WO2020004574A1 - Apparatus temperature adjusting device - Google Patents

Apparatus temperature adjusting device Download PDF

Info

Publication number
WO2020004574A1
WO2020004574A1 PCT/JP2019/025672 JP2019025672W WO2020004574A1 WO 2020004574 A1 WO2020004574 A1 WO 2020004574A1 JP 2019025672 W JP2019025672 W JP 2019025672W WO 2020004574 A1 WO2020004574 A1 WO 2020004574A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
condenser
heat medium
compressor
target device
Prior art date
Application number
PCT/JP2019/025672
Other languages
French (fr)
Japanese (ja)
Inventor
功嗣 三浦
井上 誠司
康光 大見
義則 毅
竹内 雅之
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019103925A external-priority patent/JP2020008271A/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020004574A1 publication Critical patent/WO2020004574A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a device temperature controller.
  • Patent Document 1 there is a cooling device described in Patent Document 1.
  • This device uses two systems, a mechanical compression circuit that operates a compressor that circulates refrigerant and circulates a working fluid, and a thermosiphon that cools equipment to be cooled by circulating refrigerant naturally. It is configured as a secondary loop refrigeration circuit that exchanges heat via an exchanger.
  • the device described in Patent Document 1 is applied to a vehicle-mounted cooling device that cools a cooling target device mounted on a vehicle.
  • the height of the refrigerant outlet of the condenser is equal to the height of the refrigerant inlet of the heat exchanger that exchanges heat between the two circuits, and the compressor operates.
  • the compressor When the operation is stopped, sufficient refrigerant is not introduced from the condenser to the heat exchanger that exchanges heat between the two circuits. That is, when the compressor must stop operating, such as when the vehicle stops, the flow rate of the refrigerant in the mechanical compression circuit flowing into the heat exchanger that exchanges heat between the two circuits decreases. As a result, the device to be cooled cannot be sufficiently cooled.
  • the present disclosure has an object to make it possible to cool a device to be cooled even when the compressor stops operating.
  • an apparatus temperature controller includes a thermosiphon having a first circulation circuit that circulates a first heat medium, and a target apparatus is provided by a phase change between a liquid phase and a gas phase of the first heat medium.
  • a device for controlling the temperature of the device a second circulation circuit for circulating a second heat medium, a compressor for compressing and discharging the second heat medium inside the second circulation circuit, and A radiating heat exchanger for exchanging heat with the discharged second heat medium and air to radiate heat of the second heat medium, and an expansion valve for decompressing the second heat medium flowing out of the radiating heat exchanger.
  • thermosiphon is provided in the first circulation circuit, and is configured for heat exchange between the target device and the second heat medium such that the first heat medium evaporates when the target device is cooled.
  • a condenser for exchanging heat with the first heat medium evaporated by the first heat medium to condense the first heat medium, wherein the condenser has an inlet through which the second heat medium flows, and a stream through which the second heat medium flows out An outlet for flowing in the second heat medium, and an outlet for flowing out the second heat medium, wherein the second circulation circuit has a heat exchange for heat release.
  • the second heat medium in the liquid phase condensed in the heat-radiating heat exchanger can be promoted to flow into the condenser by gravity. . Therefore, the target device can be cooled by the thermosiphon.
  • the device temperature control device includes a thermosiphon having a first circulation circuit that circulates the first heat medium, and the thermosiphon has a liquid phase and a gas phase change of the first heat medium.
  • a device temperature controller for adjusting a temperature of a target device, wherein at least one portion of a first circulation circuit is in contact with a heat transfer member for cooling by heat transfer.
  • the heat of the first heat medium in the first circulation circuit is transferred to the heat transfer member to cool the first heat medium. Therefore, even when the compressor stops operating, the device to be cooled can be further cooled.
  • 3 is a flowchart of the ECU according to the first embodiment. It is a figure showing a situation of a doorway of a capacitor of a 1st embodiment. It is the figure which showed the mode of the entrance of the capacitor
  • FIGS. 1 An apparatus temperature controller according to a first embodiment will be described with reference to FIGS. 1 is mounted on a vehicle such as an electric vehicle or a hybrid vehicle. Then, in the present embodiment, the device temperature controller cools the secondary batteries 12a and 12b shown in FIG. That is, the objects to be cooled by the device temperature controller of the present embodiment are the secondary batteries 12a and 12b mounted on the electric vehicle.
  • the arrow DR1 indicates the up-down direction. In the arrow DR1, the up arrow indicates the upper side in the up-down direction of the vehicle, and the down arrow indicates the lower side in the up-down direction of the vehicle.
  • the electric power stored in the power storage device including the secondary batteries 12a and 12b is supplied to the electric motor via an inverter circuit or the like, whereby the vehicle runs.
  • the secondary batteries 12a and 12b generate heat when outputting electric power to the electric motor via the inverter.
  • a cooling device for maintaining the secondary batteries 12a and 12b at a predetermined temperature or lower is required.
  • the battery temperature rises not only while the vehicle is running but also during parking in summer.
  • the power storage device is often arranged under the floor of the vehicle, under a trunk room, or the like, and although the amount of heat given to the secondary batteries 12a and 12b per unit time is small, the battery temperature gradually rises by leaving the battery for a long time. .
  • the life of the secondary batteries 12a, 12b is greatly reduced. Therefore, the battery temperature is maintained at a low temperature by cooling the secondary batteries 12a, 12b even while the vehicle is left. It is desired.
  • the secondary batteries 12a and 12b of the present embodiment are configured as an assembled battery in which a plurality of battery cells 13 are stacked in the traveling direction of the vehicle. The deterioration is biased, and the performance of the power storage device is reduced.
  • the input / output characteristics of the power storage device are determined according to the characteristics of the battery cell 13 that has deteriorated the most. Therefore, in order for the power storage device to exhibit desired performance over a long period of time, it is important to equalize the temperature to reduce temperature variations among the plurality of battery cells 13.
  • the secondary batteries 12a and 12b are cooled by the sensible heat of the air, so that the temperature difference between the upstream and downstream of the air flow becomes large, and the temperature variation between the battery cells 13 cannot be sufficiently suppressed. .
  • air cooling using cold air generated in a refrigeration cycle, or water cooling using cold water has a high cooling capacity, but the heat exchange part with the battery cell 13 is sensible heat cooling in either air cooling or water cooling. Temperature variation between the battery cells 13 cannot be sufficiently suppressed.
  • thermosiphon system in which the refrigerant for thermosiphon is cooled using a refrigeration cycle and the secondary batteries 12a and 12b are cooled by natural circulation of the refrigerant for thermosiphon. Has been adopted.
  • the device temperature controller of the present embodiment includes a thermosiphon 10 and a refrigeration cycle 20, as shown in FIG.
  • the thermosiphon 10 has a cooler 14, a condenser 16, and a first circulation circuit 100 that circulates a thermosiphonic refrigerant as a first heat medium.
  • the first circulation circuit 100 has an outgoing pipe 101 and a return pipe 102.
  • the condenser 16 has a primary side circuit 16a and a secondary side circuit 16b.
  • the primary circuit 16a of the condenser 16 there are formed an inlet 161 for injecting the thermosiphon refrigerant into the primary circuit 16a and an outlet 162 for discharging the thermosiphon refrigerant from the primary circuit 16a.
  • the inflow port 161 and the outflow port 162 of the condenser 16 are arranged on the upper surface of the primary circuit 16 a of the condenser 16.
  • the secondary circuit 16b of the condenser 16 has an inlet 163 through which the refrigerant for the refrigeration cycle flows into the secondary circuit 16b, and an outlet 134 from which the refrigerant for the refrigeration cycle flows out from the secondary circuit 16b. Have been.
  • the primary circuit 16a of the condenser 16, the outgoing pipe 101, the cooler 14, and the return pipe 102 are connected in a ring shape to form a first circulation circuit 100 in which a thermosiphon refrigerant circulates.
  • the first circulation circuit 100 of the present embodiment is filled with a thermosiphon refrigerant.
  • the refrigerant for thermosiphon naturally circulates through the first circulation circuit 100 by evaporation and condensation, and the device temperature controller controls the temperature of the secondary batteries 12a and 12b by a phase change between the liquid phase and the gas phase of the refrigerant for thermosiphon. To adjust.
  • the refrigerant charged in the first circulation circuit 100 is, for example, a chlorofluorocarbon-based refrigerant such as HFO-1234yf or HFC-134a.
  • a chlorofluorocarbon-based refrigerant such as HFO-1234yf or HFC-134a
  • various working fluids other than the chlorofluorocarbon-based refrigerant such as water and ammonia may be used as the refrigerant.
  • the gaseous refrigerant flows from the outlet 142 through the return pipe 102 to the condenser. 16 flows into the primary side circuit 16a of the condenser 16 from the 16 inlets 161.
  • thermosyphon refrigerant flowing into the primary circuit 16a is condensed by heat exchange with the refrigeration cycle refrigerant inside the secondary circuit 16b of the condenser 16 to become a liquid-phase refrigerant. Then, the gas flows from the outlet 162 of the primary circuit 16 a of the condenser 16 through the outward pipe 101 into the main body 143 of the cooler 14 through the inlet 141 formed in the main body 143 of the cooler 14.
  • a liquid-phase refrigerant having a relatively high specific gravity is stored below the main body 143 of the cooler 14, and a gas-phase refrigerant having a relatively low specific gravity is stored above the main body 143 of the cooler 14. Therefore, the gas-phase refrigerant in the main body 143 is exclusively discharged from the outlet 142 out of the inlet 141 and the outlet 142.
  • the cooler 14 is disposed between the secondary batteries 12a and 12b.
  • the cooler 14 corresponds to an equipment heat exchanger.
  • the cooler 14 cools the secondary batteries 12a and 12b by exchanging heat between the heat of the secondary batteries 12a and 12b and the heat of the thermosiphon refrigerant.
  • the cooler 14 has a main body 143 made of, for example, a metal having high thermal conductivity.
  • the main body 143 of the cooler 14 has an inlet 141 through which the thermosyphonic refrigerant flows and an outlet 142 through which the thermosiphonic refrigerant flows out.
  • the outlet 142 is arranged above the inlet 141 in the up-down direction.
  • the outward pipe 101 connects between an outlet 162 of the condenser 16 formed in the primary circuit 16 a of the condenser 16 and an inlet 141 formed in the main body 143 of the cooler 14.
  • the return pipe 102 connects an outlet 142 formed in the main body 143 of the cooler 14 and an inlet 161 formed in the primary circuit 16 a of the condenser 16.
  • the condenser 16 is housed in a front storage room or a trunk room.
  • the front storage room is a room that is disposed on the front side in the vehicle traveling direction with respect to the vehicle interior of the vehicle and houses a traveling engine and a traveling electric motor.
  • the trunk room is a storage room that is disposed rearward in the vehicle traveling direction with respect to the vehicle interior of the vehicle and stores luggage and the like.
  • the refrigeration cycle 20 constitutes a vapor compression refrigeration cycle including a circulation circuit 200 in which a refrigerant for a refrigeration cycle as a second heat medium circulates, a compressor 23, a condenser 21, and an expansion valve 30.
  • the refrigeration cycle 20 includes a second circulation circuit 200 for circulating the refrigerant for the refrigeration cycle, and a compressor 23 for compressing and discharging the refrigerant for the refrigeration cycle in the second circulation circuit 200.
  • the refrigeration cycle 20 further includes a condenser 21 for exchanging heat between the refrigeration cycle refrigerant discharged from the compressor 23 and the outside air to radiate the refrigeration cycle refrigerant discharged from the compressor 23. Further, an expansion valve 30 is provided to reduce the pressure of the refrigerant for the refrigeration cycle flowing out of the condenser 21 and to flow the refrigerant into the secondary circuit 16 b of the condenser 16.
  • the condenser 21 corresponds to a radiating heat exchanger that exchanges heat between the refrigeration cycle refrigerant discharged from the compressor 23 and air and radiates heat of the refrigeration cycle refrigerant.
  • the refrigeration cycle 20 further includes an ECU 50 that controls the compressor 23 and the expansion valve 30.
  • the expansion valve 30 of the present embodiment is an electric expansion valve that operates according to the control of the ECU 50.
  • the ECU 50 is configured as a computer having a ROM, a RAM, a CPU, an I / O, and the like, and the CPU performs various processes according to a program stored in the ROM.
  • the ROM and the RAM are non-transitional substantive storage media.
  • the circulation circuit 200 connects the compressor 23, the condenser 21, the expansion valve 30, and the primary circuit 16a of the condenser 16 in a ring shape.
  • the circulation circuit 200 has a first connection pipe 201 that supplies the refrigerant for the refrigeration cycle flowing out of the condenser 21 to the secondary circuit 16 b of the condenser 16. Further, a second connection pipe 202 for supplying the refrigerant for the refrigeration cycle flowing out of the secondary circuit 16 b of the condenser 16 to the condenser 21 is provided.
  • the secondary circuit 16 b of the condenser 16 functions as an evaporator of the refrigeration cycle 20.
  • the first connection pipe 201 connects between an outlet 212 formed in the condenser 21 and an inlet 163 formed in the secondary circuit 16 b of the condenser 16.
  • the second connection pipe 202 connects between an outlet 164 formed in the secondary circuit 16 b of the condenser 16 and an inlet 211 formed in the condenser 21.
  • the compressor 23 is provided in the middle of the second connection pipe 202.
  • the vehicle of the present embodiment stops the power supply from the secondary batteries 12a and 12b during parking. Therefore, during parking, the compressor 23 of the refrigeration cycle 20 also stops operating. Therefore, the refrigerant for the refrigeration cycle cannot be supplied to the condenser 16 by the compressor 23, and the cooling target device cannot be cooled.
  • the first heat medium of the first circulation circuit has substantially the same temperature as the secondary battery. Therefore, the temperature of the thermosiphon refrigerant in the primary circuit 16a in the condenser is also substantially the same as that of the target device.
  • the condenser of the second circulation circuit is cooled to the outside air.
  • the condenser in the first circulation circuit that has received more heat of the thermosiphon refrigerant becomes higher than the outside air temperature.
  • the condenser is cooled to the outside air temperature. Therefore, condensation occurs in the refrigerant for the refrigeration cycle in the condenser.
  • the other components of the refrigeration cycle 20 except for the condenser 21 are higher than the temperature of the condenser which is substantially equal to the outside air temperature, the refrigeration cycle refrigerant evaporates from the other components and the refrigeration cycle The phenomenon of refrigerant condensation tends to occur.
  • the outside air temperature is lower than in the daytime, such as in the evening or at night during parking, the above-described event occurs.
  • the device temperature controller of the present embodiment by adopting a configuration in which the inflow of the refrigerant for the refrigeration cycle from the condenser 21 to the condenser 16 by gravity is promoted, even when the operation of the compressor 23 is stopped, cooling is performed.
  • the target device can be cooled.
  • the arrangement when the compressor 23 stops operating, the arrangement is such that the inflow of the refrigeration cycle refrigerant from the condenser 21 to the condenser 16 is promoted.
  • the condenser 16 has an inlet 163 into which the refrigerant for the refrigeration cycle flows, and an outlet 164 from which the refrigerant for the refrigeration cycle flows, and the inlet 163 of the condenser 16 It is arranged below the outlet 212 in the vertical direction.
  • the inflow port 163 of the condenser 16 is disposed below the compressor 23, the condenser 21, and the expansion valve 30 that constitute the refrigeration cycle 20 in the up-down direction.
  • the condenser 21 of the present embodiment is arranged such that the refrigerant for the refrigeration cycle flows in the heat exchange part in the condenser 21 in the lateral direction. Further, the condenser 21 has two inlets / outlets 213 forming an inlet 211 for flowing the refrigerant for the refrigeration cycle and an outlet 212 for flowing the refrigerant for the refrigeration cycle, and the inlets / outlets 213 of the condenser 21 are different from each other in the vertical direction. Is located in the position.
  • first connection pipe 201 connects between the inlet / outlet 213 of the condenser 16 and the inlet / outlet 213 of the condenser 21 which is disposed on the lower side in the vertical direction from the inlet / outlet 213 disposed on the upper side in the vertical direction. are doing.
  • the first connection pipe 201 is connected to the outlet 212 of the condenser 21 and the inlet 163 of the condenser 16 without passing through the upper side in the vertical direction from the outlet 212 of the condenser 21. Are connected between.
  • the ECU 50 of the device temperature controller of the present embodiment performs a process of controlling the expansion valve 30 so that the refrigerant for the refrigeration cycle flows from the condenser 21 to the condenser 16.
  • the ECU 50 periodically performs the processing shown in FIG.
  • ECU 50 determines whether or not to turn off the refrigeration cycle based on whether or not a signal for instructing to turn off the refrigeration cycle has been input.
  • the ECU 50 normally operates the compressor 23 and normally operates the expansion valve 30 in S102.
  • the expansion valve 30 is controlled so that the valve opening becomes a predetermined target opening, and the process returns to the main routine.
  • ECU 50 determines in S104 whether or not cooling of the target device is necessary based on a signal from a temperature sensor that detects the temperature of the target device. . For example, when the temperature of the target device is equal to or higher than a predetermined value, it is determined that the target device needs to be cooled. If the temperature of the target device is lower than the predetermined value, it is determined that cooling of the target device is not necessary.
  • the ECU 50 stops the operation of the compressor 23, and controls the expansion valve 30 to fully open the valve in S108, and executes the main routine.
  • the expansion valve 30 is controlled so as to fully open the valve, so that the refrigerant for the refrigeration cycle from the condenser 21 to the condenser 16 is promoted.
  • the ECU 50 determines in S100 that cooling of the target device is not necessary, the ECU 50 stops the operation of the compressor 23 and stops the operation of the expansion valve 30 in S106. Specifically, the expansion valve 30 is controlled so that the valve opening is fully closed, and the process returns to the main routine.
  • the expansion valve 30 is controlled so that the valve opening is fully closed, so that the refrigerant for the refrigeration cycle from the condenser 21 to the condenser 16 is suppressed.
  • the device temperature controller of the present embodiment includes the thermosiphon 10 having the first circulation circuit 100 that circulates the thermosiphon refrigerant. Then, the temperature of the batteries 12a and 12b as the target devices is adjusted by the phase change between the liquid phase and the gas phase of the thermosyphon refrigerant. Further, a second circulation circuit 200 for circulating the refrigeration cycle refrigerant and a compressor 23 for compressing and discharging the refrigeration cycle refrigerant inside the second circulation circuit 200 are provided. Further, a condenser 21 is provided for exchanging heat between the refrigerant for the refrigeration cycle discharged from the compressor 23 and the air to radiate the heat of the refrigerant for the refrigeration cycle. Further, an expansion valve 30 for reducing the pressure of the refrigerant for the refrigeration cycle flowing out of the condenser 21 is provided.
  • thermosiphon 10 is disposed in the first circulation circuit 100 and includes a cooler 14 configured to be capable of exchanging heat between the target device and the refrigerant for the refrigeration cycle so that the refrigerant for the thermosiphon evaporates when the target device is cooled.
  • the condenser 16 also has a condenser 16 for exchanging heat between the refrigerant for the refrigeration cycle, which has been depressurized by the expansion valve 30, and the refrigerant for the thermosiphon evaporated by the cooler 14, thereby condensing the refrigerant for the thermosiphon.
  • the condenser 16 has an inlet 163 through which the refrigerant for the refrigeration cycle flows, and an outlet 164 through which the refrigerant for the refrigeration cycle flows out.
  • the condenser 21 has an inlet 211 for flowing the refrigerant for the refrigeration cycle and an outlet 212 for flowing the refrigerant for the refrigeration cycle.
  • the second circulation circuit 200 includes a first connection pipe 201 that connects between the outlet 212 of the condenser 21 and the inlet 163 of the condenser 16, an outlet 164 of the condenser 16, and an inlet 211 of the condenser 21. And a second connection pipe 202 that connects between the two.
  • the device temperature controller of the present embodiment is arranged such that when the compressor 23 stops operating, the flow of the refrigeration cycle refrigerant from the condenser 21 to the condenser 16 is promoted.
  • the inlet 163 of the condenser 16 is disposed below the outlet 212 of the condenser 21 in the vertical direction.
  • the inflow port 163 of the condenser 16 is disposed below the compressor 23, the condenser 21, and the expansion valve 30 that constitute the refrigeration cycle 20 in the up-down direction.
  • the first connection pipe 201 connects between the outlet 212 of the condenser 21 and the inlet 163 of the condenser 16 without passing vertically above the outlet 212 of the condenser 21.
  • the condenser 21 has at least two inlets and outlets 213 that constitute an inlet 211 for flowing the refrigerant for the refrigeration cycle and an outlet 212 for flowing the refrigerant for the refrigeration cycle. They are located at different locations.
  • the first connection pipe 201 connects between the inlet / outlet 213 of the condenser 16 and the inlet / outlet 213 of the condenser 21 which is disposed on the lower side in the vertical direction from the inlet / outlet 213 disposed on the upper side in the vertical direction. are doing.
  • the device temperature control device of the present embodiment is disposed on a path connecting the condenser 21 and the condenser 16, and an expansion valve 30 as a path opening / closing unit that opens and closes a path connecting the condenser 21 and the condenser 16. It has. Also, it is determined whether or not the cooling of the target device is necessary based on the temperature of the target device (S104). If it is determined that the compressor 23 stops operating and the cooling of the target device is necessary, The expansion valve 30 is opened (S112).
  • the liquid-phase refrigeration cycle refrigerant condensed in the condenser 21 can be promoted to flow into the condenser 16 by gravity. Therefore, the target device can be cooled by the thermosiphon 10.
  • the capacitor 21 of the first embodiment has two ports 213 as shown in FIG.
  • the first connection pipe 201 connects between the inlet / outlet 213 of the condenser 16 and the inlet / outlet 213 of the condenser 21 which is disposed on the lower side in the vertical direction from the inlet / outlet 213 disposed on the upper side in the vertical direction. are doing.
  • the condenser 21 of the present embodiment has three ports 213 as shown in FIG.
  • the first connection pipe 201 connects between the inlet / outlet 213 of the condenser 16 and the inlet / outlet 213 of the condenser 21 which is disposed on the lower side in the vertical direction from the inlet / outlet 213 disposed on the uppermost side in the vertical direction. Connected.
  • the liquid-phase refrigeration cycle refrigerant condensed in the condenser 21 easily flows out to the condenser 16, and the condenser 16 The flow of the refrigerant for the refrigeration cycle into the refrigerant can be promoted. Therefore, the target device can be cooled by the thermosiphon 10.
  • the refrigerant for the refrigeration cycle is arranged to flow in the heat exchange section in the condenser 21 in the vertical direction.
  • the capacitor 21 of the present embodiment has three entrances 213.
  • the first connection pipe 201 connects between the inlet / outlet 213 of the condenser 16 and the inlet / outlet 213 of the condenser 21 which is disposed on the lower side in the vertical direction from the inlet / outlet 213 disposed on the uppermost side in the vertical direction. Connected.
  • the liquid-phase refrigeration cycle refrigerant condensed in the condenser 21 easily flows out to the condenser 16, and the condenser 16 The flow of the refrigerant for the refrigeration cycle into the refrigerant can be promoted. Therefore, the target device can be cooled by the thermosiphon 10.
  • the device temperature control device of the first embodiment has an expansion valve 30 that operates according to the control of the ECU 50.
  • the device temperature control device of the present embodiment has a mechanical expansion valve instead of the expansion valve 30. 31.
  • the device temperature control device of the present embodiment has a bypass flow path 204 that bypasses the mechanical expansion valve 31 and an on-off valve 32 that is disposed in the bypass flow path 204.
  • the on-off valve 32 is configured by an electric valve that operates according to the control of the ECU 50.
  • the ECU 50 periodically performs the processing shown in FIG.
  • ECU 50 determines whether or not to turn off the refrigeration cycle based on whether or not a signal for instructing to turn off the refrigeration cycle has been input.
  • the ECU 50 controls the valve 32 to a closed state in S102. At this time, the pressure of the refrigeration cycle is reduced by the expansion valve 31.
  • ECU 50 determines in S104 whether or not cooling of the target device is necessary based on a signal from a temperature sensor that detects the temperature of the target device. . For example, when the temperature of the target device is equal to or higher than a predetermined value, it is determined that the target device needs to be cooled. If the temperature of the target device is lower than the predetermined value, it is determined that cooling of the target device is not necessary.
  • the ECU 50 stops the operation of the compressor 23, controls the valve 32 to fully open the valve in S112, and returns to the main routine.
  • the valve 32 is controlled so as to fully open the valve, so that the refrigerant for the refrigeration cycle from the condenser 21 to the condenser 16 is promoted.
  • the ECU 50 determines in S100 that cooling of the target device is not necessary, the ECU 50 controls the valve 32 so that the valve is fully closed in S114.
  • the valve 32 is controlled so that the valve is fully closed, so that the inflow of the refrigeration cycle refrigerant from the condenser 21 to the condenser 16 is suppressed, and the cooling of the control target is performed. Can not be promoted.
  • a device temperature controller according to a fifth embodiment will be described with reference to FIG.
  • the first connection pipe 201 is arranged so as to be inclined downward in the vertical direction as the outlet 212 of the condenser 21 approaches the inlet 163 of the condenser 16.
  • the inflow port 163 of the condenser 16 is disposed below the target liquid level of the refrigeration cycle refrigerant when the second circulation circuit 200 is filled with the refrigeration cycle refrigerant.
  • the mechanical expansion valve 31 and the on-off valve 32 are connected to the first connection pipe 201. Note that the control of the ECU 50 is the same as the process shown in FIG. 8, and thus the details thereof are omitted here.
  • the first connection pipe 201 is disposed so as to be inclined downward in the up-down direction as it approaches the inflow port 163 of the condenser 16 from the outflow port 212 of the condenser 21. Therefore, the refrigerant for the refrigeration cycle flows easily from the outlet 212 of the condenser 21 to the inlet 163 of the condenser 16, and the inflow of the refrigerant for the refrigeration cycle from the condenser 21 to the condenser 16 is promoted.
  • the inlet 163 of the condenser 16 is disposed below the target liquid level of the refrigeration cycle refrigerant when the second circulation circuit 200 is filled with the refrigeration cycle refrigerant. Therefore, when the operation of the compressor 23 is stopped, the refrigerant for the refrigeration cycle can be stored in the condenser 16, and the device to be cooled can be cooled.
  • the device temperature control device of the present embodiment is different from the device temperature control device of the first embodiment in that, when the compressor 23 stops operating, the cooling device is given priority over the condenser 16 as the first condenser.
  • a parking heat exchanger 18 for condensing the thermosiphon refrigerant evaporated by the heat exchanger 14 is provided.
  • the parking heat exchanger 18 corresponds to a second condenser.
  • the device temperature control device of the present embodiment has an on-off valve 32 that operates according to the control of the ECU 50.
  • the device temperature controller of the present embodiment has a bypass channel 103 that branches off from the middle of the return pipe 102 and reaches the inlet 141 of the cooler 14.
  • the temperature of the refrigeration cycle refrigerant flowing out of the outlet 212 of the condenser 21 is higher than the temperature of the thermosiphon refrigerant flowing out of the outlet 142 of the cooler 14.
  • the parking heat exchanger 18 has an inlet 181 for flowing a thermosiphon refrigerant, an outlet 182 for flowing a thermosiphon refrigerant, an inlet 183 for flowing a refrigeration cycle refrigerant, and a refrigeration cycle refrigerant. And an outlet 184.
  • the inflow port 181 of the parking heat exchanger 18 is disposed below the inflow port 161 of the condenser 16 in the vertical direction.
  • the parking heat exchanger 18 is arranged in the bypass channel 103.
  • the parking heat exchanger 18 is disposed upstream of the on-off valve 32 in the refrigerant flow direction of the refrigerant for the refrigeration cycle.
  • the parking heat exchanger 18 exchanges heat between the thermosiphon refrigerant and the refrigeration cycle refrigerant to condense the thermosiphon refrigerant.
  • the parking heat exchanger 18 is arranged such that when the compressor 23 stops operating, the liquid-phase refrigeration cycle refrigerant condensed in the condenser 21 easily flows in due to gravity. Therefore, the refrigerant for thermosiphon evaporated by the cooler 14 is condensed prior to the condenser 16.
  • ECU 50 determines whether or not to turn off the refrigeration cycle based on whether or not a signal for instructing to turn off the refrigeration cycle has been input.
  • the ECU 50 normally operates the compressor 23 and controls the on-off valve 32 so that the valve is fully opened in S102.
  • thermosyphon refrigerant flowing out of the outlet 142 of the cooler 14 is lower than the temperature of the refrigeration cycle refrigerant passing through the parking heat exchanger 18. Therefore, heat is not exchanged in the parking heat exchanger 18.
  • the refrigerant for the thermosiphon flowing out of the outlet 142 of the cooler 14 exchanges heat with the refrigerant for the refrigeration cycle in the condenser 16 and condenses.
  • the refrigerant for thermosiphon condensed in the condenser 16 is introduced into the inside of the cooler 14 from an inlet 141 of the cooler 14.
  • ECU 50 determines in S104 whether or not cooling of the target device is necessary based on a signal from a temperature sensor that detects the temperature of the target device. .
  • the ECU 50 stops the operation of the compressor 23 and controls the on-off valve 32 to fully open the valve in S206, and executes the main routine.
  • the on-off valve 32 is controlled so that the valve opening is fully opened, so that the liquid-phase refrigeration cycle refrigerant condensed in the condenser 21 is used due to gravity for parking.
  • the flow into the heat exchanger 18 is facilitated.
  • the thermosiphon refrigerant condensed in the parking heat exchanger 18 is introduced into the cooler 14 from the inlet 141 of the cooler 14. Therefore, since the gas-phase refrigerant for thermosiphon flowing out of the outlet 142 of the cooler 14 is introduced into the cooler 14 through a different path, cooling of the target device is promoted.
  • the ECU 50 stops the operation of the compressor 23 and controls the on-off valve 32 to fully close the valve opening in S208. Return to the main routine.
  • the valve 32 is controlled so that the valve opening is fully closed. Thereby, the liquid-phase refrigeration cycle refrigerant condensed in the condenser 21 is suppressed from flowing into the parking heat exchanger 18 due to gravity, and cooling of the controlled object can not be promoted.
  • a device temperature controller according to a seventh embodiment will be described with reference to FIG.
  • the parking heat exchanger 18 is disposed downstream of the expansion valve 30 in the refrigerant flow direction of the refrigerant for the refrigeration cycle.
  • the processing of the ECU 50 is the same as that of the flowchart shown in FIG. 3, and a description thereof will be omitted here.
  • the parking heat exchanger 18 may be arranged downstream of the expansion valve 30 in the refrigerant flow direction of the refrigerant for the refrigeration cycle.
  • the device temperature controller of the present embodiment is formed by a bypass passage 205 that bypasses the parking heat exchanger 18, an on-off valve 32 that opens and closes a flow path formed by the bypass passage 205, and a first connection pipe 201. Opening / closing valve 34 for opening / closing the flow path.
  • the on-off valves 32 and 34 operate according to the control of the ECU 50, respectively.
  • the ECU 50 periodically performs the processing shown in FIG.
  • ECU 50 determines whether or not to turn off the refrigeration cycle based on whether or not a signal for instructing to turn off the refrigeration cycle has been input.
  • the ECU 50 operates the compressor 23 normally.
  • the expansion valve 30 is operated normally.
  • the valves 32 and 34 are controlled so that the refrigerant for the refrigeration cycle does not flow into the heat exchanger 18 for parking. More specifically, the expansion valve 30 is controlled so that the valve opening becomes a predetermined target opening, the valve 32 is controlled so that the valve opening is fully opened, and the on-off valve 34 is controlled such that the valve opening is fully closed. And returns to the main routine. Therefore, heat exchange by the parking heat exchanger 18 is hardly performed.
  • ECU 50 determines in S104 whether or not cooling of the target device is necessary based on a signal from a temperature sensor that detects the temperature of the target device. .
  • the ECU 50 stops the operation of the compressor 23 and, in S305, causes the valve 32 to flow the refrigeration cycle refrigerant to the parking-time heat exchanger 18. , 34 are controlled. Specifically, the valve 32 is controlled so that the valve opening is fully closed, the on-off valve 34 is controlled such that the valve opening is fully opened, and the process returns to the main routine.
  • thermosiphon refrigerant condensed in the parking heat exchanger 18 is introduced into the cooler 14 from the inlet 141 of the cooler 14. Therefore, since the refrigerant for thermosyphon flowing out of the outlet 142 of the cooler 14 is introduced into the cooler 14 through a different path, cooling of the target device is promoted.
  • the ECU 50 determines in S100 that cooling of the target device is not necessary, the ECU 50 stops the operation of the compressor 23, and in S306, prevents the refrigerant for the refrigeration cycle from flowing to the parking-time heat exchanger 18.
  • the valves 32 and 34 are controlled. Specifically, the on-off valve 34 is controlled so that both the valves 32 and 34 are fully closed, and the process returns to the main routine.
  • liquid-phase refrigeration cycle refrigerant condensed in the condenser 21 is suppressed from flowing into the parking heat exchanger 18 due to gravity, and cooling of the controlled object is not promoted.
  • FIG. 10 A device temperature controller according to a ninth embodiment will be described with reference to FIG.
  • the heat exchanger 18 for parking is disposed upstream of the expansion valve 30 in the refrigerant flow direction of the refrigerant for the refrigeration cycle.
  • the parking heat exchanger 18 is disposed downstream of the expansion valve 30 in the refrigerant flow of the refrigeration cycle refrigerant. Note that the processing of the ECU 50 is the same as that of the flowchart shown in FIG. 14, and a description thereof will be omitted.
  • the condensation of the thermosiphon refrigerant in the parking heat exchanger 18 can be further improved. Can be promoted.
  • the device temperature controller of the seventh embodiment is configured so that the thermosiphon refrigerant condensed in the parking heat exchanger 18 is introduced into the inlet 141 of the cooler 14.
  • the device temperature controller of the present embodiment is configured such that the thermosiphon refrigerant condensed in the parking heat exchanger 18 is introduced into the outlet 142 of the cooler 14. Note that the processing of the ECU 50 is the same as that of the flowchart shown in FIG. 3, and a description thereof will be omitted here.
  • the refrigerant for the thermosiphon evaporated in the cooler 14 is heat-exchanged with the refrigerant for the refrigeration cycle in the heat exchanger 18 for parking, and then in the condenser 16. Heat exchange with the refrigerant for the refrigeration cycle.
  • the liquid-phase refrigeration cycle refrigerant condensed in the condenser 21 flows into the parking heat exchanger 18 by gravity. Then, the thermosiphon refrigerant flowing out of the outlet 142 of the cooler 14 is condensed by the parking heat exchanger 18, and the condensed thermosiphon refrigerant returns into the cooler 14 from the outlet 142 of the cooler 14. . Thereby, cooling of the target device is promoted.
  • the parking-time heat exchanger 18 is disposed upstream of the expansion valve 30 in the refrigerant flow direction of the refrigerant for the refrigeration cycle. Further, an on-off valve 34 is provided on the upstream side of the refrigerant flow of the refrigerant for the refrigeration cycle with respect to the heat exchanger 18 for parking. Note that the processing of the ECU 50 is the same as that of the flowchart shown in FIG. 11, and a description thereof will be omitted here.
  • the refrigeration cycle is smaller than the heat exchanger 18 for parking. It is desirable to control the on-off valve 34 arranged on the upstream side of the refrigerant flow of the working refrigerant to be in an open state. That is, when the compressor 23 stops operating and when it is determined that the target device needs to be cooled, the on-off valve 34 disposed on the refrigerant flow upstream side of the refrigeration cycle refrigerant with respect to the parking-time heat exchanger 18 is operated. It is desirable to control the valve to be open.
  • FIG. 16 A device temperature controller according to a twelfth embodiment will be described with reference to FIG.
  • the outlet 164 of the condenser 16 is disposed above the inlet 163 of the condenser 16 in the up-down direction. Then, the refrigerant for the refrigeration cycle flowing from the inlet 163 of the condenser 16 evaporates, moves upward and downward, and flows out of the outlet 164 of the condenser 16.
  • the inlet 163 of the condenser 16 is disposed below the outlet 212 of the condenser 21 in the vertical direction. Therefore, when the compressor 23 stops operating, it is promoted that the liquid-phase refrigeration cycle refrigerant condensed in the condenser 21 flows into the parking heat exchanger 18 by gravity. Therefore, the target device can be cooled by the thermosiphon 10.
  • the outlet 164 of the condenser 16 is disposed above the inlet 163 of the condenser 16 in the vertical direction. For this reason, when the liquid-phase refrigeration cycle refrigerant that has flowed into the condenser 16 evaporates and gasifies inside the condenser 16, the discharge performance is improved, and the cooling capacity of the cooler 14 can be improved. .
  • a device temperature controller according to a thirteenth embodiment will be described with reference to FIG.
  • the outlet 184 of the parking heat exchanger 18 is disposed above the inlet 183 of the condenser 16 in the vertical direction.
  • the refrigerant for the refrigeration cycle flowing from the inlet 183 of the parking heat exchanger 18 evaporates, moves upward and downward, and flows out of the outlet 184 of the parking heat exchanger 18. .
  • the outflow port 184 of the parking heat exchanger 18 is arranged vertically above the inflow port 183 of the condenser 16. Therefore, when the liquid-phase refrigeration cycle refrigerant that has flowed into the parking heat exchanger 18 evaporates and gasifies inside the parking heat exchanger 18, the discharge performance is improved, and the cooling of the cooler 14 is improved. Ability can be improved.
  • a device temperature controller according to a fourteenth embodiment will be described with reference to FIG.
  • the device temperature controller of the present embodiment is arranged such that the first connection pipe 201 is inclined downward in the up-down direction as the first connection pipe 201 approaches the inflow port 183 of the parking heat exchanger 18 from the outflow port 212 of the condenser 21. .
  • the inlet 163 of the condenser 16 is disposed below the target liquid level of the refrigerant for the refrigeration cycle when the second circulation circuit 200 is filled with the refrigerant for the refrigeration cycle. Note that the control by the ECU 50 is the same as the process shown in FIG.
  • the first connection pipe 201 is arranged so as to be inclined downward in the vertical direction as it approaches the inflow port 183 of the parking heat exchanger 18 from the outflow port 212 of the condenser 21. Therefore, when the compressor 23 stops operating, it is promoted that the liquid-phase refrigeration cycle refrigerant condensed in the condenser 21 flows into the parking heat exchanger 18 by gravity. Therefore, the target device can be cooled by the thermosiphon 10.
  • the inlet 163 of the condenser 16 is disposed below the target liquid level of the refrigerant for the refrigeration cycle when the second circulation circuit 200 is filled with the refrigerant for the refrigeration cycle. Therefore, the flow of the refrigerant for the refrigeration cycle from the condenser 21 to the heat exchanger 18 for parking can be further promoted.
  • a device temperature controller according to a fifteenth embodiment will be described with reference to FIG.
  • the parking heat exchanger 18 is disposed downstream of the expansion valve 30 in the refrigerant flow direction of the refrigerant for the refrigeration cycle. Note that the control by the ECU 50 is the same as the process shown in FIG.
  • the heat exchanger for parking 18 may be arranged on the downstream side of the refrigerant flow of the refrigerant for the refrigeration cycle with respect to the expansion valve 30.
  • the device temperature controller according to the sixteenth embodiment will be described with reference to FIGS.
  • the equipment temperature controller of the sixth embodiment is a parking heat exchanger that condenses the thermosiphon refrigerant by exchanging heat between the refrigeration cycle refrigerant flowing out of the condenser 21 and the thermosiphon refrigerant flowing out of the cooler 14. 18 was provided.
  • the device temperature controller of the present embodiment includes the heat transfer member 40 that transfers the heat of the thermosyphonic refrigerant flowing through the return pipe 102 to the first connection pipe 201 instead of the parking heat exchanger 18. Have.
  • the heat transfer member 40 is made of a high heat conductive member such as copper or aluminum.
  • the heat transfer member 40 cools the refrigerant for the gas-phase thermosiphon flowing out of the outlet 142 of the cooler 14. Then, the refrigerant for the thermosiphon condenses into a liquid phase and flows into the inside of the cooler 14 from the outlet 142 of the cooler 14. Therefore, the target device can be cooled.
  • the heat transfer member 40 is in contact with the first connection pipe 201 on the upstream side of the refrigerant flow of the refrigerant for the refrigeration cycle of the expansion valve 30. It may be configured to contact the first connection pipe 201 on the downstream side of the refrigerant flow of the refrigerant.
  • the contact portion between the first circulation circuit 100 and the heat transfer member 40 is used for the thermosiphon when the first circulation circuit 100 is filled with the refrigerant for thermosiphon. It is preferable to set the upper side in the vertical direction from the target liquid level of the refrigerant. This target liquid level is the same as the liquid level when the thermosiphon is not operating, that is, when the thermosyphon refrigerant is not circulating in the first circulation circuit 100.
  • the contact portion between the first circulation circuit 100 and the heat transfer member 40 is located above and below the target liquid level of the refrigerant for the thermosiphon shown by the arrow A and on the side of the cooler 14 from the top of the return pipe 102. Is preferably arranged. In addition, it is preferable to arrange a contact portion between the first circulation circuit 100 and the heat transfer member 40 in a region between the uppermost portion of the return pipe 102 indicated by the arrow B and the condenser 16. In addition, the first circulation circuit 100 and the heat transfer member 40 are located above and below the target liquid level of the refrigerant for the thermosiphon indicated by the arrow C, and in a region between the condenser 16 and the connection portion between the return pipe 102. It is preferable to arrange the contact portions of the above.
  • a contact portion between the first circulation circuit 100 and the heat transfer member 40 can be arranged in the regions indicated by the arrows B and C.
  • the liquid-phase thermosiphon refrigerant condensed in the heat transfer member 40 is introduced into the cooler 14 through a different path from the gas-phase thermosiphon refrigerant flowing out of the outlet 142 of the cooler 14. . Therefore, cooling of the target device is promoted.
  • the 1st circulation circuit 100 It is preferable to arrange a contact portion with the heat transfer member 40.
  • the first circulation circuit 100 and the heat transfer member 40 are located above and below the target liquid level of the refrigerant for the thermosiphon indicated by the arrow C, and in a region between the condenser 16 and the connection portion between the return pipe 102. It is preferable to arrange the contact portions of the above.
  • the condenser 16 be vertically above the target liquid level of the thermosiphon refrigerant when the first circulation circuit 100 is filled with the thermosiphon refrigerant.
  • the heat transfer member 40 for transferring the heat of the thermosyphonic refrigerant flowing in the return pipe 102 to the first connection pipe 201 is provided.
  • a heat transfer member 40 for transferring the heat of the medium may be provided.
  • the second circulation circuit 200 has a bypass pipe 206 through which the refrigerant for the refrigeration cycle flows so as to bypass the compressor 23. Further, the bypass pipe 206 is provided with a bypass channel opening / closing section 36 that opens and closes a channel formed by the bypass pipe 206. When the operation of the compressor 23 is stopped, the bypass thermostat opening / closing section 36 is controlled to be in an open state, and the refrigerant for the refrigeration cycle evaporated in the condenser 16 circulates through the bypass pipe 206. A siphon is configured.
  • the ECU 50 periodically performs the processing shown in FIG.
  • ECU 50 determines whether or not to turn off the refrigeration cycle based on whether or not a signal for instructing to turn off the refrigeration cycle has been input.
  • the ECU 50 controls the bypass flow path opening / closing section 36 so that the compressor 23 is normally operated and the switching to the loop thermosiphon is not performed in S402. I do.
  • the bypass flow path opening / closing section 36 is controlled so as to be in the valve closed state.
  • the refrigerant for the refrigeration cycle compressed by the compressor 23 circulates in the circulation circuit 200.
  • ECU 50 determines in S104 whether or not cooling of the target device is necessary based on a signal from a temperature sensor that detects the temperature of the target device. . For example, when the temperature of the target device is equal to or higher than a predetermined value, it is determined that the target device needs to be cooled. If the temperature of the target device is lower than the predetermined value, it is determined that cooling of the target device is not necessary.
  • the ECU 50 stops the operation of the compressor 23 and controls the bypass flow passage opening / closing unit 36 to switch to the loop thermosiphon in S404. Specifically, the bypass passage opening / closing section 36 is controlled so that the valve opening is fully opened, and the process returns to the main routine.
  • the refrigerant for the refrigeration cycle circulates in the second circulation circuit 200 through the bypass pipe 206 so as to bypass the condenser 16. Therefore, the cooling of the target device by the cooler 14 is continued.
  • step S100 If it is determined in step S100 that cooling of the target device is not necessary, the ECU 50 stops the operation of the compressor 23 and controls the bypass passage opening / closing unit 36 in step S402 so as not to switch to the loop thermosiphon. And returns to the main routine. Specifically, the bypass flow path opening / closing section 36 is controlled so as to be in the valve closed state. As a result, the circulation of the refrigerant for the refrigeration cycle is hindered by the compressor 23, so that the circulation circuit 200 does not function as a loop-type thermosiphon, so that the cooling of the target device by the cooler 14 is not promoted.
  • the device temperature controller according to the eighteenth embodiment includes a heat transfer member 40 that transfers heat of the thermosiphon refrigerant flowing through the return pipe 102 to the first connection pipe 201.
  • the second circulation circuit 200 includes the bypass pipe 206 through which the refrigerant for the refrigeration cycle flows so as to bypass the compressor 23.
  • the bypass pipe 206 is provided with a bypass channel opening / closing section 36 that opens and closes a channel formed by the bypass pipe 206.
  • the bypass channel opening / closing unit 36 is controlled to be in an open state, and the refrigerant for the refrigeration cycle evaporated in the condenser 16 circulates through the bypass pipe 206.
  • a siphon is configured.
  • the high-temperature and high-pressure refrigerant flows through the first connection pipe 201, so that the thermosiphon refrigerant receives heat via the heat transfer member 40.
  • the contact portion between the first circulation circuit 100 and the heat transfer member 40 is arranged in the region indicated by the arrow A in FIG. 23, the liquid-phase thermosiphon refrigerant condensed in the condenser 16 is again discharged. There is no fear of evaporation. Therefore, it is possible to suppress a decrease in cooling performance when the compressor 23 is operated.
  • the device temperature controller of the present embodiment includes an evaporator 51 for air conditioning, a blower 52 for air conditioning, an expansion valve 53 for air conditioning, and a compressor 54 for air conditioning. Further, the condenser 21 of the present embodiment is configured as an air conditioning condenser.
  • the air conditioning evaporator 51, the air conditioning blower 52, the air conditioning expansion valve 53, the air conditioning compressor 54, and the condenser 21 constitute an air conditioning refrigeration cycle.
  • the air conditioning compressor 54 When the air conditioning compressor 54 starts operating, the refrigerant for the refrigeration cycle compressed by the air conditioning compressor 54 is radiated by the condenser 21. Then, the refrigerant for the refrigeration cycle flowing out of the condenser 21 is depressurized by the air conditioning expansion valve 53 and flows into the condenser 16. Then, the refrigeration cycle refrigerant flowing into the condenser 16 is compressed again by the air conditioning compressor 54.
  • the air conditioning compressor 54 stops operating, the refrigerant for the refrigeration cycle inside the air conditioning evaporator 51 is condensed by the cooled air in the passenger compartment.
  • the expansion valve 30 and the air-conditioning expansion valve 53 are controlled as shown in FIG. 3, so that the condensed liquid-phase refrigeration cycle refrigerant flows into the condenser 16.
  • the inflow of the refrigerant for the refrigeration cycle from the air conditioner evaporator 51 to the condenser 16 is promoted.
  • the device temperature controller of the present embodiment includes the air conditioning evaporator 51, and when the compressor 54 stops operating, the flow of the refrigeration cycle refrigerant from the air conditioning evaporator 51 to the condenser 16 is promoted. It has a configuration.
  • a water-refrigerant heat exchanger that cools the equipment to be cooled by heat exchange between the cooling water and the refrigerant for the refrigeration cycle may be provided. Then, when the operation of the compressor 54 is stopped, the flow of the refrigerant for the refrigeration cycle from the water refrigerant heat exchanger to the condenser 16 may be promoted.
  • a device temperature control device according to a twentieth embodiment will be described with reference to FIG.
  • the first heat medium of the first circulation circuit has substantially the same temperature as the secondary battery. Therefore, the temperature of the thermosiphon refrigerant in the primary side circuit 16a in the condenser becomes substantially the same as that of the target device.
  • the condenser of the second circulation circuit is cooled to the outside air.
  • the condenser that has received the thermosiphon refrigerant in the first circulation circuit ⁇ has a higher temperature than the outside air temperature.
  • the condenser is cooled to the outside air temperature. Therefore, condensation occurs in the refrigerant for the refrigeration cycle in the condenser.
  • the refrigeration cycle refrigerant evaporates from the other components and the refrigeration cycle The phenomenon of refrigerant condensation tends to occur.
  • the outside air temperature is lower than in the daytime, such as in the evening or at night during parking, the above-described event occurs.
  • the compressor 23 is disposed so as to be in contact with the heat capacity member 230 that can store the heat generated by the compressor 23.
  • the heat capacity member 230 of the present embodiment is made of a metal member such as copper and aluminum. Therefore, the temperature of the compressor 23 tends to be maintained higher than the temperature of the condenser 21.
  • the target device can be further cooled.
  • an internal combustion engine of a vehicle a body of a vehicle, a frame of a vehicle, or the like may be used as the heat capacity member 230.
  • a device temperature controller according to a twenty-first embodiment will be described with reference to FIG.
  • the device temperature controller of each of the above embodiments is arranged such that when the compressor 23 stops operating, the flow of the refrigeration cycle refrigerant from the condenser 21 to the condenser 16 is promoted.
  • the return pipe 102 for introducing the refrigerant for thermosiphon flowing out of the cooler 14 into the condenser 16 has a heat transfer path for cooling the return pipe 102 by heat transfer. It is in contact with the member 41.
  • the device temperature controller of the present embodiment includes the heat transfer member 41 that transfers the heat of the thermosiphon refrigerant flowing through the return pipe 102 to the condenser 21.
  • the heat of the thermosiphon refrigerant flowing through the return pipe 102 is transferred to the condenser 21 cooled by the outside air via the heat transfer member 41, The refrigerant is condensed.
  • the device temperature controller of the present embodiment includes the thermosiphon 10 having the first circulation circuit 100 that circulates the thermosiphon refrigerant. Then, the temperature of the batteries 12a and 12b as the target devices is adjusted by the phase change between the liquid phase and the gas phase of the thermosyphon refrigerant. Further, a second circulation circuit 200 for circulating the refrigerant for the refrigeration cycle and a compressor 23 for compressing and discharging the refrigerant for the refrigeration cycle inside the second circulation circuit 200 are provided.
  • a condenser 21 for exchanging heat between the refrigeration cycle refrigerant and air discharged from the compressor 23 to radiate heat of the refrigeration cycle refrigerant; an expansion valve 30 for decompressing the refrigeration cycle refrigerant flowing out of the condenser 21; It has.
  • thermosiphon 10 is disposed in the first circulation circuit 100 and includes a cooler 14 configured to be capable of exchanging heat between the target device and the refrigerant for the refrigeration cycle so that the refrigerant for the thermosiphon evaporates when the target device is cooled.
  • the condenser 16 also has a condenser 16 for exchanging heat between the refrigerant for the refrigeration cycle, which has been depressurized by the expansion valve 30, and the refrigerant for the thermosiphon evaporated by the cooler 14, thereby condensing the refrigerant for the thermosiphon.
  • the first circulation circuit 100 has a return pipe 102 for introducing the thermosiphon refrigerant flowing out of the cooler 14 into the condenser 16.
  • the return pipe 102 is for cooling the return pipe 102 by heat transfer. It is in contact with heat transfer member 41.
  • thermosyphonic refrigerant flowing through the return pipe 102 is cooled by the heat transfer member 41, and the cooled thermosiphonic refrigerant is supplied to the cooler 14. be introduced. Therefore, even when the compressor 23 stops operating, the device to be cooled can be further cooled.
  • the high-temperature high-pressure refrigerant flowing through the condenser 21 or the outside air when the outside air temperature is higher than the temperature of the thermosiphon refrigerant causes the thermosiphon refrigerant to receive heat through the heat transfer member 41.
  • the contact portion between the first circulation circuit 100 and the heat transfer member 41 is located above and below the target liquid level of the thermosiphon refrigerant shown by the arrow A in FIG. It is arranged in the area on the 14 side. For this reason, there is no concern that the liquid-phase thermosiphon refrigerant condensed in the condenser 16 evaporates again. Therefore, it is possible to suppress a decrease in cooling performance when the compressor 23 is operated.
  • the return pipe 102 is in contact with the heat transfer member 41 for cooling by heat transfer.
  • the heat transfer member 41 may be constituted.
  • the device temperature control device of the present embodiment includes a bypass flow path 104 for bypassing the condenser 16 for the refrigerant for thermosiphon, and an on-off valve 35 for opening and closing a flow path formed by the bypass flow path 104. . Further, a heat transfer member 41 that transfers heat of the thermosiphon refrigerant flowing through the bypass flow path 104 to the condenser 21 is provided.
  • the on-off valve 35 is controlled so that the valve is opened when it is determined by the ECU (not shown) that cooling is necessary. At this time, the heat of the thermosiphon refrigerant flowing in the bypass flow path 104 bypassing the condenser 16 is transferred to the condenser 21 cooled by the outside air through the heat transfer member 41, and the thermosyphonic refrigerant flowing in the bypass flow path 104 The siphon refrigerant is condensed.
  • thermosiphon refrigerant evaporated by the cooler 14 is introduced into the condenser 16 and is condensed inside the condenser 16.
  • the on-off valve 35 is arranged on the upstream side of the flow of the thermosiphon refrigerant from the contact portion between the bypass passage 104 and the heat transfer member 41.
  • the on-off valve 35 may be arranged downstream of the flow of the thermosiphon refrigerant.
  • the device temperature controller according to the twenty-third embodiment will be described with reference to FIG.
  • the cooler 14 of the present embodiment has a heat exchange core 14a and tanks 14b and 14c.
  • the tank 14c is connected to the outbound piping 101, and the tank 14b is connected to the inbound piping 102.
  • Heat exchange core 14a is arranged between batteries 12a and 12b.
  • Battery 12a and battery 12b have terminals T1 and T2, respectively.
  • terminals T1 and T2 are arranged on the side surfaces of the batteries 12a and 12b.
  • Thermosyphon refrigerant is introduced from the condenser 16 into the tank 14c via the return pipe 102.
  • the heat exchange core 14a cools the batteries 12a and 12b by exchanging heat between the refrigerant for the refrigeration cycle and the refrigerant for the thermosiphon.
  • the refrigerant for the thermosiphon evaporates inside the heat exchange core 14a, and the evaporated refrigerant for the thermosiphon is introduced into the condenser 16 via the return pipe 102.
  • terminals T1 and T2 are arranged on the side surfaces of the batteries 12a and 12b.
  • terminals T1 and T2 are arranged on the upper surfaces of the batteries 12a and 12b.
  • the heat exchange core 14a of the cooler 14 is arranged on the lower surfaces of the batteries 12a and 12b. That is, the battery 12a and the battery 12b are arranged only on one surface of the heat exchange core 14a.
  • the device temperature controller according to the twenty-sixth embodiment will be described with reference to FIG.
  • the inlet 163 of the condenser 16 is arranged at the same height as the outlet 212 of the condenser 21.
  • the first connection pipe 201 that connects the inlet 163 of the condenser 16 and the outlet 212 of the condenser 21 is disposed horizontally.
  • the inlet 163 of the condenser 16 is arranged so as to be at the same height as the outlet 212 of the condenser 21, when the compressor stops operating, the liquid phase condensed in the condenser 21 is reduced.
  • the second heat medium can be promoted to flow into the condenser by gravity. Therefore, the target device can be cooled by the thermosiphon 10.
  • the configuration of the device temperature control device of the present embodiment is the same as that of the device temperature control device of the first embodiment.
  • the device temperature controller of the present embodiment is different from the device temperature controller of the first embodiment in the processing of the ECU 50 after S104.
  • ECU 50 of the present embodiment periodically executes the processing shown in FIG. First, in S100, ECU 50 determines whether or not to turn off the refrigeration cycle based on whether or not a signal for instructing to turn off the refrigeration cycle has been input.
  • the ECU 50 determines in S104 whether or not the target device needs to be cooled based on a signal from the temperature sensor that detects the temperature of the target device. judge.
  • the ECU 50 determines that the target device needs to be cooled, and when the temperature of the target device is lower than the first threshold, the target device needs to be cooled. It is determined that it is not.
  • the ECU 50 determines in S502 whether the cooling capacity needs to be increased. Specifically, when the temperature of the target device is equal to or higher than a second threshold value higher than the first threshold value, it is determined that the cooling capacity of the target device needs to be increased. If the temperature of the target device is less than the second threshold, it is determined that it is not necessary to increase the cooling capacity of the target device.
  • the ECU 50 turns on the refrigeration cycle in S504. Specifically, the compressor 23 is operated. Further, the expansion valve 30 is normally operated. Specifically, the expansion valve 30 is controlled so that the valve opening becomes a predetermined target opening, and the process returns to the main routine.
  • the ECU 50 controls the expansion valve 30 to fully open the valve in S108 without operating the compressor 23, and proceeds to the main routine. Return.
  • the ECU 50 of the device temperature controller of the present embodiment determines that the compressor 23 has stopped operating, determines that the target device needs to be cooled, and determines the cooling capacity of the target device. If it is determined that the increase is necessary, the compressor 23 is operated in S504.
  • the first heat medium can be forced to flow into the condenser 16 and the cooling performance can be increased.
  • the cooling capacity of the target device it is determined whether the cooling capacity of the target device needs to be increased based on whether the temperature of the target device is equal to or higher than the second threshold. On the other hand, when an increase in the cooling capacity of the target device is instructed from a user operation, it may be determined that the cooling capability of the target device needs to be increased.
  • the configuration of the device temperature control device of the present embodiment is the same as the device temperature control device of the fourth embodiment.
  • the device temperature control device of the present embodiment is different from the device temperature control device of the tenth embodiment in the processing of the ECU 50 after S104.
  • ECU 50 of the present embodiment periodically executes the processing shown in FIG. First, in S100, ECU 50 determines whether or not to turn off the refrigeration cycle based on whether or not a signal for instructing to turn off the refrigeration cycle has been input.
  • the ECU 50 determines in S104 whether or not the target device needs to be cooled based on a signal from the temperature sensor that detects the temperature of the target device. judge.
  • the ECU 50 determines that the target device needs to be cooled, and when the temperature of the target device is lower than the first threshold, the target device needs to be cooled. It is determined that it is not.
  • the ECU 50 determines in S502 whether the cooling capacity needs to be increased. Specifically, when the temperature of the target device is equal to or higher than a second threshold value higher than the first threshold value, it is determined that the cooling capacity of the target device needs to be increased. If the temperature of the target device is less than the second threshold, it is determined that it is not necessary to increase the cooling capacity of the target device.
  • the ECU 50 turns on the refrigeration cycle in S604. Specifically, the compressor 23 is operated. Further, the valve 32 is controlled so that the valve opening is fully opened, and the process returns to the main routine.
  • the ECU 50 controls the valve 32 to fully open the valve in S112 without operating the compressor 23, and returns to the main routine. .
  • the ECU 50 of the device temperature controller of the present embodiment determines that the compressor 23 has stopped operating, determines that the target device needs to be cooled, and determines the cooling capacity of the target device. If it is determined that the increase is necessary, the compressor 23 is operated in S304.
  • the first heat medium can be forced to flow into the condenser 16 and the cooling performance can be increased.
  • the cooling capacity of the target device it is determined whether the cooling capacity of the target device needs to be increased based on whether the temperature of the target device is equal to or higher than the second threshold. On the other hand, when an increase in the cooling capacity of the target device is instructed from a user operation, it may be determined that the cooling capability of the target device needs to be increased.
  • a device temperature controller according to a twenty-ninth embodiment will be described with reference to FIG.
  • the configuration of the device temperature control device of the present embodiment is the same as that of the device temperature control device of the sixth embodiment.
  • the device temperature controller of the present embodiment is different from the device temperature controller of the sixth embodiment in the processing of the ECU 50 after S104.
  • ECU 50 of the present embodiment periodically executes the processing shown in FIG. First, in S100, ECU 50 determines whether or not to turn off the refrigeration cycle based on whether or not a signal for instructing to turn off the refrigeration cycle has been input.
  • the ECU 50 determines in S104 whether or not the target device needs to be cooled based on a signal from the temperature sensor that detects the temperature of the target device. judge.
  • the ECU 50 determines that the target device needs to be cooled, and when the temperature of the target device is lower than the first threshold, the target device needs to be cooled. It is determined that it is not.
  • the ECU 50 determines in S502 whether the cooling capacity needs to be increased. Specifically, when the temperature of the target device is equal to or higher than a second threshold value higher than the first threshold value, it is determined that the cooling capacity of the target device needs to be increased. If the temperature of the target device is less than the second threshold, it is determined that it is not necessary to increase the cooling capacity of the target device.
  • the ECU 50 turns on the refrigeration cycle in S704. Specifically, the compressor 23 is operated. Further, the on-off valve 32 is controlled so that the valve opening is fully opened, and the process returns to the main routine.
  • the ECU 50 controls the on-off valve 32 to fully open the valve in S206 without operating the compressor 23, and proceeds to the main routine. Return.
  • the ECU 50 of the device temperature controller of the present embodiment determines that the compressor 23 has stopped operating, determines that the target device needs to be cooled, and determines the cooling capacity of the target device. If it is determined that the increase is necessary, the compressor 23 is operated in S504.
  • the first heat medium can be forced to flow into the condenser 16 and the cooling performance can be increased.
  • the configuration of the device temperature controller of the present embodiment is the same as the device temperature controller of the eighth embodiment.
  • the device temperature controller of the present embodiment is different from the device temperature controller of the sixth embodiment in the processing of the ECU 50 after S104.
  • ECU 50 of the present embodiment periodically executes the processing shown in FIG. First, in S100, ECU 50 determines whether or not to turn off the refrigeration cycle based on whether or not a signal for instructing to turn off the refrigeration cycle has been input.
  • the ECU 50 determines in S104 whether or not the target device needs to be cooled based on a signal from the temperature sensor that detects the temperature of the target device. judge.
  • the ECU 50 determines that the target device needs to be cooled, and when the temperature of the target device is lower than the first threshold, the target device needs to be cooled. It is determined that it is not.
  • the ECU 50 determines in S502 whether the cooling capacity needs to be increased. Specifically, when the temperature of the target device is equal to or higher than a second threshold value higher than the first threshold value, it is determined that the cooling capacity of the target device needs to be increased. If the temperature of the target device is less than the second threshold, it is determined that it is not necessary to increase the cooling capacity of the target device.
  • the ECU 50 turns on the refrigeration cycle in S804. Specifically, the compressor 23 is operated. Further, the on-off valve 32 is controlled so as to fully open the valve so that the refrigerant for the refrigeration cycle does not flow to the heat exchanger 18 for parking, and the on-off valve 34 is controlled so that the valve is fully closed, Return to the main routine.
  • the ECU 50 operates the valve 32 to flow the refrigeration cycle refrigerant to the parking heat exchanger 18 in S305 without operating the compressor 23.
  • 34 is controlled. Specifically, the valve 32 is controlled so that the valve opening is fully closed, the on-off valve 34 is controlled such that the valve opening is fully opened, and the process returns to the main routine.
  • thermosiphon refrigerant condensed in the parking heat exchanger 18 is introduced into the cooler 14 from the inlet 141 of the cooler 14. Therefore, since the refrigerant for thermosyphon flowing out of the outlet 142 of the cooler 14 is introduced into the cooler 14 through a different path, cooling of the target device is promoted.
  • the ECU 50 of the device temperature controller of the present embodiment determines that the compressor 23 has stopped operating, determines that the target device needs to be cooled, and determines the cooling capacity of the target device. If it is determined that the increase is necessary, the compressor 23 is operated in S804.
  • the first heat medium can be forced to flow into the condenser 16 and the cooling performance can be increased.
  • the device temperature controller according to the thirty-first embodiment will be described with reference to FIG.
  • the configuration of the device temperature control device of the present embodiment is the same as the device temperature control devices of the first and 27th embodiments.
  • the device temperature controller of the present embodiment is different from the above-described twenty-seventh embodiment in the processing of the ECU 50 after S502.
  • the ECU 50 determines whether it is necessary to increase the cooling capacity. Specifically, when the temperature of the target device is equal to or higher than the threshold, it is determined that the cooling capacity of the target device needs to be increased, and when the temperature of the target device is lower than the threshold, the cooling capability of the target device does not need to be increased. Is determined.
  • the ECU 50 determines in S506 whether or not to permit an increase in the cooling capacity of the target device. For example, when the target device is the secondary batteries 12a and 12b, when it is estimated that the secondary batteries 12a and 12b are being charged or the charging of the secondary batteries 12a and 12b is started, the cooling capacity of the target device is increased. It is determined to be permitted.
  • the ECU 50 turns on the refrigeration cycle in S504. Specifically, the compressor 23 is operated. Further, the on-off valve 35 is controlled so that the expansion valve 30 operates normally, and the process returns to the main routine.
  • the ECU 50 When the secondary batteries 12a and 12b are not being charged or when it is estimated that the charging of the secondary batteries 12a and 12b is not started, the ECU 50 does not turn on the refrigeration cycle, and in S508, The on-off valve 35 is controlled so that the valve opening is fully opened. Then, the process returns to the main routine.
  • the ECU 50 of the device temperature control device of the present embodiment increases the cooling capability of the target device in S506. It is determined whether to permit.
  • the ECU 50 of the device temperature controller of the present embodiment when estimating that the secondary batteries 12a and 12b are being charged or that the charging of the secondary batteries 12a and 12b is to be started, increases the cooling capacity of the target device. It is determined to be permitted. Therefore, since power for driving the compressor 23 can be secured, it is possible to suppress a decrease in the cruising distance due to the secondary batteries 12a and 12b during the next traveling.
  • a device temperature controller according to a thirty-second embodiment will be described with reference to FIG.
  • the configuration of the device temperature control device of the present embodiment is the same as the device temperature control devices of the sixth and 29th embodiments.
  • the device temperature controller of the present embodiment is different from the above-described twenty-ninth embodiment in the processing of the ECU 50 after S502.
  • the ECU 50 determines whether it is necessary to increase the cooling capacity. Specifically, when the temperature of the target device is equal to or higher than the threshold, it is determined that the cooling capacity of the target device needs to be increased, and when the temperature of the target device is lower than the threshold, the cooling capability of the target device does not need to be increased. Is determined.
  • the ECU 50 determines in S506 whether or not to permit an increase in the cooling capacity of the target device. For example, when the target device is the secondary batteries 12a and 12b, when it is estimated that the secondary batteries 12a and 12b are being charged or the charging of the secondary batteries 12a and 12b is started, the cooling capacity of the target device is increased. It is determined to be permitted.
  • the ECU 50 turns on the refrigeration cycle in S604. Specifically, the compressor 23 is operated. Further, the on / off valve 32 is controlled so that the valve is fully opened, and the process returns to the main routine.
  • the ECU 50 When the secondary batteries 12a and 12b are not being charged or when it is estimated that the charging of the secondary batteries 12a and 12b is not started, the ECU 50 does not turn on the refrigeration cycle, and in S508, The on-off valve 32 is controlled so that the valve opening is fully closed. Then, the process returns to the main routine.
  • the ECU 50 of the device temperature control device of the present embodiment increases the cooling capability of the target device in S506. It is determined whether to permit.
  • the ECU 50 of the device temperature controller of the present embodiment when estimating that the secondary batteries 12a and 12b are being charged or that the charging of the secondary batteries 12a and 12b is to be started, increases the cooling capacity of the target device. It is determined to be permitted. Therefore, since power for driving the compressor 23 can be secured, it is possible to suppress a decrease in the cruising distance due to the secondary batteries 12a and 12b during the next traveling.
  • FIG. 30 An appliance temperature controller according to a thirty-third embodiment will be described with reference to FIG.
  • the configuration of the device temperature control device of the present embodiment is the same as the device temperature control devices of the sixth, 29th, and 32nd embodiments.
  • the ECU 50 determines whether or not to turn off the refrigeration cycle. If it is determined that the refrigeration cycle is to be turned off, the processing from S104 is performed. In contrast, in the present embodiment, in S1001, the ECU 50 determines whether or not the vehicle has stopped traveling, and if it is determined that the vehicle has stopped traveling, performs the processing from S104.
  • the ECU 50 determines whether or not the vehicle has stopped traveling.
  • the process returns to the main routine without performing any special processing.
  • the ECU 50 determines in S104 whether the target device needs to be cooled.
  • the ECU 50 turns off the refrigeration cycle in S2081. Specifically, the compressor 23 is stopped. Further, the on / off valve 32 is controlled so that the valve opening is fully closed, and the process returns to the main routine.
  • the ECU 50 determines in S502 whether it is necessary to increase the cooling capacity.
  • the ECU 50 turns off the refrigeration cycle in S2061. Specifically, the compressor 23 is stopped. Further, the on-off valve 32 is controlled so that the valve opening is fully opened, and the process returns to the main routine.
  • the ECU 50 turns on the refrigeration cycle in S7041. Specifically, the compressor 23 is operated. Further, the on-off valve 32 is controlled so that the valve opening is fully opened, and the process returns to the main routine.
  • the ECU 50 determines that the vehicle is stopped, determines that the target device needs to be cooled, and determines that the cooling capacity needs to be increased. Then, the on-off valve 32 is controlled so that the refrigeration cycle is turned on and the valve opening is fully opened. Therefore, the first heat medium can be forced to flow into the condenser 16, and the cooling performance can be increased.
  • FIG. 34th embodiment An appliance temperature controller according to a thirty-fourth embodiment will be described with reference to FIG.
  • the configuration of the device temperature control device of the present embodiment is the same as the device temperature control devices of the sixth, 29th, 32nd, and 33rd embodiments.
  • the ECU 50 determines whether or not to turn off the refrigeration cycle. If it is determined that the refrigeration cycle is to be turned off, the processing from S104 is performed.
  • the ECU 50 determines whether or not the vehicle has stopped traveling, and if it is determined that the vehicle has stopped traveling, performs the processing from S104.
  • the ECU 50 determines whether or not the vehicle has stopped traveling.
  • the process returns to the main routine without performing any special processing.
  • the ECU 50 determines in S104 whether the target device needs to be cooled.
  • the ECU 50 turns off the refrigeration cycle in S2081. Specifically, the compressor 23 is stopped. Further, the on / off valve 32 is controlled so that the valve opening is fully closed, and the process returns to the main routine.
  • the ECU 50 determines in S502 whether it is necessary to increase the cooling capacity.
  • the ECU 50 turns off the refrigeration cycle in S2061. Specifically, the compressor 23 is stopped. Further, the on-off valve 32 is controlled so that the valve opening is fully opened, and the process returns to the main routine.
  • the ECU 50 determines in S506 whether to allow the cooling capacity of the target device to be increased.
  • the ECU 50 controls the on-off valve 32 to turn off the refrigeration cycle and fully open the valve opening in S5081 as in S2061. I do.
  • the ECU 50 turns on the refrigeration cycle in S7041. Specifically, the compressor 23 is operated. Further, the on-off valve 32 is controlled so that the valve opening is fully opened, and the process returns to the main routine.
  • the ECU 50 turns on the refrigeration cycle. Further, the ECU 50 controls the on-off valve 32 so that the valve opening is fully opened. Therefore, the first heat medium can be forced to flow into the condenser 16, and the cooling performance can be increased.
  • the cooler 14 is arranged between the secondary batteries 12a and 12b as shown in FIG. 2, but the arrangement is not limited to this.
  • the heat transfer member 41 is disposed so as to transfer heat to the condenser 21 cooled by outside air, but is not limited thereto.
  • the heat may be directly or indirectly transferred to a place cooled by the outside air.
  • a place easily affected by the heat of the outside air such as a vehicle body, may be used.
  • the heat may be transferred to a place where the temperature is likely to be lower than that of the secondary batteries 12a and 12b.
  • an air-conditioning evaporator, a water-refrigerant heat exchanger that cools a device to be cooled by heat exchange with a refrigerant for a refrigeration cycle, or a vehicle cabin may be provided on a path through which dew condensation water generated in the air-conditioning evaporator is discharged.
  • the lower the air temperature the higher the density. Therefore, the lower the height in the vehicle cabin, the lower the temperature. Therefore, it is desirable to arrange the heat transfer member 41 so that heat is transferred to a place lower than the place where the battery is installed.
  • the heat transfer member 41 is in contact with the return pipe 102 of the first circulation circuit 100, but is not limited thereto. If the heat transfer member 41 and the gas-phase refrigerant can be heat-exchanged by contacting any one of the region indicated by the arrow A, the region indicated by the arrow B, and the region indicated by the arrow C in FIG. 12b can be cooled.
  • the device temperature control device is used for an electric vehicle or a hybrid, but is not limited to this.
  • it may be used for an idle stop car or a coasting car using a secondary battery. Even when the compressor is used in the above-described vehicle, the same effect can be obtained when the operation of the compressor is stopped.
  • the device temperature control device includes a thermosiphon having a first circulation circuit that circulates a first heat medium, and a first heat medium. The temperature of the target device is adjusted by the phase change between the liquid phase and the gas phase. Further, the device temperature control device includes a second circulation circuit that circulates the second heat medium, a compressor that compresses and discharges the second heat medium, and a heat radiation device that exchanges heat with the discharged second heat medium.
  • the refrigeration cycle includes a heat exchanger and an expansion valve for reducing the pressure of the second heat medium from the heat exchanger for heat radiation.
  • thermosiphon is provided in the first circulation circuit, and includes a device heat exchanger configured to be able to exchange heat between the target device and the second heat medium such that the first heat medium evaporates when the target device is cooled.
  • a condenser for exchanging heat between the second heat medium depressurized by the expansion valve and the first heat medium evaporated by the equipment heat exchanger to condense the first heat medium.
  • the condenser has an inlet for flowing in the second heat medium, and an outlet for flowing out the second heat medium
  • the heat exchanger for heat dissipation has an inlet for flowing in the second heat medium; And an outlet for flowing out the second heat medium.
  • the second circulation circuit includes a first connection pipe that connects between an outlet of the heat-radiating heat exchanger and an inlet of the condenser, and a first connection pipe that connects the outlet of the condenser and the inlet of the heat-radiating heat exchanger. And a second connection pipe connecting between them.
  • the device temperature control device is arranged such that when the compressor stops operating, the flow of the second heat medium from the heat-radiating heat exchanger to the condenser is promoted. I have. Therefore, when the compressor stops operating, the flow of the second heat medium from the heat-radiating heat exchanger to the condenser is promoted, and the device to be cooled can be further cooled.
  • the inlet of the condenser is arranged below the outlet of the heat exchanger for heat radiation in the up-down direction, so that when the compressor stops operating, the heat is released.
  • the flow of the second heat medium from the heat exchanger to the condenser is promoted, and the device to be cooled can be further cooled.
  • the inlet of the condenser is arranged at the same height as the outlet of the heat exchanger for heat radiation.
  • the inlet of the condenser is arranged at the same height as the outlet of the heat exchanger for heat dissipation, the liquid phase condensed in the heat exchanger for heat dissipation when the compressor stops operating Can be promoted to flow into the condenser by gravity.
  • the inflow port of the condenser is disposed below the compressor, the heat-radiating heat exchanger, and the expansion valve that constitute the refrigeration cycle, in the vertical direction. Therefore, when the compressor stops operating, the flow of the second heat medium from the heat-radiating heat exchanger to the condenser is promoted, and the device to be cooled can be further cooled.
  • the first connection pipe is provided between the outlet of the heat-dissipating heat exchanger and the inlet of the condenser without passing vertically above the outlet of the heat-dissipating heat exchanger. Are connected. Therefore, when the compressor stops operating, the flow of the second heat medium from the heat-radiating heat exchanger to the condenser is promoted, and the device to be cooled can be further cooled.
  • the first connection pipe is arranged so as to be inclined downward in the up-down direction as it approaches the inlet of the condenser from the outlet of the heat exchanger for heat dissipation. Therefore, when the compressor stops operating, the flow of the second heat medium from the heat-radiating heat exchanger to the condenser is promoted, and the device to be cooled can be further cooled.
  • the inlet of the condenser is disposed below the target liquid level of the second heat medium when the second circulation medium is filled with the second heat medium, in the vertical direction. I have. Therefore, when the compressor stops operating, the flow of the second heat medium from the heat-radiating heat exchanger to the condenser is promoted, and the device to be cooled can be further cooled.
  • the outlet of the condenser is arranged vertically above the inlet of the second condenser, and the second heat medium flowing from the inlet of the condenser is arranged vertically upward. And flows out of the outlet of the condenser.
  • the liquid phase second heat medium flowing into the condenser evaporates inside the condenser and becomes more dischargeable when gasified, so that the heat exchange of the condenser is improved.
  • the efficiency is improved, and the cooling target device can be further cooled.
  • the heat-radiating heat exchanger has at least two inlets and outlets forming an inlet for flowing the second heat medium and an outlet for flowing the second heat medium.
  • the entrances and exits of the exchanger are arranged at different positions in the vertical direction.
  • the 1st connection piping connects between the entrance and exit arranged in the up-and-down direction lower than the entrance and exit arranged in the up-and-down direction most among the entrances and exits of the heat exchanger for heat radiation, and the inflow of the condenser. I have.
  • the condenser is disposed above and below the target liquid level of the first heat medium when the first circulation medium is filled with the first heat medium. In this manner, by disposing the condenser vertically above the target liquid level of the first heat medium when the first circulation medium is filled with the first heat medium, the condenser can efficiently operate the first heat medium. Can be condensed.
  • the first circulation circuit has a return pipe for introducing the first heat medium flowing out of the equipment heat exchanger into the condenser.
  • the heat of the first heat medium flowing out of the equipment heat exchanger is transferred to the first connection pipe, and the first heat medium flowing out of the equipment heat exchanger is cooled. Condenses inside. Then, the condensed first heat medium flows into the equipment heat exchanger. Therefore, when the compressor stops operating, the flow of the second heat medium from the heat-radiating heat exchanger to the condenser is promoted, and the device to be cooled can be further cooled.
  • the heat transfer member for transferring the heat of the first heat medium provided in the first circulation circuit to the first connection pipe is the target liquid when the thermosyphonic refrigerant is charged. It is arranged above the surface in the vertical direction. Thus, the heat transfer member exchanges heat with the gas-phase refrigerant portion in the first circulation circuit. Therefore, it is possible to further increase the cooling capacity of the device to be cooled when the operation of the compressor is stopped.
  • the first circulation circuit has a return pipe for introducing the first heat medium flowing out of the equipment heat exchanger into the condenser.
  • the return pipe is provided with a heat transfer member that transfers the heat of the first heat medium flowing through the return pipe to the first connection pipe.
  • the heat transfer member when the heat transfer member receives heat while the compressor is operating, the liquid-phase refrigerant condensed in the condenser does not evaporate again. Therefore, when the heat transfer member receives heat when the compressor operates, it is possible to prevent a decrease in the cooling capacity of the device to be cooled. In addition, it is also possible to cool the equipment to be cooled when the compressor stops operating, as described above.
  • the first circulation circuit has a return pipe for introducing the first heat medium flowing out of the equipment heat exchanger into the condenser.
  • the return pipe is provided with a heat transfer member that transfers the heat of the first heat medium flowing through the return pipe to the first connection pipe.
  • the heat transfer member when the heat transfer member receives heat while the compressor is operating, the liquid-phase refrigerant condensed in the condenser does not evaporate again. Therefore, when the heat transfer member receives heat when the compressor operates, it is possible to prevent a decrease in the cooling capacity of the device to be cooled. In addition, it is also possible to cool the equipment to be cooled when the compressor stops operating, as described above.
  • the device temperature control device is disposed on a path connecting the heat radiation heat exchanger and the condenser, and opens and closes a path connecting the heat radiation heat exchanger and the condenser. It has a route opening / closing part.
  • a cooling determination unit that determines whether cooling of the target device is necessary based on the temperature of the target device is provided.
  • an expansion valve opening control unit that opens the path opening / closing unit when the compressor stops operating and the cooling determination unit determines that the target device needs to be cooled is provided.
  • the cooling determination unit determines that the target device needs to be cooled, the flow of the second heat medium from the heat-radiating heat exchanger to the condenser is promoted.
  • the device to be cooled can be further cooled.
  • the device temperature control device closes the path opening / closing unit when the compressor stops operating and the cooling determination unit determines that cooling of the target device is not necessary.
  • An expansion valve closing control unit is provided.
  • the cooling determination unit determines that the cooling of the target device is not necessary, the flow of the second heat medium from the heat radiating heat exchanger to the condenser is not promoted. It is possible to stop the cooling of the device to be cooled.
  • the path opening / closing part is an electric expansion valve.
  • the path opening / closing unit can be configured by the electric expansion valve.
  • the compressor is arranged to be in contact with a heat capacity member capable of storing heat generated by the compressor.
  • a heat capacity member capable of storing heat generated by the compressor even when the operation of the compressor is stopped, more refrigeration cycles are used.
  • the refrigerant can be evaporated, and the target device can be further cooled.
  • the heat-radiating heat exchanger is mounted on a vehicle, and the heat-radiating heat exchanger exchanges heat between the second heat medium discharged from the compressor and the outside air of the vehicle.
  • An outside air heat exchanger that radiates heat of the heat medium.
  • the heat-radiating heat exchanger can also be constituted by an external-air heat exchanger that exchanges heat between the second heat medium discharged from the compressor and the outside air of the vehicle and radiates heat of the second heat medium. .
  • the second circulation circuit has a bypass pipe through which the second heat medium flows so as to bypass the compressor, and the bypass pipe has a flow path formed by the bypass pipe.
  • a detour channel opening / closing part that opens and closes is provided.
  • the condenser is a first condenser, and when the compressor stops operating, the first condenser evaporated by the equipment heat exchanger in preference to the first condenser.
  • a second condenser for condensing the heat medium is provided. And when a compressor stops operation
  • the flow of the second heat medium from the heat-radiating heat exchanger to the second condenser is promoted. Therefore, even when the compressor stops operating, the flow of the second heat medium from the heat-radiating heat exchanger to the second condenser is promoted, and the device to be cooled can be further cooled.
  • the second condenser has an inlet through which the second heat medium flows, and the inlet of the second condenser is arranged more vertically than the outlet of the heat exchanger for heat radiation. It is located on the lower side.
  • an apparatus temperature controller includes a thermosiphon having a first circulation circuit that circulates a first heat medium, and the target apparatus is controlled by a phase change between a liquid phase and a gas phase of the first heat medium. Adjust the temperature of the. At least one portion of the first circulation circuit is in contact with a heat transfer member for cooling by heat transfer.
  • the heat transfer member is in contact with at least one portion of the first circulation circuit that is above the target liquid level of the first heat medium.
  • the heat transfer member exchanges heat with the gas-phase refrigerant portion in the first circulation circuit. Therefore, it is possible to further increase the cooling capacity of the device to be cooled when the operation of the compressor is stopped.
  • an apparatus temperature controller includes a second circulation circuit that circulates a second heat medium, a compressor that compresses a second heat medium, and a compressor that compresses the second heat medium and air.
  • a refrigeration cycle having a heat exchanger for heat exchange for heat exchange and an expansion valve for reducing the pressure of the second heat medium is provided.
  • the thermosiphon is provided in the first circulation circuit, and includes a device heat exchanger configured to be able to exchange heat between the target device and the second heat medium such that the first heat medium evaporates when the target device is cooled.
  • a condenser is provided for exchanging heat between the second heat medium depressurized by the expansion valve and the first heat medium evaporated by the equipment heat exchanger to condense the first heat medium.
  • the first circulation circuit has a return pipe for introducing the first heat medium flowing out of the equipment heat exchanger into the condenser, and the heat transfer member is in contact with the return pipe.
  • the heat transfer member when the heat transfer member receives heat while the compressor is operating, the liquid-phase refrigerant condensed in the condenser does not evaporate again. Therefore, when the heat transfer member receives heat when the compressor operates, it is possible to prevent a decrease in the cooling capacity of the device to be cooled. In addition, it is also possible to cool the equipment to be cooled when the compressor stops operating, as described above.
  • the device temperature controller includes the cooling determination unit that determines whether the target device needs to be cooled.
  • a capacity increase determination unit that determines whether the cooling capacity of the target device needs to be increased.
  • the compressor operation for operating the compressor is performed. It has a part.
  • the compressor operating unit determines whether the cooling capacity of the target device needs to be increased by the capacity increase determination unit.
  • the first heat medium can be forced to flow in, and the cooling performance can be increased.
  • the cooling determination unit determines that the target device needs to be cooled when the temperature of the target device is equal to or higher than the first threshold, and determines that the temperature of the target device is lower than the first threshold. In this case, it is determined that cooling of the target device is not necessary.
  • the capacity increase determination unit determines that the cooling capacity of the target device needs to be increased, and the temperature of the target device becomes the second threshold value. If less than, it is determined that it is not necessary to increase the cooling capacity of the target device.
  • the cooling determination unit determines that the target device needs to be cooled, and the capacity increase determination unit determines that the temperature of the target device is lower than the first threshold. If it is equal to or higher than the high second threshold, it is preferable to determine that the cooling capacity of the target device needs to be increased.
  • the capacity increase determination unit determines that the cooling capacity of the target device needs to be increased
  • the permission determination for determining whether to permit the increase of the cooling capacity of the target device is performed. It has a part.
  • the compressor operating unit operates the compressor.
  • the compressor can be operated.
  • the target device is a secondary battery that supplies power to the compressor, and the permission determination unit determines that the secondary battery is being charged or that the charging of the secondary battery is started. When it is estimated, it is determined that the increase of the cooling capacity of the target device is permitted. Therefore, since electric power for driving the compressor 23 can be secured, it is possible to suppress a decrease in the cruising distance due to the secondary battery in the next traveling.
  • processing of S504, S604, S704, and S804 corresponds to a compressor operating unit.
  • the condenser 21 corresponds to an outside air heat exchanger that exchanges heat between the second heat medium discharged from the compressor 23 and the outside air of the vehicle and radiates heat of the second heat medium.
  • processing of S502 corresponds to a capacity increase determination unit
  • the processing of S112 corresponds to an expansion valve opening control unit
  • the processing of S114 corresponds to an expansion valve closing control unit
  • the processing of S104 corresponds to a cooling determination unit. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

