WO2018047532A1 - Device temperature adjusting apparatus - Google Patents

Device temperature adjusting apparatus Download PDF

Info

Publication number
WO2018047532A1
WO2018047532A1 PCT/JP2017/028056 JP2017028056W WO2018047532A1 WO 2018047532 A1 WO2018047532 A1 WO 2018047532A1 JP 2017028056 W JP2017028056 W JP 2017028056W WO 2018047532 A1 WO2018047532 A1 WO 2018047532A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
liquid storage
working fluid
heat exchanger
equipment
Prior art date
Application number
PCT/JP2017/028056
Other languages
French (fr)
Japanese (ja)
Inventor
功嗣 三浦
山中 隆
康光 大見
加藤 吉毅
竹内 雅之
義則 毅
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to JP2018538295A priority Critical patent/JP6601567B2/en
Publication of WO2018047532A1 publication Critical patent/WO2018047532A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a device temperature control device that can adjust the temperature of at least one temperature control target device.
  • Patent Document 1 a device that adjusts the temperature of a device by a loop-type thermosyphon cooling device is known (see, for example, Patent Document 1).
  • Patent Document 1 in order to suppress overcooling of a temperature control target due to an unintended temperature drop of the condenser, an open / close valve is provided in a liquid pipe between the evaporator and the condenser, and the air passing through the evaporator A technique for opening and closing an on-off valve according to temperature is disclosed.
  • This disclosure is intended to provide a device temperature control device capable of suppressing the temperature control target device from being excessively cooled when temperature control of the temperature control target device is not required.
  • This disclosure is directed to a device temperature control device that can adjust the temperature of at least one temperature control target device.
  • the device temperature control apparatus includes: A heat exchanger for equipment that absorbs heat from the temperature control target equipment and evaporates the liquid working fluid; A condenser disposed above the equipment heat exchanger and condensing the gaseous working fluid evaporated in the equipment heat exchanger; A gas passage for guiding the gaseous working fluid evaporated in the equipment heat exchanger to the condenser; A liquid passage portion for guiding the liquid working fluid condensed in the condenser to the heat exchanger for equipment, A storage for storing a liquid working fluid that is branched from an equipment fluid circuit including an equipment heat exchanger, a condenser, a gas passage section, and a liquid passage section, and that resides inside the equipment fluid circuit. A liquid part (30); A liquid storage amount adjusting unit that increases or decreases the liquid storage amount of the liquid working fluid in the liquid storage unit.
  • the liquid storage amount adjustment unit is configured to increase the liquid storage amount of the liquid working fluid in the liquid storage unit when a condition for keeping the temperature control target device warm is established.
  • the liquid storage amount of the liquid working fluid in the liquid storage portion provided by branching from the device fluid circuit increases.
  • the liquid working fluid existing in the fluid circuit for equipment is reduced, and the liquid level of the working fluid in the equipment heat exchanger is lowered, so that the liquid working fluid in the equipment heat exchanger is evaporated.
  • the endothermic heat from the temperature control target device can be suppressed.
  • the device temperature adjustment device of the present disclosure it is possible to sufficiently suppress the temperature adjustment target device from being excessively cooled when the temperature adjustment of the temperature adjustment target device becomes unnecessary.
  • the assembled battery BP is composed of a stacked body in which a plurality of rectangular parallelepiped battery cells BC are stacked.
  • the plurality of battery cells BC constituting the assembled battery BP are electrically connected in series.
  • Each battery cell BC constituting the assembled battery BP is configured by a chargeable / dischargeable secondary battery (for example, a lithium ion battery or a lead storage battery).
  • the battery cell BC is not limited to a rectangular parallelepiped shape, and may have another shape such as a cylindrical shape.
  • the assembled battery BP may include a battery cell BC electrically connected in parallel.
  • the assembled battery BP is connected to a power converter and a motor generator (not shown).
  • the power conversion device is, for example, a device that converts a direct current supplied from the assembled battery BP into an alternating current, and supplies (that is, discharges) the converted alternating current to various electric loads such as a traveling electric motor.
  • the motor generator is a device that reversely converts the traveling energy of the vehicle into electric energy during regeneration of the vehicle, and supplies the reversely converted electric energy as regenerative power to the assembled battery BP via a power conversion device or the like. .
  • the assembled battery BP may become excessively hot due to self-heating when power is supplied while the vehicle is running.
  • the assembled battery BP becomes excessively high in temperature, as shown in FIG. 2, the deterioration of the battery cell BC is promoted. Therefore, it is necessary to limit the output and input so as to reduce self-heating. For this reason, in order to ensure the output and input of the battery cell BC, a cooling means for maintaining the temperature below a predetermined temperature is required.
  • the battery temperature Tb of the assembled battery BP may become excessively high even during parking in the summer, for example. That is, the power storage device including the assembled battery BP is often disposed under the floor of the vehicle or under the trunk room, and the battery temperature Tb of the assembled battery BP gradually increases not only during traveling of the vehicle but also during parking in summer. The battery pack BP may become excessively hot. When the assembled battery BP is left in a high temperature environment, the battery life is greatly reduced due to the progress of deterioration. Therefore, the battery temperature Tb of the assembled battery BP is maintained below a predetermined temperature even during parking of the vehicle. It is hoped that.
  • the assembled battery BP is composed of a plurality of battery cells BC.
  • the temperature of each battery cell BC varies, the degree of deterioration of each battery cell BC is biased, and the entire assembled battery BP The input / output characteristics of this will deteriorate.
  • the assembled battery BP includes a series connection body of the battery cells BC, and among the battery cells BC, the input / output characteristics of the entire assembled battery BP according to the battery characteristics of the battery cell BC that is most deteriorated. Because it is decided. For this reason, in order to make the assembled battery BP exhibit desired performance for a long period of time, it is important to equalize the temperature of the battery cells BC to reduce temperature variation.
  • an air-cooling cooling means using a blower and a cooling means using the cold heat of a vapor compression refrigeration cycle are generally used.
  • the air-cooling type cooling means using the blower only blows air or the like in the passenger compartment to the assembled battery, there may be a case where a cooling capacity sufficient to cool the assembled battery BP may not be obtained.
  • the cooling means using the cold heat of the refrigeration cycle has a high cooling capacity of the assembled battery BP, it is necessary to drive a compressor or the like that consumes a large amount of power while the vehicle is parked. This is undesirable because it leads to an increase in power consumption and an increase in noise.
  • the apparatus temperature control apparatus 1 of the present embodiment employs a thermosiphon system that adjusts the battery temperature of the assembled battery BP not by forced circulation of the refrigerant by the compressor but by natural circulation of the working fluid.
  • the device temperature control device 1 is a device that adjusts the battery temperature Tb of the assembled battery BP using the assembled battery BP mounted on the vehicle as a temperature control target device. As shown in FIG. 1, the device temperature control device 1 includes a device fluid circuit 10 through which a working fluid circulates and a control device 100. As the working fluid that circulates in the fluid circuit for equipment 10, refrigerants (for example, R134a, R1234yf) used in a vapor compression refrigeration cycle can be employed.
  • refrigerants for example, R134a, R1234yf
  • the device fluid circuit 10 is a heat pipe that performs heat transfer by evaporation and condensation of a working fluid, and is a loop-type thermometer in which a flow path through which a gaseous working fluid flows and a flow path through which a liquid working fluid flows are separated. It is configured to be a siphon.
  • the device fluid circuit 10 includes a device heat exchanger 12, a condenser 14, a gas passage portion 16, and a liquid passage portion 18.
  • the arrow DRg shown in FIG. 3 indicates the direction in which the vertical line extends, that is, the vertical direction.
  • the device fluid circuit 10 of the present embodiment is configured as a closed annular fluid circuit by connecting the device heat exchanger 12, the condenser 14, the gas passage portion 16, and the liquid passage portion 18 to each other. ing.
  • the device fluid circuit 10 is filled with a predetermined amount of working fluid in a state where the inside thereof is evacuated.
  • the equipment heat exchanger 12 is a heat exchanger that functions as an evaporator that absorbs heat from the assembled battery BP and evaporates the liquid working fluid when the assembled battery BP, which is a temperature control target apparatus, is cooled.
  • the equipment heat exchanger 12 is disposed at a position facing the bottom surface side of the assembled battery BP.
  • the equipment heat exchanger 12 has a thin, rectangular parallelepiped shape.
  • the equipment heat exchanger 12 constitutes a heat transfer section in which the equipment proximity section 121 close to the bottom surface of the assembled battery BP moves heat between the assembled battery BP and the equipment heat exchanger 12.
  • the device proximity portion 121 constitutes a portion that exchanges heat with the assembled battery BP in the device heat exchanger 12.
  • the device proximity portion 121 has a size that covers the entire area of the bottom surface portion of the assembled battery BP so that temperature distribution does not occur in each battery cell BC constituting the assembled battery BP.
  • the device proximity portion 121 is in contact with the bottom surface portion of the assembled battery BP so that heat can be transferred to and from the assembled battery BP.
  • the device heat exchanger 12 may have an arrangement configuration in which the device proximity portion 121 is separated from the bottom surface portion of the assembled battery BP as long as heat transfer between the device heat exchanger 12 and the assembled battery BP is possible.
  • the heat of the assembled battery BP is liquid in the equipment heat exchanger 12. It becomes difficult to be transmitted to the working fluid. That is, when the liquid level of the working fluid in the equipment heat exchanger 12 is separated from the equipment proximity portion 121 of the equipment heat exchanger 12, evaporation of the liquid working fluid existing in the equipment heat exchanger 12 is suppressed. Will be.
  • the liquid level of the working fluid is such that the heat of the assembled battery BP is transmitted to the liquid working fluid existing in the equipment heat exchanger 12. It is configured to contact the device proximity portion 121 of the exchanger 12. That is, the fluid circuit for equipment 10 of the present embodiment is configured such that the internal space of the equipment heat exchanger 12 is filled with a liquid working fluid containing bubbles when the assembled battery BP is cooled.
  • the liquid level LS of the working fluid existing inside the equipment heat exchanger 12 during battery cooling is It is the structure which contacts the apparatus proximity
  • the apparatus heat exchanger 12 is not limited to a hollow container, and may have a configuration in which a plurality of flow paths are formed by a heat exchange tube or the like.
  • the equipment heat exchanger 12 includes a gas outlet portion 122 to which the lower end portion of the gas passage portion 16 is connected, and a liquid inlet portion to which the lower end portion of the liquid passage portion 18 is connected. 123.
  • the gas outlet part 122 and the liquid inlet part 123 are provided on the side parts facing each other. Further, in the equipment heat exchanger 12 of the present embodiment, the gas outlet portion 122 and the liquid inlet portion 123 are provided at the same height in the vertical direction DRg.
  • the equipment heat exchanger 12 is made of a metal or alloy having excellent thermal conductivity such as aluminum or copper.
  • the apparatus heat exchanger 12 can also be comprised with materials other than a metal, it is desirable to comprise at least the apparatus proximity part 121 which comprises a heat-transfer part with the material excellent in heat conductivity.
  • the condenser 14 is a heat exchanger that condenses the gaseous working fluid evaporated in the equipment heat exchanger 12.
  • the condenser 14 is an air-cooled heat exchanger that exchanges heat between the blown air blown from the blower fan BF and the gaseous working fluid to condense the gaseous working fluid.
  • the condenser 14 is disposed above the equipment heat exchanger 12 in the vertical direction DRg so that the liquid working fluid condensed therein moves to the equipment heat exchanger 12 by its own weight.
  • the condenser 14 has a gas inlet portion 141 to which the upper end portion of the gas passage portion 16 is connected, and a liquid outlet portion 142 to which the upper end portion of the liquid passage portion 18 is connected.
  • the gas inlet portion 141 and the liquid outlet portion 142 are provided at portions facing each other in the vertical direction DRg.
  • the condenser 14 of the present embodiment is provided such that the gas inlet portion 141 is positioned above the liquid outlet portion 142 in the vertical direction DRg. Specifically, in the condenser 14 of the present embodiment, the gas inlet portion 141 is provided at the upper end portion of the condenser 14, and the liquid outlet portion 142 is provided at the lower end portion of the condenser 14.
  • the condenser 14 is made of a metal or alloy having excellent thermal conductivity such as aluminum or copper.
  • the condenser 14 may be configured to include a material other than metal. However, at least a portion that exchanges heat with air is preferably configured with a material having excellent thermal conductivity.
  • the blower fan BF is a device that blows out air in the vehicle interior or air outside the vehicle interior toward the heat exchanger 12 for equipment.
  • the blower fan BF functions as a heat dissipation amount adjusting unit that adjusts the heat dissipation amount of the working fluid existing in the condenser 14.
  • the blower fan BF is configured by an electric fan that operates when energized.
  • the blower fan BF is connected to the control device 100, and the blower capacity is controlled based on a control signal from the control device 100.
  • the gas passage 16 guides the gaseous working fluid evaporated in the equipment heat exchanger 12 to the condenser 14.
  • the gas passage portion 16 has a lower end connected to the gas outlet 122 of the equipment heat exchanger 12 and an upper end connected to the gas inlet 141 of the condenser 14.
  • the gas passage part 16 of this embodiment is comprised by piping in which the flow path through which a working fluid distribute
  • the gas passage part 16 shown in drawing is an example to the last.
  • the gas passage portion 16 can be appropriately changed in consideration of the mounting property on the vehicle.
  • the liquid passage portion 18 guides the liquid working fluid condensed in the condenser 14 to the equipment heat exchanger 12.
  • the liquid passage portion 18 has a lower end connected to the liquid inlet 123 of the equipment heat exchanger 12 and an upper end connected to the liquid outlet 142 of the condenser 14.
  • the liquid passage portion 18 of the present embodiment is configured by a pipe in which a flow path through which a working fluid flows is formed.
  • the part on the condenser 14 side is located above the part on the equipment heat exchanger 12 side.
  • the liquid passage portion 18 of the present embodiment is configured such that the part on the equipment heat exchanger 12 side is located at the same level or the upper side of the lowermost part of the equipment heat exchanger 12.
  • the liquid passage portion 18 shown in the drawing is merely an example.
  • the liquid passage portion 18 can be appropriately changed in consideration of the mounting property on the vehicle.
  • thermosiphon-type device temperature control apparatus 1 when the temperature of the working fluid existing on the condenser 14 side is higher than the battery temperature Tb of the assembled battery BP, the working fluid is condensed in the condenser 14 and heat exchange for the device is performed. There is almost no evaporation of the working fluid in the vessel 12. That is, in the apparatus temperature control apparatus 1, when the temperature of the working fluid on the condenser 14 side in the apparatus fluid circuit 10 is higher than the battery temperature Tb of the assembled battery BP, the cooling of the assembled battery BP is substantially stopped.
  • thermosiphon device temperature control device 1 when the temperature of the working fluid existing on the condenser 14 side becomes lower than the battery temperature Tb of the assembled battery BP, the working fluid evaporates in the device heat exchanger 12. The working fluid is condensed in the condenser 14. That is, in the device temperature control apparatus 1, when the temperature of the working fluid on the condenser 14 side in the device fluid circuit 10 is lower than the battery temperature Tb of the assembled battery BP, the battery temperature Tb of the assembled battery BP is within the optimum temperature range. Even so, the cooling of the assembled battery BP is continued.
  • thermosiphon device temperature control device 1 when the temperature of the working fluid in the condenser 14 is lower than the battery temperature Tb of the assembled battery BP, the battery temperature Tb of the assembled battery BP decreases to below the optimum temperature range. There are things to do.
  • the present inventors diligently studied the factors that cause the assembled battery BP to become too cold. As a result, when the battery pack BP is too cold, the liquid working fluid evaporates in the equipment proximity part 121 of the equipment heat exchanger 12 when the battery temperature Tb of the battery pack BP falls below the optimum temperature range. It turned out to be caused.
  • the present inventors consider that the excessive cooling of the assembled battery BP can be suppressed by suppressing the evaporation of the liquid working fluid in the device proximity part 121 of the device heat exchanger 12, and the operation of the device heat exchanger 12 is A configuration has been devised in which the fluid can be adjusted to a liquid amount that suppresses overcooling of the battery pack BP.
  • the device temperature control device 1 of the present embodiment includes a liquid storage unit 30, a cooling device 40 in order to adjust the amount of working fluid inside the device heat exchanger 12.
  • a branch passage opening / closing valve 50 is provided.
  • the liquid storage part 30 stores the liquid working fluid existing in the fluid circuit for equipment 10.
  • the liquid storage unit 30 is provided to be branched from the device fluid circuit 10.
  • the liquid storage part 30 of the present embodiment is connected to the device fluid circuit 10 via a branch connection part 31 provided in the gas passage part 16.
  • the branch connection portion 31 is configured by a three-way joint provided in the device fluid circuit 10.
  • the branch connection part 31 of this embodiment is provided in the site
  • the liquid storage section 30 of the present embodiment includes a tank section 32 that stores a liquid working fluid, and a branch passage section 33 that connects the tank section 32 and the device fluid circuit 10.
  • the tank part 32 is configured by a fixed capacity type container having a constant internal volume.
