frost in the outdoor refrigerant heat exchanger 216 can be suppressed and removed.
  • the processing in S17 can be performed according to the performance reduction amount by detecting a performance reduction caused by frost adhering to the outdoor refrigerant heat exchanger 216. For example, it can be performed based on the temperature or pressure of the refrigerant in the outdoor refrigerant heat exchanger 216. Before and after the temperature or pressure reaches a predetermined threshold value, the flow rate of the cooling water WT can be increased or the temperature of the cooling water WT can be increased.
  • the control device 100 executes the temperature control of the heat generating device HS by the auxiliary medium circuit 40 in preference to the temperature control of the use air by the use side heat exchanger 70 after the power becomes available.
  • the flow rate Gw is decreased before and after the temperature related to the circuit 40 for the auxiliary medium, that is, the cooling water temperature Tw reaches a predetermined threshold temperature.
  • the air volume Gu is increased before and after the temperature related to the circuit 40 for the auxiliary medium, that is, the cooling water temperature Tw reaches a predetermined threshold temperature.
  • the air conditioning when the heat source HS is in an excessively high temperature state, the air conditioning is substantially suspended and the temperature control of the heat source HS is prioritized. Thereafter, when the temperature of the heat source HS decreases, the suspension of the air conditioning is canceled and the air conditioning is substantially started. For this reason, the heat source HS can be protected. Further, by operating the refrigerant circuit 10 during the period in which the air conditioning is suspended, the high pressure and the low pressure necessary for the air conditioning can be generated. Thus, rapid air conditioning can be provided after the suspension of air conditioning is released.
  • FIG. 25 shows a control process S2 applicable to any of the preceding embodiments.
  • the control process S2 includes cooling water control for adjusting the flow rate Gw of the cooling water for adjusting the temperature of the heat source HS.
  • the control process S2 includes air conditioning control for adjusting the flow rate Gu of the air UR to be used.
  • the control process S2 is applied when the heat source HS includes a battery that can be charged by an external power source.
  • the battery is charged from a generator mounted on the vehicle or an external power source.
  • the external power source is, for example, a commercial power source or a small-scale power generation facility provided in a house or business office.
  • a battery as the heat source HS is charged via a cable connecting the vehicle and an external power source.
  • the control device 100 determines whether or not the battery is charged. This processing can be provided by determining whether the cable connects the vehicle and an external power source. The determination in S21 is also a process for determining whether or not the battery is rapidly charged. In rapid charging, since a high charging current flows through the battery, the temperature of the battery tends to increase. If not charging, the process proceeds to S13. If charging, proceed to S25.
  • control device 100 executes the above-described normal cooling water control.
  • control device 100 starts the above-described normal air conditioning.
  • the temperature of the battery is maintained at a desired temperature by normal cooling water control.
  • the air conditioner 1 is controlled to provide a comfortable environment for the user.
  • the control device 100 executes the cooling water control adapted when the battery is being rapidly charged.
  • the flow rate Gw increased so as to be larger than the flow rate Gw given in S13 is given.
  • the heat source HS is cooled by the increased flow rate Gw.
  • the increase amount + Gw of the flow rate Gw can be set based on the state of charge SOC (State Of Charge) of the battery.
  • the state of charge SOC indicates the amount of charge charged in the battery, that is, the remaining amount.
  • the increase amount + Gw is set to a relatively large value when the state of charge SOC is low.
  • the increase amount + Gw is set to a relatively small value when the state of charge SOC is high.
  • the increase amount + Gw can be set to gradually decrease as the state of charge SOC increases. Further, the increase amount + Gw can be set so as to decrease stepwise at a predetermined threshold value SOC1. In these cases, the flow rate Gw is decreased before and after the charge amount reaches the predetermined value SOC1.
  • the control device 100 suspends normal air conditioning control.
  • the air volume control adapted to the case where the battery is being rapidly charged is executed.
  • the air volume Gu suppressed to be smaller than the air volume Gu given in S14 is provided.
  • the air volume Gu is adjusted to be less than the control characteristic in S14.
  • the air volume Gu may be adjusted to zero. As a result, air conditioning such as cooling is suspended.
  • the air volume Gu can be suppressed by multiplying the control characteristic in S14 by the suppression coefficient Kur.
  • the suppression coefficient is set between 0.0 and 1.0.
  • the suppression coefficient Kur is set to a relatively small value when the state of charge SOC is low.
  • the suppression coefficient Kur is set to a relatively large value when the state of charge SOC is high.
  • the suppression coefficient Kur can be set to gradually increase as the state of charge SOC increases. Further, the suppression coefficient Kur can be set so as to increase stepwise at the predetermined threshold SOC2. In these cases, the air volume Gu is increased before and after the charge amount reaches the predetermined value SOC2.
  • the control device 100 executes the temperature control of the battery by the auxiliary medium circuit 40 in preference to the temperature control of the use air UR by the use side heat exchanger 70 when the battery is charged.
  • the flow rate Gw and the air volume Gu are controlled so as to control the temperature of the battery to a desired temperature.
  • S25 and S26 are executed. Therefore, the flow rate Gw increased from the normal control characteristic is supplied.
  • the air volume Gu that is suppressed by the normal control characteristics is supplied.
  • the air volume Gu is reduced more than immediately before. The air volume Gu may be reduced to zero.
  • the state of charge SOC rises.
  • the flow rate Gw is decreased before and after the state of charge SOC exceeds the threshold value SOC1.
  • the air volume Gu is increased before and after the state of charge SOC exceeds the threshold value SOC2.
  • S13 and S14 are executed. Therefore, the flow rate Gw decreases when special temperature management for the battery is not required. At the same time, the air volume Gu increases.
  • the flow rate Gw is decreased before and after the amount of charge, that is, the state of charge SOC reaches the predetermined threshold value SOC1.
  • the air volume Gu is increased before and after the amount of charge, that is, the state of charge SOC reaches a predetermined threshold value SOC2.
  • the air conditioning when the battery is charged with a large current, the air conditioning is substantially suspended and the temperature control of the battery is prioritized. Thereafter, when the charge amount of the battery increases, the suspension of the air conditioning is canceled and the air conditioning is substantially started. For this reason, the temperature control capability of the battery during charging, particularly the cooling capability, can be increased. Further, by operating the refrigerant circuit 10 during the period in which the air conditioning is suspended, the high pressure and the low pressure necessary for the air conditioning can be generated. Thus, rapid air conditioning can be provided after the suspension of air conditioning is released.
  • control device can be provided by software only, hardware only, or a combination thereof.
  • control device may be configured by an analog circuit.
  • cooling water is used as the auxiliary medium.
  • a fluid that is excellent in heat transportability and can store heat such as refrigerant, oil, gas, or the like, may be used.
  • the radiator 43 is provided in the cooling water circuit 40.
  • a heat exchanger for radiating heat from the cooling water WT by heat exchange between the cooling water WT and the air AR may be provided.
  • a heat exchanger for heat radiation can be provided in parallel with the radiator 43 and the heat source HS.
  • the air passages 16 b and 43 b are provided in both the refrigerant heat exchanger 16 and the radiator 43.
  • a configuration in which the air passage is not provided in the radiator 43 may be adopted.
  • coolant tube 16a and the water tube 43a can be alternately arrange
  • coolant tube 16a and the water tube 43a can be alternately arrange
  • coolant tube 16a and the water tube 43a may be arrange

Abstract

This heat utilization system is provided with a refrigerant circuit (10), auxiliary medium circuits (40, 60), and heat exchangers (70, 370, 470). The heat exchangers comprise: a plurality of refrigerant tubes (16a) that exchange heat between air and a refrigerant supplied by the refrigerant circuit; and a plurality of auxiliary medium tubes (43a) that exchange heat between the air and an auxiliary medium supplied by the auxiliary medium circuits. The refrigerant tubes and the auxiliary medium tubes are positioned in such a manner as to form a line in a direction (RD) that intersects the direction of flow (CD) of the air, and in at least part of the line, the refrigerant tubes and the auxiliary medium tubes are positioned so as to be able to transfer heat.