This apparatus temperature adjusting device, provided with a thermosiphon (10) that has a first circulation circuit (100) through which a first heat medium circulates, is provided with a refrigeration cycle (20) that has a second circulation circuit (200) through which a second heat medium circulates. A condenser (16) of the thermosiphon has an inflow port (163) through which the second heat medium flows in and an outflow port (164) through which the second heat medium flows out. When the operation of a compressor (23) of the refrigeration cycle is stopped, the inflow of the second heat medium from a heat exchanger (21) for heat radiation in the refrigeration cycle to the condenser of the thermosiphon is facilitated.

Description

機器温調装置Equipment temperature controller 関連出願への相互参照Cross-reference to related application
 本出願は、2018年6月29日に出願された日本特許出願番号2018-124858号と、2019年6月3日に出願された日本特許出願番号2019-103925号とに基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2018-124858 filed on June 29, 2018 and Japanese Patent Application No. 2019-103925 filed on June 3, 2019, wherein The description is incorporated by reference.
 本開示は、機器温調装置に関するものである。 The present disclosure relates to a device temperature controller.
 従来、特許文献1に記載された冷却装置がある。この装置は、冷媒を循環させる圧縮機を作動させて作動流体を循環させる機械圧縮式の回路と、冷媒を自然循環させることで冷却対象機器を冷却するサーモサイフォンから成る2系統の回路を、熱交換器を介して熱交換する二次ループ冷凍回路として構成されている。 Conventionally, there is a cooling device described in Patent Document 1. This device uses two systems, a mechanical compression circuit that operates a compressor that circulates refrigerant and circulates a working fluid, and a thermosiphon that cools equipment to be cooled by circulating refrigerant naturally. It is configured as a secondary loop refrigeration circuit that exchanges heat via an exchanger.
特開2008-96084号公報JP 2008-96084 A
 発明者の検討によれば、上記特許文献1に記載された装置を、車両に搭載された冷却対象機器を冷却する車載冷却装置に適用することが考えられる。しかし、上記特許文献1に記載された装置は、凝縮器の冷媒流出口と、2系統の回路を熱交換する熱交換器の冷媒流入口の高さが等しくなっており、圧縮機が作動を停止した際に、凝縮器から2系統の回路を熱交換する熱交換器に十分な冷媒が導入されない。すなわち、車両が停車した場合など、圧縮機が作動を停止せざるを得ない状況になると、2系統の回路を熱交換する熱交換器に流入する機械圧縮式の回路の冷媒の流量が減少し、冷却対象機器を十分に冷却できなくなってしまう。 According to the study of the inventor, it is conceivable that the device described in Patent Document 1 is applied to a vehicle-mounted cooling device that cools a cooling target device mounted on a vehicle. However, in the device described in Patent Document 1, the height of the refrigerant outlet of the condenser is equal to the height of the refrigerant inlet of the heat exchanger that exchanges heat between the two circuits, and the compressor operates. When the operation is stopped, sufficient refrigerant is not introduced from the condenser to the heat exchanger that exchanges heat between the two circuits. That is, when the compressor must stop operating, such as when the vehicle stops, the flow rate of the refrigerant in the mechanical compression circuit flowing into the heat exchanger that exchanges heat between the two circuits decreases. As a result, the device to be cooled cannot be sufficiently cooled.
 本開示は、圧縮機が作動を停止した場合でも、冷却対象機器をより冷却できるようすることを目的とする。 開 示 The present disclosure has an object to make it possible to cool a device to be cooled even when the compressor stops operating.
 本開示の1つの観点によれば、機器温度調整装置は、第1熱媒体を循環させる第1循環回路を有するサーモサイフォンを備え、第1熱媒体の液相と気相の相変化により対象機器の温度を調整する機器温調装置であって、第2熱媒体を循環させる第2循環回路と、第2循環回路の内部の第2熱媒体を圧縮して吐出する圧縮機と、圧縮機から吐出された第2熱媒体と空気を熱交換して第2熱媒体の熱を放熱する放熱用熱交換器と、放熱用熱交換器から流出した第2熱媒体を減圧させる膨張弁と、を有する冷凍サイクルを備え、サーモサイフォンは、第1循環回路に配置され、対象機器の冷却時に第1熱媒体が蒸発するように対象機器と第2熱媒体とが熱交換可能に構成された機器用熱交換器と、膨張弁にて減圧された第2熱媒体と機器用熱交換器により蒸発した第1熱媒体を熱交換して第1熱媒体を凝縮させる凝縮器と、を有し、凝縮器は、第2熱媒体を流入する流入口と、第2熱媒体を流出する流出口と、を有し、放熱用熱交換器は、第2熱媒体を流入する流入口と、第2熱媒体を流出する流出口と、を有し、第2循環回路は、放熱用熱交換器の流出口と凝縮器の流入口との間を接続する第1接続配管と、凝縮器の流出口と放熱用熱交換器の流入口との間を接続する第2接続配管と、を有し、圧縮機が作動を停止した際に、放熱用熱交換器から凝縮器への第2熱媒体の流入が促進される構成となっている。 According to one aspect of the present disclosure, an apparatus temperature controller includes a thermosiphon having a first circulation circuit that circulates a first heat medium, and a target apparatus is provided by a phase change between a liquid phase and a gas phase of the first heat medium. A device for controlling the temperature of the device, a second circulation circuit for circulating a second heat medium, a compressor for compressing and discharging the second heat medium inside the second circulation circuit, and A radiating heat exchanger for exchanging heat with the discharged second heat medium and air to radiate heat of the second heat medium, and an expansion valve for decompressing the second heat medium flowing out of the radiating heat exchanger. The thermosiphon is provided in the first circulation circuit, and is configured for heat exchange between the target device and the second heat medium such that the first heat medium evaporates when the target device is cooled. Heat exchange between the heat exchanger, the second heat medium depressurized by the expansion valve, and equipment And a condenser for exchanging heat with the first heat medium evaporated by the first heat medium to condense the first heat medium, wherein the condenser has an inlet through which the second heat medium flows, and a stream through which the second heat medium flows out An outlet for flowing in the second heat medium, and an outlet for flowing out the second heat medium, wherein the second circulation circuit has a heat exchange for heat release. A first connecting pipe connecting between the outlet of the condenser and the inlet of the condenser, and a second connecting pipe connecting between the outlet of the condenser and the inlet of the heat-radiating heat exchanger. Then, when the compressor stops operating, the flow of the second heat medium from the heat-radiating heat exchanger to the condenser is promoted.
 このような構成によれば、圧縮機が作動を停止した際に、放熱用熱交換器にて凝縮した液相の第2熱媒体が、重力により凝縮器へ流入することを促進することができる。よってサーモサイフォンにより、対象機器を冷却することができる。 According to such a configuration, when the operation of the compressor is stopped, the second heat medium in the liquid phase condensed in the heat-radiating heat exchanger can be promoted to flow into the condenser by gravity. . Therefore, the target device can be cooled by the thermosiphon.
 また、本開示の他の観点によれば、機器温度調整装置は、第1熱媒体を循環させる第1循環回路を有するサーモサイフォンを備え、第1熱媒体の液相と気相の相変化により対象機器の温度を調整する機器温調装置であって、第1循環回路の少なくとも1カ所は、伝熱により冷却するための伝熱部材と接触している。 According to another aspect of the present disclosure, the device temperature control device includes a thermosiphon having a first circulation circuit that circulates the first heat medium, and the thermosiphon has a liquid phase and a gas phase change of the first heat medium. A device temperature controller for adjusting a temperature of a target device, wherein at least one portion of a first circulation circuit is in contact with a heat transfer member for cooling by heat transfer.
 このような構成によれば、圧縮機が作動を停止した際に、第1循環回路内の第1熱媒体の熱が伝熱部材に伝熱して第1熱媒体が冷却される。したがって、圧縮機が作動を停止した場合でも、冷却対象機器をより冷却することができる。 According to such a configuration, when the compressor stops operating, the heat of the first heat medium in the first circulation circuit is transferred to the heat transfer member to cool the first heat medium. Therefore, even when the compressor stops operating, the device to be cooled can be further cooled.
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 Note that reference numerals in parentheses attached to the respective components and the like indicate an example of the correspondence between the components and the like and specific components and the like described in the embodiments described later.
第1実施形態の機器温調装置の構成図である。It is a lineblock diagram of an apparatus temperature control device of a 1st embodiment. サーモサイフォンの冷却器および二次電池を分解した構成図である。It is a block diagram which disassembled the cooler and secondary battery of a thermosiphon. 第1実施形態のECUのフローチャートである。3 is a flowchart of the ECU according to the first embodiment. 第1実施形態のコンデンサの出入口の様子を示した図である。It is a figure showing a situation of a doorway of a capacitor of a 1st embodiment. 第2実施形態のコンデンサの出入口の様子を示した図である。It is the figure which showed the mode of the entrance of the capacitor | condenser of 2nd Embodiment. 第3実施形態のコンデンサの出入口の様子を示した図である。It is the figure which showed the mode of the entrance of the capacitor of 3rd Embodiment. 第4実施形態の機器温調装置の構成図である。It is a lineblock diagram of an apparatus temperature controller of a 4th embodiment. 第4実施形態のECUのフローチャートである。It is a flowchart of ECU of 4th Embodiment. 第5実施形態の機器温調装置の構成図である。It is a lineblock diagram of an apparatus temperature control device of a 5th embodiment. 第6実施形態の機器温調装置の構成図である。It is a lineblock diagram of an apparatus temperature controller of a 6th embodiment. 第6実施形態のECUのフローチャートである。It is a flowchart of ECU of 6th Embodiment. 第7実施形態の機器温調装置の構成図である。It is a lineblock diagram of an apparatus temperature controller of a 7th embodiment. 第8実施形態の機器温調装置の構成図である。It is a block diagram of the apparatus temperature control apparatus of 8th Embodiment. 第8実施形態のECUのフローチャートである。It is a flowchart of ECU of 8th Embodiment. 第9実施形態の機器温調装置の構成図である。It is a block diagram of the apparatus temperature controller of 9th Embodiment. 第10実施形態の機器温調装置の構成図である。It is a lineblock diagram of an apparatus temperature controller of a 10th embodiment. 第11実施形態の機器温調装置の構成図である。It is a block diagram of the apparatus temperature controller of 11th Embodiment. 第12実施形態の機器温調装置の構成図である。It is a lineblock diagram of an apparatus temperature controller of a 12th embodiment. 第13実施形態の機器温調装置の構成図である。It is a lineblock diagram of an apparatus temperature controller of a 13th embodiment. 第14実施形態の機器温調装置の構成図である。It is a lineblock diagram of an apparatus temperature controller of a 14th embodiment. 第15実施形態の機器温調装置の構成図である。It is a lineblock diagram of an apparatus temperature control device of a 15th embodiment. 第16実施形態の機器温調装置の構成図である。It is a lineblock diagram of an apparatus temperature controller of a 16th embodiment. 第16実施形態の機器温調装置の熱伝達部材の配置について説明するための図である。It is a figure for explaining arrangement of a heat transfer member of an apparatus temperature controller of a 16th embodiment. 第17実施形態の機器温調装置の構成図である。It is a lineblock diagram of an apparatus temperature controller of a 17th embodiment. 第17実施形態のECUのフローチャートである。It is a flowchart of the ECU of the seventeenth embodiment. 第18実施形態の機器温調装置の構成図である。It is a lineblock diagram of an apparatus temperature control device of an 18th embodiment. 第19実施形態の機器温調装置の構成図である。It is a lineblock diagram of an apparatus temperature controller of a 19th embodiment. 第20実施形態の機器温調装置の構成図である。It is a lineblock diagram of an apparatus temperature controller of a 20th embodiment. 第21実施形態の機器温調装置の構成図である。It is a lineblock diagram of an apparatus temperature controller of a 21st embodiment. 第22実施形態の機器温調装置の構成図である。It is a lineblock diagram of an apparatus temperature controller of a 22nd embodiment. 第23実施形態に係る機器温調装置の冷却器および二次電池を示した図である。It is a figure showing the cooler and the secondary battery of the device temperature controller according to the twenty-third embodiment. 第24実施形態に係る機器温調装置の冷却器および二次電池を示した図である。It is a figure showing the cooler and the secondary battery of the device temperature controller according to the twenty-fourth embodiment. 第25実施形態に係る機器温調装置の冷却器および二次電池を示した図である。It is a figure showing a cooler and a secondary battery of a device temperature controller according to a twenty-fifth embodiment. 第26実施形態に係る機器温調装置の構成図である。It is a lineblock diagram of an apparatus temperature controller concerning a 26th embodiment. 第27実施形態のECUのフローチャートである。It is a flowchart of ECU of the 27th embodiment. 第28実施形態のECUのフローチャートである。It is a flowchart of the ECU of the twenty-eighth embodiment. 第29実施形態のECUのフローチャートである。It is a flowchart of ECU of the 29th embodiment. 第30実施形態のECUのフローチャートである。It is a flowchart of ECU of the 30th embodiment. 第31実施形態のECUのフローチャートである。It is a flowchart of ECU of the 31st embodiment. 第32実施形態のECUのフローチャートである。It is a flowchart of ECU of the 32nd embodiment. 第33実施形態のECUのフローチャートである。It is a flowchart of ECU of the 33rd embodiment. 第34実施形態のECUのフローチャートである。It is a flowchart of ECU of the 34th embodiment.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, portions that are the same or equivalent are denoted by the same reference numerals in the drawings.
 (第1実施形態)
 第1実施形態に係る機器温調装置について図1~図4を用いて説明する。図1に示す機器温調装置は、電気自動車やハイブリッド自動車などの車両に搭載される。そして、本実施形態では、機器温調装置は、図2に示す二次電池12a、12bを冷却する。すなわち、本実施形態の機器温調装置が冷却する被冷却対象は電動自動車に搭載される二次電池12a、12bである。各図において、矢印DR1は、上下方向を示すもので、矢印DR1において上矢印は車両の上下方向の上側を示し、下矢印は車両の上下方向の下側を示している。
(1st Embodiment)
An apparatus temperature controller according to a first embodiment will be described with reference to FIGS. 1 is mounted on a vehicle such as an electric vehicle or a hybrid vehicle. Then, in the present embodiment, the device temperature controller cools the secondary batteries 12a and 12b shown in FIG. That is, the objects to be cooled by the device temperature controller of the present embodiment are the secondary batteries 12a and 12b mounted on the electric vehicle. In each of the drawings, the arrow DR1 indicates the up-down direction. In the arrow DR1, the up arrow indicates the upper side in the up-down direction of the vehicle, and the down arrow indicates the lower side in the up-down direction of the vehicle.
 機器温調装置を搭載する車両では、二次電池12a、12bを含む蓄電装置に蓄えた電力がインバータ回路などを介して電動モータに供給され、それによって車両は走行する。二次電池12a、12bは、電力をインバータを介して電動モータに出力する際に自己発熱する。 (4) In a vehicle equipped with the device temperature controller, the electric power stored in the power storage device including the secondary batteries 12a and 12b is supplied to the electric motor via an inverter circuit or the like, whereby the vehicle runs. The secondary batteries 12a and 12b generate heat when outputting electric power to the electric motor via the inverter.
 そして、二次電池12a、12bが過度に高温になると、その二次電池12a、12bを構成する電池セル13の劣化が促進されることから、自己発熱が少なくなるように電池セル13の出力および入力に制限を設ける必要がある。 When the temperature of the secondary batteries 12a and 12b becomes excessively high, the deterioration of the battery cells 13 constituting the secondary batteries 12a and 12b is promoted. There is a need to limit input.
 そのため、電池セル13の出力および入力を確保するためには、二次電池12a、12bを所定の温度以下に維持するための冷却装置が必要となる。 Therefore, in order to secure the output and the input of the battery cell 13, a cooling device for maintaining the secondary batteries 12a and 12b at a predetermined temperature or lower is required.
 また、車両走行中だけでなく夏季の駐車放置中などにも電池温度は上昇する。また、蓄電装置は車両の床下やトランクルーム下などに配置されることが多く、二次電池12a、12bに与えられる単位時間当たりの熱量は小さいものの、長時間の放置により電池温度は徐々に上昇する。 電池 Also, the battery temperature rises not only while the vehicle is running but also during parking in summer. In addition, the power storage device is often arranged under the floor of the vehicle, under a trunk room, or the like, and although the amount of heat given to the secondary batteries 12a and 12b per unit time is small, the battery temperature gradually rises by leaving the battery for a long time. .
 二次電池12a、12bを高温状態で放置すると、二次電池12a、12bの寿命が大幅に低下するので、車両の放置中も二次電池12a、12bを冷却するなど電池温度を低温に維持することが望まれている。 If the secondary batteries 12a, 12b are left in a high temperature state, the life of the secondary batteries 12a, 12b is greatly reduced. Therefore, the battery temperature is maintained at a low temperature by cooling the secondary batteries 12a, 12b even while the vehicle is left. It is desired.
 本実施形態の二次電池12a、12bは、複数の電池セル13を車両進行方向に積層してなる組電池として構成されているが、各電池セル13の温度にばらつきがあると電池セル13の劣化に偏りが生じ、蓄電装置の性能が低下してしまう。 The secondary batteries 12a and 12b of the present embodiment are configured as an assembled battery in which a plurality of battery cells 13 are stacked in the traveling direction of the vehicle. The deterioration is biased, and the performance of the power storage device is reduced.
 これは、最も劣化した電池セル13の特性に合わせて蓄電装置の入出力特性が決まることによる。そのため、長期間にわたって蓄電装置に所望の性能を発揮させるためには、複数の電池セル13相互間の温度ばらつきを低減させる均温化が重要となる。 This is because the input / output characteristics of the power storage device are determined according to the characteristics of the battery cell 13 that has deteriorated the most. Therefore, in order for the power storage device to exhibit desired performance over a long period of time, it is important to equalize the temperature to reduce temperature variations among the plurality of battery cells 13.
 また、二次電池12a、12bを冷却する他の冷却装置として、これまでブロワによる送風や、冷凍サイクルを用いた直接冷却方式が一般的となっているが、ブロワは車室内の空気を送風するだけなので、ブロワの冷却能力は低い。 Further, as another cooling device for cooling the secondary batteries 12a and 12b, air blowing by a blower or a direct cooling system using a refrigeration cycle has been generally used, but the blower blows air in a vehicle compartment. Therefore, the cooling capacity of the blower is low.
 また、ブロワによる送風では空気の顕熱で二次電池12a、12bを冷却するので、空気流れの上流と下流との間で温度差が大きくなり、電池セル13間の温度ばらつきを十分に抑制できない。 In addition, in the blowing by the blower, the secondary batteries 12a and 12b are cooled by the sensible heat of the air, so that the temperature difference between the upstream and downstream of the air flow becomes large, and the temperature variation between the battery cells 13 cannot be sufficiently suppressed. .
 また、冷凍サイクルにて発生させた冷風を用いる空冷、もしくは冷水を用いる水冷は冷却能力は高いが、電池セル13との熱交換部は空冷または水冷の何れでも顕熱冷却であるので、同じく、電池セル13間の温度ばらつきを十分に抑制できない。 Further, air cooling using cold air generated in a refrigeration cycle, or water cooling using cold water has a high cooling capacity, but the heat exchange part with the battery cell 13 is sensible heat cooling in either air cooling or water cooling. Temperature variation between the battery cells 13 cannot be sufficiently suppressed.
 これらの背景から、本実施形態の機器温調装置では、冷凍サイクルを用いてサーモサイフォン用冷媒を冷却し、このサーモサイフォン用冷媒の自然循環で二次電池12a、12bを冷却するサーモサイフォン方式が採用されている。 From these backgrounds, in the device temperature controller of the present embodiment, a thermosiphon system is used in which the refrigerant for thermosiphon is cooled using a refrigeration cycle and the secondary batteries 12a and 12b are cooled by natural circulation of the refrigerant for thermosiphon. Has been adopted.
 本実施形態の機器温調装置は、図1に示すように、サーモサイフォン10および冷凍サイクル20を備えている。 機器 The device temperature controller of the present embodiment includes a thermosiphon 10 and a refrigeration cycle 20, as shown in FIG.
 サーモサイフォン10は、冷却器14と、凝縮器16と、第1熱媒体としてのサーモサイフォン用冷媒を循環させる第1循環回路100と、を有している。なお、第1循環回路100は、往路配管101および復路配管102を有している。 The thermosiphon 10 has a cooler 14, a condenser 16, and a first circulation circuit 100 that circulates a thermosiphonic refrigerant as a first heat medium. The first circulation circuit 100 has an outgoing pipe 101 and a return pipe 102.
 凝縮器16は、一次側回路16aと二次側回路16bを有している。凝縮器16の一次側回路16aには、該一次側回路16aにサーモサイフォン用冷媒を流入する流入口161と一次側回路16aからサーモサイフォン用冷媒を排出する流出口162とが形成されている。凝縮器16の流入口161と流出口162は、凝縮器16の一次側回路16aの上面に配置されている。凝縮器16の二次側回路16bには、該二次側回路16bに冷凍サイクル用冷媒を流入する流入口163と、二次側回路16bから冷凍サイクル用冷媒を流出する流出口134とが形成されている。 The condenser 16 has a primary side circuit 16a and a secondary side circuit 16b. In the primary circuit 16a of the condenser 16, there are formed an inlet 161 for injecting the thermosiphon refrigerant into the primary circuit 16a and an outlet 162 for discharging the thermosiphon refrigerant from the primary circuit 16a. The inflow port 161 and the outflow port 162 of the condenser 16 are arranged on the upper surface of the primary circuit 16 a of the condenser 16. The secondary circuit 16b of the condenser 16 has an inlet 163 through which the refrigerant for the refrigeration cycle flows into the secondary circuit 16b, and an outlet 134 from which the refrigerant for the refrigeration cycle flows out from the secondary circuit 16b. Have been.
 凝縮器16の一次側回路16aと往路配管101と冷却器14と復路配管102は環状に連結され、サーモサイフォン用冷媒が循環する第1循環回路100を構成する。 The primary circuit 16a of the condenser 16, the outgoing pipe 101, the cooler 14, and the return pipe 102 are connected in a ring shape to form a first circulation circuit 100 in which a thermosiphon refrigerant circulates.
 本実施形態の第1循環回路100内にはサーモサイフォン用冷媒が封入充填されている。そのサーモサイフォン用冷媒は第1循環回路100を蒸発と凝縮により自然循環し、機器温調装置は、そのサーモサイフォン用冷媒の液相と気相との相変化によって二次電池12a、12bの温度を調整する。 冷媒 The first circulation circuit 100 of the present embodiment is filled with a thermosiphon refrigerant. The refrigerant for thermosiphon naturally circulates through the first circulation circuit 100 by evaporation and condensation, and the device temperature controller controls the temperature of the secondary batteries 12a and 12b by a phase change between the liquid phase and the gas phase of the refrigerant for thermosiphon. To adjust.
 第1循環回路100内に充填されている冷媒は、例えば、HFO-1234yfまたはHFC-134aなどのフロン系冷媒である。或いは、冷媒として、水、アンモニア等のフロン系冷媒以外の各種の作動流体を用いても良い。 The refrigerant charged in the first circulation circuit 100 is, for example, a chlorofluorocarbon-based refrigerant such as HFO-1234yf or HFC-134a. Alternatively, various working fluids other than the chlorofluorocarbon-based refrigerant such as water and ammonia may be used as the refrigerant.
 二次電池12a、12bとの熱交換により冷却器14の本体143内のサーモサイフォン用冷媒が蒸発し、気相冷媒となると、この気相冷媒は流出口142から復路配管102を通って凝縮器16の流入口161から凝縮器16の一次側回路16aに流入する。 When the refrigerant for thermosiphon in the main body 143 of the cooler 14 evaporates by heat exchange with the secondary batteries 12a and 12b and becomes a gaseous refrigerant, the gaseous refrigerant flows from the outlet 142 through the return pipe 102 to the condenser. 16 flows into the primary side circuit 16a of the condenser 16 from the 16 inlets 161.
 そして、一次側回路16aに流入したサーモサイフォン用冷媒は、凝縮器16の二次側回路16b内部の冷凍サイクル用冷媒との熱交換により凝縮され、液相冷媒となる。そして、凝縮器16の一次側回路16aの流出口162から往路配管101を通って冷却器14の本体143に形成された流入口141から冷却器14の本体143内に流入する。 The thermosyphon refrigerant flowing into the primary circuit 16a is condensed by heat exchange with the refrigeration cycle refrigerant inside the secondary circuit 16b of the condenser 16 to become a liquid-phase refrigerant. Then, the gas flows from the outlet 162 of the primary circuit 16 a of the condenser 16 through the outward pipe 101 into the main body 143 of the cooler 14 through the inlet 141 formed in the main body 143 of the cooler 14.
 冷却器14の本体143の下方には比較的比重の大きな液相冷媒が溜まり、冷却器14の本体143の上方には比較的比重の小さな気相冷媒が溜まる。したがって、本体143内の気相冷媒は、流入口141と流出口142とのうち専ら流出口142から排出される。 (4) A liquid-phase refrigerant having a relatively high specific gravity is stored below the main body 143 of the cooler 14, and a gas-phase refrigerant having a relatively low specific gravity is stored above the main body 143 of the cooler 14. Therefore, the gas-phase refrigerant in the main body 143 is exclusively discharged from the outlet 142 out of the inlet 141 and the outlet 142.
 図2に示すように、冷却器14は、二次電池12a、12bの間に配置される。冷却器14は、機器用熱交換器に相当する。冷却器14は、二次電池12a、12bの熱とサーモサイフォン用冷媒の熱をと熱交換して二次電池12a、12bを冷却する。冷却器14は、例えば熱伝導性の高い金属製で構成された本体143を有している。 冷却 As shown in FIG. 2, the cooler 14 is disposed between the secondary batteries 12a and 12b. The cooler 14 corresponds to an equipment heat exchanger. The cooler 14 cools the secondary batteries 12a and 12b by exchanging heat between the heat of the secondary batteries 12a and 12b and the heat of the thermosiphon refrigerant. The cooler 14 has a main body 143 made of, for example, a metal having high thermal conductivity.
 冷却器14の本体143には、サーモサイフォン用冷媒を流入させる流入口141とサーモサイフォン用冷媒を流出させる流出口142とが形成されている。流出口142は、流入口141に対して上下方向上側に配置されている。往路配管101は、凝縮器16の一次側回路16aに形成された凝縮器16の流出口162と冷却器14の本体143に形成された流入口141との間を接続している。また、復路配管102は冷却器14の本体143に形成された流出口142と凝縮器16の一次側回路16aに形成された流入口161との間を接続している。 The main body 143 of the cooler 14 has an inlet 141 through which the thermosyphonic refrigerant flows and an outlet 142 through which the thermosiphonic refrigerant flows out. The outlet 142 is arranged above the inlet 141 in the up-down direction. The outward pipe 101 connects between an outlet 162 of the condenser 16 formed in the primary circuit 16 a of the condenser 16 and an inlet 141 formed in the main body 143 of the cooler 14. In addition, the return pipe 102 connects an outlet 142 formed in the main body 143 of the cooler 14 and an inlet 161 formed in the primary circuit 16 a of the condenser 16.
 本実施形態では、凝縮器16は、フロント格納室やトランクルームに収納されている。フロント格納室は、車両のうち車室内に対して車両進行方向前側に配置されて、走行用エンジンや走行用電動機を収納する室である。トランクルームは、車両のうち車室内に対して車両進行方向後側に配置されて荷物等を収納する格納室である。 で は In the present embodiment, the condenser 16 is housed in a front storage room or a trunk room. The front storage room is a room that is disposed on the front side in the vehicle traveling direction with respect to the vehicle interior of the vehicle and houses a traveling engine and a traveling electric motor. The trunk room is a storage room that is disposed rearward in the vehicle traveling direction with respect to the vehicle interior of the vehicle and stores luggage and the like.
 冷凍サイクル20は、第2熱媒体としての冷凍サイクル用冷媒が循環する循環回路200、圧縮機23、コンデンサ21、膨張弁30を含む蒸気圧縮式の冷凍サイクルを構成する。また、冷凍サイクル20は、冷凍サイクル用冷媒を循環させる第2循環回路200と、第2循環回路200内の冷凍サイクル用冷媒を圧縮して吐出する圧縮機23と、を備えている。 The refrigeration cycle 20 constitutes a vapor compression refrigeration cycle including a circulation circuit 200 in which a refrigerant for a refrigeration cycle as a second heat medium circulates, a compressor 23, a condenser 21, and an expansion valve 30. The refrigeration cycle 20 includes a second circulation circuit 200 for circulating the refrigerant for the refrigeration cycle, and a compressor 23 for compressing and discharging the refrigerant for the refrigeration cycle in the second circulation circuit 200.
 また、冷凍サイクル20は、圧縮機23から吐出された冷凍サイクル用冷媒と外気とを熱交換させて圧縮機23から吐出された冷凍サイクル用冷媒を放熱するコンデンサ21を備えている。また、コンデンサ21より流出した冷凍サイクル用冷媒を減圧させて凝縮器16の二次側回路16bに流入させる膨張弁30を備えている。コンデンサ21は、圧縮機23から吐出された冷凍サイクル用冷媒と空気を熱交換して冷凍サイクル用冷媒の熱を放熱する放熱用熱交換器に相当する。 The refrigeration cycle 20 further includes a condenser 21 for exchanging heat between the refrigeration cycle refrigerant discharged from the compressor 23 and the outside air to radiate the refrigeration cycle refrigerant discharged from the compressor 23. Further, an expansion valve 30 is provided to reduce the pressure of the refrigerant for the refrigeration cycle flowing out of the condenser 21 and to flow the refrigerant into the secondary circuit 16 b of the condenser 16. The condenser 21 corresponds to a radiating heat exchanger that exchanges heat between the refrigeration cycle refrigerant discharged from the compressor 23 and air and radiates heat of the refrigeration cycle refrigerant.
 さらに、冷凍サイクル20は、圧縮機23および膨張弁30を制御するECU50を備えている。本実施形態の膨張弁30は、ECU50の制御に応じて動作する電気式膨張弁となっている。ECU50は、ROM、RAM、CPU、I/O等を有するコンピュータとして構成されており、CPUはROMに記憶されたプログラムに従って各種処理を実施する。ROM、RAMは、非遷移的実体的記憶媒体である。 The refrigeration cycle 20 further includes an ECU 50 that controls the compressor 23 and the expansion valve 30. The expansion valve 30 of the present embodiment is an electric expansion valve that operates according to the control of the ECU 50. The ECU 50 is configured as a computer having a ROM, a RAM, a CPU, an I / O, and the like, and the CPU performs various processes according to a program stored in the ROM. The ROM and the RAM are non-transitional substantive storage media.
 循環回路200は、圧縮機23、コンデンサ21、膨張弁30、凝縮器16の一次側回路16aを環状に連結している。循環回路200は、コンデンサ21から流出した冷凍サイクル用冷媒を凝縮器16の二次側回路16bに供給する第1接続配管201を有している。また、凝縮器16の二次側回路16bから流出した冷凍サイクル用冷媒をコンデンサ21に供給する第2接続配管202を有している。凝縮器16の二次側回路16bは、冷凍サイクル20の蒸発器として作用する。 The circulation circuit 200 connects the compressor 23, the condenser 21, the expansion valve 30, and the primary circuit 16a of the condenser 16 in a ring shape. The circulation circuit 200 has a first connection pipe 201 that supplies the refrigerant for the refrigeration cycle flowing out of the condenser 21 to the secondary circuit 16 b of the condenser 16. Further, a second connection pipe 202 for supplying the refrigerant for the refrigeration cycle flowing out of the secondary circuit 16 b of the condenser 16 to the condenser 21 is provided. The secondary circuit 16 b of the condenser 16 functions as an evaporator of the refrigeration cycle 20.
 第1接続配管201は、コンデンサ21に形成された流出口212と凝縮器16の二次側回路16bに形成された流入口163との間を接続している。また、第2接続配管202は、凝縮器16の二次側回路16bに形成された流出口164とコンデンサ21に形成された流入口211の間を接続している。なお、圧縮機23は、第2接続配管202の途中に設けられている。 The first connection pipe 201 connects between an outlet 212 formed in the condenser 21 and an inlet 163 formed in the secondary circuit 16 b of the condenser 16. The second connection pipe 202 connects between an outlet 164 formed in the secondary circuit 16 b of the condenser 16 and an inlet 211 formed in the condenser 21. The compressor 23 is provided in the middle of the second connection pipe 202.
 ところで、本実施形態の車両は、駐車中には二次電池12a、12bからの電力供給を停止する。そのため駐車中には、冷凍サイクル20の圧縮機23も作動を停止する。よって、圧縮機23により冷凍サイクル用冷媒を凝縮器16に供給できなくなり、冷却対象機器を冷却できなくなってしまう。 By the way, the vehicle of the present embodiment stops the power supply from the secondary batteries 12a and 12b during parking. Therefore, during parking, the compressor 23 of the refrigeration cycle 20 also stops operating. Therefore, the refrigerant for the refrigeration cycle cannot be supplied to the condenser 16 by the compressor 23, and the cooling target device cannot be cooled.
 圧縮機23の作動が停止している場合、第1循環回路の第1熱媒体は、二次電池とほぼ同じ温度となる。よって、凝縮器内にある一次側回路16a内のサーモサイフォン冷媒の温度も対象機器とほぼ同じとなる。一方で、第2循環回路のコンデンサは、圧縮機23の作動を停止する際は、外気相当に冷却される。 場合 When the operation of the compressor 23 is stopped, the first heat medium of the first circulation circuit has substantially the same temperature as the secondary battery. Therefore, the temperature of the thermosiphon refrigerant in the primary circuit 16a in the condenser is also substantially the same as that of the target device. On the other hand, when the operation of the compressor 23 is stopped, the condenser of the second circulation circuit is cooled to the outside air.
 ここで、電池温度が外気温度よりも高い場合、第1循環回路内のサーモサイフォン冷媒のより受熱した凝縮器は、外気温度よりも高くなる。一方で、コンデンサは外気温度相当に冷却されている。よってコンデンサにて冷凍サイクル用冷媒にて凝縮が発生する。加えて、冷凍サイクル20のうちコンデンサ21を除く他の部品が、ほぼ外気温度と同等であるコンデンサの温度よりも高い場合、前述の他の部品より冷凍サイクル用冷媒が蒸発し、コンデンサで冷凍サイクル用冷媒凝縮する事象が発生しやすい。特に、駐車中の夕方や夜間のように昼間に対して外気温度が低下した場合、上述のような事象が発生する。 Here, when the battery temperature is higher than the outside air temperature, the condenser in the first circulation circuit that has received more heat of the thermosiphon refrigerant becomes higher than the outside air temperature. On the other hand, the condenser is cooled to the outside air temperature. Therefore, condensation occurs in the refrigerant for the refrigeration cycle in the condenser. In addition, when the other components of the refrigeration cycle 20 except for the condenser 21 are higher than the temperature of the condenser which is substantially equal to the outside air temperature, the refrigeration cycle refrigerant evaporates from the other components and the refrigeration cycle The phenomenon of refrigerant condensation tends to occur. In particular, when the outside air temperature is lower than in the daytime, such as in the evening or at night during parking, the above-described event occurs.
 そこで、本実施形態の機器温調装置では、コンデンサ21から凝縮器16への冷凍サイクル用冷媒の重力による流入が促進される構成とすることで、圧縮機23が作動を停止した際においても冷却対象機器を冷却可能となっている。 Therefore, in the device temperature controller of the present embodiment, by adopting a configuration in which the inflow of the refrigerant for the refrigeration cycle from the condenser 21 to the condenser 16 by gravity is promoted, even when the operation of the compressor 23 is stopped, cooling is performed. The target device can be cooled.
 本実施形態の機器温調装置では、圧縮機23が作動を停止した際に、コンデンサ21から凝縮器16への冷凍サイクル用冷媒の流入が促進される配置となっている。 In the device temperature controller of the present embodiment, when the compressor 23 stops operating, the arrangement is such that the inflow of the refrigeration cycle refrigerant from the condenser 21 to the condenser 16 is promoted.
 具体的には、凝縮器16は、冷凍サイクル用冷媒が流入する流入口163と冷凍サイクル用冷媒が流出する流出口164と、を有し、凝縮器16の流入口163が、コンデンサ21の流出口212よりも上下方向下側に配置されている。また、凝縮器16の流入口163は、冷凍サイクル20を構成している圧縮機23、コンデンサ21および膨張弁30よりも上下方向下側に配置されている。 Specifically, the condenser 16 has an inlet 163 into which the refrigerant for the refrigeration cycle flows, and an outlet 164 from which the refrigerant for the refrigeration cycle flows, and the inlet 163 of the condenser 16 It is arranged below the outlet 212 in the vertical direction. The inflow port 163 of the condenser 16 is disposed below the compressor 23, the condenser 21, and the expansion valve 30 that constitute the refrigeration cycle 20 in the up-down direction.
 また、図4に示すように、本実施形態のコンデンサ21は、冷凍サイクル用冷媒がコンデンサ21内の熱交換部を横方向に流れる配置となっている。また、コンデンサ21は、冷凍サイクル用冷媒を流入する流入口211と冷凍サイクル用冷媒を流出する流出口212を構成する2つの出入口213を有し、コンデンサ21の出入口213は、上下方向において互いに異なる位置に配置されている。そして、第1接続配管201は、コンデンサ21の出入口213のうち上下方向上側に配置された出入口213よりも上下方向下側に配置された出入口213と凝縮器16の流入口163との間を接続している。 As shown in FIG. 4, the condenser 21 of the present embodiment is arranged such that the refrigerant for the refrigeration cycle flows in the heat exchange part in the condenser 21 in the lateral direction. Further, the condenser 21 has two inlets / outlets 213 forming an inlet 211 for flowing the refrigerant for the refrigeration cycle and an outlet 212 for flowing the refrigerant for the refrigeration cycle, and the inlets / outlets 213 of the condenser 21 are different from each other in the vertical direction. Is located in the position. Further, the first connection pipe 201 connects between the inlet / outlet 213 of the condenser 16 and the inlet / outlet 213 of the condenser 21 which is disposed on the lower side in the vertical direction from the inlet / outlet 213 disposed on the upper side in the vertical direction. are doing.
 また、本実施形態の機器温調装置では、第1接続配管201が、コンデンサ21の流出口212よりも上下方向上側を経由することなくコンデンサ21の流出口212と凝縮器16の流入口163との間を接続している。 In the device temperature controller of the present embodiment, the first connection pipe 201 is connected to the outlet 212 of the condenser 21 and the inlet 163 of the condenser 16 without passing through the upper side in the vertical direction from the outlet 212 of the condenser 21. Are connected between.
 このように、圧縮機23が作動を停止した際に、コンデンサ21から凝縮器16への冷凍サイクル用冷媒の流入が促進される構成となっている。 As described above, when the operation of the compressor 23 is stopped, the flow of the refrigerant for the refrigeration cycle from the condenser 21 to the condenser 16 is promoted.
 さらに、本実施形態の機器温調装置のECU50は、圧縮機23が作動を停止した際に、コンデンサ21から凝縮器16へ冷凍サイクル用冷媒が流入するよう膨張弁30を制御する処理を行う。 {Circle around (4)} Further, when the compressor 23 stops operating, the ECU 50 of the device temperature controller of the present embodiment performs a process of controlling the expansion valve 30 so that the refrigerant for the refrigeration cycle flows from the condenser 21 to the condenser 16.
 次に、このECU50の処理について図3に従って説明する。ECU50は、周期的に図3に示す処理を実施する。 Next, the processing of the ECU 50 will be described with reference to FIG. The ECU 50 periodically performs the processing shown in FIG.
 まず、ECU50は、S100にて、冷凍サイクルのオフを指示する信号が入力されたか否かに基づいて冷凍サイクルをオフするか否かを判定する。ここで、冷凍サイクルのオフを指示する信号が入力されていない場合、ECU50は、圧縮機23を通常作動させるとともに、S102にて、膨張弁30を通常作動させる。具体的には、弁開度が所定の目標開度となるよう膨張弁30を制御し、メインルーチンに戻る。 First, in S100, ECU 50 determines whether or not to turn off the refrigeration cycle based on whether or not a signal for instructing to turn off the refrigeration cycle has been input. Here, when a signal instructing to turn off the refrigeration cycle is not input, the ECU 50 normally operates the compressor 23 and normally operates the expansion valve 30 in S102. Specifically, the expansion valve 30 is controlled so that the valve opening becomes a predetermined target opening, and the process returns to the main routine.
 また、冷凍サイクルのオフを指示する信号が入力された場合、ECU50は、S104にて、対象機器の温度を検出する温度センサからの信号に基づいて対象機器の冷却が必要か否かを判定する。例えば、対象機器の温度が所定値以上の場合には、対象機器の冷却が必要であると判定する。また、対象機器の温度が所定値未満の場合には、対象機器の冷却が必要でないと判定する。 When a signal instructing to turn off the refrigeration cycle is input, ECU 50 determines in S104 whether or not cooling of the target device is necessary based on a signal from a temperature sensor that detects the temperature of the target device. . For example, when the temperature of the target device is equal to or higher than a predetermined value, it is determined that the target device needs to be cooled. If the temperature of the target device is lower than the predetermined value, it is determined that cooling of the target device is not necessary.
 ここで、対象機器の冷却が必要であると判定した場合、ECU50は、圧縮機23の作動を停止させるとともに、S108にて、弁開度を全開とするよう膨張弁30を制御し、メインルーチンに戻る。 Here, when it is determined that the target device needs to be cooled, the ECU 50 stops the operation of the compressor 23, and controls the expansion valve 30 to fully open the valve in S108, and executes the main routine. Return to
 したがって、圧縮機23が作動を停止した際に、弁開度を全開とするよう膨張弁30が制御されるので、コンデンサ21から凝縮器16への冷凍サイクル用冷媒の流入が促進される。 Therefore, when the operation of the compressor 23 is stopped, the expansion valve 30 is controlled so as to fully open the valve, so that the refrigerant for the refrigeration cycle from the condenser 21 to the condenser 16 is promoted.
