JPH04287710A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH04287710A
JPH04287710A JP5128591A JP5128591A JPH04287710A JP H04287710 A JPH04287710 A JP H04287710A JP 5128591 A JP5128591 A JP 5128591A JP 5128591 A JP5128591 A JP 5128591A JP H04287710 A JPH04287710 A JP H04287710A
Authority
JP
Japan
Prior art keywords
temperature
evaporator
heat
working fluid
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5128591A
Other languages
Japanese (ja)
Inventor
Takayoshi Matsuoka
松岡孝佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP5128591A priority Critical patent/JPH04287710A/en
Publication of JPH04287710A publication Critical patent/JPH04287710A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)

Abstract

PURPOSE:To provide a heat exchanger capable of using a general operating fluid such as water or alcohol when the temperature of a high-temperature heat source becomes high. CONSTITUTION:A two-way valve 17 switches the flow to the first evaporation section 18 and the flow to the second evaporation section 20, high-temperature steam is generated from the first evaporation section 18 to improve the quick warming performance of a heater 13 as a condenser at the time of a start, when the steam temperature of the first evaporation section 18 becomes high, it is switched to the second evaporation section 20, the temperature of an operating fluid is not increased above the limit temperature, the heat from an exhaust pipe 4 can be utilized for the heater 13 during the stationary operation, and general water or alcohol can be used for the operating fluid.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、熱交換の媒体となる
作動流体が所定値より高温となるのを防止する熱交換器
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger that prevents a working fluid serving as a heat exchange medium from becoming hotter than a predetermined value.

【0002】0002

【従来の技術】従来の熱交換器としては、例えば図5に
示すように車両用暖房装置に適用されたものがある(実
開平2ー76509号公報参照)。これは、エンジン冷
却水を循環させて空気との熱交換を行うヒータ1とルー
プ型ヒートパイプ2を併用し、ループ型ヒートパイプ2
はエンジン3の排気管4に設けた蒸発器5で吸熱した熱
を車室内の凝縮器6で放出する。ループ型ヒートパイプ
2の吸熱量は、バイパスドア7とチョーク部8によって
制御されるようになっている。
2. Description of the Related Art As a conventional heat exchanger, there is one that is applied to a vehicle heating system, for example, as shown in FIG. 5 (see Japanese Utility Model Application Publication No. 2-76509). This uses a heater 1 that circulates engine cooling water to exchange heat with the air and a loop heat pipe 2.
The heat absorbed by the evaporator 5 provided in the exhaust pipe 4 of the engine 3 is released by the condenser 6 in the vehicle interior. The amount of heat absorbed by the loop heat pipe 2 is controlled by a bypass door 7 and a choke part 8.

【0003】なお、図中符号9は送風ファン、符号10
はリキッドタンクである。
[0003] In the figure, reference numeral 9 is a blower fan, and reference numeral 10 is
is a liquid tank.

【0004】0004

【発明が解決しようとする課題】しかしながら、このよ
うな従来のものにおいては、400゜C以上の高温熱源
としての排気管4から吸熱して車室内に放熱するために
ループ型ヒートパイプ2内の作動流体の作動温度は、3
00゜C以上にもなり、かかる作動温度に対応できる適
当な作動流体がないという問題点があった。そのため、
従来の車両用暖房装置では、ループ型ヒートパイプ2の
作動流体に一般的な水やアルコールを用いる場合、長時
間の動作は行えないために、例えば、始動時からの極限
られた時間内でしか作動できず、作動流体が高温となっ
た時には、ヒータ1を循環するエンジン冷却水との熱交
換を併用して車室内を暖房するようにする必要があった
[Problems to be Solved by the Invention] However, in such a conventional heat pipe, a heat pipe in the loop type heat pipe 2 is used to absorb heat from the exhaust pipe 4, which is a high-temperature heat source of 400°C or more, and radiate the heat into the vehicle interior. The working temperature of the working fluid is 3
The problem is that there is no suitable working fluid that can handle such operating temperatures. Therefore,
In conventional vehicle heating systems, when ordinary water or alcohol is used as the working fluid of the loop heat pipe 2, it cannot operate for a long time, so for example, it can only be used within an extremely limited period of time from the time of startup. When the engine cannot operate and the working fluid reaches a high temperature, it is necessary to use heat exchange with the engine cooling water circulating through the heater 1 to heat the interior of the vehicle.