  • the tank portion 32 has a branch passage portion 33 connected to the upper surface portion thereof. One end side of the branch passage portion 33 is connected to the upper surface portion of the tank portion 32, and the other end side is connected to the branch connection portion 31.
  • the cooling device 40 is a device that cools the liquid storage unit 30 and condenses the gaseous working fluid existing in the liquid storage unit 30.
  • the cooling device 40 is provided adjacent to the lower surface portion of the tank portion 32.
  • the cooling device 40 of the present embodiment is composed of a Peltier element that generates cold when energized.
  • the operation of the cooling device 40 is controlled by the control device 100 described later.
  • the cooling device 40 is not limited to a Peltier element, and may be constituted by, for example, a heat exchanger through which a low-temperature refrigerant in a vapor compression refrigeration cycle flows.
  • the gaseous working fluid existing in the device fluid circuit 10 condenses at a low temperature in the device fluid circuit 10. For this reason, when the liquid storage unit 30 is cooled by the cooling device 40, the gaseous working fluid existing in the device fluid circuit 10 is condensed and stored in the liquid storage unit 30. That is, when the liquid storage unit 30 is cooled by the cooling device 40, the amount of the working fluid in the liquid storage unit 30 increases.
  • the liquid working fluid stored in the liquid storage unit 30 is vaporized as the temperature rises, so that the working fluid is stored in the liquid storage unit 30.
  • the liquid volume decreases.
  • the amount of the working fluid in the liquid storage unit 30 increases or decreases depending on whether or not the liquid storage unit 30 is cooled by the cooling device 40.
  • the cooling device 40 functions as a liquid storage amount adjustment unit that increases or decreases the liquid storage amount of the working fluid stored in the liquid storage unit 30.
  • the cooling device 40 of the present embodiment the liquid level of the working fluid inside the device heat exchanger 12 is positioned below the device proximity portion 121 when the condition that the temperature adjustment of the assembled battery BP is unnecessary is established.
  • the liquid storage amount of the liquid working fluid in the liquid storage unit 30 is increased. That is, the cooling device 40 interposes the gaseous working fluid below the part of the device heat exchanger 12 where heat is exchanged with the assembled battery BP when the condition for keeping the assembled battery BP is satisfied.
  • the liquid storage amount of the liquid working fluid in the liquid storage unit 30 is increased so that the liquid level is formed in the state.
  • the condition for keeping the assembled battery BP warm is also a condition that is satisfied when the temperature adjustment of the assembled battery BP is not necessary.
  • the liquid storage unit 30 of the present embodiment is configured such that the branch passage portion 33 is connected to the upper surface portion of the tank portion 32, and the liquid working fluid is not only in the tank portion 32 but also inside the branch passage portion 33. Can be stored. For this reason, in this embodiment, the sum total of the internal volume of the tank part 32 and the internal volume of the branch passage part 33 is used as the internal volume of the liquid storage part 30.
  • the liquid storage unit 30 satisfies a condition that does not require temperature adjustment of the assembled battery BP (that is, a condition for keeping the assembled battery BP warm), and the liquid level of the working fluid inside the equipment heat exchanger 12 is close to the equipment.
  • the volume is such that the liquid working fluid does not overflow when lowered to the lower side of the portion 121.
  • the liquid storage unit 30 of the present embodiment has a volume that does not overflow the liquid working fluid even if the liquid level of the working fluid inside the equipment heat exchanger 12 is lowered to a position close to the wall surface on the lower side. ing. Specifically, the liquid storage unit 30 has a volume capable of storing a liquid working fluid existing inside the equipment heat exchanger 12. That is, as shown in FIG. 5, the liquid storage unit 30 of the present embodiment has an internal volume Vc1 of the equipment heat exchanger so that the liquid working fluid existing in the equipment heat exchanger 12 can be stored. 12 is larger than the internal volume Ve1.
  • the liquid storage unit 30 has an internal volume Vc1 as shown in FIG. 6, which is a liquid amount when all the working fluid sealed in the device fluid circuit 10 is liquefied (that is, a total liquid amount All). It is desirable that the volume be sufficient to store liquid.
  • the branch passage opening / closing valve 50 is a fluid blocking unit that blocks the movement of the working fluid between the liquid storage unit 30 and the device fluid circuit 10.
  • the branch passage opening / closing valve 50 of this embodiment is provided in the branch passage portion 33.
  • the branch passage opening / closing valve 50 of the present embodiment is configured by an electric valve mechanism controlled by the control device 100.
  • the branch passage opening / closing valve 50 of the present embodiment is a normally open electromagnetic valve that closes when energized and opens when de-energized.
  • a control device 100 shown in FIG. 1 includes a microcomputer including a processor, a storage unit (for example, ROM, RAM), and peripheral circuits.
  • the storage unit of the control device 100 is configured with a non-transitional tangible storage medium.
  • the control device 100 performs various calculations and processes based on the control program stored in the storage unit.
  • the control device 100 controls the operation of various devices such as the blower fan BF, the cooling device 40, and the branch passage opening / closing valve 50 connected to the output side.
  • the control device 100 has various sensor groups including a battery temperature detection unit 101 and a condenser temperature detection unit 102 connected to its input side.
  • the battery temperature detection part 101 is comprised with the temperature sensor which detects battery temperature Tb of assembled battery BP.
  • the battery temperature detection unit 101 may include a plurality of temperature sensors.
  • the battery temperature detection unit 101 may be configured to output an average value of detection values of a plurality of temperature sensors to the control device 100, for example.
  • the condenser temperature detection unit 102 includes a temperature sensor that detects the temperature of the working fluid existing in the condenser 14.
  • the condenser temperature detection unit 102 is not limited to the configuration that directly detects the temperature of the working fluid existing in the condenser 14, and for example, the temperature of the working fluid existing in the condenser 14 is the surface temperature of the condenser 14. It may be configured to detect as
  • control device 100 is a device in which a plurality of control units configured by hardware and software for controlling various control devices connected to the output side are integrated.
  • the control device 100 includes a fan control unit 100a that controls the rotation speed of the blower fan BF, a valve control unit 100b that controls the branch passage opening / closing valve 50, a cooling control unit 100c that controls the operation of the cooling device 40, and the like. Yes.
  • the valve control unit 100b and the cooling control unit 100c in the control device 100 constitute a control unit that controls the liquid storage amount adjusting unit and the fluid blocking unit.
  • the control process shown in FIG. 7 is executed at a predetermined cycle by the control device 100 while the vehicle is traveling.
  • the apparatus temperature control apparatus 1 may be configured such that the control process shown in FIG. 7 is executed by the control apparatus 100 during parking.
  • Each control step shown in FIG. 7 constitutes a function realization unit that realizes various functions executed by the control device 100.
  • the control device 100 first reads various sensor signals in step S110. Specifically, in the process of step S110, the battery temperature Tb of the assembled battery BP detected by the battery temperature detection unit 101, and the temperature of the working fluid existing in the condenser 14 detected by the condenser temperature detection unit 102 Is read.
  • the control device 100 determines whether or not a condition that does not require temperature adjustment (specifically, cooling) of the assembled battery BP is satisfied (that is, a condition for keeping the assembled battery BP warm).
  • a condition that does not require temperature adjustment of the assembled battery BP that is, a condition for keeping the assembled battery BP warm
  • the battery temperature Tb of the assembled battery BP is based on a preset allowable lower limit temperature Tbmin of the assembled battery BP.
  • the condition that holds when the value is low is also adopted. That is, in step S112, control device 100 determines whether or not battery temperature Tb of assembled battery BP is lower than a preset allowable lower limit temperature Tbmin of assembled battery BP.
  • the allowable lower limit temperature Tbmin is set to a temperature (for example, 10 ° C.) at which the input / output characteristics of the assembled battery BP hardly deteriorate even when the battery temperature Tb of the assembled battery BP decreases.
  • the control device 100 performs cooling in which the battery temperature Tb of the assembled battery BP is set in advance in step S114. It is determined whether or not the temperature is higher than the necessary temperature Tbth.
  • the required cooling temperature Tbth is set to a temperature (for example, 40 ° C.) at which the input / output characteristics of the assembled battery BP hardly deteriorate even if the battery temperature Tb of the assembled battery BP increases.
  • the device temperature adjustment device 1 shifts to a cooling mode for cooling the assembled battery BP.
  • step S114 when it is determined as a result of the determination process in step S114 that the battery temperature Tb of the assembled battery BP is higher than the required cooling temperature Tbth, the control device 100 stops cooling by the cooling device 40 in step S116. At the same time, the branch passage opening / closing valve 50 is controlled to be opened. In step S ⁇ b> 118, the control device 100 activates the blower fan BF to start radiating the working fluid existing in the condenser 14.
  • the device temperature control device 1 when the battery temperature Tb of the assembled battery BP rises due to self-heating during traveling of the vehicle in the cooling mode, the heat of the assembled battery BP moves to the device heat exchanger 12.
  • the equipment heat exchanger 12 a part of the liquid working fluid evaporates by absorbing heat from the assembled battery BP.
  • the assembled battery BP is cooled by the latent heat of vaporization of the working fluid existing inside the equipment heat exchanger 12, and the temperature thereof decreases.
  • the gaseous working fluid evaporated in the equipment heat exchanger 12 flows out from the gas outlet section 122 of the equipment heat exchanger 12 to the gas passage section 16, and as shown by an arrow Fcg in FIG. 16 to condenser 14.
  • the gaseous working fluid is condensed by dissipating heat to the blown air from the blower fan BF.
  • the gaseous working fluid is liquefied and the specific gravity of the working fluid increases. Thereby, the working fluid liquefied inside the condenser 14 descends toward the liquid outlet 142 of the condenser 14 by its own weight.
  • the liquid working fluid condensed in the condenser 14 flows out from the liquid outlet part 142 of the condenser 14 to the liquid passage part 18, and as shown by an arrow Fcl in FIG. Move to vessel 12.
  • a part of the liquid working fluid that has flowed from the liquid inlet portion 123 via the liquid passage portion 18 evaporates by absorbing heat from the assembled battery BP.
  • the device temperature control device 1 circulates between the device heat exchanger 12 and the condenser 14 while the phase of the working fluid changes between the gas state and the liquid state in the cooling mode, thereby exchanging heat for the device.
  • the assembled battery BP is cooled by transporting heat from the condenser 12 to the condenser 14.
  • the equipment temperature control device 1 is configured such that the working fluid naturally circulates inside the equipment fluid circuit 10 without the driving force required for the circulation of the working fluid by a compressor or the like. For this reason, the apparatus temperature control apparatus 1 can implement
  • the device temperature adjustment device 1 stops the heat radiation of the working fluid in the condenser 14. . That is, as a result of the determination process in step S114, when it is determined that the battery temperature Tb of the assembled battery BP is equal to or lower than the cooling required temperature Tbth, the control device 100 stops cooling by the cooling device 40 in step S120 and The on-off valve 50 is controlled to be opened. Moreover, the control apparatus 100 stops the action
  • the device temperature control device 1 When the temperature of the working fluid existing in the condenser 14 is higher than the battery temperature Tb of the assembled battery BP, the device temperature control device 1 is configured from the device heat exchanger 12 even when the operation of the blower fan BF is stopped.
  • the assembled battery BP is cooled by transporting heat to the condenser 14. That is, in the apparatus temperature control apparatus 1, when the temperature of the working fluid existing in the condenser 14 is higher than the battery temperature Tb of the assembled battery BP, the cooling of the assembled battery BP is maintained as in the cooling mode. .
  • the device temperature control apparatus 1 of the present embodiment shifts to the overcooling prevention mode. To do. That is, as a result of the determination process in step S112, when it is determined that the battery temperature Tb of the assembled battery BP is lower than the allowable lower limit temperature Tbmin, the control device 100 starts cooling by the cooling device 40 in step S124 and branches. The passage opening / closing valve 50 is controlled to be opened. Moreover, the control apparatus 100 stops the action
  • the cooling of the liquid storage unit 30 by the cooling device 40 is started in a state where the branch passage portion 33 is opened by the branch passage opening / closing valve 50 in the overcooling prevention mode.
  • the control device 100 controls the cooling device 40 so that the temperature of the liquid storage unit 30 is lower than the temperature of the condenser 14.
  • the device temperature control apparatus 1 when the liquid storage unit 30 is cooled by the cooling device 40, the gaseous working fluid existing in the device fluid circuit 10 is condensed in the liquid storage unit 30. Thereby, in the apparatus temperature control apparatus 1, as shown in FIG. 9, the liquid working fluid condensed in the liquid storage part 30 is stored in the tank part 32 of the liquid storage part 30.
  • the apparatus temperature control apparatus 1 As the liquid working fluid stored in the liquid storage unit 30 increases, the liquid working fluid existing inside the apparatus heat exchanger 12 decreases. And in the heat exchanger 12 for apparatuses, as shown in FIG. 10, the liquid level LS of a working fluid falls to the downward side of the apparatus proximity part 121. As shown in FIG. That is, in the equipment heat exchanger 12, the gaseous working fluid is closer to the equipment proximity portion 121 than the liquid working fluid. Thereby, in the apparatus temperature control apparatus 1 of this embodiment, the heat absorption from the assembled battery BP by evaporation of the working fluid of the apparatus heat exchanger 12 is suppressed.
  • control device 100 determines whether or not the storage of the liquid working fluid in the liquid storage unit 30 is completed in step S ⁇ b> 128. To do.
  • the control device 100 of the present embodiment stores the liquid working fluid in the liquid storage unit 30 when a predetermined reference time has elapsed after the cooling device 40 starts cooling the cooling device 40 in step S126. Is determined to be complete.
  • step S1208 the storage of the liquid working fluid in the liquid storage unit 30 is completed regardless of the elapsed time since the cooling device 40 starts cooling the liquid storage unit 30 in step S126. It may be a process for determining whether or not.
  • control device 100 starts liquid cooling to the liquid storage unit 30 when the battery temperature Tb of the assembled battery BP rises to a predetermined temperature after starting the cooling of the liquid storage unit 30 by the cooling device 40 in step S126. It may be configured to determine that the storage of the working fluid is completed. In addition, the control device 100 monitors the liquid storage amount of the liquid working fluid in the actual liquid storage unit 30, and when the liquid storage amount exceeds a predetermined reference amount, It may be configured to determine that the working fluid has been stored.
  • step S128 When it is determined in step S128 that the storage of the liquid working fluid in the liquid storage unit 30 has been completed, the control device 100 stops cooling the liquid storage unit 30 by the cooling device 40 in step S130, and The branch passage portion 33 is closed by the branch passage opening / closing valve 50.
  • branch passage portion 33 is closed by the branch passage opening / closing valve 50 is that when the branch passage portion 33 is open, the liquid is transferred from the liquid storage portion 30 side to the device fluid circuit 10 side via the branch passage portion 33. This is because the working fluid may move.
  • the apparatus temperature control apparatus 1 is configured in the liquid storage unit 30 by cooling the liquid storage unit 30 with the cooling device 40 when a condition that does not require temperature adjustment of the assembled battery BP is satisfied.
  • the liquid storage amount of the liquid working fluid is increased.
  • the liquid working fluid in the liquid storage section 30 branched and connected to the device fluid circuit 10
  • the amount of liquid storage increases.
  • the liquid working fluid existing inside the device fluid circuit 10 decreases, and the liquid level of the working fluid in the device heat exchanger 12 decreases, so the liquid working fluid in the device heat exchanger 12 decreases.
  • the heat absorption from the assembled battery BP due to the evaporation of can be suppressed.
  • the liquid level of the working fluid inside the device heat exchanger 12 is below the device proximity portion 121. It is the structure which increases the liquid storage amount of the liquid working fluid in the liquid storage part 30 so that it may be located in. That is, when the condition for keeping the assembled battery BP is satisfied, the device temperature control apparatus 1 interposes a gaseous working fluid below the portion of the equipment heat exchanger 12 that exchanges heat with the assembled battery BP. The liquid storage amount of the liquid working fluid in the liquid storage unit 30 is increased so that the liquid level is formed in the state.
  • the liquid level of the working fluid inside the equipment heat exchanger 12 is Decreases to the lower side.
  • the assembled battery BP comes close to a part where the gaseous working fluid exists in the heat exchanger 12 for equipment.
  • the apparatus temperature control apparatus 1 of this embodiment since the heat absorption from the assembled battery BP by evaporation of the working fluid of the apparatus heat exchanger 12 is suppressed, the assembled battery BP is excessively cooled. It can be suppressed sufficiently.
  • a branch connection portion 31 for branching and connecting the liquid storage portion 30 to a portion located on the upper side of the portion located on the uppermost side in the vertical direction DRg of the device heat exchanger 12. is provided.
  • the internal volume of the liquid storage unit 30 is larger than the internal volume of the device heat exchanger 12. According to this, when the condition that the temperature adjustment of the assembled battery BP is not necessary is established, the liquid working fluid existing inside the equipment heat exchanger 12 can be stored in the liquid storage section 30. It is possible to sufficiently suppress heat absorption from the assembled battery BP due to evaporation of the working fluid in the heat exchanger 12.
  • the internal volume of the liquid storage unit 30 is configured to be able to store the liquid amount when all the working fluid filled in the device fluid circuit 10 is liquefied, that is, the total liquid amount. It is desirable. With such a configuration, it is possible to prevent the liquid working fluid from remaining in the equipment heat exchanger 12 when it is not necessary to adjust the temperature of the assembled battery BP.