 また、ECU50は、S100にて対象機器の冷却が必要でないと判定した場合、圧縮機23の作動を停止させるとともに、S106にて、膨張弁30の作動を停止させる。具体的には、弁開度を全閉とするよう膨張弁30を制御し、メインルーチンに戻る。 If the ECU 50 determines in S100 that cooling of the target device is not necessary, the ECU 50 stops the operation of the compressor 23 and stops the operation of the expansion valve 30 in S106. Specifically, the expansion valve 30 is controlled so that the valve opening is fully closed, and the process returns to the main routine.
 したがって、圧縮機23が作動を停止した際に、弁開度を全閉とするよう膨張弁30が制御されるので、コンデンサ21から凝縮器16への冷凍サイクル用冷媒の流入が抑制される。 Therefore, when the operation of the compressor 23 is stopped, the expansion valve 30 is controlled so that the valve opening is fully closed, so that the refrigerant for the refrigeration cycle from the condenser 21 to the condenser 16 is suppressed.
 以上、説明したように、本実施形態の機器温調装置は、サーモサイフォン用冷媒を循環させる第1循環回路100を有するサーモサイフォン10を備えている。そして、サーモサイフォン用冷媒の液相と気相の相変化により対象機器としての電池12a、12bの温度を調整する。また、冷凍サイクル用冷媒を循環させる第2循環回路200と、第2循環回路200の内部の冷凍サイクル用冷媒を圧縮して吐出する圧縮機23を備えている。また、圧縮機23から吐出された冷凍サイクル用冷媒と空気を熱交換して冷凍サイクル用冷媒の熱を放熱するコンデンサ21を備えている。また、コンデンサ21から流出した冷凍サイクル用冷媒を減圧させる膨張弁30を備えている。 As described above, the device temperature controller of the present embodiment includes the thermosiphon 10 having the first circulation circuit 100 that circulates the thermosiphon refrigerant. Then, the temperature of the batteries 12a and 12b as the target devices is adjusted by the phase change between the liquid phase and the gas phase of the thermosyphon refrigerant. Further, a second circulation circuit 200 for circulating the refrigeration cycle refrigerant and a compressor 23 for compressing and discharging the refrigeration cycle refrigerant inside the second circulation circuit 200 are provided. Further, a condenser 21 is provided for exchanging heat between the refrigerant for the refrigeration cycle discharged from the compressor 23 and the air to radiate the heat of the refrigerant for the refrigeration cycle. Further, an expansion valve 30 for reducing the pressure of the refrigerant for the refrigeration cycle flowing out of the condenser 21 is provided.
 また、サーモサイフォン10は、第1循環回路100に配置され、対象機器の冷却時にサーモサイフォン用冷媒が蒸発するように対象機器と冷凍サイクル用冷媒とが熱交換可能に構成された冷却器14を有している。また、膨張弁30にて減圧された冷凍サイクル用冷媒と冷却器14により蒸発したサーモサイフォン用冷媒を熱交換してサーモサイフォン用冷媒を凝縮させる凝縮器16を有している。 Further, the thermosiphon 10 is disposed in the first circulation circuit 100 and includes a cooler 14 configured to be capable of exchanging heat between the target device and the refrigerant for the refrigeration cycle so that the refrigerant for the thermosiphon evaporates when the target device is cooled. Have. The condenser 16 also has a condenser 16 for exchanging heat between the refrigerant for the refrigeration cycle, which has been depressurized by the expansion valve 30, and the refrigerant for the thermosiphon evaporated by the cooler 14, thereby condensing the refrigerant for the thermosiphon.
 また、凝縮器16は、冷凍サイクル用冷媒を流入する流入口163と、冷凍サイクル用冷媒を流出する流出口164と、を有している。コンデンサ21は、冷凍サイクル用冷媒を流入する流入口211と、冷凍サイクル用冷媒を流出する流出口212と、を有している。 The condenser 16 has an inlet 163 through which the refrigerant for the refrigeration cycle flows, and an outlet 164 through which the refrigerant for the refrigeration cycle flows out. The condenser 21 has an inlet 211 for flowing the refrigerant for the refrigeration cycle and an outlet 212 for flowing the refrigerant for the refrigeration cycle.
 また、第2循環回路200は、コンデンサ21の流出口212と凝縮器16の流入口163との間を接続する第1接続配管201と、凝縮器16の流出口164とコンデンサ21の流入口211との間を接続する第2接続配管202と、を有している。そして、圧縮機23が作動を停止した際に、コンデンサ21から凝縮器16への冷凍サイクル用冷媒の流入が促進される構成となっている。 The second circulation circuit 200 includes a first connection pipe 201 that connects between the outlet 212 of the condenser 21 and the inlet 163 of the condenser 16, an outlet 164 of the condenser 16, and an inlet 211 of the condenser 21. And a second connection pipe 202 that connects between the two. When the operation of the compressor 23 is stopped, the flow of the refrigerant for the refrigeration cycle from the condenser 21 to the condenser 16 is promoted.
 このような構成によれば、圧縮機23が作動を停止した際に、コンデンサ21から凝縮器16への冷凍サイクル用冷媒の流入が促進されるので、冷却対象機器を十分に冷却することができる。 According to such a configuration, when the operation of the compressor 23 is stopped, the flow of the refrigerant for the refrigeration cycle from the condenser 21 to the condenser 16 is promoted, so that the equipment to be cooled can be sufficiently cooled. .
 また、本実施形態の機器温調装置は、圧縮機23が作動を停止した際に、コンデンサ21から凝縮器16への冷凍サイクル用冷媒の流入が促進される配置となっている。 機器 In addition, the device temperature controller of the present embodiment is arranged such that when the compressor 23 stops operating, the flow of the refrigeration cycle refrigerant from the condenser 21 to the condenser 16 is promoted.
 具体的には、凝縮器16の流入口163は、コンデンサ21の流出口212よりも上下方向下側に配置されている。また、凝縮器16の流入口163は、冷凍サイクル20を構成している圧縮機23、コンデンサ21および膨張弁30よりも上下方向下側に配置されている。さらに、第1接続配管201は、コンデンサ21の流出口212よりも上下方向上側を経由することなくコンデンサ21の流出口212と凝縮器16の流入口163との間を接続している。 Specifically, the inlet 163 of the condenser 16 is disposed below the outlet 212 of the condenser 21 in the vertical direction. The inflow port 163 of the condenser 16 is disposed below the compressor 23, the condenser 21, and the expansion valve 30 that constitute the refrigeration cycle 20 in the up-down direction. Further, the first connection pipe 201 connects between the outlet 212 of the condenser 21 and the inlet 163 of the condenser 16 without passing vertically above the outlet 212 of the condenser 21.
 したがって、圧縮機23が作動を停止した際に、コンデンサ21から凝縮器16への冷凍サイクル用冷媒の流入を促進することができる。 Therefore, when the operation of the compressor 23 is stopped, the flow of the refrigerant for the refrigeration cycle from the condenser 21 to the condenser 16 can be promoted.
 また、コンデンサ21は、冷凍サイクル用冷媒を流入する流入口211と冷凍サイクル用冷媒を流出する流出口212を構成する少なくとも2つの出入口213を有し、コンデンサ21の出入口213は、上下方向において互いに異なる位置に配置されている。そして、第1接続配管201は、コンデンサ21の出入口213のうち上下方向上側に配置された出入口213よりも上下方向下側に配置された出入口213と凝縮器16の流入口163との間を接続している。 In addition, the condenser 21 has at least two inlets and outlets 213 that constitute an inlet 211 for flowing the refrigerant for the refrigeration cycle and an outlet 212 for flowing the refrigerant for the refrigeration cycle. They are located at different locations. Further, the first connection pipe 201 connects between the inlet / outlet 213 of the condenser 16 and the inlet / outlet 213 of the condenser 21 which is disposed on the lower side in the vertical direction from the inlet / outlet 213 disposed on the upper side in the vertical direction. are doing.
 したがって、圧縮機23が作動を停止した際に、コンデンサ21から凝縮器16への冷凍サイクル用冷媒の流入を促進することができる。 Therefore, when the operation of the compressor 23 is stopped, the flow of the refrigerant for the refrigeration cycle from the condenser 21 to the condenser 16 can be promoted.
 また、本実施形態の機器温調装置は、コンデンサ21と凝縮器16とを接続する経路上に配置され、コンデンサ21と凝縮器16とを接続する経路を開閉する経路開閉部としての膨張弁30を備えている。また、対象機器の温度に基づいて対象機器の冷却が必要か否かを判定し(S104)、圧縮機23が作動を停止し、かつ、対象機器の冷却が必要であると判定された場合、膨張弁30を開状態にする(S112)。 Further, the device temperature control device of the present embodiment is disposed on a path connecting the condenser 21 and the condenser 16, and an expansion valve 30 as a path opening / closing unit that opens and closes a path connecting the condenser 21 and the condenser 16. It has. Also, it is determined whether or not the cooling of the target device is necessary based on the temperature of the target device (S104). If it is determined that the compressor 23 stops operating and the cooling of the target device is necessary, The expansion valve 30 is opened (S112).
 したがって、圧縮機23が作動を停止した際に、コンデンサ21にて凝縮した液相の冷凍サイクル用冷媒が、重力により凝縮器16へ流入することを促進することができる。よってサーモサイフォン10により、対象機器を冷却することができる。 Therefore, when the operation of the compressor 23 is stopped, the liquid-phase refrigeration cycle refrigerant condensed in the condenser 21 can be promoted to flow into the condenser 16 by gravity. Therefore, the target device can be cooled by the thermosiphon 10.
 (第2実施形態)
 第2実施形態に係る機器温調装置について図5を用いて説明する。上記第1実施形態のコンデンサ21は、図4に示したように、2つの出入口213を有している。そして、第1接続配管201は、コンデンサ21の出入口213のうち上下方向上側に配置された出入口213よりも上下方向下側に配置された出入口213と凝縮器16の流入口163との間を接続している。
(2nd Embodiment)
An apparatus temperature controller according to the second embodiment will be described with reference to FIG. The capacitor 21 of the first embodiment has two ports 213 as shown in FIG. The first connection pipe 201 connects between the inlet / outlet 213 of the condenser 16 and the inlet / outlet 213 of the condenser 21 which is disposed on the lower side in the vertical direction from the inlet / outlet 213 disposed on the upper side in the vertical direction. are doing.
 これに対し、本実施形態のコンデンサ21は、図5に示すように、3つの出入口213を有している。そして、第1接続配管201は、コンデンサ21の出入口213のうち最も上下方向上側に配置された出入口213よりも上下方向下側に配置された出入口213と凝縮器16の流入口163との間を接続している。 On the other hand, the condenser 21 of the present embodiment has three ports 213 as shown in FIG. The first connection pipe 201 connects between the inlet / outlet 213 of the condenser 16 and the inlet / outlet 213 of the condenser 21 which is disposed on the lower side in the vertical direction from the inlet / outlet 213 disposed on the uppermost side in the vertical direction. Connected.
 このような構成によれば、圧縮機23が作動を停止した際に、コンデンサ21にて凝縮した液相の冷凍サイクル用冷媒が、凝縮器16へ向かって流出しやすく、コンデンサ21から凝縮器16への冷凍サイクル用冷媒の流入を促進することができる。よってサーモサイフォン10により、対象機器を冷却することができる。 According to such a configuration, when the compressor 23 stops operating, the liquid-phase refrigeration cycle refrigerant condensed in the condenser 21 easily flows out to the condenser 16, and the condenser 16 The flow of the refrigerant for the refrigeration cycle into the refrigerant can be promoted. Therefore, the target device can be cooled by the thermosiphon 10.
 (第3実施形態)
 第3実施形態に係る機器温調装置について図6を用いて説明する。本実施形態では、冷凍サイクル用冷媒がコンデンサ21内の熱交換部を縦方向に流れる配置となっている。また、本実施形態のコンデンサ21は、3つの出入口213を有している。そして、第1接続配管201は、コンデンサ21の出入口213のうち最も上下方向上側に配置された出入口213よりも上下方向下側に配置された出入口213と凝縮器16の流入口163との間を接続している。
(Third embodiment)
An apparatus temperature controller according to a third embodiment will be described with reference to FIG. In the present embodiment, the refrigerant for the refrigeration cycle is arranged to flow in the heat exchange section in the condenser 21 in the vertical direction. Further, the capacitor 21 of the present embodiment has three entrances 213. Further, the first connection pipe 201 connects between the inlet / outlet 213 of the condenser 16 and the inlet / outlet 213 of the condenser 21 which is disposed on the lower side in the vertical direction from the inlet / outlet 213 disposed on the uppermost side in the vertical direction. Connected.
 このような構成によれば、圧縮機23が作動を停止した際に、コンデンサ21にて凝縮した液相の冷凍サイクル用冷媒が、凝縮器16へ向かって流出しやすく、コンデンサ21から凝縮器16への冷凍サイクル用冷媒の流入を促進することができる。よってサーモサイフォン10により、対象機器を冷却することができる。 According to such a configuration, when the compressor 23 stops operating, the liquid-phase refrigeration cycle refrigerant condensed in the condenser 21 easily flows out to the condenser 16, and the condenser 16 The flow of the refrigerant for the refrigeration cycle into the refrigerant can be promoted. Therefore, the target device can be cooled by the thermosiphon 10.
 (第4実施形態)
 第4実施形態に係る機器温調装置について図7~図8を用いて説明する。上記第1実施形態の機器温調装置は、ECU50の制御に応じて作動する膨張弁30を有しているが、本実施形態の機器温調装置は、膨張弁30に代えて機械式膨張弁31を有している。さらに、本実施形態の機器温調装置は、機械式膨張弁31を迂回する迂回流路204と、迂回流路204に配置された開閉弁32と、を有している。開閉弁32は、ECU50の制御に応じて作動する電気式バルブにより構成されている。
(Fourth embodiment)
A device temperature controller according to a fourth embodiment will be described with reference to FIGS. The device temperature control device of the first embodiment has an expansion valve 30 that operates according to the control of the ECU 50. However, the device temperature control device of the present embodiment has a mechanical expansion valve instead of the expansion valve 30. 31. Furthermore, the device temperature control device of the present embodiment has a bypass flow path 204 that bypasses the mechanical expansion valve 31 and an on-off valve 32 that is disposed in the bypass flow path 204. The on-off valve 32 is configured by an electric valve that operates according to the control of the ECU 50.
 次に、ECU50の処理について図8に従って説明する。ECU50は、周期的に図8に示す処理を実施する。 Next, the processing of the ECU 50 will be described with reference to FIG. The ECU 50 periodically performs the processing shown in FIG.
 まず、ECU50は、S100にて、冷凍サイクルのオフを指示する信号が入力されたか否かに基づいて冷凍サイクルをオフするか否かを判定する。ここで、冷凍サイクルのオフを指示する信号が入力されていない場合、ECU50は、S102にて、バルブ32を閉状態に制御する。この際、冷凍サイクルが膨張弁31によって減圧される。 First, in S100, ECU 50 determines whether or not to turn off the refrigeration cycle based on whether or not a signal for instructing to turn off the refrigeration cycle has been input. Here, when the signal instructing to turn off the refrigeration cycle has not been input, the ECU 50 controls the valve 32 to a closed state in S102. At this time, the pressure of the refrigeration cycle is reduced by the expansion valve 31.
 また、冷凍サイクルのオフを指示する信号が入力された場合、ECU50は、S104にて、対象機器の温度を検出する温度センサからの信号に基づいて対象機器の冷却が必要か否かを判定する。例えば、対象機器の温度が所定値以上の場合には、対象機器の冷却が必要であると判定する。また、対象機器の温度が所定値未満の場合には、対象機器の冷却が必要でないと判定する。 When a signal instructing to turn off the refrigeration cycle is input, ECU 50 determines in S104 whether or not cooling of the target device is necessary based on a signal from a temperature sensor that detects the temperature of the target device. . For example, when the temperature of the target device is equal to or higher than a predetermined value, it is determined that the target device needs to be cooled. If the temperature of the target device is lower than the predetermined value, it is determined that cooling of the target device is not necessary.
 ここで、対象機器の冷却が必要であると判定した場合、ECU50は、圧縮機23の作動を停止させるとともに、S112にて、弁を全開とするようバルブ32を制御し、メインルーチンに戻る。 Here, if it is determined that the target device needs to be cooled, the ECU 50 stops the operation of the compressor 23, controls the valve 32 to fully open the valve in S112, and returns to the main routine.
 したがって、圧縮機23が作動を停止した際に、弁開度を全開とするようバルブ32が制御されるので、コンデンサ21から凝縮器16への冷凍サイクル用冷媒の流入が促進される。 Therefore, when the operation of the compressor 23 is stopped, the valve 32 is controlled so as to fully open the valve, so that the refrigerant for the refrigeration cycle from the condenser 21 to the condenser 16 is promoted.
 また、ECU50は、S100にて対象機器の冷却が必要でないと判定した場合、S114にて、弁を全閉状態とするようバルブ32を制御する。 If the ECU 50 determines in S100 that cooling of the target device is not necessary, the ECU 50 controls the valve 32 so that the valve is fully closed in S114.
 したがって、圧縮機23が作動を停止した際に、弁が全閉となるようバルブ32が制御されるので、コンデンサ21から凝縮器16への冷凍サイクル用冷媒の流入が抑制され、制御対象の冷却を促進させないようにすることができる。 Therefore, when the operation of the compressor 23 is stopped, the valve 32 is controlled so that the valve is fully closed, so that the inflow of the refrigeration cycle refrigerant from the condenser 21 to the condenser 16 is suppressed, and the cooling of the control target is performed. Can not be promoted.
 (第5実施形態)
 第5実施形態に係る機器温調装置について図9を用いて説明する。本実施形態の機器温調装置は、第1接続配管201が、コンデンサ21の流出口212から凝縮器16の流入口163に近づくにつれて上下方向下側に傾斜するよう配置されている。また、凝縮器16の流入口163は、第2循環回路200に冷凍サイクル用冷媒が充填される際の冷凍サイクル用冷媒の目標液面よりも上下方向下側に配置されている。さらに、本実施形態の機器温調装置は、機械式膨張弁31と開閉弁32が第1接続配管201に接続されている。なお、ECU50の制御は、図8に示した処理と同一であるため、ここでがその詳細については省略する。
(Fifth embodiment)
A device temperature controller according to a fifth embodiment will be described with reference to FIG. In the device temperature controller of the present embodiment, the first connection pipe 201 is arranged so as to be inclined downward in the vertical direction as the outlet 212 of the condenser 21 approaches the inlet 163 of the condenser 16. The inflow port 163 of the condenser 16 is disposed below the target liquid level of the refrigeration cycle refrigerant when the second circulation circuit 200 is filled with the refrigeration cycle refrigerant. Further, in the device temperature controller of the present embodiment, the mechanical expansion valve 31 and the on-off valve 32 are connected to the first connection pipe 201. Note that the control of the ECU 50 is the same as the process shown in FIG. 8, and thus the details thereof are omitted here.
 上記したように、第1接続配管201が、コンデンサ21の流出口212から凝縮器16の流入口163に近づくにつれて上下方向下側に傾斜するよう配置されている。したがって、コンデンサ21の流出口212から凝縮器16の流入口163に向かって冷凍サイクル用冷媒が流れやすく、コンデンサ21から凝縮器16への冷凍サイクル用冷媒の流入が促進される。 As described above, the first connection pipe 201 is disposed so as to be inclined downward in the up-down direction as it approaches the inflow port 163 of the condenser 16 from the outflow port 212 of the condenser 21. Therefore, the refrigerant for the refrigeration cycle flows easily from the outlet 212 of the condenser 21 to the inlet 163 of the condenser 16, and the inflow of the refrigerant for the refrigeration cycle from the condenser 21 to the condenser 16 is promoted.
 また、凝縮器16の流入口163は、第2循環回路200に冷凍サイクル用冷媒が充填される際の冷凍サイクル用冷媒の目標液面よりも上下方向下側に配置されている。したがって、圧縮機23が作動を停止した際に、凝縮器16に冷凍サイクル用冷媒を貯液することができ、冷却対象機器を冷却することができる。 The inlet 163 of the condenser 16 is disposed below the target liquid level of the refrigeration cycle refrigerant when the second circulation circuit 200 is filled with the refrigeration cycle refrigerant. Therefore, when the operation of the compressor 23 is stopped, the refrigerant for the refrigeration cycle can be stored in the condenser 16, and the device to be cooled can be cooled.
 (第6実施形態)
 第6実施形態に係る機器温調装置について図10~図11を用いて説明する。本実施形態の機器温調装置は、上記第1実施形態の機器温調装置に対し、さらに、圧縮機23が作動を停止した際に、第1凝縮器としての凝縮器16より優先して冷却器14により蒸発されたサーモサイフォン用冷媒を凝縮させる駐車時用熱交換器18を備えている。駐車時用熱交換器18は、第2凝縮器に相当する。そして、圧縮機23が作動を停止した際に、コンデンサ21から駐車時用熱交換器18への冷凍サイクル用冷媒の流入が促進されるよう構成されている。また、本実施形態の機器温調装置は、ECU50の制御に応じて作動する開閉弁32を有している。
(Sixth embodiment)
A device temperature controller according to a sixth embodiment will be described with reference to FIGS. The device temperature control device of the present embodiment is different from the device temperature control device of the first embodiment in that, when the compressor 23 stops operating, the cooling device is given priority over the condenser 16 as the first condenser. A parking heat exchanger 18 for condensing the thermosiphon refrigerant evaporated by the heat exchanger 14 is provided. The parking heat exchanger 18 corresponds to a second condenser. When the compressor 23 stops operating, the flow of the refrigeration cycle refrigerant from the condenser 21 to the parking heat exchanger 18 is promoted. Further, the device temperature control device of the present embodiment has an on-off valve 32 that operates according to the control of the ECU 50.
 本実施形態の機器温調装置は、復路配管102の途中から分岐して冷却器14の流入口141に至る迂回流路103を有している。 機器 The device temperature controller of the present embodiment has a bypass channel 103 that branches off from the middle of the return pipe 102 and reaches the inlet 141 of the cooler 14.
 圧縮機作動時、コンデンサ21の流出口212から流出する冷凍サイクル用冷媒の温度は、冷却器14の流出口142から流出するサーモサイフォン用冷媒の温度よりも高温となっている。 時 During the operation of the compressor, the temperature of the refrigeration cycle refrigerant flowing out of the outlet 212 of the condenser 21 is higher than the temperature of the thermosiphon refrigerant flowing out of the outlet 142 of the cooler 14.
 駐車時用熱交換器18は、サーモサイフォン冷媒を流入する流入口181と、サーモサイフォン冷媒を流入する流出口182と、冷凍サイクル用冷媒を流入する流入口183と、冷凍サイクル用冷媒を流入する流出口184と、を有している。駐車時用熱交換器18の流入口181は、凝縮器16の流入口161よりも上下方向下側に配置されている。駐車時用熱交換器18は、迂回流路103に配置されている。駐車時用熱交換器18は、開閉弁32よりも冷凍サイクル用冷媒の冷媒流れ上流側に配置されている。 The parking heat exchanger 18 has an inlet 181 for flowing a thermosiphon refrigerant, an outlet 182 for flowing a thermosiphon refrigerant, an inlet 183 for flowing a refrigeration cycle refrigerant, and a refrigeration cycle refrigerant. And an outlet 184. The inflow port 181 of the parking heat exchanger 18 is disposed below the inflow port 161 of the condenser 16 in the vertical direction. The parking heat exchanger 18 is arranged in the bypass channel 103. The parking heat exchanger 18 is disposed upstream of the on-off valve 32 in the refrigerant flow direction of the refrigerant for the refrigeration cycle.
 駐車時用熱交換器18は、サーモサイフォン用冷媒と冷凍サイクル用冷媒とを熱交換してサーモサイフォン用冷媒を凝縮させる。駐車時用熱交換器18は、圧縮機23が作動を停止した際に、コンデンサ21にて凝縮した液相の冷凍サイクル用冷媒が、重力により流入しやすい配置となっている。よって、凝縮器16より優先して冷却器14により蒸発されたサーモサイフォン用冷媒を凝縮させる。 The parking heat exchanger 18 exchanges heat between the thermosiphon refrigerant and the refrigeration cycle refrigerant to condense the thermosiphon refrigerant. The parking heat exchanger 18 is arranged such that when the compressor 23 stops operating, the liquid-phase refrigeration cycle refrigerant condensed in the condenser 21 easily flows in due to gravity. Therefore, the refrigerant for thermosiphon evaporated by the cooler 14 is condensed prior to the condenser 16.
 冷却器14の流出口142から流出した冷凍サイクル用冷媒が、駐車時用熱交換器18に流入すると、駐車時用熱交換器18の内部で凝縮する。駐車時用熱交換器18の内部で凝縮した冷凍サイクル用冷媒は、冷却器14の流入口141から冷却器14の内部に導入される。 (4) When the refrigeration cycle refrigerant flowing out of the outlet 142 of the cooler 14 flows into the parking heat exchanger 18, it condenses inside the parking heat exchanger 18. The refrigeration cycle refrigerant condensed inside the parking heat exchanger 18 is introduced into the cooler 14 from the inlet 141 of the cooler 14.
 次に、ECU50による開閉弁32の制御について図11に従って説明する。ECU50は、周期的に図11に示す処理を実施する。 Next, control of the on-off valve 32 by the ECU 50 will be described with reference to FIG. The ECU 50 periodically performs the processing shown in FIG.
 まず、ECU50は、S100にて、冷凍サイクルのオフを指示する信号が入力されたか否かに基づいて冷凍サイクルをオフするか否かを判定する。ここで、冷凍サイクルのオフを指示する信号が入力されていない場合、ECU50は、圧縮機23を通常作動させるとともに、S102にて、弁が全開となるよう開閉弁32を制御し、メインルーチンに戻る。 First, in S100, ECU 50 determines whether or not to turn off the refrigeration cycle based on whether or not a signal for instructing to turn off the refrigeration cycle has been input. Here, when the signal for instructing the refrigerating cycle to be turned off is not input, the ECU 50 normally operates the compressor 23 and controls the on-off valve 32 so that the valve is fully opened in S102. Return.
 ここで、冷却器14の流出口142から流出したサーモサイフォン用冷媒の温度は、駐車時用熱交換器18を通る冷凍サイクル用冷媒の温度よりも低い。よって、駐車時用熱交換器18では熱交換しない。冷却器14の流出口142から流出したサーモサイフォン用冷媒は、凝縮器16にて冷凍サイクル用冷媒と熱交換して凝縮する。凝縮器16にて凝縮したサーモサイフォン用冷媒は、冷却器14の流入口141から冷却器14の内部に導入される。 Here, the temperature of the thermosyphon refrigerant flowing out of the outlet 142 of the cooler 14 is lower than the temperature of the refrigeration cycle refrigerant passing through the parking heat exchanger 18. Therefore, heat is not exchanged in the parking heat exchanger 18. The refrigerant for the thermosiphon flowing out of the outlet 142 of the cooler 14 exchanges heat with the refrigerant for the refrigeration cycle in the condenser 16 and condenses. The refrigerant for thermosiphon condensed in the condenser 16 is introduced into the inside of the cooler 14 from an inlet 141 of the cooler 14.
 また、冷凍サイクルのオフを指示する信号が入力された場合、ECU50は、S104にて、対象機器の温度を検出する温度センサからの信号に基づいて対象機器の冷却が必要か否かを判定する。 When a signal instructing to turn off the refrigeration cycle is input, ECU 50 determines in S104 whether or not cooling of the target device is necessary based on a signal from a temperature sensor that detects the temperature of the target device. .
 ここで、対象機器の冷却が必要であると判定した場合、ECU50は、圧縮機23の作動を停止させるとともに、S206にて、弁開度を全開とするよう開閉弁32を制御し、メインルーチンに戻る。 Here, when it is determined that the target device needs to be cooled, the ECU 50 stops the operation of the compressor 23 and controls the on-off valve 32 to fully open the valve in S206, and executes the main routine. Return to
 したがって、圧縮機23が作動を停止した際に、弁開度を全開とするよう開閉弁32が制御されるので、コンデンサ21にて凝縮した液相の冷凍サイクル用冷媒が、重力により駐車時用熱交換器18に流入することを促進される。また、駐車時用熱交換器18にて凝縮したサーモサイフォン用冷媒は、冷却器14の流入口141から冷却器14の内部に導入される。よって、冷却器14の流出口142から流出したガス相のサーモサイフォン用冷媒とは別の経路で冷却器14に導入されるため、対象機器の冷却が促進される。 Therefore, when the operation of the compressor 23 is stopped, the on-off valve 32 is controlled so that the valve opening is fully opened, so that the liquid-phase refrigeration cycle refrigerant condensed in the condenser 21 is used due to gravity for parking. The flow into the heat exchanger 18 is facilitated. The thermosiphon refrigerant condensed in the parking heat exchanger 18 is introduced into the cooler 14 from the inlet 141 of the cooler 14. Therefore, since the gas-phase refrigerant for thermosiphon flowing out of the outlet 142 of the cooler 14 is introduced into the cooler 14 through a different path, cooling of the target device is promoted.
 また、ECU50は、S100にて対象機器の冷却が必要でないと判定した場合、圧縮機23の作動を停止させるとともに、S208にて、弁開度を全閉とするよう開閉弁32を制御し、メインルーチンに戻る。 If it is determined in S100 that the cooling of the target device is not necessary, the ECU 50 stops the operation of the compressor 23 and controls the on-off valve 32 to fully close the valve opening in S208. Return to the main routine.
 したがって、圧縮機23が作動を停止した際に、弁開度を全閉とするようバルブ32が制御される。これにより、コンデンサ21にて凝縮した液相の冷凍サイクル用冷媒が、重力により駐車時用熱交換器18に流入することが抑制され、制御対象の冷却を促進させないようにすることができる。 Therefore, when the compressor 23 stops operating, the valve 32 is controlled so that the valve opening is fully closed. Thereby, the liquid-phase refrigeration cycle refrigerant condensed in the condenser 21 is suppressed from flowing into the parking heat exchanger 18 due to gravity, and cooling of the controlled object can not be promoted.
 (第7実施形態)
 第7実施形態に係る機器温調装置について図12を用いて説明する。本実施形態の機器温調装置は、駐車時用熱交換器18が、膨張弁30よりも冷凍サイクル用冷媒の冷媒流れ下流側に配置されている。なお、ECU50の処理は図3に示したフローチャートと同じであるため、ここではその説明を省略する。このように、駐車時用熱交換器18を、膨張弁30よりも冷凍サイクル用冷媒の冷媒流れ下流側に配置することもできる。
(Seventh embodiment)
A device temperature controller according to a seventh embodiment will be described with reference to FIG. In the device temperature controller of the present embodiment, the parking heat exchanger 18 is disposed downstream of the expansion valve 30 in the refrigerant flow direction of the refrigerant for the refrigeration cycle. Note that the processing of the ECU 50 is the same as that of the flowchart shown in FIG. 3, and a description thereof will be omitted here. In this manner, the parking heat exchanger 18 may be arranged downstream of the expansion valve 30 in the refrigerant flow direction of the refrigerant for the refrigeration cycle.
 (第8実施形態)
 第8実施形態に係る機器温調装置について図13~図14を用いて説明する。本実施形態の機器温調装置は、駐車時用熱交換器18を迂回するバイパス通路205と、このバイパス通路205により形成される流路を開閉する開閉弁32と、第1接続配管201により形成される流路を開閉する開閉弁34と、を備えている。開閉弁32、34は、それぞれECU50の制御に応じて動作する。
(Eighth embodiment)
An apparatus temperature controller according to an eighth embodiment will be described with reference to FIGS. The device temperature controller of the present embodiment is formed by a bypass passage 205 that bypasses the parking heat exchanger 18, an on-off valve 32 that opens and closes a flow path formed by the bypass passage 205, and a first connection pipe 201. Opening / closing valve 34 for opening / closing the flow path. The on-off valves 32 and 34 operate according to the control of the ECU 50, respectively.
 次に、ECU50の処理について図14に従って説明する。ECU50は、周期的に図14に示す処理を実施する。 Next, the processing of the ECU 50 will be described with reference to FIG. The ECU 50 periodically performs the processing shown in FIG.
 まず、ECU50は、S100にて、冷凍サイクルのオフを指示する信号が入力されたか否かに基づいて冷凍サイクルをオフするか否かを判定する。ここで、冷凍サイクルのオフを指示する信号が入力されていない場合、ECU50は、圧縮機23を通常作動させる。さらに、S302にて、膨張弁30を通常作動させる。さらに、駐車時用熱交換器18へ冷凍サイクル用冷媒を流さないようバルブ32、34を制御する。具体的には、弁開度が所定の目標開度となるよう膨張弁30を制御し、弁開度を全開とするようバルブ32を制御し、弁開度を全閉とするよう開閉弁34を制御し、メインルーチンに戻る。したがって、駐車時用熱交換器18による熱交換はほとんど行われない。 First, in S100, ECU 50 determines whether or not to turn off the refrigeration cycle based on whether or not a signal for instructing to turn off the refrigeration cycle has been input. Here, when a signal instructing to turn off the refrigeration cycle is not input, the ECU 50 operates the compressor 23 normally. Further, in S302, the expansion valve 30 is operated normally. Further, the valves 32 and 34 are controlled so that the refrigerant for the refrigeration cycle does not flow into the heat exchanger 18 for parking. More specifically, the expansion valve 30 is controlled so that the valve opening becomes a predetermined target opening, the valve 32 is controlled so that the valve opening is fully opened, and the on-off valve 34 is controlled such that the valve opening is fully closed. And returns to the main routine. Therefore, heat exchange by the parking heat exchanger 18 is hardly performed.
 また、冷凍サイクルのオフを指示する信号が入力された場合、ECU50は、S104にて、対象機器の温度を検出する温度センサからの信号に基づいて対象機器の冷却が必要か否かを判定する。 When a signal instructing to turn off the refrigeration cycle is input, ECU 50 determines in S104 whether or not cooling of the target device is necessary based on a signal from a temperature sensor that detects the temperature of the target device. .
 ここで、対象機器の冷却が必要であると判定した場合、ECU50は、圧縮機23の作動を停止させるとともに、S305にて、駐車時用熱交換器18へ冷凍サイクル用冷媒を流すようバルブ32、34を制御する。具体的には、弁開度を全閉とするようバルブ32を制御し、弁開度を全開とするよう開閉弁34を制御し、メインルーチンに戻る。 Here, when it is determined that the target device needs to be cooled, the ECU 50 stops the operation of the compressor 23 and, in S305, causes the valve 32 to flow the refrigeration cycle refrigerant to the parking-time heat exchanger 18. , 34 are controlled. Specifically, the valve 32 is controlled so that the valve opening is fully closed, the on-off valve 34 is controlled such that the valve opening is fully opened, and the process returns to the main routine.
 したがって、コンデンサ21にて凝縮した液相の冷凍サイクル用冷媒が、重力により駐車時用熱交換器18に流入することが促進される。また、駐車時用熱交換器18にて凝縮したサーモサイフォン用冷媒は、冷却器14の流入口141から冷却器14の内部に導入される。よって、冷却器14の流出口142から流出したサーモサイフォン用冷媒とは別の経路で冷却器14に導入されるため、対象機器の冷却が促進される。 Therefore, it is promoted that the liquid-phase refrigeration cycle refrigerant condensed in the condenser 21 flows into the parking heat exchanger 18 by gravity. The thermosiphon refrigerant condensed in the parking heat exchanger 18 is introduced into the cooler 14 from the inlet 141 of the cooler 14. Therefore, since the refrigerant for thermosyphon flowing out of the outlet 142 of the cooler 14 is introduced into the cooler 14 through a different path, cooling of the target device is promoted.
 また、ECU50は、S100にて対象機器の冷却が必要でないと判定した場合、圧縮機23の作動を停止させるとともに、S306にて、駐車時用熱交換器18へ冷凍サイクル用冷媒を流さないようバルブ32、34を制御する。具体的には、バルブ32、34をともに全閉とするよう開閉弁34を制御し、メインルーチンに戻る。 If the ECU 50 determines in S100 that cooling of the target device is not necessary, the ECU 50 stops the operation of the compressor 23, and in S306, prevents the refrigerant for the refrigeration cycle from flowing to the parking-time heat exchanger 18. The valves 32 and 34 are controlled. Specifically, the on-off valve 34 is controlled so that both the valves 32 and 34 are fully closed, and the process returns to the main routine.
 したがって、コンデンサ21にて凝縮した液相の冷凍サイクル用冷媒が、重力により駐車時用熱交換器18に流入することが抑制され、制御対象の冷却を促進させないようにすることができる。 Therefore, the liquid-phase refrigeration cycle refrigerant condensed in the condenser 21 is suppressed from flowing into the parking heat exchanger 18 due to gravity, and cooling of the controlled object is not promoted.
 (第9実施形態)
 第9実施形態に係る機器温調装置について図15を用いて説明する。上記第7実施形態の機器温調装置は、駐車時用熱交換器18が、膨張弁30よりも冷凍サイクル用冷媒の冷媒流れ上流側に配置されている。これに対し、本実施形態の機器温調装置は、駐車時用熱交換器18が、膨張弁30よりも冷凍サイクル用冷媒の冷媒流れ下流側に配置されている。なお、ECU50の処理は図14に示したフローチャートと同じであるため、ここではその説明を省略する。
(Ninth embodiment)
A device temperature controller according to a ninth embodiment will be described with reference to FIG. In the device temperature control apparatus of the seventh embodiment, the heat exchanger 18 for parking is disposed upstream of the expansion valve 30 in the refrigerant flow direction of the refrigerant for the refrigeration cycle. On the other hand, in the apparatus temperature controller of the present embodiment, the parking heat exchanger 18 is disposed downstream of the expansion valve 30 in the refrigerant flow of the refrigeration cycle refrigerant. Note that the processing of the ECU 50 is the same as that of the flowchart shown in FIG. 14, and a description thereof will be omitted.
 このように、駐車時用熱交換器18を、膨張弁30よりも冷凍サイクル用冷媒の冷媒流れ下流側に配置した場合においても、駐車時用熱交換器18におけるサーモサイフォン用冷媒の凝縮をより促進することができる。 As described above, even when the parking heat exchanger 18 is disposed on the downstream side of the refrigerant flow of the refrigeration cycle refrigerant with respect to the expansion valve 30, the condensation of the thermosiphon refrigerant in the parking heat exchanger 18 can be further improved. Can be promoted.
 (第10実施形態)
 第10実施形態に係る機器温調装置について図16を用いて説明する。上記第7実施形態の機器温調装置は、駐車時用熱交換器18で凝縮したサーモサイフォン用冷媒が冷却器14の流入口141に導入されるよう構成されている。これに対し、本実施形態の機器温調装置は、駐車時用熱交換器18で凝縮したサーモサイフォン用冷媒が冷却器14の流出口142に導入されるよう構成されている。なお、ECU50の処理は図3に示したフローチャートと同じであるため、ここではその説明を省略する。
(Tenth embodiment)
An apparatus temperature controller according to a tenth embodiment will be described with reference to FIG. The device temperature controller of the seventh embodiment is configured so that the thermosiphon refrigerant condensed in the parking heat exchanger 18 is introduced into the inlet 141 of the cooler 14. On the other hand, the device temperature controller of the present embodiment is configured such that the thermosiphon refrigerant condensed in the parking heat exchanger 18 is introduced into the outlet 142 of the cooler 14. Note that the processing of the ECU 50 is the same as that of the flowchart shown in FIG. 3, and a description thereof will be omitted here.
 圧縮機23が作動している際には、冷却器14にて蒸発したサーモサイフォン用冷媒は、駐車時用熱交換器18で冷凍サイクル用冷媒と熱交換された後、さらに、凝縮器16で冷凍サイクル用冷媒と熱交換される。 When the compressor 23 is operating, the refrigerant for the thermosiphon evaporated in the cooler 14 is heat-exchanged with the refrigerant for the refrigeration cycle in the heat exchanger 18 for parking, and then in the condenser 16. Heat exchange with the refrigerant for the refrigeration cycle.
 また、圧縮機23が作動を停止すると、コンデンサ21にて凝縮した液相の冷凍サイクル用冷媒が、重力により駐車時用熱交換器18に流入する。そして、駐車時用熱交換器18により冷却器14の流出口142から流出したサーモサイフォン用冷媒が凝縮し、この凝縮したサーモサイフォン用冷媒は冷却器14の流出口142から冷却器14内に戻る。これにより、対象機器の冷却が促進される。 When the compressor 23 stops operating, the liquid-phase refrigeration cycle refrigerant condensed in the condenser 21 flows into the parking heat exchanger 18 by gravity. Then, the thermosiphon refrigerant flowing out of the outlet 142 of the cooler 14 is condensed by the parking heat exchanger 18, and the condensed thermosiphon refrigerant returns into the cooler 14 from the outlet 142 of the cooler 14. . Thereby, cooling of the target device is promoted.
 (第11実施形態)
 第11実施形態に係る機器温調装置について図17を用いて説明する。本実施形態の機器温調装置は、駐車時用熱交換器18が、膨張弁30よりも冷凍サイクル用冷媒の冷媒流れ上流側に配置されている。また、駐車時用熱交換器18よりも冷凍サイクル用冷媒の冷媒流れ上流側に開閉弁34が設けられている。なお、ECU50の処理は図11に示したフローチャートと同じであるため、ここではその説明を省略する。
(Eleventh embodiment)
The device temperature controller according to the eleventh embodiment will be described with reference to FIG. In the device temperature controller of the present embodiment, the parking-time heat exchanger 18 is disposed upstream of the expansion valve 30 in the refrigerant flow direction of the refrigerant for the refrigeration cycle. Further, an on-off valve 34 is provided on the upstream side of the refrigerant flow of the refrigerant for the refrigeration cycle with respect to the heat exchanger 18 for parking. Note that the processing of the ECU 50 is the same as that of the flowchart shown in FIG. 11, and a description thereof will be omitted here.
 本実施形態のように、駐車時用熱交換器18が、膨張弁30よりも冷凍サイクル用冷媒の冷媒流れ上流側に配置されている場合には、駐車時用熱交換器18よりも冷凍サイクル用冷媒の冷媒流れ上流側に配置された開閉弁34を開弁状態に制御するのが望ましい。すなわち、圧縮機23が作動を停止し、かつ対象機器の冷却が必要と判断した際に、駐車時用熱交換器18よりも冷凍サイクル用冷媒の冷媒流れ上流側に配置された開閉弁34を開弁状態に制御するのが望ましい。 As in the present embodiment, when the heat exchanger for parking 18 is arranged on the upstream side of the refrigerant flow of the refrigerant for the refrigeration cycle with respect to the expansion valve 30, the refrigeration cycle is smaller than the heat exchanger 18 for parking. It is desirable to control the on-off valve 34 arranged on the upstream side of the refrigerant flow of the working refrigerant to be in an open state. That is, when the compressor 23 stops operating and when it is determined that the target device needs to be cooled, the on-off valve 34 disposed on the refrigerant flow upstream side of the refrigeration cycle refrigerant with respect to the parking-time heat exchanger 18 is operated. It is desirable to control the valve to be open.
 (第12実施形態)
 第12実施形態に係る機器温調装置について図18を用いて説明する。本実施形態の機器温調装置は、凝縮器16の流出口164が、凝縮器16の流入口163より上下方向上側に配置されている。そして、凝縮器16の流入口163から流入した冷凍サイクル用冷媒が蒸発して上下方向上側に移動して凝縮器16の流出口164から流出するよう構成されている。
(Twelfth embodiment)
A device temperature controller according to a twelfth embodiment will be described with reference to FIG. In the device temperature controller of the present embodiment, the outlet 164 of the condenser 16 is disposed above the inlet 163 of the condenser 16 in the up-down direction. Then, the refrigerant for the refrigeration cycle flowing from the inlet 163 of the condenser 16 evaporates, moves upward and downward, and flows out of the outlet 164 of the condenser 16.