Description

熱利用システムHeat utilization system 関連出願の相互参照Cross-reference of related applications
 本開示は、2011年12月8日に出願された日本出願番号2011-269223号と2012年11月26日に出願された日本出願番号2012-257786号に基づくもので、ここにその記載内容を援用する。 This disclosure is based on Japanese Application No. 2011-269223 filed on December 8, 2011 and Japanese Application No. 2012-257786 filed on November 26, 2012. Incorporate.
 本開示は、冷熱および/または温熱を利用する熱利用システムに関する。本開示は、例えば、車両において冷熱と温熱とを供給する車両用熱利用システムに適用することができる。 The present disclosure relates to a heat utilization system that uses cold and / or heat. The present disclosure can be applied to, for example, a vehicle heat utilization system that supplies cold and warm heat in a vehicle.
 特許文献1は、熱利用システムのひとつである車両用ヒートポンプサイクルと、その蒸発器の除霜制御を開示している。特許文献2-特許文献7は、複数の媒体を流すことができる熱交換器を開示している。 Patent Document 1 discloses a vehicle heat pump cycle, which is one of heat utilization systems, and defrosting control of the evaporator. Patent Documents 2 to 7 disclose a heat exchanger capable of flowing a plurality of media.
 従来技術では、冷凍サイクルから供給される冷媒と、車両に搭載された発熱機器から供給される冷却水とを室外熱交換器に流している。このため、利用側熱交換器、例えば室内熱交換器に冷媒と冷却水との両方を流す場合について十分な配慮が払われていない。したがって、従来技術は、利用側熱交換器への適用における改良が必要であった。 In the prior art, the refrigerant supplied from the refrigeration cycle and the cooling water supplied from the heat generating device mounted on the vehicle are passed through the outdoor heat exchanger. For this reason, sufficient consideration is not paid about the case where both a refrigerant | coolant and cooling water are poured into a utilization side heat exchanger, for example, an indoor heat exchanger. Therefore, the prior art required improvement in application to the use side heat exchanger.
特開2008-221997号公報Japanese Patent Laid-Open No. 2008-221997 実開昭63-154967号公報Japanese Utility Model Publication No. 63-154967 特開平8-258548号JP-A-8-258548 特開平11-157326号JP-A-11-157326 特開2000-62446号公報JP 2000-62446 A 特開2001-55036号公報JP 2001-55036 A 特許第4311115号Japanese Patent No. 431115
 本開示の目的は、冷凍サイクルから供給される冷媒と、補助媒体とを流すことができる熱交換器を利用した熱利用システムを提供することである。 An object of the present disclosure is to provide a heat utilization system using a heat exchanger capable of flowing a refrigerant supplied from a refrigeration cycle and an auxiliary medium.
 本開示の他の目的は、利用される空気の温度調節を、冷凍サイクルから供給される冷媒と、補助媒体とによって実現できる熱利用システムを提供することである。 Another object of the present disclosure is to provide a heat utilization system that can realize temperature adjustment of air to be used by a refrigerant supplied from a refrigeration cycle and an auxiliary medium.
 本開示の他の目的は、冷媒または補助媒体による冷却作用によって発生する凝縮水の排水が良好な熱利用システムを提供することである。 Another object of the present disclosure is to provide a heat utilization system with good drainage of condensed water generated by a cooling action by a refrigerant or an auxiliary medium.
 本開示のさらに他の目的は、発明者らが特願2011-145011号、特願2011-123199号、または特願2011-82760号において提案した熱交換器の利用に適した熱利用システムを提供することである。 Still another object of the present disclosure is to provide a heat utilization system suitable for use of the heat exchanger proposed by the inventors in Japanese Patent Application No. 2011-144501, Japanese Patent Application No. 2011-123199, or Japanese Patent Application No. 2011-82760. It is to be.
 本開示は上記目的を達成するために以下の技術的手段を採用する。 This disclosure employs the following technical means in order to achieve the above object.
 本開示の一例によれば、熱利用システムは、低圧冷媒を吸入し圧縮することにより高圧冷媒を供給する圧縮機、および高圧冷媒を減圧し低圧冷媒を供給する減圧器を備える冷媒回路と、冷媒回路とは別に構成され、補助媒体が循環する補助媒体回路と、発熱機器の温度を調節するための補助媒体が循環する補助媒体回路と、冷媒回路から供給される冷媒と利用空気とを熱交換させる複数の冷媒チューブ、および補助媒体回路から供給される補助媒体と利用空気とを熱交換させる複数の補助媒体チューブを有する利用側熱交換器と、冷媒回路と補助媒体回路とを制御する制御装置とを備える。冷媒チューブと補助媒体チューブとは、利用空気の流れ方向に対して交差する方向に沿って列をなすように配置されているとともに、列の少なくとも一部において、冷媒チューブと補助媒体チューブとが熱伝達可能に配置されている。 According to an example of the present disclosure, a heat utilization system includes a compressor that supplies a high-pressure refrigerant by sucking and compressing low-pressure refrigerant, a refrigerant circuit that includes a decompressor that depressurizes the high-pressure refrigerant and supplies low-pressure refrigerant, and a refrigerant Heat exchange between the auxiliary medium circuit, which is configured separately from the circuit, in which the auxiliary medium circulates, the auxiliary medium circuit in which the auxiliary medium for adjusting the temperature of the heat generating device circulates, and the refrigerant and use air supplied from the refrigerant circuit A plurality of refrigerant tubes, a utilization side heat exchanger having a plurality of auxiliary medium tubes for exchanging heat between the auxiliary medium supplied from the auxiliary medium circuit and the utilization air, and a control device for controlling the refrigerant circuit and the auxiliary medium circuit With. The refrigerant tube and the auxiliary medium tube are arranged in a row along a direction intersecting the flow direction of the utilization air, and the refrigerant tube and the auxiliary medium tube are heated in at least a part of the row. It is arranged to be able to communicate.
 この構成によると、利用側熱交換器において、三者間の熱交換が提供される。ひとつは、冷媒チューブ内の冷媒と利用空気との間の熱交換である。ひとつは、補助媒体チューブ内の補助媒体と利用空気との間の熱交換である。さらに他のひとつは、補助媒体チューブ内の補助媒体と冷媒チューブ内の冷媒との間の熱交換である。この構成によると、利用される利用空気の温度調節を、冷媒回路から供給される冷媒と、補助媒体とによって実現できる。 According to this configuration, heat exchange between the three parties is provided in the use side heat exchanger. One is heat exchange between the refrigerant in the refrigerant tube and the use air. One is heat exchange between the auxiliary medium in the auxiliary medium tube and the use air. Still another one is heat exchange between the auxiliary medium in the auxiliary medium tube and the refrigerant in the refrigerant tube. According to this structure, the temperature adjustment of the utilization air utilized can be implement | achieved with the refrigerant | coolant supplied from a refrigerant circuit, and an auxiliary | assistant medium.
 例えば、補助媒体は、発熱機器の温度を調節するための媒体である。この構成によると、発熱機器の温度制御のための媒体を利用することができる。 For example, the auxiliary medium is a medium for adjusting the temperature of the heat generating device. According to this configuration, a medium for controlling the temperature of the heat generating device can be used.
 例えば、利用側熱交換器は、冷媒チューブと補助媒体チューブとの間に形成された空気通路に配置されたフィンを備え、冷媒チューブと補助媒体チューブとは、フィンを介して熱伝達可能である。この構成によると、フィンによって冷媒チューブと利用空気との熱交換を促進することができる。また、フィンによって補助媒体チューブと利用空気との熱交換を促進することができる。さらに、フィンを介した熱伝達によって冷媒と補助媒体との間の熱交換が可能とされる。 For example, the use side heat exchanger includes fins arranged in an air passage formed between the refrigerant tube and the auxiliary medium tube, and the refrigerant tube and the auxiliary medium tube can transfer heat via the fins. . According to this configuration, heat exchange between the refrigerant tube and the use air can be promoted by the fins. Further, heat exchange between the auxiliary medium tube and the use air can be promoted by the fins. Furthermore, heat exchange between the refrigerant and the auxiliary medium is possible by heat transfer through the fins.
 例えば、冷媒チューブの数は、補助媒体チューブの数より多い。この構成によると、冷媒チューブによる熱交換性能が相対的に高い熱交換器が提供される。 For example, the number of refrigerant tubes is larger than the number of auxiliary medium tubes. According to this configuration, a heat exchanger with relatively high heat exchange performance by the refrigerant tube is provided.
 例えば、冷媒チューブと補助媒体チューブとは、利用空気の流れ方向に関して少なくとも上流列と下流列とを構成するように配置されており、冷媒チューブは上流列における多数派である。この構成によると、凝縮水の発生を上流列に偏らせることができる。 For example, the refrigerant tubes and the auxiliary medium tubes are arranged so as to constitute at least an upstream row and a downstream row with respect to the flow direction of the air used, and the refrigerant tubes are a majority in the upstream row. According to this configuration, the generation of condensed water can be biased to the upstream line.
 例えば、冷媒チューブと補助媒体チューブとは、利用空気の流れ方向に関して少なくとも上流列と下流列とを構成するように配置されており、冷媒チューブは下流列における多数派である。この構成によると、凝縮水の発生を下流列に偏らせることができる。 For example, the refrigerant tubes and the auxiliary medium tubes are arranged so as to constitute at least an upstream row and a downstream row with respect to the flow direction of the use air, and the refrigerant tubes are a majority in the downstream row. According to this configuration, the generation of condensed water can be biased to the downstream line.
 例えば、制御装置は、冷媒によって補助媒体の温度を調節するように冷媒回路および補助媒体回路を制御する。この構成によると、冷媒と補助媒体との熱交換によって、補助媒体の温度が調節される。例えば、冷媒の温度が補助媒体の温度より低い場合、冷媒によって補助媒体を冷却できる。また、冷媒の温度が補助媒体の温度より高い場合、冷媒によって補助媒体を加熱できる。 For example, the control device controls the refrigerant circuit and the auxiliary medium circuit so as to adjust the temperature of the auxiliary medium with the refrigerant. According to this configuration, the temperature of the auxiliary medium is adjusted by heat exchange between the refrigerant and the auxiliary medium. For example, when the temperature of the refrigerant is lower than the temperature of the auxiliary medium, the auxiliary medium can be cooled by the refrigerant. Further, when the temperature of the refrigerant is higher than the temperature of the auxiliary medium, the auxiliary medium can be heated by the refrigerant.
 例えば、さらに、冷媒と補助媒体との間の熱交換量を調節するために、利用空気の流量を調節する風量調節装置を備える。この構成によると、冷媒と補助媒体との間の熱交換量を利用空気の流量によって調節することができる。利用空気の流量を減少させることにより、冷媒による補助媒体の冷却量の増加、または冷媒による補助媒体の加熱量の増加を図ることができる。 For example, in order to further adjust the amount of heat exchange between the refrigerant and the auxiliary medium, an air volume adjusting device for adjusting the flow rate of the air used is provided. According to this configuration, the amount of heat exchange between the refrigerant and the auxiliary medium can be adjusted by the flow rate of the utilization air. By reducing the flow rate of the use air, it is possible to increase the cooling amount of the auxiliary medium by the refrigerant or increase the heating amount of the auxiliary medium by the refrigerant.
 例えば、制御装置は、補助媒体によって利用空気を冷却するように補助媒体回路を制御する。この構成によると、補助媒体によって利用空気を冷却することができる。この結果、冷媒回路だけに依存することなく、利用空気の冷却が可能となる。 For example, the control device controls the auxiliary medium circuit so as to cool the use air by the auxiliary medium. According to this configuration, the use air can be cooled by the auxiliary medium. As a result, use air can be cooled without depending only on the refrigerant circuit.
 例えば、制御装置は、補助媒体から利用空気へ放熱するように補助媒体回路を制御する。この構成によると、補助媒体から利用空気への放熱によって補助媒体を冷却できる。冷却された補助媒体は、発熱機器に供給されるから、利用空気を使って発熱機器の冷却が可能となる。 For example, the control device controls the auxiliary medium circuit so as to radiate heat from the auxiliary medium to the use air. According to this configuration, the auxiliary medium can be cooled by heat radiation from the auxiliary medium to the use air. Since the cooled auxiliary medium is supplied to the heat generating device, the heat generating device can be cooled by using the use air.
 例えば、制御装置は、利用側熱交換器における霜の付着に応答して、冷媒の流量、または補助媒体の流量を制御する。この構成によると、利用側熱交換器における霜の付着に応答して、冷媒または補助媒体の流量が調節される。例えば、冷媒が利用空気を冷却している場合、制御装置は、霜の付着に応答して、冷媒流量を減少させる。補助媒体が冷却空気を冷却している場合、制御装置は、補助媒体の流量を減少させる。冷媒が利用空気を冷却し、補助媒体が利用空気を加熱している場合、制御装置は、補助媒体の流量を増加させる。冷媒が利用空気を加熱し、補助媒体が利用空気を冷却している場合、制御装置は、冷媒の流量を増加させる。 For example, the control device controls the flow rate of the refrigerant or the flow rate of the auxiliary medium in response to the adhesion of frost in the use side heat exchanger. According to this configuration, the flow rate of the refrigerant or the auxiliary medium is adjusted in response to the adhesion of frost in the use side heat exchanger. For example, when the refrigerant cools the use air, the control device decreases the refrigerant flow rate in response to the adhesion of frost. When the auxiliary medium is cooling the cooling air, the control device decreases the flow rate of the auxiliary medium. When the refrigerant cools the use air and the auxiliary medium heats the use air, the control device increases the flow rate of the auxiliary medium. When the refrigerant heats the use air and the auxiliary medium cools the use air, the control device increases the flow rate of the refrigerant.
 例えば、冷媒回路は、低圧冷媒を冷媒チューブに供給する。この構成によると、低圧冷媒によって、利用空気の冷却と、補助媒体の冷却とを提供できる。 For example, the refrigerant circuit supplies low-pressure refrigerant to the refrigerant tube. According to this configuration, cooling of the use air and cooling of the auxiliary medium can be provided by the low-pressure refrigerant.
 例えば、補助媒体回路は、補助媒体を冷却する補助媒体熱交換器を備え、補助媒体回路は、補助媒体熱交換器によって冷却された補助媒体を補助媒体チューブに供給することにより利用空気を冷却する。この構成によると、補助媒体によって利用空気を冷却することができる。 For example, the auxiliary medium circuit includes an auxiliary medium heat exchanger that cools the auxiliary medium, and the auxiliary medium circuit cools the utilization air by supplying the auxiliary medium cooled by the auxiliary medium heat exchanger to the auxiliary medium tube. . According to this configuration, the use air can be cooled by the auxiliary medium.
 例えば、冷媒回路は、非利用空気と低圧冷媒とを熱交換させ低圧冷媒に吸熱させる室外冷媒熱交換器を備え、補助媒体熱交換器は、室外冷媒熱交換器における低圧冷媒または非利用空気によって補助媒体を冷却する。この構成によると、冷媒回路により室外冷媒熱交換器に得られる低温、または非利用空気の低温によって補助媒体を冷却することができる。 For example, the refrigerant circuit includes an outdoor refrigerant heat exchanger that exchanges heat between the unused air and the low-pressure refrigerant and absorbs heat to the low-pressure refrigerant, and the auxiliary medium heat exchanger uses the low-pressure refrigerant or the unused air in the outdoor refrigerant heat exchanger. Cool the auxiliary medium. According to this configuration, the auxiliary medium can be cooled by the low temperature obtained in the outdoor refrigerant heat exchanger by the refrigerant circuit or the low temperature of the unused air.
 例えば、冷媒回路は、加熱用途と冷却用途とに流路を切換えるサイクル切換装置を備え、室外冷媒熱交換器は、加熱用途において非利用空気と低圧冷媒とを熱交換させ低圧冷媒に吸熱させ、冷却用途において非利用空気と高圧冷媒とを熱交換させ高圧冷媒から放熱させる。この構成によると、冷媒回路は加熱用途と冷却用途とに切替えて利用することができる。室外冷媒熱交換器は、加熱用途において吸熱器として利用され、冷却用途において放熱器として利用される。 For example, the refrigerant circuit includes a cycle switching device that switches a flow path between a heating application and a cooling application, and the outdoor refrigerant heat exchanger exchanges heat between unused air and low-pressure refrigerant in the heating application, and absorbs heat into the low-pressure refrigerant. In cooling applications, heat is exchanged between non-use air and high-pressure refrigerant to dissipate heat from the high-pressure refrigerant. According to this configuration, the refrigerant circuit can be used by switching between a heating application and a cooling application. Outdoor refrigerant heat exchangers are used as heat absorbers in heating applications, and are used as radiators in cooling applications.
 例えば、制御装置は、室外冷媒熱交換器における霜による性能低下に応じて補助媒体熱交換器に流れる補助媒体の流量を増加させるか、または利用側熱交換器の熱負荷を増加させることにより補助媒体熱交換器に与えられる熱量を増加させる。この構成によると、室外冷媒熱交換器に付着する霜に起因する性能低下を補償することができる。 For example, the control device assists by increasing the flow rate of the auxiliary medium flowing to the auxiliary medium heat exchanger according to the performance degradation due to frost in the outdoor refrigerant heat exchanger or increasing the heat load of the use side heat exchanger. Increase the amount of heat given to the medium heat exchanger. According to this structure, the performance fall resulting from the frost adhering to an outdoor refrigerant | coolant heat exchanger can be compensated.
 例えば、さらに、利用側熱交換器における温度を検出する温度センサを備え、制御装置は、温度センサの検出温度に基づいて冷却用途における冷媒回路を制御するとともに、温度センサの検出温度に基づいて冷却水回路を制御する。この構成によると、冷媒回路を制御するための温度センサを冷却水回路を制御するために利用することができる。 For example, a temperature sensor for detecting the temperature in the use side heat exchanger is further provided, and the control device controls the refrigerant circuit in the cooling application based on the temperature detected by the temperature sensor and cools based on the temperature detected by the temperature sensor. Control the water circuit. According to this configuration, the temperature sensor for controlling the refrigerant circuit can be used for controlling the cooling water circuit.
 例えば、さらに、非利用空気の流れ方向に対して交差する方向に沿って列をなすように配置された複数のチューブを有する非利用側熱交換器を備え、チューブは、冷媒回路から供給される低圧冷媒と非利用空気とを熱交換させる複数の冷媒チューブ、および補助媒体回路から供給される補助媒体と非利用空気とを熱交換させ、列の少なくとも一部において、冷媒チューブと熱伝達可能に配置された複数の補助媒体チューブを含む。この構成によると、非利用側熱交換器にも、冷媒と補助媒体と非利用空気とを熱交換させる熱交換器が使用される。 For example, it further includes a non-use side heat exchanger having a plurality of tubes arranged in a row along a direction intersecting the flow direction of non-use air, and the tubes are supplied from the refrigerant circuit. Multiple refrigerant tubes that exchange heat between low-pressure refrigerant and unused air, and heat exchange between auxiliary medium and unused air supplied from the auxiliary medium circuit, so that heat can be transferred to the refrigerant tubes in at least a part of the row A plurality of auxiliary media tubes are disposed. According to this configuration, the heat exchanger that exchanges heat between the refrigerant, the auxiliary medium, and the unused air is also used for the unused heat exchanger.
 例えば、さらに、利用空気の流れ方向に対して交差する方向に沿って列をなすように配置された複数のチューブを有する高圧冷媒用の利用側熱交換器を備え、チューブは、冷媒回路から供給される高圧冷媒と利用空気とを熱交換させる複数の冷媒チューブ、および補助媒体回路から供給される補助媒体と利用空気とを熱交換させ、列の少なくとも一部において、冷媒チューブと熱伝達可能に配置された複数の補助媒体チューブを含む。この構成によると、加熱用の利用側熱交換器にも、冷媒と補助媒体と利用空気とを熱交換させる熱交換器が使用される。 For example, the apparatus further includes a use-side heat exchanger for high-pressure refrigerant having a plurality of tubes arranged in a row along a direction intersecting the flow direction of the use air, and the tubes are supplied from the refrigerant circuit. A plurality of refrigerant tubes for exchanging heat between the high-pressure refrigerant to be used and the used air, and heat exchange between the auxiliary medium and the used air supplied from the auxiliary medium circuit so that heat can be transferred to the refrigerant tubes in at least a part of the row. A plurality of auxiliary media tubes are disposed. According to this structure, the heat exchanger which heat-exchanges a refrigerant | coolant, an auxiliary | assistant medium, and utilization air is used also for the utilization side heat exchanger for a heating.
 例えば、冷媒回路は、高圧冷媒を冷媒チューブに供給する。この構成によると、高圧冷媒によって、利用空気の加熱と、補助媒体の加熱とを提供できる。 For example, the refrigerant circuit supplies high-pressure refrigerant to the refrigerant tube. According to this configuration, heating of the utilization air and heating of the auxiliary medium can be provided by the high-pressure refrigerant.
 例えば、利用空気は、空調のための空気である。この構成によると、空調と、発熱機器の温度調節とを提供することができる。 For example, the air used is air for air conditioning. According to this configuration, it is possible to provide air conditioning and temperature adjustment of the heat generating device.
 例えば、利用空気は、物品を収容できる庫内の空気である。この構成によると、庫内の物品の温度調節と、発熱機器の温度調節とを提供することができる。 For example, the air used is the air in the cabinet that can accommodate the goods. According to this structure, temperature control of the articles | goods in a store | warehouse | chamber and temperature control of a heat-emitting device can be provided.
 例えば、制御装置は、動力が利用可能になった後に、利用側熱交換器による利用空気の温度制御に優先して補助媒体回路による発熱機器の温度制御を実行する。この構成によると、発熱機器の温度制御が優先され、その後、利用空気の温度制御が実行される。 For example, after the power becomes available, the control device executes temperature control of the heat generating device by the auxiliary medium circuit in preference to temperature control of the use air by the use side heat exchanger. According to this configuration, priority is given to the temperature control of the heat generating device, and then the temperature control of the use air is executed.
 例えば、利用機器は、外部電源によって充電される電池を含み、制御装置は、電池が充電されるときに利用側熱交換器による利用空気の温度制御に優先して補助媒体回路による電池の温度制御を実行する。この構成によると、電池の温度制御が優先され、その後、利用空気の温度制御が実行される。 For example, the utilization device includes a battery charged by an external power source, and the control device controls the temperature of the battery by the auxiliary medium circuit in preference to the temperature control of the utilization air by the utilization side heat exchanger when the battery is charged. Execute. According to this configuration, priority is given to the temperature control of the battery, and then the temperature control of the use air is executed.
 なお、特許請求の範囲に記載した括弧内の符号は、ひとつの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本開示の技術的範囲を限定するものではない。 In addition, the code | symbol in the parenthesis described in the claim shows the correspondence with the specific means as described in embodiment mentioned later as one aspect, Comprising: The technical scope of this indication is limited is not.
本開示の第1実施形態の空調装置を示すブロック図である。It is a block diagram showing the air-conditioner of a 1st embodiment of this indication. 第1実施形態の熱交換器の斜視図である。It is a perspective view of the heat exchanger of a 1st embodiment. 第1実施形態の熱交換器の分解斜視図である。It is a disassembled perspective view of the heat exchanger of 1st Embodiment. 図2のIV-IV断面における熱交換器の部分断面図である。FIG. 4 is a partial cross-sectional view of the heat exchanger in the IV-IV cross section of FIG. 2. 第1実施形態の熱交換器の簡単化された分解斜視図である。1 is a simplified exploded perspective view of a heat exchanger according to a first embodiment. 図2のVI-VI断面における熱交換器の部分断面図である。FIG. 4 is a partial cross-sectional view of the heat exchanger in the VI-VI cross section of FIG. 本開示の第2実施形態の熱交換器の分解斜視図である。It is a disassembled perspective view of the heat exchanger of 2nd Embodiment of this indication. 第2実施形態の熱交換器の部分断面図である。It is a fragmentary sectional view of the heat exchanger of a 2nd embodiment. 本開示の第3実施形態の熱交換器の分解斜視図である。It is a disassembled perspective view of the heat exchanger of 3rd Embodiment of this indication. 本開示の第4実施形態の熱交換器の部分断面図である。It is a fragmentary sectional view of the heat exchanger of a 4th embodiment of this indication. 本開示の第5実施形態の熱交換器の部分断面図である。It is a fragmentary sectional view of the heat exchanger of a 5th embodiment of this indication. 本開示の第6実施形態の熱交換器の部分断面図である。It is a fragmentary sectional view of the heat exchanger of a 6th embodiment of this indication. 本開示の第7実施形態の熱交換器の部分断面図である。It is a fragmentary sectional view of the heat exchanger of a 7th embodiment of this indication. 本開示の第8実施形態の空調装置を示すブロック図である。It is a block diagram showing an air-conditioner of an 8th embodiment of this indication. 本開示の第9実施形態の空調装置を示すブロック図である。It is a block diagram showing an air conditioner of a 9th embodiment of this indication. 本開示の第10実施形態の空調装置を示すブロック図である。It is a block diagram showing an air-conditioner of a 10th embodiment of this indication. 本開示の第11実施形態の空調装置を示すブロック図である。It is a block diagram showing an air-conditioner of an 11th embodiment of this indication. 本開示の第12実施形態の空調装置を示すブロック図である。It is a block diagram showing an air-conditioner of a 12th embodiment of the present disclosure. 本開示の第13実施形態の熱交換器の部分断面図である。It is a fragmentary sectional view of the heat exchanger of a 13th embodiment of this indication. 図19のXX-XX断面における凝縮水の遷移図である。FIG. 20 is a transition diagram of condensed water in the section XX-XX in FIG. 19. 図19のXXI-XXI断面における凝縮水の遷移図である。FIG. 20 is a transition diagram of condensed water in the XXI-XXI cross section of FIG. 19. 比較例の熱交換器の部分断面図である。It is a fragmentary sectional view of the heat exchanger of a comparative example. 図22のXXIII-XXIII断面における凝縮水の遷移図である。FIG. 23 is a transition diagram of condensed water in the section XXIII-XXIII in FIG. 本開示の第14実施形態のフローチャートである。16 is a flowchart of a fourteenth embodiment of the present disclosure. 本開示の第15実施形態のフローチャートである。19 is a flowchart according to a fifteenth embodiment of the present disclosure.
 以下に、図面を参照しながら発明を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。また、後続の実施形態においては、先行する実施形態で説明した事項に対応する部分に百以上の位だけが異なる参照符号を付することにより対応関係を示し、重複する説明を省略する場合がある。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of modes for carrying out the invention will be described with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each mode, the other modes described above can be applied to the other parts of the configuration. Further, in the following embodiments, the correspondence corresponding to the matters corresponding to the matters described in the preceding embodiments is indicated by adding reference numerals that differ only by one hundred or more, and redundant description may be omitted. . Not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of the embodiments even if they are not explicitly stated unless there is a problem with the combination. Is also possible.
 (第1実施形態)
 図1において、本開示のひとつの実施形態によって、車両用の熱利用システムの一例を示す車両用の空調装置1が提供される。空調装置1は、冷房のための冷凍サイクルを構成する冷媒回路10を備える。空調装置1は、開示された発明を適用した熱交換器70を備える。車両には、車両に搭載された熱源HSの温度調節のための冷却水回路40が搭載されている。冷媒回路10と冷却水回路40とは、熱交換器70を介し熱的に関連している。
(First embodiment)
In FIG. 1, an embodiment of the present disclosure provides a vehicle air conditioner 1 that shows an example of a vehicle heat utilization system. The air conditioner 1 includes a refrigerant circuit 10 constituting a refrigeration cycle for cooling. The air conditioner 1 includes a heat exchanger 70 to which the disclosed invention is applied. A cooling water circuit 40 for adjusting the temperature of the heat source HS mounted on the vehicle is mounted on the vehicle. The refrigerant circuit 10 and the coolant circuit 40 are thermally related via the heat exchanger 70.
 空調装置1は、走行用の動力を、内燃機関(エンジン)および電動発電機から得る、いわゆるハイブリッド車両に適合されている。空調装置1は、エンジンのみを動力源とする車両、ハイブリッド車両、および電動機のみを動力源とする車両のいずれかに利用することができる。 The air conditioner 1 is adapted to a so-called hybrid vehicle that obtains driving power from an internal combustion engine (engine) and a motor generator. The air conditioner 1 can be used for any of a vehicle using only an engine as a power source, a hybrid vehicle, and a vehicle using only an electric motor as a power source.
 空調装置1は、冷媒回路2によって供給される冷熱によって冷房を提供する。空調装置1は、空調対象空間である車室内に向けて空気URを送風する空調ユニット30を備える。この実施形態では、利用空気は、空調のための空気URである。空調装置1は、冷媒回路10、冷却水回路40、および空調ユニット30を制御する制御装置(CNTR)100を備える。 The air conditioner 1 provides cooling by cold heat supplied by the refrigerant circuit 2. The air conditioner 1 includes an air conditioning unit 30 that blows air UR toward a vehicle interior that is an air conditioning target space. In this embodiment, utilization air is the air UR for an air conditioning. The air conditioner 1 includes a refrigerant circuit 10, a cooling water circuit 40, and a control device (CNTR) 100 that controls the air conditioning unit 30.
 制御装置100は、コンピュータによって読み取り可能な記憶媒体を備えるマイクロコンピュータによって提供される。記憶媒体は、コンピュータによって読み取り可能なプログラムを非一時的に格納している。記憶媒体は、半導体メモリまたは磁気ディスクによって提供されうる。プログラムは、制御装置100によって実行されることによって、制御装置100をこの明細書に記載される装置として機能させ、この明細書に記載される制御方法を実行するように制御装置100を機能させる。制御装置100が提供する手段は、所定の機能を達成する機能的ブロック、またはモジュールとも呼ぶことができる。 The control device 100 is provided by a microcomputer provided with a computer-readable storage medium. The storage medium stores a computer-readable program non-temporarily. The storage medium can be provided by a semiconductor memory or a magnetic disk. The program is executed by the control device 100 to cause the control device 100 to function as a device described in this specification, and to cause the control device 100 to function so as to execute the control method described in this specification. The means provided by the control device 100 can also be referred to as a functional block or module that achieves a predetermined function.
 制御装置100は、機器11、17、41の作動を制御する。制御装置100と冷媒回路10と冷却水回路40とを制御する。制御装置100には、複数のセンサが接続されている。制御装置100は、冷媒回路10に流れる冷媒量を制御する制御手段を提供する。冷媒量は、圧縮機11の冷媒吐出能力を調節することによって制御される。また、制御装置100は、冷却水回路における冷却水の流れ、および流路を制御する制御手段を提供する。冷却水の流れはポンプ41を制御することによって制御される。制御装置100は、冷却水WTの温度が所定の上限温度を下回り、かつ、所定の下限温度を上回るように冷却水回路40を制御する。 The control device 100 controls the operation of the devices 11, 17, and 41. The control device 100, the refrigerant circuit 10, and the cooling water circuit 40 are controlled. A plurality of sensors are connected to the control device 100. The control device 100 provides control means for controlling the amount of refrigerant flowing through the refrigerant circuit 10. The amount of refrigerant is controlled by adjusting the refrigerant discharge capacity of the compressor 11. Moreover, the control apparatus 100 provides the control means which controls the flow of the cooling water in a cooling water circuit, and a flow path. The flow of the cooling water is controlled by controlling the pump 41. The control device 100 controls the cooling water circuit 40 so that the temperature of the cooling water WT falls below a predetermined upper limit temperature and exceeds a predetermined lower limit temperature.
 空調ユニット30は、車室内に配置されている。空調ユニット30は、車室に向けて送られる空気URのダクトを提供するケーシング31を備える。空調ユニット30は、ケーシング31に、送風機32、ヒータコア12、室内熱交換器20などの部品を配置して構成されている。ケーシング31内の最上流部には、車室内の空気と、車室外の空気とを選択的に、または混合して導入する内外気切替装置33が配置されている。内外気切替装置33の下流側には、空気URを送風するための送風機32が配置されている。 The air conditioning unit 30 is arranged in the passenger compartment. The air conditioning unit 30 includes a casing 31 that provides a duct for the air UR sent toward the passenger compartment. The air conditioning unit 30 is configured by arranging components such as the blower 32, the heater core 12, and the indoor heat exchanger 20 in a casing 31. An inside / outside air switching device 33 that introduces air in the passenger compartment and air outside the passenger compartment selectively or in a mixed manner is disposed at the most upstream portion in the casing 31. A blower 32 for blowing air UR is disposed on the downstream side of the inside / outside air switching device 33.
 送風機32の下流側には、室内熱交換器20およびヒータコア12が、空気URの流れに対して、この順に配置されている。室内熱交換器20は、ヒータコア12に対して、上流側に配置されている。室内熱交換器20は、冷媒RFと空気URとを熱交換させる冷媒熱交換器16を含む。冷媒熱交換器16は、蒸発器16とも呼ぶことができる。冷媒熱交換器16は、その内部を流通する冷媒RFと空気URとを熱交換させることにより、空気URを冷却する冷却用熱交換器である。冷媒熱交換器16は、冷媒回路10を流れる冷媒RFによって供給される冷熱を、空気URの冷却に利用するための低圧冷媒用の利用側熱交換器でもある。ヒータコア12は、その内部を流れる冷却水WT、または電気ヒータによって空気URを加熱する加熱用熱交換器である。 At the downstream side of the blower 32, the indoor heat exchanger 20 and the heater core 12 are arranged in this order with respect to the flow of the air UR. The indoor heat exchanger 20 is disposed on the upstream side with respect to the heater core 12. The indoor heat exchanger 20 includes a refrigerant heat exchanger 16 that exchanges heat between the refrigerant RF and the air UR. The refrigerant heat exchanger 16 can also be referred to as an evaporator 16. The refrigerant heat exchanger 16 is a cooling heat exchanger that cools the air UR by exchanging heat between the refrigerant RF and the air UR flowing through the refrigerant heat exchanger 16. The refrigerant heat exchanger 16 is also a use-side heat exchanger for low-pressure refrigerant for using the cold supplied by the refrigerant RF flowing through the refrigerant circuit 10 for cooling the air UR. The heater core 12 is a heat exchanger for heating that heats the air UR with the cooling water WT flowing inside the heater core 12 or an electric heater.
 室内熱交換器20の下流側であって、かつ、ヒータコア12の上流側には、エアミックスドア34が配置されている。エアミックスドア34は、室内熱交換器20通過後の空気URのうち、ヒータコア12を通過する割合を調整する。ヒータコア12の下流側には、混合室35が設けられている。混合室35は、ヒータコア12にて加熱された空気URと、ヒータコア12を迂回して加熱されていない空気URとを混合させる。混合室35の下流は、吹出口を介して車室内に連通している。 The air mix door 34 is disposed on the downstream side of the indoor heat exchanger 20 and on the upstream side of the heater core 12. The air mix door 34 adjusts the ratio of passing through the heater core 12 in the air UR after passing through the indoor heat exchanger 20. A mixing chamber 35 is provided on the downstream side of the heater core 12. The mixing chamber 35 mixes the air UR heated by the heater core 12 and the air UR that bypasses the heater core 12 and is not heated. The downstream of the mixing chamber 35 communicates with the vehicle interior via a blowout port.
 冷媒回路10は、蒸気圧縮式冷凍サイクルによって提供される。冷媒回路10は、空調装置1の冷房用の冷媒サイクルである。冷媒回路10は、冷媒系統とも呼ばれる。冷媒回路10は、後述する冷媒チューブ16aに冷媒RFを流し、冷媒RFの蒸発によって空気URまたは冷却水WTから熱を奪う。冷媒回路10は、低圧冷媒を冷媒チューブ16aに供給する。 The refrigerant circuit 10 is provided by a vapor compression refrigeration cycle. The refrigerant circuit 10 is a refrigerant cycle for cooling the air conditioner 1. The refrigerant circuit 10 is also called a refrigerant system. The refrigerant circuit 10 causes the refrigerant RF to flow through a refrigerant tube 16a described later, and takes heat from the air UR or the cooling water WT by evaporation of the refrigerant RF. The refrigerant circuit 10 supplies low-pressure refrigerant to the refrigerant tube 16a.
 圧縮機11は、エンジンルーム内に配置されている。圧縮機11は、冷媒回路10において低圧冷媒を吸入し、圧縮することにより、高圧冷媒を供給する。圧縮機11は、スクロール型、ベーン型などの圧縮機構部11aと、圧縮機構部11aを駆動する電動モータ11bとを備える。電動モータ11bは、制御装置100によって制御される。 The compressor 11 is disposed in the engine room. The compressor 11 sucks low-pressure refrigerant in the refrigerant circuit 10 and compresses it to supply high-pressure refrigerant. The compressor 11 includes a compression mechanism 11a such as a scroll type or a vane type, and an electric motor 11b that drives the compression mechanism 11a. The electric motor 11b is controlled by the control device 100.
 圧縮機11の吐出側には、室外熱交換器21が設けられている。室外熱交換器21は、エンジンルーム内に配置されている。室外熱交換器21は、高圧冷媒が供給され、高圧冷媒から空気ARへ熱を放熱する。空気ARは、室外の空気であり、非利用空気とも呼ばれる。室外熱交換器21は、凝縮器とも呼ばれる。室外熱交換器21の下流には、余剰冷媒を蓄えるためのレシーバタンク22が設けられている。ファン17は、電動式送風機である。ファン17は、室外熱交換器21に向けて空気ARを送風する室外送風手段を提供している。 An outdoor heat exchanger 21 is provided on the discharge side of the compressor 11. The outdoor heat exchanger 21 is disposed in the engine room. The outdoor heat exchanger 21 is supplied with high-pressure refrigerant and radiates heat from the high-pressure refrigerant to the air AR. The air AR is outdoor air and is also called non-use air. The outdoor heat exchanger 21 is also called a condenser. A receiver tank 22 for storing excess refrigerant is provided downstream of the outdoor heat exchanger 21. The fan 17 is an electric blower. The fan 17 provides an outdoor blowing unit that blows the air AR toward the outdoor heat exchanger 21.