【0005】そこで、この発明は、高温熱源の温度が高
温となるような場合でも、水やアルコール等の一般的な
作動流体を用いることができる熱交換器を提供すること
を課題としている。
Therefore, an object of the present invention is to provide a heat exchanger that can use a general working fluid such as water or alcohol even when the temperature of a high-temperature heat source is high.

【0006】[0006]

【課題を解決するための手段】この発明は、かかる課題
に着目してなされたもので、高温熱源側に設けた蒸発器
と低温側に設けた凝縮器とを、戻りパイプと蒸気パイプ
とで環状に連結してループ型ヒートパイプを構成し、前
記蒸発器で前記高温熱源からの熱を吸収し、作動流体の
移動によって、前記凝縮器から放熱する車両用暖房装置
において、前記蒸発器を、前記作動流体が通る複数の蒸
発部に分割し、該各蒸発部は前記高温熱源からの熱伝達
率が異なるように設定し、作動流体の温度が所定値より
高くなった時には熱伝達率の小さい蒸発部に、又、作動
流体の温度が所定値より低くなった時には熱伝達率の大
きい蒸発部に作動流体が流れるように制御する制御手段
を設けた熱交換器としたことを特徴としている。
[Means for Solving the Problems] This invention has been made in view of this problem, and it is possible to connect an evaporator provided on the high temperature heat source side and a condenser provided on the low temperature side by a return pipe and a steam pipe. In a vehicle heating system in which the evaporator is connected in a ring to form a loop-type heat pipe, the evaporator absorbs heat from the high-temperature heat source, and the heat is radiated from the condenser by movement of a working fluid. The working fluid is divided into a plurality of evaporation sections through which the working fluid passes, and each evaporation section is set to have a different heat transfer coefficient from the high-temperature heat source, and when the temperature of the working fluid becomes higher than a predetermined value, the heat transfer coefficient becomes smaller. The heat exchanger is characterized in that the evaporator is provided with a control means for controlling the working fluid to flow to the evaporator having a high heat transfer coefficient when the temperature of the working fluid becomes lower than a predetermined value.

【0007】[0007]

【作  用】かかる手段によれば、蒸発器で高温熱源か
らの排気熱を作動流体に吸収し、この作動流体を蒸気パ
イプを介して凝縮器に移動させて、この凝縮器で放熱さ
せて作動流体を凝縮させ、この凝縮した作動流体を戻り
パイプを介して蒸発器側に戻すようになっている。
[Operation] According to this means, exhaust heat from a high-temperature heat source is absorbed into the working fluid by the evaporator, and this working fluid is transferred to the condenser via the steam pipe, and the condenser radiates heat to operate. The fluid is condensed and the condensed working fluid is returned to the evaporator via a return pipe.

【0008】かかる熱交換を行っている場合には、蒸発
器から凝縮器に向けて流れる作動流体が所定の温度より
高温となると、複数の蒸発部の内、高温熱源からの熱伝
達率が小さい蒸発部に制御手段により切り換える。また
、その作動流体が所定の温度より低い場合には、その蒸
発部より、熱伝達率の大きな蒸発部に作動流体が流れる
ように制御手段により切り換える。
[0008] When such heat exchange is performed, when the temperature of the working fluid flowing from the evaporator to the condenser becomes higher than a predetermined temperature, the heat transfer coefficient from the high-temperature heat source of the plurality of evaporators is small. The evaporator is switched to the evaporator section by means of a control means. Further, when the temperature of the working fluid is lower than a predetermined temperature, the control means switches the working fluid so that it flows from the evaporating section to the evaporating section having a higher heat transfer coefficient.