 本実施形態の機器温調装置は、凝縮器16の流入口163がコンデンサ21の流出口212よりも上下方向下側に配置されている。したがって、圧縮機23が作動を停止した際に、コンデンサ21にて凝縮した液相の冷凍サイクル用冷媒が、重力により駐車時用熱交換器18に流入することが促進される。よってサーモサイフォン10により、対象機器を冷却することができる。 In the device temperature controller of the present embodiment, the inlet 163 of the condenser 16 is disposed below the outlet 212 of the condenser 21 in the vertical direction. Therefore, when the compressor 23 stops operating, it is promoted that the liquid-phase refrigeration cycle refrigerant condensed in the condenser 21 flows into the parking heat exchanger 18 by gravity. Therefore, the target device can be cooled by the thermosiphon 10.
 また、凝縮器16の流出口164が、凝縮器16の流入口163より上下方向上側に配置されている。このため、凝縮器16に流入した液相の冷凍サイクル用冷媒が、凝縮器16の内部で蒸発してガス化した際の排出性が向上し、冷却器14の冷却能力を向上することができる。 (5) The outlet 164 of the condenser 16 is disposed above the inlet 163 of the condenser 16 in the vertical direction. For this reason, when the liquid-phase refrigeration cycle refrigerant that has flowed into the condenser 16 evaporates and gasifies inside the condenser 16, the discharge performance is improved, and the cooling capacity of the cooler 14 can be improved. .
 (第13実施形態)
 第13実施形態に係る機器温調装置について図19を用いて説明する。本実施形態の機器温調装置は、駐車時用熱交換器18の流出口184が、凝縮器16の流入口183より上下方向上側に配置されている。そして、駐車時用熱交換器18の流入口183から流入した冷凍サイクル用冷媒が蒸発して上下方向上側に移動して駐車時用熱交換器18の流出口184から流出するよう構成されている。
(Thirteenth embodiment)
A device temperature controller according to a thirteenth embodiment will be described with reference to FIG. In the device temperature controller of the present embodiment, the outlet 184 of the parking heat exchanger 18 is disposed above the inlet 183 of the condenser 16 in the vertical direction. The refrigerant for the refrigeration cycle flowing from the inlet 183 of the parking heat exchanger 18 evaporates, moves upward and downward, and flows out of the outlet 184 of the parking heat exchanger 18. .
 このように、駐車時用熱交換器18の流出口184が、凝縮器16の流入口183より上下方向上側に配置されている。したがって、駐車時用熱交換器18に流入した液相の冷凍サイクル用冷媒が、駐車時用熱交換器18の内部で蒸発してガス化した際の排出性が向上し、冷却器14の冷却能力を向上することができる。 As described above, the outflow port 184 of the parking heat exchanger 18 is arranged vertically above the inflow port 183 of the condenser 16. Therefore, when the liquid-phase refrigeration cycle refrigerant that has flowed into the parking heat exchanger 18 evaporates and gasifies inside the parking heat exchanger 18, the discharge performance is improved, and the cooling of the cooler 14 is improved. Ability can be improved.
 (第14実施形態)
 第14実施形態に係る機器温調装置について図20を用いて説明する。本実施形態の機器温調装置は、第1接続配管201が、コンデンサ21の流出口212から駐車時用熱交換器18の流入口183に近づくにつれて上下方向下側に傾斜するよう配置されている。
(14th embodiment)
A device temperature controller according to a fourteenth embodiment will be described with reference to FIG. The device temperature controller of the present embodiment is arranged such that the first connection pipe 201 is inclined downward in the up-down direction as the first connection pipe 201 approaches the inflow port 183 of the parking heat exchanger 18 from the outflow port 212 of the condenser 21. .
 また、凝縮器16の流入口163が、第2循環回路200に冷凍サイクル用冷媒が充填される際の冷凍サイクル用冷媒の目標液面よりも上下方向下側に配置されている。なお、ECU50の制御は、図14に示した処理と同一であるため、ここではその詳細については省略する。 The inlet 163 of the condenser 16 is disposed below the target liquid level of the refrigerant for the refrigeration cycle when the second circulation circuit 200 is filled with the refrigerant for the refrigeration cycle. Note that the control by the ECU 50 is the same as the process shown in FIG.
 このように、第1接続配管201が、コンデンサ21の流出口212から駐車時用熱交換器18の流入口183に近づくにつれて上下方向下側に傾斜するよう配置されている。したがって、圧縮機23が作動を停止した際に、コンデンサ21にて凝縮した液相の冷凍サイクル用冷媒が、重力により駐車時用熱交換器18に流入することが促進される。よってサーモサイフォン10により、対象機器を冷却することができる。 Thus, the first connection pipe 201 is arranged so as to be inclined downward in the vertical direction as it approaches the inflow port 183 of the parking heat exchanger 18 from the outflow port 212 of the condenser 21. Therefore, when the compressor 23 stops operating, it is promoted that the liquid-phase refrigeration cycle refrigerant condensed in the condenser 21 flows into the parking heat exchanger 18 by gravity. Therefore, the target device can be cooled by the thermosiphon 10.
 また、凝縮器16の流入口163が、第2循環回路200に冷凍サイクル用冷媒が充填される際の冷凍サイクル用冷媒の目標液面よりも上下方向下側に配置されている。したがって、さらに、コンデンサ21から駐車時用熱交換器18への冷凍サイクル用冷媒の流入を促進することができる。 The inlet 163 of the condenser 16 is disposed below the target liquid level of the refrigerant for the refrigeration cycle when the second circulation circuit 200 is filled with the refrigerant for the refrigeration cycle. Therefore, the flow of the refrigerant for the refrigeration cycle from the condenser 21 to the heat exchanger 18 for parking can be further promoted.
 (第15実施形態)
 第15実施形態に係る機器温調装置について図21を用いて説明する。本実施形態の機器温調装置は、駐車時用熱交換器18が、膨張弁30よりも冷凍サイクル用冷媒の冷媒流れ下流側に配置されている。なお、ECU50の制御は、図14に示した処理と同一であるため、ここではその詳細については省略する。
(Fifteenth embodiment)
A device temperature controller according to a fifteenth embodiment will be described with reference to FIG. In the device temperature controller of the present embodiment, the parking heat exchanger 18 is disposed downstream of the expansion valve 30 in the refrigerant flow direction of the refrigerant for the refrigeration cycle. Note that the control by the ECU 50 is the same as the process shown in FIG.
 このように、駐車時用熱交換器18を、膨張弁30よりも冷凍サイクル用冷媒の冷媒流れ下流側に配置することもできる。 As described above, the heat exchanger for parking 18 may be arranged on the downstream side of the refrigerant flow of the refrigerant for the refrigeration cycle with respect to the expansion valve 30.
 (第16実施形態)
 第16実施形態に係る機器温調装置について図22~図23を用いて説明する。上記第6実施形態の機器温調装置は、コンデンサ21から流出した冷凍サイクル用冷媒と冷却器14から流出したサーモサイフォン用冷媒との熱交換によりサーモサイフォン用冷媒を凝縮させる駐車時用熱交換器18を備えた。これに対し、本実施形態の機器温調装置は、駐車時用熱交換器18に代えて復路配管102を流れるサーモサイフォン用冷媒の熱を第1接続配管201に伝熱させる熱伝達部材40を備えている。熱伝達部材40は、銅、アルミニウム等の高熱伝導部材により構成されている。
(Sixteenth embodiment)
The device temperature controller according to the sixteenth embodiment will be described with reference to FIGS. The equipment temperature controller of the sixth embodiment is a parking heat exchanger that condenses the thermosiphon refrigerant by exchanging heat between the refrigeration cycle refrigerant flowing out of the condenser 21 and the thermosiphon refrigerant flowing out of the cooler 14. 18 was provided. On the other hand, the device temperature controller of the present embodiment includes the heat transfer member 40 that transfers the heat of the thermosyphonic refrigerant flowing through the return pipe 102 to the first connection pipe 201 instead of the parking heat exchanger 18. Have. The heat transfer member 40 is made of a high heat conductive member such as copper or aluminum.
 熱伝達部材40により、冷却器14の流出口142から流出した気相サーモサイフォン用冷媒が冷却される。そして、このサーモサイフォン用冷媒が凝縮して液相となり、冷却器14の流出口142から冷却器14の内部に流入する。よって、対象機器を冷却することができる。 (4) The heat transfer member 40 cools the refrigerant for the gas-phase thermosiphon flowing out of the outlet 142 of the cooler 14. Then, the refrigerant for the thermosiphon condenses into a liquid phase and flows into the inside of the cooler 14 from the outlet 142 of the cooler 14. Therefore, the target device can be cooled.
 なお、本実施形態では、熱伝達部材40が膨張弁30の冷凍サイクル用冷媒の冷媒流れ上流側の第1接続配管201と接触しているが、熱伝達部材40が膨張弁30の冷凍サイクル用冷媒の冷媒流れ下流側の第1接続配管201と接触するよう構成することもできる。 In this embodiment, the heat transfer member 40 is in contact with the first connection pipe 201 on the upstream side of the refrigerant flow of the refrigerant for the refrigeration cycle of the expansion valve 30. It may be configured to contact the first connection pipe 201 on the downstream side of the refrigerant flow of the refrigerant.
 また、図23内の矢印A~Cに示すように、第1循環回路100と熱伝達部材40との接触部は、第1循環回路100にサーモサイフォン用冷媒が充填される際のサーモサイフォン用冷媒の目標液面よりも上下方向上側とするのが好ましい。この目標液面は、サーモサイフォンが非作動時、すなわち第1循環回路100内をサーモサイフォン用冷媒が循環していない際の液面と同じである。 Further, as shown by arrows A to C in FIG. 23, the contact portion between the first circulation circuit 100 and the heat transfer member 40 is used for the thermosiphon when the first circulation circuit 100 is filled with the refrigerant for thermosiphon. It is preferable to set the upper side in the vertical direction from the target liquid level of the refrigerant. This target liquid level is the same as the liquid level when the thermosiphon is not operating, that is, when the thermosyphon refrigerant is not circulating in the first circulation circuit 100.
 すなわち、矢印Aに示すサーモサイフォン用冷媒の目標液面より上下方向上側で、かつ、復路配管102の最上部より冷却器14側の領域に第1循環回路100と熱伝達部材40との接触部を配置するのが好ましい。また、矢印Bに示す復路配管102の最上部と凝縮器16との間の領域に第1循環回路100と熱伝達部材40との接触部を配置するのが好ましい。また、矢印Cに示すサーモサイフォン用冷媒の目標液面より上下方向上側で、かつ、凝縮器16と復路配管102との接続部との間の領域に第1循環回路100と熱伝達部材40との接触部を配置するのが好ましい。 That is, the contact portion between the first circulation circuit 100 and the heat transfer member 40 is located above and below the target liquid level of the refrigerant for the thermosiphon shown by the arrow A and on the side of the cooler 14 from the top of the return pipe 102. Is preferably arranged. In addition, it is preferable to arrange a contact portion between the first circulation circuit 100 and the heat transfer member 40 in a region between the uppermost portion of the return pipe 102 indicated by the arrow B and the condenser 16. In addition, the first circulation circuit 100 and the heat transfer member 40 are located above and below the target liquid level of the refrigerant for the thermosiphon indicated by the arrow C, and in a region between the condenser 16 and the connection portion between the return pipe 102. It is preferable to arrange the contact portions of the above.
 なお、上記各実施形態の駐車時用熱交換器18を配置する領域についても、同様に、第1循環回路100にサーモサイフォン用冷媒が充填される際のサーモサイフォン用冷媒の目標液面よりも上下方向上側とするのが好ましい。 In addition, also about the area | region in which the heat exchanger 18 for parking at the time of each said embodiment is arrange | positioned, similarly to the target liquid level of the refrigerant | coolant for thermosiphon when the 1st circulation circuit 100 is filled with the refrigerant for thermosiphon. It is preferable to set the upper side in the vertical direction.
 また、矢印Bおよび矢印Cに示す領域に第1循環回路100と熱伝達部材40との接触部を配置することができる。この場合、熱伝達部材40にて凝縮した液相のサーモサイフォン用冷媒は、冷却器14の流出口142から流出したガス相のサーモサイフォン用冷媒とは別の経路で冷却器14に導入される。よって、対象機器の冷却が促進される。 接触 Further, a contact portion between the first circulation circuit 100 and the heat transfer member 40 can be arranged in the regions indicated by the arrows B and C. In this case, the liquid-phase thermosiphon refrigerant condensed in the heat transfer member 40 is introduced into the cooler 14 through a different path from the gas-phase thermosiphon refrigerant flowing out of the outlet 142 of the cooler 14. . Therefore, cooling of the target device is promoted.
 なお、上記各実施形態の駐車時用熱交換器18を配置する領域についても、同様に、矢印Bに示す復路配管102の最上部と凝縮器16との間の領域に第1循環回路100と熱伝達部材40との接触部を配置するのが好ましい。また、矢印Cに示すサーモサイフォン用冷媒の目標液面より上下方向上側で、かつ、凝縮器16と復路配管102との接続部との間の領域に第1循環回路100と熱伝達部材40との接触部を配置するのが好ましい。 In addition, also about the area | region where the heat exchanger 18 for parking at the time of each said embodiment is arrange | positioned, similarly to the area | region between the uppermost part of the return piping 102 shown by the arrow B and the condenser 16, the 1st circulation circuit 100 It is preferable to arrange a contact portion with the heat transfer member 40. In addition, the first circulation circuit 100 and the heat transfer member 40 are located above and below the target liquid level of the refrigerant for the thermosiphon indicated by the arrow C, and in a region between the condenser 16 and the connection portion between the return pipe 102. It is preferable to arrange the contact portions of the above.
 また、凝縮器16についても、第1循環回路100にサーモサイフォン用冷媒が充填される際のサーモサイフォン用冷媒の目標液面よりも上下方向上側とするのが好ましい。 Also, it is preferable that the condenser 16 be vertically above the target liquid level of the thermosiphon refrigerant when the first circulation circuit 100 is filled with the thermosiphon refrigerant.
 なお、本実施形態では、復路配管102を流れるサーモサイフォン用冷媒の熱を第1接続配管201に伝熱させる熱伝達部材40を備えたが、第1循環回路100の少なくとも一部に第1熱媒体の熱を伝熱させる熱伝達部材40を設けるようにしてもよい。 In the present embodiment, the heat transfer member 40 for transferring the heat of the thermosyphonic refrigerant flowing in the return pipe 102 to the first connection pipe 201 is provided. A heat transfer member 40 for transferring the heat of the medium may be provided.
 (第17実施形態)
 第17実施形態に係る機器温調装置について図24~図25を用いて説明する。本実施形態では、第2循環回路200が、冷凍サイクル用冷媒が圧縮機23を迂回するように流れる迂回配管206を有している。また、迂回配管206には、該迂回配管206により形成される流路を開閉する迂回流路開閉部36が設けられている。そして、圧縮機23が作動を停止した際に、迂回流路開閉部36が開状態となるよう制御され、凝縮器16で蒸発した冷凍サイクル用冷媒が迂回配管206を通って循環するループ式サーモサイフォンが構成される。
(Seventeenth embodiment)
The device temperature controller according to the seventeenth embodiment will be described with reference to FIGS. In the present embodiment, the second circulation circuit 200 has a bypass pipe 206 through which the refrigerant for the refrigeration cycle flows so as to bypass the compressor 23. Further, the bypass pipe 206 is provided with a bypass channel opening / closing section 36 that opens and closes a channel formed by the bypass pipe 206. When the operation of the compressor 23 is stopped, the bypass thermostat opening / closing section 36 is controlled to be in an open state, and the refrigerant for the refrigeration cycle evaporated in the condenser 16 circulates through the bypass pipe 206. A siphon is configured.
 次に、ECU50の制御について図25を参照して説明する。ECU50は、周期的に図25に示す処理を実施する。 Next, the control of the ECU 50 will be described with reference to FIG. The ECU 50 periodically performs the processing shown in FIG.
 まず、ECU50は、S100にて、冷凍サイクルのオフを指示する信号が入力されたか否かに基づいて冷凍サイクルをオフするか否かを判定する。ここで、冷凍サイクルのオフを指示する信号が入力されていない場合、ECU50は、圧縮機23を通常作動させるとともに、S402にて、ループ式サーモサイフォンに切り替わらないよう迂回流路開閉部36を制御する。具体的には、閉弁状態となるよう迂回流路開閉部36を制御する。これにより、圧縮機23で圧縮された冷凍サイクル用冷媒が循環回路200を循環する。 First, in S100, ECU 50 determines whether or not to turn off the refrigeration cycle based on whether or not a signal for instructing to turn off the refrigeration cycle has been input. Here, when the signal for instructing to turn off the refrigeration cycle is not input, the ECU 50 controls the bypass flow path opening / closing section 36 so that the compressor 23 is normally operated and the switching to the loop thermosiphon is not performed in S402. I do. Specifically, the bypass flow path opening / closing section 36 is controlled so as to be in the valve closed state. Thus, the refrigerant for the refrigeration cycle compressed by the compressor 23 circulates in the circulation circuit 200.
 また、冷凍サイクルのオフを指示する信号が入力された場合、ECU50は、S104にて、対象機器の温度を検出する温度センサからの信号に基づいて対象機器の冷却が必要か否かを判定する。例えば、対象機器の温度が所定値以上の場合には、対象機器の冷却が必要であると判定する。また、対象機器の温度が所定値未満の場合には、対象機器の冷却が必要でないと判定する。 When a signal instructing to turn off the refrigeration cycle is input, ECU 50 determines in S104 whether or not cooling of the target device is necessary based on a signal from a temperature sensor that detects the temperature of the target device. . For example, when the temperature of the target device is equal to or higher than a predetermined value, it is determined that the target device needs to be cooled. If the temperature of the target device is lower than the predetermined value, it is determined that cooling of the target device is not necessary.
 ここで、対象機器の冷却が必要であると判定した場合、ECU50は、圧縮機23の作動を停止させるとともに、S404にて、ループ式サーモサイフォンに切り替わるよう迂回流路開閉部36を制御する。具体的には、弁開度を全開とするよう迂回流路開閉部36を制御し、メインルーチンに戻る。 Here, when it is determined that the target device needs to be cooled, the ECU 50 stops the operation of the compressor 23 and controls the bypass flow passage opening / closing unit 36 to switch to the loop thermosiphon in S404. Specifically, the bypass passage opening / closing section 36 is controlled so that the valve opening is fully opened, and the process returns to the main routine.
 したがって、圧縮機23が作動を停止しても、凝縮器16を迂回するように冷凍サイクル用冷媒が迂回配管206を通って第2循環回路200を循環する。このため、冷却器14による対象機器の冷却が継続される。 Therefore, even if the compressor 23 stops operating, the refrigerant for the refrigeration cycle circulates in the second circulation circuit 200 through the bypass pipe 206 so as to bypass the condenser 16. Therefore, the cooling of the target device by the cooler 14 is continued.
 また、ECU50は、S100にて対象機器の冷却が必要でないと判定した場合、圧縮機23の作動を停止させるとともに、S402にて、ループ式サーモサイフォンに切り替わらないよう迂回流路開閉部36を制御し、メインルーチンに戻る。具体的には、閉弁状態となるよう迂回流路開閉部36を制御する。これにより、圧縮機23により冷凍サイクル用冷媒の循環が阻害されるため、循環回路200がループ式サーモサイフォンとして機能しなくなるため、冷却器14による対象機器の冷却は促進されなくなる。 If it is determined in step S100 that cooling of the target device is not necessary, the ECU 50 stops the operation of the compressor 23 and controls the bypass passage opening / closing unit 36 in step S402 so as not to switch to the loop thermosiphon. And returns to the main routine. Specifically, the bypass flow path opening / closing section 36 is controlled so as to be in the valve closed state. As a result, the circulation of the refrigerant for the refrigeration cycle is hindered by the compressor 23, so that the circulation circuit 200 does not function as a loop-type thermosiphon, so that the cooling of the target device by the cooler 14 is not promoted.
 (第18実施形態)
 第18実施形態に係る機器温調装置について図26を用いて説明する。本実施形態の機器温調装置は、復路配管102を流れるサーモサイフォン用冷媒の熱を第1接続配管201に伝熱させる熱伝達部材40を備えている。さらに、本実施形態では、第2循環回路200が、冷凍サイクル用冷媒が圧縮機23を迂回するように流れる迂回配管206を有している。また、迂回配管206には、該迂回配管206により形成される流路を開閉する迂回流路開閉部36が設けられている。そして、圧縮機23が作動を停止した際に、迂回流路開閉部36が開状態となるよう制御され、凝縮器16で蒸発した冷凍サイクル用冷媒が迂回配管206を通って循環するループ式サーモサイフォンが構成される。
(Eighteenth embodiment)
The device temperature controller according to the eighteenth embodiment will be described with reference to FIG. The device temperature controller of the present embodiment includes a heat transfer member 40 that transfers heat of the thermosiphon refrigerant flowing through the return pipe 102 to the first connection pipe 201. Further, in the present embodiment, the second circulation circuit 200 includes the bypass pipe 206 through which the refrigerant for the refrigeration cycle flows so as to bypass the compressor 23. Further, the bypass pipe 206 is provided with a bypass channel opening / closing section 36 that opens and closes a channel formed by the bypass pipe 206. When the operation of the compressor 23 is stopped, the bypass channel opening / closing unit 36 is controlled to be in an open state, and the refrigerant for the refrigeration cycle evaporated in the condenser 16 circulates through the bypass pipe 206. A siphon is configured.
 なお、ECU50の制御は、図25に示した処理と同一であるため、ここでがその詳細については省略する。 Note that the control of the ECU 50 is the same as the process shown in FIG. 25, and thus the details thereof are omitted here.
 また、圧縮機23を作動させる場合、第1接続配管201には高温高圧冷媒が流れるため、熱伝達部材40を介してサーモサイフォン用冷媒が受熱する。しかし、第1循環回路100と熱伝達部材40との接触部は、図23の矢印Aに示す領域に配置してあるので、凝縮器16にて凝縮された液相のサーモサイフォン用冷媒が再び蒸発する懸念はない。よって、圧縮機23を作動させた場合の冷却性能低下を抑制することができる。 When operating the compressor 23, the high-temperature and high-pressure refrigerant flows through the first connection pipe 201, so that the thermosiphon refrigerant receives heat via the heat transfer member 40. However, since the contact portion between the first circulation circuit 100 and the heat transfer member 40 is arranged in the region indicated by the arrow A in FIG. 23, the liquid-phase thermosiphon refrigerant condensed in the condenser 16 is again discharged. There is no fear of evaporation. Therefore, it is possible to suppress a decrease in cooling performance when the compressor 23 is operated.
 なお、第1循環回路100と熱伝達部材40との接触部は、図23の矢印Bに示す復路配管102の最上部と凝縮器16との間の領域に配置しても、圧縮機23を作動させた場合の冷却性能低下を抑制することができる。 In addition, even if the contact part of the 1st circulation circuit 100 and the heat transfer member 40 is arrange | positioned in the area | region between the uppermost part of the return piping 102 shown by the arrow B of FIG. It is possible to suppress a decrease in the cooling performance when activated.
 (第19実施形態)
 第19実施形態に係る機器温調装置について図27を用いて説明する。本実施形態の機器温調装置は、空調用蒸発器51、空調用ブロワ52、空調用膨張弁53および空調用圧縮機54を備えている。また、本実施形態のコンデンサ21は、空調用コンデンサとして構成されている。
(19th embodiment)
A device temperature controller according to a nineteenth embodiment will be described with reference to FIG. The device temperature controller of the present embodiment includes an evaporator 51 for air conditioning, a blower 52 for air conditioning, an expansion valve 53 for air conditioning, and a compressor 54 for air conditioning. Further, the condenser 21 of the present embodiment is configured as an air conditioning condenser.
 空調用蒸発器51、空調用ブロワ52、空調用膨張弁53、空調用圧縮機54およびコンデンサ21により空調用冷凍サイクルが構成されている。 (4) The air conditioning evaporator 51, the air conditioning blower 52, the air conditioning expansion valve 53, the air conditioning compressor 54, and the condenser 21 constitute an air conditioning refrigeration cycle.
 空調用圧縮機54が作動を開始すると、空調用圧縮機54により圧縮された冷凍サイクル用冷媒はコンデンサ21にて放熱される。そして、コンデンサ21から流出した冷凍サイクル用冷媒は空調用膨張弁53にて減圧され、凝縮器16に流入する。そして、凝縮器16に流入した冷凍サイクル用冷媒は、再度、空調用圧縮機54により圧縮される。 When the air conditioning compressor 54 starts operating, the refrigerant for the refrigeration cycle compressed by the air conditioning compressor 54 is radiated by the condenser 21. Then, the refrigerant for the refrigeration cycle flowing out of the condenser 21 is depressurized by the air conditioning expansion valve 53 and flows into the condenser 16. Then, the refrigeration cycle refrigerant flowing into the condenser 16 is compressed again by the air conditioning compressor 54.
 空調用圧縮機54が作動を停止すると、この空調用蒸発器51の内部の冷凍サイクル用冷媒は、車室内の冷却された空気により凝縮する。この際、膨張弁30と空調用膨張弁53は図3のように制御されることで、凝縮した液相の冷凍サイクル用冷媒が凝縮器16に流入する。このように、空調用蒸発器51から凝縮器16への冷凍サイクル用冷媒の流入が促進される。 When the air conditioning compressor 54 stops operating, the refrigerant for the refrigeration cycle inside the air conditioning evaporator 51 is condensed by the cooled air in the passenger compartment. At this time, the expansion valve 30 and the air-conditioning expansion valve 53 are controlled as shown in FIG. 3, so that the condensed liquid-phase refrigeration cycle refrigerant flows into the condenser 16. Thus, the inflow of the refrigerant for the refrigeration cycle from the air conditioner evaporator 51 to the condenser 16 is promoted.
 本実施形態の機器温調装置は、空調用蒸発器51を備え、圧縮機54が作動を停止した際に、空調用蒸発器51から凝縮器16への冷凍サイクル用冷媒の流入が促進される構成となっている。これに対し、空調用蒸発器51に代えて冷却水と冷凍サイクル用冷媒との熱交換により冷却対象機器を冷却する水冷媒熱交換器を備えるようにしてもよい。そして、圧縮機54が作動を停止した際に、水冷媒熱交換器から凝縮器16への冷凍サイクル用冷媒の流入が促進される構成とすることもできる。 The device temperature controller of the present embodiment includes the air conditioning evaporator 51, and when the compressor 54 stops operating, the flow of the refrigeration cycle refrigerant from the air conditioning evaporator 51 to the condenser 16 is promoted. It has a configuration. On the other hand, instead of the air-conditioning evaporator 51, a water-refrigerant heat exchanger that cools the equipment to be cooled by heat exchange between the cooling water and the refrigerant for the refrigeration cycle may be provided. Then, when the operation of the compressor 54 is stopped, the flow of the refrigerant for the refrigeration cycle from the water refrigerant heat exchanger to the condenser 16 may be promoted.
 (第20実施形態)
 第20実施形態に係る機器温調装置について図28を用いて説明する。圧縮機23の作動が停止している場合、第1循環回路の第1熱媒体は、二次電池とほぼ同じ温度となる。よって、凝縮器内にある一次側回路16a内のサーモサイフォン冷媒の温度も対象機器とほぼ同じとなる。一方で、第2循環回路のコンデンサは、圧縮機23の作動を停止する際は、外気相当に冷却される。
(Twentieth embodiment)
A device temperature control device according to a twentieth embodiment will be described with reference to FIG. When the operation of the compressor 23 is stopped, the first heat medium of the first circulation circuit has substantially the same temperature as the secondary battery. Therefore, the temperature of the thermosiphon refrigerant in the primary side circuit 16a in the condenser becomes substantially the same as that of the target device. On the other hand, when the operation of the compressor 23 is stopped, the condenser of the second circulation circuit is cooled to the outside air.
 ここで、電池温度が外気温度よりも高い場合、第1循環回路 内のサーモサイフォン冷媒のより受熱した凝縮器は、外気温度よりも高くなる。一方で、コンデンサは外気温度相当に冷却されている。よってコンデンサにて冷凍サイクル用冷媒にて凝縮が発生する。加えて、冷凍サイクル20のうちコンデンサ21を除く他の部品が、ほぼ外気温度と同等であるコンデンサの温度よりも高い場合、前述の他の部品より冷凍サイクル用冷媒が蒸発し、コンデンサで冷凍サイクル用冷媒凝縮する事象が発生しやすい。特に、駐車中の夕方や夜間のように昼間に対して外気温度が低下した場合、上述のような事象が発生する。 {Here, when the battery temperature is higher than the outside air temperature, the condenser that has received the thermosiphon refrigerant in the first circulation circuit} has a higher temperature than the outside air temperature. On the other hand, the condenser is cooled to the outside air temperature. Therefore, condensation occurs in the refrigerant for the refrigeration cycle in the condenser. In addition, when the other components of the refrigeration cycle 20 except for the condenser 21 are higher than the temperature of the condenser which is substantially equal to the outside air temperature, the refrigeration cycle refrigerant evaporates from the other components and the refrigeration cycle The phenomenon of refrigerant condensation tends to occur. In particular, when the outside air temperature is lower than in the daytime, such as in the evening or at night during parking, the above-described event occurs.
 本実施形態の機器温調装置では、圧縮機23が、該圧縮機23により生じた熱を蓄熱することが可能な熱容量部材230と接触するよう配置されている。本実施形態の熱容量部材230は、銅、アルミニウム等の金属製部材により構成されている。したがって、圧縮機23の温度がコンデンサ21の温度よりも高く維持されやすい。 機器 In the device temperature control device of the present embodiment, the compressor 23 is disposed so as to be in contact with the heat capacity member 230 that can store the heat generated by the compressor 23. The heat capacity member 230 of the present embodiment is made of a metal member such as copper and aluminum. Therefore, the temperature of the compressor 23 tends to be maintained higher than the temperature of the condenser 21.
 このように、圧縮機23を、該圧縮機23により生じた熱を蓄熱することが可能な熱容量部材230と接触するよう配置することで、圧縮機23の作動を停止させた場合でも、より多くの冷凍サイクル用冷媒を蒸発させることができる。よって、コンデンサ21にて、より多くの冷凍サイクル用冷媒を凝縮させることができるため、対象機器をより冷却することが可能である。 By arranging the compressor 23 in contact with the heat capacity member 230 capable of storing heat generated by the compressor 23 in this manner, even when the operation of the compressor 23 is stopped, more Can be evaporated. Therefore, since more refrigerant for the refrigeration cycle can be condensed in the condenser 21, the target device can be further cooled.
 なお、例えば、車両の内燃機関、車両のボデー、車両のフレーム等を熱容量部材230として利用することもできる。 Note that, for example, an internal combustion engine of a vehicle, a body of a vehicle, a frame of a vehicle, or the like may be used as the heat capacity member 230.
 (第21実施形態)
 第21実施形態に係る機器温調装置について図29を用いて説明する。上記各実施形態の機器温調装置は、圧縮機23が作動を停止した際に、コンデンサ21から凝縮器16への冷凍サイクル用冷媒の流入が促進される配置となっている。これに対し、本実施形態の機器温調装置は、冷却器14から流出したサーモサイフォン用冷媒を凝縮器16に導入する復路配管102が、該復路配管102を伝熱により冷却するための伝熱部材41と接触している。
(Twenty-first embodiment)
A device temperature controller according to a twenty-first embodiment will be described with reference to FIG. The device temperature controller of each of the above embodiments is arranged such that when the compressor 23 stops operating, the flow of the refrigeration cycle refrigerant from the condenser 21 to the condenser 16 is promoted. On the other hand, in the apparatus temperature controller of the present embodiment, the return pipe 102 for introducing the refrigerant for thermosiphon flowing out of the cooler 14 into the condenser 16 has a heat transfer path for cooling the return pipe 102 by heat transfer. It is in contact with the member 41.
 すなわち、本実施形態の機器温調装置は、復路配管102を流れるサーモサイフォン用冷媒の熱をコンデンサ21に伝熱させる伝熱部材41を備えている。 That is, the device temperature controller of the present embodiment includes the heat transfer member 41 that transfers the heat of the thermosiphon refrigerant flowing through the return pipe 102 to the condenser 21.
 本実施形態の機器温調装置では、復路配管102を流れるサーモサイフォン用冷媒の熱が、伝熱部材41を介して外気によって冷却されたコンデンサ21に伝熱され、復路配管102を流れるサーモサイフォン用冷媒が凝縮される。 In the device temperature controller of the present embodiment, the heat of the thermosiphon refrigerant flowing through the return pipe 102 is transferred to the condenser 21 cooled by the outside air via the heat transfer member 41, The refrigerant is condensed.
 したがって、圧縮機23が作動を停止した場合でも、復路配管102を流れるサーモサイフォン用冷媒が凝縮され、この凝縮されたサーモサイフォン用冷媒が冷却器14に流入し、冷却器14による対象機器の冷却を継続することができる。 Therefore, even when the compressor 23 stops operating, the refrigerant for the thermosiphon flowing through the return pipe 102 is condensed, and the condensed refrigerant for the thermosiphon flows into the cooler 14 and cools the target device by the cooler 14. Can be continued.
 以上、説明したように、本実施形態の機器温調装置は、サーモサイフォン用冷媒を循環させる第1循環回路100を有するサーモサイフォン10を備えている。そして、サーモサイフォン用冷媒の液相と気相の相変化により対象機器としての電池12a、12bの温度を調整する。また、冷凍サイクル用冷媒を循環させる第2循環回路200と、第2循環回路200の内部の冷凍サイクル用冷媒を圧縮して吐出する圧縮機23と、を備えている。また、圧縮機23から吐出された冷凍サイクル用冷媒と空気を熱交換して冷凍サイクル用冷媒の熱を放熱するコンデンサ21と、コンデンサ21から流出した冷凍サイクル用冷媒を減圧させる膨張弁30と、を備えている。 As described above, the device temperature controller of the present embodiment includes the thermosiphon 10 having the first circulation circuit 100 that circulates the thermosiphon refrigerant. Then, the temperature of the batteries 12a and 12b as the target devices is adjusted by the phase change between the liquid phase and the gas phase of the thermosyphon refrigerant. Further, a second circulation circuit 200 for circulating the refrigerant for the refrigeration cycle and a compressor 23 for compressing and discharging the refrigerant for the refrigeration cycle inside the second circulation circuit 200 are provided. A condenser 21 for exchanging heat between the refrigeration cycle refrigerant and air discharged from the compressor 23 to radiate heat of the refrigeration cycle refrigerant; an expansion valve 30 for decompressing the refrigeration cycle refrigerant flowing out of the condenser 21; It has.
 また、サーモサイフォン10は、第1循環回路100に配置され、対象機器の冷却時にサーモサイフォン用冷媒が蒸発するように対象機器と冷凍サイクル用冷媒とが熱交換可能に構成された冷却器14を有している。また、膨張弁30にて減圧された冷凍サイクル用冷媒と冷却器14により蒸発したサーモサイフォン用冷媒を熱交換してサーモサイフォン用冷媒を凝縮させる凝縮器16を有している。 Further, the thermosiphon 10 is disposed in the first circulation circuit 100 and includes a cooler 14 configured to be capable of exchanging heat between the target device and the refrigerant for the refrigeration cycle so that the refrigerant for the thermosiphon evaporates when the target device is cooled. Have. The condenser 16 also has a condenser 16 for exchanging heat between the refrigerant for the refrigeration cycle, which has been depressurized by the expansion valve 30, and the refrigerant for the thermosiphon evaporated by the cooler 14, thereby condensing the refrigerant for the thermosiphon.
 また、第1循環回路100は、冷却器14から流出したサーモサイフォン用冷媒を凝縮器16に導入する復路配管102を有し、復路配管102は、該復路配管102を伝熱により冷却するための伝熱部材41と接触している。 Further, the first circulation circuit 100 has a return pipe 102 for introducing the thermosiphon refrigerant flowing out of the cooler 14 into the condenser 16. The return pipe 102 is for cooling the return pipe 102 by heat transfer. It is in contact with heat transfer member 41.
 このような構成によれば、圧縮機23が作動を停止した場合でも、伝熱部材41により復路配管102を流れるサーモサイフォン用冷媒が冷却され、この冷却されたサーモサイフォン用冷媒が冷却器14に導入される。したがって、圧縮機23が作動を停止した場合でも、冷却対象機器をより冷却することができる。 According to such a configuration, even when the compressor 23 stops operating, the thermosyphonic refrigerant flowing through the return pipe 102 is cooled by the heat transfer member 41, and the cooled thermosiphonic refrigerant is supplied to the cooler 14. be introduced. Therefore, even when the compressor 23 stops operating, the device to be cooled can be further cooled.
 また、圧縮機23を作動させる場合において、コンデンサ21を流れる高温高圧冷媒、あるいは外気温がサーモサイフォン用冷媒の温度より高い時での外気により、伝熱部材41を介してサーモサイフォン用冷媒が受熱する。しかし、第1循環回路100と伝熱部材41との接触部は、図23の矢印Aに示すサーモサイフォン用冷媒の目標液面より上下方向上側で、かつ、復路配管102の最上部より冷却器14側の領域に配置してある。このため、凝縮器16にて凝縮された液相のサーモサイフォン用冷媒が再び蒸発する懸念はない。よって、圧縮機23を作動させた場合の冷却性能低下を抑制することができる。 When the compressor 23 is operated, the high-temperature high-pressure refrigerant flowing through the condenser 21 or the outside air when the outside air temperature is higher than the temperature of the thermosiphon refrigerant causes the thermosiphon refrigerant to receive heat through the heat transfer member 41. I do. However, the contact portion between the first circulation circuit 100 and the heat transfer member 41 is located above and below the target liquid level of the thermosiphon refrigerant shown by the arrow A in FIG. It is arranged in the area on the 14 side. For this reason, there is no concern that the liquid-phase thermosiphon refrigerant condensed in the condenser 16 evaporates again. Therefore, it is possible to suppress a decrease in cooling performance when the compressor 23 is operated.
 なお、第1循環回路100と伝熱部材41との接触部は、図23の矢印Bに示す復路配管102の最上部と凝縮器16との間の領域に配置しても、圧縮機23を作動させた場合の冷却性能低下を抑制することができる。 In addition, even if the contact part of the 1st circulation circuit 100 and the heat transfer member 41 is arrange | positioned in the area | region between the uppermost part of the return piping 102 shown by the arrow B of FIG. It is possible to suppress a decrease in the cooling performance when activated.
 なお、本実施形態では、復路配管102が、伝熱により冷却するための伝熱部材41と接触しているが、第1循環回路の少なくとも1カ所が、伝熱により冷却するための伝熱部材41と接触するよう構成してもよい。 In the present embodiment, the return pipe 102 is in contact with the heat transfer member 41 for cooling by heat transfer. However, at least one portion of the first circulation circuit has a heat transfer member for cooling by heat transfer. 41 may be constituted.
 (第22実施形態)
 第22実施形態に係る機器温調装置について図30を用いて説明する。本実施形態の機器温調装置は、サーモサイフォン用冷媒を凝縮器16を迂回させる迂回流路104と、この迂回流路104により形成される流路を開閉する開閉弁35と、を備えている。さらに、迂回流路104を流れるサーモサイフォン用冷媒の熱をコンデンサ21に伝熱させる伝熱部材41を備えている。
(Twenty-second embodiment)
An appliance temperature controller according to a twenty-second embodiment will be described with reference to FIG. The device temperature control device of the present embodiment includes a bypass flow path 104 for bypassing the condenser 16 for the refrigerant for thermosiphon, and an on-off valve 35 for opening and closing a flow path formed by the bypass flow path 104. . Further, a heat transfer member 41 that transfers heat of the thermosiphon refrigerant flowing through the bypass flow path 104 to the condenser 21 is provided.
 本実施形態の機器温調装置は、図示しないECUによって冷却が必要であると判定された場合、開弁状態となるよう開閉弁35が制御される。この際、凝縮器16を迂回して迂回流路104を流れるサーモサイフォン用冷媒の熱が、伝熱部材41を介して外気によって冷却されるコンデンサ21に伝熱され、迂回流路104を流れるサーモサイフォン用冷媒が凝縮される。 機器 In the device temperature control device of the present embodiment, the on-off valve 35 is controlled so that the valve is opened when it is determined by the ECU (not shown) that cooling is necessary. At this time, the heat of the thermosiphon refrigerant flowing in the bypass flow path 104 bypassing the condenser 16 is transferred to the condenser 21 cooled by the outside air through the heat transfer member 41, and the thermosyphonic refrigerant flowing in the bypass flow path 104 The siphon refrigerant is condensed.
 なお、迂回流路104を流れるサーモサイフォン用冷媒は、凝縮すると往路配管101を通って冷却器14の内部に導入される。 (4) When the refrigerant for the thermosiphon flowing in the bypass flow path 104 condenses, it is introduced into the cooler 14 through the outward pipe 101.
 また、図示しないECUによって冷却が必要でないと判定された場合、閉弁状態となるよう開閉弁35が制御される。したがって、冷却器14によって蒸発したサーモサイフォン用冷媒は凝縮器16に導入され、凝縮器16の内部で凝縮される。 {Circle around (5)} When the ECU (not shown) determines that cooling is not necessary, the on-off valve 35 is controlled to be in the closed state. Therefore, the thermosiphon refrigerant evaporated by the cooler 14 is introduced into the condenser 16 and is condensed inside the condenser 16.
 本実施形態では、迂回流路104と伝熱部材41の接触部よりもサーモサイフォン冷媒の冷媒流れ上流側に開閉弁35を配置したが、迂回流路104と伝熱部材41の接触部よりもサーモサイフォン冷媒の冷媒流れ下流側に開閉弁35を配置してもよい。 In the present embodiment, the on-off valve 35 is arranged on the upstream side of the flow of the thermosiphon refrigerant from the contact portion between the bypass passage 104 and the heat transfer member 41. The on-off valve 35 may be arranged downstream of the flow of the thermosiphon refrigerant.
 (第23実施形態)
 第23実施形態に係る機器温調装置について図31を用いて説明する。本実施形態の冷却器14は、熱交換コア14aおよびタンク14b、14cを有している。タンク14cは、往路配管101に接続され、タンク14bは、復路配管102に接続される。熱交換コア14aは、電池12aと電池12bとの間に配置されている。
(Twenty-third embodiment)
The device temperature controller according to the twenty-third embodiment will be described with reference to FIG. The cooler 14 of the present embodiment has a heat exchange core 14a and tanks 14b and 14c. The tank 14c is connected to the outbound piping 101, and the tank 14b is connected to the inbound piping 102. Heat exchange core 14a is arranged between batteries 12a and 12b.
 電池12aおよび電池12bは、それぞれ端子T1~T2を有している。本実施形態の機器温調装置では、電池12aおよび電池12bの側面に端子T1~T2が配置されている。 Battery 12a and battery 12b have terminals T1 and T2, respectively. In the device temperature controller of the present embodiment, terminals T1 and T2 are arranged on the side surfaces of the batteries 12a and 12b.
 凝縮器16から復路配管102を介してタンク14cにサーモサイフォン用冷媒が導入される。熱交換コア14aは、冷凍サイクル用冷媒とサーモサイフォン用冷媒との熱交換により電池12aと電池12bを冷却する。この際、熱交換コア14aの内部でサーモサイフォン用冷媒は蒸発し、この蒸発したサーモサイフォン用冷媒は、復路配管102を介して凝縮器16に導入される。 (4) Thermosyphon refrigerant is introduced from the condenser 16 into the tank 14c via the return pipe 102. The heat exchange core 14a cools the batteries 12a and 12b by exchanging heat between the refrigerant for the refrigeration cycle and the refrigerant for the thermosiphon. At this time, the refrigerant for the thermosiphon evaporates inside the heat exchange core 14a, and the evaporated refrigerant for the thermosiphon is introduced into the condenser 16 via the return pipe 102.