  • the liquid storage unit 30 of this embodiment includes a tank unit 32 that stores a liquid working fluid. As described above, when the liquid storage unit 30 includes the tank unit 32, a sufficient internal volume for storing the liquid working fluid can be secured with a small number of components.
  • the liquid storage unit 30 of the present embodiment includes a branch passage unit 33 that connects the tank unit 32 and the device fluid circuit 10. And the sum total of the internal volume of the tank part 32 and the internal volume of the branch channel
  • path part 33 is a volume larger than the internal volume of the heat exchanger 12 for apparatuses.
  • the liquid storage part 30 is configured to include the branch passage part 33, it is possible to sufficiently secure an internal volume for storing the liquid working fluid while suppressing an increase in the capacity of the tank part 32. it can.
  • the device temperature control apparatus 1 uses the branch channel opening / closing valve 50 to branch the channel unit. 33 is closed.
  • the liquid storage unit 30 since the movement of the working fluid between the liquid storage unit 30 and the device fluid circuit 10 is interrupted after the liquid working fluid is stored in the liquid storage unit 30, the liquid storage unit 30 is not intended. It is possible to prevent the working fluid inside the fluid from moving to the device fluid circuit 10.
  • the total volume of the internal volume of the tank portion 32 and the internal volume of the branch passage portion 33 is set as the internal volume of the liquid storage portion 30, but is not limited to this.
  • the internal volume of the tank part 32 may be used as the internal volume of the liquid storage part 30.
  • the tank part 32 which comprises the liquid storage part 30 should just be the volume which can store the liquid working fluid which the internal volume exists in the inside of the apparatus heat exchanger 12.
  • FIG. Specifically, as shown in FIG. 11, the tank part 32 of the liquid storage part 30 has an internal volume Vt for the equipment so that the liquid working fluid existing in the equipment heat exchanger 12 can be stored. It only needs to be larger than the internal volume Ve2 of the heat exchanger 12.
  • the device temperature control apparatus 1 of the present modification has a gas passage portion 16 that is located on the lower side of the uppermost portion Hu in the device heat exchanger 12. 161 is comprised. Moreover, the apparatus temperature control apparatus 1 of this modification is comprised including the lower side liquid passage part 181 in which the liquid channel part 18 is located in the downward side rather than the site
  • the liquid storage part 30 of this modification has the liquid working fluid which exists in the inside of the heat exchanger 12 for apparatuses, when the conditions in which the internal volume does not need the temperature adjustment of assembled battery BP are satisfied, and The volume is such that a liquid working fluid that may flow into the equipment heat exchanger 12 can be stored. That is, as shown in FIG. 13, the liquid storage unit 30 of the present embodiment has an internal volume Vc3 of the internal volume Ve1 of the equipment heat exchanger 12, the internal volume Vpg of the lower side gas passage 161, and the lower side liquid. The total volume Ve3 of the internal volume Vpl of the passage portion 181 is larger.
  • the equipment temperature control apparatus 1 in addition to the liquid working fluid inside the equipment heat exchanger 12, the lower gas passage 161 and the lower side that may flow into the equipment heat exchanger 12.
  • the liquid storage part 30 can be stored including the liquid working fluid existing in the liquid passage part 181.
  • the branch connection portion 31 is located above the portion Hu of the equipment fluid circuit 10 that is located on the uppermost side in the vertical direction DRg of the equipment heat exchanger 12.
  • the present invention is not limited to this.
  • the branch connection portion 31 is a part located on the lower side of the part Hu located on the uppermost side in the vertical direction DRg of the equipment heat exchanger 12 in the equipment fluid circuit 10. May be provided.
  • the branch passage opening / closing valve 50 is opened only when the cooling device 40 is operated to store the liquid working fluid in the liquid storage unit 30 and is kept closed at other timings. .
  • the blower fan BF is exemplified as the heat release amount adjustment unit that adjusts the heat release amount of the working fluid existing in the condenser 14, but the heat release amount adjustment unit is not limited to the blower fan BF.
  • the heat release amount adjustment unit may be configured by a refrigerant side heat exchanger HEC through which a low-temperature refrigerant in a vapor compression refrigeration cycle flows.
  • the amount of heat release in the condenser 14 is changed by increasing or decreasing the rotational speed of the compressor in the refrigeration cycle.
  • the structure which controls the rotation speed of a compressor comprises the control part which controls a heat radiation amount adjustment part.
  • the heat radiation amount adjustment unit may be configured by a water-side heat exchanger HEL through which a low-temperature antifreeze liquid flowing in the cooling water circuit flows.
  • the heat radiation amount in the condenser 14 changes by increasing or decreasing the number of rotations of the water pump in the cooling water circuit.
  • the configuration that controls the rotation speed of the water pump constitutes the control unit that controls the heat release amount adjustment unit.
  • the cooling device 40 is desirably provided adjacent to the lower surface portion of the tank portion 32, but is not limited thereto.
  • the cooling device 40 may be provided, for example, on at least one location of the side surface of the tank portion 32 or the branch passage portion 33.
  • the liquid storage amount adjustment unit that increases or decreases the storage amount of the liquid working fluid in the liquid storage unit 30A is configured by the volume adjustment unit 60 that increases or decreases the internal volume of the liquid storage unit 30A instead of the cooling device 40. This is different from the first embodiment.
  • the device temperature control device 1 of the present embodiment includes a liquid storage unit 30 ⁇ / b> A, a volume adjustment unit in order to adjust the amount of working fluid inside the device heat exchanger 12. 60, a branch passage opening / closing valve 50A is provided.
  • the cooling device 40 is not provided in the apparatus temperature control apparatus 1 of this embodiment.
  • the liquid storage unit 30A stores a liquid working fluid existing in the device fluid circuit 10.
  • the liquid storage unit 30A is branched and connected to the device fluid circuit 10.
  • the liquid storage part 30 ⁇ / b> A of the present embodiment is connected to the device fluid circuit 10 via a branch connection part 31 ⁇ / b> A provided in the liquid passage part 18.
  • the branch connection portion 31 ⁇ / b> A is configured by a three-way joint provided in the device fluid circuit 10.
  • the branch connection portion 31 ⁇ / b> A of the present embodiment is provided in a part of the equipment fluid circuit 10 that is located on the lower side of the part Hu that is located on the uppermost side in the vertical direction DRg of the equipment heat exchanger 12. .
  • the liquid storage part 30A of the present embodiment includes a tank part 32A that stores a liquid working fluid, and a branch passage part 33A that connects the tank part 32A and the fluid circuit 10 for equipment.
  • the tank portion 32A has a branch passage portion 33A connected to the upper surface portion thereof.
  • One end side of the branch passage portion 33A is connected to the upper surface portion of the tank portion 32A, and the other end side is connected to the branch connection portion 31A.
  • the volume adjustment unit 60 increases or decreases the internal volume of the liquid storage unit 30A.
  • the volume adjusting unit 60 includes a volume variable unit 61 that varies the internal volume of the liquid storage unit 30A by sliding inside the liquid storage unit 30A, and an actuator 62 that drives the volume variable unit 61.
  • the capacity variable unit 61 of the present embodiment is configured by a block-like member disposed on the lower side of the liquid storage unit 30A so as to be slidable inside the liquid storage unit 30A.
  • the actuator 62 increases or decreases the internal volume of the liquid storage unit 30A by changing the position of the capacity variable unit 61 inside the liquid storage unit 30A.
  • the volume adjusting unit 60 is configured so that the internal volume of the liquid storage unit 30A becomes substantially zero when the variable capacity unit 61 is moved to the uppermost position by the actuator 62. .
  • the volume adjusting unit 60 is configured so that the internal volume of the liquid storage unit 30A becomes the maximum volume when the variable capacity unit 61 is moved to the lowest position by the actuator 62.
  • the operation of the volume adjusting unit 60 of the present embodiment is controlled by the control device 100.
  • the storage amount of the working fluid in the liquid storage unit 30A is increased or decreased by changing the position of the capacity variable unit 61 by the volume adjusting unit 60.
  • the volume adjustment unit 60 functions as a storage amount adjustment unit that increases or decreases the storage amount of the working fluid stored in the storage unit 30A. Note that the volume adjustment unit 60 described in the present embodiment is an example, and may be realized by another configuration.
  • the volume adjustment unit 60 of the present embodiment has the liquid level of the working fluid inside the device heat exchanger 12 on the lower side of the device proximity unit 121. It is the structure which increases the liquid storage amount of the liquid working fluid in 30 A of liquid storage parts so that it may be located. That is, when the condition for keeping the assembled battery BP warm is satisfied, the volume adjusting unit 60 interposes a gaseous working fluid below the portion of the equipment heat exchanger 12 that exchanges heat with the assembled battery BP. The liquid storage amount of the liquid storage part 30A is increased so as to form the liquid level in the wet state.
  • the liquid storage unit 30A has a maximum volume when the volume adjustment unit 60 increases the internal volume of the liquid storage unit 30A.
  • the liquid level of the working fluid inside the device heat exchanger 12 is below the device proximity unit 121.
  • the liquid working fluid is configured such that the liquid working fluid does not overflow from the liquid storage portion 30A.
  • the liquid storage unit 30A can store the liquid working fluid whose maximum volume when the internal volume of the liquid storage unit 30A is increased by the volume adjustment unit 60 is present in the heat exchanger 12 for equipment.
  • the volume is large. That is, as shown in FIG. 19, the volume adjusting unit 60 of the present embodiment increases the internal volume of the liquid storage unit 30 ⁇ / b> A so that the liquid working fluid existing in the equipment heat exchanger 12 can be stored.
  • the maximum volume Vc4 at this time is larger than the internal volume Ve4 of the equipment heat exchanger 12.
  • the liquid storage unit 30A has a maximum volume Vc4 that is the amount of liquid when all of the working fluid sealed in the device fluid circuit 10 is liquefied (ie, the total liquid amount All). It is desirable that the volume be sufficient to store liquid.
  • the branch passage opening / closing valve 50A is a fluid blocking unit that blocks the movement of the working fluid between the liquid storage unit 30A and the device fluid circuit 10.
  • the branch passage opening / closing valve 50A of the present embodiment is provided in the branch passage portion 33A.
  • the branch passage opening / closing valve 50 ⁇ / b> A of the present embodiment is configured by an electric valve mechanism controlled by the control device 100.
  • the branch passage opening / closing valve 50A of the present embodiment is a normally open electromagnetic valve that closes when energized and opens when de-energized.
  • control apparatus 100 of the apparatus temperature control apparatus 1 of this embodiment is demonstrated with reference to FIG.
  • the control device 100 controls the operation of various devices such as the blower fan BF, the volume adjusting unit 60, and the branch passage opening / closing valve 50A connected to the output side.
  • the control device 100 of the present embodiment includes a fan control unit 100a that controls the rotation speed of the blower fan BF, a valve control unit 100b that controls the branch passage opening / closing valve 50A, and a capacity control unit 100d that controls the operation of the volume adjustment unit 60. Etc. are aggregated.
  • the valve control unit 100b and the capacity control unit 100d in the control device 100 constitute a control unit that controls the liquid storage amount adjusting unit and the fluid blocking unit.
  • steps S210 to S214 are the same as the processing of steps S110 to S114 of FIG. 7 described in the first embodiment. For this reason, in the present embodiment, the description of steps S210 to S214 is simplified.
  • control device 100 first reads various sensor signals in step S210. Subsequently, in step S212, control device 100 determines whether or not battery temperature Tb of assembled battery BP is lower than a preset allowable lower limit temperature Tbmin of assembled battery BP.
  • step S212 when it is determined that the battery temperature Tb of the assembled battery BP is equal to or higher than the allowable lower limit temperature Tbmin, the control device 100 performs cooling in which the battery temperature Tb of the assembled battery BP is set in advance in step S214. It is determined whether or not the temperature is higher than the necessary temperature Tbth.
  • the device temperature adjustment device 1 shifts to a cooling mode for cooling the assembled battery BP. That is, as a result of the determination process in step S214, when it is determined that the battery temperature Tb of the assembled battery BP is higher than the required cooling temperature Tbth, the control device 100 minimizes the internal volume of the liquid storage unit 30A in step S216. At the same time, the branch passage opening / closing valve 50A is controlled to be opened. Moreover, the control apparatus 100 starts the heat dissipation of the working fluid which exists in the inside of the condenser 14 by operating the ventilation fan BF in step S218.
  • step S216 the control device 100 controls the volume adjusting unit 60 so that the internal volume of the liquid storage unit 30A becomes the minimum volume, and branches so that the branch passage unit 33A is opened.
  • the passage opening / closing valve 50A is controlled.
  • step S216 the control device 100 controls the branch passage opening / closing valve 50A so that the branch passage portion 33A is opened, and then the volume adjusting unit 60 so that the internal volume of the liquid storage unit 30A becomes the minimum volume. To control.
  • the device temperature control device 1 when the battery temperature Tb of the assembled battery BP rises due to self-heating during traveling of the vehicle in the cooling mode, the heat of the assembled battery BP moves to the device heat exchanger 12.
  • the equipment heat exchanger 12 a part of the liquid working fluid evaporates by absorbing heat from the assembled battery BP.
  • the assembled battery BP is cooled by the latent heat of vaporization of the working fluid existing inside the equipment heat exchanger 12, and the temperature thereof decreases.
  • the gaseous working fluid evaporated in the equipment heat exchanger 12 flows out from the gas outlet section 122 of the equipment heat exchanger 12 to the gas passage section 16, and as shown by an arrow Fcg in FIG. 16 to condenser 14.
  • the gaseous working fluid is condensed by dissipating heat to the blown air from the blower fan BF.
  • the gaseous working fluid is liquefied and the specific gravity of the working fluid increases. Thereby, the working fluid liquefied inside the condenser 14 descends toward the liquid outlet 142 of the condenser 14 by its own weight.
  • the liquid working fluid condensed in the condenser 14 flows out from the liquid outlet part 142 of the condenser 14 to the liquid passage part 18, and as shown by an arrow Fcl in FIG. Move to vessel 12.
  • the liquid working fluid that circulates in the liquid passage part 18 is not stored in the liquid storage part 30A, but is transferred to the equipment heat exchanger 12. Moving.
  • the device temperature control device 1 circulates between the device heat exchanger 12 and the condenser 14 while the phase of the working fluid changes between the gas state and the liquid state in the cooling mode, thereby exchanging heat for the device.
  • the assembled battery BP is cooled by transporting heat from the condenser 12 to the condenser 14.
  • the device temperature adjustment device 1 stops the heat radiation of the working fluid in the condenser 14. .
  • the control device 100 minimizes the internal volume of the liquid storage unit 30A in step S220.
  • the branch passage opening / closing valve 50A is controlled to be opened.
  • the control apparatus 100 stops the action
  • the control device 100 controls the branch passage opening / closing valve 50A so that the branch passage portion 33A is opened, and then the volume adjustment unit 60 so that the internal volume of the liquid storage unit 30A becomes the minimum volume. To control.
  • the equipment temperature control device 1 is configured from the equipment heat exchanger 12 even if the heat dissipation of the condenser 14 is stopped.
  • the assembled battery BP is cooled by transporting heat to the condenser 14.
  • the device temperature control apparatus 1 of the present embodiment shifts to the overcooling prevention mode so that the assembled battery BP is not excessively cooled. That is, as a result of the determination process in step S212, when it is determined that the battery temperature Tb of the assembled battery BP is lower than the allowable lower limit temperature Tbmin, the control device 100 maximizes the internal volume of the liquid storage unit 30A in step S224. At the same time, the branch passage opening / closing valve 50A is controlled to be opened. And the control apparatus 100 stops the action
  • step S224 the control device 100 controls the volume adjustment unit 60 so that the internal volume of the liquid storage unit 30A becomes the maximum volume, and branches so that the branch passage unit 33A is opened.
  • the passage opening / closing valve 50A is controlled.
  • step S224 the control device 100 controls the branch passage opening / closing valve 50A so that the branch passage portion 33A is opened, and then the volume adjustment unit 60 so that the internal volume of the liquid storage unit 30A becomes the maximum volume. To control.
  • the internal volume of the liquid storage part 30A becomes the maximum volume in the state in which the branch passage part 33A is opened during the supercooling prevention mode. For this reason, in the apparatus temperature control apparatus 1, as shown in FIG. 23, the liquid working fluid condensed by the condenser 14 is stored in the liquid storage part 30A.
  • the liquid working fluid stored in the liquid storage section 30A increases, the liquid working fluid existing inside the apparatus heat exchanger 12 decreases. Further, inside the equipment heat exchanger 12, as shown in FIG. 24, the liquid working fluid flows into the liquid storage section 30A as indicated by the arrow Fcl, so that the liquid level LS of the working fluid is changed to the equipment proximity section 121. It drops to the lower side. That is, in the equipment heat exchanger 12, the gaseous working fluid is closer to the equipment proximity portion 121 than the liquid working fluid. Thereby, in the apparatus temperature control apparatus 1 of this embodiment, the heat absorption from the assembled battery BP by evaporation of the working fluid of the apparatus heat exchanger 12 is suppressed.