【0009】このように作動流体の温度に応じて、任意
の蒸発部に切り換えることにより、作動流体が所定温度
より高温となることを防止できることから、通常の作動
流体を使用することができる。
[0009] By switching to an arbitrary evaporator according to the temperature of the working fluid in this manner, it is possible to prevent the working fluid from becoming higher than a predetermined temperature, so that a normal working fluid can be used.

【0010】0010

【実施例】以下、この発明を実施例に基づいて説明する
EXAMPLES The present invention will be explained below based on examples.

【0011】図1ないし図4は、この発明の熱交換器を
車両用暖房装置に適用した一実施例を示す図である。従
来と同一ないし均等な部材については、同一符号を付し
て説明する。
FIGS. 1 to 4 are diagrams showing an embodiment in which the heat exchanger of the present invention is applied to a heating system for a vehicle. Members that are the same as or equivalent to the conventional ones will be described using the same reference numerals.

【0012】まず構成を説明すると、ループ型ヒートパ
イプ11は、高温熱源としての排気管4の周囲の取り付
けられた蒸発器12と凝縮器であるヒータ13とを有し
、この蒸発器12とヒータ13とが戻りパイプ15と蒸
気パイプ16とで環状に連結されている。この戻りパイ
プ15の途中には電磁弁14および二方弁17が配設さ
れている。
First, to explain the configuration, the loop heat pipe 11 has an evaporator 12 attached around the exhaust pipe 4 as a high-temperature heat source and a heater 13 as a condenser. 13 are connected in an annular manner by a return pipe 15 and a steam pipe 16. A solenoid valve 14 and a two-way valve 17 are disposed in the middle of the return pipe 15.

【0013】その蒸発器12は、エンジン1から延びた
排気管4の周囲に、この排気管16を中心として、第1
蒸発部18,空気が密閉された空間部19,そして、第
2蒸発部20が順に取り巻く構造となっている。この第
2蒸発部20への排気管4からの熱伝達率は、この排気
管4に直接接触しておらず、且つ、空間部19が介在し
ているため第1蒸発部18より小さい。
The evaporator 12 is arranged around the exhaust pipe 4 extending from the engine 1, with the exhaust pipe 16 as the center.
It has a structure in which the evaporator 18, the air-tight space 19, and the second evaporator 20 are surrounded in this order. The heat transfer coefficient from the exhaust pipe 4 to the second evaporator 20 is smaller than that of the first evaporator 18 because the second evaporator 20 is not in direct contact with the exhaust pipe 4 and the space 19 is present.

【0014】そして、前記戻りパイプ16と蒸気パイプ
16とは、その蒸発器12の近くで2本に分岐され、第
1蒸発部18と第2蒸発部20とに接続されている。前
記二方弁17は、戻りパイプ16の分岐点に配設されて
いる。
The return pipe 16 and the steam pipe 16 are branched into two near the evaporator 12 and connected to a first evaporator 18 and a second evaporator 20. The two-way valve 17 is arranged at a branch point of the return pipe 16.

【0015】また、ヒータ13は、車室内に設置され、
ブロア21によって生じた空気の流れの一部がコンデン
サ22を通過した後、ダンパ23の開閉によって取り込
まれるようになっている。
[0015] Furthermore, the heater 13 is installed in the vehicle interior,
After a portion of the air flow generated by the blower 21 passes through the condenser 22, it is taken in by opening and closing the damper 23.