 (第24実施形態)
 第24実施形態に係る機器温調装置について図32を用いて説明する。上記第12実施形態の機器温調装置は、電池12aおよび電池12bの側面に端子T1~T2が配置されている。これに対し、本実施形態の機器温調装置は、電池12aおよび電池12bの上面に端子T1~T2が配置されている。
(24th embodiment)
A device temperature controller according to a twenty-fourth embodiment will be described with reference to FIG. In the device temperature controller of the twelfth embodiment, terminals T1 and T2 are arranged on the side surfaces of the batteries 12a and 12b. On the other hand, in the device temperature controller of the present embodiment, terminals T1 and T2 are arranged on the upper surfaces of the batteries 12a and 12b.
 (第25実施形態)
 第25実施形態に係る機器温調装置について図33を用いて説明する。本実施形態の機器温調装置は、電池12aおよび電池12bの下面に冷却器14の熱交換コア14aが配置されている。すなわち、電池12aおよび電池12bは、熱交換コア14aの一面にのみ配置されている。
(25th embodiment)
A device temperature controller according to a twenty-fifth embodiment will be described with reference to FIG. In the device temperature controller of the present embodiment, the heat exchange core 14a of the cooler 14 is arranged on the lower surfaces of the batteries 12a and 12b. That is, the battery 12a and the battery 12b are arranged only on one surface of the heat exchange core 14a.
 (第26実施形態)
 第26実施形態に係る機器温調装置について図34を用いて説明する。本実施形態の機器温調装置は、凝縮器16の流入口163が、コンデンサ21の流出口212と同じ高さに配置されている。そして、凝縮器16の流入口163とコンデンサ21の流出口212との間を接続している第1接続配管201は水平に配置されている。
(Twenty-sixth embodiment)
The device temperature controller according to the twenty-sixth embodiment will be described with reference to FIG. In the device temperature controller of the present embodiment, the inlet 163 of the condenser 16 is arranged at the same height as the outlet 212 of the condenser 21. The first connection pipe 201 that connects the inlet 163 of the condenser 16 and the outlet 212 of the condenser 21 is disposed horizontally.
 このように、凝縮器16の流入口163が、コンデンサ21の流出口212と同じ高さとなるように配置しても、圧縮機が作動を停止した際に、コンデンサ21にて凝縮した液相の第2熱媒体が重力により凝縮器へ流入することを促進することができる。よってサーモサイフォン10により、対象機器を冷却することができる。 As described above, even if the inlet 163 of the condenser 16 is arranged so as to be at the same height as the outlet 212 of the condenser 21, when the compressor stops operating, the liquid phase condensed in the condenser 21 is reduced. The second heat medium can be promoted to flow into the condenser by gravity. Therefore, the target device can be cooled by the thermosiphon 10.
 (第27実施形態)
 第27実施形態に係る機器温調装置について図35を用いて説明する。本実施形態の機器温調装置の構成は、第1実施形態の機器温調装置と同じである。本実施形態の機器温調装置は、第1実施形態の機器温調装置と比較して、ECU50のS104以降の処理が異なる。
(Twenty-seventh embodiment)
An appliance temperature controller according to a twenty-seventh embodiment will be described with reference to FIG. The configuration of the device temperature control device of the present embodiment is the same as that of the device temperature control device of the first embodiment. The device temperature controller of the present embodiment is different from the device temperature controller of the first embodiment in the processing of the ECU 50 after S104.
 本実施形態のECU50は、図35に示す処理を定期的に実施する。まず、ECU50は、S100にて、冷凍サイクルのオフを指示する信号が入力されたか否かに基づいて冷凍サイクルをオフするか否かを判定する。 ECU The ECU 50 of the present embodiment periodically executes the processing shown in FIG. First, in S100, ECU 50 determines whether or not to turn off the refrigeration cycle based on whether or not a signal for instructing to turn off the refrigeration cycle has been input.
 ここで、冷凍サイクルのオフを指示する信号が入力されている場合、ECU50は、S104にて、対象機器の温度を検出する温度センサからの信号に基づいて対象機器の冷却が必要か否かを判定する。 Here, when a signal instructing to turn off the refrigeration cycle is input, the ECU 50 determines in S104 whether or not the target device needs to be cooled based on a signal from the temperature sensor that detects the temperature of the target device. judge.
 具体的には、ECU50は、対象機器の温度が第1閾値以上の場合、対象機器の冷却が必要であると判定し、対象機器の温度が第1閾値未満の場合、対象機器の冷却が必要でないと判定する。 Specifically, when the temperature of the target device is equal to or higher than the first threshold, the ECU 50 determines that the target device needs to be cooled, and when the temperature of the target device is lower than the first threshold, the target device needs to be cooled. It is determined that it is not.
 ここで、対象機器の冷却が必要であると判定した場合、ECU50は、S502にて、冷却能力を増加する必要があるか否かを判定する。具体的には、対象機器の温度が第1閾値よりも高い第2閾値以上の場合、対象機器の冷却能力の増加が必要であると判定する。また、対象機器の温度が第2閾値未満の場合、対象機器の冷却能力の増加が必要でないと判定する。 Here, if it is determined that the target device needs to be cooled, the ECU 50 determines in S502 whether the cooling capacity needs to be increased. Specifically, when the temperature of the target device is equal to or higher than a second threshold value higher than the first threshold value, it is determined that the cooling capacity of the target device needs to be increased. If the temperature of the target device is less than the second threshold, it is determined that it is not necessary to increase the cooling capacity of the target device.
 ここで、対象機器の温度が第2閾値以上の場合、ECU50は、S504にて、冷凍サイクルをオンする。具体的には、圧縮機23を作動させる。さらに、膨張弁30を通常作動させる。具体的には、弁開度が所定の目標開度となるよう膨張弁30を制御し、メインルーチンに戻る。 Here, if the temperature of the target device is equal to or higher than the second threshold, the ECU 50 turns on the refrigeration cycle in S504. Specifically, the compressor 23 is operated. Further, the expansion valve 30 is normally operated. Specifically, the expansion valve 30 is controlled so that the valve opening becomes a predetermined target opening, and the process returns to the main routine.
 また、対象機器の温度が第2閾値未満の場合には、ECU50は、圧縮機23を作動させることなく、S108にて、弁開度を全開とするよう膨張弁30を制御し、メインルーチンに戻る。 When the temperature of the target device is lower than the second threshold, the ECU 50 controls the expansion valve 30 to fully open the valve in S108 without operating the compressor 23, and proceeds to the main routine. Return.
 上記したように、本実施形態の機器温調装置のECU50は、圧縮機23が作動を停止したと判定され、かつ、対象機器の冷却が必要であると判定され、かつ、対象機器の冷却能力の増加が必要であると判定された場合、S504にて圧縮機23を作動させる。 As described above, the ECU 50 of the device temperature controller of the present embodiment determines that the compressor 23 has stopped operating, determines that the target device needs to be cooled, and determines the cooling capacity of the target device. If it is determined that the increase is necessary, the compressor 23 is operated in S504.
 つまり、対象機器の冷却能力の増加が必要であると判定された場合には、凝縮器16に第1熱媒体を強制的に流入させることができ、冷却性能を増加させることができる。 In other words, when it is determined that the cooling capacity of the target device needs to be increased, the first heat medium can be forced to flow into the condenser 16 and the cooling performance can be increased.
 また、対象機器の冷却能力の増加が必要でないと判定された場合には、圧縮機23を作動させないので、圧縮機23を駆動するための電力を消費しないようにすることができる。 (4) If it is determined that the cooling capacity of the target device does not need to be increased, the compressor 23 is not operated, so that power for driving the compressor 23 can be prevented from being consumed.
 なお、本実施形態では、対象機器の温度が第2閾値以上であるか否かに基づいて対象機器の冷却能力の増加が必要であるか否かを判定した。これに対し、対象機器の冷却能力の増加をユーザ操作から指示された場合、対象機器の冷却能力の増加が必要であると判定するようにしてもよい。 In the present embodiment, it is determined whether the cooling capacity of the target device needs to be increased based on whether the temperature of the target device is equal to or higher than the second threshold. On the other hand, when an increase in the cooling capacity of the target device is instructed from a user operation, it may be determined that the cooling capability of the target device needs to be increased.
 (第28実施形態)
 第28実施形態に係る機器温調装置について図36を用いて説明する。本実施形態の機器温調装置の構成は、第4実施形態の機器温調装置と同じである。本実施形態の機器温調装置は、第10実施形態の機器温調装置と比較して、ECU50のS104以降の処理が異なる。
(Twenty-eighth embodiment)
An appliance temperature controller according to a twenty-eighth embodiment will be described with reference to FIG. The configuration of the device temperature control device of the present embodiment is the same as the device temperature control device of the fourth embodiment. The device temperature control device of the present embodiment is different from the device temperature control device of the tenth embodiment in the processing of the ECU 50 after S104.
 本実施形態のECU50は、図36に示す処理を定期的に実施する。まず、ECU50は、S100にて、冷凍サイクルのオフを指示する信号が入力されたか否かに基づいて冷凍サイクルをオフするか否かを判定する。 ECU The ECU 50 of the present embodiment periodically executes the processing shown in FIG. First, in S100, ECU 50 determines whether or not to turn off the refrigeration cycle based on whether or not a signal for instructing to turn off the refrigeration cycle has been input.
 ここで、冷凍サイクルのオフを指示する信号が入力されている場合、ECU50は、S104にて、対象機器の温度を検出する温度センサからの信号に基づいて対象機器の冷却が必要か否かを判定する。 Here, when a signal instructing to turn off the refrigeration cycle is input, the ECU 50 determines in S104 whether or not the target device needs to be cooled based on a signal from the temperature sensor that detects the temperature of the target device. judge.
 具体的には、ECU50は、対象機器の温度が第1閾値以上の場合、対象機器の冷却が必要であると判定し、対象機器の温度が第1閾値未満の場合、対象機器の冷却が必要でないと判定する。 Specifically, when the temperature of the target device is equal to or higher than the first threshold, the ECU 50 determines that the target device needs to be cooled, and when the temperature of the target device is lower than the first threshold, the target device needs to be cooled. It is determined that it is not.
 ここで、対象機器の冷却が必要であると判定した場合、ECU50は、S502にて、冷却能力を増加する必要があるか否かを判定する。具体的には、対象機器の温度が第1閾値よりも高い第2閾値以上の場合、対象機器の冷却能力の増加が必要であると判定する。また、対象機器の温度が第2閾値未満の場合、対象機器の冷却能力の増加が必要でないと判定する。 Here, if it is determined that the target device needs to be cooled, the ECU 50 determines in S502 whether the cooling capacity needs to be increased. Specifically, when the temperature of the target device is equal to or higher than a second threshold value higher than the first threshold value, it is determined that the cooling capacity of the target device needs to be increased. If the temperature of the target device is less than the second threshold, it is determined that it is not necessary to increase the cooling capacity of the target device.
 ここで、対象機器の温度が第2閾値以上の場合、ECU50は、S604にて、冷凍サイクルをオンする。具体的には、圧縮機23を作動させる。さらに、弁開度を全開とするようバルブ32を制御し、メインルーチンに戻る。 Here, if the temperature of the target device is equal to or higher than the second threshold, the ECU 50 turns on the refrigeration cycle in S604. Specifically, the compressor 23 is operated. Further, the valve 32 is controlled so that the valve opening is fully opened, and the process returns to the main routine.
 また、対象機器の温度が第2閾値未満の場合には、ECU50は、圧縮機23を作動させることなく、S112にて、弁開度を全開とするようバルブ32を制御し、メインルーチンに戻る。 If the temperature of the target device is lower than the second threshold, the ECU 50 controls the valve 32 to fully open the valve in S112 without operating the compressor 23, and returns to the main routine. .
 上記したように、本実施形態の機器温調装置のECU50は、圧縮機23が作動を停止したと判定され、かつ、対象機器の冷却が必要であると判定され、かつ、対象機器の冷却能力の増加が必要であると判定された場合、S304にて圧縮機23を作動させる。 As described above, the ECU 50 of the device temperature controller of the present embodiment determines that the compressor 23 has stopped operating, determines that the target device needs to be cooled, and determines the cooling capacity of the target device. If it is determined that the increase is necessary, the compressor 23 is operated in S304.
 つまり、対象機器の冷却能力の増加が必要であると判定された場合には、凝縮器16に第1熱媒体を強制的に流入させることができ、冷却性能を増加させることができる。 In other words, when it is determined that the cooling capacity of the target device needs to be increased, the first heat medium can be forced to flow into the condenser 16 and the cooling performance can be increased.
 また、対象機器の冷却能力の増加が必要でないと判定された場合には、圧縮機23を作動させないので、圧縮機23を駆動するための電力を消費しないようにすることができる。 (4) If it is determined that the cooling capacity of the target device does not need to be increased, the compressor 23 is not operated, so that power for driving the compressor 23 can be prevented from being consumed.
 なお、本実施形態では、対象機器の温度が第2閾値以上であるか否かに基づいて対象機器の冷却能力の増加が必要であるか否かを判定した。これに対し、対象機器の冷却能力の増加をユーザ操作から指示された場合、対象機器の冷却能力の増加が必要であると判定するようにしてもよい。 In the present embodiment, it is determined whether the cooling capacity of the target device needs to be increased based on whether the temperature of the target device is equal to or higher than the second threshold. On the other hand, when an increase in the cooling capacity of the target device is instructed from a user operation, it may be determined that the cooling capability of the target device needs to be increased.
 (第29実施形態)
 第29実施形態に係る機器温調装置について図37を用いて説明する。本実施形態の機器温調装置の構成は、第6実施形態の機器温調装置と同じである。本実施形態の機器温調装置は、第6実施形態の機器温調装置と比較して、ECU50のS104以降の処理が異なる。
(Twenty-ninth embodiment)
A device temperature controller according to a twenty-ninth embodiment will be described with reference to FIG. The configuration of the device temperature control device of the present embodiment is the same as that of the device temperature control device of the sixth embodiment. The device temperature controller of the present embodiment is different from the device temperature controller of the sixth embodiment in the processing of the ECU 50 after S104.
 本実施形態のECU50は、図37に示す処理を定期的に実施する。まず、ECU50は、S100にて、冷凍サイクルのオフを指示する信号が入力されたか否かに基づいて冷凍サイクルをオフするか否かを判定する。 ECU The ECU 50 of the present embodiment periodically executes the processing shown in FIG. First, in S100, ECU 50 determines whether or not to turn off the refrigeration cycle based on whether or not a signal for instructing to turn off the refrigeration cycle has been input.
 ここで、冷凍サイクルのオフを指示する信号が入力されている場合、ECU50は、S104にて、対象機器の温度を検出する温度センサからの信号に基づいて対象機器の冷却が必要か否かを判定する。 Here, when a signal instructing to turn off the refrigeration cycle is input, the ECU 50 determines in S104 whether or not the target device needs to be cooled based on a signal from the temperature sensor that detects the temperature of the target device. judge.
 具体的には、ECU50は、対象機器の温度が第1閾値以上の場合、対象機器の冷却が必要であると判定し、対象機器の温度が第1閾値未満の場合、対象機器の冷却が必要でないと判定する。 Specifically, when the temperature of the target device is equal to or higher than the first threshold, the ECU 50 determines that the target device needs to be cooled, and when the temperature of the target device is lower than the first threshold, the target device needs to be cooled. It is determined that it is not.
 ここで、対象機器の冷却が必要であると判定した場合、ECU50は、S502にて、冷却能力を増加する必要があるか否かを判定する。具体的には、対象機器の温度が第1閾値よりも高い第2閾値以上の場合、対象機器の冷却能力の増加が必要であると判定する。また、対象機器の温度が第2閾値未満の場合、対象機器の冷却能力の増加が必要でないと判定する。 Here, if it is determined that the target device needs to be cooled, the ECU 50 determines in S502 whether the cooling capacity needs to be increased. Specifically, when the temperature of the target device is equal to or higher than a second threshold value higher than the first threshold value, it is determined that the cooling capacity of the target device needs to be increased. If the temperature of the target device is less than the second threshold, it is determined that it is not necessary to increase the cooling capacity of the target device.
 ここで、対象機器の温度が第2閾値以上の場合、ECU50は、S704にて、冷凍サイクルをオンする。具体的には、圧縮機23を作動させる。さらに、弁開度を全開とするよう開閉弁32を制御し、メインルーチンに戻る。 Here, if the temperature of the target device is equal to or higher than the second threshold, the ECU 50 turns on the refrigeration cycle in S704. Specifically, the compressor 23 is operated. Further, the on-off valve 32 is controlled so that the valve opening is fully opened, and the process returns to the main routine.
 また、対象機器の温度が第2閾値未満の場合には、ECU50は、圧縮機23を作動させることなく、S206にて、弁開度を全開とするよう開閉弁32を制御し、メインルーチンに戻る。 If the temperature of the target device is lower than the second threshold value, the ECU 50 controls the on-off valve 32 to fully open the valve in S206 without operating the compressor 23, and proceeds to the main routine. Return.
 上記したように、本実施形態の機器温調装置のECU50は、圧縮機23が作動を停止したと判定され、かつ、対象機器の冷却が必要であると判定され、かつ、対象機器の冷却能力の増加が必要であると判定された場合、S504にて圧縮機23を作動させる。 As described above, the ECU 50 of the device temperature controller of the present embodiment determines that the compressor 23 has stopped operating, determines that the target device needs to be cooled, and determines the cooling capacity of the target device. If it is determined that the increase is necessary, the compressor 23 is operated in S504.
 つまり、対象機器の冷却能力の増加が必要であると判定された場合には、凝縮器16に第1熱媒体を強制的に流入させることができ、冷却性能を増加させることができる。 In other words, when it is determined that the cooling capacity of the target device needs to be increased, the first heat medium can be forced to flow into the condenser 16 and the cooling performance can be increased.
 (第30実施形態)
 第30実施形態に係る機器温調装置について図38を用いて説明する。本実施形態の機器温調装置の構成は、第8実施形態の機器温調装置と同じである。本実施形態の機器温調装置は、第6実施形態の機器温調装置と比較して、ECU50のS104以降の処理が異なる。
(Thirtieth embodiment)
An appliance temperature controller according to a thirtieth embodiment will be described with reference to FIG. The configuration of the device temperature controller of the present embodiment is the same as the device temperature controller of the eighth embodiment. The device temperature controller of the present embodiment is different from the device temperature controller of the sixth embodiment in the processing of the ECU 50 after S104.
 本実施形態のECU50は、図38に示す処理を定期的に実施する。まず、ECU50は、S100にて、冷凍サイクルのオフを指示する信号が入力されたか否かに基づいて冷凍サイクルをオフするか否かを判定する。 ECU The ECU 50 of the present embodiment periodically executes the processing shown in FIG. First, in S100, ECU 50 determines whether or not to turn off the refrigeration cycle based on whether or not a signal for instructing to turn off the refrigeration cycle has been input.
 ここで、冷凍サイクルのオフを指示する信号が入力されている場合、ECU50は、S104にて、対象機器の温度を検出する温度センサからの信号に基づいて対象機器の冷却が必要か否かを判定する。 Here, when a signal instructing to turn off the refrigeration cycle is input, the ECU 50 determines in S104 whether or not the target device needs to be cooled based on a signal from the temperature sensor that detects the temperature of the target device. judge.
 具体的には、ECU50は、対象機器の温度が第1閾値以上の場合、対象機器の冷却が必要であると判定し、対象機器の温度が第1閾値未満の場合、対象機器の冷却が必要でないと判定する。 Specifically, when the temperature of the target device is equal to or higher than the first threshold, the ECU 50 determines that the target device needs to be cooled, and when the temperature of the target device is lower than the first threshold, the target device needs to be cooled. It is determined that it is not.
 ここで、対象機器の冷却が必要であると判定した場合、ECU50は、S502にて、冷却能力を増加する必要があるか否かを判定する。具体的には、対象機器の温度が第1閾値よりも高い第2閾値以上の場合、対象機器の冷却能力の増加が必要であると判定する。また、対象機器の温度が第2閾値未満の場合、対象機器の冷却能力の増加が必要でないと判定する。 Here, if it is determined that the target device needs to be cooled, the ECU 50 determines in S502 whether the cooling capacity needs to be increased. Specifically, when the temperature of the target device is equal to or higher than a second threshold value higher than the first threshold value, it is determined that the cooling capacity of the target device needs to be increased. If the temperature of the target device is less than the second threshold, it is determined that it is not necessary to increase the cooling capacity of the target device.
 ここで、対象機器の温度が第2閾値以上の場合、ECU50は、S804にて、冷凍サイクルをオンする。具体的には、圧縮機23を作動させる。さらに、駐車時用熱交換器18へ冷凍サイクル用冷媒を流さないよう、弁開度を全開とするよう開閉弁32を制御し、弁開度を全閉とするよう開閉弁34を制御し、メインルーチンに戻る。 Here, if the temperature of the target device is equal to or higher than the second threshold, the ECU 50 turns on the refrigeration cycle in S804. Specifically, the compressor 23 is operated. Further, the on-off valve 32 is controlled so as to fully open the valve so that the refrigerant for the refrigeration cycle does not flow to the heat exchanger 18 for parking, and the on-off valve 34 is controlled so that the valve is fully closed, Return to the main routine.
 また、対象機器の温度が第2閾値未満の場合には、ECU50は、圧縮機23を作動させることなく、S305にて、駐車時用熱交換器18へ冷凍サイクル用冷媒を流すようバルブ32、34を制御する。具体的には、弁開度を全閉とするようバルブ32を制御し、弁開度を全開とするよう開閉弁34を制御し、メインルーチンに戻る。 If the temperature of the target device is lower than the second threshold, the ECU 50 operates the valve 32 to flow the refrigeration cycle refrigerant to the parking heat exchanger 18 in S305 without operating the compressor 23. 34 is controlled. Specifically, the valve 32 is controlled so that the valve opening is fully closed, the on-off valve 34 is controlled such that the valve opening is fully opened, and the process returns to the main routine.
 したがって、コンデンサ21にて凝縮した液相の冷凍サイクル用冷媒が、重力により駐車時用熱交換器18に流入することが促進される。また、駐車時用熱交換器18にて凝縮したサーモサイフォン用冷媒は、冷却器14の流入口141から冷却器14の内部に導入される。よって、冷却器14の流出口142から流出したサーモサイフォン用冷媒とは別の経路で冷却器14に導入されるため、対象機器の冷却が促進される。 Therefore, it is promoted that the liquid-phase refrigeration cycle refrigerant condensed in the condenser 21 flows into the parking heat exchanger 18 by gravity. The thermosiphon refrigerant condensed in the parking heat exchanger 18 is introduced into the cooler 14 from the inlet 141 of the cooler 14. Therefore, since the refrigerant for thermosyphon flowing out of the outlet 142 of the cooler 14 is introduced into the cooler 14 through a different path, cooling of the target device is promoted.
 上記したように、本実施形態の機器温調装置のECU50は、圧縮機23が作動を停止したと判定され、かつ、対象機器の冷却が必要であると判定され、かつ、対象機器の冷却能力の増加が必要であると判定された場合、S804にて圧縮機23を作動させる。 As described above, the ECU 50 of the device temperature controller of the present embodiment determines that the compressor 23 has stopped operating, determines that the target device needs to be cooled, and determines the cooling capacity of the target device. If it is determined that the increase is necessary, the compressor 23 is operated in S804.
 つまり、対象機器の冷却能力の増加が必要であると判定された場合には、凝縮器16に第1熱媒体を強制的に流入させることができ、冷却性能を増加させることができる。 In other words, when it is determined that the cooling capacity of the target device needs to be increased, the first heat medium can be forced to flow into the condenser 16 and the cooling performance can be increased.
 (第31実施形態)
 第31実施形態に係る機器温調装置について図39を用いて説明する。本実施形態の機器温調装置の構成は、第1、第27実施形態の機器温調装置と同じになっている。本実施形態の機器温調装置は、上記第27実施形態と比較して、ECU50のS502以降の処理が異なる。
(Thirty-first embodiment)
The device temperature controller according to the thirty-first embodiment will be described with reference to FIG. The configuration of the device temperature control device of the present embodiment is the same as the device temperature control devices of the first and 27th embodiments. The device temperature controller of the present embodiment is different from the above-described twenty-seventh embodiment in the processing of the ECU 50 after S502.
 ECU50は、S502にて、冷却能力を増加する必要があるか否かを判定する。具体的には、対象機器の温度が閾値以上の場合、対象機器の冷却能力の増加が必要であると判定し、対象機器の温度が閾値未満の場合、対象機器の冷却能力の増加が必要でないと判定する。 (4) In S502, the ECU 50 determines whether it is necessary to increase the cooling capacity. Specifically, when the temperature of the target device is equal to or higher than the threshold, it is determined that the cooling capacity of the target device needs to be increased, and when the temperature of the target device is lower than the threshold, the cooling capability of the target device does not need to be increased. Is determined.
 ここで、対象機器の温度が閾値以上の場合、ECU50は、S506にて、対象機器の冷却能力の増加を許可するか否かを判定する。例えば、対象機器が二次電池12a、12bの場合、二次電池12a、12bが充電中または二次電池12a、12bの充電が開始されることを推定した場合、対象機器の冷却能力の増加を許可すると判定する。 Here, if the temperature of the target device is equal to or higher than the threshold, the ECU 50 determines in S506 whether or not to permit an increase in the cooling capacity of the target device. For example, when the target device is the secondary batteries 12a and 12b, when it is estimated that the secondary batteries 12a and 12b are being charged or the charging of the secondary batteries 12a and 12b is started, the cooling capacity of the target device is increased. It is determined to be permitted.
 また、二次電池12a、12bが充電中でない場合、あるいは、二次電池12a、12bの充電が開始されないことを推定した場合には、対象機器の冷却能力の増加を許可しないと判定する。 If the secondary batteries 12a and 12b are not being charged, or if it is estimated that the charging of the secondary batteries 12a and 12b will not be started, it is determined that the increase in the cooling capacity of the target device is not permitted.
 ここで、二次電池12a、12bが充電中または二次電池12a、12bの充電が開始されることを推定した場合、ECU50は、S504にて、冷凍サイクルをオンする。具体的には、圧縮機23を作動させる。さらに、膨張弁30を通常作動させるよう開閉弁35を制御し、メインルーチンに戻る。 Here, if it is estimated that the secondary batteries 12a and 12b are being charged or that the charging of the secondary batteries 12a and 12b is to be started, the ECU 50 turns on the refrigeration cycle in S504. Specifically, the compressor 23 is operated. Further, the on-off valve 35 is controlled so that the expansion valve 30 operates normally, and the process returns to the main routine.
 また、二次電池12a、12bが充電中でない場合、あるいは、二次電池12a、12bの充電が開始されないことを推定した場合には、ECU50は、冷凍サイクルをオンすることなく、S508にて、弁開度を全開とするよう開閉弁35を制御する。そして、メインルーチンに戻る。 When the secondary batteries 12a and 12b are not being charged or when it is estimated that the charging of the secondary batteries 12a and 12b is not started, the ECU 50 does not turn on the refrigeration cycle, and in S508, The on-off valve 35 is controlled so that the valve opening is fully opened. Then, the process returns to the main routine.
 上記したように、本実施形態の機器温調装置のECU50は、S502にて、対象機器の冷却能力の増加が必要であると判定された場合、S506にて、対象機器の冷却能力の増加を許可するか否かを判定する。 As described above, when it is determined in S502 that the cooling capacity of the target device needs to be increased, the ECU 50 of the device temperature control device of the present embodiment increases the cooling capability of the target device in S506. It is determined whether to permit.
 そして、S506にて、許可判定部により対象機器の冷却能力の増加を許可すると判定された場合、S504にて、圧縮機23を作動させる。つまり、対象機器の冷却能力の増加を許可すると判定された場合に、凝縮器16に第1熱媒体を強制的に流入させることができ、冷却性能を増加させることができる。 {Circle around (4)} In S506, when the permission determining unit determines that the increase of the cooling capacity of the target device is permitted, the compressor 23 is operated in S504. That is, when it is determined that the increase of the cooling capacity of the target device is permitted, the first heat medium can be forced to flow into the condenser 16 and the cooling performance can be increased.
 また、対象機器の冷却能力の増加を許可すると判定されない場合には、圧縮機23を作動させないので、圧縮機23を駆動するための電力を消費しないようにすることができる。 (4) When it is not determined that the increase of the cooling capacity of the target device is permitted, the compressor 23 is not operated, so that the power for driving the compressor 23 can be prevented from being consumed.
 また、本実施形態の機器温調装置のECU50は、二次電池12a、12bが充電中または二次電池12a、12bの充電が開始されることを推定した場合、対象機器の冷却能力の増加を許可すると判定する。したがって、圧縮機23を駆動するための電力を確保することができるため、次回走行時の二次電池12a、12bによる航続距離低下を抑制することが可能である。 In addition, the ECU 50 of the device temperature controller of the present embodiment, when estimating that the secondary batteries 12a and 12b are being charged or that the charging of the secondary batteries 12a and 12b is to be started, increases the cooling capacity of the target device. It is determined to be permitted. Therefore, since power for driving the compressor 23 can be secured, it is possible to suppress a decrease in the cruising distance due to the secondary batteries 12a and 12b during the next traveling.
 (第32実施形態)
 第32実施形態に係る機器温調装置について図40を用いて説明する。本実施形態の機器温調装置の構成は、第6、第29実施形態の機器温調装置と同じになっている。本実施形態の機器温調装置は、上記第29実施形態と比較して、ECU50のS502以降の処理が異なる。
(Thirty-second embodiment)
A device temperature controller according to a thirty-second embodiment will be described with reference to FIG. The configuration of the device temperature control device of the present embodiment is the same as the device temperature control devices of the sixth and 29th embodiments. The device temperature controller of the present embodiment is different from the above-described twenty-ninth embodiment in the processing of the ECU 50 after S502.
 ECU50は、S502にて、冷却能力を増加する必要があるか否かを判定する。具体的には、対象機器の温度が閾値以上の場合、対象機器の冷却能力の増加が必要であると判定し、対象機器の温度が閾値未満の場合、対象機器の冷却能力の増加が必要でないと判定する。 (4) In S502, the ECU 50 determines whether it is necessary to increase the cooling capacity. Specifically, when the temperature of the target device is equal to or higher than the threshold, it is determined that the cooling capacity of the target device needs to be increased, and when the temperature of the target device is lower than the threshold, the cooling capability of the target device does not need to be increased. Is determined.
 ここで、対象機器の温度が閾値以上の場合、ECU50は、S506にて、対象機器の冷却能力の増加を許可するか否かを判定する。例えば、対象機器が二次電池12a、12bの場合、二次電池12a、12bが充電中または二次電池12a、12bの充電が開始されることを推定した場合、対象機器の冷却能力の増加を許可すると判定する。 Here, if the temperature of the target device is equal to or higher than the threshold, the ECU 50 determines in S506 whether or not to permit an increase in the cooling capacity of the target device. For example, when the target device is the secondary batteries 12a and 12b, when it is estimated that the secondary batteries 12a and 12b are being charged or the charging of the secondary batteries 12a and 12b is started, the cooling capacity of the target device is increased. It is determined to be permitted.
 また、二次電池12a、12bが充電中でない場合、あるいは、二次電池12a、12bの充電が開始されないことを推定した場合には、対象機器の冷却能力の増加を許可しないと判定する。 If the secondary batteries 12a and 12b are not being charged, or if it is estimated that the charging of the secondary batteries 12a and 12b will not be started, it is determined that the increase in the cooling capacity of the target device is not permitted.
 ここで、二次電池12a、12bが充電中または二次電池12a、12bの充電が開始されることを推定した場合、ECU50は、S604にて、冷凍サイクルをオンする。具体的には、圧縮機23を作動させる。さらに、弁が全開となるよう開閉弁32を制御し、メインルーチンに戻る。 Here, if it is estimated that the secondary batteries 12a and 12b are being charged or that the charging of the secondary batteries 12a and 12b is to be started, the ECU 50 turns on the refrigeration cycle in S604. Specifically, the compressor 23 is operated. Further, the on / off valve 32 is controlled so that the valve is fully opened, and the process returns to the main routine.
 また、二次電池12a、12bが充電中でない場合、あるいは、二次電池12a、12bの充電が開始されないことを推定した場合には、ECU50は、冷凍サイクルをオンすることなく、S508にて、弁開度を全閉とするよう開閉弁32を制御する。そして、メインルーチンに戻る。 When the secondary batteries 12a and 12b are not being charged or when it is estimated that the charging of the secondary batteries 12a and 12b is not started, the ECU 50 does not turn on the refrigeration cycle, and in S508, The on-off valve 32 is controlled so that the valve opening is fully closed. Then, the process returns to the main routine.
 上記したように、本実施形態の機器温調装置のECU50は、S502にて、対象機器の冷却能力の増加が必要であると判定された場合、S506にて、対象機器の冷却能力の増加を許可するか否かを判定する。 As described above, when it is determined in S502 that the cooling capacity of the target device needs to be increased, the ECU 50 of the device temperature control device of the present embodiment increases the cooling capability of the target device in S506. It is determined whether to permit.
 そして、S506にて、許可判定部により対象機器の冷却能力の増加を許可すると判定された場合、S604にて、圧縮機23を作動させる。つまり、対象機器の冷却能力の増加を許可すると判定された場合に、凝縮器16に第1熱媒体を強制的に流入させることができ、冷却性能を増加させることができる。 {Circle around (4)} In S506, when the permission determination unit determines that the increase of the cooling capacity of the target device is permitted, the compressor 23 is operated in S604. That is, when it is determined that the increase of the cooling capacity of the target device is permitted, the first heat medium can be forced to flow into the condenser 16 and the cooling performance can be increased.
 また、対象機器の冷却能力の増加を許可すると判定されない場合には、圧縮機23を作動させないので、圧縮機23を駆動するための電力を消費しないようにすることができる。 (4) When it is not determined that the increase of the cooling capacity of the target device is permitted, the compressor 23 is not operated, so that the power for driving the compressor 23 can be prevented from being consumed.
 また、本実施形態の機器温調装置のECU50は、二次電池12a、12bが充電中または二次電池12a、12bの充電が開始されることを推定した場合、対象機器の冷却能力の増加を許可すると判定する。したがって、圧縮機23を駆動するための電力を確保することができるため、次回走行時の二次電池12a、12bによる航続距離低下を抑制することが可能である。 In addition, the ECU 50 of the device temperature controller of the present embodiment, when estimating that the secondary batteries 12a and 12b are being charged or that the charging of the secondary batteries 12a and 12b is to be started, increases the cooling capacity of the target device. It is determined to be permitted. Therefore, since power for driving the compressor 23 can be secured, it is possible to suppress a decrease in the cruising distance due to the secondary batteries 12a and 12b during the next traveling.
 (第33実施形態)
 第33実施形態に係る機器温調装置について図41を用いて説明する。本実施形態の機器温調装置の構成は、第6、第29、第32実施形態の機器温調装置と同じになっている。上記第29実施形態では、ECU50がS100にて、冷凍サイクルをオフするか否かを判定し、冷凍サイクルをオフすると判定した場合に、S104以降の処理を実施した。これに対し、本実施形態では、ECU50がS1001にて、車両が走行停止しているか否かを判定し、車両が走行停止していると判定された場合に、S104以降の処理を実施する。
(Thirty-third embodiment)
An appliance temperature controller according to a thirty-third embodiment will be described with reference to FIG. The configuration of the device temperature control device of the present embodiment is the same as the device temperature control devices of the sixth, 29th, and 32nd embodiments. In the twenty-ninth embodiment, in S100, the ECU 50 determines whether or not to turn off the refrigeration cycle. If it is determined that the refrigeration cycle is to be turned off, the processing from S104 is performed. In contrast, in the present embodiment, in S1001, the ECU 50 determines whether or not the vehicle has stopped traveling, and if it is determined that the vehicle has stopped traveling, performs the processing from S104.
 まず、ECU50は、S1001にて、車両が走行停止しているか否かを判定する。ここで、車両が走行中の場合、特別な処理を実施することなく、メインルーチンに戻る。また、車両が走行停止している場合、ECU50は、S104にて、対象機器の冷却が必要か否かを判定する。ここで、対象機器の冷却が必要でないと判定された場合、ECU50は、S2081にて、冷凍サイクルをオフする。具体的には、圧縮機23を停止させる。さらに、弁開度を全閉とするよう開閉弁32を制御し、メインルーチンに戻る。 First, in S1001, the ECU 50 determines whether or not the vehicle has stopped traveling. Here, when the vehicle is running, the process returns to the main routine without performing any special processing. When the vehicle has stopped traveling, the ECU 50 determines in S104 whether the target device needs to be cooled. Here, when it is determined that cooling of the target device is not necessary, the ECU 50 turns off the refrigeration cycle in S2081. Specifically, the compressor 23 is stopped. Further, the on / off valve 32 is controlled so that the valve opening is fully closed, and the process returns to the main routine.
 また、S104にて、対象機器の冷却が必要であると判定された場合、ECU50は、S502にて、冷却能力を増加する必要があるか否かを判定する。ここで、冷却能力を増加する必要がないと判定された場合、ECU50は、S2061にて、冷凍サイクルをオフする。具体的には、圧縮機23を停止させる。さらに、弁開度を全開とするよう開閉弁32を制御し、メインルーチンに戻る。 {Circle around (5)} In S104, when it is determined that the target device needs to be cooled, the ECU 50 determines in S502 whether it is necessary to increase the cooling capacity. Here, when it is determined that it is not necessary to increase the cooling capacity, the ECU 50 turns off the refrigeration cycle in S2061. Specifically, the compressor 23 is stopped. Further, the on-off valve 32 is controlled so that the valve opening is fully opened, and the process returns to the main routine.
 また、S502にて、冷却能力を増加する必要があると判定された場合、ECU50は、S7041にて、冷凍サイクルをオンする。具体的には、圧縮機23を動作させる。さらに、弁開度を全開とするよう開閉弁32を制御し、メインルーチンに戻る。 If it is determined in S502 that the cooling capacity needs to be increased, the ECU 50 turns on the refrigeration cycle in S7041. Specifically, the compressor 23 is operated. Further, the on-off valve 32 is controlled so that the valve opening is fully opened, and the process returns to the main routine.
 上記したように、ECU50は、車両が停止していると判定され、かつ、対象機器の冷却が必要であると判定され、かつ、冷却能力を増加する必要があると判定された場合、ECU50は、冷凍サイクルをオンし、弁開度を全開とするよう開閉弁32を制御する。したがって、凝縮器16に第1熱媒体を強制的に流入させることができ、冷却性能を増加させることができる。 As described above, the ECU 50 determines that the vehicle is stopped, determines that the target device needs to be cooled, and determines that the cooling capacity needs to be increased. Then, the on-off valve 32 is controlled so that the refrigeration cycle is turned on and the valve opening is fully opened. Therefore, the first heat medium can be forced to flow into the condenser 16, and the cooling performance can be increased.
 (第34実施形態)
 第34実施形態に係る機器温調装置について図42を用いて説明する。本実施形態の機器温調装置の構成は、第6、第29、第32、第33実施形態の機器温調装置と同じになっている。上記第32実施形態では、ECU50がS100にて、冷凍サイクルをオフするか否かを判定し、冷凍サイクルをオフすると判定した場合に、S104以降の処理を実施した。これに対し、本実施形態では、ECU50がS1001にて、車両が走行停止しているか否かを判定し、車両が走行停止していると判定された場合に、S104以降の処理を実施する。
(34th embodiment)
An appliance temperature controller according to a thirty-fourth embodiment will be described with reference to FIG. The configuration of the device temperature control device of the present embodiment is the same as the device temperature control devices of the sixth, 29th, 32nd, and 33rd embodiments. In the thirty-second embodiment, in S100, the ECU 50 determines whether or not to turn off the refrigeration cycle. If it is determined that the refrigeration cycle is to be turned off, the processing from S104 is performed. In contrast, in the present embodiment, in S1001, the ECU 50 determines whether or not the vehicle has stopped traveling, and if it is determined that the vehicle has stopped traveling, performs the processing from S104.