 レシーバタンク22の下流には、冷房用の膨張弁19が設けられている。膨張弁19は、減圧手段である。膨張弁19は、高圧冷媒を減圧し低圧冷媒を供給する減圧器を提供する。減圧器は、オリフィス、キャピラリチューブなどによって提供することができる。膨張弁19の下流には、室内熱交換器20が設けられている。さらに、室内熱交換器20の下流には、圧縮機11が設けられている。 An expansion valve 19 for cooling is provided downstream of the receiver tank 22. The expansion valve 19 is a decompression unit. The expansion valve 19 provides a decompressor that decompresses the high-pressure refrigerant and supplies the low-pressure refrigerant. The decompressor can be provided by an orifice, a capillary tube, or the like. An indoor heat exchanger 20 is provided downstream of the expansion valve 19. Further, a compressor 11 is provided downstream of the indoor heat exchanger 20.
 室外熱交換器20、すなわち熱交換器70の下流側、または熱交換器70の表面には、室内熱交換器20上における凍結の発生を検出するための温度センサ23が設けられている。温度センサ23の検出信号は、室内熱交換器20、すなわち熱交換器70の表面における霜に起因する冷却性能の低下を抑制するために利用される。例えば、温度センサ23の検出温度が所定の閾値温度を下回ると、冷媒RFの流量が減らされる。これにより、過剰な霜の付着が抑制される。この実施形態では、熱交換器70上の霜の付着が、温度に表れやすい位置に温度センサ23が設けられている。温度センサ23は、熱交換器70の近傍であって、空気URの下流側に設けることができる。 A temperature sensor 23 for detecting the occurrence of freezing on the indoor heat exchanger 20 is provided on the outdoor heat exchanger 20, that is, on the downstream side of the heat exchanger 70 or on the surface of the heat exchanger 70. The detection signal of the temperature sensor 23 is used to suppress a decrease in cooling performance due to frost on the surface of the indoor heat exchanger 20, that is, the heat exchanger 70. For example, when the temperature detected by the temperature sensor 23 falls below a predetermined threshold temperature, the flow rate of the refrigerant RF is reduced. Thereby, adhesion of excessive frost is suppressed. In this embodiment, the temperature sensor 23 is provided at a position where frost adhesion on the heat exchanger 70 is likely to appear in the temperature. The temperature sensor 23 can be provided in the vicinity of the heat exchanger 70 and downstream of the air UR.
 冷却水回路40は、熱運搬媒体かつ蓄熱媒体として利用される冷却水WTを流すことができる。熱源HSとして、作動時に発熱を伴う車載機器の一つを利用することができる。熱源HSは、ハイブリッド車両のエンジン、電動発電機、インバータ回路、電池、制御回路などの少なくともひとつによって提供される。熱源HSは、冷却水WTに熱を供給する。熱源HSは、車両に搭載された発熱機器である。冷却水WTは、熱源HSの温度を調節するための補助媒体である。冷却水回路40は、冷媒回路とは別に構成され、補助媒体が循環する補助媒体回路である。冷却水回路40は、熱源HSの温度を調節するための補助媒体が循環する補助媒体回路である。冷却水回路40は、熱源HSを冷却し、適正な温度に保つための冷却系統でもある。熱源HSを含む冷却水回路40は、水系統、または発熱機器系統と呼ばれる。冷却水回路40は、熱源HSに冷却水WTを循環させて、熱源HSを冷却する冷却媒体循環回路である。冷却水回路40は、ポンプ41、およびラジエータ43などの部品を備える。 The cooling water circuit 40 can flow cooling water WT used as a heat carrying medium and a heat storage medium. As the heat source HS, one of in-vehicle devices that generate heat during operation can be used. The heat source HS is provided by at least one of an engine of a hybrid vehicle, a motor generator, an inverter circuit, a battery, a control circuit, and the like. The heat source HS supplies heat to the cooling water WT. The heat source HS is a heat generating device mounted on the vehicle. The cooling water WT is an auxiliary medium for adjusting the temperature of the heat source HS. The cooling water circuit 40 is an auxiliary medium circuit that is configured separately from the refrigerant circuit and in which the auxiliary medium circulates. The cooling water circuit 40 is an auxiliary medium circuit in which an auxiliary medium for adjusting the temperature of the heat source HS circulates. The cooling water circuit 40 is also a cooling system for cooling the heat source HS and keeping it at an appropriate temperature. The cooling water circuit 40 including the heat source HS is called a water system or a heat generating equipment system. The coolant circuit 40 is a coolant circulation circuit that circulates the coolant WT through the heat source HS and cools the heat source HS. The cooling water circuit 40 includes components such as a pump 41 and a radiator 43.
 ポンプ41は、冷却水回路40に冷却水を圧送する電動式のポンプである。ラジエータ43は、室内熱交換器20とともに、ケーシング31内に配置されている。ラジエータ43は、冷却水WTと空気URとを熱交換させる放熱用熱交換器である。ラジエータ43は、熱源HSのための冷却水WTと空気URとを熱交換させる冷却水熱交換器43とも呼ばれる。ポンプ41は、ラジエータ43に供給される冷却水WTの流量を調節する流量調節器を提供する。 The pump 41 is an electric pump that pumps cooling water to the cooling water circuit 40. The radiator 43 is disposed in the casing 31 together with the indoor heat exchanger 20. The radiator 43 is a heat dissipation heat exchanger that exchanges heat between the cooling water WT and the air UR. The radiator 43 is also called a cooling water heat exchanger 43 that exchanges heat between the cooling water WT for the heat source HS and the air UR. The pump 41 provides a flow rate regulator that regulates the flow rate of the cooling water WT supplied to the radiator 43.
 冷媒熱交換器16とラジエータ43とは、一体的に構成されて、熱交換器70を構成している。熱交換器70は、一体のユニットとして取り扱いが可能な熱交換器ユニットである。冷媒熱交換器16とラジエータ43とは、隣接して配置することができる。熱交換器70において、冷媒熱交換器16とラジエータ43とは、熱的に結合されている。冷媒熱交換器16とラジエータ43とは、熱伝導に優れた部材を介して機械的にも熱的にも密接に結合して構成することができる。また、冷媒熱交換器16とラジエータ43とは、部材を介して機械的に結合されるが、熱的な観点では、空気URを介して間接的に弱く結合するように構成することができる。 The refrigerant heat exchanger 16 and the radiator 43 are integrally configured to constitute a heat exchanger 70. The heat exchanger 70 is a heat exchanger unit that can be handled as an integral unit. The refrigerant heat exchanger 16 and the radiator 43 can be disposed adjacent to each other. In the heat exchanger 70, the refrigerant heat exchanger 16 and the radiator 43 are thermally coupled. The refrigerant heat exchanger 16 and the radiator 43 can be configured by being closely coupled mechanically and thermally via a member excellent in heat conduction. Moreover, although the refrigerant | coolant heat exchanger 16 and the radiator 43 are mechanically couple | bonded via a member, they can be comprised so that it may couple | bond indirectly weakly via the air UR from a thermal viewpoint.
 空調装置1は、ヒータコア12に温水を供給する冷却水回路60を備える。冷却水回路60は、エンジンなどの熱源HSを冷却水などの媒体によって冷却する温度調節回路である。冷却水回路60は、冷却水WTを流すためのポンプ61を備えることができる。 The air conditioner 1 includes a cooling water circuit 60 that supplies hot water to the heater core 12. The cooling water circuit 60 is a temperature adjustment circuit that cools the heat source HS such as an engine with a medium such as cooling water. The cooling water circuit 60 can include a pump 61 for flowing the cooling water WT.
 冷却水回路60と冷却水回路40とは、別々の熱源HSを利用する独立した回路とすることができる。例えば、冷却水回路60の熱源HSをエンジンとし、冷却水回路40の熱源HSを電機機器とすることができる。冷却水回路60と冷却水回路40とは、共通の冷却水回路によって提供することができる。例えば、ラジエータ43とヒータコア12とは、冷却水回路40内において並列に、または直列に配置することができる。 The cooling water circuit 60 and the cooling water circuit 40 can be independent circuits that use different heat sources HS. For example, the heat source HS of the coolant circuit 60 can be an engine, and the heat source HS of the coolant circuit 40 can be an electrical device. The cooling water circuit 60 and the cooling water circuit 40 can be provided by a common cooling water circuit. For example, the radiator 43 and the heater core 12 can be arranged in parallel or in series in the cooling water circuit 40.
 図2において、熱交換器70は、いわゆるタンクアンドチューブ型の熱交換器である。熱交換器70のコア部71には、空気URが供給される。空気URは、コア部71を貫通して流れる。コア部71は、空気URの流れに関して、入口側としての上流面と、出口側としての下流面とを有する薄い板状に形成されている。熱交換器70は、冷媒RF、冷却水WT、および空気URの三者間の熱交換を提供する。熱交換器70は、冷媒RFと冷却水WTとの間、冷媒RFと空気URとの間、および冷却水WTと空気URとの間の熱交換を提供する。 In FIG. 2, a heat exchanger 70 is a so-called tank and tube type heat exchanger. Air UR is supplied to the core portion 71 of the heat exchanger 70. The air UR flows through the core portion 71. The core portion 71 is formed in a thin plate shape having an upstream surface as an inlet side and a downstream surface as an outlet side with respect to the flow of the air UR. The heat exchanger 70 provides heat exchange between the three of the refrigerant RF, the cooling water WT, and the air UR. The heat exchanger 70 provides heat exchange between the refrigerant RF and the cooling water WT, between the refrigerant RF and the air UR, and between the cooling water WT and the air UR.
 冷媒チューブ16aと水チューブ43aとは、空気URの流れ方向CDに対して交差する方向RDに沿って列をなすように配置されている。さらに、列の少なくとも一部において、冷媒チューブ16aと水チューブ43aとが熱伝達可能に配置されている。複数のチューブ16a、43aは、空気URの流れ方向と直交する方向に沿って列をなすように配置されている。図中には、列方向RD、行方向CD、およびチューブ16a、43aの長さ方向LDが図示されている。列方向RDは、高さ方向、または幅方向とも呼ばれる。列方向RDは、タンク部72、75の長さ方向でもある。行方向CDは、奥行き方向、または厚さ方向とも呼ばれる。行方向CDは、空気URの流れ方向でもある。 The refrigerant tube 16a and the water tube 43a are arranged in a line along a direction RD that intersects the flow direction CD of the air UR. Furthermore, the refrigerant | coolant tube 16a and the water tube 43a are arrange | positioned in at least one part of a row | line | column so that heat transfer is possible. The plurality of tubes 16a and 43a are arranged in a row along a direction orthogonal to the flow direction of the air UR. In the figure, the column direction RD, the row direction CD, and the length direction LD of the tubes 16a and 43a are shown. The column direction RD is also called a height direction or a width direction. The column direction RD is also the length direction of the tank portions 72 and 75. The row direction CD is also called a depth direction or a thickness direction. The row direction CD is also the flow direction of the air UR.
 図2-図6において、熱交換器70は、冷媒RFを流通させる複数のチューブ16a、冷却水WTを流通させる複数のチューブ43a、複数のチューブ16a、43aの間の空気通路16b、43bに配置された複数のフィン50、複数のチューブの両端に配置された集合タンクおよび分配タンクなどの部品を有する。熱交換器70は、冷媒熱交換器16としての部品と、ラジエータ43としての部品とを有している。それらの部品は、熱的に結合されている。 2 to 6, the heat exchanger 70 is arranged in a plurality of tubes 16a for circulating the refrigerant RF, a plurality of tubes 43a for circulating the cooling water WT, and air passages 16b, 43b between the plurality of tubes 16a, 43a. And a plurality of fins 50 and parts such as a collection tank and a distribution tank disposed at both ends of the plurality of tubes. The heat exchanger 70 has components as the refrigerant heat exchanger 16 and components as the radiator 43. Those parts are thermally coupled.
 熱交換器70は、コア部71と、タンク部72、75とを備える。コア部71では、複数のチューブ16a、43aが空気URと熱交換可能に配置されている。複数のチューブ16a、43aは、冷凍サイクルから供給される冷媒のための複数の冷媒チューブ16aを含む。さらに、複数のチューブ16a、43aは、車両に搭載された熱源HSの温度を調節するための冷却水WTのための複数の水チューブ43aを含む。タンク部72、75は、コア部71の両端に設けられている。タンク部72、75のそれぞれは、水タンク73、77、および冷媒タンク74、76を含む。水タンク73と冷媒タンク76とは、外側タンク73、76とも呼ばれる。冷媒タンク74と水タンク77とは、内側タンク74、77とも呼ばれる。水タンク73、77のそれぞれは、水チューブ43aの両端と連通するように接続されている。冷媒タンク74、76のそれぞれは、冷媒チューブ16aの両端と連通するように接続されている。複数の冷媒チューブ16aによって、冷凍サイクル蒸発器としての冷媒熱交換器16が構成されている。複数の水チューブ43aによって、熱源放熱器としてのラジエータ43が構成されている。 The heat exchanger 70 includes a core part 71 and tank parts 72 and 75. In the core part 71, the several tubes 16a and 43a are arrange | positioned so that heat exchange with the air UR is possible. The plurality of tubes 16a and 43a include a plurality of refrigerant tubes 16a for the refrigerant supplied from the refrigeration cycle. Furthermore, the plurality of tubes 16a and 43a include a plurality of water tubes 43a for the cooling water WT for adjusting the temperature of the heat source HS mounted on the vehicle. The tank parts 72 and 75 are provided at both ends of the core part 71. Each of the tank portions 72 and 75 includes water tanks 73 and 77 and refrigerant tanks 74 and 76. The water tank 73 and the refrigerant tank 76 are also called outer tanks 73 and 76. The refrigerant tank 74 and the water tank 77 are also called inner tanks 74 and 77. Each of the water tanks 73 and 77 is connected so as to communicate with both ends of the water tube 43a. Each of the refrigerant tanks 74 and 76 is connected to communicate with both ends of the refrigerant tube 16a. The refrigerant | coolant heat exchanger 16 as a refrigeration cycle evaporator is comprised by the some refrigerant | coolant tube 16a. The plurality of water tubes 43a constitute a radiator 43 as a heat source radiator.
 冷媒チューブ16aは、冷媒RFが流される熱交換用のチューブである。冷媒チューブ16aは、長手方向に垂直な断面の形状が扁平形状の扁平チューブである。 The refrigerant tube 16a is a heat exchange tube through which the refrigerant RF flows. The refrigerant tube 16a is a flat tube having a flat cross-sectional shape perpendicular to the longitudinal direction.
 水チューブ43aは、熱源HSの温度調節のための媒体が流される熱交換用のチューブである。水チューブ43aは、長手方向に垂直な断面の形状が扁平形状の扁平チューブである。以下、冷媒チューブ16aと水チューブ43aとをチューブ16a、43aと呼ぶ。 The water tube 43a is a heat exchange tube through which a medium for adjusting the temperature of the heat source HS flows. The water tube 43a is a flat tube having a flat cross-sectional shape perpendicular to the longitudinal direction. Hereinafter, the refrigerant tube 16a and the water tube 43a are referred to as tubes 16a and 43a.
 複数のチューブ16a、43aは、それらの外表面の広い平坦面が、空気URの流れに対してほぼ平行となるように配置されている。複数のチューブ16a、43aは、互いに所定の間隔を開けて配置されている。複数のチューブ16a、43aの周囲には、空気URが流れるための空気通路16b、43bが形成されている。空気通路16b、43bは、放熱用空気通路として使われる。 The plurality of tubes 16a and 43a are arranged such that the wide flat surfaces of the outer surfaces thereof are substantially parallel to the flow of the air UR. The plurality of tubes 16a and 43a are arranged at a predetermined interval from each other. Air passages 16b and 43b through which the air UR flows are formed around the plurality of tubes 16a and 43a. The air passages 16b and 43b are used as heat dissipation air passages.
 空気通路16b、43bには、フィン50が配置されている。フィン50は、チューブ16a、43aと空気URとの熱交換を促進させるためのアウターフィンである。フィン50は、列において隣接する2つのチューブ16a、43aに接合されている。さらに、フィン50は、空気URの流れ方向に位置する2つのチューブ16a、43aに接合されている。よって、ひとつのフィン50には、少なくとも4本のチューブ16a、43aが接合されている。フィン50は、冷媒熱交換器16とラジエータ43とを一体化している。フィン50は、伝熱性に優れる金属の薄板により作られている。フィン50は、薄板を波状に曲げ成形したコルゲートフィンである。フィン50は、冷媒RFと空気URとの熱交換を促進する。フィン50は、冷却水WTと空気URとの熱交換を促進する。少なくとも一部のフィン50は、冷媒チューブ16aおよび水チューブ43aの双方に接合されている、よって、フィン50は、冷媒チューブ16aと水チューブ43aとの間の熱移動を可能とする機能も果たす。冷媒チューブ16aと水チューブ43aとは、フィン50を介して熱伝達可能である。複数のチューブ16a、43aは、熱交換器70の少なくとも一部において熱的に結合して配置されている。ひとつの冷媒チューブ16aの両側に配置された2つのフィン50は、冷媒チューブ16aの両面に複数の山部を接合したコルゲートフィンである。 Fins 50 are disposed in the air passages 16b and 43b. The fin 50 is an outer fin for promoting heat exchange between the tubes 16a and 43a and the air UR. The fin 50 is joined to the two tubes 16a and 43a adjacent in the row. Furthermore, the fin 50 is joined to the two tubes 16a and 43a located in the flow direction of the air UR. Therefore, at least four tubes 16 a and 43 a are joined to one fin 50. The fin 50 integrates the refrigerant heat exchanger 16 and the radiator 43. The fin 50 is made of a thin metal plate having excellent heat conductivity. The fin 50 is a corrugated fin obtained by bending a thin plate into a wave shape. The fin 50 promotes heat exchange between the refrigerant RF and the air UR. The fin 50 promotes heat exchange between the cooling water WT and the air UR. At least some of the fins 50 are joined to both the refrigerant tube 16a and the water tube 43a. Therefore, the fin 50 also functions to enable heat transfer between the refrigerant tube 16a and the water tube 43a. The refrigerant tube 16 a and the water tube 43 a can transfer heat via the fins 50. The plurality of tubes 16 a and 43 a are arranged to be thermally coupled to at least a part of the heat exchanger 70. The two fins 50 arranged on both sides of one refrigerant tube 16a are corrugated fins in which a plurality of peaks are joined to both surfaces of the refrigerant tube 16a.
 複数のチューブ16a、43aと、複数のフィン50とが積層され、接合されることによってコア部が形成されている。コア部71は、冷媒RFと、冷却水WTと、空気URとを含む複数、例えば3つの流体の間の熱交換を提供している。コア部71は、熱交換部とも呼ばれる。 A plurality of tubes 16a and 43a and a plurality of fins 50 are laminated and joined to form a core portion. The core portion 71 provides heat exchange between a plurality of, for example, three fluids including the refrigerant RF, the cooling water WT, and the air UR. The core part 71 is also called a heat exchange part.
 タンク部72、75は、コア部71の両端に配置されている。2つのタンク部72、75のそれぞれは、コア部71から離れて位置する外側タンク73、76と、コア部71に隣接する内側タンク74、77とを有する。内側タンク74、77は、外側タンク73、76とコア部71との間に配置されている。外側タンク73、76と内側タンク74、77とは、コア部71の端部において、コア部71の端部のほぼ全体を覆うように広がっている。よって、コア部71の一端には、外側タンク73と内側タンク74とが積層して配置されている。コア部71の他端にも、外側タンク76と内側タンク77とが積層して配置されている。 The tank parts 72 and 75 are arranged at both ends of the core part 71. Each of the two tank parts 72, 75 has outer tanks 73, 76 located away from the core part 71 and inner tanks 74, 77 adjacent to the core part 71. The inner tanks 74 and 77 are disposed between the outer tanks 73 and 76 and the core portion 71. The outer tanks 73 and 76 and the inner tanks 74 and 77 extend so as to cover almost the entire end portion of the core portion 71 at the end portion of the core portion 71. Therefore, the outer tank 73 and the inner tank 74 are stacked on one end of the core portion 71. An outer tank 76 and an inner tank 77 are also stacked on the other end of the core portion 71.
 この実施形態では、外側タンク73は冷却水WTのための分配タンクと集合タンクとを提供する。分配タンクは、冷却水WTを複数の水チューブ43aに分配する。集合タンクは、複数の水チューブ43aから冷却水WTを集める。 In this embodiment, the outer tank 73 provides a distribution tank and a collecting tank for the cooling water WT. The distribution tank distributes the cooling water WT to the plurality of water tubes 43a. The collecting tank collects the cooling water WT from the plurality of water tubes 43a.
 外側タンク76は、冷媒RFのための分配タンクと集合タンクとを提供する。分配タンクは、冷媒RFを複数の冷媒チューブ16aに分配する。集合タンクは、複数の冷媒チューブ16aから冷媒RFを集める。 The outer tank 76 provides a distribution tank and a collection tank for the refrigerant RF. The distribution tank distributes the refrigerant RF to the plurality of refrigerant tubes 16a. The collecting tank collects the refrigerant RF from the plurality of refrigerant tubes 16a.
 コア部71の一端には、冷却水WTのための外側タンク73と、冷媒RFのための内側タンク74とが配置されている。コア部71の他端には、冷媒RFのための外側タンク73と、冷却水WTのための内側タンク74とが配置されている。すなわち、コア部71の両端のそれぞれに、冷媒RFのためのタンクと、冷却水WTのためのタンクとが配置されている。 At one end of the core portion 71, an outer tank 73 for the cooling water WT and an inner tank 74 for the refrigerant RF are arranged. At the other end of the core portion 71, an outer tank 73 for the refrigerant RF and an inner tank 74 for the cooling water WT are arranged. That is, a tank for the refrigerant RF and a tank for the cooling water WT are arranged at both ends of the core portion 71.
 タンク部72、75は、チューブ16a、43aの比較的自由な配置を可能とする。例えば、チューブ16a、またはチューブ43aは、空気URの流れ方向に沿って上流列71cと下流列71dとに分散して配置されている。図示の例においては、下流列71dは、その全体が冷媒チューブ16aによって占められている。上流列71cは、冷媒チューブ16aと水チューブ43aとによって占められている。 The tank parts 72 and 75 enable the tubes 16a and 43a to be relatively freely arranged. For example, the tubes 16a or the tubes 43a are distributed and arranged in the upstream row 71c and the downstream row 71d along the flow direction of the air UR. In the illustrated example, the entire downstream row 71d is occupied by the refrigerant tube 16a. The upstream row 71c is occupied by the refrigerant tube 16a and the water tube 43a.
 冷媒熱交換器16のタンクおよびラジエータ43のタンクは、少なくとも部分的に、同一部材にて形成することができる。冷媒チューブ16a、水チューブ43a、タンク、およびフィン50はアルミニウム合金で作られている。これらの部品は、ろう付け接合されている。 The tank of the refrigerant heat exchanger 16 and the tank of the radiator 43 can be formed at least partially by the same member. The refrigerant tube 16a, the water tube 43a, the tank, and the fin 50 are made of an aluminum alloy. These parts are brazed.
 図2および図3に示すように、複数のチューブ16a、チューブ43aの長手方向一端側、図中の下方には、冷媒および冷却水の集合または分配のための第1のタンク16cが配置されている。第1のタンク16cは、冷媒の受け入れと、冷媒の排出とを担うから、冷媒タンクとも呼ばれる。第1のタンク16cは、冷却水をひとつの水チューブ43aから他の水チューブ43aへ案内する連結部も提供する。 As shown in FIGS. 2 and 3, a first tank 16c for collecting or distributing refrigerant and cooling water is arranged at one end in the longitudinal direction of the tubes 16a and 43a, and below in the drawing. Yes. The first tank 16c is also referred to as a refrigerant tank because it accepts the refrigerant and discharges the refrigerant. The 1st tank 16c also provides the connection part which guides cooling water from one water tube 43a to the other water tube 43a.
 第1のタンク16cは、2列に配置された冷媒チューブ16aおよび水チューブ43aに接続される接続プレート部材161、接続プレート部材161に固定される中間プレート部材162、および、第1のタンク部材163を有する。接続プレート部材161には、複数のチューブ16a、43aに対応する部位にはその表裏を貫通する貫通穴が設けられている。それらの貫通穴には、複数のチューブ16a、16bが貫通して配置され、固定されている。 The first tank 16c includes a connection plate member 161 connected to the refrigerant tube 16a and the water tube 43a arranged in two rows, an intermediate plate member 162 fixed to the connection plate member 161, and a first tank member 163. Have The connection plate member 161 is provided with a through-hole penetrating the front and back at portions corresponding to the plurality of tubes 16a and 43a. In these through holes, a plurality of tubes 16a, 16b are disposed and fixed.
 中間プレート部材162の冷媒チューブ16aに対応する部位にはその表裏を貫通する貫通穴162aが設けられている。貫通穴162aには冷媒チューブ16aが貫通して配置されている。第1のタンク16cでは、冷媒チューブ16aが水チューブ43aよりも、第1のタンク16c側へ突出している。第1のタンク部材163は、接続プレート部材161および中間プレート部材162に固定されることによって、その内部に冷媒の集合を行う集合室163aおよび冷媒の分配を行う分配室163bを形成する。第1のタンク部材163は、平板金属にプレス加工を施すことにより、その長手方向から見たときに、W字状に形成されている。第1のタンク部材163の中央部は中間プレート部材162に接合されている。集合室163aと分配室163bとは互いに独立の室として区画されている。空気URの上流側に集合室163aが配置され、下流側に分配室163bが配置されている。 The part corresponding to the refrigerant | coolant tube 16a of the intermediate | middle plate member 162 is provided with the through-hole 162a which penetrates the front and back. The refrigerant tube 16a is disposed through the through hole 162a. In the first tank 16c, the refrigerant tube 16a protrudes from the water tube 43a toward the first tank 16c. The first tank member 163 is fixed to the connection plate member 161 and the intermediate plate member 162, thereby forming therein a collection chamber 163a for collecting refrigerant and a distribution chamber 163b for distributing refrigerant. The first tank member 163 is formed in a W shape when viewed from the longitudinal direction by pressing a flat metal. A central portion of the first tank member 163 is joined to the intermediate plate member 162. The collecting chamber 163a and the distribution chamber 163b are partitioned as independent chambers. The collecting chamber 163a is disposed on the upstream side of the air UR, and the distribution chamber 163b is disposed on the downstream side.
 第1のタンク部材163の長手方向両端には、板状の蓋部材が固定されている。分配室163bの一端には、冷媒を流入させる入口配管164が接続されている。集合室163aの一端には、冷媒を流出させる出口配管165が接続されている。 A plate-like lid member is fixed to both ends in the longitudinal direction of the first tank member 163. One end of the distribution chamber 163b is connected to an inlet pipe 164 through which the refrigerant flows. An outlet pipe 165 for allowing the refrigerant to flow out is connected to one end of the collecting chamber 163a.
 複数のチューブ16a、43aの長手方向他端側、図中の上方には、冷媒および冷却水の集合または分配のための第2のタンク43cが配置されている。第2のタンクは、冷却水の受け入れと、冷却水の排出とを担うから、水タンクとも呼ばれる。第2のタンクは、冷媒をひとつの冷媒チューブ16aから他の冷媒チューブ16aへ案内する連結部も提供する。 A second tank 43c for collecting or distributing refrigerant and cooling water is disposed on the other end in the longitudinal direction of the plurality of tubes 16a and 43a, and in the upper part of the drawing. The second tank is also called a water tank because it is responsible for receiving cooling water and discharging cooling water. The second tank also provides a connecting portion for guiding the refrigerant from one refrigerant tube 16a to another refrigerant tube 16a.
 第2のタンク43cは、基本的に第1のタンク16cと同様の構成を備える。第2のタンク43cは、接続プレート部材431、中間プレート部材432、および、第2のタンク部材433を備える。中間プレート部材432の水チューブ43aに対応する部位にはその表裏を貫通する貫通穴432aが設けられている。貫通穴432aには水チューブ43aが貫通して配置され、固定されている。第2のタンク43cでは、水チューブ43aが冷媒チューブ16aよりも、第2のタンク43c側へ突出している。さらに、第2のタンク部材433は、空気URの流れ方向の上流に位置する上流の室433bと、室433bより空気URの流れ方向の下流に位置する下流の室433aとを形成する。室433aは、冷却水の分配を行うから、分配室433aとも呼ばれる。室433bは、冷却水の集合を行うから、集合室433bとも呼ばれる。 The second tank 43c basically has the same configuration as the first tank 16c. The second tank 43 c includes a connection plate member 431, an intermediate plate member 432, and a second tank member 433. A portion of the intermediate plate member 432 corresponding to the water tube 43a is provided with a through hole 432a penetrating the front and back. A water tube 43a is disposed through and fixed to the through hole 432a. In the second tank 43c, the water tube 43a protrudes from the refrigerant tube 16a toward the second tank 43c. Further, the second tank member 433 forms an upstream chamber 433b positioned upstream in the flow direction of the air UR and a downstream chamber 433a positioned downstream of the chamber 433b in the flow direction of the air UR. Since the chamber 433a distributes the cooling water, it is also called a distribution chamber 433a. The chamber 433b is also referred to as a collecting chamber 433b because it collects cooling water.
 第2のタンク部材433の長手方向両端には、板状の蓋部材が固定されている。分配室433aの一端には、冷却水を流入させる入口配管435が接続されている。集合室433bの一端には、冷媒を流出させる出口配管434が接続されている。 A plate-like lid member is fixed to both ends of the second tank member 433 in the longitudinal direction. An inlet pipe 435 through which cooling water flows is connected to one end of the distribution chamber 433a. An outlet pipe 434 through which refrigerant flows out is connected to one end of the collecting chamber 433b.
 冷媒RFは入口配管164を介して第1のタンク16cの分配室163bへ流入し、下流列の冷媒チューブ16aへ流入する。冷媒は、下流列の冷媒チューブ16a内を、図中の下から上へ流れる。下流列の冷媒チューブ16aから流出した冷媒は、第2のタンク43cの室を介して、上流列の冷媒チューブ16aへ流入する。冷媒は、上流列の冷媒チューブ16aを図中の上から下へ流れる。上流列の冷媒チューブ16aから流出した冷媒は、第1のタンク16cの集合室163aにて集合した後に、出口配管165から流出する。よって、熱交換器70では、冷媒が、下流列から上流列へUターン状に流れる。 The refrigerant RF flows into the distribution chamber 163b of the first tank 16c via the inlet pipe 164, and flows into the refrigerant tube 16a in the downstream row. The refrigerant flows from the bottom to the top in the drawing in the refrigerant tubes 16a in the downstream row. The refrigerant that has flowed out of the downstream-line refrigerant tube 16a flows into the upstream-line refrigerant tube 16a through the chamber of the second tank 43c. The refrigerant flows from the upper side to the lower side of the refrigerant tube 16a in the upstream row. The refrigerant that has flowed out of the refrigerant tube 16a in the upstream row flows out from the outlet pipe 165 after collecting in the collecting chamber 163a of the first tank 16c. Therefore, in the heat exchanger 70, the refrigerant flows in a U-turn shape from the downstream row to the upstream row.
 冷却水WTは入口配管435を介して第2のタンク43cの分配室433aへ流入し、下流列の水チューブ43aへ流入する。冷却水は、下流列の水チューブ43a内を、図中の上から下へ流れる。下流列の水チューブ43aから流出した冷媒は、第1のタンク16cの室を介して、上流列の水チューブ43aへ流入する。冷却水は、上流列の水チューブ43aを図中の下から上へ流れる。上流列の水チューブ43aから流出した冷却水は、第2のタンク43cの集合室433bにて集合した後に、出口配管434から流出する。よって、熱交換器70では、冷却水が、下流列から上流列へUターン状に流れる。 The cooling water WT flows into the distribution chamber 433a of the second tank 43c via the inlet pipe 435 and flows into the downstream water tube 43a. The cooling water flows from the top to the bottom in the figure in the downstream water tube 43a. The refrigerant that has flowed out of the downstream water tube 43a flows into the upstream water tube 43a through the chamber of the first tank 16c. The cooling water flows from the bottom to the top of the water tube 43a in the upstream row. The cooling water flowing out from the upstream water tube 43a collects in the collecting chamber 433b of the second tank 43c and then flows out from the outlet pipe 434. Therefore, in the heat exchanger 70, the cooling water flows in a U-turn shape from the downstream row to the upstream row.
 図4は、第2のタンク43c、すなわちタンク部72の断面を示している。第1のタンク16c、すなわちタンク部75も同じ構造を有している。タンク部72は、コア部71に面する第1のタンク部材431と、外側に面する第2のタンク部材433とを有する。さらに、タンク部72は、第1のタンク部材431と第2のタンク部材433との間に設けられた中間のプレート部材432を有する。これらの部材431、432、433は、それらの間に外側タンク73と内側タンク74とを区画するように接合されている。図示の例においては、第2のタンク部材433は、断面W字型の部材によって提供されている。第2のタンク部材433は、空気URの流れ方向に関して、上流側に位置し、室433bを提供する上流突条と、この上流突条より下流側に位置し、室433aを提供する下流突条とを有している。第2のタンク部材433は、空気URの流れ方向に関して上流室UPCと下流室DWCとを形成しているともいえる。図示されるように、上流室UPCと下流室DWCとは、区画されている。よって、第2のタンク部材433は、2つの突条内に、列方向RDに延びる上流室UPCと下流室DWCとを区画している。 FIG. 4 shows a cross section of the second tank 43 c, that is, the tank portion 72. The first tank 16c, that is, the tank portion 75 also has the same structure. The tank part 72 includes a first tank member 431 facing the core part 71 and a second tank member 433 facing the outside. Further, the tank unit 72 includes an intermediate plate member 432 provided between the first tank member 431 and the second tank member 433. These members 431, 432, and 433 are joined so as to partition the outer tank 73 and the inner tank 74 therebetween. In the illustrated example, the second tank member 433 is provided by a member having a W-shaped cross section. The second tank member 433 is located on the upstream side with respect to the flow direction of the air UR, the upstream ridge that provides the chamber 433b, and the downstream ridge that is located on the downstream side of the upstream ridge and provides the chamber 433a. And have. It can be said that the second tank member 433 forms an upstream chamber UPC and a downstream chamber DWC with respect to the flow direction of the air UR. As illustrated, the upstream chamber UPC and the downstream chamber DWC are partitioned. Therefore, the second tank member 433 partitions the upstream chamber UPC and the downstream chamber DWC extending in the row direction RD in the two protrusions.
 タンク部72、75と、複数のチューブ16a、43aとは、冷媒RFおよび冷却水WTを流すために接続されている。複数のチューブ16a、43aの一部は、外側タンク73、76の内部と連通するように接続されている。複数のチューブ16a、43aの残部は内側タンク74、77の内部と連通するように接続されている。上記一部のチューブ16a、43aは、内側タンク74、77の壁、すなわち第1のタンク部材431を貫通し、さらに内側タンク74、77内を横切って延びた後に、外側タンク73、76の内部に挿入されている。 The tank portions 72 and 75 and the plurality of tubes 16a and 43a are connected to flow the refrigerant RF and the cooling water WT. A part of the plurality of tubes 16 a and 43 a is connected to communicate with the inside of the outer tanks 73 and 76. The remaining portions of the plurality of tubes 16 a and 43 a are connected to communicate with the inside of the inner tanks 74 and 77. The partial tubes 16a and 43a pass through the walls of the inner tanks 74 and 77, that is, the first tank member 431, and further extend across the inner tanks 74 and 77. Has been inserted.
 図示されるように、タンク部72においては、水チューブ43aは、外側タンク73の内部と連通するように接続されている。冷媒チューブ16aは内側タンク74の内部と連通するように接続されている。水チューブ43aは、内側タンク74の壁、すなわち第1のタンク部材431を貫通し、さらに内側タンク74内を横切って延びた後に、外側タンク73の内部に挿入されている。 As shown in the figure, in the tank portion 72, the water tube 43 a is connected so as to communicate with the inside of the outer tank 73. The refrigerant tube 16 a is connected so as to communicate with the inside of the inner tank 74. The water tube 43 a passes through the wall of the inner tank 74, that is, the first tank member 431, extends further across the inner tank 74, and is inserted into the outer tank 73.
 図5において、実線の矢印は、冷媒RFの流れを示す。破線の矢印は、冷却水WTの流れを示す。熱交換器70に供給された冷媒RFは、下流列71dの冷媒チューブ16aを流れた後に、上流列71cの冷媒チューブ16aを流れる。このため、空気URと効率的に熱交換できる。冷媒熱交換器16内においては、タンク72、75と複数の冷媒チューブ16aとによって提供される流路断面積が、冷媒RFの流れの上流から下流に向けて連続的にまたは段階的に増加するように設定される。 In FIG. 5, the solid line arrows indicate the flow of the refrigerant RF. Dashed arrows indicate the flow of the cooling water WT. The refrigerant RF supplied to the heat exchanger 70 flows through the refrigerant tubes 16a in the upstream row 71c after flowing through the refrigerant tubes 16a in the downstream row 71d. For this reason, it is possible to efficiently exchange heat with the air UR. In the refrigerant heat exchanger 16, the flow path cross-sectional area provided by the tanks 72 and 75 and the plurality of refrigerant tubes 16a increases continuously or stepwise from upstream to downstream of the flow of the refrigerant RF. Is set as follows.
 また、熱交換器70に供給された冷却水WTは、下流列71dの水チューブ43aを流れた後に、上流列71cの水チューブ43aを流れる。このため、空気URと効率的に熱交換できる。また、冷却水WTが低温であるとき、コア部71の風下側が低温になりやすい。このため、コア部71の風下側に配置された温度センサ23によって、霜の発生を正確に検出することができる。 The cooling water WT supplied to the heat exchanger 70 flows through the water tube 43a in the upstream row 71c after flowing through the water tube 43a in the downstream row 71d. For this reason, it is possible to efficiently exchange heat with the air UR. Moreover, when the cooling water WT is low temperature, the leeward side of the core part 71 tends to become low temperature. For this reason, generation | occurrence | production of frost can be correctly detected with the temperature sensor 23 arrange | positioned at the leeward side of the core part 71. FIG.
 冷媒RFと冷却水WTとは、熱交換器70内のほとんどの部分において対向流となって流れる。このため、冷媒RFと冷却水WTとの間においても、効率的な熱交換を提供できる。 The refrigerant RF and the cooling water WT flow as counterflows in most parts of the heat exchanger 70. For this reason, efficient heat exchange can be provided also between refrigerant | coolant RF and the cooling water WT.
 図6に図示されるように、複数のチューブ16a、43aは、空気URの流れに直交する方向に列をなすように配置されている。さらに、複数のチューブ16a、43aは、空気URの流れ方向に沿って多列をなすように配置されている。複数のチューブ16a、43aは、空気URの流れ方向に関して、少なくとも上流列71cと下流列71dとを含む複数の列を構成している。複数のチューブ16a、43aは、二列をなすように配置することができる。複数のチューブ16a、43aは、空気URの流れ方向の上流側に位置する上流列71cと、上流列71cより下流側に位置する下流列71dとを形成するように配置されている。 As shown in FIG. 6, the plurality of tubes 16a and 43a are arranged in a row in a direction orthogonal to the flow of the air UR. Furthermore, the plurality of tubes 16a and 43a are arranged in multiple rows along the flow direction of the air UR. The plurality of tubes 16a and 43a form a plurality of rows including at least the upstream row 71c and the downstream row 71d with respect to the flow direction of the air UR. The plurality of tubes 16a and 43a can be arranged in two rows. The plurality of tubes 16a and 43a are arranged so as to form an upstream row 71c located on the upstream side in the flow direction of the air UR and a downstream row 71d located on the downstream side of the upstream row 71c.
 冷媒チューブ16aおよび水チューブ43aは、上流列71cおよび下流列71dの両方において、交互に配置されている。従って、吸熱用の空気通路16bと放熱用の空気通路43bとは、共有されている。共通化された通路16b、43bには、フィン50が配置されている。 The refrigerant tubes 16a and the water tubes 43a are alternately arranged in both the upstream row 71c and the downstream row 71d. Therefore, the air passage 16b for heat absorption and the air passage 43b for heat dissipation are shared. Fins 50 are disposed in the common passages 16b and 43b.
 列においては、少なくとも一部において、冷媒チューブ16aと水チューブ43aとが隣接している。列においては、少なくとも一部において、冷媒チューブ16aの両側に水チューブ43aを位置させることができる。列においては、少なくとも一部において、水チューブ43aの両側に冷媒チューブ16aを位置させることができる。列においては、少なくとも一部において、冷媒チューブ16aと水チューブ43aとを交互に位置させることができる。少なくとも上流列71cにおいて冷媒チューブ16aの両側に水チューブ43aが位置するように、冷媒チューブ16aと水チューブ43aとが交互に配置されている。つまり、熱交換器70においては、空気URの流入側において、冷媒チューブ16aの両側に水チューブ43aを位置させて、それらが並んで配置されている。この構成によると、冷媒チューブ16aを広い範囲に分散させることができる。 In the row, at least in part, the refrigerant tube 16a and the water tube 43a are adjacent to each other. In the row, at least in part, the water tubes 43a can be positioned on both sides of the refrigerant tube 16a. In the row, at least in part, the refrigerant tubes 16a can be positioned on both sides of the water tube 43a. In at least part of the rows, the refrigerant tubes 16a and the water tubes 43a can be alternately positioned. At least in the upstream row 71c, the refrigerant tubes 16a and the water tubes 43a are alternately arranged so that the water tubes 43a are positioned on both sides of the refrigerant tube 16a. That is, in the heat exchanger 70, the water tubes 43a are positioned on both sides of the refrigerant tube 16a on the inflow side of the air UR, and they are arranged side by side. According to this configuration, the refrigerant tubes 16a can be dispersed in a wide range.