【0016】さらに、第2蒸発部20表面,蒸発器12
出口,ヒータ13には、それぞれ蒸発器センサ24,出
口センサ25,ヒータセンサ26がそれぞれ取り付けら
れ、これらセンサ24,25,26からの信号は、制御
手段としての制御装置27に入力されるようになってお
り、この制御装置27により二方弁17と電磁弁14と
を以下のように制御するようになっている。
Furthermore, the surface of the second evaporator 20, the evaporator 12
An evaporator sensor 24, an outlet sensor 25, and a heater sensor 26 are attached to the outlet and the heater 13, respectively, and signals from these sensors 24, 25, and 26 are input to a control device 27 as a control means. This control device 27 controls the two-way valve 17 and the solenoid valve 14 as follows.

【0017】次に、上記実施例の作用を説明する。Next, the operation of the above embodiment will be explained.

【0018】ループ型ヒートパイプ11の内部は、作動
流体が循環しており、蒸発器12でエンジン1の排気熱
を吸収することによって作動流体は蒸気となって蒸発器
12からヒータ13に移動する。ここで、ブロア21か
ら送られてきた空気に熱を放出して液へと凝縮する。凝
縮した液は、戻りパイプ15を介して電磁弁14と二方
弁17を通過して蒸発器12に帰還し、再び蒸発器12
で吸熱することによって熱輸送を繰り返す。ループ型ヒ
ートパイプ11では、蒸気速度で蒸発器12からヒータ
13に熱が輸送されるので、ヒータ13の熱応答性が優
れ、暖房時の速暖性能を向上させることができる。
A working fluid circulates inside the loop heat pipe 11, and as the evaporator 12 absorbs exhaust heat from the engine 1, the working fluid turns into steam and moves from the evaporator 12 to the heater 13. . Here, heat is released into the air sent from the blower 21 and the air is condensed into liquid. The condensed liquid passes through the solenoid valve 14 and the two-way valve 17 via the return pipe 15, returns to the evaporator 12, and returns to the evaporator 12 again.
Heat transport is repeated by absorbing heat. In the loop heat pipe 11, heat is transported from the evaporator 12 to the heater 13 at the vapor velocity, so the heater 13 has excellent thermal response and can improve rapid heating performance during heating.

【0019】かかる場合、蒸発器12出口の蒸気温度T
2を出口センサ25で検出すると共に、第2蒸発部20
の温度(第2蒸発部温度T3)を蒸発器センサ24で検
出する。そして、この信号が制御装置27に送られて、
この制御装置27により二方弁17が制御されて、適宜
、第1蒸発部18に流れ込む流れAと第2蒸発部20に
流れ込む流れBとに切り換えられる。
In such a case, the steam temperature T at the outlet of the evaporator 12
2 is detected by the outlet sensor 25, and the second evaporator 20
(second evaporator temperature T3) is detected by the evaporator sensor 24. This signal is then sent to the control device 27,
The two-way valve 17 is controlled by the control device 27, and the flow is switched between flow A flowing into the first evaporation section 18 and flow B flowing into the second evaporation section 20 as appropriate.

【0020】第1蒸発部18は排気管4を直接取り囲み
、内部の作動流体への伝熱特性が優れているために、第
1蒸発部18に流入した作動液は激しい沸騰を生じて高
温の加熱蒸気となって、第1蒸発部18から流出する。 また、第2蒸発部20には、第1蒸発部18と伝熱特性
が悪い空気が充満された空間部19を通過して熱が伝わ
るために、第2蒸発部20に流入した作動流体への加熱
量は抑制され、第2蒸発部20で発生する蒸気は第1蒸
発部18のように高温の蒸気とはならないので、ヒータ
13での凝縮温度が高温とはならない。
The first evaporator 18 directly surrounds the exhaust pipe 4 and has excellent heat transfer characteristics to the working fluid inside, so the working fluid that flows into the first evaporator 18 boils violently and reaches a high temperature. It becomes heated steam and flows out from the first evaporation section 18. In addition, since heat is transferred to the second evaporator 20 through the first evaporator 18 and the space 19 filled with air with poor heat transfer characteristics, the working fluid that has flowed into the second evaporator 20 is transferred to the second evaporator 20 . The amount of heating is suppressed, and the steam generated in the second evaporator 20 does not become high-temperature steam like the first evaporator 18, so the condensation temperature in the heater 13 does not become high.