  • the control device 100 determines whether or not the storage of the liquid working fluid in the liquid storage unit 30 ⁇ / b> A is completed in step S ⁇ b> 228. .
  • the control device 100 stores the liquid working fluid in the liquid storage unit 30A when a predetermined reference time has elapsed after setting the internal volume of the liquid storage unit 30A to the maximum volume. Determine that completed.
  • step S228 whether or not the storage of the liquid working fluid in the liquid storage unit 30A is completed in the process of step S228 regardless of the elapsed time since the internal volume of the liquid storage unit 30A is set to the maximum volume in step S226. It may be a process of determining.
  • the control device 100 operates the liquid to the liquid storage unit 30A when the battery temperature Tb of the assembled battery BP rises to a predetermined temperature. It may be configured to determine that the fluid storage is completed. In addition, the control device 100 monitors the liquid storage amount of the liquid working fluid in the actual liquid storage unit 30A, and when the liquid storage amount exceeds a predetermined reference amount, It may be configured to determine that the working fluid has been stored.
  • step S228 When it is determined in step S228 that the storage of the liquid working fluid in the liquid storage unit 30A is completed, the control device 100 closes the branch passage portion 33A by the branch passage opening / closing valve 50A in step S230.
  • branch passage portion 33A is closed by the branch passage opening / closing valve 50A is that when the branch passage portion 33A is in an open state, the liquid is transferred from the liquid storage portion 30A side to the device fluid circuit 10 side via the branch passage portion 33A. This is because the working fluid may move.
  • the apparatus temperature control apparatus 1 increases the internal volume of the liquid storage unit 30A by the volume adjustment unit 60 when the condition that the temperature adjustment of the assembled battery BP is not necessary is satisfied.
  • the liquid storage amount of the liquid working fluid in the liquid portion 30A is increased.
  • the liquid operation in the liquid storage section 30A provided to be branched to the fluid circuit for equipment 10 The amount of fluid stored increases. Along with this, the liquid working fluid existing in the equipment fluid circuit 10 decreases, and the liquid level of the working fluid in the equipment heat exchanger 12 decreases, so that the liquid working fluid in the equipment heat exchanger 12 evaporates. The heat absorption from the assembled battery BP can be suppressed.
  • the battery pack BP is excessively cooled when the temperature adjustment of the battery pack BP is not necessary, like the device temperature control apparatus 1 of the first embodiment. Can be sufficiently suppressed.
  • the device temperature control device 1 of the present embodiment is configured so that the liquid level of the working fluid inside the device heat exchanger 12 is positioned below the device proximity portion 121. In addition, the liquid storage amount of the liquid working fluid in the liquid storage section 30A is increased.
  • the apparatus temperature control apparatus 1 of this embodiment since the heat absorption from the assembled battery BP by evaporation of the working fluid of the apparatus heat exchanger 12 is suppressed, the assembled battery BP is excessively cooled. It can be suppressed sufficiently.
  • the liquid storage unit 30A is branched and connected to a part located on the lower side than the part located on the uppermost side in the vertical direction DRg of the equipment heat exchanger 12.
  • a branch connection 31A is provided.
  • the liquid working fluid existing in the device fluid circuit 10 flows into the liquid storage part 30A by its own weight, so that the liquid operation fluid in the device fluid circuit 10 is operated. It is possible to prevent the fluid from remaining.
  • the maximum volume when the internal volume of the liquid storage unit 30A is increased by the volume adjusting unit 60 is larger than the internal volume of the equipment heat exchanger 12. Yes. According to this, when the temperature adjustment of the assembled battery BP becomes unnecessary, the liquid working fluid existing inside the equipment heat exchanger 12 can be stored in the liquid storage section 30A. It is possible to sufficiently suppress the heat absorption from the assembled battery BP due to evaporation of the working fluid.
  • the maximum volume of the liquid storage unit 30A has a configuration capable of storing the liquid amount when all the working fluid filled in the fluid circuit for equipment 10 is liquefied. With such a configuration, it is possible to prevent the liquid working fluid from remaining in the equipment heat exchanger 12 when it is not necessary to adjust the temperature of the assembled battery BP.
  • the branch channel opening / closing valve 50A causes the branch channel unit to flow. 33A is closed.
  • the liquid storage unit 30A since the movement of the working fluid between the liquid storage unit 30A and the device fluid circuit 10 is blocked after the liquid working fluid is stored in the liquid storage unit 30A, the liquid storage unit 30A is not intended. It is possible to prevent the working fluid inside the fluid from moving to the device fluid circuit 10.
  • the branch connection portion 31A is located on the lower side of the part Hu in the vertical direction DRg of the equipment heat exchanger 12 in the equipment fluid circuit 10.
  • the present invention is not limited to this.
  • the branch connection portion 31 ⁇ / b> A is located above the portion Hu located on the uppermost side in the vertical direction DRg of the device heat exchanger 12 in the liquid passage portion 1 of the device fluid circuit 10. You may be provided in the site
  • the device temperature control device 1 of the present modification has a gas passage portion 16 that is located on the lower side of the uppermost portion Hu in the device heat exchanger 12. 161A is comprised. Moreover, the apparatus temperature control apparatus 1 of this modification is comprised including the downward
  • the liquid storage unit 30A of the present modification has a liquid working fluid existing in the equipment heat exchanger 12 when the maximum volume satisfies the condition that the temperature adjustment of the assembled battery BP is unnecessary, and The volume is such that a liquid working fluid that may flow into the equipment heat exchanger 12 can be stored. That is, as shown in FIG. 26, the liquid storage section 30A of the present embodiment has a maximum volume Vc5 of the internal volume Ve4 of the equipment heat exchanger 12, the internal volume Vpg1 of the lower gas passage section 161A, and the lower liquid. The total sum Ve5 of the internal volume Vpl1 of the passage portion 181A is larger.
  • the working fluid can be stored in the liquid storage part 30A.
  • the apparatus temperature control apparatus 1 of this modification when the temperature adjustment of assembled battery BP becomes unnecessary, the liquid level of the working fluid in the apparatus heat exchanger 12 can be sufficiently lowered. The heat absorption from the assembled battery BP in the heat exchanger 12 can be sufficiently suppressed.
  • the device temperature control device 1 of the present modification has an upper gas passage portion in which the gas passage portion 16 is located above the lowermost portion Hd in the device heat exchanger 12. 162 is comprised. Moreover, the apparatus temperature control apparatus 1 of this modification is comprised including the upper side liquid channel
  • the liquid storage part 30A of the present modification has a liquid working fluid existing inside the equipment heat exchanger 12 when the condition that its internal volume does not require temperature adjustment of the assembled battery BP, and The volume is such that a liquid working fluid that may flow into the equipment heat exchanger 12 can be stored. That is, as shown in FIG. 28, the liquid storage unit 30A of the present embodiment has a maximum volume Vc6 of the internal volume Ve4 of the equipment heat exchanger 12, the internal volume Vpg2 of the upper gas passage 162, and the upper liquid. The total volume Ve6 of the internal volume Vpl2 of the passage portion 182 is larger.
  • the working fluid can be stored in the liquid storage unit 30.
  • the apparatus temperature control apparatus 1 of this modification when the temperature adjustment of assembled battery BP becomes unnecessary, the liquid level of the working fluid in the apparatus heat exchanger 12 can be sufficiently lowered. The heat absorption from the assembled battery BP in the heat exchanger 12 can be sufficiently suppressed.
  • the internal volume of the liquid storage unit 30 or the maximum volume of the liquid storage unit 30A be larger than the internal volume of the equipment heat exchanger 12, but it is not limited to this. If the liquid storage parts 30 and 30 ⁇ / b> A have such a volume that the liquid working fluid does not overflow when the liquid level of the working fluid inside the equipment heat exchanger 12 decreases to the lower side of the equipment proximity part 121. The inner volume or the maximum volume may be smaller than the inner volume of the equipment heat exchanger 12.
  • the device temperature control device 1 may be configured such that the device heat exchanger 12 is disposed at a position facing the side surface of the assembled battery BP.
  • the liquid level LS of the working fluid may not be lowered below the equipment proximity portion 121.
  • the total amount of the liquid working fluid existing in the equipment heat exchanger 12 is stored in the liquid storage section. It is desirable to move to 30, 30A.
  • the gas outlet portion 122 and the liquid inlet portion 123 of the equipment heat exchanger 12 are provided on the side portions facing each other, but the present invention is not limited thereto.
  • the gas outlet part 122 and the liquid inlet part 123 may be provided on the upper surface part of the equipment heat exchanger 12, for example.
  • the gas outlet 122 and the liquid inlet 123 of the equipment heat exchanger 12 may have different heights in the vertical direction DRg. In this case, it is desirable that the gas outlet portion 122 is positioned higher than the liquid inlet portion 123.
  • the device temperature control device 1 can adjust the temperatures of a plurality of devices.
  • the battery temperature Tb of the assembled battery BP is lower than the allowable lower limit temperature Tbmin of the assembled battery BP as a condition that does not require temperature adjustment of the assembled battery BP (that is, a condition for keeping the assembled battery BP warm).
  • the condition that does not require the temperature adjustment of the assembled battery BP is a condition that is satisfied when, for example, the ambient temperature around the assembled battery BP is equal to or lower than a predetermined temperature. Also good.
  • the present invention is not limited to this. That is, the application target of the device temperature adjustment device 1 of the present disclosure is not limited to the assembled battery BP, and can be widely applied to devices that adjust the temperature of other devices.
  • the apparatus temperature control apparatus is a liquid storage part which stores the liquid working fluid which exists in the fluid circuit for apparatuses, and the liquid state in a liquid storage part.
  • a liquid storage amount adjusting unit that increases or decreases the storage amount of the working fluid.
  • the liquid storage amount adjustment unit is configured to increase the liquid storage amount of the liquid working fluid in the liquid storage unit when the condition for keeping the temperature adjustment target device is established.
  • the liquid storage amount adjustment unit of the device temperature adjustment device is a part that exchanges heat with the temperature adjustment target device in the device heat exchanger when a condition for keeping the temperature adjustment target device is established.
  • the liquid storage amount of the liquid working fluid in the liquid storage section is increased so that the liquid level is formed in a state where the gaseous working fluid is interposed on the lower side.
  • the liquid level of the working fluid inside the device heat exchanger decreases to the lower side of the part that exchanges heat with the temperature control target device.
  • the target device is close to a portion where the gaseous working fluid exists in the heat exchanger for the device.
  • the device temperature control device is configured such that the liquid storage amount adjustment unit includes a cooling device for cooling the liquid storage unit.
  • the liquid storage amount adjustment unit cools the working fluid existing inside the liquid storage unit by the cooling device when the condition for keeping the temperature control target device is established, thereby reducing the liquid working fluid in the liquid storage unit. It is configured to increase the amount of liquid storage.
  • the storage unit is cooled by the cooling device to increase the storage amount of the liquid working fluid in the storage unit, the liquid working fluid existing in the fluid circuit for the device can be reduced. Can do. Thereby, the heat absorption from the temperature control object apparatus by evaporation of the liquid working fluid in the apparatus heat exchanger can be suppressed.
  • a liquid storage part in the apparatus fluid circuit of an apparatus temperature control apparatus, in the site
  • the temperature of the temperature control target device when the temperature of the temperature control target device is adjusted, it is possible to prevent the liquid working fluid from flowing into the liquid storage unit instead of the device heat exchanger due to its own weight or the like. That is, when the temperature of the temperature control target device is adjusted, the flow of the liquid working fluid into the liquid storage unit is suppressed, so that a sufficient flow rate of the working fluid circulating in the device fluid circuit can be secured. it can.
  • the internal volume of the liquid storage part is larger than the internal volume of the heat exchanger for equipment. According to this, the liquid working fluid existing inside the equipment heat exchanger can be stored in the liquid storage part when the condition that the temperature adjustment of the temperature control target equipment is unnecessary is established. It is possible to sufficiently suppress heat absorption from the temperature control target device due to evaporation of the working fluid in the exchanger.
  • the liquid storage part of the device temperature control device includes a tank part that stores a liquid working fluid. As described above, if the liquid storage part includes the tank part, the internal volume for storing the liquid working fluid can be sufficiently secured with a small number of parts.
  • the liquid storage part of the equipment temperature control device includes a branch passage part that connects the tank part and the fluid circuit for equipment.
  • the liquid storage part is a volume whose sum total of the internal volume of a tank part and the internal volume of a branch channel
  • path part is larger than the internal volume of the heat exchanger for apparatuses.
  • the equipment temperature control device includes a portion where the gas passage portion is located on a lower side than a portion located on the uppermost side in the equipment heat exchanger, that is, a lower gas passage portion. It consists of Further, the liquid passage portion is configured to include a portion located on the lower side of the uppermost portion in the equipment heat exchanger, that is, a lower liquid passage portion.
  • the internal volume of the liquid storage part is larger than the sum of the internal volume of the equipment heat exchanger, the internal volume of the lower gas passage part, and the internal volume of the lower liquid passage part.
  • the lower gas passage that may flow into the equipment heat exchanger in addition to the liquid working fluid inside the equipment heat exchanger when the condition for keeping the temperature control target equipment is established. It is possible to store in the liquid storage part including the liquid working fluid existing in the part and the lower liquid passage part. For this reason, in the apparatus temperature control apparatus of this indication, the heat absorption from the temperature control object apparatus by evaporation of the liquid working fluid in the apparatus heat exchanger can fully be suppressed.
  • the device temperature control device is configured such that the total volume of the working fluid filled in the device fluid circuit is liquefied and the internal volume of the liquid storage part is The volume of the entire liquid can be stored.
  • the liquid storage amount adjustment unit of the device temperature control device includes a volume adjustment unit that increases or decreases the internal volume of the liquid storage unit.
  • the liquid storage amount adjustment unit increases the internal volume of the liquid storage unit by the volume adjustment unit when a condition for keeping the temperature adjustment target device is established, thereby storing the liquid working fluid in the liquid storage unit. It becomes the structure which increases quantity.
  • the volume adjustment unit increases the internal volume of the liquid storage unit to increase the amount of liquid working fluid stored in the liquid storage unit, the liquid working fluid existing in the fluid circuit for equipment is reduced. Can be made. Thereby, the heat absorption from the temperature control object apparatus by evaporation of the liquid working fluid in the apparatus heat exchanger can be suppressed.
  • the maximum volume of the liquid storage unit when the internal volume of the liquid storage unit is increased by the volume adjustment unit is greater than the internal volume of the device heat exchanger. It has a large volume.
  • the liquid working fluid existing in the heat exchanger for equipment can be stored in the liquid storage section when the condition for keeping the temperature control target equipment is established, the operation of the equipment heat exchanger can be performed. It is possible to sufficiently suppress the heat absorption from the temperature control target device due to the evaporation of the fluid.
  • the equipment temperature control device is configured such that the gas passage portion is located on a lower side than the uppermost position in the vertical direction of the equipment heat exchanger, that is, the lower gas passage.
  • the liquid passage portion is configured to include a portion located on the lower side of the uppermost portion in the equipment heat exchanger, that is, a lower liquid passage portion.
  • the maximum volume when the internal volume of the liquid storage unit is increased by the volume adjusting unit is the sum of the internal volume of the equipment heat exchanger, the internal volume of the lower gas passage unit, and the internal volume of the lower liquid channel unit. It has a larger volume.
  • the lower gas passage that may flow into the equipment heat exchanger in addition to the liquid working fluid inside the equipment heat exchanger when the condition for keeping the temperature control target equipment is established. It is possible to store in the liquid storage part including the liquid working fluid existing in the part and the lower liquid passage part. For this reason, in the apparatus temperature control apparatus of this indication, the heat absorption from the temperature control object apparatus by evaporation of the liquid working fluid in the apparatus heat exchanger can fully be suppressed.
  • the equipment temperature control device is configured such that the gas passage portion is located on the upper side of the vertically located part of the equipment heat exchanger, that is, the upper gas passage. Part. Further, the liquid passage portion is configured to include a portion located on the lower side of the uppermost portion in the equipment heat exchanger, that is, an upper liquid passage portion. And the maximum volume of the liquid storage part when the internal volume of the liquid storage part is increased by the volume adjusting part is the internal volume of the heat exchanger for equipment, the internal volume of the upper gas passage part, the upper volume of the upper liquid passage part The volume is larger than the total internal volume.
  • the liquid working fluid existing in the upper gas passage section and the lower liquid passage section that may flow into the equipment heat exchanger is also present. It can be stored in the liquid storage part. For this reason, in the apparatus temperature control apparatus of this indication, the heat absorption from the temperature control object apparatus by evaporation of the liquid working fluid in the apparatus heat exchanger can fully be suppressed.
  • the device temperature control device is configured such that when the amount of the working fluid filled in the device fluid circuit is liquefied, the liquid amount is stored by the volume adjusting unit.
  • the maximum volume of the liquid storage part when the internal volume of the liquid is increased is a volume capable of storing the total liquid amount.
  • the maximum volume when the internal volume of the liquid storage part is increased becomes larger than the volume when the entire amount of the working fluid filled in the fluid circuit for equipment is liquefied.