 冷媒チューブ16aと水チューブ43aとは、ひとつの冷媒チューブ16aの隣に、フィン50を介してひとつの水チューブ43aが位置するように配置されている。熱交換器70の上流列71cの少なくとも一部分において、ひとつの冷媒チューブ16aを2つの水チューブ43aの間に配置している。また、熱交換器70の上流列71cの少なくとも一部分において、ひとつの水チューブ43aを2つの冷媒チューブ16aの間に配置している。言い換えると、冷媒チューブ16aと水チューブ43aとは、少なくとも上流列71cにおいて、交互に配置されている。さらに、冷媒チューブ16aと水チューブ43aとは、下流列71dにおいても、交互に配置することができる。 The refrigerant tube 16a and the water tube 43a are arranged next to one refrigerant tube 16a so that one water tube 43a is located via the fin 50. In at least a part of the upstream row 71c of the heat exchanger 70, one refrigerant tube 16a is disposed between the two water tubes 43a. Further, in at least a part of the upstream row 71c of the heat exchanger 70, one water tube 43a is disposed between the two refrigerant tubes 16a. In other words, the refrigerant tubes 16a and the water tubes 43a are alternately arranged at least in the upstream row 71c. Furthermore, the refrigerant tubes 16a and the water tubes 43a can be alternately arranged also in the downstream row 71d.
 図示されるように、上流列71cの少なくとも一部分においては、冷媒チューブ16aと水チューブ43aとが列方向RDに並べて配置されている。また、上流列71cの少なくとも一部分においては、冷媒チューブ16aと水チューブ43aとが列方向RDに並べて配置されている。言い換えると、空気URの流れ方向に関して、同じ位置に、冷媒チューブ16aと水チューブ43aとが位置付けられている。 As shown in the figure, in at least a part of the upstream row 71c, the refrigerant tubes 16a and the water tubes 43a are arranged in the row direction RD. Further, in at least a part of the upstream row 71c, the refrigerant tubes 16a and the water tubes 43a are arranged side by side in the row direction RD. In other words, the refrigerant tube 16a and the water tube 43a are positioned at the same position with respect to the flow direction of the air UR.
 この実施形態では、下流列71dの少なくとも一部おいて、冷媒チューブ16aと水チューブ43aとが列方向RDに並んで配置される。この構成は、温度センサ23によって、冷媒チューブ16aと水チューブ43aとの両方からの影響を検出するために有利である。例えば、冷媒チューブ16aと水チューブ43aとの両方によって空気URが冷却される場合、冷媒チューブ16aの低温、または水チューブ43aの低温のいずれかに偏ることなく平均的な温度を検出することができる。 In this embodiment, the refrigerant tube 16a and the water tube 43a are arranged side by side in the column direction RD in at least a part of the downstream column 71d. This configuration is advantageous for detecting the influence from both the refrigerant tube 16a and the water tube 43a by the temperature sensor 23. For example, when the air UR is cooled by both the refrigerant tube 16a and the water tube 43a, the average temperature can be detected without being biased to either the low temperature of the refrigerant tube 16a or the low temperature of the water tube 43a. .
 熱交換器70は、複数のチューブ16a、43aの広い側面が重力方向の上下方向に沿って広がるように配置される。熱交換器70に凝縮水が付着する場合、凝縮水は低温部分に発生する。熱交換器70においては、冷媒RFが低温媒体として機能する。冷媒チューブ16aの表面には、凝縮水が早期に付着する。また、冷媒チューブ16aの表面には、大量の凝縮水が発生する。凝縮水は冷媒チューブ16aの上において流れ、広がる。このため、冷媒チューブ16aの表面には、水膜が形成される。凝縮水は、この水膜に沿って、上から下へ流れて排出される。冷媒チューブ16aは、熱交換器70における凝縮水の排水経路を提供する。一方、水チューブ43aは比較的高温である。このため、水チューブ43aの表面に発生する凝縮水は少ない。よって、水チューブ43aの表面には、凝縮水を流すための水膜が形成されにくい。熱交換器70においては、すべての空気通路16b、43bに隣接して冷媒チューブ163aが配置されているから、良好な排水性が提供される。この実施形態では、上流列71cと下流列71dとの両方に冷媒チューブ16aが配置されている。よって、凝縮水のための排水経路が、上流列71cと下流列71dとの両方に形成されることにより、空気URの流れへの水滴の飛び出しが抑制される。 The heat exchanger 70 is arranged so that the wide side surfaces of the plurality of tubes 16a and 43a spread along the vertical direction of the gravity direction. When condensed water adheres to the heat exchanger 70, the condensed water is generated in a low temperature portion. In the heat exchanger 70, the refrigerant RF functions as a low temperature medium. Condensed water adheres to the surface of the refrigerant tube 16a at an early stage. A large amount of condensed water is generated on the surface of the refrigerant tube 16a. The condensed water flows and spreads on the refrigerant tube 16a. For this reason, a water film is formed on the surface of the refrigerant tube 16a. Condensed water flows along the water film from top to bottom and is discharged. The refrigerant tube 16 a provides a drainage path for the condensed water in the heat exchanger 70. On the other hand, the water tube 43a is relatively hot. For this reason, the condensed water which generate | occur | produces on the surface of the water tube 43a is few. Therefore, it is difficult to form a water film for flowing condensed water on the surface of the water tube 43a. In the heat exchanger 70, since the refrigerant | coolant tube 163a is arrange | positioned adjacent to all the air passages 16b and 43b, favorable drainage is provided. In this embodiment, the refrigerant tubes 16a are arranged in both the upstream row 71c and the downstream row 71d. Therefore, the drainage path for the condensed water is formed in both the upstream row 71c and the downstream row 71d, so that the drop of water droplets into the air UR flow is suppressed.
 冷媒回路10が運転されると、車室内の冷房が実行される。冷房運転は、車両の利用者によって操作されるスイッチによって起動される。冷媒回路10には、実線矢印に示すように冷媒が流れる。圧縮機11から吐出された高圧冷媒は、室外熱交換器21へ流入する。室外熱交換器21へ流入した高圧冷媒は、ファン17によって送風された空気ARに放熱する。室外熱交換器21から流出した冷媒は、膨張弁19にて減圧膨張される。膨張弁19から流出した冷媒は、室内熱交換器20へ流入して、空気URから吸熱して蒸発する。これにより、空気URが冷却される。室内熱交換器20から流出した冷媒は、圧縮機11に吸入されて再び圧縮される。 When the refrigerant circuit 10 is operated, the passenger compartment is cooled. The cooling operation is activated by a switch operated by a vehicle user. The refrigerant flows through the refrigerant circuit 10 as indicated by solid line arrows. The high-pressure refrigerant discharged from the compressor 11 flows into the outdoor heat exchanger 21. The high-pressure refrigerant that has flowed into the outdoor heat exchanger 21 radiates heat to the air AR blown by the fan 17. The refrigerant flowing out of the outdoor heat exchanger 21 is decompressed and expanded by the expansion valve 19. The refrigerant flowing out of the expansion valve 19 flows into the indoor heat exchanger 20, absorbs heat from the air UR, and evaporates. Thereby, the air UR is cooled. The refrigerant flowing out of the indoor heat exchanger 20 is sucked into the compressor 11 and compressed again.
 制御装置100は、冷房運転を提供するために、冷媒回路10を運転する。冷媒回路10が運転されるとき、冷媒熱交換器16において冷媒が蒸発する。この蒸発冷媒によって空気URが冷却される。この結果、車室内の冷房が提供される。このとき、温度センサ23によって検出された温度に基づいて、圧縮機11の運転が制御され、熱交換器70における霜の発生が抑制される。 The control device 100 operates the refrigerant circuit 10 in order to provide the cooling operation. When the refrigerant circuit 10 is operated, the refrigerant evaporates in the refrigerant heat exchanger 16. The air UR is cooled by the evaporative refrigerant. As a result, cooling in the passenger compartment is provided. At this time, the operation of the compressor 11 is controlled based on the temperature detected by the temperature sensor 23, and the generation of frost in the heat exchanger 70 is suppressed.
 制御装置100は、熱源HSの温度を望ましい温度範囲に維持するように冷却水回路40を運転する。冷却水回路40が運転されると、冷却水回路40には冷却水WTが循環する。ひとつの態様では、制御装置100は、冷却水WTの温度を基準温度の近傍に維持するように冷却水回路40を制御する。冷却水WTは、ラジエータ43において空気URと熱交換する。ラジエータ43は、冷却水WTの温度に応じて、空気URを冷却する冷却器、または空気URを加熱する加熱器として機能する。また、冷却水WTは、ラジエータ43において、冷媒熱交換器16、すなわち冷媒RFとも熱交換する。ラジエータ43は、冷媒RFによって冷却水WTを冷却する放熱器として機能する。 The control device 100 operates the cooling water circuit 40 so as to maintain the temperature of the heat source HS in a desired temperature range. When the cooling water circuit 40 is operated, the cooling water WT circulates in the cooling water circuit 40. In one aspect, the control device 100 controls the cooling water circuit 40 so as to maintain the temperature of the cooling water WT near the reference temperature. The cooling water WT exchanges heat with the air UR in the radiator 43. The radiator 43 functions as a cooler that cools the air UR or a heater that heats the air UR according to the temperature of the cooling water WT. The cooling water WT also exchanges heat with the refrigerant heat exchanger 16, that is, the refrigerant RF, in the radiator 43. The radiator 43 functions as a radiator that cools the cooling water WT with the refrigerant RF.
 冷却水回路40が運転されると、ラジエータ43において、冷却水WTは空気URと熱交換する。この結果、冷却水WTを介して熱源HSの温度が調節される。典型的な運転状態では、熱源HSの冷却が提供される。このように、制御装置100は、冷却水WTから空気URへ放熱するように冷却水回路40を制御するように構成することができる。この構成によると、冷却水WTから空気URへの放熱によって冷却水WTを冷却できる。冷却された冷却水WTは、熱源HSに供給されるから、空気URを使って熱源HSの冷却が可能となる。 When the cooling water circuit 40 is operated, the cooling water WT exchanges heat with the air UR in the radiator 43. As a result, the temperature of the heat source HS is adjusted via the cooling water WT. In typical operating conditions, cooling of the heat source HS is provided. Thus, the control device 100 can be configured to control the cooling water circuit 40 so as to radiate heat from the cooling water WT to the air UR. According to this configuration, the cooling water WT can be cooled by heat radiation from the cooling water WT to the air UR. Since the cooled cooling water WT is supplied to the heat source HS, the heat source HS can be cooled using the air UR.
 制御装置100は、車両に利用者がいないときに、空調に配慮することなく、熱源HSを冷却するように構成することができる。例えば、駐車中にバッテリを充電する場合に、送風機32を利用して熱源HSとしてのバッテリの温度を調節することができる。 The control device 100 can be configured to cool the heat source HS without considering air conditioning when there is no user in the vehicle. For example, when charging the battery during parking, the temperature of the battery as the heat source HS can be adjusted using the blower 32.
 制御装置100は、冷却水WTの温度を空気URの温度調節に利用するように冷却水回路40を運転することができる。この場合、ラジエータ43は、冷却水WTの温度に応じて、空気URを冷却する冷却器、または空気URを加熱する加熱器として機能する。 The control device 100 can operate the cooling water circuit 40 so as to use the temperature of the cooling water WT for adjusting the temperature of the air UR. In this case, the radiator 43 functions as a cooler that cools the air UR or a heater that heats the air UR in accordance with the temperature of the cooling water WT.
 制御装置100は、冷却水WTによって空気URを冷却するように冷却水回路40を制御するように構成することができる。この構成によると、冷却水WTによって空気URを冷却することができる。この結果、冷媒回路10だけに依存することなく、空気URの冷却が可能となる。 The control device 100 can be configured to control the cooling water circuit 40 so as to cool the air UR with the cooling water WT. According to this configuration, the air UR can be cooled by the cooling water WT. As a result, the air UR can be cooled without depending on the refrigerant circuit 10 alone.
 制御装置100は、温度センサ23によって検出された温度に基づいて、ポンプ41の回転数を調節することができる。例えば、制御装置100は、熱交換器70の温度が霜を生じるほどに低温になると、ポンプ41の回転数を増加させることにより、熱源HSからラジエータ43への放熱量を増加させ、霜の付着、成長を抑制することができる。例えば、制御装置100は、熱交換器70の温度が過剰に高温になると、ポンプ41の回転数を低下させることにより、熱源HSからラジエータ43への放熱量を抑制することができる。 The control device 100 can adjust the rotation speed of the pump 41 based on the temperature detected by the temperature sensor 23. For example, when the temperature of the heat exchanger 70 becomes low enough to cause frost, the control device 100 increases the amount of heat released from the heat source HS to the radiator 43 by increasing the number of rotations of the pump 41, and the frost adheres. , Growth can be suppressed. For example, when the temperature of the heat exchanger 70 becomes excessively high, the control device 100 can suppress the amount of heat released from the heat source HS to the radiator 43 by reducing the rotation speed of the pump 41.
 この場合、空調装置1は、利用側熱交換器16における温度を検出する温度センサ23を備える。制御装置100は、温度センサ23の検出温度に基づいて冷却用途における冷媒回路10を制御するとともに、温度センサ23の検出温度に基づいて冷却水回路40を制御する。この構成によると、冷媒回路10を制御するための温度センサを冷却水回路40を制御するために利用することができる。温度センサ23によって熱交換器70の下流における空気温度Teが検出される場合、冷却水回路40の流量は、空気温度Teを目標温度に一致させるようにフィードバック制御される。 In this case, the air conditioner 1 includes a temperature sensor 23 that detects the temperature in the use-side heat exchanger 16. The control device 100 controls the refrigerant circuit 10 in the cooling application based on the temperature detected by the temperature sensor 23 and controls the cooling water circuit 40 based on the temperature detected by the temperature sensor 23. According to this configuration, the temperature sensor for controlling the refrigerant circuit 10 can be used for controlling the cooling water circuit 40. When the air temperature Te downstream of the heat exchanger 70 is detected by the temperature sensor 23, the flow rate of the cooling water circuit 40 is feedback controlled so that the air temperature Te matches the target temperature.
 制御装置100は、冷媒回路10と冷却水回路40との両方を運転することができる。この場合、冷媒熱交換器16において蒸発する冷媒によって、空気URを冷却しながら、ラジエータ34によって空気URを加熱または冷却することができる。さらに、冷媒熱交換器16において蒸発する冷媒によって、ラジエータ43の冷却水WTを冷却することができる。この結果、冷媒回路10と冷却水回路40とによって熱源HSを冷却することができる。 The control device 100 can operate both the refrigerant circuit 10 and the cooling water circuit 40. In this case, the air UR can be heated or cooled by the radiator 34 while the air UR is cooled by the refrigerant evaporated in the refrigerant heat exchanger 16. Furthermore, the coolant WT of the radiator 43 can be cooled by the refrigerant evaporated in the refrigerant heat exchanger 16. As a result, the heat source HS can be cooled by the refrigerant circuit 10 and the cooling water circuit 40.
 制御装置100は、冷却水回路40によるラジエータ43への冷却水WTの供給を停止し、冷媒回路10のみを運転することができる。この場合、最大の冷却性能が発揮される。 The control device 100 can stop the supply of the cooling water WT to the radiator 43 by the cooling water circuit 40 and operate only the refrigerant circuit 10. In this case, the maximum cooling performance is exhibited.
 制御装置100は、冷媒RFによって冷却水WTの温度を調節するように冷媒回路10および冷却水回路40を制御するように構成することができる。この構成によると、冷媒RFと冷却水WTとの熱交換によって、冷却水WTの温度が調節される。例えば、冷媒RFの温度が冷却水WTの温度より低い場合、冷媒RFによって冷却水WTを冷却できる。また、冷媒RFの温度が冷却水WTの温度より高い場合、冷媒RFによって冷却水WTを加熱できる。この場合、空気URの温度を調節することによる空調と、冷却水WTの温度を調節することによる熱源HSの温度制御とを同時に実行することができる。 The control device 100 can be configured to control the refrigerant circuit 10 and the cooling water circuit 40 so as to adjust the temperature of the cooling water WT by the refrigerant RF. According to this configuration, the temperature of the cooling water WT is adjusted by heat exchange between the refrigerant RF and the cooling water WT. For example, when the temperature of the refrigerant RF is lower than the temperature of the cooling water WT, the cooling water WT can be cooled by the refrigerant RF. Further, when the temperature of the refrigerant RF is higher than the temperature of the cooling water WT, the cooling water WT can be heated by the refrigerant RF. In this case, air conditioning by adjusting the temperature of the air UR and temperature control of the heat source HS by adjusting the temperature of the cooling water WT can be performed simultaneously.
 制御装置100は、熱交換器70への霜の付着、および/または霜を除去するために、冷媒回路10の運転中、および/または運転の後に、冷却水回路40を運転することができる。この場合、ラジエータ34によって熱交換器70が加熱される。この結果、熱交換器70上への霜の付着、および成長を抑制することができる。 The control device 100 can operate the cooling water circuit 40 during and / or after the operation of the refrigerant circuit 10 in order to remove frost from the heat exchanger 70 and / or frost. In this case, the heat exchanger 70 is heated by the radiator 34. As a result, frost adhesion and growth on the heat exchanger 70 can be suppressed.
 制御装置100は、熱交換器70における冷媒RFと冷却水WTとの熱交換を促進するために、空気URの流量を減少させるか、空気URの流れを停止させることができる。この場合、冷媒RFと空気URとの熱交換と、冷却水WTと空気URとの熱交換とが抑制され、冷媒RFと空気URとの間の熱交換を増加させることができる。制御装置100は、熱源HSの冷却を促進するために、空気URの流量を、空調のために求められる流量より抑制する制御部を備えることができる。 The control device 100 can reduce the flow rate of the air UR or stop the flow of the air UR in order to promote heat exchange between the refrigerant RF and the cooling water WT in the heat exchanger 70. In this case, heat exchange between the refrigerant RF and the air UR and heat exchange between the cooling water WT and the air UR are suppressed, and heat exchange between the refrigerant RF and the air UR can be increased. The control device 100 can include a control unit that suppresses the flow rate of the air UR from the flow rate required for air conditioning in order to promote cooling of the heat source HS.
 空調装置1は、冷媒RFと冷却水WTとの間の熱交換量を調節するために、空気URの流量を調節する風量調節装置を備えることができる。風潮調節装置は、送風機32と制御装置100とによって提供することができる。この構成によると、冷媒RFと冷却水WTとの間の熱交換量を空気URの流量によって調節することができる。空気URの流量を減少させることにより、冷媒RFによる冷却水WTの冷却量の増加、または冷媒RFによる冷却水WTの加熱量の増加を図ることができる。 The air conditioner 1 can include an air volume adjusting device that adjusts the flow rate of the air UR in order to adjust the amount of heat exchange between the refrigerant RF and the cooling water WT. The wind regulation device can be provided by the blower 32 and the control device 100. According to this configuration, the amount of heat exchange between the refrigerant RF and the cooling water WT can be adjusted by the flow rate of the air UR. By reducing the flow rate of the air UR, it is possible to increase the cooling amount of the cooling water WT by the refrigerant RF or increase the heating amount of the cooling water WT by the refrigerant RF.
 冷却水回路60が運転されると、冷却水回路60に冷却水が循環する。冷却水回路60からヒータコア12に供給される温水によってヒータコア12は、空気URを加熱する。これにより、車室内の暖房が可能である。 When the cooling water circuit 60 is operated, the cooling water circulates in the cooling water circuit 60. The heater core 12 heats the air UR with the hot water supplied from the cooling water circuit 60 to the heater core 12. Thereby, heating of a vehicle interior is possible.
 制御装置100は、熱交換器70における霜の付着に応答して、冷媒RFの流量、または冷却水WTの流量を制御するように構成することができる。この構成によると、熱交換器70における霜の付着に応答して、冷媒RFまたは冷却水WTの流量が調節される。例えば、冷媒RFが空気URを冷却している場合、制御装置100は、霜の付着に応答して、冷媒流量を減少させる。冷却水WTが空気URを冷却している場合、制御装置100は、冷却水WTの流量を減少させる。冷媒RFが空気URを冷却し、冷却水WTが空気URを加熱している場合、制御装置100は、冷却水WTの流量を増加させる。冷媒RFが空気URを加熱し、冷却水WTが空気URを冷却している場合、制御装置100は、冷媒RFの流量を増加させる。 The control device 100 can be configured to control the flow rate of the refrigerant RF or the flow rate of the cooling water WT in response to the adhesion of frost in the heat exchanger 70. According to this configuration, the flow rate of the refrigerant RF or the cooling water WT is adjusted in response to the adhesion of frost in the heat exchanger 70. For example, when the refrigerant RF cools the air UR, the control device 100 decreases the refrigerant flow rate in response to the attachment of frost. When cooling water WT is cooling air UR, control device 100 reduces the flow rate of cooling water WT. When the refrigerant RF cools the air UR and the cooling water WT heats the air UR, the control device 100 increases the flow rate of the cooling water WT. When the refrigerant RF heats the air UR and the cooling water WT cools the air UR, the control device 100 increases the flow rate of the refrigerant RF.
 (第2実施形態)
 以下の説明においては、先行する実施形態からの変更点、相違点を主として説明する。後続の実施形態は、先行する実施形態のいずれかを基礎的形態とする変形例である。上記実施形態の熱交換器70では、上流列71cと下流列71dとの両方において冷媒チューブ16aと水チューブ43aとを交互に配置した。これに代えて、上流列71cのみにおいて冷媒チューブ16aと水チューブ43aとを交互に配置してもよい。
(Second Embodiment)
In the following description, changes and differences from the preceding embodiment will be mainly described. Subsequent embodiments are modifications based on any of the preceding embodiments. In the heat exchanger 70 of the above embodiment, the refrigerant tubes 16a and the water tubes 43a are alternately arranged in both the upstream row 71c and the downstream row 71d. Instead, the refrigerant tubes 16a and the water tubes 43a may be alternately arranged only in the upstream row 71c.
 この実施形態では、複数のチューブ16a、43aとタンク部72、73とによって、図7および図8に図示されるような冷媒RFと冷却水WTとの流れ経路が提供される。 In this embodiment, the plurality of tubes 16a and 43a and the tank portions 72 and 73 provide a flow path between the refrigerant RF and the cooling water WT as illustrated in FIGS.
 図7において、外側タンク73の上流の室433bは、冷却水WTの入口および出口を提供する。外側タンク73の上流室433b内には、仕切り73aが設けられる。仕切り73aは、熱交換器70内を、左右に、すなわち列方向RDにおいて分割する。外側タンク77の上流の室163aは、冷却水WTをU字型に流すための連通部を提供する。この結果、冷却水WTの流れ経路は、コア部71を正面から見て、U字型を描く。 7, a chamber 433b upstream of the outer tank 73 provides an inlet and an outlet for the cooling water WT. A partition 73 a is provided in the upstream chamber 433 b of the outer tank 73. The partition 73a divides the heat exchanger 70 left and right, that is, in the column direction RD. The chamber 163a upstream of the outer tank 77 provides a communication part for allowing the cooling water WT to flow in a U-shape. As a result, the flow path of the cooling water WT is U-shaped when the core portion 71 is viewed from the front.
 外側タンク76の下流の室163bは、冷媒RFの入口および出口を提供する。外側タンク76の下流室163b内には、仕切り76aが設けられる。仕切り76aは、熱交換器70内を、左右に、すなわち列方向RDにおいて分割する。外側タンク73の下流の室433aは、冷媒RFをU字型に流すための連通部を提供する。この結果、冷媒RFの流れ経路は、コア部71を正面から見て、U字型を描く。 The chamber 163b downstream of the outer tank 76 provides an inlet and an outlet for the refrigerant RF. A partition 76 a is provided in the downstream chamber 163 b of the outer tank 76. The partition 76a divides the heat exchanger 70 left and right, that is, in the column direction RD. The chamber 433a downstream of the outer tank 73 provides a communication part for flowing the refrigerant RF in a U shape. As a result, the flow path of the refrigerant RF is U-shaped when the core portion 71 is viewed from the front.
 内側タンク74は、外側タンク73の下流の室433aに連通している。内側タンク77は、外側タンク76の下流の室163bに連通している。内側タンク74、77は、空気URの流れ方向に沿って並ぶ2つの冷媒チューブ16aの両端において、それらを連通している。よって、内側タンク74、77は、行方向CDに並ぶ2つの冷媒チューブ16aを並列接続している。 The inner tank 74 communicates with a chamber 433a downstream of the outer tank 73. The inner tank 77 communicates with a chamber 163b downstream of the outer tank 76. The inner tanks 74 and 77 communicate with each other at both ends of the two refrigerant tubes 16a arranged in the flow direction of the air UR. Therefore, the inner tanks 74 and 77 are connected in parallel with the two refrigerant tubes 16a arranged in the row direction CD.
 図8において、上流列71cにおいては、冷媒チューブ16aと水チューブ43aとが交互に配置されている。下流列71dにおいては、冷媒チューブ16aだけが配置されている。この構成では、冷媒チューブ16aの数は、水チューブ43aの数より多い。このため、冷媒RFの総伝熱面積RFSは、冷却水WTの総伝熱面積WTSより大きくなるように、すなわちRFS>WTSとなるように、設定されている。この構成により、冷圧冷媒用の利用側熱交換器としての性能が優先的に提供される。 In FIG. 8, in the upstream row 71c, the refrigerant tubes 16a and the water tubes 43a are alternately arranged. In the downstream row 71d, only the refrigerant tube 16a is disposed. In this configuration, the number of refrigerant tubes 16a is greater than the number of water tubes 43a. For this reason, the total heat transfer area RFS of the refrigerant RF is set to be larger than the total heat transfer area WTS of the cooling water WT, that is, RFS> WTS. This configuration preferentially provides performance as a use side heat exchanger for cold pressure refrigerant.
 下流列71dにおける冷媒チューブ16aの数は、下流列71dにおける水チューブ43aの数より多い。下流列71dにおける水チューブ43aの数は0である。冷媒チューブ16aは下流列71dにおける多数派である。よって、凝縮水の発生を下流列71dに偏らせることができる。凝縮水のための経路が、下流列71dに、早期に、多く形成される。下流列71dに排水経路が形成されることにより、空気URの流れへの水滴の飛び出しが抑制される。 The number of refrigerant tubes 16a in the downstream row 71d is larger than the number of water tubes 43a in the downstream row 71d. The number of water tubes 43a in the downstream row 71d is zero. The refrigerant tubes 16a are majority in the downstream row 71d. Therefore, the generation of condensed water can be biased toward the downstream row 71d. Many paths for condensed water are formed early in the downstream row 71d. By forming the drainage path in the downstream row 71d, the splash of water droplets into the flow of the air UR is suppressed.
 図7に戻り、冷媒RFは、下流の室163bと内側タンク77とを経由して、コア部71の図中右半部の複数の冷媒チューブ16aに流入する。このとき、ひとつの行においては、2つの冷媒チューブ16aに冷媒が供給される。さらに、上記行と隣接する行では、下流列71dに位置するひとつの冷媒チューブ16aに冷媒が供給される。冷媒RFは、コア部71の右半部を流れた後、左半部を流れて、熱交換器70から出てゆく。 Returning to FIG. 7, the refrigerant RF flows into the plurality of refrigerant tubes 16 a in the right half of the core portion 71 in the drawing via the downstream chamber 163 b and the inner tank 77. At this time, in one row, the refrigerant is supplied to the two refrigerant tubes 16a. Further, in the row adjacent to the row, the refrigerant is supplied to one refrigerant tube 16a located in the downstream column 71d. The refrigerant RF flows through the left half of the core 71 and then flows out of the heat exchanger 70.
 冷却水WTは、上流の室433bから、コア部71の図中右半部の複数の水チューブ43aに流入する。冷却水WTは、コア部71の右半部を流れた後、左半部を流れて、熱交換器70から出てゆく。 The cooling water WT flows from the upstream chamber 433b into the plurality of water tubes 43a in the right half of the core portion 71 in the drawing. The cooling water WT flows through the left half of the core 71 after flowing through the right half of the core 71 and exits from the heat exchanger 70.
 この構成によると、冷媒チューブ16aは、上流列71cより下流列71dに多く配置される。このため、空気URの冷却に好適である。また、水チューブ43aは、下流列71dより上流列71cに多く配置される。このため、コア部71の上流端における過剰な温度低下を抑制することができる。この結果、コア部71への霜の付着を抑制できる。 According to this configuration, more refrigerant tubes 16a are arranged in the downstream row 71d than in the upstream row 71c. For this reason, it is suitable for cooling the air UR. Further, more water tubes 43a are arranged in the upstream row 71c than in the downstream row 71d. For this reason, an excessive temperature drop at the upstream end of the core portion 71 can be suppressed. As a result, adhesion of frost to the core portion 71 can be suppressed.
 この実施形態では、図8に図示されるように上流列71cに冷媒チューブ16aと水チューブ43aとを配置し、下流列71dに冷媒チューブ16aだけを配置した。これに代えて、上流列71cに冷媒チューブ16aだけを配置し、下流列71dに冷媒チューブ16aと水チューブ43aとを配置してもよい。 In this embodiment, as shown in FIG. 8, the refrigerant tubes 16a and the water tubes 43a are arranged in the upstream row 71c, and only the refrigerant tubes 16a are arranged in the downstream row 71d. Instead, only the refrigerant tubes 16a may be arranged in the upstream row 71c, and the refrigerant tubes 16a and the water tubes 43a may be arranged in the downstream row 71d.
 (第3実施形態)
 上記実施形態の熱交換器70では、隣り合う冷媒チューブ16aと水チューブ43aとにおいて、冷媒RFの流れ方向と冷却水WTの流れ方向とを逆方向とした。これに代えて、この実施形態では、図9に図示されるように、冷媒RFと冷却水WTとの流れ方向を同じとする。冷却水WTは、上流の室433bから、コア部71の図中左半部の複数の水チューブ43aに流入する。冷却水WTは、コア部71の左半部を流れた後、右半部を流れて、熱交換器70から出てゆく。
(Third embodiment)
In the heat exchanger 70 of the above embodiment, the refrigerant RF flow direction and the cooling water WT flow direction are opposite in the adjacent refrigerant tube 16a and water tube 43a. Instead, in this embodiment, as shown in FIG. 9, the flow directions of the refrigerant RF and the cooling water WT are the same. The cooling water WT flows from the upstream chamber 433b into the plurality of water tubes 43a in the left half of the core portion 71 in the drawing. The cooling water WT flows through the left half of the core portion 71, then flows through the right half, and exits from the heat exchanger 70.
 この構成によると、冷媒RFと冷却水WTとの間の熱交換が抑制される。この結果、冷媒RFと空気URとの熱交換、および冷却水WTと空気URとの熱交換が促進される。 According to this configuration, heat exchange between the refrigerant RF and the cooling water WT is suppressed. As a result, heat exchange between the refrigerant RF and the air UR and heat exchange between the cooling water WT and the air UR are promoted.
 (第4実施形態)
 上記実施形態の熱交換器70では、上流列71cにおいて、冷媒チューブ16aと水チューブ43aとを交互に配置した。これに代えて、この実施形態では、図10に図示されるように、複数の冷媒チューブ16aからなる冷媒チューブ群と、複数の水チューブ43aからなる水チューブ群とを交互に配置する。図示の例では、2つの冷媒チューブ16aからなる冷媒チューブ群と、3つの水チューブ43aからなる水チューブ群とを交互に並べている。この構成においても、コア部71の少なくとも一部においては、冷媒チューブ16aと水チューブ43aとが列方向RDに並ぶ。この構成によると、上流列71c内に温度分布を与えることができる。
(Fourth embodiment)
In the heat exchanger 70 of the above embodiment, the refrigerant tubes 16a and the water tubes 43a are alternately arranged in the upstream row 71c. Instead, in this embodiment, as illustrated in FIG. 10, a refrigerant tube group including a plurality of refrigerant tubes 16 a and a water tube group including a plurality of water tubes 43 a are alternately arranged. In the illustrated example, a refrigerant tube group composed of two refrigerant tubes 16a and a water tube group composed of three water tubes 43a are alternately arranged. Also in this configuration, in at least a part of the core portion 71, the refrigerant tube 16a and the water tube 43a are arranged in the column direction RD. According to this configuration, a temperature distribution can be given in the upstream row 71c.
 図示の例に代えて、ひとつの冷媒チューブ16aと水チューブ群とを交互に配置してもよい。また、ひとつの水チューブ43aと冷媒チューブ群とを交互に配置してもよい。さらに、冷媒チューブ群に属する冷媒チューブ16aの数と、水チューブ群に属する水チューブ43aの数とを変動させてもよい。また、下流列71dにおいても、上記に例示した構成のいずれかを採用することができる。さらに、上流列71cと同様の配置構造を、下流列71dにも採用してもよい。 Instead of the illustrated example, one refrigerant tube 16a and a group of water tubes may be alternately arranged. Moreover, you may arrange | position the one water tube 43a and a refrigerant | coolant tube group alternately. Further, the number of refrigerant tubes 16a belonging to the refrigerant tube group and the number of water tubes 43a belonging to the water tube group may be varied. Also, any of the configurations exemplified above can be adopted in the downstream row 71d. Furthermore, the same arrangement structure as that of the upstream row 71c may be adopted for the downstream row 71d.
 (第5実施形態)
 上記実施形態では、上流列71cだけに、冷媒チューブ16aと水チューブ43aとの両方を配置した。これに代えて、この実施形態では、図11に図示されるように、上流列71cと下流列71dとの両方に、冷媒チューブ16aと水チューブ43aとの両方を配置している。
(Fifth embodiment)
In the said embodiment, both the refrigerant | coolant tube 16a and the water tube 43a were arrange | positioned only to the upstream line 71c. Instead, in this embodiment, as shown in FIG. 11, both the refrigerant tube 16a and the water tube 43a are arranged in both the upstream row 71c and the downstream row 71d.
 上流列71cには、冷媒チューブ16aと水チューブ43aとが隣接するように配置されている。さらに、下流列71dにも、冷媒チューブ16aと水チューブ43aとが隣接するように配置されている。さらに、空気URの流れ方向に沿って、すなわち行方向CDに沿って、冷媒チューブ16aと水チューブ43aとが並んで配置されている。 The refrigerant tube 16a and the water tube 43a are disposed adjacent to the upstream row 71c. Furthermore, the refrigerant tube 16a and the water tube 43a are also arranged adjacent to the downstream row 71d. Furthermore, the refrigerant | coolant tube 16a and the water tube 43a are arrange | positioned along with the flow direction of the air UR, ie, along the row direction CD.
 この構成によると、下流列71dに冷媒チューブ16aと水チューブ43aとが配置されるから、熱交換器70の下流において、冷媒チューブ16aの温度の影響と、水チューブ43aの温度の影響とが現れる。例えば、温度センサ23によって冷媒RFと冷却水WTとの両方からの影響を検出することができる。 According to this configuration, since the refrigerant tubes 16a and the water tubes 43a are arranged in the downstream row 71d, the influence of the temperature of the refrigerant tubes 16a and the influence of the temperature of the water tubes 43a appear downstream of the heat exchanger 70. . For example, the temperature sensor 23 can detect the influence from both the refrigerant RF and the cooling water WT.
 (第6実施形態)
 上記実施形態では、複数の列を構成するように複数のチューブ16a、43aを配置した。これに代えて、この実施形態では、図12に図示されるように、冷媒チューブ16aと水チューブ43aとは、単列を構成するように配置されている。この構成においても、列方向RDにおいて冷媒チューブ16aと水チューブ43aとが隣接して配置される。しかも、冷媒チューブ16aと水チューブ43aとの間には、フィン50が配置される。
(Sixth embodiment)
In the above embodiment, the plurality of tubes 16a and 43a are arranged so as to form a plurality of rows. Instead, in this embodiment, as shown in FIG. 12, the refrigerant tube 16a and the water tube 43a are arranged to form a single row. Also in this configuration, the refrigerant tube 16a and the water tube 43a are disposed adjacent to each other in the column direction RD. In addition, the fins 50 are disposed between the refrigerant tube 16a and the water tube 43a.
 (第7実施形態)
 上記実施形態に代えて、図13に図示されるように、冷媒チューブ16aと水チューブ43aとを配置してもよい。この構成では、2つの冷媒チューブ16aと、ひとつの水チューブ43aとが交互に配置されている。
(Seventh embodiment)
Instead of the above embodiment, as shown in FIG. 13, a refrigerant tube 16a and a water tube 43a may be arranged. In this configuration, two refrigerant tubes 16a and one water tube 43a are alternately arranged.
 (第8実施形態)
 上記実施形態では、冷媒RFと冷却水WTと空気URとを熱交換させる熱交換器70を室内熱交換器20だけに利用した。これに加えて、室外熱交換器21にも同様の熱交換器70(270)を採用することができる。以下の説明において、上述の熱交換器70と同様の構成部品をもつ室外熱交換器21を熱交換器270と呼ぶ。
(Eighth embodiment)
In the above embodiment, the heat exchanger 70 that exchanges heat between the refrigerant RF, the cooling water WT, and the air UR is used only for the indoor heat exchanger 20. In addition, a similar heat exchanger 70 (270) can be adopted for the outdoor heat exchanger 21. In the following description, the outdoor heat exchanger 21 having the same components as the heat exchanger 70 described above is referred to as a heat exchanger 270.
 図14において、空調装置1は、開示された発明を適用したヒートポンプサイクル2を備える。ヒートポンプサイクル2は、開示された発明を適用した熱交換器270を備える。ヒートポンプサイクル2は、冷媒回路10と、冷却水回路40とを含む。この実施形態は、動力源からの廃熱を有効に利用して、室外熱交換器21への霜の抑制、および/または除霜を実行できるヒートポンプサイクル2を提供する。 14, the air conditioner 1 includes a heat pump cycle 2 to which the disclosed invention is applied. The heat pump cycle 2 includes a heat exchanger 270 to which the disclosed invention is applied. The heat pump cycle 2 includes a refrigerant circuit 10 and a cooling water circuit 40. This embodiment provides a heat pump cycle 2 that can effectively use waste heat from a power source to suppress frost and / or defrost the outdoor heat exchanger 21.
 空調装置1は、ヒートポンプサイクル2によって空気から汲み上げられた熱を利用する機器である。室内熱交換器20は、室内蒸発器20とも呼ばれる。室内蒸発器20は、上記熱交換器70である。この実施形態では、ヒータコア12は、室内凝縮器によって提供される。この実施形態において、ヒータコア12は、室内凝縮器12と呼ばれる。室内凝縮器12は、その内部を流れる高温高圧冷媒と室内蒸発器20通過後の空気URとを熱交換させる加熱用熱交換器である。 The air conditioner 1 is a device that uses heat pumped from the air by the heat pump cycle 2. The indoor heat exchanger 20 is also referred to as an indoor evaporator 20. The indoor evaporator 20 is the heat exchanger 70 described above. In this embodiment, the heater core 12 is provided by an indoor condenser. In this embodiment, the heater core 12 is referred to as an indoor condenser 12. The indoor condenser 12 is a heating heat exchanger that exchanges heat between the high-temperature and high-pressure refrigerant flowing through the indoor condenser 12 and the air UR after passing through the indoor evaporator 20.