【0021】二方弁17の切換えは、図3に示すような
制御フローに基づいて行われる。すなわち、起動後、ス
テップ100で、第2蒸発部温度T3が設定温度Tse
t1よりも高ければ、ステップ103に進み、第2蒸発
部温度T3がTset1以下であれば、ステップ101
に進む。ステップ101では、二方弁17をAの流れに
切り換える。
Switching of the two-way valve 17 is performed based on a control flow as shown in FIG. That is, after startup, in step 100, the second evaporator temperature T3 reaches the set temperature Tse.
If it is higher than t1, the process proceeds to step 103, and if the second evaporator temperature T3 is equal to or lower than Tset1, the process proceeds to step 101.
Proceed to. In step 101, the two-way valve 17 is switched to flow A.

【0022】ステップ102では、蒸発器12出口での
蒸気温度T2と第2蒸発部温度T3を検出し、蒸気温度
T2が設定温度Tset2よりも高いという条件、又は
、第2蒸発部温度T3が設定温度Tset1よりも高い
という条件が満たされれば、ステップ103に進む。ス
テップ103では、二方弁17をB方向に切り換える。
In step 102, the steam temperature T2 at the outlet of the evaporator 12 and the second evaporator temperature T3 are detected, and the condition is that the steam temperature T2 is higher than the set temperature Tset2, or the second evaporator temperature T3 is set. If the condition that the temperature is higher than Tset1 is satisfied, the process proceeds to step 103. In step 103, the two-way valve 17 is switched to the B direction.

【0023】ここまでが、起動時の二方弁17の切換え
で、蒸発器12で発生する蒸気温度が高くなるまで二方
弁17でAの流れとなるようにすることによって暖房時
の速暖性能が向上する。
Up to this point, the two-way valve 17 is switched at the time of startup, and the two-way valve 17 is set to flow A until the temperature of the steam generated in the evaporator 12 becomes high, thereby achieving rapid heating during heating. Improved performance.

【0024】ステップ104では、蒸発器15出口での
蒸気温度T2を検出して、これが設定温度Tset3よ
りも低くなれば、ステップ105に進む。この設定温度
Tset3は設定温度Tset2より低く設定されてい
る。ステップ105では、二方弁17をAの流れに切り
換える。ステップ106では、蒸発器12出口での蒸気
温度T2を検出して、これが設定温度Tset2よりも
高ければ、ステップ107では二方弁17をBの流れに
切り換える。
In step 104, the steam temperature T2 at the outlet of the evaporator 15 is detected, and if this becomes lower than the set temperature Tset3, the process proceeds to step 105. This set temperature Tset3 is set lower than the set temperature Tset2. In step 105, the two-way valve 17 is switched to flow A. In step 106, the steam temperature T2 at the outlet of the evaporator 12 is detected, and if this is higher than the set temperature Tset2, the two-way valve 17 is switched to flow B in step 107.

【0025】このように、蒸発器12からヒータ13に
向けて流れる作動流体が所定の温度より高温となると、
排気管4からの熱伝達率が小さい第2蒸発部20に切り
換える。また、その作動流体が所定の温度より低い場合
には、熱伝達率の大きな第1蒸発部18に切り換える。
As described above, when the working fluid flowing from the evaporator 12 toward the heater 13 becomes higher than the predetermined temperature,
Switching is made to the second evaporator 20, which has a lower heat transfer coefficient from the exhaust pipe 4. Moreover, when the temperature of the working fluid is lower than a predetermined temperature, switching is made to the first evaporation section 18 having a higher heat transfer coefficient.

【0026】このように作動流体の温度に応じて、第1
,第2蒸発部18,20に切り換えることにより、作動
流体が所定温度より高温となることを防止できることか
ら、通常の作動流体を使用することができる。
In this way, depending on the temperature of the working fluid, the first
, the second evaporator 18, 20, it is possible to prevent the working fluid from becoming higher than a predetermined temperature, so that a normal working fluid can be used.