 まず、ECU50は、S1001にて、車両が走行停止しているか否かを判定する。ここで、車両が走行中の場合、特別な処理を実施することなく、メインルーチンに戻る。また、車両が走行停止している場合、ECU50は、S104にて、対象機器の冷却が必要か否かを判定する。ここで、対象機器の冷却が必要でないと判定された場合、ECU50は、S2081にて、冷凍サイクルをオフする。具体的には、圧縮機23を停止させる。さらに、弁開度を全閉とするよう開閉弁32を制御し、メインルーチンに戻る。 First, in S1001, the ECU 50 determines whether or not the vehicle has stopped traveling. Here, when the vehicle is running, the process returns to the main routine without performing any special processing. When the vehicle has stopped traveling, the ECU 50 determines in S104 whether the target device needs to be cooled. Here, when it is determined that cooling of the target device is not necessary, the ECU 50 turns off the refrigeration cycle in S2081. Specifically, the compressor 23 is stopped. Further, the on / off valve 32 is controlled so that the valve opening is fully closed, and the process returns to the main routine.
 また、S104にて、対象機器の冷却が必要であると判定された場合、ECU50は、S502にて、冷却能力を増加する必要があるか否かを判定する。ここで、冷却能力を増加する必要がないと判定された場合、ECU50は、S2061にて、冷凍サイクルをオフする。具体的には、圧縮機23を停止させる。さらに、弁開度を全開とするよう開閉弁32を制御し、メインルーチンに戻る。 {Circle around (5)} In S104, when it is determined that the target device needs to be cooled, the ECU 50 determines in S502 whether it is necessary to increase the cooling capacity. Here, when it is determined that it is not necessary to increase the cooling capacity, the ECU 50 turns off the refrigeration cycle in S2061. Specifically, the compressor 23 is stopped. Further, the on-off valve 32 is controlled so that the valve opening is fully opened, and the process returns to the main routine.
 また、S502にて、冷却能力を増加する必要があると判定された場合、ECU50は、S506にて、対象機器の冷却能力の増加を許可するか否かを判定する。ここで、対象機器の冷却能力の増加を許可しないと判定された場合、ECU50は、S5081にて、S2061と同様に冷凍サイクルをオフするとともに、弁開度を全開とするよう開閉弁32を制御する。一方で、対象機器の冷却能力の増加を許可すると判定された場合、ECU50は、S7041にて、冷凍サイクルをオンする。具体的には、圧縮機23を動作させる。さらに、弁開度を全開とするよう開閉弁32を制御し、メインルーチンに戻る。 {Circle around (5)} In S502, when it is determined that the cooling capacity needs to be increased, the ECU 50 determines in S506 whether to allow the cooling capacity of the target device to be increased. Here, if it is determined that the increase in the cooling capacity of the target device is not permitted, the ECU 50 controls the on-off valve 32 to turn off the refrigeration cycle and fully open the valve opening in S5081 as in S2061. I do. On the other hand, when it is determined that the increase of the cooling capacity of the target device is permitted, the ECU 50 turns on the refrigeration cycle in S7041. Specifically, the compressor 23 is operated. Further, the on-off valve 32 is controlled so that the valve opening is fully opened, and the process returns to the main routine.
 上記したように、車両が停止していると判定され、対象機器の冷却が必要であると判定され、冷却能力を増加する必要があると判定され、対象機器の冷却能力の増加を許可すると判定された場合、ECU50は、冷凍サイクルをオンする。さらに、ECU50は、弁開度を全開とするよう開閉弁32を制御する。したがって、凝縮器16に第1熱媒体を強制的に流入させることができ、冷却性能を増加させることができる。 As described above, it is determined that the vehicle is stopped, it is determined that cooling of the target device is necessary, it is determined that the cooling capacity needs to be increased, and it is determined that the cooling capacity of the target device is allowed to increase. If so, the ECU 50 turns on the refrigeration cycle. Further, the ECU 50 controls the on-off valve 32 so that the valve opening is fully opened. Therefore, the first heat medium can be forced to flow into the condenser 16, and the cooling performance can be increased.
 (他の実施形態)
 (1)上記実施形態では、図2に示したように二次電池12a、12bの間に冷却器14を配置するようにしたが、このような配置に限定されるものではない。
(Other embodiments)
(1) In the above embodiment, the cooler 14 is arranged between the secondary batteries 12a and 12b as shown in FIG. 2, but the arrangement is not limited to this.
 (2)上記第21、22の実施形態では、伝熱部材41は、外気によって冷却されるコンデンサ21に伝熱されるよう配置されていたが、これに限らない。直接あるいは間接的に外気によって冷却される場所に伝熱させてもよい。例えば、車両用ボデーといった外気の熱の影響を受けやすい場所でも良い。 (2) In the above-described twenty-first and twenty-second embodiments, the heat transfer member 41 is disposed so as to transfer heat to the condenser 21 cooled by outside air, but is not limited thereto. The heat may be directly or indirectly transferred to a place cooled by the outside air. For example, a place easily affected by the heat of the outside air, such as a vehicle body, may be used.
 また、二次電池12a、12bよりも温度が低くなりやすい場所に伝熱させてもよい。たとえば、空調用蒸発器、空調用蒸発器にて発生した結露水を排出させる経路上、冷凍サイクル用冷媒との熱交換により冷却対象機器を冷却する水冷媒熱交換器、車室内でもよい。 The heat may be transferred to a place where the temperature is likely to be lower than that of the secondary batteries 12a and 12b. For example, an air-conditioning evaporator, a water-refrigerant heat exchanger that cools a device to be cooled by heat exchange with a refrigerant for a refrigeration cycle, or a vehicle cabin may be provided on a path through which dew condensation water generated in the air-conditioning evaporator is discharged.
 また、車室内においては、空気温度が低いほど密度が大きくなるため、車室内は高さが低い場所ほど温度が低くなる傾向である。そのため、伝熱部材41は電池の設置場所よりも低い場所に伝熱されるよう配置することが望ましい。 密度 In the vehicle cabin, the lower the air temperature, the higher the density. Therefore, the lower the height in the vehicle cabin, the lower the temperature. Therefore, it is desirable to arrange the heat transfer member 41 so that heat is transferred to a place lower than the place where the battery is installed.
 (3)上記第21、22の実施形態では、伝熱部材41は、第1循環回路100の復路配管102と接触していたが、これに限らない。図23の矢印Aに示す領域と、矢印Bに示す領域と、矢印Cに示す領域のいずれかと接触させれば、伝熱部材41と気相冷媒とが熱交換できるため、二次電池12a、12bを冷却することができる。 (3) In the above-described twenty-first and twenty-second embodiments, the heat transfer member 41 is in contact with the return pipe 102 of the first circulation circuit 100, but is not limited thereto. If the heat transfer member 41 and the gas-phase refrigerant can be heat-exchanged by contacting any one of the region indicated by the arrow A, the region indicated by the arrow B, and the region indicated by the arrow C in FIG. 12b can be cooled.
 (4)上記実施形態では、機器温調装置を電動自動車やハイブリッドに使用したがこれに限らない。たとえば、二次電池を利用したアイドルストップ車やコースティング車に使用してもよい。上述の車両に使用した場合においても、圧縮機の作動を停止した際に同等の効果を得ることができる。 (4) In the above embodiment, the device temperature control device is used for an electric vehicle or a hybrid, but is not limited to this. For example, it may be used for an idle stop car or a coasting car using a secondary battery. Even when the compressor is used in the above-described vehicle, the same effect can be obtained when the operation of the compressor is stopped.
 なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。 Note that the present disclosure is not limited to the above-described embodiment, and can be appropriately modified. The above embodiments are not irrelevant to each other, and can be appropriately combined unless a combination is clearly not possible. In each of the above embodiments, it is needless to say that elements constituting the embodiments are not necessarily essential, unless otherwise clearly indicated as essential or in principle considered to be clearly essential. No. In each of the above embodiments, when a numerical value such as the number, numerical value, amount, range, or the like of the constituent elements of the exemplary embodiment is mentioned, it is particularly limited to a specific number when it is clearly stated that it is essential and in principle The number is not limited to the specific number unless otherwise specified. Further, in each of the above embodiments, when referring to the material, shape, positional relationship, and the like of the components and the like, unless otherwise specified, and in principle, it is limited to a specific material, shape, positional relationship, and the like. However, the material, shape, positional relationship, and the like are not limited.
 (まとめ)
 上記各実施形態の一部または全部で示された第1の観点によれば、機器温調装置は、第1熱媒体を循環させる第1循環回路を有するサーモサイフォンを有し、第1熱媒体の液相と気相の相変化により対象機器の温度を調整する。また、機器温調装置は、第2熱媒体を循環させる第2循環回路と、第2熱媒体を圧縮して吐出する圧縮機と、吐出された第2熱媒体と空気を熱交換する放熱用熱交換器と、放熱用熱交換器からの第2熱媒体を減圧させる膨張弁と、を有する冷凍サイクルを備えている。また、サーモサイフォンは、第1循環回路に配置され、対象機器の冷却時に第1熱媒体が蒸発するように対象機器と第2熱媒体とが熱交換可能に構成された機器用熱交換器を有している。また、膨張弁にて減圧された第2熱媒体と機器用熱交換器により蒸発した第1熱媒体を熱交換して第1熱媒体を凝縮させる凝縮器を有している。
(Summary)
According to a first aspect described in part or all of the above embodiments, the device temperature control device includes a thermosiphon having a first circulation circuit that circulates a first heat medium, and a first heat medium. The temperature of the target device is adjusted by the phase change between the liquid phase and the gas phase. Further, the device temperature control device includes a second circulation circuit that circulates the second heat medium, a compressor that compresses and discharges the second heat medium, and a heat radiation device that exchanges heat with the discharged second heat medium. The refrigeration cycle includes a heat exchanger and an expansion valve for reducing the pressure of the second heat medium from the heat exchanger for heat radiation. In addition, the thermosiphon is provided in the first circulation circuit, and includes a device heat exchanger configured to be able to exchange heat between the target device and the second heat medium such that the first heat medium evaporates when the target device is cooled. Have. In addition, there is provided a condenser for exchanging heat between the second heat medium depressurized by the expansion valve and the first heat medium evaporated by the equipment heat exchanger to condense the first heat medium.
 また、凝縮器は、第2熱媒体を流入する流入口と、第2熱媒体を流出する流出口と、を有し、放熱用熱交換器は、第2熱媒体を流入する流入口と、第2熱媒体を流出する流出口と、を有している。 Further, the condenser has an inlet for flowing in the second heat medium, and an outlet for flowing out the second heat medium, and the heat exchanger for heat dissipation has an inlet for flowing in the second heat medium; And an outlet for flowing out the second heat medium.
 また、第2循環回路は、放熱用熱交換器の流出口と凝縮器の流入口との間を接続する第1接続配管と、凝縮器の流出口と放熱用熱交換器の流入口との間を接続する第2接続配管と、を有している。そして、圧縮機が作動を停止した際に、放熱用熱交換器から凝縮器への第2熱媒体の流入が促進される構成となっている。 In addition, the second circulation circuit includes a first connection pipe that connects between an outlet of the heat-radiating heat exchanger and an inlet of the condenser, and a first connection pipe that connects the outlet of the condenser and the inlet of the heat-radiating heat exchanger. And a second connection pipe connecting between them. When the compressor stops operating, the flow of the second heat medium from the heat-radiating heat exchanger to the condenser is promoted.
 また、第2の観点によれば、機器温調装置は、圧縮機が作動を停止した際に、放熱用熱交換器から凝縮器への第2熱媒体の流入が促進される配置となっている。したがって、圧縮機が作動を停止した際に、放熱用熱交換器から凝縮器への第2熱媒体の流入が促進され、冷却対象機器をより冷却することができる。 Further, according to the second aspect, the device temperature control device is arranged such that when the compressor stops operating, the flow of the second heat medium from the heat-radiating heat exchanger to the condenser is promoted. I have. Therefore, when the compressor stops operating, the flow of the second heat medium from the heat-radiating heat exchanger to the condenser is promoted, and the device to be cooled can be further cooled.
 また、第3の観点によれば、凝縮器の流入口は、放熱用熱交換器の流出口よりも上下方向下側に配置されているので、圧縮機が作動を停止した際に、放熱用熱交換器から凝縮器への第2熱媒体の流入が促進され、冷却対象機器をより冷却することができる。 According to the third aspect, the inlet of the condenser is arranged below the outlet of the heat exchanger for heat radiation in the up-down direction, so that when the compressor stops operating, the heat is released. The flow of the second heat medium from the heat exchanger to the condenser is promoted, and the device to be cooled can be further cooled.
 また、第4の観点によれば、凝縮器の流入口は、放熱用熱交換器の流出口と同じ高さに配置されている。このように、凝縮器の流入口を、放熱用熱交換器の流出口と同じ高さに配置しても、圧縮機が作動を停止した際に、放熱用熱交換器にて凝縮した液相の第2熱媒体が重力により凝縮器へ流入することを促進することができる。 According to the fourth aspect, the inlet of the condenser is arranged at the same height as the outlet of the heat exchanger for heat radiation. Thus, even if the inlet of the condenser is arranged at the same height as the outlet of the heat exchanger for heat dissipation, the liquid phase condensed in the heat exchanger for heat dissipation when the compressor stops operating Can be promoted to flow into the condenser by gravity.
 また、第5の観点によれば、凝縮器の流入口は、冷凍サイクルを構成している圧縮機、放熱用熱交換器および膨張弁よりも上下方向下側に配置されている。したがって、圧縮機が作動を停止した際に、放熱用熱交換器から凝縮器への第2熱媒体の流入が促進され、冷却対象機器をより冷却することができる。 According to the fifth aspect, the inflow port of the condenser is disposed below the compressor, the heat-radiating heat exchanger, and the expansion valve that constitute the refrigeration cycle, in the vertical direction. Therefore, when the compressor stops operating, the flow of the second heat medium from the heat-radiating heat exchanger to the condenser is promoted, and the device to be cooled can be further cooled.
 また、第6の観点によれば、第1接続配管は、放熱用熱交換器の流出口よりも上下方向上側を経由することなく放熱用熱交換器の流出口と凝縮器の流入口との間を接続している。したがって、圧縮機が作動を停止した際に、放熱用熱交換器から凝縮器への第2熱媒体の流入が促進され、冷却対象機器をより冷却することができる。 According to the sixth aspect, the first connection pipe is provided between the outlet of the heat-dissipating heat exchanger and the inlet of the condenser without passing vertically above the outlet of the heat-dissipating heat exchanger. Are connected. Therefore, when the compressor stops operating, the flow of the second heat medium from the heat-radiating heat exchanger to the condenser is promoted, and the device to be cooled can be further cooled.
 また、第7の観点によれば、第1接続配管は、放熱用熱交換器の流出口から凝縮器の流入口に近づくにつれて上下方向下側に傾斜するよう配置されている。したがって、圧縮機が作動を停止した際に、放熱用熱交換器から凝縮器への第2熱媒体の流入が促進され、冷却対象機器をより冷却することができる。 According to the seventh aspect, the first connection pipe is arranged so as to be inclined downward in the up-down direction as it approaches the inlet of the condenser from the outlet of the heat exchanger for heat dissipation. Therefore, when the compressor stops operating, the flow of the second heat medium from the heat-radiating heat exchanger to the condenser is promoted, and the device to be cooled can be further cooled.
 また、第8の観点によれば、凝縮器の流入口は、第2循環回路に第2熱媒体が充填される際の第2熱媒体の目標液面よりも上下方向下側に配置されている。したがって、圧縮機が作動を停止した際に、放熱用熱交換器から凝縮器への第2熱媒体の流入が促進され、冷却対象機器をより冷却することができる。 According to the eighth aspect, the inlet of the condenser is disposed below the target liquid level of the second heat medium when the second circulation medium is filled with the second heat medium, in the vertical direction. I have. Therefore, when the compressor stops operating, the flow of the second heat medium from the heat-radiating heat exchanger to the condenser is promoted, and the device to be cooled can be further cooled.
 また、第9の観点によれば、凝縮器の流出口は、第2凝縮器の流入口より上下方向上側に配置されており、凝縮器の流入口から流入した第2熱媒体が上下方向上側に移動して凝縮器の流出口から流出するよう構成されている。 According to the ninth aspect, the outlet of the condenser is arranged vertically above the inlet of the second condenser, and the second heat medium flowing from the inlet of the condenser is arranged vertically upward. And flows out of the outlet of the condenser.
 したがって、圧縮機が作動を停止した際に、凝縮器に流入した液相の第2熱媒体が、凝縮器内部で蒸発してガス化した際の排出性が向上するので、凝縮器の熱交換効率が向上し、冷却対象機器をより冷却することができる。 Therefore, when the compressor stops operating, the liquid phase second heat medium flowing into the condenser evaporates inside the condenser and becomes more dischargeable when gasified, so that the heat exchange of the condenser is improved. The efficiency is improved, and the cooling target device can be further cooled.
 また、第10の観点によれば、放熱用熱交換器は、第2熱媒体を流入する流入口と第2熱媒体を流出する流出口を構成する少なくとも2つの出入口を有し、放熱用熱交換器の出入口は、上下方向において互いに異なる位置に配置されている。そして、第1接続配管は、放熱用熱交換器の出入口のうち最も上下方向上側に配置された出入口よりも上下方向下側に配置された出入口と凝縮器の流入口との間を接続している。 According to the tenth aspect, the heat-radiating heat exchanger has at least two inlets and outlets forming an inlet for flowing the second heat medium and an outlet for flowing the second heat medium. The entrances and exits of the exchanger are arranged at different positions in the vertical direction. And the 1st connection piping connects between the entrance and exit arranged in the up-and-down direction lower than the entrance and exit arranged in the up-and-down direction most among the entrances and exits of the heat exchanger for heat radiation, and the inflow of the condenser. I have.
 したがって、圧縮機が作動を停止した際に、放熱用熱交換器から凝縮器への第2熱媒体の流入が促進され、冷却対象機器をより冷却することができる。 Therefore, when the operation of the compressor is stopped, the flow of the second heat medium from the heat radiating heat exchanger to the condenser is promoted, and the device to be cooled can be further cooled.
 また、第11の観点によれば、凝縮器は、第1循環回路に第1熱媒体が充填される際の第1熱媒体の目標液面よりも上下方向上側に配置されている。このように、第1循環回路に第1熱媒体が充填される際の第1熱媒体の目標液面よりも上下方向上側に凝縮器を配置することで、凝縮器が効率よく第1熱媒体を凝縮させることができる。 According to the eleventh aspect, the condenser is disposed above and below the target liquid level of the first heat medium when the first circulation medium is filled with the first heat medium. In this manner, by disposing the condenser vertically above the target liquid level of the first heat medium when the first circulation medium is filled with the first heat medium, the condenser can efficiently operate the first heat medium. Can be condensed.
 また、第12の観点によれば、第1循環回路は、機器用熱交換器から流出した第1熱媒体を凝縮器に導入する復路配管を有している。 According to a twelfth aspect, the first circulation circuit has a return pipe for introducing the first heat medium flowing out of the equipment heat exchanger into the condenser.
 このような構成によれば、機器用熱交換器から流出した第1熱媒体の熱が第1接続配管に伝熱し、この機器用熱交換器から流出した第1熱媒体が冷却され、復路配管の内部で凝縮する。そして、この凝縮した第1熱媒体が機器用熱交換器に流入する。したがって、圧縮機が作動を停止した際に、放熱用熱交換器から凝縮器への第2熱媒体の流入が促進され、冷却対象機器をより冷却することができる。 According to such a configuration, the heat of the first heat medium flowing out of the equipment heat exchanger is transferred to the first connection pipe, and the first heat medium flowing out of the equipment heat exchanger is cooled. Condenses inside. Then, the condensed first heat medium flows into the equipment heat exchanger. Therefore, when the compressor stops operating, the flow of the second heat medium from the heat-radiating heat exchanger to the condenser is promoted, and the device to be cooled can be further cooled.
 また、第13の観点によれば、第1循環回路に設けられた第1熱媒体の熱を第1接続配管に伝熱させる熱伝達部材は、サーモサイフォン用冷媒が充填される際の目標液面よりも上下方向上側に配置される。これにより、熱伝達部材は第1循環回路内の気相冷媒部分と熱交換される。したがって、圧縮機が作動を停止した際における冷却対象機器の冷却能力をより高めることができる。 Further, according to the thirteenth aspect, the heat transfer member for transferring the heat of the first heat medium provided in the first circulation circuit to the first connection pipe is the target liquid when the thermosyphonic refrigerant is charged. It is arranged above the surface in the vertical direction. Thus, the heat transfer member exchanges heat with the gas-phase refrigerant portion in the first circulation circuit. Therefore, it is possible to further increase the cooling capacity of the device to be cooled when the operation of the compressor is stopped.
 また、第14の観点によれば、第1循環回路は、機器用熱交換器から流出した第1熱媒体を凝縮器に導入する復路配管を有している。そして、復路配管には、該復路配管を流れる第1熱媒体の熱を第1接続配管に伝熱させる熱伝達部材が設けられている。 According to a fourteenth aspect, the first circulation circuit has a return pipe for introducing the first heat medium flowing out of the equipment heat exchanger into the condenser. The return pipe is provided with a heat transfer member that transfers the heat of the first heat medium flowing through the return pipe to the first connection pipe.
 これにより、圧縮機が作動している時に熱伝達部材が受熱した場合、凝縮器にて凝縮した液相冷媒が再度蒸発しない。よって、圧縮機が作動した時において熱伝達部材が受熱した場合の、冷却対象機器の冷却能力低下を防ぐことができる。加えて、上述のような、圧縮機が作動を停止した際における、冷却対象機器の冷却することも可能である。 Accordingly, when the heat transfer member receives heat while the compressor is operating, the liquid-phase refrigerant condensed in the condenser does not evaporate again. Therefore, when the heat transfer member receives heat when the compressor operates, it is possible to prevent a decrease in the cooling capacity of the device to be cooled. In addition, it is also possible to cool the equipment to be cooled when the compressor stops operating, as described above.
 また、第15の観点によれば、第1循環回路は、機器用熱交換器から流出した第1熱媒体を凝縮器に導入する復路配管を有している。そして、復路配管には、該復路配管を流れる第1熱媒体の熱を第1接続配管に伝熱させる熱伝達部材が設けられている。 According to a fifteenth aspect, the first circulation circuit has a return pipe for introducing the first heat medium flowing out of the equipment heat exchanger into the condenser. The return pipe is provided with a heat transfer member that transfers the heat of the first heat medium flowing through the return pipe to the first connection pipe.
 これにより、圧縮機が作動している時に熱伝達部材が受熱した場合、凝縮器にて凝縮した液相冷媒が再度蒸発しない。よって、圧縮機が作動した時において熱伝達部材が受熱した場合の、冷却対象機器の冷却能力低下を防ぐことができる。加えて、上述のような、圧縮機が作動を停止した際における、冷却対象機器の冷却することも可能である。 Accordingly, when the heat transfer member receives heat while the compressor is operating, the liquid-phase refrigerant condensed in the condenser does not evaporate again. Therefore, when the heat transfer member receives heat when the compressor operates, it is possible to prevent a decrease in the cooling capacity of the device to be cooled. In addition, it is also possible to cool the equipment to be cooled when the compressor stops operating, as described above.
 また、第16の観点によれば、機器温調装置は、放熱用熱交換器と凝縮器とを接続する経路上に配置され、放熱用熱交換器と凝縮器とを接続する経路を開閉する経路開閉部を備えている。また、対象機器の温度に基づいて対象機器の冷却が必要か否かを判定する冷却判定部を備えている。また、圧縮機が作動を停止し、かつ、冷却判定部により対象機器の冷却が必要であると判定された場合、経路開閉部を開状態にする膨張弁開制御部を備えている。 According to the sixteenth aspect, the device temperature control device is disposed on a path connecting the heat radiation heat exchanger and the condenser, and opens and closes a path connecting the heat radiation heat exchanger and the condenser. It has a route opening / closing part. In addition, a cooling determination unit that determines whether cooling of the target device is necessary based on the temperature of the target device is provided. Further, an expansion valve opening control unit that opens the path opening / closing unit when the compressor stops operating and the cooling determination unit determines that the target device needs to be cooled is provided.
 したがって、圧縮機が作動を停止し、かつ、冷却判定部により対象機器の冷却が必要であると判定された場合に、放熱用熱交換器から凝縮器への第2熱媒体の流入が促進され、冷却対象機器をより冷却することができる。 Therefore, when the compressor stops operating and the cooling determination unit determines that the target device needs to be cooled, the flow of the second heat medium from the heat-radiating heat exchanger to the condenser is promoted. Thus, the device to be cooled can be further cooled.
 また、第17の観点によれば、機器温調装置は、圧縮機が作動を停止し、かつ、冷却判定部により対象機器の冷却が必要でないと判定された場合、経路開閉部を閉状態にする膨張弁閉制御部を備えている。 According to the seventeenth aspect, the device temperature control device closes the path opening / closing unit when the compressor stops operating and the cooling determination unit determines that cooling of the target device is not necessary. An expansion valve closing control unit is provided.
 したがって、圧縮機が作動を停止し、かつ、冷却判定部により対象機器の冷却が必要でないと判定された場合、放熱用熱交換器から凝縮器への第2熱媒体の流入を促進させないようにすることができ、冷却対象機器の冷却を停止することが可能である。 Therefore, when the compressor stops operating and the cooling determination unit determines that the cooling of the target device is not necessary, the flow of the second heat medium from the heat radiating heat exchanger to the condenser is not promoted. It is possible to stop the cooling of the device to be cooled.
 また、第18の観点によれば、経路開閉部は、電気式膨張弁である。このように、電気式膨張弁により経路開閉部を構成することができる。 According to an eighteenth aspect, the path opening / closing part is an electric expansion valve. As described above, the path opening / closing unit can be configured by the electric expansion valve.
 また、第19の観点によれば、圧縮機は、該圧縮機により生じた熱を蓄熱することが可能な熱容量部材と接触するよう配置されている。このように、圧縮機を、該圧縮機により生じた熱を蓄熱することが可能な熱容量部材と接触するよう配置することで、圧縮機の作動を停止させた場合でも、より多くの冷凍サイクル用冷媒を蒸発させることができ、対象機器をより冷却することが可能である。 According to the nineteenth aspect, the compressor is arranged to be in contact with a heat capacity member capable of storing heat generated by the compressor. In this way, by arranging the compressor to be in contact with a heat capacity member capable of storing heat generated by the compressor, even when the operation of the compressor is stopped, more refrigeration cycles are used. The refrigerant can be evaporated, and the target device can be further cooled.
 また、第20の観点によれば、放熱用熱交換器は、車両に搭載され、放熱用熱交換器は、圧縮機から吐出された第2熱媒体と車両の外気とを熱交換して第2熱媒体の熱を放熱する外気熱交換器である。このように、放熱用熱交換器は、圧縮機から吐出された第2熱媒体と車両の外気とを熱交換して第2熱媒体の熱を放熱する外気熱交換器により構成することもできる。 According to a twentieth aspect, the heat-radiating heat exchanger is mounted on a vehicle, and the heat-radiating heat exchanger exchanges heat between the second heat medium discharged from the compressor and the outside air of the vehicle. (2) An outside air heat exchanger that radiates heat of the heat medium. As described above, the heat-radiating heat exchanger can also be constituted by an external-air heat exchanger that exchanges heat between the second heat medium discharged from the compressor and the outside air of the vehicle and radiates heat of the second heat medium. .
 また、第21の観点によれば、第2循環回路は、第2熱媒体が圧縮機を迂回するように流れる迂回配管を有し、迂回配管には、該迂回配管により形成される流路を開閉する迂回流路開閉部が設けられている。そして、圧縮機が作動を停止した際に、迂回流路開閉部が開状態となるよう制御され、凝縮器で蒸発した第2熱媒体が迂回配管を通って循環するループ式サーモサイフォンが構成される。 According to a twenty-first aspect, the second circulation circuit has a bypass pipe through which the second heat medium flows so as to bypass the compressor, and the bypass pipe has a flow path formed by the bypass pipe. A detour channel opening / closing part that opens and closes is provided. When the compressor stops operating, the loop-type thermosiphon is controlled such that the bypass passage opening / closing unit is opened, and the second heat medium evaporated in the condenser circulates through the bypass pipe. You.
 したがって、圧縮機が作動を停止した場合でも、冷却器による冷却対象機器の冷却を継続することができる。 Therefore, even when the compressor stops operating, the cooling of the device to be cooled by the cooler can be continued.
 また、第22の観点によれば、凝縮器は、第1凝縮器であり、圧縮機が作動を停止した際に、第1凝縮器より優先して機器用熱交換器により蒸発された第1熱媒体を凝縮させる第2凝縮器を備えている。そして、圧縮機が作動を停止した際に、放熱用熱交換器から第2凝縮器への第2熱媒体の流入が促進されるよう構成されている。 According to a twenty-second aspect, the condenser is a first condenser, and when the compressor stops operating, the first condenser evaporated by the equipment heat exchanger in preference to the first condenser. A second condenser for condensing the heat medium is provided. And when a compressor stops operation | movement, it is comprised so that the inflow of the 2nd heat medium from a heat-radiation heat exchanger to a 2nd condenser may be promoted.
 したがって、圧縮機が作動を停止した場合でも、放熱用熱交換器から第2凝縮器への第2熱媒体の流入が促進され、冷却対象機器をより冷却することができる。 Therefore, even when the compressor stops operating, the flow of the second heat medium from the heat-radiating heat exchanger to the second condenser is promoted, and the device to be cooled can be further cooled.
 また、第23の観点によれば、圧縮機が作動を停止した際に、放熱用熱交換器から第2凝縮器への第2熱媒体の流入が促進される配置となっている。したがって、圧縮機が作動を停止した場合でも、放熱用熱交換器から第2凝縮器への第2熱媒体の流入が促進され、冷却対象機器をより冷却することができる。 According to the twenty-third aspect, when the compressor stops operating, the flow of the second heat medium from the heat-radiating heat exchanger to the second condenser is promoted. Therefore, even when the compressor stops operating, the flow of the second heat medium from the heat-radiating heat exchanger to the second condenser is promoted, and the device to be cooled can be further cooled.
 また、第24の観点によれば、第2凝縮器は、第2熱媒体を流入する流入口を有し、第2凝縮器の流入口は、放熱用熱交換器の流出口よりも上下方向下側に配置されている。 According to a twenty-fourth aspect, the second condenser has an inlet through which the second heat medium flows, and the inlet of the second condenser is arranged more vertically than the outlet of the heat exchanger for heat radiation. It is located on the lower side.
 したがって、圧縮機が作動を停止した場合でも、放熱用熱交換器から第2凝縮器への第2熱媒体の流入が促進され、冷却対象機器をより冷却することができる。 Therefore, even when the compressor stops operating, the flow of the second heat medium from the heat-radiating heat exchanger to the second condenser is promoted, and the device to be cooled can be further cooled.
 また、第25の観点によれば、機器温調装置は、第1熱媒体を循環させる第1循環回路を有するサーモサイフォンを備え、第1熱媒体の液相と気相の相変化により対象機器の温度を調整する。そして、第1循環回路の少なくとも1カ所は、伝熱により冷却するための伝熱部材と接触している。 According to a twenty-fifth aspect, an apparatus temperature controller includes a thermosiphon having a first circulation circuit that circulates a first heat medium, and the target apparatus is controlled by a phase change between a liquid phase and a gas phase of the first heat medium. Adjust the temperature of the. At least one portion of the first circulation circuit is in contact with a heat transfer member for cooling by heat transfer.
 また、第26の観点によれば、伝熱部材は、第1循環回路のうち、第1熱媒体の目標液面よりも上の部分の少なくとも1カ所と接触している。これにより、熱伝達部材は第1循環回路内の気相冷媒部分と熱交換される。したがって、圧縮機が作動を停止した際における冷却対象機器の冷却能力をより高めることができる。 According to the twenty-sixth aspect, the heat transfer member is in contact with at least one portion of the first circulation circuit that is above the target liquid level of the first heat medium. Thus, the heat transfer member exchanges heat with the gas-phase refrigerant portion in the first circulation circuit. Therefore, it is possible to further increase the cooling capacity of the device to be cooled when the operation of the compressor is stopped.
 また、第27の観点によれば、機器温調装置は、第2熱媒体を循環させる第2循環回路と、第2熱媒体を圧縮する圧縮機と、圧縮された第2熱媒体と空気を熱交換する放熱用熱交換器と、第2熱媒体を減圧させる膨張弁と、を有する冷凍サイクルを備えている。また、サーモサイフォンは、第1循環回路に配置され、対象機器の冷却時に第1熱媒体が蒸発するように対象機器と第2熱媒体とが熱交換可能に構成された機器用熱交換器を備えている。さらに、膨張弁にて減圧された第2熱媒体と機器用熱交換器により蒸発した第1熱媒体を熱交換して第1熱媒体を凝縮させる凝縮器を備えている。また、第1循環回路は、機器用熱交換器から流出した第1熱媒体を凝縮器に導入する復路配管を有し、伝熱部材は、復路配管と接触している。 According to a twenty-seventh aspect, an apparatus temperature controller includes a second circulation circuit that circulates a second heat medium, a compressor that compresses a second heat medium, and a compressor that compresses the second heat medium and air. A refrigeration cycle having a heat exchanger for heat exchange for heat exchange and an expansion valve for reducing the pressure of the second heat medium is provided. In addition, the thermosiphon is provided in the first circulation circuit, and includes a device heat exchanger configured to be able to exchange heat between the target device and the second heat medium such that the first heat medium evaporates when the target device is cooled. Have. Further, a condenser is provided for exchanging heat between the second heat medium depressurized by the expansion valve and the first heat medium evaporated by the equipment heat exchanger to condense the first heat medium. Further, the first circulation circuit has a return pipe for introducing the first heat medium flowing out of the equipment heat exchanger into the condenser, and the heat transfer member is in contact with the return pipe.
 これにより、圧縮機が作動している時に熱伝達部材が受熱した場合、凝縮器にて凝縮した液相冷媒が再度蒸発しない。よって、圧縮機が作動した時において熱伝達部材が受熱した場合の、冷却対象機器の冷却能力低下を防ぐことができる。加えて、上述のような、圧縮機が作動を停止した際における、冷却対象機器の冷却することも可能である。 Accordingly, when the heat transfer member receives heat while the compressor is operating, the liquid-phase refrigerant condensed in the condenser does not evaporate again. Therefore, when the heat transfer member receives heat when the compressor operates, it is possible to prevent a decrease in the cooling capacity of the device to be cooled. In addition, it is also possible to cool the equipment to be cooled when the compressor stops operating, as described above.
 また、第28の観点によれば、機器温調装置は、対象機器の冷却が必要であるか否かを判定する冷却判定部を備えている。また、対象機器の冷却能力の増加が必要か否かを判定する能力増加判定部を備えている。 According to the twenty-eighth aspect, the device temperature controller includes the cooling determination unit that determines whether the target device needs to be cooled. In addition, there is provided a capacity increase determination unit that determines whether the cooling capacity of the target device needs to be increased.
 また、冷却判定部により対象機器の冷却が必要であると判定され、かつ、能力増加判定部により対象機器の冷却能力の増加が必要であると判定された場合、圧縮機を作動させる圧縮機作動部を備えている。 Further, when the cooling determination unit determines that the target device needs to be cooled and the capacity increase determination unit determines that the cooling capability of the target device needs to be increased, the compressor operation for operating the compressor is performed. It has a part.
 したがって、対象機器の冷却が必要であると判定された場合でも、圧縮機作動部は、能力増加判定部により対象機器の冷却能力の増加が必要であると判定された場合には、凝縮器に第1熱媒体を強制的に流入させることができ、冷却性能を増加させることができる。 Therefore, even when it is determined that the cooling of the target device is necessary, the compressor operating unit determines whether the cooling capacity of the target device needs to be increased by the capacity increase determination unit. The first heat medium can be forced to flow in, and the cooling performance can be increased.
 また、第29の観点によれば、冷却判定部は、対象機器の温度が第1閾値以上である場合、対象機器の冷却が必要であると判定し、対象機器の温度が第1閾値未満の場合、対象機器の冷却が必要でないと判定する。 According to the twenty-ninth aspect, the cooling determination unit determines that the target device needs to be cooled when the temperature of the target device is equal to or higher than the first threshold, and determines that the temperature of the target device is lower than the first threshold. In this case, it is determined that cooling of the target device is not necessary.
 また、能力増加判定部は、対象機器の温度が第1閾値よりも高い第2閾値以上である場合、対象機器の冷却能力の増加が必要であると判定し、対象機器の温度が第2閾値未満の場合、対象機器の冷却能力の増加が必要でないと判定する。 In addition, when the temperature of the target device is equal to or higher than a second threshold value higher than the first threshold value, the capacity increase determination unit determines that the cooling capacity of the target device needs to be increased, and the temperature of the target device becomes the second threshold value. If less than, it is determined that it is not necessary to increase the cooling capacity of the target device.
 このように、冷却判定部は、対象機器の温度が第1閾値以上である場合、対象機器の冷却が必要であると判定し、能力増加判定部は、対象機器の温度が第1閾値よりも高い第2閾値以上である場合、対象機器の冷却能力の増加が必要であると判定するのが好ましい。 Thus, when the temperature of the target device is equal to or higher than the first threshold, the cooling determination unit determines that the target device needs to be cooled, and the capacity increase determination unit determines that the temperature of the target device is lower than the first threshold. If it is equal to or higher than the high second threshold, it is preferable to determine that the cooling capacity of the target device needs to be increased.
 また、第30の観点によれば、能力増加判定部により対象機器の冷却能力の増加が必要であると判定された場合、対象機器の冷却能力の増加を許可するか否かを判定する許可判定部を備えている。 According to the thirtieth aspect, when the capacity increase determination unit determines that the cooling capacity of the target device needs to be increased, the permission determination for determining whether to permit the increase of the cooling capacity of the target device is performed. It has a part.
 そして、圧縮機作動部は、許可判定部により対象機器の冷却能力の増加を許可すると判定された場合、圧縮機を作動させる。 {Circle around (4)} When the permission determining unit determines that the increase in the cooling capacity of the target device is permitted, the compressor operating unit operates the compressor.
 このように、対象機器の冷却能力の増加を許可するか否かを判定し、対象機器の冷却能力の増加を許可すると判定された場合、圧縮機を作動させることができる。 As described above, it is determined whether or not the increase in the cooling capacity of the target device is permitted. If it is determined that the increase in the cooling capability of the target device is permitted, the compressor can be operated.
 また、第31の観点によれば、対象機器は、圧縮機に電力を供給する二次電池であり、許可判定部は、二次電池が充電中または二次電池の充電が開始されることを推定した場合、対象機器の冷却能力の増加を許可すると判定する。したがって、圧縮機23を駆動するための電力を確保することができるため、次回走行時の二次電池による航続距離低下を抑制することが可能である。 According to the thirty-first aspect, the target device is a secondary battery that supplies power to the compressor, and the permission determination unit determines that the secondary battery is being charged or that the charging of the secondary battery is started. When it is estimated, it is determined that the increase of the cooling capacity of the target device is permitted. Therefore, since electric power for driving the compressor 23 can be secured, it is possible to suppress a decrease in the cruising distance due to the secondary battery in the next traveling.
 なお、S504、S604、S704、S804の処理が圧縮機作動部に相当する。また、コンデンサ21が圧縮機23から吐出された第2熱媒体と車両の外気とを熱交換して第2熱媒体の熱を放熱する外気熱交換器に相当する。また、S502の処理が能力増加判定部に相当し、S112の処理が膨張弁開制御部に相当し、S114の処理が膨張弁閉制御部に相当し、S104の処理が冷却判定部に相当する。 Note that the processing of S504, S604, S704, and S804 corresponds to a compressor operating unit. Further, the condenser 21 corresponds to an outside air heat exchanger that exchanges heat between the second heat medium discharged from the compressor 23 and the outside air of the vehicle and radiates heat of the second heat medium. Further, the processing of S502 corresponds to a capacity increase determination unit, the processing of S112 corresponds to an expansion valve opening control unit, the processing of S114 corresponds to an expansion valve closing control unit, and the processing of S104 corresponds to a cooling determination unit. .