 冷媒回路10は、可逆運転可能な蒸気圧縮式冷凍サイクルによって提供される。冷媒回路10は、空調装置1の暖房用の冷媒サイクルと、冷房用の冷凍サイクルとを兼ねている。冷媒回路10は、車室外の空気ARを熱源として利用する狭義のヒートポンプサイクルを提供する。冷媒回路10は、後述する冷媒チューブ16aに冷媒RFを流し、冷媒RFに吸熱した熱を利用側熱交換器12に供給する。冷媒回路10に流れる冷媒RFは、熱源から熱を汲み上げるための主媒体である。冷媒回路10は、主媒体回路10とも呼ばれる。 The refrigerant circuit 10 is provided by a vapor compression refrigeration cycle capable of reversible operation. The refrigerant circuit 10 serves as both a heating refrigerant cycle of the air conditioner 1 and a cooling refrigeration cycle. The refrigerant circuit 10 provides a narrowly defined heat pump cycle that uses the air AR outside the passenger compartment as a heat source. The refrigerant circuit 10 causes the refrigerant RF to flow through a refrigerant tube 16a described later, and supplies the heat absorbed by the refrigerant RF to the use side heat exchanger 12. The refrigerant RF flowing through the refrigerant circuit 10 is a main medium for drawing up heat from the heat source. The refrigerant circuit 10 is also called a main medium circuit 10.
 以下の説明において、冷媒回路10の室外熱交換器21、すなわち熱源側熱交換器における霜の付着を抑制すること、および付着した霜の成長を抑制することを霜の抑制と呼ぶ。また、室外熱交換器21に付着した霜を融解させて除去することを除霜と呼ぶ。また、霜に起因する熱交換性能の低下に対抗する性能を耐着霜性能と呼ぶ。よって、耐着霜性能は、霜の抑制、および/または除霜によって提供される。 In the following description, suppressing frost adhesion in the outdoor heat exchanger 21 of the refrigerant circuit 10, that is, the heat source side heat exchanger, and suppressing the growth of the attached frost are referred to as frost suppression. Moreover, melting and removing frost adhering to the outdoor heat exchanger 21 is called defrosting. Moreover, the performance which opposes the fall of the heat exchange performance resulting from frost is called anti-frosting performance. Thus, anti-frosting performance is provided by frost suppression and / or defrosting.
 冷媒回路10は、車室内へ送風される空気URを加熱、または冷却する。冷媒回路10は、流路を切り替えることによって、空気URを加熱して車室内を暖房する暖房運転、および空気URを冷却して車室内を冷房する冷房運転を実行できる。冷媒回路10は、暖房運転の間に室外熱交換器21に着いた霜を融解させて取り除く除霜運転を実行できる。さらに、冷媒回路10は、暖房運転の間に、熱源HSの熱を冷媒に吸熱させる廃熱回収運転を実行することができる。複数の運転モードは、制御装置100によって切換えられる。 The refrigerant circuit 10 heats or cools the air UR blown into the passenger compartment. The refrigerant circuit 10 can perform a heating operation for heating the air UR by heating the air UR and a cooling operation for cooling the air UR by cooling the air UR by switching the flow path. The refrigerant circuit 10 can perform a defrosting operation that melts and removes frost attached to the outdoor heat exchanger 21 during the heating operation. Furthermore, the refrigerant circuit 10 can execute a waste heat recovery operation in which the heat of the heat source HS is absorbed by the refrigerant during the heating operation. The plurality of operation modes are switched by the control device 100.
 圧縮機11の吐出側には、室内凝縮器12が設けられている。室内凝縮器12は、高圧冷媒が供給され、高圧冷媒から熱が供給される利用側熱交換器を提供する。室内凝縮器12の下流には、暖房用の膨張弁213が設けられている。膨張弁213は、暖房運転時に室内凝縮器12から流出した冷媒を減圧膨張させる。膨張弁213は、暖房運転用の減圧手段である。膨張弁213は、高圧冷媒を減圧し低圧冷媒を供給する減圧器を提供する。膨張弁213は、冷媒回路10が冷房運転されるとき、全開状態に駆動される。膨張弁213の下流には、室外熱交換器21が設けられている。 An indoor condenser 12 is provided on the discharge side of the compressor 11. The indoor condenser 12 provides a use side heat exchanger to which high-pressure refrigerant is supplied and heat is supplied from the high-pressure refrigerant. An expansion valve 213 for heating is provided downstream of the indoor condenser 12. The expansion valve 213 decompresses and expands the refrigerant that has flowed out of the indoor condenser 12 during the heating operation. The expansion valve 213 is a decompression unit for heating operation. The expansion valve 213 provides a decompressor that decompresses the high-pressure refrigerant and supplies the low-pressure refrigerant. The expansion valve 213 is driven to a fully opened state when the refrigerant circuit 10 is cooled. An outdoor heat exchanger 21 is provided downstream of the expansion valve 213.
 室外熱交換器21は、暖房運転時には、低圧冷媒を蒸発させて吸熱作用を発揮する蒸発器として機能する。室外熱交換器21は、空気ARと低圧冷媒とを熱交換させ、低圧冷媒に吸熱させる吸熱熱交換器を提供する。室外熱交換器21は、冷房運転時には、高圧冷媒を放熱させる放熱器として機能する。室外熱交換器21は、一体のユニットとして取り扱いが可能な熱交換器ユニットとして構成された熱交換器270によって提供される。 The outdoor heat exchanger 21 functions as an evaporator that evaporates low-pressure refrigerant and exerts an endothermic effect during heating operation. The outdoor heat exchanger 21 provides an endothermic heat exchanger that exchanges heat between the air AR and the low-pressure refrigerant so that the low-pressure refrigerant absorbs heat. The outdoor heat exchanger 21 functions as a heat radiator that radiates high-pressure refrigerant during cooling operation. The outdoor heat exchanger 21 is provided by a heat exchanger 270 configured as a heat exchanger unit that can be handled as an integral unit.
 熱交換器270は、冷媒熱交換器216と、ラジエータ243とを備える。冷媒熱交換器216は、室外熱交換器21によって提供されている。ラジエータ243は、第2のラジエータ243とも呼ばれる。この場合、熱交換器70のラジエータ43が第1のラジエータ43と呼ばれる。 The heat exchanger 270 includes a refrigerant heat exchanger 216 and a radiator 243. The refrigerant heat exchanger 216 is provided by the outdoor heat exchanger 21. The radiator 243 is also referred to as a second radiator 243. In this case, the radiator 43 of the heat exchanger 70 is called the first radiator 43.
 熱交換器270は、図8または図10に図示される構成を有することが望ましい。これらの構成においては、冷媒チューブ16aが熱交換器270の下流列71dにおいて多数派を占める。よって、熱交換器270においては水チューブ43aにより提供されるラジエータ243は、冷媒チューブ16aによって提供される室外冷媒熱交換器216より上流側に配置されている。この構成によると、利用側熱交換器16において冷却水WTが獲得した熱を、熱交換器270において室外冷媒熱交換器216の低圧冷媒に与えることができる。 It is desirable that the heat exchanger 270 has the configuration illustrated in FIG. In these configurations, the refrigerant tubes 16a occupy the majority in the downstream row 71d of the heat exchanger 270. Therefore, in the heat exchanger 270, the radiator 243 provided by the water tube 43a is disposed upstream of the outdoor refrigerant heat exchanger 216 provided by the refrigerant tube 16a. According to this configuration, the heat acquired by the cooling water WT in the use side heat exchanger 16 can be given to the low-pressure refrigerant of the outdoor refrigerant heat exchanger 216 in the heat exchanger 270.
 熱交換器270においては、冷媒チューブ16aと水チューブ43aとがフィンによって熱的に結合していることが望ましい。また、上流列または下流列の少なくとも一部において、冷媒チューブ16aと水チューブ43aとが隣接して配置されていることが望ましい。この構成によると、利用側熱交換器16において冷却水WTが獲得した熱を、熱交換器270において、フィンを経由して室外冷媒熱交換器216の低圧冷媒に与えることができる。 In the heat exchanger 270, it is desirable that the refrigerant tube 16a and the water tube 43a are thermally coupled by fins. Moreover, it is desirable that the refrigerant tube 16a and the water tube 43a are disposed adjacent to each other in at least a part of the upstream row or the downstream row. According to this configuration, the heat acquired by the cooling water WT in the usage-side heat exchanger 16 can be given to the low-pressure refrigerant of the outdoor refrigerant heat exchanger 216 via the fins in the heat exchanger 270.
 ラジエータ243には、冷却水WTが流される。ラジエータ243は、冷却水回路40の冷却水WTと空気ARとを熱交換させる。さらに、ラジエータ243は、冷却水WTの熱を、室外熱交換器21およびそれを含む熱交換器270に供給する。ラジエータ243は、熱を蓄え、蓄えた熱を吸熱熱交換器に供給する補助媒体、すなわち冷却水WTを保持している。ラジエータ243は、室外熱交換器21に隣接して配置された補助熱交換器を提供する。 The cooling water WT flows through the radiator 243. The radiator 243 exchanges heat between the cooling water WT of the cooling water circuit 40 and the air AR. Further, the radiator 243 supplies the heat of the cooling water WT to the outdoor heat exchanger 21 and the heat exchanger 270 including the outdoor heat exchanger 21. The radiator 243 holds an auxiliary medium that stores heat and supplies the stored heat to the endothermic heat exchanger, that is, the cooling water WT. The radiator 243 provides an auxiliary heat exchanger disposed adjacent to the outdoor heat exchanger 21.
 室外熱交換器21の下流には、電気式の三方弁15bが接続されている。三方弁15bは、制御装置100によって制御される。三方弁15bは、冷媒流路の切替手段を構成している。三方弁15bは、暖房運転時には、室外熱交換器21の出口とアキュムレータ18の入口とを熱交換器を介することなく直接的に接続する。三方弁15bは、冷房運転時には、室外熱交換器21の出口と冷房用の膨張弁19の入口とを接続する。 制御装置100は、冷媒回路10に流れる冷媒量、および流路を制御する制御手段を提供する。冷媒量は、圧縮機11の冷媒吐出能力を調節することによって制御される。冷媒の流路は、膨張弁213および三方弁15bを制御することによって切換制御される。この結果、ヒートポンプサイクル2は、加熱用途と冷却用途とに流路を切換えるサイクル切換装置213、15bを備える。サイクル切換装置213、15bは、暖房時には室外冷媒熱交換器216を吸熱熱交換器として機能させ、冷房時には室外冷媒熱交換器216を放熱熱交換器として機能させるように流路を制御する。暖房は、対象物を加熱する加熱用途である。冷房は、対象物を冷却する冷却用途である。冷媒回路10は、加熱用途と冷却用途とのいずれかに切換え可能である。 An electric three-way valve 15b is connected downstream of the outdoor heat exchanger 21. The three-way valve 15b is controlled by the control device 100. The three-way valve 15b constitutes a refrigerant channel switching means. The three-way valve 15b directly connects the outlet of the outdoor heat exchanger 21 and the inlet of the accumulator 18 without a heat exchanger during heating operation. The three-way valve 15b connects the outlet of the outdoor heat exchanger 21 and the inlet of the cooling expansion valve 19 during cooling operation. The control device 100 provides control means for controlling the amount of refrigerant flowing in the refrigerant circuit 10 and the flow path. The amount of refrigerant is controlled by adjusting the refrigerant discharge capacity of the compressor 11. The flow path of the refrigerant is switched and controlled by controlling the expansion valve 213 and the three-way valve 15b. As a result, the heat pump cycle 2 includes cycle switching devices 213 and 15b that switch the flow path between a heating application and a cooling application. The cycle switching devices 213 and 15b control the flow paths so that the outdoor refrigerant heat exchanger 216 functions as an endothermic heat exchanger during heating, and the outdoor refrigerant heat exchanger 216 functions as a radiant heat exchanger during cooling. Heating is a heating application for heating an object. Cooling is a cooling application for cooling an object. The refrigerant circuit 10 can be switched between a heating application and a cooling application.
 また、制御装置100は、冷却水回路における冷却水の流れ、および流路を制御する制御手段を提供する。冷却水はポンプ41および流量調節弁45を制御することによって制御される。 Further, the control device 100 provides a control means for controlling the flow and flow path of the cooling water in the cooling water circuit. The cooling water is controlled by controlling the pump 41 and the flow rate adjusting valve 45.
 膨張弁19の下流には、室内蒸発器20が設けられている。室内蒸発器20の下流には、アキュムレータ18が設けられている。暖房運転時に三方弁15bによって形成される、三方弁15bからアキュムレータ18に直接的に連通する流路は、室外熱交換器21下流の冷媒を室内蒸発器20を迂回させて流す通路20aを構成している。アキュムレータ18は、その内部に流入した冷媒の気液を分離して、サイクル内の余剰冷媒を蓄える低圧冷媒用の気液分離器である。アキュムレータ18の気相冷媒出口の下流には、圧縮機11が設けられている。アキュムレータ18は、圧縮機11への液相冷媒の吸入を抑制することにより、圧縮機11の液圧縮を防止する機能を果たす。 An indoor evaporator 20 is provided downstream of the expansion valve 19. An accumulator 18 is provided downstream of the indoor evaporator 20. The flow path that is formed by the three-way valve 15b during the heating operation and directly communicates with the accumulator 18 from the three-way valve 15b constitutes a passage 20a that allows the refrigerant downstream of the outdoor heat exchanger 21 to flow around the indoor evaporator 20. ing. The accumulator 18 is a gas-liquid separator for low-pressure refrigerant that separates the gas-liquid of the refrigerant that has flowed into the accumulator 18 and stores excess refrigerant in the cycle. A compressor 11 is provided downstream of the gas-phase refrigerant outlet of the accumulator 18. The accumulator 18 functions to prevent liquid compression of the compressor 11 by suppressing the suction of the liquid phase refrigerant into the compressor 11.
 冷却水回路40は、冷媒回路10に熱を供給することがある。冷却水回路40に流れる冷却水WTは、主媒体回路10による熱の汲み上げを補助するための補助媒体である。冷却水回路40は、補助媒体回路40とも呼ばれる。 The cooling water circuit 40 may supply heat to the refrigerant circuit 10. The cooling water WT flowing in the cooling water circuit 40 is an auxiliary medium for assisting the pumping of heat by the main medium circuit 10. The cooling water circuit 40 is also referred to as an auxiliary medium circuit 40.
 冷却水回路40は、霜を抑制するための熱を供給する熱源でもある。冷却水回路40は、霜の抑制するための媒体を流すための霜抑制媒体回路40とも呼ばれる。冷却水回路40は、後述する水チューブ43aに霜の抑制するための冷却水WTを流す。冷却水回路40は、熱交換器70に、除霜のための熱を供給する熱源でもある。冷却水回路40は、除霜のための媒体を流すための除霜媒体回路40とも呼ばれる。冷却水回路40は、水チューブ43aに除霜のための冷却水WTを流す。冷却水回路40は、冷媒チューブ16a内の冷媒が吸熱するときの温度より高い温度に、冷却水WTの温度、および熱源HSの温度を維持する。 The cooling water circuit 40 is also a heat source that supplies heat for suppressing frost. The cooling water circuit 40 is also called a frost suppression medium circuit 40 for flowing a medium for suppressing frost. The cooling water circuit 40 flows cooling water WT for suppressing frost to a water tube 43a described later. The cooling water circuit 40 is also a heat source that supplies heat to the heat exchanger 70 for defrosting. The cooling water circuit 40 is also referred to as a defrosting medium circuit 40 for flowing a medium for defrosting. The cooling water circuit 40 flows the cooling water WT for defrosting to the water tube 43a. The cooling water circuit 40 maintains the temperature of the cooling water WT and the temperature of the heat source HS at a temperature higher than the temperature at which the refrigerant in the refrigerant tube 16a absorbs heat.
 冷却水回路40は、ラジエータ43を迂回させて冷却水を流すためのバイパス通路44、および電気式の流量調節45などの部品を備える。バイパス通路44は、ラジエータ43を迂回する流路を提供する。冷却水回路40は、熱源HSとラジエータ43とを通る第1流路と、熱源HSとバイパス通路44とを通る第2流路とを提供する。流量調節弁45は、バイパス通路44を通る流量を調節する。バイパス通路44および流量調節弁45は、ラジエータ43に供給される冷却水WTの流量を調節する流量調節器を提供する。流量調節器は、ラジエータ43を迂回して冷却水WTを流すバイパス通路44と、バイパス通路44に冷却水WTを流すことによりラジエータ43に流れる流量を減少させる弁装置45を備える。 The cooling water circuit 40 includes components such as a bypass passage 44 for bypassing the radiator 43 and flowing cooling water, and an electric flow rate adjustment 45. The bypass passage 44 provides a flow path that bypasses the radiator 43. The cooling water circuit 40 provides a first flow path that passes through the heat source HS and the radiator 43 and a second flow path that passes through the heat source HS and the bypass passage 44. The flow rate adjustment valve 45 adjusts the flow rate through the bypass passage 44. The bypass passage 44 and the flow rate adjustment valve 45 provide a flow rate regulator that adjusts the flow rate of the cooling water WT supplied to the radiator 43. The flow rate adjuster includes a bypass passage 44 that bypasses the radiator 43 and flows the cooling water WT, and a valve device 45 that reduces the flow rate flowing through the radiator 43 by flowing the cooling water WT through the bypass passage 44.
 熱交換器270は、冷媒RF、冷却水WT、および空気ARの二者間の熱交換を提供する。熱交換器270は、冷媒RFと冷却水WTとの間、冷媒RFと空気ARとの間、および冷却水WTと空気ARとの間の熱交換を提供する。熱交換器270は、上述の熱交換器70と同様の構成部品を有している。 The heat exchanger 270 provides heat exchange between the refrigerant RF, the cooling water WT, and the air AR. The heat exchanger 270 provides heat exchange between the refrigerant RF and the cooling water WT, between the refrigerant RF and the air AR, and between the cooling water WT and the air AR. The heat exchanger 270 has the same components as the heat exchanger 70 described above.
 この実施形態の空調装置1は、非利用の空気ARの流れ方向CDに対して交差する方向RDに沿って列をなすように配置された複数のチューブ16a、43aを有する非利用側熱交換器270を備える。複数のチューブは、複数の冷媒チューブ16a、および複数の水チューブ43aを含む。冷媒チューブ16aは、冷媒回路10から供給される低圧冷媒と空気ARとを熱交換させる。水チューブ43aは、冷却水回路40から供給される冷却水WTと空気ARとを熱交換させる。さらに、水チューブ43aは、列の少なくとも一部において、冷媒チューブ16aと熱伝達可能に配置されている。この構成によると、非利用側熱交換器にも、冷媒と冷却水と空気とを熱交換させる熱交換器が使用される。 The air conditioner 1 of this embodiment includes a plurality of tubes 16a and 43a arranged in rows along a direction RD that intersects the flow direction CD of the unused air AR. 270. The plurality of tubes include a plurality of refrigerant tubes 16a and a plurality of water tubes 43a. The refrigerant tube 16a exchanges heat between the low-pressure refrigerant supplied from the refrigerant circuit 10 and the air AR. The water tube 43a exchanges heat between the cooling water WT supplied from the cooling water circuit 40 and the air AR. Furthermore, the water tubes 43a are arranged to be able to transfer heat with the refrigerant tubes 16a in at least a part of the rows. According to this configuration, a heat exchanger that exchanges heat between the refrigerant, the cooling water, and air is also used for the non-use side heat exchanger.
 この実施形態では、冷却水回路40は補助媒体回路40を提供する。冷却水WTは、補助媒体である。補助媒体回路40は、補助媒体を冷却する補助媒体熱交換器243を備える。補助媒体回路40は、補助媒体熱交換器243によって冷却された補助媒体を、利用側熱交換器70の補助媒体チューブ43aに供給することにより利用空気URを冷却することができる。冷媒回路10は、非利用空気ARと低圧冷媒とを熱交換させ低圧冷媒に吸熱させる室外冷媒熱交換器216を備える。補助媒体熱交換器243は、室外冷媒熱交換器216における低圧冷媒または非利用空気ARによって補助媒体を冷却する。この構成によると、冷媒回路10により室外冷媒熱交換器216に得られる低温、または非利用空気ARの低温によって補助媒体を冷却することができる。 In this embodiment, the cooling water circuit 40 provides an auxiliary medium circuit 40. The cooling water WT is an auxiliary medium. The auxiliary medium circuit 40 includes an auxiliary medium heat exchanger 243 that cools the auxiliary medium. The auxiliary medium circuit 40 can cool the utilization air UR by supplying the auxiliary medium cooled by the auxiliary medium heat exchanger 243 to the auxiliary medium tube 43 a of the utilization side heat exchanger 70. The refrigerant circuit 10 includes an outdoor refrigerant heat exchanger 216 that exchanges heat between the unused air AR and the low-pressure refrigerant and absorbs heat by the low-pressure refrigerant. The auxiliary medium heat exchanger 243 cools the auxiliary medium with the low-pressure refrigerant or the unused air AR in the outdoor refrigerant heat exchanger 216. According to this configuration, the auxiliary medium can be cooled by the low temperature obtained by the refrigerant circuit 10 in the outdoor refrigerant heat exchanger 216 or the low temperature of the unused air AR.
 室外冷媒熱交換器216は、加熱用途において非利用空気ARと低圧冷媒とを熱交換させ低圧冷媒に吸熱させる。室外冷媒熱交換器216は、冷却用途において非利用空気ARと高圧冷媒とを熱交換させ高圧冷媒から放熱させる。この構成によると、冷媒回路10は加熱用途と冷却用途とに切替えて利用することができる。室外冷媒熱交換器216は、加熱用途において吸熱器として利用され、冷却用途において放熱器として利用される。制御装置100は、室外冷媒熱交換器216における霜による性能低下を補償するように空調装置1を制御する。制御装置100は、補助媒体熱交換器243に流れる補助媒体の流量または温度を増加させる。補助媒体の温度は、利用側熱交換器70の熱負荷を増加させることにより上昇させることができる。 The outdoor refrigerant heat exchanger 216 exchanges heat between the unused air AR and the low-pressure refrigerant in the heating application, and absorbs heat by the low-pressure refrigerant. The outdoor refrigerant heat exchanger 216 exchanges heat between the unused air AR and the high-pressure refrigerant in cooling applications, and dissipates heat from the high-pressure refrigerant. According to this configuration, the refrigerant circuit 10 can be used by switching between a heating application and a cooling application. The outdoor refrigerant heat exchanger 216 is used as a heat absorber in a heating application, and is used as a radiator in a cooling application. The control device 100 controls the air conditioner 1 so as to compensate for the performance degradation due to frost in the outdoor refrigerant heat exchanger 216. The control device 100 increases the flow rate or temperature of the auxiliary medium flowing through the auxiliary medium heat exchanger 243. The temperature of the auxiliary medium can be raised by increasing the heat load of the use side heat exchanger 70.
 制御装置100は、熱交換器70において冷媒RFによって空気URを冷却するように、冷媒回路10を冷房運転することができる。同時に、制御装置100は、熱源HSの温度を調節するように冷却水回路40を運転することができる。さらに、制御装置100は、熱交換器70において冷却水WTによって熱交換器70を加熱するように冷却水回路40を運転することができる。例えば、冷却水WTは、熱交換器70を除霜する。また、制御装置100は、熱交換器270において冷媒RFから冷却水WTへ熱を奪うように冷却水回路40を制御することができる。例えば、クールダウン性能の向上が図られる。 The control apparatus 100 can perform a cooling operation of the refrigerant circuit 10 so that the air UR is cooled by the refrigerant RF in the heat exchanger 70. At the same time, the control device 100 can operate the cooling water circuit 40 so as to adjust the temperature of the heat source HS. Further, the control device 100 can operate the cooling water circuit 40 so that the heat exchanger 70 is heated by the cooling water WT in the heat exchanger 70. For example, the cooling water WT defrosts the heat exchanger 70. In addition, the control device 100 can control the cooling water circuit 40 so that the heat exchanger 270 takes heat from the refrigerant RF to the cooling water WT. For example, the cool-down performance can be improved.
 制御装置100は、熱交換器70において冷却水WTによって空気URを冷却するように冷却水回路40を制御することができる。この構成では、第2のラジエータ243は、車両の外の空気ARと熱交換する。このため、冷却水WTの温度は、外気温度と同程度になる場合がある。上記構成では、低温の冷却水WTを第1のラジエータ43に供給することができる。よって、空気URの温度が冷却水WTの温度より高い場合、冷却水WTによって空気URを冷却し、除湿することができる。 The control apparatus 100 can control the cooling water circuit 40 so that the air UR is cooled by the cooling water WT in the heat exchanger 70. In this configuration, the second radiator 243 exchanges heat with the air AR outside the vehicle. For this reason, the temperature of the cooling water WT may be comparable to the outside air temperature. In the above configuration, the low-temperature cooling water WT can be supplied to the first radiator 43. Therefore, when the temperature of the air UR is higher than the temperature of the cooling water WT, the air UR can be cooled and dehumidified by the cooling water WT.
 制御装置100は、室内凝縮器12によって空気URを加熱するように、冷媒回路10を暖房運転することができる。同時に、制御装置100は、熱源HSの温度を調節するように冷却水回路40を運転することができる。さらに、制御装置100は、熱交換器270において冷却水WTによって熱交換器270を加熱するように冷却水回路40を運転することができる。例えば、冷却水WTは、熱交換器270を除霜する。また、制御装置100は、熱交換器70において冷却水WTによって空気URを加熱するように冷却水回路40を制御することができる。この場合、熱源HSの廃熱を暖房に利用することができる。 The control device 100 can heat the refrigerant circuit 10 so that the air UR is heated by the indoor condenser 12. At the same time, the control device 100 can operate the cooling water circuit 40 so as to adjust the temperature of the heat source HS. Furthermore, the control device 100 can operate the cooling water circuit 40 so that the heat exchanger 270 is heated by the cooling water WT in the heat exchanger 270. For example, the cooling water WT defrosts the heat exchanger 270. Moreover, the control apparatus 100 can control the cooling water circuit 40 so that the air UR is heated by the cooling water WT in the heat exchanger 70. In this case, the waste heat of the heat source HS can be used for heating.
 この実施形態では、制御装置100は、室内凝縮器12において冷媒RFによって空気URを加熱するように冷媒回路10を暖房運転するとともに、熱交換器70において冷却水WTによって空気URを冷却するように冷却水回路40を運転することができる。 In this embodiment, the control device 100 performs the heating operation of the refrigerant circuit 10 so that the air UR is heated by the refrigerant RF in the indoor condenser 12, and cools the air UR by the cooling water WT in the heat exchanger 70. The cooling water circuit 40 can be operated.
 冷媒回路10が暖房運転されることにより、熱交換器270には低温の冷媒RFが供給されるから、第2のラジエータ243では冷却水WTを空気ARの温度より低く冷却することができる。この場合、第1のラジエータ43に低温の冷却水WTを供給することができる。この結果、第1のラジエータ43において、空気URを低温に冷やすことができる。しかも、このとき、室内凝縮器12は空気URを加熱することができるから、空気URを除湿しながら暖房することができる。さらに、第1のラジエータ43において加熱された冷却水WTは再び第1のラジエータ243に供給されるから、空気URから奪われた熱を、室外熱交換器21において冷媒回路10に回収できる。よって、効率的な除湿暖房を実行できる。 When the refrigerant circuit 10 is heated, the low-temperature refrigerant RF is supplied to the heat exchanger 270. Therefore, the second radiator 243 can cool the cooling water WT below the temperature of the air AR. In this case, the low-temperature cooling water WT can be supplied to the first radiator 43. As a result, in the first radiator 43, the air UR can be cooled to a low temperature. Moreover, since the indoor condenser 12 can heat the air UR at this time, it can be heated while dehumidifying the air UR. Furthermore, since the cooling water WT heated in the first radiator 43 is supplied again to the first radiator 243, the heat taken from the air UR can be recovered in the refrigerant circuit 10 in the outdoor heat exchanger 21. Therefore, efficient dehumidifying heating can be executed.
 この場合、冷媒回路10は加熱用途のために加熱運転されている。熱交換器270において冷媒RFまたは外気によって冷やされた冷却水WT、すなわち補助媒体は、熱交換器70に供給されることによって冷房、すなわち冷却作用を提供する。熱交換器70においては、冷却水WT、すなわち補助媒体が低温媒体として機能する。低温媒体はラジエータ43に供給される。このとき、凝縮水は水チューブ43aの上に発生し、成長する。低温媒体が流れる水チューブ43aの表面には、早期に、大量の凝縮水が発生する。このため、水チューブ43aは、熱交換器70における凝縮水の排水経路を提供する。 In this case, the refrigerant circuit 10 is heated for heating. The cooling water WT cooled by the refrigerant RF or outside air in the heat exchanger 270, that is, the auxiliary medium, is supplied to the heat exchanger 70 to provide cooling, that is, a cooling action. In the heat exchanger 70, the cooling water WT, that is, the auxiliary medium functions as a low temperature medium. The low temperature medium is supplied to the radiator 43. At this time, condensed water is generated on the water tube 43a and grows. A large amount of condensed water is generated early on the surface of the water tube 43a through which the low-temperature medium flows. For this reason, the water tube 43 a provides a drainage path for condensed water in the heat exchanger 70.
 (第9実施形態)
 上記実施形態では、ヒータコア12を冷媒回路10の室内凝縮器によって提供した。これに代えて、図15に図示されるように、冷却水WTと熱交換する冷媒-水間熱交換器24を設けてもよい。この構成では、冷却水回路60の熱源として、冷媒回路10の高圧冷媒が用いられる。
(Ninth embodiment)
In the above embodiment, the heater core 12 is provided by the indoor condenser of the refrigerant circuit 10. Alternatively, as shown in FIG. 15, a refrigerant-water heat exchanger 24 that exchanges heat with the cooling water WT may be provided. In this configuration, the high-pressure refrigerant of the refrigerant circuit 10 is used as a heat source for the cooling water circuit 60.
 (第10実施形態)
 上記実施形態では、ヒートポンプサイクル2によって得られる熱を暖房のために利用した。これに代えて、図16に図示されるように、冷媒回路10の高圧冷媒によってバッテリBTなどの機器を暖めてもよい。この構成では、冷媒-水間熱交換器24によって冷却水回路65の冷却水WTが加熱される。ポンプ66によって冷却水WTが循環される。冷却水WTは、バッテリBTを加熱する。例えば、電動車両に搭載されるリチウムイオン電池などの大容量バッテリは、所定温度範囲において効率的に作動する。この構成によると、バッテリBTを暖めることができるから、バッテリBTの温度を望ましい温度範囲に調節することができる。
(10th Embodiment)
In the said embodiment, the heat obtained by the heat pump cycle 2 was utilized for heating. Instead, as shown in FIG. 16, devices such as the battery BT may be warmed by the high-pressure refrigerant in the refrigerant circuit 10. In this configuration, the cooling water WT in the cooling water circuit 65 is heated by the refrigerant-water heat exchanger 24. The cooling water WT is circulated by the pump 66. Cooling water WT heats battery BT. For example, a large capacity battery such as a lithium ion battery mounted on an electric vehicle operates efficiently in a predetermined temperature range. According to this configuration, since the battery BT can be warmed, the temperature of the battery BT can be adjusted to a desired temperature range.
 (第11実施形態)
 上記実施形態では、室内熱交換器20を熱交換器70によって提供し、室外熱交換器21を熱交換器270によって提供した。これに加えて、この実施形態では、ヒータコア12も、熱交換器70と同様の熱交換器370によって提供する。熱交換器370は、空気URを加熱するための高圧冷媒用の利用側熱交換器である。
(Eleventh embodiment)
In the above embodiment, the indoor heat exchanger 20 is provided by the heat exchanger 70, and the outdoor heat exchanger 21 is provided by the heat exchanger 270. In addition, in this embodiment, the heater core 12 is also provided by a heat exchanger 370 similar to the heat exchanger 70. The heat exchanger 370 is a use side heat exchanger for high-pressure refrigerant for heating the air UR.
 図17において、ヒータコア12は、熱交換器70と同様の構成をもつ熱交換器370によって提供されている。熱交換器370は、冷媒回路10の高圧冷媒RFと空気URとを熱交換させる冷媒熱交換器316と、冷却水回路60の冷却水WTと空気URとを熱交換させる第3のラジエータ343とを備える。 17, the heater core 12 is provided by a heat exchanger 370 having the same configuration as the heat exchanger 70. The heat exchanger 370 includes a refrigerant heat exchanger 316 that exchanges heat between the high-pressure refrigerant RF of the refrigerant circuit 10 and the air UR, and a third radiator 343 that exchanges heat between the cooling water WT and the air UR of the cooling water circuit 60. Is provided.
 この実施形態では、空調装置1は、空気URの流れ方向CDに対して交差する方向RDに沿って列をなすように配置された複数のチューブ16a、43aを有する。これら複数のチューブは、複数の冷媒チューブ16a、および複数の水チューブ43aを含む。複数の冷媒チューブ16aは、冷媒回路10から供給される高圧冷媒と空気URとを熱交換させる。複数の水チューブ43aは、冷却水回路60から供給される冷却水WTと空気URとを熱交換させる。さらに、水チューブ43aは、列の少なくとも一部において、冷媒チューブ16aと熱伝達可能に配置されている。 In this embodiment, the air conditioner 1 includes a plurality of tubes 16a and 43a arranged in rows along a direction RD that intersects the flow direction CD of the air UR. The plurality of tubes include a plurality of refrigerant tubes 16a and a plurality of water tubes 43a. The plurality of refrigerant tubes 16a exchange heat between the high-pressure refrigerant supplied from the refrigerant circuit 10 and the air UR. The plurality of water tubes 43a exchange heat between the cooling water WT supplied from the cooling water circuit 60 and the air UR. Furthermore, the water tubes 43a are arranged to be able to transfer heat with the refrigerant tubes 16a in at least a part of the rows.
 すなわち、暖房運転されるときの冷媒回路10は、利用側熱交換器12と、熱源側熱交換器21との両方に、熱交換器270、370を採用している。言い換えると、暖房運転されるときの冷媒回路10は、高圧側熱交換器12と低圧側熱交換器21との両方に、熱交換器270、370を採用している。 That is, the refrigerant circuit 10 when performing the heating operation employs the heat exchangers 270 and 370 for both the use side heat exchanger 12 and the heat source side heat exchanger 21. In other words, the refrigerant circuit 10 in the heating operation employs heat exchangers 270 and 370 for both the high-pressure side heat exchanger 12 and the low-pressure side heat exchanger 21.
 この構成によると、冷媒回路10は、高圧冷媒を利用側熱交換器12の冷媒チューブ16aに供給する。この構成によると、高圧冷媒によって、空気URの加熱と、冷却水WTの加熱とを提供できる。熱交換器370によって、冷媒回路10による空気URの加熱が可能である。また、熱交換器370によって、冷却水回路60の冷却水WTによる空気URの加熱が可能である。また、冷媒回路10から、熱交換器370を経由して冷却水回路60の冷却水WTおよび熱源HSを加熱することができる。また、空気URによって冷却水回路60の冷却水WTおよび熱源HSを加熱できる場合もある。 According to this configuration, the refrigerant circuit 10 supplies the high-pressure refrigerant to the refrigerant tube 16a of the use side heat exchanger 12. According to this configuration, heating of the air UR and heating of the cooling water WT can be provided by the high-pressure refrigerant. The heat exchanger 370 can heat the air UR by the refrigerant circuit 10. The heat exchanger 370 can heat the air UR with the cooling water WT of the cooling water circuit 60. Further, the coolant WT and the heat source HS of the coolant circuit 60 can be heated from the refrigerant circuit 10 via the heat exchanger 370. In some cases, the cooling water WT and the heat source HS of the cooling water circuit 60 can be heated by the air UR.
 (第12実施形態)
 上記実施形態では、冷媒回路10によって得られる冷熱を、空調のために利用した。これに代えて、冷媒回路10によって得られる冷熱を、空調以外の冷却用途に利用してもよい。
(Twelfth embodiment)
In the said embodiment, the cold heat obtained by the refrigerant circuit 10 was utilized for the air conditioning. Instead, the cold energy obtained by the refrigerant circuit 10 may be used for cooling purposes other than air conditioning.
 図18は、熱交換器70と同様の構成をもつ熱交換器470を、車両用の冷温蔵庫80に適用した実施形態を示す。冷温蔵庫80は、車両に搭載され、飲料等の物品を冷却または加熱する小部屋をもつ。冷温蔵庫80は、熱交換器470と、送風機81と、減圧弁82を備える。熱交換器470は、冷媒熱交換器416と、冷却水熱交換器443とを備える。冷媒熱交換器416は、冷媒回路10から供給される冷媒と、庫内の空気とを熱交換させる。冷却水熱交換器443は、冷却水回路40から供給される冷却水WTと庫内の空気とを熱交換させる。さらに、冷媒熱交換器416と冷却水熱交換器443とは、フィン50などの部材および庫内の空気を介して熱的に結合されている。よって、熱交換器470は、冷媒RFと冷却水WTとの間の熱交換も提供する。送風機81は、庫内の空気が熱交換器470を通過するように送風する。減圧弁82は、冷温蔵庫80が冷却用途に使用されるときに開弁し、冷媒RFを減圧して冷媒熱交換器416に供給する。減圧弁82は、冷温蔵庫80が冷却用途に使用されないときは閉弁する。 FIG. 18 shows an embodiment in which a heat exchanger 470 having the same configuration as that of the heat exchanger 70 is applied to a cold storage cabinet 80 for a vehicle. The cold / hot warehouse 80 is mounted on a vehicle and has a small room for cooling or heating an article such as a beverage. The cold / hot warehouse 80 includes a heat exchanger 470, a blower 81, and a pressure reducing valve 82. The heat exchanger 470 includes a refrigerant heat exchanger 416 and a cooling water heat exchanger 443. The refrigerant heat exchanger 416 exchanges heat between the refrigerant supplied from the refrigerant circuit 10 and the air in the warehouse. The cooling water heat exchanger 443 exchanges heat between the cooling water WT supplied from the cooling water circuit 40 and the air in the warehouse. Furthermore, the refrigerant heat exchanger 416 and the cooling water heat exchanger 443 are thermally coupled to each other through members such as the fins 50 and air in the cabinet. Thus, the heat exchanger 470 also provides heat exchange between the refrigerant RF and the cooling water WT. The blower 81 blows air so that the air in the warehouse passes through the heat exchanger 470. The pressure reducing valve 82 is opened when the cold / hot warehouse 80 is used for cooling, and the pressure of the refrigerant RF is reduced and supplied to the refrigerant heat exchanger 416. The pressure reducing valve 82 is closed when the cold / hot warehouse 80 is not used for cooling purposes.
 冷温蔵庫80が冷却用途に使用されるとき、冷媒熱交換器416によって庫内の空気が冷却される。冷温蔵庫80が加熱用途に使用されるとき、冷却水熱交換器443によって庫内の空気が加熱される。さらに、熱源HSの冷却が必要とされるとき、冷媒熱交換器416によって冷却水WTが冷却され、熱源HSが冷却される。 When the cold / hot warehouse 80 is used for cooling, the refrigerant heat exchanger 416 cools the air in the warehouse. When the cold / hot warehouse 80 is used for heating, the air in the warehouse is heated by the cooling water heat exchanger 443. Furthermore, when the heat source HS needs to be cooled, the coolant WT is cooled by the refrigerant heat exchanger 416, and the heat source HS is cooled.
 この構成では、利用空気は、物品を収容できる庫内の空気である。この構成によると、庫内の物品の温度調節と、熱源HSの温度調節とを提供することができる。熱交換器470を利用することにより、冷媒回路10から得られる冷熱の空気冷却への利用、熱源HSから得られる温熱の空気加熱への利用、さらには、冷媒回路10から得られる冷熱の熱源HSの冷却への利用を図ることができる。 In this configuration, the air used is the air in the cabinet that can store the articles. According to this structure, temperature control of the articles | goods in a store | warehouse | chamber and temperature control of the heat source HS can be provided. By using the heat exchanger 470, the cold heat obtained from the refrigerant circuit 10 is used for air cooling, the hot heat obtained from the heat source HS is used for air heating, and the cold heat source HS obtained from the refrigerant circuit 10 is used. Can be used for cooling.
 (第13実施形態)
 図19は、この実施形態に係る熱交換器70の一部を示す。図示された配置は、上述の熱交換器70、270、470に適用可能である。複数のチューブ16a、43aは、空気URの流れ方向と直交する方向に列を形成するように配列されている。複数のチューブ16a、43aは、空気URの流れ方向の上流側に位置する上流列71cと、この上流列71cより下流側に位置する下流列71dとを形成するように配列されている。
(13th Embodiment)
FIG. 19 shows a part of the heat exchanger 70 according to this embodiment. The illustrated arrangement is applicable to the heat exchangers 70, 270, 470 described above. The plurality of tubes 16a and 43a are arranged so as to form a row in a direction orthogonal to the flow direction of the air UR. The plurality of tubes 16a and 43a are arranged so as to form an upstream row 71c located on the upstream side in the flow direction of the air UR and a downstream row 71d located on the downstream side of the upstream row 71c.