  • the device temperature control device stores the liquid in the device fluid circuit at a position located on a lower side than a position located on the uppermost side in the vertical direction of the device heat exchanger.
  • a branch connection part for branching the parts is provided.
  • the liquid working fluid existing in the device fluid circuit flows into the liquid storage part by its own weight, so that the liquid working fluid remains in the device fluid circuit. That can be suppressed.
  • the device temperature adjustment device is configured such that when the condition for keeping the temperature adjustment target device is lower than the allowable lower limit temperature of the temperature adjustment target device, the temperature of the temperature adjustment target device is set in advance. It is a condition that holds.
  • the liquid storage amount of the liquid working fluid in the liquid storage portion branched and connected to the device fluid circuit is increased. It is possible to sufficiently suppress the adjustment target device from being excessively cooled.
  • the device temperature control device includes a fluid blocking unit that blocks movement of the working fluid between the liquid storage unit and the device fluid circuit, a liquid storage amount adjusting unit, and a fluid blocking unit.
  • the device temperature adjustment device is configured by a battery pack in which the temperature adjustment target device is mounted on a vehicle. According to this, since the temperature of the assembled battery can be prevented from excessively decreasing, the output characteristics are deteriorated due to the suppression of chemical changes in the assembled battery, and the input characteristics are deteriorated due to an increase in the internal resistance of the assembled battery. It can be avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)

Abstract

This device temperature adjusting apparatus (1) is provided with: a device heat exchanger (12) which absorbs heat from a device to be subjected to temperature adjustment, and evaporates a liquid working fluid; and a condenser (14) which condenses the working fluid evaporated into a gas by the device heat exchanger. The device temperature adjusting apparatus is provided with: a gas passage (16) which guides, to the condenser, the working fluid evaporated into a gas by the device heat exchanger; and a liquid passage (18) which guides, to the device heat exchanger, the working fluid condensed into a liquid by the condenser. The device temperature adjusting apparatus is further provided with liquid storage units (30, 30A) which are provided so as to branch from a device fluid circuit (10) including the device heat exchanger, the condenser, the gas passage, and the liquid passage, and which store the liquid working fluid present in the device fluid circuit. The device temperature adjusting apparatus is also provided with liquid storage amount adjustment units (40, 60) which increase and reduce the amount of the liquid working fluid stored in the liquid storage units. The liquid storage amount adjustment units are configured so as to increase the amount of the liquid working fluid stored in the liquid storage units, when a condition for maintaining the temperature of the device to be subjected to temperature adjustment has been established.

Description

機器温調装置Equipment temperature controller 関連出願への相互参照Cross-reference to related applications
 本出願は、2016年9月9日に出願された日本出願番号2016-176787号に基づくものであって、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2016-176787 filed on September 9, 2016, the contents of which are incorporated herein by reference.
 本開示は、少なくとも1つの温調対象機器の温度を調整可能な機器温調装置に関する。 This disclosure relates to a device temperature control device that can adjust the temperature of at least one temperature control target device.
 従来、ループ型のサーモサイフォン方式の冷却装置によって、機器の温度調整するものが知られている(例えば、特許文献1参照)。この特許文献1には、凝縮器の意図しない温度低下による温調対象の過冷却を抑えるために、蒸発器と凝縮器との間の液管に開閉弁を設け、蒸発器を通過した空気の温度に応じて開閉弁を開閉する技術が開示されている。 Conventionally, a device that adjusts the temperature of a device by a loop-type thermosyphon cooling device is known (see, for example, Patent Document 1). In Patent Document 1, in order to suppress overcooling of a temperature control target due to an unintended temperature drop of the condenser, an open / close valve is provided in a liquid pipe between the evaporator and the condenser, and the air passing through the evaporator A technique for opening and closing an on-off valve according to temperature is disclosed.
特開2012-9646号公報JP 2012-9646 A
 本発明者らの詳細な検討の結果、特許文献1に記載の冷却器では、蒸発器と凝縮器との間の液管を開閉弁で閉鎖したとしても、温調対象が過度に冷却されてしまう場合があることが判った。すなわち、特許文献1の如く、蒸発器と凝縮器との間の液管を開閉弁で閉鎖したとしても、蒸発器が液状の冷媒で満たされていると、当該液状の冷媒が蒸発することで、温調対象が過度に冷却されてしまう。 As a result of detailed investigations by the present inventors, in the cooler described in Patent Document 1, even if the liquid pipe between the evaporator and the condenser is closed by an on-off valve, the temperature control target is excessively cooled. It was found that there was a case. That is, as in Patent Document 1, even if the liquid pipe between the evaporator and the condenser is closed by an on-off valve, if the evaporator is filled with a liquid refrigerant, the liquid refrigerant evaporates. The temperature control target is excessively cooled.
 本開示は、温調対象機器の温度調整が不要となる際に温調対象機器が過度に冷却されてしまうことを抑制可能な機器温調装置を提供することを目的とする。 This disclosure is intended to provide a device temperature control device capable of suppressing the temperature control target device from being excessively cooled when temperature control of the temperature control target device is not required.
 本開示は、少なくとも1つの温調対象機器の温度を調整可能な機器温調装置を対象としている。 This disclosure is directed to a device temperature control device that can adjust the temperature of at least one temperature control target device.
 本開示の1つの観点によれば、機器温調装置は、
 温調対象機器から吸熱して液状の作動流体を蒸発させる機器用熱交換器と、
 機器用熱交換器よりも上方に配置され、機器用熱交換器にて蒸発したガス状の作動流体を凝縮させる凝縮器と、
 機器用熱交換器にて蒸発したガス状の作動流体を凝縮器に導くガス通路部と、
 凝縮器にて凝縮した液状の作動流体を機器用熱交換器に導く液通路部と、
 機器用熱交換器、凝縮器、ガス通路部、および液通路部を含んで構成される機器用流体回路から分岐して設けられ、機器用流体回路の内部に存する液状の作動流体を貯留する貯液部(30)と、
 貯液部における液状の作動流体の貯液量を増減させる貯液量調整部と、を備える。
According to one aspect of the present disclosure, the device temperature control apparatus includes:
A heat exchanger for equipment that absorbs heat from the temperature control target equipment and evaporates the liquid working fluid;
A condenser disposed above the equipment heat exchanger and condensing the gaseous working fluid evaporated in the equipment heat exchanger;
A gas passage for guiding the gaseous working fluid evaporated in the equipment heat exchanger to the condenser;
A liquid passage portion for guiding the liquid working fluid condensed in the condenser to the heat exchanger for equipment,
A storage for storing a liquid working fluid that is branched from an equipment fluid circuit including an equipment heat exchanger, a condenser, a gas passage section, and a liquid passage section, and that resides inside the equipment fluid circuit. A liquid part (30);
A liquid storage amount adjusting unit that increases or decreases the liquid storage amount of the liquid working fluid in the liquid storage unit.
 そして、貯液量調整部は、温調対象機器を保温する条件が成立した際に、貯液部における液状の作動流体の貯液量を増加させる構成となっている。 The liquid storage amount adjustment unit is configured to increase the liquid storage amount of the liquid working fluid in the liquid storage unit when a condition for keeping the temperature control target device warm is established.
 これによれば、温調対象機器を保温する条件が成立すると、機器用流体回路から分岐して設けられた貯液部における液状の作動流体の貯液量が増加する。これに伴って、機器用流体回路の内部に存する液状の作動流体が減少し、機器用熱交換器における作動流体の液面が低下するので、機器用熱交換器における液状の作動流体の蒸発による温調対象機器からの吸熱を抑制することができる。 According to this, when the condition for maintaining the temperature control target device is established, the liquid storage amount of the liquid working fluid in the liquid storage portion provided by branching from the device fluid circuit increases. Along with this, the liquid working fluid existing in the fluid circuit for equipment is reduced, and the liquid level of the working fluid in the equipment heat exchanger is lowered, so that the liquid working fluid in the equipment heat exchanger is evaporated. The endothermic heat from the temperature control target device can be suppressed.
 従って、本開示の機器温調装置では、温調対象機器の温度調整が不要となる際に温調対象機器が過度に冷却されてしまうことを充分に抑えることができる。 Therefore, in the device temperature adjustment device of the present disclosure, it is possible to sufficiently suppress the temperature adjustment target device from being excessively cooled when the temperature adjustment of the temperature adjustment target device becomes unnecessary.
第1実施形態の機器温調装置の模式的な全体構成図である。It is a typical whole block diagram of the apparatus temperature control apparatus of 1st Embodiment. 組電池の入出力特性を説明するための説明図である。It is explanatory drawing for demonstrating the input-output characteristic of an assembled battery. 第1実施形態の機器温調装置の模式図である。It is a schematic diagram of the apparatus temperature control apparatus of 1st Embodiment. 第1実施形態の機器温調装置の機器用熱交換器の内部を示す模式図である。It is a schematic diagram which shows the inside of the apparatus heat exchanger of the apparatus temperature control apparatus of 1st Embodiment. 第1実施形態の貯液部の内容積を説明するための説明図である。It is explanatory drawing for demonstrating the internal volume of the liquid storage part of 1st Embodiment. 第1実施形態の貯液部の内容積を説明するための説明図である。It is explanatory drawing for demonstrating the internal volume of the liquid storage part of 1st Embodiment. 第1実施形態の機器温調装置の制御装置が実行する制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the control processing which the control apparatus of the apparatus temperature control apparatus of 1st Embodiment performs. 第1実施形態の機器温調装置の冷却モード時における作動を説明するための説明図である。It is explanatory drawing for demonstrating the action | operation at the time of the cooling mode of the apparatus temperature control apparatus of 1st Embodiment. 第1実施形態の機器温調装置の過冷却防止モード時における作動を説明するための説明図である。It is explanatory drawing for demonstrating the action | operation at the time of the overcooling prevention mode of the apparatus temperature control apparatus of 1st Embodiment. 過冷却防止モード時における機器用熱交換器の内部を示す模式図である。It is a schematic diagram which shows the inside of the apparatus heat exchanger at the time of a supercooling prevention mode. 第1実施形態の第1変形例となる機器温調装置における貯液部の内容積を説明するための説明図である。It is explanatory drawing for demonstrating the internal volume of the liquid storage part in the apparatus temperature control apparatus used as the 1st modification of 1st Embodiment. 第1実施形態の第2変形例となる機器温調装置の模式図である。It is a schematic diagram of the apparatus temperature control apparatus used as the 2nd modification of 1st Embodiment. 第1実施形態の第2変形例となる機器温調装置における貯液部の内容積を説明するための説明図である。It is explanatory drawing for demonstrating the internal volume of the liquid storage part in the apparatus temperature control apparatus used as the 2nd modification of 1st Embodiment. 第1実施形態の第3変形例となる機器温調装置の模式図である。It is a schematic diagram of the apparatus temperature control apparatus used as the 3rd modification of 1st Embodiment. 第1実施形態の第4変形例となる機器温調装置の要部を示す模式図である。It is a schematic diagram which shows the principal part of the apparatus temperature control apparatus used as the 4th modification of 1st Embodiment. 第1実施形態の第5変形例となる機器温調装置の要部を示す模式図である。It is a schematic diagram which shows the principal part of the apparatus temperature control apparatus used as the 5th modification of 1st Embodiment. 第2実施形態の機器温調装置の模式的な全体構成図である。It is a typical whole block diagram of the apparatus temperature control apparatus of 2nd Embodiment. 第2実施形態の機器温調装置の模式図である。It is a schematic diagram of the apparatus temperature control apparatus of 2nd Embodiment. 第2実施形態の貯液部の最大容積を説明するための説明図である。It is explanatory drawing for demonstrating the maximum volume of the liquid storage part of 2nd Embodiment. 第2実施形態の貯液部の最大容積を説明するための説明図である。It is explanatory drawing for demonstrating the maximum volume of the liquid storage part of 2nd Embodiment. 第2実施形態の機器温調装置の制御装置が実行する制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the control processing which the control apparatus of the apparatus temperature control apparatus of 2nd Embodiment performs. 第2実施形態の機器温調装置の冷却モード時における作動を説明するための説明図である。It is explanatory drawing for demonstrating the action | operation at the time of the cooling mode of the apparatus temperature control apparatus of 2nd Embodiment. 第2実施形態の機器温調装置の過冷却防止モード時における作動を説明するための説明図である。It is explanatory drawing for demonstrating the action | operation at the time of the overcooling prevention mode of the apparatus temperature control apparatus of 2nd Embodiment. 過冷却防止モード時における機器用熱交換器の内部を示す模式図である。It is a schematic diagram which shows the inside of the apparatus heat exchanger at the time of a supercooling prevention mode. 第2実施形態の第1変形例となる機器温調装置の模式図である。It is a schematic diagram of the apparatus temperature control apparatus used as the 1st modification of 2nd Embodiment. 第2実施形態の第2変形例となる機器温調装置における貯液部の最大容積を説明するための説明図である。It is explanatory drawing for demonstrating the maximum volume of the liquid storage part in the apparatus temperature control apparatus used as the 2nd modification of 2nd Embodiment. 第2実施形態の第3変形例となる機器温調装置の模式図である。It is a schematic diagram of the apparatus temperature control apparatus used as the 3rd modification of 2nd Embodiment. 第2実施形態の第3変形例となる機器温調装置における貯液部の最大容積を説明するための説明図である。It is explanatory drawing for demonstrating the maximum volume of the liquid storage part in the apparatus temperature control apparatus used as the 3rd modification of 2nd Embodiment.
 以下、本開示の実施形態について図面を参照して説明する。なお、以下の実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。また、実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。以下の実施形態は、特に組み合わせに支障が生じない範囲であれば、特に明示していない場合であっても、各実施形態同士を部分的に組み合わせることができる。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, the same or equivalent parts as those described in the preceding embodiments are denoted by the same reference numerals, and the description thereof may be omitted. Further, in the embodiment, when only a part of the constituent elements are described, the constituent elements described in the preceding embodiment can be applied to the other parts of the constituent elements. The following embodiments can be partially combined with each other even if they are not particularly specified as long as they do not cause any trouble in the combination.
 (第1実施形態)
 本実施形態について、図1~図10を参照して説明する。本実施形態では、本開示の機器温調装置1を車両に搭載された組電池BPの電池温度Tbを調節する装置に適用した例について説明する。図1に示す機器温調装置1を搭載する車両としては、組電池BPを電源とする図示しない走行用電動モータによって走行可能な電気自動車、ハイブリッド自動車等を想定している。
(First embodiment)
This embodiment will be described with reference to FIGS. In the present embodiment, an example in which the device temperature control device 1 of the present disclosure is applied to a device that adjusts the battery temperature Tb of the assembled battery BP mounted on a vehicle will be described. As the vehicle on which the device temperature control device 1 shown in FIG. 1 is mounted, an electric vehicle, a hybrid vehicle, and the like that can be driven by a traveling electric motor (not shown) that uses the assembled battery BP as a power source are assumed.
 組電池BPは、直方体形状の複数の電池セルBCを積層配置した積層体で構成されている。組電池BPを構成する複数の電池セルBCは、電気的に直列に接続されている。組電池BPを構成する各電池セルBCは、充放電可能な二次電池(例えば、リチウムイオン電池、鉛蓄電池)で構成されている。なお、電池セルBCは、直方体形状に限らず、円筒形状等の他の形状を有していてもよい。また、組電池BPは、電気的に並列に接続された電池セルBCを含んで構成されていてもよい。 The assembled battery BP is composed of a stacked body in which a plurality of rectangular parallelepiped battery cells BC are stacked. The plurality of battery cells BC constituting the assembled battery BP are electrically connected in series. Each battery cell BC constituting the assembled battery BP is configured by a chargeable / dischargeable secondary battery (for example, a lithium ion battery or a lead storage battery). The battery cell BC is not limited to a rectangular parallelepiped shape, and may have another shape such as a cylindrical shape. The assembled battery BP may include a battery cell BC electrically connected in parallel.
 組電池BPは、図示しない電力変換装置およびモータジェネレータに接続されている。電力変換装置は、例えば、組電池BPから供給された直流電流を交流電流に変換し、変換した交流電流を走行用電動モータ等の各種電気負荷に対して供給(すなわち、放電)する装置である。また、モータジェネレータは、車両の回生時に、車両の走行エネルギを電気エネルギに逆変換し、逆変換した電気エネルギを回生電力として電力変換装置等を介して組電池BPに対して供給する装置である。 The assembled battery BP is connected to a power converter and a motor generator (not shown). The power conversion device is, for example, a device that converts a direct current supplied from the assembled battery BP into an alternating current, and supplies (that is, discharges) the converted alternating current to various electric loads such as a traveling electric motor. . The motor generator is a device that reversely converts the traveling energy of the vehicle into electric energy during regeneration of the vehicle, and supplies the reversely converted electric energy as regenerative power to the assembled battery BP via a power conversion device or the like. .
 組電池BPは、車両の走行中の電力供給等を行うと自己発熱することで、組電池BPが過度に高温になることがある。組電池BPが過度に高温になると、図2に示すように、電池セルBCの劣化が促進されることから、自己発熱が少なくなるように出力および入力を制限する必要がある。このため、電池セルBCの出力および入力を確保するためには、所定の温度以下に維持するための冷却手段が必要となる。 The assembled battery BP may become excessively hot due to self-heating when power is supplied while the vehicle is running. When the assembled battery BP becomes excessively high in temperature, as shown in FIG. 2, the deterioration of the battery cell BC is promoted. Therefore, it is necessary to limit the output and input so as to reduce self-heating. For this reason, in order to ensure the output and input of the battery cell BC, a cooling means for maintaining the temperature below a predetermined temperature is required.