Claims (31)

  1.  第1熱媒体を循環させる第1循環回路(100)を有するサーモサイフォン(10)を備え、前記第1熱媒体の液相と気相の相変化により対象機器(12a、12b)の温度を調整する機器温調装置であって、
     第2熱媒体を循環させる第2循環回路(200)と、前記第2循環回路の内部の前記第2熱媒体を圧縮して吐出する圧縮機(23)と、前記圧縮機から吐出された前記第2熱媒体と空気を熱交換して前記第2熱媒体の熱を放熱する放熱用熱交換器(21)と、前記放熱用熱交換器から流出した前記第2熱媒体を減圧させる膨張弁(30、31)と、を有する冷凍サイクル(20)を備え、
     前記サーモサイフォンは、
     前記第1循環回路に配置され、前記対象機器の冷却時に前記第1熱媒体が蒸発するように前記対象機器と前記第2熱媒体とが熱交換可能に構成された機器用熱交換器(14)と、
     前記膨張弁にて減圧された前記第2熱媒体と前記機器用熱交換器により蒸発した前記第1熱媒体を熱交換して前記第1熱媒体を凝縮させる凝縮器(16)と、を有し、
     前記凝縮器は、前記第2熱媒体を流入する流入口(163)と、前記第2熱媒体を流出する流出口(164)と、を有し、
     前記放熱用熱交換器は、前記第2熱媒体を流入する流入口(211)と、前記第2熱媒体を流出する流出口(212)と、を有し、
     前記第2循環回路は、前記放熱用熱交換器の前記流出口と前記凝縮器の前記流入口との間を接続する第1接続配管(201)と、前記凝縮器の前記流出口と前記放熱用熱交換器の前記流入口との間を接続する第2接続配管(202)と、を有し、
     前記圧縮機が作動を停止した際に、前記放熱用熱交換器から前記凝縮器への前記第2熱媒体の流入が促進される構成となっている機器温調装置。
    A thermosiphon (10) having a first circulation circuit (100) for circulating a first heat medium is provided, and a temperature of a target device (12a, 12b) is adjusted by a phase change between a liquid phase and a gas phase of the first heat medium. Device temperature control device,
    A second circulation circuit (200) for circulating a second heat medium, a compressor (23) for compressing and discharging the second heat medium inside the second circulation circuit, and a compressor (23) discharged from the compressor. A heat-dissipating heat exchanger (21) for exchanging heat with the second heat medium and air to dissipate heat of the second heat medium; and an expansion valve for decompressing the second heat medium flowing out of the heat-dissipating heat exchanger. (30, 31), and a refrigeration cycle (20) having
    The thermosiphon,
    A device heat exchanger (14) that is arranged in the first circulation circuit and configured to allow heat exchange between the target device and the second heat medium such that the first heat medium evaporates when the target device is cooled. )When,
    A condenser (16) for exchanging heat between the second heat medium depressurized by the expansion valve and the first heat medium evaporated by the equipment heat exchanger to condense the first heat medium. And
    The condenser has an inlet (163) through which the second heat medium flows, and an outlet (164) through which the second heat medium flows,
    The heat-radiating heat exchanger has an inlet (211) through which the second heat medium flows, and an outlet (212) through which the second heat medium flows,
    The second circulation circuit includes a first connection pipe (201) that connects the outlet of the heat exchanger for heat dissipation and the inlet of the condenser, and the outlet of the condenser and the heat sink. A second connection pipe (202) for connecting with the inflow port of the heat exchanger.
    An apparatus temperature control device configured to promote the flow of the second heat medium from the heat-radiating heat exchanger to the condenser when the compressor stops operating.
  2.  前記圧縮機が作動を停止した際に、前記放熱用熱交換器から前記凝縮器への前記第2熱媒体の流入が促進される配置となっている請求項1に記載の機器温調装置。 The device temperature control device according to claim 1, wherein when the compressor stops operating, the flow of the second heat medium from the heat-radiating heat exchanger to the condenser is promoted.
  3.  前記凝縮器の前記流入口は、前記放熱用熱交換器の前記流出口よりも上下方向下側に配置されている請求項1または2に記載の機器温調装置。 The apparatus temperature controller according to claim 1 or 2, wherein the inlet of the condenser is disposed below the outlet of the heat exchanger for heat radiation in the up-down direction.
  4.  前記凝縮器の前記流入口は、前記放熱用熱交換器の前記流出口と同じ高さに配置されている請求項1または2に記載の機器温調装置。 (3) The apparatus temperature controller according to claim 1 or 2, wherein the inlet of the condenser is arranged at the same height as the outlet of the heat exchanger for heat radiation.
  5.  前記凝縮器の前記流入口は、前記冷凍サイクルを構成している前記圧縮機、前記放熱用熱交換器および前記膨張弁よりも上下方向下側に配置されている請求項1ないし4のいずれか1つに記載の機器温調装置。 The inflow port of the condenser is arranged below the compressor, the heat-dissipating heat exchanger, and the expansion valve that constitute the refrigeration cycle in a vertical direction. The device temperature control device according to one of the above.
  6.  前記第1接続配管は、前記放熱用熱交換器の前記流出口よりも上下方向上側を経由することなく前記放熱用熱交換器の前記流出口と前記凝縮器の前記流入口との間を接続している請求項3ないし5のいずれか1つに記載の機器温調装置。 The first connection pipe connects the outlet of the heat exchanger for heat radiation and the inlet of the condenser without passing through the heat exchanger for heat radiation vertically above the outlet of the heat exchanger for heat radiation. The apparatus temperature controller according to any one of claims 3 to 5, wherein:
  7.  前記第1接続配管は、前記放熱用熱交換器の前記流出口から前記凝縮器の前記流入口に近づくにつれて上下方向下側に傾斜するよう配置されている請求項1~3、5~6のいずれか1つに記載の機器温調装置。 The first connection pipe according to any one of claims 1 to 3, 5 to 6, wherein the first connection pipe is arranged to be inclined downward in the up-down direction as approaching from the outflow port of the heat radiation heat exchanger to the inflow port of the condenser. The device temperature control device according to any one of the above.
  8.  前記凝縮器の前記流入口は、前記第2循環回路に前記第2熱媒体が充填される際の前記第2熱媒体の目標液面よりも上下方向下側に配置されている請求項1ないし7のいずれか1つに記載の機器温調装置。 The inflow port of the condenser is arranged below a target liquid level of the second heat medium when the second circulation medium is filled with the second heat medium in a vertical direction. 8. The device temperature controller according to any one of items 7 to 7.
  9.  前記凝縮器の流出口は、前記凝縮器の前記流入口より上下方向上側に配置されており、
     前記凝縮器の前記流入口から流入した前記第2熱媒体が上下方向上側に移動して前記凝縮器の前記流出口から流出するよう構成されている請求項1ないし8のいずれか1つに記載の機器温調装置。
    The outlet of the condenser is arranged vertically above the inlet of the condenser,
    The said 2nd heat medium which flowed in from the said inlet of the said condenser moves up and down in the up-down direction, and it is comprised so that it may flow out of the said outlet of the said condenser. Equipment temperature controller.
  10.  前記放熱用熱交換器は、前記第2熱媒体を流入する前記流入口と前記第2熱媒体を流出する前記流出口を構成する少なくとも2つの出入口(213)を有し、
     前記放熱用熱交換器の前記出入口は、上下方向において互いに異なる位置に配置されており、
     前記第1接続配管は、前記放熱用熱交換器の前記出入口のうち最も上下方向上側に配置された前記出入口よりも上下方向下側に配置された前記出入口と前記凝縮器の前記流入口との間を接続している請求項1ないし9のいずれか1つに記載の機器温調装置。
    The heat-radiating heat exchanger has at least two ports (213) constituting the inflow port for inflow of the second heat medium and the outflow port for outflow of the second heat medium,
    The entrance and exit of the heat exchanger for heat radiation are arranged at different positions in the vertical direction,
    The first connection pipe is formed between the inlet and the outlet of the condenser and the inlet and the outlet of the condenser, which are arranged at a lower side in the vertical direction than the inlet and the outlet arranged at the uppermost part in the vertical direction. The apparatus temperature controller according to any one of claims 1 to 9, wherein the devices are connected to each other.
  11.  前記凝縮器は、前記第1循環回路に前記第1熱媒体が充填される際の前記第1熱媒体の目標液面よりも上下方向上側に配置されている請求項1ないし10のいずれか1つに記載の機器温調装置。 11. The condenser according to claim 1, wherein the condenser is arranged vertically above a target liquid level of the first heat medium when the first circulation circuit is filled with the first heat medium. 12. The device temperature control device according to any one of the above.
  12.  前記第1循環回路の少なくとも一部に、前記第1熱媒体の熱を前記第1接続配管に伝熱させる熱伝達部材(40)が設けられている請求項1ないし11のいずれか1つに記載の機器温調装置。 The heat transfer member (40) that transfers heat of the first heat medium to the first connection pipe is provided in at least a part of the first circulation circuit. The device temperature controller according to the above.
  13.  前記第1熱媒体の目標液面よりも上の部分の少なくとも1カ所以上に、前記熱伝達部材が設けられている請求項12に記載の機器温調装置。 The apparatus temperature control device according to claim 12, wherein the heat transfer member is provided at least at one or more locations above a target liquid level of the first heat medium.
  14.  前記第1循環回路は、前記機器用熱交換器から流出した前記第1熱媒体を前記凝縮器に導入する復路配管(102)を有し、
     前記復路配管に、前記熱伝達部材(40)が設けられている請求項12または13に記載の機器温調装置。
    The first circulation circuit has a return pipe (102) for introducing the first heat medium flowing out of the equipment heat exchanger into the condenser,
    The device temperature control device according to claim 12 or 13, wherein the heat transfer member (40) is provided in the return pipe.
  15.  前記第1循環回路は、前記機器用熱交換器から流出した前記第1熱媒体を前記凝縮器に導入する復路配管(102)を有し、
     前記復路配管には、該復路配管を流れる前記第1熱媒体の熱をac前記第1接続配管に伝熱させる熱伝達部材(40)が設けられている請求項1ないし11のいずれか1つに記載の機器温調装置。
    The first circulation circuit has a return pipe (102) for introducing the first heat medium flowing out of the equipment heat exchanger into the condenser,
    The heat return member (40) for transmitting the heat of the first heat medium flowing through the return pipe to the ac connection pipe is provided on the return pipe. The device temperature control device according to 1.
  16.  前記放熱用熱交換器と前記凝縮器とを接続する経路上に配置され、前記放熱用熱交換器と前記凝縮器とを接続する経路を開閉する経路開閉部(32)と、
     前記対象機器の温度に基づいて前記対象機器の冷却が必要か否かを判定する冷却判定部(S104)と、
     前記圧縮機が作動を停止し、かつ、前記冷却判定部により前記対象機器の冷却が必要であると判定された場合、前記経路開閉部を開状態にする膨張弁開制御部(S112)と、を備えた請求項1ないし15のいずれか1つに記載の機器温調装置。
    A path opening / closing section (32) arranged on a path connecting the heat radiation heat exchanger and the condenser, and opening and closing a path connecting the heat radiation heat exchanger and the condenser;
    A cooling determination unit (S104) that determines whether cooling of the target device is necessary based on the temperature of the target device;
    An expansion valve opening control unit (S112) for opening the path opening / closing unit when the compressor stops operating and the cooling determination unit determines that the target device needs to be cooled; The apparatus temperature controller according to any one of claims 1 to 15, comprising:
  17.  前記圧縮機が作動を停止し、かつ、前記冷却判定部により前記対象機器の冷却が必要でないと判定された場合、前記経路開閉部を閉状態にする膨張弁閉制御部(S114)を備えた請求項16に記載の機器温調装置。 An expansion valve closing control unit (S114) that closes the path open / close unit when the compressor stops operating and the cooling determination unit determines that cooling of the target device is unnecessary. The device temperature controller according to claim 16.
  18.  前記経路開閉部は、電気式膨張弁である請求項16または17に記載の機器温調装置。 18. The device temperature controller according to claim 16, wherein the path opening / closing unit is an electric expansion valve.
  19.  前記圧縮機は、該圧縮機により生じた熱を蓄熱することが可能な熱容量部材(230)と接触するよう配置されている請求項1ないし18のいずれか1つに記載の機器温調装置。 19. The device temperature controller according to claim 1, wherein the compressor is arranged to be in contact with a heat capacity member capable of storing heat generated by the compressor.
  20.  前記放熱用熱交換器は、車両に搭載され、
     前記放熱用熱交換器は、前記圧縮機から吐出された前記第2熱媒体と前記車両の外気とを熱交換して前記第2熱媒体の熱を放熱する外気熱交換器である請求項1ないし19のいずれか1つに記載の機器温調装置。
    The heat radiation heat exchanger is mounted on a vehicle,
    The heat radiation heat exchanger is an outside air heat exchanger that exchanges heat between the second heat medium discharged from the compressor and outside air of the vehicle to radiate heat of the second heat medium. 20. The device temperature control device according to any one of items 19 to 19.
  21.  前記第2循環回路は、前記第2熱媒体が前記圧縮機を迂回するように流れる迂回配管(206)を有し、
     前記迂回配管には、該迂回配管により形成される流路を開閉する迂回流路開閉部(36)が設けられており、
     前記圧縮機が作動を停止した際に、前記迂回流路開閉部が開状態となるよう制御され、前記凝縮器で蒸発した前記第2熱媒体が前記迂回配管を通って循環するループ式サーモサイフォンが構成される請求項1ないし20のいずれか1つに記載の機器温調装置。
    The second circulation circuit includes a bypass pipe (206) through which the second heat medium flows to bypass the compressor.
    The bypass pipe is provided with a bypass channel opening / closing section (36) for opening and closing a channel formed by the bypass pipe,
    When the compressor stops operating, the bypass thermostat is controlled to be in an open state, and the second heat medium evaporated in the condenser is circulated through the bypass pipe. The device temperature control device according to any one of claims 1 to 20, wherein
  22.  前記凝縮器は、第1凝縮器(16)であり、
     前記圧縮機が作動を停止した際に、前記第1凝縮器より優先して前記機器用熱交換器により蒸発された前記第1熱媒体を凝縮させる第2凝縮器(18)を備え、
     前記圧縮機が作動を停止した際に、前記放熱用熱交換器から前記第2凝縮器への前記第2熱媒体の流入が促進されるよう構成されている請求項1ないし21のいずれか1つに記載の機器温調装置。
    The condenser is a first condenser (16);
    A second condenser (18) for condensing the first heat medium evaporated by the equipment heat exchanger in preference to the first condenser when the compressor stops operating;
    22. The system according to claim 1, wherein when the compressor stops operating, the flow of the second heat medium from the heat-radiating heat exchanger to the second condenser is promoted. The device temperature control device according to any one of the above.
  23.  前記圧縮機が作動を停止した際に、前記放熱用熱交換器から前記第2凝縮器への前記第2熱媒体の流入が促進される配置となっている請求項22に記載の機器温調装置。 23. The device temperature control according to claim 22, wherein when the compressor stops operating, the flow of the second heat medium from the heat radiation heat exchanger to the second condenser is promoted. apparatus.
  24.  前記第2凝縮器は、前記第2熱媒体を流入する流入口(183)を有し、
     前記第2凝縮器の前記流入口は、前記放熱用熱交換器の前記流出口よりも上下方向下側に配置されている請求項22または23に記載の機器温調装置。
    The second condenser has an inlet (183) through which the second heat medium flows,
    24. The apparatus temperature control device according to claim 22, wherein the inflow port of the second condenser is disposed vertically below the outflow port of the heat exchanger for heat dissipation.
  25.  第1熱媒体を循環させる第1循環回路(100)を有するサーモサイフォン(10)を備え、前記第1熱媒体の液相と気相の相変化により対象機器(12a、12b)の温度を調整する機器温調装置であって、
     前記第1循環回路の少なくとも1カ所は、伝熱により冷却するための伝熱部材(41)と接触している機器温調装置。
    A thermosiphon (10) having a first circulation circuit (100) for circulating a first heat medium is provided, and a temperature of a target device (12a, 12b) is adjusted by a phase change between a liquid phase and a gas phase of the first heat medium. Device temperature control device,
    At least one location of the first circulation circuit is in contact with a heat transfer member (41) for cooling by heat transfer.
  26.  前記伝熱部材は、前記第1循環回路のうち、前記第1熱媒体の目標液面よりも上の部分の少なくとも1カ所と接触している請求項25に記載の機器温調装置。 26. The apparatus temperature controller according to claim 25, wherein the heat transfer member is in contact with at least one portion of the first circulation circuit that is above a target liquid level of the first heat medium.
  27.  第2熱媒体を循環させる第2循環回路(200)と、前記第2循環回路の内部の前記第2熱媒体を圧縮して吐出する圧縮機(23)と、前記圧縮機から吐出された前記第2熱媒体と空気を熱交換して前記第2熱媒体の熱を放熱する放熱用熱交換器(21)と、前記放熱用熱交換器から流出した前記第2熱媒体を減圧させる膨張弁(30、31)と、を有する冷凍サイクル(20)を備え、
     前記サーモサイフォンは、
     前記第1循環回路に配置され、前記対象機器の冷却時に前記第1熱媒体が蒸発するように前記対象機器と前記第2熱媒体とが熱交換可能に構成された機器用熱交換器(14)と、
     前記膨張弁にて減圧された前記第2熱媒体と前記機器用熱交換器により蒸発した前記第1熱媒体を熱交換して前記第1熱媒体を凝縮させる凝縮器(16)と、を備え、
     前記第1循環回路は、前記機器用熱交換器から流出した前記第1熱媒体を前記凝縮器に導入する復路配管(102)を有し、
     前記伝熱部材は、前記復路配管と接触している請求項25または26に記載の機器温調装置。
    A second circulation circuit (200) for circulating a second heat medium, a compressor (23) for compressing and discharging the second heat medium inside the second circulation circuit, and a compressor (23) discharged from the compressor. A heat-dissipating heat exchanger (21) for exchanging heat with the second heat medium and air to dissipate heat of the second heat medium; and an expansion valve for decompressing the second heat medium flowing out of the heat-dissipating heat exchanger. (30, 31), and a refrigeration cycle (20) having
    The thermosiphon,
    A device heat exchanger (14) that is arranged in the first circulation circuit and configured to allow heat exchange between the target device and the second heat medium such that the first heat medium evaporates when the target device is cooled. )When,
    A condenser (16) for exchanging heat between the second heat medium decompressed by the expansion valve and the first heat medium evaporated by the equipment heat exchanger to condense the first heat medium. ,
    The first circulation circuit has a return pipe (102) for introducing the first heat medium flowing out of the equipment heat exchanger into the condenser,
    27. The apparatus temperature controller according to claim 25, wherein the heat transfer member is in contact with the return pipe.
  28.  前記対象機器の冷却が必要であるか否かを判定する冷却判定部(S104)と、
     前記対象機器の冷却能力の増加が必要か否かを判定する能力増加判定部(S502)と、
     前記冷却判定部により前記対象機器の冷却が必要であると判定され、かつ、前記能力増加判定部により前記対象機器の冷却能力の増加が必要であると判定された場合、前記圧縮機を作動させる圧縮機作動部(S504、S604、S704、S804)と、を備えた請求項1または24に記載の機器温調装置。
    A cooling determination unit (S104) for determining whether the target device needs to be cooled;
    A capacity increase determination unit (S502) for determining whether the cooling capacity of the target device needs to be increased;
    When the cooling determination unit determines that the target device needs to be cooled, and when the capacity increase determination unit determines that the cooling capability of the target device needs to be increased, the compressor is operated. 25. The apparatus temperature controller according to claim 1 or 24, further comprising a compressor operating section (S504, S604, S704, S804).
  29.  前記冷却判定部は、前記対象機器の温度が第1閾値以上である場合、前記対象機器の冷却が必要であると判定し、前記対象機器の温度が前記第1閾値未満の場合、前記対象機器の冷却が必要でないと判定し、
     前記能力増加判定部は、前記対象機器の温度が前記第1閾値よりも高い第2閾値以上である場合、前記対象機器の冷却能力の増加が必要であると判定し、前記対象機器の温度が前記第2閾値未満の場合、前記対象機器の冷却能力の増加が必要でないと判定する請求項28に記載の機器温調装置。
    The cooling determination unit determines that cooling of the target device is necessary when the temperature of the target device is equal to or higher than a first threshold, and determines the target device when the temperature of the target device is lower than the first threshold. Judge that cooling is not necessary,
    When the temperature of the target device is equal to or higher than a second threshold value higher than the first threshold value, the capacity increase determination unit determines that the cooling capacity of the target device needs to be increased, and the temperature of the target device is higher. The device temperature controller according to claim 28, wherein it is determined that the cooling capacity of the target device does not need to be increased when the value is less than the second threshold value.
  30.  前記能力増加判定部により前記対象機器の冷却能力の増加が必要であると判定された場合、前記対象機器の冷却能力の増加を許可するか否かを判定する許可判定部(S308)を備え、
     前記圧縮機作動部は、前記許可判定部により前記対象機器の冷却能力の増加を許可すると判定された場合、前記圧縮機を作動させる請求項28または29に記載の機器温調装置。
    When the capacity increase determination unit determines that the cooling capacity of the target device needs to be increased, a permission determination unit (S308) that determines whether to increase the cooling capacity of the target device is provided,
    30. The device temperature control device according to claim 28, wherein the compressor operating unit operates the compressor when the permission determining unit determines that the increase of the cooling capacity of the target device is permitted.
  31.  前記対象機器は、前記圧縮機に電力を供給する二次電池であり、
     前記許可判定部は、前記二次電池が充電中または前記二次電池の充電が開始されることを推定した場合、前記対象機器の冷却能力の増加を許可すると判定する請求項30に記載の機器温調装置。
    The target device is a secondary battery that supplies power to the compressor,
    31. The device according to claim 30, wherein the permission determination unit determines that an increase in cooling capacity of the target device is permitted when the secondary battery is being charged or when it is estimated that charging of the secondary battery is started. Temperature control device.
PCT/JP2019/025672 2018-06-29 2019-06-27 Apparatus temperature adjusting device WO2020004574A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018124858 2018-06-29
JP2018-124858 2018-06-29
JP2019103925A JP2020008271A (en) 2018-06-29 2019-06-03 Apparatus temperature conditioning device
JP2019-103925 2019-06-03