 上流列71cには、冷媒チューブ16aだけが配列されている。下流列71dには、冷媒チューブ16aと水チューブ43aとが配列されている。下流列71dの少なくとも一部において、冷媒チューブ16aと水チューブ43aとが隣接している。下流列71dの全体にわたって、冷媒チューブ16aと水チューブ43aとは交互に配列されている。この実施形態では、2本の水チューブ43aが空気URの流れ方向と直交する方向に隣接することはない。上流列71cにおいては、すべての空気通路16b、43bに冷媒チューブ16aが隣接している。下流列71dにおいても、すべての空気通路16b、43bに冷媒チューブ16aが隣接している。よって、すべての列71c、71dのすべての空気通路16b、43bに冷媒チューブ16aが隣接している。 Only the refrigerant tubes 16a are arranged in the upstream row 71c. The refrigerant tube 16a and the water tube 43a are arranged in the downstream row 71d. In at least a part of the downstream row 71d, the refrigerant tube 16a and the water tube 43a are adjacent to each other. The refrigerant tubes 16a and the water tubes 43a are alternately arranged over the entire downstream row 71d. In this embodiment, the two water tubes 43a are not adjacent in the direction orthogonal to the flow direction of the air UR. In the upstream row 71c, the refrigerant tubes 16a are adjacent to all the air passages 16b and 43b. Also in the downstream row 71d, the refrigerant tubes 16a are adjacent to all the air passages 16b and 43b. Therefore, the refrigerant tubes 16a are adjacent to all the air passages 16b, 43b of all the rows 71c, 71d.
 上流列71cにおいて隣接する水チューブ43aは、フィン50を介して熱的に結合している。下流列71dにおいて隣接する冷媒チューブ16aと水チューブ43aとは、フィン50を介して熱的に結合している。フィン50は、上流列71cと下流列71dとの間にわたって延びている。フィン50は、波板状に形成されたコルゲートフィンである。フィン50は、空気URに対する熱交換を促進する。フィン50には、スリット状の開口を有する複数のルーバ50aが形成されている。ルーバ50aは、フィン50上に複数のスリット状の開口を形成する。ルーバ50aは、フィン50上に多数の微細な隙間を形成する。ルーバ50aは空気URに対する熱交換を促進する。 The adjacent water tubes 43 a in the upstream row 71 c are thermally coupled via the fins 50. The adjacent refrigerant tubes 16a and water tubes 43a in the downstream row 71d are thermally coupled via the fins 50. The fin 50 extends between the upstream row 71c and the downstream row 71d. The fin 50 is a corrugated fin formed in a corrugated plate shape. The fin 50 promotes heat exchange with the air UR. A plurality of louvers 50 a having slit-like openings are formed on the fin 50. The louver 50 a forms a plurality of slit-shaped openings on the fin 50. The louver 50 a forms a large number of fine gaps on the fin 50. The louver 50a promotes heat exchange with the air UR.
 熱交換器70の全体において、冷媒チューブ16aの数は、水チューブ43aの数より多い。冷媒チューブ16aは上流列71cにおける多数派である。上流列71cにおける冷媒チューブ16aの数は、上流列71cにおける水チューブ43aの数より多い。この構成によると、凝縮水の発生を上流列71cに偏らせることができる。この実施形態では、上流列71cにおける水チューブ43aの数は0である。熱交換器70において複数の冷媒チューブ16aが提供する冷媒RFのための流路断面積は、熱交換器70において複数の水チューブ43aが提供する冷却水WTのための流路断面積より大きい。冷却水WTは、高温媒体である。冷媒RFは、高温媒体より温度が低い低温媒体である。 In the entire heat exchanger 70, the number of refrigerant tubes 16a is larger than the number of water tubes 43a. The refrigerant tube 16a is a majority in the upstream row 71c. The number of refrigerant tubes 16a in the upstream row 71c is larger than the number of water tubes 43a in the upstream row 71c. According to this configuration, generation of condensed water can be biased toward the upstream row 71c. In this embodiment, the number of water tubes 43a in the upstream row 71c is zero. The flow path cross-sectional area for the refrigerant RF provided by the plurality of refrigerant tubes 16a in the heat exchanger 70 is larger than the flow path cross-sectional area for the cooling water WT provided by the plurality of water tubes 43a in the heat exchanger 70. The cooling water WT is a high temperature medium. The refrigerant RF is a low temperature medium whose temperature is lower than that of the high temperature medium.
 図20に図示されるように、XX-XX断面における凝縮水は、熱交換器70が蒸発器として運転された後に徐々に変遷してゆく。図中の第1段階ST1、第2段階ST2、第3段階ST3は、冷媒チューブ16aに低温媒体が流れ始めた後の時間の経過に対応している。図示されるように、第1段階ST1では、冷媒チューブ16aの表面、およびフィン50の表面に水滴DRPが発生する。水滴DRPの数は徐々に増加し、水滴DRPの大きさは徐々に大きくなる。 As shown in FIG. 20, the condensed water in the XX-XX section gradually changes after the heat exchanger 70 is operated as an evaporator. The first stage ST1, the second stage ST2, and the third stage ST3 in the figure correspond to the passage of time after the low-temperature medium starts flowing through the refrigerant tube 16a. As shown in the drawing, in the first stage ST1, water droplets DRP are generated on the surface of the refrigerant tube 16a and the surface of the fin 50. The number of water droplets DRP increases gradually, and the size of the water droplets DRP gradually increases.
 やがて、第2段階ST2では、冷媒チューブ16aの表面に付着した凝縮水が重力方向に流れる。凝縮水は、冷媒チューブ16aの表面に連続した水の膜FLMを形成する。このとき、凝縮水は流れるから、水の膜FLMの厚さは薄い。フィン50の上では、水滴DRPがさらに成長する。第3段階ST3では、フィン50上の水滴が、冷媒チューブ16a上の膜FLMと合流して流れる。フィン50上の水滴DRPは大きく成長する前に膜FLMに接触し、膜FLMに沿って流れ去る。冷媒チューブ16aに冷温媒体が供給される間中、第3段階ST3の状態が維持される。この結果、水滴DRPの過剰な成長による空気通路の閉塞が回避される。また、水滴DRPが空気URの流れに飛び出すことが回避される。 Eventually, in the second stage ST2, the condensed water adhering to the surface of the refrigerant tube 16a flows in the direction of gravity. The condensed water forms a continuous water film FLM on the surface of the refrigerant tube 16a. At this time, since the condensed water flows, the thickness of the water film FLM is thin. On the fin 50, the water droplet DRP further grows. In the third stage ST3, water droplets on the fins 50 flow together with the film FLM on the refrigerant tube 16a. The water droplet DRP on the fin 50 contacts the film FLM before it grows large and flows away along the film FLM. While the cold medium is supplied to the refrigerant tube 16a, the state of the third stage ST3 is maintained. As a result, blockage of the air passage due to excessive growth of the water droplet DRP is avoided. Moreover, it is avoided that the water droplet DRP jumps out into the flow of the air UR.
 図21に図示されるように、XXI-XXI断面における凝縮水は、熱交換器70が蒸発器として運転された後に徐々に変遷してゆく。図示されるように、第1段階ST1では、冷媒チューブ16aの表面、およびフィン50の表面に水滴DRPが発生する。一方、水チューブ43aには低温媒体は供給されない。このため、水チューブ43aは凝縮水を生じるほどの低温にならない。このため、水チューブ43aの表面には水滴DRPが発生しないか、または発生してもごく少量である。 As shown in FIG. 21, the condensed water in the XXI-XXI section gradually changes after the heat exchanger 70 is operated as an evaporator. As shown in the drawing, in the first stage ST1, water droplets DRP are generated on the surface of the refrigerant tube 16a and the surface of the fin 50. On the other hand, the low temperature medium is not supplied to the water tube 43a. For this reason, the water tube 43a does not become a low temperature which produces condensed water. For this reason, the water droplet DRP is not generated on the surface of the water tube 43a, or a very small amount is generated.
 やがて、第2段階ST2では、冷媒チューブ16aの表面に付着した凝縮水が重力方向に流れる。凝縮水は、冷媒チューブ16aの表面に連続した水の膜FLMを形成する。フィン50の上では、水滴DRPがさらに成長する。同時に、水チューブ43aの表面にも、ごくわずかな水滴DRPが生じることがある。 Eventually, in the second stage ST2, the condensed water adhering to the surface of the refrigerant tube 16a flows in the direction of gravity. The condensed water forms a continuous water film FLM on the surface of the refrigerant tube 16a. On the fin 50, the water droplet DRP further grows. At the same time, very few water droplets DRP may be generated on the surface of the water tube 43a.
 第3段階ST3では、フィン50上の水滴が、冷媒チューブ16a上の膜FLMと合流して流れる。フィン50上の水滴DRPは大きく成長する前に膜FLMに接触し、膜FLMに沿って流れ去る。水チューブ43aの表面には、ごくわずかの水滴DRPが残留することがある。冷媒チューブ16aに冷温媒体が供給される間中、第3段階ST3の状態が維持される。この結果、水滴DRPの過剰な成長による空気通路の閉塞が回避される。また、水滴DRPが空気URの流れに飛び出すことが回避される。 In the third stage ST3, water droplets on the fins 50 flow together with the film FLM on the refrigerant tube 16a. The water droplet DRP on the fin 50 contacts the film FLM before it grows large and flows away along the film FLM. Very few water droplets DRP may remain on the surface of the water tube 43a. While the cold medium is supplied to the refrigerant tube 16a, the state of the third stage ST3 is maintained. As a result, blockage of the air passage due to excessive growth of the water droplet DRP is avoided. Moreover, it is avoided that the water droplet DRP jumps out into the flow of the air UR.
 この実施形態によると、凝縮水の水滴DRPは、空気通路を閉塞するほどの大きさに成長する前に、冷媒チューブ16aの表面に形成された膜FLMに接触し、流れ去る。このため、熱交換器70からの水滴DRPの飛び出しを抑制することができる。 According to this embodiment, the water droplet DRP of the condensed water comes into contact with the film FLM formed on the surface of the refrigerant tube 16a and flows away before it grows to a size that closes the air passage. For this reason, jumping out of the water droplet DRP from the heat exchanger 70 can be suppressed.
 図22において、比較例の熱交換器CMPにおける複数のチューブ16a、43aの配置が図示されている。比較例では、上流列71cと下流列71dとの一方は、複数の水チューブ43aだけを配列することによって提供されている。上流列71cと下流列71dとの他方は、複数の冷媒チューブ16aだけを配列することによって提供されている。図示の例では、上流列71cには、複数の冷媒チューブ16aだけが配列されている。下流列71dには、複数の水チューブ43aだけが配列されている。 22 shows the arrangement of the plurality of tubes 16a and 43a in the heat exchanger CMP of the comparative example. In the comparative example, one of the upstream row 71c and the downstream row 71d is provided by arranging only a plurality of water tubes 43a. The other of the upstream row 71c and the downstream row 71d is provided by arranging only a plurality of refrigerant tubes 16a. In the illustrated example, only the plurality of refrigerant tubes 16a are arranged in the upstream row 71c. Only a plurality of water tubes 43a are arranged in the downstream row 71d.
 図22のXX-XX断面における凝縮水は、図20に図示され、説明されたように変遷する。図23は、XXIII-XXIII断面における凝縮水の変遷を示す。熱交換器CMPにおいては、上流列71cに配置された冷媒チューブ16aによりフィン50が冷却される。下流列71dにおいては、フィン50が最も低温になる。このため、第1段階ST1では、フィン50の表面に水滴DRPが発生する。水滴DRPの数は徐々に増加し、水滴DRPの大きさは徐々に大きくなる。 The condensed water in the section XX-XX in FIG. 22 changes as illustrated and described in FIG. FIG. 23 shows the transition of condensed water in the section XXIII-XXIII. In the heat exchanger CMP, the fins 50 are cooled by the refrigerant tubes 16a arranged in the upstream row 71c. In the downstream row 71d, the fin 50 has the lowest temperature. For this reason, in the first stage ST1, water droplets DRP are generated on the surface of the fin 50. The number of water droplets DRP increases gradually, and the size of the water droplets DRP gradually increases.
 やがて、第2段階ST2では、フィン50上において水滴DRPがさらに成長する。水滴DRPは、上下方向に沿って流れないまま、大きく成長してゆく。第3段階ST3では、フィン50上の水滴DRPが、フィン50上の空気通路を閉塞するほどの大きさに到達する。水滴DRPが大きくなると、水滴DRPが水チューブ43aの表面に接触しても流れにくい。水チューブ43aの表面が連続的に濡れていないからである。この結果、水滴DRPの過剰な成長により空気通路が閉塞される。また、水滴DRPが空気URの流れに押されて、飛び出しやすい状態となる。 Eventually, in the second stage ST2, the water droplet DRP further grows on the fin 50. The water droplet DRP grows greatly without flowing along the vertical direction. In the third stage ST3, the water droplet DRP on the fin 50 reaches a size that closes the air passage on the fin 50. When the water droplet DRP becomes large, it is difficult for the water droplet DRP to flow even if it contacts the surface of the water tube 43a. This is because the surface of the water tube 43a is not continuously wet. As a result, the air passage is blocked by excessive growth of the water droplet DRP. In addition, the water droplet DRP is pushed by the flow of the air UR, and it becomes easy to jump out.
 以上に述べたように、比較例の熱交換器CMPは、2本の水チューブ43aが隣接する部位を有する。この部位では、凝縮水が大きく成長しやすい。このため、水滴DRPによる空気通路16b、43bの閉塞、または水滴DRPの飛散を生じるおそれがある。一方、この実施形態に係る熱交換器70は、すべての空気通路16b、43bに冷媒チューブ16aが隣接している。このため、すべての空気通路16b、43bにおいて、冷媒チューブ16aの表面に沿って延びる凝縮水の排出経路が提供される。 As described above, the heat exchanger CMP of the comparative example has a portion where the two water tubes 43a are adjacent to each other. In this part, the condensed water tends to grow large. For this reason, the air passages 16b and 43b may be blocked by the water droplet DRP, or the water droplet DRP may be scattered. On the other hand, in the heat exchanger 70 according to this embodiment, the refrigerant tubes 16a are adjacent to all the air passages 16b and 43b. For this reason, in all of the air passages 16b and 43b, a condensed water discharge path extending along the surface of the refrigerant tube 16a is provided.
 (第14実施形態)
 図24は、先行する実施形態のいずれかに適用可能な制御処理S1を示す。制御処理S2は、熱源HSの温度を調節するための冷却水の流量Gwを調節する冷却水制御を含む。制御処理S2は、利用される空気URの流量Guを調節する空調制御を含む。
(14th Embodiment)
FIG. 24 shows a control process S1 applicable to any of the preceding embodiments. The control process S2 includes cooling water control for adjusting the flow rate Gw of the cooling water for adjusting the temperature of the heat source HS. The control process S2 includes air conditioning control for adjusting the flow rate Gu of the air UR to be used.
 S11では、制御装置100は、空調装置1のための動力が利用可能であるか否かを判定する。この処理は、車両の電源スイッチまたはイグニッションスイッチがON位置にあるか、OFF位置にあるかを判定することにより提供することができる。動力が利用不可能である場合、待機する。動力が利用可能になると、S12へ進む。 In S11, the control device 100 determines whether or not the power for the air conditioner 1 is available. This process can be provided by determining whether the power switch or ignition switch of the vehicle is in the ON position or the OFF position. If power is not available, wait. When power becomes available, the process proceeds to S12.
 S12では、制御装置100は、冷却水温Twが所定の閾値温度Tthを上回るか否かを判定する。閾値温度Tthは、動力が利用可能となった時において熱源HSが異常な高温状態にあることを示す温度である。冷却水温Twは、熱源HSの温度を正確に反映することが望ましい。例えば、熱源HSへの入口、または熱源HSの出口における冷却水の温度を利用することができる。冷却水温Twが閾値温度Tthを上回らない場合(Tw<TthまたはTw=Tth)、S13へ進む。冷却水温Twが閾値温度Tthを上回ると(Tw>Tth)、S15へ進む。 In S12, the control device 100 determines whether or not the coolant temperature Tw exceeds a predetermined threshold temperature Tth. The threshold temperature Tth is a temperature indicating that the heat source HS is in an abnormally high temperature state when power is available. It is desirable that the cooling water temperature Tw accurately reflects the temperature of the heat source HS. For example, the temperature of the cooling water at the inlet to the heat source HS or the outlet of the heat source HS can be used. When the cooling water temperature Tw does not exceed the threshold temperature Tth (Tw <Tth or Tw = Tth), the process proceeds to S13. When the cooling water temperature Tw exceeds the threshold temperature Tth (Tw> Tth), the process proceeds to S15.
 例えば、車両が長時間にわたって炎天下に駐車されていた場合、熱源HSは過剰な高温に到達することがある。また、熱源HSを大きな負荷の下で運転した後に、冷却水WTの流れが遮断された場合、熱源HSは過剰な高温に到達することがある。このような過剰な高温状態の下で、熱源HSを利用することは、熱源HSの性能を長期間にわたって維持するために望ましくない。例えば、熱源HSが電池である場合、過剰な高温状態の下での電池の充放電は望ましくない。 For example, if the vehicle has been parked under hot weather for a long time, the heat source HS may reach an excessively high temperature. In addition, when the flow of the cooling water WT is interrupted after operating the heat source HS under a large load, the heat source HS may reach an excessively high temperature. Utilizing the heat source HS under such excessively high temperature conditions is not desirable in order to maintain the performance of the heat source HS over a long period of time. For example, when the heat source HS is a battery, charging / discharging of the battery under an excessively high temperature condition is not desirable.
 S13では、制御装置100は、通常の冷却水の制御を実行する。ここでは、熱源HSと熱交換器43、243、443とを通過する冷却水WTの流量Gwが制御される。例えば、図示されるような所定の制御特性に基づいて流量Gwが調節される。図示の例では、冷却水温Twに応じて流量Gwが調節される。これにより、熱源HSの温度を所定温度に維持するように流量Gwが制御される。 In S13, the control device 100 executes normal cooling water control. Here, the flow rate Gw of the cooling water WT passing through the heat source HS and the heat exchangers 43, 243, and 443 is controlled. For example, the flow rate Gw is adjusted based on a predetermined control characteristic as illustrated. In the illustrated example, the flow rate Gw is adjusted according to the cooling water temperature Tw. Thereby, the flow rate Gw is controlled so that the temperature of the heat source HS is maintained at a predetermined temperature.
 S14では、制御装置100は、通常の空調を開始する。ここでは、通常の風量の制御が実行され、利用側の空気URの風量Guが調節される。例えば、図示されるような所定の制御特性に基づいて風量Guが調節される。図示の例では、空調装置1の熱負荷Qacに応じて風量Guが調節される。風量は、冷房のための熱負荷Qac、または暖房のための熱負荷Qacが大きくなるほど増加するように調節することができる。 In S14, the control device 100 starts normal air conditioning. Here, the normal air volume control is executed, and the air volume Gu of the air UR on the use side is adjusted. For example, the air volume Gu is adjusted based on a predetermined control characteristic as illustrated. In the illustrated example, the air volume Gu is adjusted according to the heat load Qac of the air conditioner 1. The air volume can be adjusted to increase as the heat load Qac for cooling or the heat load Qac for heating increases.
 S15では、制御装置100は、熱源HSが過剰な高温である場合に適合された冷却水制御を実行する。S15では、S13において与えられる流量Gwより多くなるように増加された流量Gwが与えられる。この結果、熱源HSは、増加された流量Gwによって冷却される。 In S15, the control device 100 executes cooling water control adapted when the heat source HS is at an excessively high temperature. In S15, the flow rate Gw increased so as to be larger than the flow rate Gw given in S13 is given. As a result, the heat source HS is cooled by the increased flow rate Gw.
 S16では、制御装置100は、通常の空調制御を保留する。ここでは、熱源HSが過剰な高温である場合に適合された風量制御が実行される。S16では、S14において与えられる風量Guより少なくなるように抑制された風量Guが与えられる。風量Guは、S14における制御特性より少なく調節される。風量Guは、0に調節されてもよい。この結果、空調、例えば冷房は保留される。 In S16, the control device 100 suspends the normal air conditioning control. Here, the air volume control adapted to the case where the heat source HS is at an excessively high temperature is executed. In S16, the air volume Gu suppressed to be smaller than the air volume Gu given in S14 is given. The air volume Gu is adjusted to be less than the control characteristic in S14. The air volume Gu may be adjusted to zero. As a result, air conditioning such as cooling is suspended.
 この実施形態によると、熱源HSの過剰高温を迅速に解消するように流量Gwと風量Guとが制御される。動力が利用可能になった直後に熱源HSが過剰な高温である場合、まずS15、S16が実行される。よって、通常時の制御特性より増加された流量Gwが供給される。同時に、通常時の制御特性より抑制された風量Guが供給される。 According to this embodiment, the flow rate Gw and the air volume Gu are controlled so as to quickly eliminate the excessively high temperature of the heat source HS. If the heat source HS has an excessively high temperature immediately after the power becomes available, first, S15 and S16 are executed. Therefore, the flow rate Gw increased from the normal control characteristic is supplied. At the same time, the air volume Gu that is suppressed by the normal control characteristics is supplied.
 やがて冷却水温Twが閾値温度Tthを上回らなくなると、S13、S14が実行される。よって、熱源HSが過剰な高温状態から正常な温度域に冷却されると、流量Gwは減少する。同時に、風量Guは増加する。 Soon, when the cooling water temperature Tw does not exceed the threshold temperature Tth, S13 and S14 are executed. Therefore, when the heat source HS is cooled from an excessively high temperature state to a normal temperature range, the flow rate Gw decreases. At the same time, the air volume Gu increases.
 S17は、熱交換器270を備える実施形態において実行される。S17では、制御装置100は、室外冷媒熱交換器216に付着する霜に起因する加熱運転の性能低下を補償するように空調装置1を制御する。制御装置100は、室外冷媒熱交換器216における霜による性能低下に応じてラジエータ243、すなわち補助媒体熱交換器243に流れる補助媒体の流量を増加させる。これに代えて、または加えて、制御装置100は、利用側熱交換器70の熱負荷を増加させることにより補助媒体熱交換器243に与えられる熱量を増加させる。例えば、利用空気URの風量Gu、および/または導入空気の温度を上昇させることにより熱負荷を増加させることができる。熱負荷の増加により、ラジエータ43において冷却水WTに熱を与えることができる。この結果、冷却水回路40を経由して補助媒体熱交換器243に熱を与え、室外冷媒熱交換器216における霜の抑制、除去が可能となる。 S17 is performed in the embodiment including the heat exchanger 270. In S <b> 17, the control device 100 controls the air conditioner 1 to compensate for the deterioration in performance of the heating operation caused by frost attached to the outdoor refrigerant heat exchanger 216. The control device 100 increases the flow rate of the auxiliary medium flowing through the radiator 243, that is, the auxiliary medium heat exchanger 243 in accordance with the performance degradation due to frost in the outdoor refrigerant heat exchanger 216. Instead of or in addition to this, the control device 100 increases the amount of heat given to the auxiliary medium heat exchanger 243 by increasing the heat load of the use side heat exchanger 70. For example, the heat load can be increased by increasing the air volume Gu of the utilization air UR and / or the temperature of the introduced air. Due to the increase in heat load, the radiator 43 can apply heat to the cooling water WT. As a result, heat is applied to the auxiliary medium heat exchanger 243 via the cooling water circuit 40, and frost in the outdoor refrigerant heat exchanger 216 can be suppressed and removed.
 S17における処理は、室外冷媒熱交換器216に付着する霜に起因する性能低下を検出し、この性能低下量に応じて実行することができる。例えば、室外冷媒熱交換器216における冷媒の温度、または圧力に基づいて実行できる。この温度または圧力が所定の閾値となる前後において、冷却水WTの流量の増加、または冷却水WTの温度の上昇を実行することができる。 The processing in S17 can be performed according to the performance reduction amount by detecting a performance reduction caused by frost adhering to the outdoor refrigerant heat exchanger 216. For example, it can be performed based on the temperature or pressure of the refrigerant in the outdoor refrigerant heat exchanger 216. Before and after the temperature or pressure reaches a predetermined threshold value, the flow rate of the cooling water WT can be increased or the temperature of the cooling water WT can be increased.
 この実施形態によると、制御装置100は、動力が利用可能になった後に、利用側熱交換器70による利用空気の温度制御に優先して補助媒体回路40による発熱機器HSの温度制御を実行する。補助媒体のための回路40に関連する温度、すなわち冷却水温Twが所定の閾値温度となる前後において流量Gwが減少される。補助媒体のための回路40に関連する温度、すなわち冷却水温Twが所定の閾値温度となる前後において風量Guが増加される。 According to this embodiment, the control device 100 executes the temperature control of the heat generating device HS by the auxiliary medium circuit 40 in preference to the temperature control of the use air by the use side heat exchanger 70 after the power becomes available. . The flow rate Gw is decreased before and after the temperature related to the circuit 40 for the auxiliary medium, that is, the cooling water temperature Tw reaches a predetermined threshold temperature. The air volume Gu is increased before and after the temperature related to the circuit 40 for the auxiliary medium, that is, the cooling water temperature Tw reaches a predetermined threshold temperature.
 この実施形態によると、熱源HSが過剰な高温状態にある場合、空調を実質的に保留し、熱源HSの温度制御が優先される。その後、熱源HSの温度が低下すると、空調の保留が解除され、空調が実質的に開始される。このため、熱源HSを保護することができる。また、空調が保留される期間中に冷媒回路10を運転することで、空調のために必要な高圧と低圧とを発生させることができる。よって、空調の保留が解除された後は、急速な空調を提供できる。 According to this embodiment, when the heat source HS is in an excessively high temperature state, the air conditioning is substantially suspended and the temperature control of the heat source HS is prioritized. Thereafter, when the temperature of the heat source HS decreases, the suspension of the air conditioning is canceled and the air conditioning is substantially started. For this reason, the heat source HS can be protected. Further, by operating the refrigerant circuit 10 during the period in which the air conditioning is suspended, the high pressure and the low pressure necessary for the air conditioning can be generated. Thus, rapid air conditioning can be provided after the suspension of air conditioning is released.
 (第15実施形態)
 図25は、先行する実施形態のいずれかに適用可能な制御処理S2を示す。制御処理S2は、熱源HSの温度を調節するための冷却水の流量Gwを調節する冷却水制御を含む。制御処理S2は、利用される空気URの流量Guを調節する空調制御を含む。制御処理S2は、熱源HSに外部電源によって充電可能な電池が含まれる場合に適用される。電池は、車両に搭載された発電機、または外部電源から充電される。外部電源は、例えば住宅または事業所において提供される商用電源または小規模発電施設である。例えば、熱源HSとしての電池は、車両と外部電源とを接続するケーブルを経由して充電される。
(Fifteenth embodiment)
FIG. 25 shows a control process S2 applicable to any of the preceding embodiments. The control process S2 includes cooling water control for adjusting the flow rate Gw of the cooling water for adjusting the temperature of the heat source HS. The control process S2 includes air conditioning control for adjusting the flow rate Gu of the air UR to be used. The control process S2 is applied when the heat source HS includes a battery that can be charged by an external power source. The battery is charged from a generator mounted on the vehicle or an external power source. The external power source is, for example, a commercial power source or a small-scale power generation facility provided in a house or business office. For example, a battery as the heat source HS is charged via a cable connecting the vehicle and an external power source.
 S21では、制御装置100は、電池が充電されているか否かを判定する。この処理は、ケーブルが車両と外部電源とを接続しているか否かを判定することにより提供することができる。S21における判定は、電池が急速充電されているか否かを判定する処理でもある。急速充電においては、高い充電電流が電池に流れるから、電池の温度は高くなりやすい。充電中ではない場合、S13へ進む。充電中である場合、S25へ進む。 In S21, the control device 100 determines whether or not the battery is charged. This processing can be provided by determining whether the cable connects the vehicle and an external power source. The determination in S21 is also a process for determining whether or not the battery is rapidly charged. In rapid charging, since a high charging current flows through the battery, the temperature of the battery tends to increase. If not charging, the process proceeds to S13. If charging, proceed to S25.
 S13では、制御装置100は、上述の通常の冷却水の制御を実行する。S14では、制御装置100は、上述の通常の空調を開始する。電池が充電中ではない場合、通常の冷却水制御によって電池の温度は望ましい温度に維持される。また、空調装置1は、利用者に快適な環境を提供するように制御される。 In S13, the control device 100 executes the above-described normal cooling water control. In S14, the control device 100 starts the above-described normal air conditioning. When the battery is not being charged, the temperature of the battery is maintained at a desired temperature by normal cooling water control. The air conditioner 1 is controlled to provide a comfortable environment for the user.
 S25では、制御装置100は、電池が急速充電中である場合に適合された冷却水制御を実行する。S25では、S13において与えられる流量Gwより多くなるように増加された流量Gwが与えられる。この結果、熱源HSは、増加された流量Gwによって冷却される。 In S25, the control device 100 executes the cooling water control adapted when the battery is being rapidly charged. In S25, the flow rate Gw increased so as to be larger than the flow rate Gw given in S13 is given. As a result, the heat source HS is cooled by the increased flow rate Gw.
 流量Gwの増加量+Gwは、電池の充電状態SOC(State Of Charge)に基づいて設定することができる。充電状態SOCは、電池に充電されている充電量、すなわち残量を示す。増加量+Gwは、充電状態SOCが低い時、比較的大きい値に設定される。増加量+Gwは、充電状態SOCが高い時、比較的小さい値に設定される。増加量+Gwは、図示されるように、充電状態SOCが高くなるほど、徐々に小さくなるように設定することができる。また、増加量+Gwは、所定の閾値SOC1においてステップ的に減少するように設定することができる。これらの場合、充電量が所定値SOC1になる前後において流量Gwが減少される。 The increase amount + Gw of the flow rate Gw can be set based on the state of charge SOC (State Of Charge) of the battery. The state of charge SOC indicates the amount of charge charged in the battery, that is, the remaining amount. The increase amount + Gw is set to a relatively large value when the state of charge SOC is low. The increase amount + Gw is set to a relatively small value when the state of charge SOC is high. As shown in the figure, the increase amount + Gw can be set to gradually decrease as the state of charge SOC increases. Further, the increase amount + Gw can be set so as to decrease stepwise at a predetermined threshold value SOC1. In these cases, the flow rate Gw is decreased before and after the charge amount reaches the predetermined value SOC1.
 S26では、制御装置100は、通常の空調制御を保留する。ここでは、電池が急速充電中である場合に適合された風量制御が実行される。S26では、S14において与えられる風量Guより少なくなるように抑制された風量Guが与えられる。風量Guは、S14における制御特性より少なく調節される。風量Guは、0に調節されてもよい。この結果、空調、例えば冷房は保留される。 In S26, the control device 100 suspends normal air conditioning control. Here, the air volume control adapted to the case where the battery is being rapidly charged is executed. In S26, the air volume Gu suppressed to be smaller than the air volume Gu given in S14 is provided. The air volume Gu is adjusted to be less than the control characteristic in S14. The air volume Gu may be adjusted to zero. As a result, air conditioning such as cooling is suspended.
 風量Guは、S14における制御特性に抑制係数Kurを乗算することによって抑制することができる。抑制係数は、0.0から1.0の間で設定される。抑制係数Kurは、充電状態SOCが低い時、比較的小さい値に設定される。抑制係数Kurは、充電状態SOCが高い時、比較的大きい値に設定される。抑制係数Kurは、図示されるように、充電状態SOCが高くなるほど、徐々に大きくなるように設定することができる。また、抑制係数Kurは、所定の閾値SOC2においてステップ的に増加するように設定することができる。これらの場合、充電量が所定値SOC2になる前後において風量Guが増加される。 The air volume Gu can be suppressed by multiplying the control characteristic in S14 by the suppression coefficient Kur. The suppression coefficient is set between 0.0 and 1.0. The suppression coefficient Kur is set to a relatively small value when the state of charge SOC is low. The suppression coefficient Kur is set to a relatively large value when the state of charge SOC is high. As shown in the figure, the suppression coefficient Kur can be set to gradually increase as the state of charge SOC increases. Further, the suppression coefficient Kur can be set so as to increase stepwise at the predetermined threshold SOC2. In these cases, the air volume Gu is increased before and after the charge amount reaches the predetermined value SOC2.
 この実施形態によると、制御装置100は、電池が充電されるときに利用側熱交換器70による利用空気URの温度制御に優先して補助媒体回路40による電池の温度制御を実行する。電池が充電されるときに電池の温度を望ましい温度に制御するように流量Gwと風量Guとが制御される。電池が充電される場合、まずS25、S26が実行される。よって、通常時の制御特性より増加された流量Gwが供給される。同時に、通常時の制御特性より抑制された風量Guが供給される。この結果、利用空気の温度制御が実行されているときに充電が開始されると、風量Guは直前よりも減少される。風量Guは、0に減少される場合がある。 According to this embodiment, the control device 100 executes the temperature control of the battery by the auxiliary medium circuit 40 in preference to the temperature control of the use air UR by the use side heat exchanger 70 when the battery is charged. When the battery is charged, the flow rate Gw and the air volume Gu are controlled so as to control the temperature of the battery to a desired temperature. When the battery is charged, first, S25 and S26 are executed. Therefore, the flow rate Gw increased from the normal control characteristic is supplied. At the same time, the air volume Gu that is suppressed by the normal control characteristics is supplied. As a result, if charging is started while the temperature control of the air used is being executed, the air volume Gu is reduced more than immediately before. The air volume Gu may be reduced to zero.
 やがて、充電が進行すると、充電状態SOCが上昇する。充電状態SOCが閾値SOC1を上回る前後において、流量Gwが減少される。また、充電状態SOCが閾値SOC2を上回る前後において、風量Guが増加される。充電が完了すると、S13、S14が実行される。よって、電池のための特別な温度管理が不要となると、流量Gwは減少する。同時に、風量Guは増加する。 As soon as charging progresses, the state of charge SOC rises. The flow rate Gw is decreased before and after the state of charge SOC exceeds the threshold value SOC1. In addition, the air volume Gu is increased before and after the state of charge SOC exceeds the threshold value SOC2. When charging is completed, S13 and S14 are executed. Therefore, the flow rate Gw decreases when special temperature management for the battery is not required. At the same time, the air volume Gu increases.
 この実施形態によると、電池が充電されるとき、充電量、すなわち充電状態SOCが所定の閾値SOC1となる前後において流量Gwが減少される。電池が充電されるとき、充電量、すなわち充電状態SOCが所定の閾値SOC2となる前後において風量Guが増加される。 According to this embodiment, when the battery is charged, the flow rate Gw is decreased before and after the amount of charge, that is, the state of charge SOC reaches the predetermined threshold value SOC1. When the battery is charged, the air volume Gu is increased before and after the amount of charge, that is, the state of charge SOC reaches a predetermined threshold value SOC2.
 この実施形態によると、電池が大電流によって充電される場合、空調を実質的に保留し、電池の温度制御が優先される。その後、電池の充電量が高くなると、空調の保留が解除され、空調が実質的に開始される。このため、充電時における電池の温度制御能力、特に冷却能力を高めることができる。また、空調が保留される期間中に冷媒回路10を運転することで、空調のために必要な高圧と低圧とを発生させることができる。よって、空調の保留が解除された後は、急速な空調を提供できる。 According to this embodiment, when the battery is charged with a large current, the air conditioning is substantially suspended and the temperature control of the battery is prioritized. Thereafter, when the charge amount of the battery increases, the suspension of the air conditioning is canceled and the air conditioning is substantially started. For this reason, the temperature control capability of the battery during charging, particularly the cooling capability, can be increased. Further, by operating the refrigerant circuit 10 during the period in which the air conditioning is suspended, the high pressure and the low pressure necessary for the air conditioning can be generated. Thus, rapid air conditioning can be provided after the suspension of air conditioning is released.
 (他の実施形態)
 以上、実施形態について説明したが、本開示は上述した実施形態に何ら制限されることなく、本開示の主旨を逸脱しない範囲において種々変形して実施することが可能である。上記実施形態の構造は、あくまで例示であって、本開示の範囲はこれらの記載の範囲に限定されるものではない。本開示の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものである。
(Other embodiments)
Although the embodiments have been described above, the present disclosure is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present disclosure. The structure of the said embodiment is an illustration to the last, Comprising: The range of this indication is not limited to the range of these description. The scope of the present disclosure is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.
 例えば、制御装置が提供する手段と機能は、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組合せによって提供することができる。例えば、制御装置をアナログ回路によって構成してもよい。 For example, the means and functions provided by the control device can be provided by software only, hardware only, or a combination thereof. For example, the control device may be configured by an analog circuit.
 上記実施形態では、補助媒体として、冷却水を利用した。これに代えて、熱運搬性に優れ、熱を蓄えることができる流体、例えば、冷媒、油、ガスなどを用いてもよい。 In the above embodiment, cooling water is used as the auxiliary medium. Instead, a fluid that is excellent in heat transportability and can store heat, such as refrigerant, oil, gas, or the like, may be used.
 上記実施形態では、冷却水回路40にラジエータ43を設けた。これに加えて、冷却水WTと空気ARとの熱交換により冷却水WTから放熱するための熱交換器を備えてもよい。例えば、ラジエータ43および熱源HSと並列となるように放熱用の熱交換器を設けることができる。 In the above embodiment, the radiator 43 is provided in the cooling water circuit 40. In addition to this, a heat exchanger for radiating heat from the cooling water WT by heat exchange between the cooling water WT and the air AR may be provided. For example, a heat exchanger for heat radiation can be provided in parallel with the radiator 43 and the heat source HS.
 また、上記実施形態では、冷媒熱交換器16とラジエータ43との両方に空気通路16b、43bを設けたが、ラジエータ43に空気通路を設けない構成を採用してもよい。また、冷媒チューブ16aと水チューブ43aとは、熱交換器70の全部または一部において交互に配置することができる。また、冷媒チューブ16aと水チューブ43aとは、熱交換器70の上流列の全部または一部において交互に配置することができる。また、冷媒チューブ16aと、水チューブ43aとは、空気ARの流れ方向に関して3列以上の列を構成するように配置されてもよい。 In the above embodiment, the air passages 16 b and 43 b are provided in both the refrigerant heat exchanger 16 and the radiator 43. However, a configuration in which the air passage is not provided in the radiator 43 may be adopted. Moreover, the refrigerant | coolant tube 16a and the water tube 43a can be alternately arrange | positioned in all or one part of the heat exchanger 70. FIG. Moreover, the refrigerant | coolant tube 16a and the water tube 43a can be alternately arrange | positioned in all or one part of the upstream line of the heat exchanger 70. FIG. Moreover, the refrigerant | coolant tube 16a and the water tube 43a may be arrange | positioned so that 3 or more rows may be comprised regarding the flow direction of the air AR.