【0027】なお、作動流体に有機物を使用する場合に
は、発生する蒸気温度が熱分解を生じる温度以下となる
ように、二方弁17等を制御する必要がある。
When using an organic substance as the working fluid, it is necessary to control the two-way valve 17 and the like so that the temperature of the generated steam is below the temperature at which thermal decomposition occurs.

【0028】一方、電磁弁14の切換え(開閉)は、図
4に示す制御フローに基づいて行われる。この電磁弁1
4の切換え(開閉)は、ヒータ13の温度制御のために
行うので、ヒータセンサ26によるヒータ13のヒータ
温度T1を基に行う。
On the other hand, switching (opening and closing) of the solenoid valve 14 is performed based on the control flow shown in FIG. This solenoid valve 1
The switching (opening/closing) of No. 4 is performed to control the temperature of the heater 13, so it is performed based on the heater temperature T1 of the heater 13 measured by the heater sensor 26.

【0029】すなわち、起動後、ヒータ13のヒータ温
度T1を検出し、設定温度Tset4よりも高ければ、
ステップ121に進み、設定温度Tset4以下であれ
ばステップ126に進む。ステップ121では、電磁弁
14を閉じる。
That is, after starting, the heater temperature T1 of the heater 13 is detected, and if it is higher than the set temperature Tset4,
The process proceeds to step 121, and if the temperature is equal to or lower than the set temperature Tset4, the process proceeds to step 126. In step 121, the solenoid valve 14 is closed.

【0030】ステップ122では、ヒータ13のヒータ
温度T1を検出して、設定温度Tset3以下であれば
ステップ123に進む。この設定温度Tset3は設定
温度Tset4より低く設定されている。ステップ12
3では、電磁弁14を開く。
In step 122, the heater temperature T1 of the heater 13 is detected, and if it is below the set temperature Tset3, the process proceeds to step 123. This set temperature Tset3 is set lower than the set temperature Tset4. Step 12
3, the solenoid valve 14 is opened.

【0031】ステップ124では、ヒータ13のヒータ
温度T1を検出して、設定温度Tset4よりも高けれ
ばステップ125に進む。ステップ125では、電磁弁
14を閉じる。
In step 124, the heater temperature T1 of the heater 13 is detected, and if it is higher than the set temperature Tset4, the process proceeds to step 125. In step 125, the solenoid valve 14 is closed.

【0032】一方、ステップ126では、電磁弁14を
開く。ステップ127では、ヒータ6の温度T1を検出
して、設定温度Tset4よりも高ければステップ12
8に進む。ステップ128では、電磁弁14を閉じる。 ステップ129では、ヒータ6の温度T1を検出して、
設定温度Tset3以下であればステップ130に進む
。ステップ130では電磁弁14を開く。
On the other hand, in step 126, the solenoid valve 14 is opened. In step 127, the temperature T1 of the heater 6 is detected, and if it is higher than the set temperature Tset4, step 127 is performed.
Proceed to step 8. In step 128, the solenoid valve 14 is closed. In step 129, the temperature T1 of the heater 6 is detected,
If the temperature is below the set temperature Tset3, the process proceeds to step 130. In step 130, the solenoid valve 14 is opened.

【0033】また、この発明では、二方弁17の制御に
蒸発器12出口での蒸気温度T2を使用したが、ヒータ
13の温度を用いても良いことは勿論である。また、上
記実施例では、蒸発部12を2つに分割しているが、そ
れより多く分割することもできる。
Further, in the present invention, the steam temperature T2 at the outlet of the evaporator 12 is used to control the two-way valve 17, but it goes without saying that the temperature of the heater 13 may also be used. Further, in the above embodiment, the evaporation section 12 is divided into two, but it may be divided into more than that.