 また、組電池BPは、夏季における駐車中等にも組電池BPの電池温度Tbが過度に高温となることがある。すなわち、組電池BPを含む蓄電装置は、車両の床下やトランクルームの下側に配置されることが多く、車両の走行中に限らず、夏季における駐車中等にも組電池BPの電池温度Tbが徐々に上昇して、組電池BPが過度に高温となることがある。組電池BPが高温環境下で放置されると、劣化が進行することで電池寿命が大幅に低下することから、車両の駐車中等にも組電池BPの電池温度Tbを所定の温度以下に維持することが望まれている。 Further, the battery temperature Tb of the assembled battery BP may become excessively high even during parking in the summer, for example. That is, the power storage device including the assembled battery BP is often disposed under the floor of the vehicle or under the trunk room, and the battery temperature Tb of the assembled battery BP gradually increases not only during traveling of the vehicle but also during parking in summer. The battery pack BP may become excessively hot. When the assembled battery BP is left in a high temperature environment, the battery life is greatly reduced due to the progress of deterioration. Therefore, the battery temperature Tb of the assembled battery BP is maintained below a predetermined temperature even during parking of the vehicle. It is hoped that.
 さらに、組電池BPは、複数の電池セルBCで構成されているが、各電池セルBCの温度にバラツキがあると、各電池セルBCの劣化の進行度合いに偏りが生じて、組電池BP全体の入出力特性が低下してしまう。これは、組電池BPが電池セルBCの直列接続体を含んでいることで、各電池セルBCのうち、最も劣化が進行した電池セルBCの電池特性に応じて組電池BP全体の入出力特性が決まるからである。このため、組電池BPを長期間、所望の性能を発揮させるためには、各電池セルBCの温度バラツキを低減させる均温化が重要となる。 Furthermore, the assembled battery BP is composed of a plurality of battery cells BC. However, if the temperature of each battery cell BC varies, the degree of deterioration of each battery cell BC is biased, and the entire assembled battery BP The input / output characteristics of this will deteriorate. This is because the assembled battery BP includes a series connection body of the battery cells BC, and among the battery cells BC, the input / output characteristics of the entire assembled battery BP according to the battery characteristics of the battery cell BC that is most deteriorated. Because it is decided. For this reason, in order to make the assembled battery BP exhibit desired performance for a long period of time, it is important to equalize the temperature of the battery cells BC to reduce temperature variation.
 ここで、組電池BPを冷却する冷却手段としては、送風機による空冷式の冷却手段、蒸気圧縮式の冷凍サイクルの冷熱を利用した冷却手段が一般的となっている。 Here, as a cooling means for cooling the assembled battery BP, an air-cooling cooling means using a blower and a cooling means using the cold heat of a vapor compression refrigeration cycle are generally used.
 ところが、送風機を用いた空冷式の冷却手段は、車室内の空気等を組電池に送風するだけなので、組電池BPを充分に冷却するだけの冷却能力が得られないことがある。 However, since the air-cooling type cooling means using the blower only blows air or the like in the passenger compartment to the assembled battery, there may be a case where a cooling capacity sufficient to cool the assembled battery BP may not be obtained.
 また、冷凍サイクルの冷熱を利用した冷却手段は、組電池BPの冷却能力が高いものの、車両の駐車中に、電力消費量の多い圧縮機等を駆動させることが必要となる。このことは、電力消費量の増大、騒音の増大等を招くことになるため好ましくない。 Further, although the cooling means using the cold heat of the refrigeration cycle has a high cooling capacity of the assembled battery BP, it is necessary to drive a compressor or the like that consumes a large amount of power while the vehicle is parked. This is undesirable because it leads to an increase in power consumption and an increase in noise.
 そこで、本実施形態の機器温調装置1では、圧縮機による冷媒の強制循環ではなく、作動流体の自然循環によって組電池BPの電池温度を調整するサーモサイフォン方式を採用している。 Therefore, the apparatus temperature control apparatus 1 of the present embodiment employs a thermosiphon system that adjusts the battery temperature of the assembled battery BP not by forced circulation of the refrigerant by the compressor but by natural circulation of the working fluid.
 機器温調装置1は、車両に搭載された組電池BPを温調対象機器として、組電池BPの電池温度Tbを調整する装置である。図1に示すように、機器温調装置1は、作動流体が循環する機器用流体回路10および制御装置100を備えている。機器用流体回路10を循環する作動流体としては、蒸気圧縮式の冷凍サイクルで利用される冷媒(例えば、R134a、R1234yf)等を採用することができる。 The device temperature control device 1 is a device that adjusts the battery temperature Tb of the assembled battery BP using the assembled battery BP mounted on the vehicle as a temperature control target device. As shown in FIG. 1, the device temperature control device 1 includes a device fluid circuit 10 through which a working fluid circulates and a control device 100. As the working fluid that circulates in the fluid circuit for equipment 10, refrigerants (for example, R134a, R1234yf) used in a vapor compression refrigeration cycle can be employed.
 機器用流体回路10は、作動流体の蒸発および凝縮により熱移動を行うヒートパイプであり、ガス状の作動流体が流れる流路と液状の作動流体が流れる流路とが分離されたループ型のサーモサイフォンとなるように構成されている。 The device fluid circuit 10 is a heat pipe that performs heat transfer by evaporation and condensation of a working fluid, and is a loop-type thermometer in which a flow path through which a gaseous working fluid flows and a flow path through which a liquid working fluid flows are separated. It is configured to be a siphon.
 図3に示すように、機器用流体回路10は、機器用熱交換器12、凝縮器14、ガス通路部16、および液通路部18を含んで構成されている。なお、図3に示す矢印DRgは、鉛直線の延びる方向、すなわち鉛直方向を示している。 As shown in FIG. 3, the device fluid circuit 10 includes a device heat exchanger 12, a condenser 14, a gas passage portion 16, and a liquid passage portion 18. Note that the arrow DRg shown in FIG. 3 indicates the direction in which the vertical line extends, that is, the vertical direction.
 本実施形態の機器用流体回路10は、機器用熱交換器12、凝縮器14、ガス通路部16、および液通路部18が互いに接続されることによって、閉じられた環状の流体回路として構成されている。機器用流体回路10は、その内部を真空排気した状態で、所定量の作動流体が封入されている。 The device fluid circuit 10 of the present embodiment is configured as a closed annular fluid circuit by connecting the device heat exchanger 12, the condenser 14, the gas passage portion 16, and the liquid passage portion 18 to each other. ing. The device fluid circuit 10 is filled with a predetermined amount of working fluid in a state where the inside thereof is evacuated.
 機器用熱交換器12は、温調対象機器である組電池BPの冷却時に、組電池BPから吸熱して液状の作動流体を蒸発させる蒸発器として機能する熱交換器である。機器用熱交換器12は、組電池BPの底面部側に対向する位置に配置されている。機器用熱交換器12は、厚みの薄い扁平な直方体形状を有している。 The equipment heat exchanger 12 is a heat exchanger that functions as an evaporator that absorbs heat from the assembled battery BP and evaporates the liquid working fluid when the assembled battery BP, which is a temperature control target apparatus, is cooled. The equipment heat exchanger 12 is disposed at a position facing the bottom surface side of the assembled battery BP. The equipment heat exchanger 12 has a thin, rectangular parallelepiped shape.
 機器用熱交換器12は、組電池BPの底面部に近接する機器近接部121が、組電池BPと機器用熱交換器12との間で熱を移動させる伝熱部を構成している。本実施形態では、機器近接部121が、機器用熱交換器12における組電池BPと熱交換する部位を構成する。機器近接部121は、組電池BPを構成する各電池セルBCに温度分布が生じないように、組電池BPの底面部の全域を覆う大きさを有している。 The equipment heat exchanger 12 constitutes a heat transfer section in which the equipment proximity section 121 close to the bottom surface of the assembled battery BP moves heat between the assembled battery BP and the equipment heat exchanger 12. In the present embodiment, the device proximity portion 121 constitutes a portion that exchanges heat with the assembled battery BP in the device heat exchanger 12. The device proximity portion 121 has a size that covers the entire area of the bottom surface portion of the assembled battery BP so that temperature distribution does not occur in each battery cell BC constituting the assembled battery BP.
 機器用熱交換器12は、組電池BPとの間で熱移動可能なように、機器近接部121が組電池BPの底面部に接触している。なお、機器用熱交換器12は、組電池BPとの間で熱移動可能であれば、機器近接部121が組電池BPの底面部から離れた配置構成となっていてもよい。 In the device heat exchanger 12, the device proximity portion 121 is in contact with the bottom surface portion of the assembled battery BP so that heat can be transferred to and from the assembled battery BP. Note that the device heat exchanger 12 may have an arrangement configuration in which the device proximity portion 121 is separated from the bottom surface portion of the assembled battery BP as long as heat transfer between the device heat exchanger 12 and the assembled battery BP is possible.
 ここで、機器用熱交換器12における作動流体の液面が機器用熱交換器12の機器近接部121から離れている場合、組電池BPの熱が、機器用熱交換器12の内部の液状の作動流体に伝わり難くなってしまう。すなわち、機器用熱交換器12における作動流体の液面が機器用熱交換器12の機器近接部121から離れている場合、機器用熱交換器12の内部に存する液状の作動流体の蒸発が抑制されてしまう。 Here, when the liquid level of the working fluid in the equipment heat exchanger 12 is away from the equipment proximity part 121 of the equipment heat exchanger 12, the heat of the assembled battery BP is liquid in the equipment heat exchanger 12. It becomes difficult to be transmitted to the working fluid. That is, when the liquid level of the working fluid in the equipment heat exchanger 12 is separated from the equipment proximity portion 121 of the equipment heat exchanger 12, evaporation of the liquid working fluid existing in the equipment heat exchanger 12 is suppressed. Will be.
 このため、本実施形態の機器用流体回路10は、組電池BPの熱が機器用熱交換器12の内部に存する液状の作動流体に伝達されるように、作動流体の液面が機器用熱交換器12の機器近接部121に接する構成となっている。すなわち、本実施形態の機器用流体回路10は、組電池BPの冷却時において、機器用熱交換器12の内部空間が、気泡を含む液状の作動流体で満たされる構成となっている。 For this reason, in the fluid circuit for equipment 10 of the present embodiment, the liquid level of the working fluid is such that the heat of the assembled battery BP is transmitted to the liquid working fluid existing in the equipment heat exchanger 12. It is configured to contact the device proximity portion 121 of the exchanger 12. That is, the fluid circuit for equipment 10 of the present embodiment is configured such that the internal space of the equipment heat exchanger 12 is filled with a liquid working fluid containing bubbles when the assembled battery BP is cooled.
 例えば、図4に示すように、機器用熱交換器12が中空状の容器で構成されている場合、電池冷却時において、機器用熱交換器12の内部に存する作動流体の液面LSが、組電池BPに近接する機器近接部121に接する構成となっている。なお、機器用熱交換器12は、中空状の容器に限らず、熱交換チューブ等により複数の流路が形成される構成となっていてもよい。 For example, as shown in FIG. 4, when the equipment heat exchanger 12 is configured by a hollow container, the liquid level LS of the working fluid existing inside the equipment heat exchanger 12 during battery cooling is It is the structure which contacts the apparatus proximity | contact part 121 close to the assembled battery BP. In addition, the apparatus heat exchanger 12 is not limited to a hollow container, and may have a configuration in which a plurality of flow paths are formed by a heat exchange tube or the like.
 図3に戻り、機器用熱交換器12は、ガス通路部16の下方側の端部が接続されるガス出口部122、および液通路部18の下方側の端部が接続される液入口部123を有している。本実施形態の機器用熱交換器12では、ガス出口部122および液入口部123が互いに対向する側面部に設けられている。また、本実施形態の機器用熱交換器12は、ガス出口部122および液入口部123が、鉛直方向DRgにおいて同様の高さとなる位置に設けられている。 Returning to FIG. 3, the equipment heat exchanger 12 includes a gas outlet portion 122 to which the lower end portion of the gas passage portion 16 is connected, and a liquid inlet portion to which the lower end portion of the liquid passage portion 18 is connected. 123. In the equipment heat exchanger 12 of the present embodiment, the gas outlet part 122 and the liquid inlet part 123 are provided on the side parts facing each other. Further, in the equipment heat exchanger 12 of the present embodiment, the gas outlet portion 122 and the liquid inlet portion 123 are provided at the same height in the vertical direction DRg.
 機器用熱交換器12は、アルミニウム、銅等の熱伝導性に優れた金属または合金によって構成されている。なお、機器用熱交換器12は、金属以外の材料によって構成することも可能であるが、少なくとも伝熱部を構成する機器近接部121を熱伝導性に優れた材料によって構成することが望ましい。 The equipment heat exchanger 12 is made of a metal or alloy having excellent thermal conductivity such as aluminum or copper. In addition, although the apparatus heat exchanger 12 can also be comprised with materials other than a metal, it is desirable to comprise at least the apparatus proximity part 121 which comprises a heat-transfer part with the material excellent in heat conductivity.
 凝縮器14は、機器用熱交換器12にて蒸発したガス状の作動流体を凝縮させる熱交換器である。凝縮器14は、送風ファンBFから送風された送風空気とガス状の作動流体とを熱交換させて、ガス状の作動流体を凝縮させる空冷式の熱交換器で構成されている。 The condenser 14 is a heat exchanger that condenses the gaseous working fluid evaporated in the equipment heat exchanger 12. The condenser 14 is an air-cooled heat exchanger that exchanges heat between the blown air blown from the blower fan BF and the gaseous working fluid to condense the gaseous working fluid.
 凝縮器14は、その内部で凝縮した液状の作動流体が自重によって機器用熱交換器12に移動するように、鉛直方向DRgにおいて機器用熱交換器12よりも上方側に配置されている。 The condenser 14 is disposed above the equipment heat exchanger 12 in the vertical direction DRg so that the liquid working fluid condensed therein moves to the equipment heat exchanger 12 by its own weight.
 凝縮器14は、ガス通路部16の上方側の端部が接続されるガス入口部141、および液通路部18の上方側の端部が接続される液出口部142を有している。本実施形態の凝縮器14では、ガス入口部141および液出口部142が鉛直方向DRgにおいて互いに対向する部位に設けられている。 The condenser 14 has a gas inlet portion 141 to which the upper end portion of the gas passage portion 16 is connected, and a liquid outlet portion 142 to which the upper end portion of the liquid passage portion 18 is connected. In the condenser 14 of the present embodiment, the gas inlet portion 141 and the liquid outlet portion 142 are provided at portions facing each other in the vertical direction DRg.
 また、本実施形態の凝縮器14は、鉛直方向DRgにおいてガス入口部141が液出口部142よりも上方側に位置するように設けられている。具体的には、本実施形態の凝縮器14は、ガス入口部141が凝縮器14における上端部に設けられ、液出口部142が凝縮器14における下端部に設けられている。 Further, the condenser 14 of the present embodiment is provided such that the gas inlet portion 141 is positioned above the liquid outlet portion 142 in the vertical direction DRg. Specifically, in the condenser 14 of the present embodiment, the gas inlet portion 141 is provided at the upper end portion of the condenser 14, and the liquid outlet portion 142 is provided at the lower end portion of the condenser 14.
 凝縮器14は、アルミニウム、銅等の熱伝導性に優れた金属または合金によって構成されている。なお、凝縮器14は、金属以外の材料を含んで構成されていてもよいが、少なくとも空気と熱交換する部位については、熱伝導性に優れた材料によって構成することが望ましい。 The condenser 14 is made of a metal or alloy having excellent thermal conductivity such as aluminum or copper. The condenser 14 may be configured to include a material other than metal. However, at least a portion that exchanges heat with air is preferably configured with a material having excellent thermal conductivity.
 送風ファンBFは、車室内の空気または車室外の空気を機器用熱交換器12に向けて吹き出す装置である。送風ファンBFは、凝縮器14の内部に存する作動流体の放熱量を調整する放熱量調整部として機能する。送風ファンBFは、通電によって作動する電動ファンで構成されている。送風ファンBFは、制御装置100に接続され、制御装置100からの制御信号に基づいて送風能力が制御される。 The blower fan BF is a device that blows out air in the vehicle interior or air outside the vehicle interior toward the heat exchanger 12 for equipment. The blower fan BF functions as a heat dissipation amount adjusting unit that adjusts the heat dissipation amount of the working fluid existing in the condenser 14. The blower fan BF is configured by an electric fan that operates when energized. The blower fan BF is connected to the control device 100, and the blower capacity is controlled based on a control signal from the control device 100.