Claims (24)

  1.  低圧冷媒を吸入し、圧縮することにより、高圧冷媒を供給する圧縮機(11)、および前記高圧冷媒を減圧し前記低圧冷媒を供給する減圧器(19)を備える冷媒回路(10)と、
     前記冷媒回路とは別に構成され、補助媒体が循環する補助媒体回路(40、60)と、
     前記冷媒回路から供給される前記冷媒と前記利用空気(UR)とを熱交換させる複数の冷媒チューブ(16a)、および前記補助媒体回路から供給される前記補助媒体と前記利用空気(UR)とを熱交換させる複数の補助媒体チューブ(43a)を有する利用側熱交換器(70、370、470)と、
     前記冷媒回路と前記補助媒体回路とを制御する制御装置(100)とを備え、
     前記冷媒チューブ(16a)と前記補助媒体チューブ(43a)とは、
     前記利用空気(UR)の流れ方向(CD)に対して交差する方向(RD)に沿って列をなすように配置されているとともに、
     前記列の少なくとも一部において、前記冷媒チューブ(16a)と前記補助媒体チューブ(43a)とが熱伝達可能に配置されている熱利用システム。
    A refrigerant circuit (10) including a compressor (11) for supplying high-pressure refrigerant by sucking and compressing low-pressure refrigerant, and a decompressor (19) for depressurizing the high-pressure refrigerant and supplying the low-pressure refrigerant;
    An auxiliary medium circuit (40, 60) configured separately from the refrigerant circuit, in which the auxiliary medium circulates;
    A plurality of refrigerant tubes (16a) for exchanging heat between the refrigerant supplied from the refrigerant circuit and the use air (UR), and the auxiliary medium and use air (UR) supplied from the auxiliary medium circuit. A use side heat exchanger (70, 370, 470) having a plurality of auxiliary medium tubes (43a) for heat exchange;
    A control device (100) for controlling the refrigerant circuit and the auxiliary medium circuit;
    The refrigerant tube (16a) and the auxiliary medium tube (43a) are:
    Arranged in a row along a direction (RD) intersecting the flow direction (CD) of the utilization air (UR);
    The heat utilization system in which the refrigerant tube (16a) and the auxiliary medium tube (43a) are arranged to be able to transfer heat in at least a part of the row.
  2.  前記補助媒体は、発熱機器(HS、BT)の温度を調節するための媒体である請求項1に記載の熱利用システム。 The heat utilization system according to claim 1, wherein the auxiliary medium is a medium for adjusting the temperature of the heat generating device (HS, BT).
  3.  前記利用側熱交換器は、前記冷媒チューブ(16a)と前記補助媒体チューブ(43a)との間に形成された空気通路(16b、43b)に配置されたフィン(50)を備え、
     前記冷媒チューブ(16a)と前記補助媒体チューブ(43a)とは、前記フィンを介して熱伝達可能である請求項1または請求項2に記載の熱利用システム。
    The utilization side heat exchanger includes fins (50) disposed in air passages (16b, 43b) formed between the refrigerant tube (16a) and the auxiliary medium tube (43a),
    The heat utilization system according to claim 1 or 2, wherein the refrigerant tube (16a) and the auxiliary medium tube (43a) can transfer heat via the fins.
  4.  前記冷媒チューブの数は、前記補助媒体チューブの数より多い請求項1から請求項3のいずれかに記載のヒートポンプサイクル。 The heat pump cycle according to any one of claims 1 to 3, wherein the number of the refrigerant tubes is larger than the number of the auxiliary medium tubes.
  5.  前記冷媒チューブと前記補助媒体チューブとは、前記利用空気の流れ方向に関して少なくとも上流列と下流列とを構成するように配置されており、
     前記冷媒チューブは前記上流列における多数派である請求項1から請求項4のいずれかに記載のヒートポンプサイクル。
    The refrigerant tube and the auxiliary medium tube are arranged to constitute at least an upstream row and a downstream row with respect to the flow direction of the utilization air,
    The heat pump cycle according to any one of claims 1 to 4, wherein the refrigerant tube is a majority in the upstream row.
  6.  前記冷媒チューブと前記補助媒体チューブとは、前記利用空気の流れ方向に関して少なくとも上流列と下流列とを構成するように配置されており、
     前記冷媒チューブは前記下流列における多数派である請求項1から請求項4のいずれかに記載のヒートポンプサイクル。
    The refrigerant tube and the auxiliary medium tube are arranged to constitute at least an upstream row and a downstream row with respect to the flow direction of the utilization air,
    The heat pump cycle according to any one of claims 1 to 4, wherein the refrigerant tube is a majority in the downstream row.
  7.  前記制御装置は、前記冷媒によって前記補助媒体の温度を調節するように前記冷媒回路および前記補助媒体回路を制御する請求項1から請求項6のいずれかに記載の熱利用システム。 The heat utilization system according to any one of claims 1 to 6, wherein the control device controls the refrigerant circuit and the auxiliary medium circuit so as to adjust a temperature of the auxiliary medium by the refrigerant.
  8.  さらに、前記冷媒と前記補助媒体との間の熱交換量を調節するために、前記利用空気の流量を調節する風量調節装置(32、100)を備える請求項1から請求項7のいずれかに記載の熱利用システム。 Furthermore, in order to adjust the heat exchange amount between the said refrigerant | coolant and the said auxiliary | assistant medium, the air volume adjusting device (32, 100) which adjusts the flow volume of the said utilization air is provided in any one of Claims 1-7. The described heat utilization system.
  9.  前記制御装置は、前記補助媒体によって前記利用空気を冷却するように前記補助媒体回路を制御する請求項1から請求項8のいずれかに記載の熱利用システム。 The heat utilization system according to any one of claims 1 to 8, wherein the control device controls the auxiliary medium circuit so as to cool the utilization air by the auxiliary medium.
  10.  前記制御装置は、前記補助媒体から前記利用空気へ放熱するように前記補助媒体回路を制御する請求項1から請求項9のいずれかに記載の熱利用システム。 The heat utilization system according to any one of claims 1 to 9, wherein the control device controls the auxiliary medium circuit so as to radiate heat from the auxiliary medium to the utilization air.
  11.  前記制御装置は、前記利用側熱交換器における霜の付着に応答して、前記冷媒の流量、または前記補助媒体の流量を制御する請求項1から請求項10のいずれかに記載の熱利用システム。 The heat utilization system according to any one of claims 1 to 10, wherein the control device controls the flow rate of the refrigerant or the flow rate of the auxiliary medium in response to frost adhesion in the use side heat exchanger. .
  12.  前記冷媒回路は、前記低圧冷媒を前記冷媒チューブに供給する請求項1から請求項11のいずれかに記載の熱利用システム。 The heat utilization system according to any one of claims 1 to 11, wherein the refrigerant circuit supplies the low-pressure refrigerant to the refrigerant tube.
  13.  前記補助媒体回路(40)は、前記補助媒体を冷却する補助媒体熱交換器(243)を備え、
     前記補助媒体回路は、前記補助媒体熱交換器によって冷却された前記補助媒体を前記補助媒体チューブに供給することにより前記利用空気を冷却する請求項1から請求項12に記載の熱利用システム。
    The auxiliary medium circuit (40) includes an auxiliary medium heat exchanger (243) for cooling the auxiliary medium,
    The heat utilization system according to claim 1, wherein the auxiliary medium circuit cools the utilization air by supplying the auxiliary medium cooled by the auxiliary medium heat exchanger to the auxiliary medium tube.
  14.  前記冷媒回路は、非利用空気(AR)と前記低圧冷媒とを熱交換させ前記低圧冷媒に吸熱させる室外冷媒熱交換器(216)を備え、
     前記補助媒体熱交換器(243)は、前記室外冷媒熱交換器における前記低圧冷媒または前記非利用空気(AR)によって前記補助媒体を冷却する請求項13に記載の熱利用システム。
    The refrigerant circuit includes an outdoor refrigerant heat exchanger (216) that exchanges heat between the unused air (AR) and the low-pressure refrigerant and absorbs heat by the low-pressure refrigerant,
    The heat utilization system according to claim 13, wherein the auxiliary medium heat exchanger (243) cools the auxiliary medium with the low-pressure refrigerant or the unused air (AR) in the outdoor refrigerant heat exchanger.
  15.  前記冷媒回路は、加熱用途と冷却用途とに流路を切換えるサイクル切換装置(15b、213)を備え、
     前記室外冷媒熱交換器(216)は、前記加熱用途において前記非利用空気(AR)と前記低圧冷媒とを熱交換させ前記低圧冷媒に吸熱させ、前記冷却用途において前記非利用空気(AR)と前記高圧冷媒とを熱交換させ前記高圧冷媒から放熱させる請求項14に記載の熱利用システム。
    The refrigerant circuit includes a cycle switching device (15b, 213) that switches a flow path between a heating application and a cooling application,
    The outdoor refrigerant heat exchanger (216) exchanges heat between the unused air (AR) and the low-pressure refrigerant in the heating application, absorbs heat into the low-pressure refrigerant, and uses the unused air (AR) in the cooling application. The heat utilization system according to claim 14, wherein heat exchange is performed with the high-pressure refrigerant to dissipate heat from the high-pressure refrigerant.
  16.  前記制御装置は、前記室外冷媒熱交換器(216)における霜による性能低下に応じて前記補助媒体熱交換器(243)に流れる前記補助媒体の流量を増加させるか、または前記利用側熱交換器(70、370、470)の熱負荷を増加させることにより前記補助媒体熱交換器に与えられる熱量を増加させる請求項14または請求項15に記載の熱利用システム。 The control device increases the flow rate of the auxiliary medium flowing in the auxiliary medium heat exchanger (243) in accordance with the performance degradation due to frost in the outdoor refrigerant heat exchanger (216), or the use side heat exchanger The heat utilization system according to claim 14 or 15, wherein an amount of heat given to the auxiliary medium heat exchanger is increased by increasing a heat load of (70, 370, 470).
  17.  さらに、前記利用側熱交換器における温度を検出する温度センサ(23)を備え、
     前記制御装置は、前記温度センサの検出温度に基づいて前記冷却用途における前記冷媒回路を制御するとともに、前記温度センサの検出温度に基づいて前記冷却水回路を制御する請求項1から請求項16のいずれかに記載の熱利用システム。
    Furthermore, a temperature sensor (23) for detecting the temperature in the use side heat exchanger is provided,
    17. The control device according to claim 1, wherein the control device controls the refrigerant circuit in the cooling application based on a temperature detected by the temperature sensor and controls the cooling water circuit based on a temperature detected by the temperature sensor. The heat utilization system according to any one of the above.
  18.  さらに、
     非利用空気(AR)の流れ方向(CD)に対して交差する方向(RD)に沿って列をなすように配置された複数のチューブ(16a、43a)を有する非利用側熱交換器(270)を備え、
     前記チューブは、
     前記冷媒回路から供給される前記低圧冷媒と非利用空気(AR)とを熱交換させる複数の冷媒チューブ(16a)、および
     前記補助媒体回路から供給される前記補助媒体と前記非利用空気(AR)とを熱交換させ、前記列の少なくとも一部において、前記冷媒チューブ(16a)と熱伝達可能に配置された複数の補助媒体チューブ(43a)を含む請求項1から請求項17のいずれかに記載の熱利用システム。
    further,
    Non-use side heat exchanger (270) having a plurality of tubes (16a, 43a) arranged in a row along a direction (RD) intersecting with a flow direction (CD) of non-use air (AR) )
    The tube
    A plurality of refrigerant tubes (16a) for exchanging heat between the low-pressure refrigerant and the unused air (AR) supplied from the refrigerant circuit, and the auxiliary medium and the unused air (AR) supplied from the auxiliary medium circuit 18, and a plurality of auxiliary medium tubes (43 a) arranged so as to be able to transfer heat with the refrigerant tubes (16 a) in at least a part of the row. Heat utilization system.
  19.  さらに、
     前記利用空気(UR)の流れ方向(CD)に対して交差する方向(RD)に沿って列をなすように配置された複数のチューブ(16a、43a)を有する高圧冷媒用の利用側熱交換器(370)を備え、
     前記チューブは、
     前記冷媒回路から供給される前記高圧冷媒と利用空気(UR)とを熱交換させる複数の冷媒チューブ(16a)、および
     前記補助媒体回路から供給される前記補助媒体と前記利用空気(UR)とを熱交換させ、前記列の少なくとも一部において、前記冷媒チューブ(16a)と熱伝達可能に配置された複数の補助媒体チューブ(43a)を含む請求項18に記載の熱利用システム。
    further,
    Use side heat exchange for high pressure refrigerant having a plurality of tubes (16a, 43a) arranged in a row along a direction (RD) intersecting the flow direction (CD) of the use air (UR). A vessel (370),
    The tube
    A plurality of refrigerant tubes (16a) that exchange heat between the high-pressure refrigerant supplied from the refrigerant circuit and use air (UR), and the auxiliary medium and use air (UR) supplied from the auxiliary medium circuit. 19. The heat utilization system according to claim 18, comprising a plurality of auxiliary medium tubes (43 a) arranged to exchange heat and to be able to transfer heat with the refrigerant tubes (16 a) in at least a part of the row.
  20.  前記冷媒回路は、前記高圧冷媒を前記冷媒チューブに供給する請求項1から請求項19のいずれかに記載の熱利用システム。 The heat utilization system according to any one of claims 1 to 19, wherein the refrigerant circuit supplies the high-pressure refrigerant to the refrigerant tube.
  21.  前記利用空気は、空調のための空気である請求項1から請求項20のいずれかに記載の熱利用システム。 The heat utilization system according to any one of claims 1 to 20, wherein the utilization air is air for air conditioning.
  22.  前記利用空気は、物品を収容できる庫内の空気である請求項1から請求項20のいずれかに記載の熱利用システム。 The heat utilization system according to any one of claims 1 to 20, wherein the utilization air is air in a warehouse that can store articles.
  23.  前記制御装置は、動力が利用可能になった後に、前記利用側熱交換器(70、370、470)による前記利用空気の温度制御に優先して前記補助媒体回路による前記発熱機器(HS、BT)の温度制御を実行する請求項2に記載の熱利用システム。 After the power becomes available, the control device preferentially controls the temperature of the use air by the use side heat exchangers (70, 370, 470), and the heat generating devices (HS, BT) by the auxiliary medium circuit. The heat utilization system according to claim 2, wherein the temperature control is performed.
  24.  前記利用機器は、外部電源によって充電される電池を含み、
     前記制御装置は、前記電池が充電されるときに前記利用側熱交換器(70、370、470)による前記利用空気の温度制御に優先して前記補助媒体回路による前記電池の温度制御を実行する請求項2に記載の熱利用システム。
    The utilization device includes a battery charged by an external power source,
    The control device executes temperature control of the battery by the auxiliary medium circuit in preference to temperature control of the use air by the use side heat exchanger (70, 370, 470) when the battery is charged. The heat utilization system according to claim 2.
PCT/JP2012/007756 2011-12-08 2012-12-04 Heat utilization system WO2013084472A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011269223 2011-12-08
JP2011-269223 2011-12-08
JP2012257786A JP2013139997A (en) 2011-12-08 2012-11-26 Heat utilization system
JP2012-257786 2012-11-26