【0034】[0034]

【発明の効果】以上説明してきたように、この発明によ
れば、蒸発器を、作動流体が通る複数の蒸発部に分割し
、この各蒸発部に対して高温熱源から伝達される熱の温
度が異なるように設定し、この蒸発器を通過する作動流
体の温度に応じて任意の蒸発部を通過させるように流れ
を変える制御手段を設けることにより、起動時には熱伝
達率が良い蒸発部に作動流体を通過させて蒸気を発生さ
せて凝縮器の速暖性能を向上させ、この蒸発部の蒸気温
度が高温になった場合には、熱伝達率が低い蒸発部に切
り換えることによって、作動流体の温度が限界温度より
上昇することがないため、定常時においても高温熱源か
らの熱を利用でき、しかも、作動流体として一般的な水
やアルコールを使用することができる、という実用上有
益な効果を発揮する。
As explained above, according to the present invention, the evaporator is divided into a plurality of evaporation sections through which the working fluid passes, and the temperature of the heat transferred from the high-temperature heat source to each evaporation section is adjusted. By setting the working fluid to be different and providing a control means that changes the flow so that it passes through any evaporator section depending on the temperature of the working fluid passing through the evaporator, the evaporator section with a good heat transfer rate is activated at startup. The rapid heating performance of the condenser is improved by passing fluid through it to generate steam, and when the steam temperature in this evaporator section becomes high, the working fluid is switched to an evaporator section with a lower heat transfer coefficient. Since the temperature does not rise above the limit temperature, it is possible to utilize heat from a high-temperature heat source even in steady state, and it also has the practical advantage of being able to use common water or alcohol as the working fluid. Demonstrate.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の熱交換器の一実施例を示す概略図で
ある。
FIG. 1 is a schematic diagram showing an embodiment of a heat exchanger of the present invention.

【図2】同一実施例の蒸発器を断面した説明図である。FIG. 2 is an explanatory cross-sectional view of the evaporator of the same embodiment.

【図3】同一実施例の二方弁を示すフローチャート図で
ある。
FIG. 3 is a flow chart diagram showing a two-way valve of the same embodiment.

【図4】同一実施例の電磁弁のフローチャート図である
FIG. 4 is a flow chart diagram of the electromagnetic valve of the same embodiment.

【図5】従来例を示す図1に相当する概略図である。FIG. 5 is a schematic diagram corresponding to FIG. 1 showing a conventional example.

【符号の説明】[Explanation of symbols]

4  排気管(高温熱源) 11  ループ型ヒートパイプ 12  蒸発器 13  ヒータ(凝縮器) 15  戻りパイプ 16  蒸気パイプ 18  第1蒸発部 20  第2蒸発部 27  制御装置(制御手段) 4 Exhaust pipe (high temperature heat source) 11 Loop type heat pipe 12 Evaporator 13 Heater (condenser) 15 Return pipe 16 Steam pipe 18 First evaporation section 20 Second evaporation section 27 Control device (control means)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  高温熱源側に設けた蒸発器と低温側に
設けた凝縮器とを、戻りパイプと蒸気パイプとで環状に
連結してループ型ヒートパイプを構成し、前記蒸発器で
前記高温熱源からの熱を吸収し、作動流体の移動によっ
て、前記凝縮器から放熱する車両用暖房装置において、
前記蒸発器を、前記作動流体が通る複数の蒸発部に分割
し、該各蒸発部は前記高温熱源からの熱伝達率が異なる
ように設定し、作動流体の温度が所定値より高くなった
時には熱伝達率の小さい蒸発部に、又、作動流体の温度
が所定値より低くなった時には熱伝達率の大きい蒸発部
に作動流体が流れるように制御する制御手段を設けたこ
とを特徴とする熱交換器。
1. An evaporator provided on the high-temperature heat source side and a condenser provided on the low-temperature side are connected in an annular manner by a return pipe and a steam pipe to form a loop-type heat pipe, and the evaporator provides the high-temperature A vehicle heating device that absorbs heat from a heat source and radiates the heat from the condenser by movement of a working fluid,
The evaporator is divided into a plurality of evaporation sections through which the working fluid passes, each evaporation section is set to have a different heat transfer coefficient from the high temperature heat source, and when the temperature of the working fluid becomes higher than a predetermined value, A heat sink characterized in that a control means is provided for controlling the working fluid to flow into the evaporating section having a low heat transfer coefficient and to flow to the evaporating section having a large heat transfer coefficient when the temperature of the working fluid becomes lower than a predetermined value. exchanger.
JP5128591A 1991-03-15 1991-03-15 Heat exchanger Pending JPH04287710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5128591A JPH04287710A (en) 1991-03-15 1991-03-15 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5128591A JPH04287710A (en) 1991-03-15 1991-03-15 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH04287710A true JPH04287710A (en) 1992-10-13