 ガス通路部16は、機器用熱交換器12にて蒸発したガス状の作動流体を凝縮器14に導くものである。ガス通路部16は、下方側の端部が機器用熱交換器12のガス出口部122に接続され、上方側の端部が凝縮器14のガス入口部141に接続されている。本実施形態のガス通路部16は、内部に作動流体が流通する流路が形成された配管で構成されている。なお、図面に示すガス通路部16は、あくまでも一例である。ガス通路部16は、車両への搭載性を考慮して適宜変更可能である。 The gas passage 16 guides the gaseous working fluid evaporated in the equipment heat exchanger 12 to the condenser 14. The gas passage portion 16 has a lower end connected to the gas outlet 122 of the equipment heat exchanger 12 and an upper end connected to the gas inlet 141 of the condenser 14. The gas passage part 16 of this embodiment is comprised by piping in which the flow path through which a working fluid distribute | circulates was formed. In addition, the gas passage part 16 shown in drawing is an example to the last. The gas passage portion 16 can be appropriately changed in consideration of the mounting property on the vehicle.
 液通路部18は、凝縮器14にて凝縮した液状の作動流体を機器用熱交換器12に導くものである。液通路部18は、下方側の端部が機器用熱交換器12の液入口部123に接続され、上方側の端部が凝縮器14の液出口部142に接続されている。本実施形態の液通路部18は、内部に作動流体が流通する流路が形成された配管で構成されている。 The liquid passage portion 18 guides the liquid working fluid condensed in the condenser 14 to the equipment heat exchanger 12. The liquid passage portion 18 has a lower end connected to the liquid inlet 123 of the equipment heat exchanger 12 and an upper end connected to the liquid outlet 142 of the condenser 14. The liquid passage portion 18 of the present embodiment is configured by a pipe in which a flow path through which a working fluid flows is formed.
 本実施形態の液通路部18は、凝縮器14側の部位が機器用熱交換器12側の部位の上方に位置している。また、本実施形態の液通路部18は、機器用熱交換器12側の部位が機器用熱交換器12の最も下方側の部位と同程度または上方側に位置するように構成されている。なお、図面に示す液通路部18は、あくまでも一例である。液通路部18は、車両への搭載性を考慮して適宜変更可能である。 In the liquid passage portion 18 of the present embodiment, the part on the condenser 14 side is located above the part on the equipment heat exchanger 12 side. In addition, the liquid passage portion 18 of the present embodiment is configured such that the part on the equipment heat exchanger 12 side is located at the same level or the upper side of the lowermost part of the equipment heat exchanger 12. The liquid passage portion 18 shown in the drawing is merely an example. The liquid passage portion 18 can be appropriately changed in consideration of the mounting property on the vehicle.
 ところで、サーモサイフォン方式の機器温調装置1では、凝縮器14側に存する作動流体の温度が組電池BPの電池温度Tbよりも高いと、凝縮器14における作動流体の凝縮、および機器用熱交換器12における作動流体の蒸発が殆ど生じない。すなわち、機器温調装置1では、機器用流体回路10における凝縮器14側に作動流体の温度が組電池BPの電池温度Tbよりも高い場合、組電池BPの冷却が実質的に停止される。 By the way, in the thermosiphon-type device temperature control apparatus 1, when the temperature of the working fluid existing on the condenser 14 side is higher than the battery temperature Tb of the assembled battery BP, the working fluid is condensed in the condenser 14 and heat exchange for the device is performed. There is almost no evaporation of the working fluid in the vessel 12. That is, in the apparatus temperature control apparatus 1, when the temperature of the working fluid on the condenser 14 side in the apparatus fluid circuit 10 is higher than the battery temperature Tb of the assembled battery BP, the cooling of the assembled battery BP is substantially stopped.
 一方、サーモサイフォン方式の機器温調装置1では、凝縮器14側に存する作動流体の温度が組電池BPの電池温度Tbよりも低くなると、機器用熱交換器12にて作動流体が蒸発すると共に、凝縮器14にて作動流体が凝縮する。すなわち、機器温調装置1では、機器用流体回路10における凝縮器14側に作動流体の温度が組電池BPの電池温度Tbよりも低いと、組電池BPの電池温度Tbが最適温度範囲にあっても、組電池BPの冷却が継続される。 On the other hand, in the thermosiphon device temperature control device 1, when the temperature of the working fluid existing on the condenser 14 side becomes lower than the battery temperature Tb of the assembled battery BP, the working fluid evaporates in the device heat exchanger 12. The working fluid is condensed in the condenser 14. That is, in the device temperature control apparatus 1, when the temperature of the working fluid on the condenser 14 side in the device fluid circuit 10 is lower than the battery temperature Tb of the assembled battery BP, the battery temperature Tb of the assembled battery BP is within the optimum temperature range. Even so, the cooling of the assembled battery BP is continued.
 このため、サーモサイフォン方式の機器温調装置1では、凝縮器14における作動流体の温度が組電池BPの電池温度Tbよりも低い場合に、組電池BPの電池温度Tbが最適温度範囲以下まで低下することがある。 For this reason, in the thermosiphon device temperature control device 1, when the temperature of the working fluid in the condenser 14 is lower than the battery temperature Tb of the assembled battery BP, the battery temperature Tb of the assembled battery BP decreases to below the optimum temperature range. There are things to do.
 図2に示すように、組電池BPの電池温度Tbが過度に低下すると、組電池BPの内部抵抗が増加することで、組電池BPの入出力特性が低下してしまう。このため、組電池BPが過度に冷却されないように対策を講じる必要がある。 As shown in FIG. 2, when the battery temperature Tb of the assembled battery BP decreases excessively, the internal resistance of the assembled battery BP increases, and the input / output characteristics of the assembled battery BP deteriorate. For this reason, it is necessary to take measures so that the assembled battery BP is not cooled excessively.
 本発明者らは、組電池BPが冷え過ぎてしまう要因について鋭意検討した。この結果、組電池BPの冷え過ぎは、組電池BPの電池温度Tbが最適温度範囲以下となる場合に、機器用熱交換器12の機器近接部121にて液状の作動流体が蒸発することに起因することが判った。 The present inventors diligently studied the factors that cause the assembled battery BP to become too cold. As a result, when the battery pack BP is too cold, the liquid working fluid evaporates in the equipment proximity part 121 of the equipment heat exchanger 12 when the battery temperature Tb of the battery pack BP falls below the optimum temperature range. It turned out to be caused.
 本発明者らは、機器用熱交換器12の機器近接部121における液状の作動流体の蒸発を抑えることで組電池BPの冷え過ぎを抑制可能であると考え、機器用熱交換器12の作動流体を組電池BPの冷え過ぎが抑制される液量に調整可能な構成を案出した。 The present inventors consider that the excessive cooling of the assembled battery BP can be suppressed by suppressing the evaporation of the liquid working fluid in the device proximity part 121 of the device heat exchanger 12, and the operation of the device heat exchanger 12 is A configuration has been devised in which the fluid can be adjusted to a liquid amount that suppresses overcooling of the battery pack BP.
 図1、図3に示すように、本実施形態の機器温調装置1には、機器用熱交換器12の内部の作動流体の液量を調整するために、貯液部30、冷却機器40、分岐通路開閉弁50が設けられている。 As shown in FIGS. 1 and 3, the device temperature control device 1 of the present embodiment includes a liquid storage unit 30, a cooling device 40 in order to adjust the amount of working fluid inside the device heat exchanger 12. A branch passage opening / closing valve 50 is provided.
 貯液部30は、機器用流体回路10に存する液状の作動流体を貯留するものである。貯液部30は、機器用流体回路10から分岐して設けられている。本実施形態の貯液部30は、ガス通路部16に設けられた分岐接続部31を介して機器用流体回路10に接続されている。 The liquid storage part 30 stores the liquid working fluid existing in the fluid circuit for equipment 10. The liquid storage unit 30 is provided to be branched from the device fluid circuit 10. The liquid storage part 30 of the present embodiment is connected to the device fluid circuit 10 via a branch connection part 31 provided in the gas passage part 16.
 分岐接続部31は、機器用流体回路10に設けられた三方継手で構成されている。本実施形態の分岐接続部31は、機器用流体回路10のうち、機器用熱交換器12の鉛直方向DRgの最も上方側に位置する部位Huよりも上方側に位置する部位に設けられている。 The branch connection portion 31 is configured by a three-way joint provided in the device fluid circuit 10. The branch connection part 31 of this embodiment is provided in the site | part located upwards rather than the site | part Hu located in the uppermost side of the vertical direction DRg of the apparatus heat exchanger 12 among the fluid circuits 10 for apparatuses. .
 本実施形態の貯液部30は、液状の作動流体を貯留するタンク部32、およびタンク部32と機器用流体回路10とを接続する分岐通路部33を含んで構成されている。タンク部32は、その内容積が一定となる固定容量型の容器で構成されている。タンク部32は、その上面部に分岐通路部33が接続されている。分岐通路部33は、一端側がタンク部32の上面部に接続され、他端側が分岐接続部31に接続されている。 The liquid storage section 30 of the present embodiment includes a tank section 32 that stores a liquid working fluid, and a branch passage section 33 that connects the tank section 32 and the device fluid circuit 10. The tank part 32 is configured by a fixed capacity type container having a constant internal volume. The tank portion 32 has a branch passage portion 33 connected to the upper surface portion thereof. One end side of the branch passage portion 33 is connected to the upper surface portion of the tank portion 32, and the other end side is connected to the branch connection portion 31.
 冷却機器40は、貯液部30を冷却して、貯液部30の内部に存するガス状の作動流体を凝縮させる機器である。冷却機器40は、タンク部32の下面部に隣接して設けられている。 The cooling device 40 is a device that cools the liquid storage unit 30 and condenses the gaseous working fluid existing in the liquid storage unit 30. The cooling device 40 is provided adjacent to the lower surface portion of the tank portion 32.
 本実施形態の冷却機器40は、通電により冷熱を生じさせるペルチェ素子で構成されている。冷却機器40は、後述する制御装置100によって、その作動が制御される。なお、冷却機器40は、ペルチェ素子に限らず、例えば、蒸気圧縮式の冷凍サイクルの低温の冷媒が流通する熱交換器で構成されていてもよい。 The cooling device 40 of the present embodiment is composed of a Peltier element that generates cold when energized. The operation of the cooling device 40 is controlled by the control device 100 described later. The cooling device 40 is not limited to a Peltier element, and may be constituted by, for example, a heat exchanger through which a low-temperature refrigerant in a vapor compression refrigeration cycle flows.
 ここで、機器用流体回路10に存するガス状の作動流体は、機器用流体回路10における低温となる部位にて凝縮する。このため、冷却機器40によって貯液部30が冷却されると、機器用流体回路10に存するガス状の作動流体が貯液部30で凝縮して貯留される。すなわち、冷却機器40によって貯液部30を冷却すると、貯液部30における作動流体の液量が増加する。 Here, the gaseous working fluid existing in the device fluid circuit 10 condenses at a low temperature in the device fluid circuit 10. For this reason, when the liquid storage unit 30 is cooled by the cooling device 40, the gaseous working fluid existing in the device fluid circuit 10 is condensed and stored in the liquid storage unit 30. That is, when the liquid storage unit 30 is cooled by the cooling device 40, the amount of the working fluid in the liquid storage unit 30 increases.
 一方、冷却機器40による貯液部30の冷却が停止されると、温度上昇に伴って貯液部30に貯留された液状の作動流体が気化することで、貯液部30における作動流体の貯液量が減少する。 On the other hand, when the cooling of the liquid storage unit 30 by the cooling device 40 is stopped, the liquid working fluid stored in the liquid storage unit 30 is vaporized as the temperature rises, so that the working fluid is stored in the liquid storage unit 30. The liquid volume decreases.
 このように、本実施形態の機器温調装置1は、冷却機器40による貯液部30の冷却の有無によって、貯液部30における作動流体の液量が増減する。本実施形態の機器温調装置1では、冷却機器40が、貯液部30に貯留する作動流体の貯液量を増減させる貯液量調整部として機能する。 Thus, in the device temperature control apparatus 1 of the present embodiment, the amount of the working fluid in the liquid storage unit 30 increases or decreases depending on whether or not the liquid storage unit 30 is cooled by the cooling device 40. In the device temperature control apparatus 1 of the present embodiment, the cooling device 40 functions as a liquid storage amount adjustment unit that increases or decreases the liquid storage amount of the working fluid stored in the liquid storage unit 30.
 機器温調装置1では、貯液部30に貯留される液状の作動流体が増加するに伴って、機器用熱交換器12の内部に存する作動流体の液量が減少する。本実施形態の冷却機器40は、組電池BPの温度調整が不要となる条件が成立した際に、機器用熱交換器12の内部の作動流体の液面が機器近接部121の下方側に位置するように、貯液部30における液状の作動流体の貯液量を増加させる構成となっている。すなわち、冷却機器40は、組電池BPを保温する条件が成立した際、機器用熱交換器12のうち組電池BPと熱交換する部位よりも下方側に、ガス状の作動流体を介在させた状態で液面を形成するように、貯液部30における液状の作動流体の貯液量を増加させる。なお、組電池BPを保温する条件は、組電池BPの温度調整が不要となる際に成立する条件でもある。 In the apparatus temperature control apparatus 1, as the liquid working fluid stored in the liquid storage unit 30 increases, the amount of working fluid existing inside the apparatus heat exchanger 12 decreases. In the cooling device 40 of the present embodiment, the liquid level of the working fluid inside the device heat exchanger 12 is positioned below the device proximity portion 121 when the condition that the temperature adjustment of the assembled battery BP is unnecessary is established. Thus, the liquid storage amount of the liquid working fluid in the liquid storage unit 30 is increased. That is, the cooling device 40 interposes the gaseous working fluid below the part of the device heat exchanger 12 where heat is exchanged with the assembled battery BP when the condition for keeping the assembled battery BP is satisfied. The liquid storage amount of the liquid working fluid in the liquid storage unit 30 is increased so that the liquid level is formed in the state. The condition for keeping the assembled battery BP warm is also a condition that is satisfied when the temperature adjustment of the assembled battery BP is not necessary.
 本実施形態の貯液部30は、分岐通路部33がタンク部32の上面部に接続される構成となっており、タンク部32だけでなく、分岐通路部33の内部にも液状の作動流体を貯留可能となっている。このため、本実施形態では、タンク部32の内容積と分岐通路部33の内容積との総和を貯液部30の内容積としている。 The liquid storage unit 30 of the present embodiment is configured such that the branch passage portion 33 is connected to the upper surface portion of the tank portion 32, and the liquid working fluid is not only in the tank portion 32 but also inside the branch passage portion 33. Can be stored. For this reason, in this embodiment, the sum total of the internal volume of the tank part 32 and the internal volume of the branch passage part 33 is used as the internal volume of the liquid storage part 30.
 貯液部30は、組電池BPの温度調整が不要となる条件(すなわち、組電池BPを保温する条件)が成立し、機器用熱交換器12の内部の作動流体の液面が、機器近接部121の下方側まで低下した際に、液状の作動流体が溢れない容積となっている。 The liquid storage unit 30 satisfies a condition that does not require temperature adjustment of the assembled battery BP (that is, a condition for keeping the assembled battery BP warm), and the liquid level of the working fluid inside the equipment heat exchanger 12 is close to the equipment. The volume is such that the liquid working fluid does not overflow when lowered to the lower side of the portion 121.
 本実施形態の貯液部30は、機器用熱交換器12の内部の作動流体の液面が、下方側の壁面に近接する位置まで低下しても、液状の作動流体が溢れない容積となっている。具体的には、貯液部30は、その内容積が機器用熱交換器12の内部に存する液状の作動流体を貯留可能な容積となっている。すなわち、本実施形態の貯液部30は、図5に示すように、機器用熱交換器12の内部に存する液状の作動流体を貯留可能なように、その内容積Vc1が機器用熱交換器12の内容積Ve1よりも大きくなっている。 The liquid storage unit 30 of the present embodiment has a volume that does not overflow the liquid working fluid even if the liquid level of the working fluid inside the equipment heat exchanger 12 is lowered to a position close to the wall surface on the lower side. ing. Specifically, the liquid storage unit 30 has a volume capable of storing a liquid working fluid existing inside the equipment heat exchanger 12. That is, as shown in FIG. 5, the liquid storage unit 30 of the present embodiment has an internal volume Vc1 of the equipment heat exchanger so that the liquid working fluid existing in the equipment heat exchanger 12 can be stored. 12 is larger than the internal volume Ve1.
 ここで、機器用流体回路10に存する液状の作動流体の全量を貯液部30に貯留することで、機器用熱交換器12における組電池BPの冷却の確実に停止させることができる。このため、貯液部30は、その内容積Vc1が、図6に示すように、機器用流体回路10に封入された作動流体の全てを液化させた際の液量(すなわち全液量Lall)を貯液可能な容積となっていることが望ましい。 Here, by storing the entire amount of the liquid working fluid existing in the device fluid circuit 10 in the liquid storage unit 30, the cooling of the assembled battery BP in the device heat exchanger 12 can be reliably stopped. For this reason, the liquid storage unit 30 has an internal volume Vc1 as shown in FIG. 6, which is a liquid amount when all the working fluid sealed in the device fluid circuit 10 is liquefied (that is, a total liquid amount All). It is desirable that the volume be sufficient to store liquid.