Publications (1)

Publication Number Publication Date
WO2020004574A1 true WO2020004574A1 (en) 2020-01-02

Family

ID=68986659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025672 WO2020004574A1 (en) 2018-06-29 2019-06-27 Apparatus temperature adjusting device

Country Status (1)

Country Link
WO (1) WO2020004574A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05338432A (en) * 1992-06-12 1993-12-21 Nippondenso Co Ltd Air conditioner for electric automobile
JPH11255165A (en) * 1998-03-16 1999-09-21 Yamaha Motor Co Ltd Battery cooling structure for motor-driven two-wheeler
JP2013250035A (en) * 2012-06-04 2013-12-12 Denso Corp Heat siphon-type refrigeration cycle device
WO2017006775A1 (en) * 2015-07-08 2017-01-12 株式会社デンソー Refrigeration system, and in-vehicle refrigeration system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05338432A (en) * 1992-06-12 1993-12-21 Nippondenso Co Ltd Air conditioner for electric automobile
JPH11255165A (en) * 1998-03-16 1999-09-21 Yamaha Motor Co Ltd Battery cooling structure for motor-driven two-wheeler
JP2013250035A (en) * 2012-06-04 2013-12-12 Denso Corp Heat siphon-type refrigeration cycle device
WO2017006775A1 (en) * 2015-07-08 2017-01-12 株式会社デンソー Refrigeration system, and in-vehicle refrigeration system

Similar Documents

Publication Publication Date Title
US9643469B2 (en) Vehicle thermal management system
US10183548B2 (en) Thermal management system for vehicle
WO2018168276A1 (en) Device temperature adjusting apparatus
US20190363411A1 (en) Device temperature regulator
US9561704B2 (en) Vehicular thermal management system including selective heat transfer medium circulation
JP5949522B2 (en) Temperature control device
JP6610800B2 (en) Equipment temperature controller
EP2502767B1 (en) Air conditioning system for vehicle
WO2015136768A1 (en) In-vehicle temperature adjusting device, vehicle air-conditioning device, and battery temperature adjsuting device
CN109690222B (en) Equipment temperature adjusting device
WO2020004219A1 (en) Apparatus temperature adjusting device
WO2018066206A1 (en) Machine temperature control device
WO2018047532A1 (en) Device temperature adjusting apparatus
JP4055739B2 (en) Air conditioner for vehicles
WO2018047538A1 (en) Device temperature control system
WO2020203152A1 (en) Thermosiphon-type cooling device for vehicle
WO2020213535A1 (en) Thermosiphon-type cooling device for vehicles
JP2020008271A (en) Apparatus temperature conditioning device
WO2020022065A1 (en) Heat-retaining device
WO2020004574A1 (en) Apparatus temperature adjusting device
WO2020004573A1 (en) Apparatus temperature adjusting device
JP7263713B2 (en) Thermal insulation device
JP2020008270A (en) Apparatus temperature conditioning device
WO2018070182A1 (en) Appliance temperature regulating apparatus
CN220281077U (en) Vehicle thermal management system and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19826285

Country of ref document: EP

Kind code of ref document: A1