Family

ID=12882663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5128591A Pending JPH04287710A (en) 1991-03-15 1991-03-15 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH04287710A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081241A1 (en) * 2001-04-05 2002-10-17 Calsonic Kansei Uk Limited A vehicle thermal system comprising an exhaust gas heat exchanger
JP2007085195A (en) * 2005-09-20 2007-04-05 Denso Corp Waste heat regeneration system
JP2010013970A (en) * 2008-07-02 2010-01-21 Toyota Motor Corp Abnormality determination device of exhaust heat recovery equipment
WO2018168276A1 (en) * 2017-03-16 2018-09-20 株式会社デンソー Device temperature adjusting apparatus
JP2019016584A (en) * 2017-03-16 2019-01-31 株式会社デンソー Device temperature adjusting apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081241A1 (en) * 2001-04-05 2002-10-17 Calsonic Kansei Uk Limited A vehicle thermal system comprising an exhaust gas heat exchanger
JP2007085195A (en) * 2005-09-20 2007-04-05 Denso Corp Waste heat regeneration system
JP2010013970A (en) * 2008-07-02 2010-01-21 Toyota Motor Corp Abnormality determination device of exhaust heat recovery equipment
WO2018168276A1 (en) * 2017-03-16 2018-09-20 株式会社デンソー Device temperature adjusting apparatus
JP2019016584A (en) * 2017-03-16 2019-01-31 株式会社デンソー Device temperature adjusting apparatus
CN110418933A (en) * 2017-03-16 2019-11-05 株式会社电装 Device temperature regulating device
CN110418933B (en) * 2017-03-16 2020-12-01 株式会社电装 Equipment temperature adjusting device

Similar Documents

Publication Publication Date Title
JPH04287710A (en) Heat exchanger
EP0354749B1 (en) Air-cooled absorption Air-conditioner
JP2006292337A (en) Heat pipe device
US2269100A (en) Refrigeration
JPH02238117A (en) Cooling device for internal combustion engine
JPH0224059Y2 (en)
JPS60171389A (en) Heat transfer device
JPH0379634B2 (en)
JPS6242296Y2 (en)
JPS5832112Y2 (en) Absorption chiller/heater control device
JPS6135900Y2 (en)
JPS5921957A (en) Absorption cold and hot water machine
JPS629487Y2 (en)
JP2904659B2 (en) Absorption heat pump equipment
JP2521351B2 (en) Vehicle air conditioner with heat pipe system
JPH06313646A (en) Absorption water cooler-heater
JP2642474B2 (en) Absorption heat pump air conditioner
JPH0443264A (en) Absorption type heat source device
JPS62131127A (en) Air conditioner
JPS5831261A (en) Absorption heat pump
JPS63168771U (en)
JPS6154315A (en) Heat pump type air conditioner for vehicle
JPH03105171A (en) Absorption type water cooling and heating machine
JPH01134175A (en) Air-cooled absorption water cooler and heater
JPS6093274A (en) Engine waste heat utilizing system