Publications (1)

Publication Number Publication Date
WO2013084472A1 true WO2013084472A1 (en) 2013-06-13

Family

ID=48573863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007756 WO2013084472A1 (en) 2011-12-08 2012-12-04 Heat utilization system

Country Status (2)

Country Link
JP (1) JP2013139997A (en)
WO (1) WO2013084472A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110753382A (en) * 2019-10-23 2020-02-04 中南大学 Vehicle-mounted network route setting method based on vehicle position prediction
EP3739284A1 (en) * 2019-05-16 2020-11-18 Valeo Autosystemy SP. Z.O.O. A hybrid heat exchanger
EP3859263A4 (en) * 2018-09-30 2021-12-01 Zhejiang Sanhua Intelligent Controls Co., Ltd. Heat exchanger

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6345022B2 (en) * 2014-07-30 2018-06-20 株式会社日本クライメイトシステムズ Air conditioner for vehicles
DE102015122736B4 (en) * 2015-12-23 2022-12-15 Hanon Systems System for guiding gaseous fluids of an internal combustion engine of a motor vehicle and method for operating the system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06135223A (en) * 1992-10-23 1994-05-17 Nippondenso Co Ltd Air conditioner for automobile
JPH06219142A (en) * 1993-01-28 1994-08-09 Nippondenso Co Ltd Air conditioner for vehicle
JPH11115466A (en) * 1997-10-20 1999-04-27 Zexel:Kk Air conditioner for electric vehicle
JP2002211234A (en) * 2000-11-14 2002-07-31 Calsonic Kansei Corp Vehicular air conditioner
JP4311115B2 (en) * 2002-09-17 2009-08-12 株式会社デンソー Air conditioner
WO2011065077A1 (en) * 2009-11-30 2011-06-03 株式会社 日立製作所 Air-conditioning system for vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06135223A (en) * 1992-10-23 1994-05-17 Nippondenso Co Ltd Air conditioner for automobile
JPH06219142A (en) * 1993-01-28 1994-08-09 Nippondenso Co Ltd Air conditioner for vehicle
JPH11115466A (en) * 1997-10-20 1999-04-27 Zexel:Kk Air conditioner for electric vehicle
JP2002211234A (en) * 2000-11-14 2002-07-31 Calsonic Kansei Corp Vehicular air conditioner
JP4311115B2 (en) * 2002-09-17 2009-08-12 株式会社デンソー Air conditioner
WO2011065077A1 (en) * 2009-11-30 2011-06-03 株式会社 日立製作所 Air-conditioning system for vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3859263A4 (en) * 2018-09-30 2021-12-01 Zhejiang Sanhua Intelligent Controls Co., Ltd. Heat exchanger
US11892251B2 (en) 2018-09-30 2024-02-06 Hangzhou Sanhua Research Institute Co., Ltd. Heat exchanger
EP3739284A1 (en) * 2019-05-16 2020-11-18 Valeo Autosystemy SP. Z.O.O. A hybrid heat exchanger
WO2020229491A1 (en) * 2019-05-16 2020-11-19 Valeo Autosystemy Sp. Z O.O. A hybrid heat exchanger
CN113825967A (en) * 2019-05-16 2021-12-21 法雷奥自动系统公司 Hybrid heat exchanger
CN110753382A (en) * 2019-10-23 2020-02-04 中南大学 Vehicle-mounted network route setting method based on vehicle position prediction

Also Published As

Publication number Publication date
JP2013139997A (en) 2013-07-18

Similar Documents

Publication Publication Date Title
US9605883B2 (en) Heat pump cycle
JP5751028B2 (en) Heat pump cycle
JP5626194B2 (en) Heat exchange system
JP5920179B2 (en) Heat exchanger and heat pump cycle including the same
CN103998267B (en) Heat-exchange system
JP6724888B2 (en) Equipment temperature controller
US11186141B2 (en) Vehicle-mounted temperature controller
JP6044285B2 (en) Heat pump cycle
JP5920175B2 (en) Heat exchanger
WO2018168276A1 (en) Device temperature adjusting apparatus
WO2020203151A1 (en) Air conditioner
WO2018047531A1 (en) Device temperature adjusting apparatus
JP6575690B2 (en) Equipment temperature controller
WO2013084472A1 (en) Heat utilization system
JP2021027045A (en) Temperature adjustment apparatus
WO2018047538A1 (en) Device temperature control system
WO2020004219A1 (en) Apparatus temperature adjusting device
JP2020164153A (en) Air conditioner
JP7159771B2 (en) Equipment temperature controller
WO2019123881A1 (en) Device temperature adjusting apparatus
CN117136144A (en) Vehicle air conditioning system and vehicle air conditioning method
WO2018070182A1 (en) Appliance temperature regulating apparatus
WO2021025128A1 (en) Temperature regulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855437

Country of ref document: EP

Kind code of ref document: A1