 分岐通路開閉弁50は、貯液部30と機器用流体回路10との間における作動流体の移動を遮断する流体遮断部である。本実施形態の分岐通路開閉弁50は、分岐通路部33に設けられている。本実施形態の分岐通路開閉弁50は、制御装置100によって制御される電気式の弁機構で構成されている。具体的には、本実施形態の分岐通路開閉弁50は、通電状態で閉弁し、非通電状態で開弁するノーマルオープン型の電磁弁で構成されている。 The branch passage opening / closing valve 50 is a fluid blocking unit that blocks the movement of the working fluid between the liquid storage unit 30 and the device fluid circuit 10. The branch passage opening / closing valve 50 of this embodiment is provided in the branch passage portion 33. The branch passage opening / closing valve 50 of the present embodiment is configured by an electric valve mechanism controlled by the control device 100. Specifically, the branch passage opening / closing valve 50 of the present embodiment is a normally open electromagnetic valve that closes when energized and opens when de-energized.
 続いて、機器温調装置1の電子制御部を構成する制御装置100について図1を参照して説明する。図1に示す制御装置100は、プロセッサ、記憶部(例えば、ROM、RAM)を含むマイクロコンピュータと、その周辺回路から構成されている。なお、制御装置100の記憶部は、非遷移的実体的記憶媒体で構成されている。 Subsequently, the control device 100 constituting the electronic control unit of the device temperature control device 1 will be described with reference to FIG. A control device 100 shown in FIG. 1 includes a microcomputer including a processor, a storage unit (for example, ROM, RAM), and peripheral circuits. The storage unit of the control device 100 is configured with a non-transitional tangible storage medium.
 制御装置100は、記憶部に記憶された制御プログラムに基づいて、各種演算、処理を行う。制御装置100は、出力側に接続された送風ファンBF、冷却機器40、分岐通路開閉弁50等の各種機器の作動を制御する。 The control device 100 performs various calculations and processes based on the control program stored in the storage unit. The control device 100 controls the operation of various devices such as the blower fan BF, the cooling device 40, and the branch passage opening / closing valve 50 connected to the output side.
 制御装置100は、その入力側に電池温度検出部101および凝縮器温度検出部102を含む各種センサ群が接続されている。 The control device 100 has various sensor groups including a battery temperature detection unit 101 and a condenser temperature detection unit 102 connected to its input side.
 電池温度検出部101は、組電池BPの電池温度Tbを検出する温度センサで構成されている。なお、電池温度検出部101は、複数の温度センサで構成されていてもよい。この場合、電池温度検出部101は、例えば、複数の温度センサの検出値の平均値を制御装置100に出力する構成となっていてもよい。 The battery temperature detection part 101 is comprised with the temperature sensor which detects battery temperature Tb of assembled battery BP. Note that the battery temperature detection unit 101 may include a plurality of temperature sensors. In this case, the battery temperature detection unit 101 may be configured to output an average value of detection values of a plurality of temperature sensors to the control device 100, for example.
 凝縮器温度検出部102は、凝縮器14の内部に存する作動流体の温度を検出する温度センサで構成されている。凝縮器温度検出部102は、凝縮器14の内部に存する作動流体の温度を直接的に検出する構成に限らず、例えば、凝縮器14の表面温度を凝縮器14の内部に存する作動流体の温度として検出するように構成されていてもよい。 The condenser temperature detection unit 102 includes a temperature sensor that detects the temperature of the working fluid existing in the condenser 14. The condenser temperature detection unit 102 is not limited to the configuration that directly detects the temperature of the working fluid existing in the condenser 14, and for example, the temperature of the working fluid existing in the condenser 14 is the surface temperature of the condenser 14. It may be configured to detect as
 ここで、本実施形態の制御装置100は、その出力側に接続された各種制御機器を制御するハードウェアおよびソフトウェアで構成される複数の制御部を集約した装置である。 Here, the control device 100 according to the present embodiment is a device in which a plurality of control units configured by hardware and software for controlling various control devices connected to the output side are integrated.
 制御装置100には、送風ファンBFの回転数を制御するファン制御部100a、分岐通路開閉弁50を制御する弁制御部100b、冷却機器40の作動を制御する冷却制御部100c等が集約されている。本実施形態では、制御装置100における弁制御部100bおよび冷却制御部100cが、貯液量調整部および流体遮断部を制御する制御部を構成している。 The control device 100 includes a fan control unit 100a that controls the rotation speed of the blower fan BF, a valve control unit 100b that controls the branch passage opening / closing valve 50, a cooling control unit 100c that controls the operation of the cooling device 40, and the like. Yes. In the present embodiment, the valve control unit 100b and the cooling control unit 100c in the control device 100 constitute a control unit that controls the liquid storage amount adjusting unit and the fluid blocking unit.
 次に、本実施形態の機器温調装置1の作動について、図7のフローチャートを参照して説明する。図7に示す制御処理は、車両の走行中に制御装置100によって所定の周期で実行される。勿論、機器温調装置1は、図7に示す制御処理が、駐車中に制御装置100に実行される構成となっていてもよい。なお、図7に示す各制御ステップは、制御装置100が実行する各種機能を実現する機能実現部を構成している。 Next, the operation of the device temperature control device 1 of the present embodiment will be described with reference to the flowchart of FIG. The control process shown in FIG. 7 is executed at a predetermined cycle by the control device 100 while the vehicle is traveling. Of course, the apparatus temperature control apparatus 1 may be configured such that the control process shown in FIG. 7 is executed by the control apparatus 100 during parking. Each control step shown in FIG. 7 constitutes a function realization unit that realizes various functions executed by the control device 100.
 図7に示すように、制御装置100は、まず、ステップS110にて、各種センサ信号を読み込む。具体的には、ステップS110の処理では、電池温度検出部101で検出された組電池BPの電池温度Tb、および凝縮器温度検出部102で検出された凝縮器14の内部に存する作動流体の温度を読み込む。 As shown in FIG. 7, the control device 100 first reads various sensor signals in step S110. Specifically, in the process of step S110, the battery temperature Tb of the assembled battery BP detected by the battery temperature detection unit 101, and the temperature of the working fluid existing in the condenser 14 detected by the condenser temperature detection unit 102 Is read.
 続いて、制御装置100は、組電池BPの温度調整(具体的には冷却)が不要となる条件(すなわち、組電池BPを保温する条件)が成立したか否かを判定する。本実施形態では、組電池BPの温度調整が不要となる条件(すなわち、組電池BPを保温する条件)として、組電池BPの電池温度Tbが予め設定された組電池BPの許容下限温度Tbminよりも低い際に成立する条件を採用している。すなわち、制御装置100は、ステップS112にて、組電池BPの電池温度Tbが予め設定された組電池BPの許容下限温度Tbminよりも低いか否かを判定する。許容下限温度Tbminは、例えば、組電池BPの電池温度Tbが低下しても組電池BPの入出力特性が悪化し難い温度(例えば、10℃)に設定される。 Subsequently, the control device 100 determines whether or not a condition that does not require temperature adjustment (specifically, cooling) of the assembled battery BP is satisfied (that is, a condition for keeping the assembled battery BP warm). In the present embodiment, as a condition that does not require temperature adjustment of the assembled battery BP (that is, a condition for keeping the assembled battery BP warm), the battery temperature Tb of the assembled battery BP is based on a preset allowable lower limit temperature Tbmin of the assembled battery BP. The condition that holds when the value is low is also adopted. That is, in step S112, control device 100 determines whether or not battery temperature Tb of assembled battery BP is lower than a preset allowable lower limit temperature Tbmin of assembled battery BP. For example, the allowable lower limit temperature Tbmin is set to a temperature (for example, 10 ° C.) at which the input / output characteristics of the assembled battery BP hardly deteriorate even when the battery temperature Tb of the assembled battery BP decreases.
 ステップS112の判定処理の結果、組電池BPの電池温度Tbが許容下限温度Tbmin以上と判定された場合、制御装置100は、ステップS114にて、組電池BPの電池温度Tbが予め設定された冷却必要温度Tbthよりも高いか否かを判定する。冷却必要温度Tbthは、例えば、組電池BPの電池温度Tbが上昇しても組電池BPの入出力特性が悪化し難い温度(例えば、40℃)に設定される。 As a result of the determination processing in step S112, when it is determined that the battery temperature Tb of the assembled battery BP is equal to or higher than the allowable lower limit temperature Tbmin, the control device 100 performs cooling in which the battery temperature Tb of the assembled battery BP is set in advance in step S114. It is determined whether or not the temperature is higher than the necessary temperature Tbth. The required cooling temperature Tbth is set to a temperature (for example, 40 ° C.) at which the input / output characteristics of the assembled battery BP hardly deteriorate even if the battery temperature Tb of the assembled battery BP increases.
 ステップS114の判定処理の結果、組電池BPの電池温度Tbが冷却必要温度Tbthよりも高いと判定された場合、機器温調装置1は、組電池BPを冷却する冷却モードに移行する。 When it is determined that the battery temperature Tb of the assembled battery BP is higher than the required cooling temperature Tbth as a result of the determination process in step S114, the device temperature adjustment device 1 shifts to a cooling mode for cooling the assembled battery BP.
 具体的には、ステップS114の判定処理の結果、組電池BPの電池温度Tbが冷却必要温度Tbthよりも高いと判定された場合、制御装置100は、ステップS116にて冷却機器40による冷却を停止すると共に、分岐通路開閉弁50を開放状態に制御する。また、制御装置100は、ステップS118にて、送風ファンBFを作動させて、凝縮器14の内部に存する作動流体の放熱を開始する。 Specifically, when it is determined as a result of the determination process in step S114 that the battery temperature Tb of the assembled battery BP is higher than the required cooling temperature Tbth, the control device 100 stops cooling by the cooling device 40 in step S116. At the same time, the branch passage opening / closing valve 50 is controlled to be opened. In step S <b> 118, the control device 100 activates the blower fan BF to start radiating the working fluid existing in the condenser 14.
 機器温調装置1では、冷却モード時に、車両の走行時の自己発熱等によって組電池BPの電池温度Tbが上昇すると、組電池BPの熱が機器用熱交換器12に移動する。機器用熱交換器12では、組電池BPから吸熱することで液状の作動流体の一部が蒸発する。組電池BPは、機器用熱交換器12の内部に存する作動流体の蒸発潜熱によって冷却され、その温度が低下する。 In the device temperature control device 1, when the battery temperature Tb of the assembled battery BP rises due to self-heating during traveling of the vehicle in the cooling mode, the heat of the assembled battery BP moves to the device heat exchanger 12. In the equipment heat exchanger 12, a part of the liquid working fluid evaporates by absorbing heat from the assembled battery BP. The assembled battery BP is cooled by the latent heat of vaporization of the working fluid existing inside the equipment heat exchanger 12, and the temperature thereof decreases.
 機器用熱交換器12にて蒸発したガス状の作動流体は、機器用熱交換器12のガス出口部122からガス通路部16に流出し、図8の矢印Fcgで示すように、ガス通路部16を介して凝縮器14へ移動する。 The gaseous working fluid evaporated in the equipment heat exchanger 12 flows out from the gas outlet section 122 of the equipment heat exchanger 12 to the gas passage section 16, and as shown by an arrow Fcg in FIG. 16 to condenser 14.
 凝縮器14では、送風ファンBFからの送風空気に放熱することで、ガス状の作動流体が凝縮する。凝縮器14の内部では、ガス状の作動流体が液化して作動流体の比重が増大する。これにより、凝縮器14の内部で液化した作動流体は、その自重によって凝縮器14の液出口部142に向かって下降する。 In the condenser 14, the gaseous working fluid is condensed by dissipating heat to the blown air from the blower fan BF. Inside the condenser 14, the gaseous working fluid is liquefied and the specific gravity of the working fluid increases. Thereby, the working fluid liquefied inside the condenser 14 descends toward the liquid outlet 142 of the condenser 14 by its own weight.
 凝縮器14で凝縮した液状の作動流体は、凝縮器14の液出口部142から液通路部18に流出し、図8の矢印Fclで示すように、液通路部18を介して機器用熱交換器12へ移動する。そして、機器用熱交換器12では、液通路部18を介して液入口部123から流入した液状の作動流体の一部が組電池BPから吸熱することで蒸発する。 The liquid working fluid condensed in the condenser 14 flows out from the liquid outlet part 142 of the condenser 14 to the liquid passage part 18, and as shown by an arrow Fcl in FIG. Move to vessel 12. In the apparatus heat exchanger 12, a part of the liquid working fluid that has flowed from the liquid inlet portion 123 via the liquid passage portion 18 evaporates by absorbing heat from the assembled battery BP.
 このように、機器温調装置1は、冷却モード時に、作動流体がガス状態と液状態とに相変化しながら機器用熱交換器12と凝縮器14との間を循環し、機器用熱交換器12から凝縮器14に熱が輸送されることで組電池BPが冷却される。 In this way, the device temperature control device 1 circulates between the device heat exchanger 12 and the condenser 14 while the phase of the working fluid changes between the gas state and the liquid state in the cooling mode, thereby exchanging heat for the device. The assembled battery BP is cooled by transporting heat from the condenser 12 to the condenser 14.
 機器温調装置1は、圧縮機等による作動流体の循環に要する駆動力がなくても、機器用流体回路10の内部を作動流体が自然循環する構成となっている。このため、機器温調装置1は、冷凍サイクル等に比べて、電力消費量および騒音の双方を抑えた効率のよい組電池BPの温度調整を実現することができる。 The equipment temperature control device 1 is configured such that the working fluid naturally circulates inside the equipment fluid circuit 10 without the driving force required for the circulation of the working fluid by a compressor or the like. For this reason, the apparatus temperature control apparatus 1 can implement | achieve the efficient temperature control of the assembled battery BP which suppressed both power consumption and noise compared with the refrigerating cycle etc.
 図7に戻り、ステップS114の判定処理の結果、組電池BPの電池温度Tbが冷却必要温度Tbth以下と判定された場合、機器温調装置1は、凝縮器14における作動流体の放熱を停止する。すなわち、ステップS114の判定処理の結果、組電池BPの電池温度Tbが冷却必要温度Tbth以下と判定された場合、制御装置100は、ステップS120にて冷却機器40による冷却を停止すると共に、分岐通路開閉弁50を開放状態に制御する。また、制御装置100は、ステップS122にて、送風ファンBFの作動を停止させて、凝縮器14の内部に存する作動流体の放熱を停止する。 Returning to FIG. 7, when it is determined that the battery temperature Tb of the assembled battery BP is equal to or lower than the cooling required temperature Tbth as a result of the determination process in step S <b> 114, the device temperature adjustment device 1 stops the heat radiation of the working fluid in the condenser 14. . That is, as a result of the determination process in step S114, when it is determined that the battery temperature Tb of the assembled battery BP is equal to or lower than the cooling required temperature Tbth, the control device 100 stops cooling by the cooling device 40 in step S120 and The on-off valve 50 is controlled to be opened. Moreover, the control apparatus 100 stops the action | operation of the ventilation fan BF in step S122, and stops the thermal radiation of the working fluid which exists in the inside of the condenser 14. FIG.
 機器温調装置1は、送風ファンBFの作動が停止されても、凝縮器14の内部に存する作動流体の温度が、組電池BPの電池温度Tbよりも高い場合、機器用熱交換器12から凝縮器14に熱が輸送されることで組電池BPが冷却される。すなわち、機器温調装置1では、凝縮器14の内部に存する作動流体の温度が、組電池BPの電池温度Tbよりも高いと、冷却モード時と同様に、組電池BPの冷却が維持される。 When the temperature of the working fluid existing in the condenser 14 is higher than the battery temperature Tb of the assembled battery BP, the device temperature control device 1 is configured from the device heat exchanger 12 even when the operation of the blower fan BF is stopped. The assembled battery BP is cooled by transporting heat to the condenser 14. That is, in the apparatus temperature control apparatus 1, when the temperature of the working fluid existing in the condenser 14 is higher than the battery temperature Tb of the assembled battery BP, the cooling of the assembled battery BP is maintained as in the cooling mode. .
 このため、冬期等に凝縮器14の周囲が低温となり、凝縮器14の温度が低くなる場合、機器温調装置1による組電池BPの冷却が継続されることで、組電池BPの電池温度Tbが許容下限温度Tbminを下回ってしまう可能性がある。 For this reason, when the surroundings of the condenser 14 become low temperature in winter and the temperature of the condenser 14 becomes low, the cooling of the assembled battery BP by the device temperature control device 1 is continued, so that the battery temperature Tb of the assembled battery BP. May fall below the allowable lower limit temperature Tbmin.
 これに対して、本実施形態の機器温調装置1は、組電池BPが過度に冷却されないように、組電池BPの電池温度Tbが許容下限温度Tbminよりも低下すると、過冷却防止モードに移行する。すなわち、ステップS112の判定処理の結果、組電池BPの電池温度Tbが許容下限温度Tbminより低いと判定された場合、制御装置100は、ステップS124にて冷却機器40による冷却を開始すると共に、分岐通路開閉弁50を開放状態に制御する。また、制御装置100は、ステップS126にて、送風ファンBFの作動を停止させて、凝縮器14の内部に存する作動流体の放熱を停止する。 On the other hand, when the battery temperature Tb of the assembled battery BP falls below the allowable lower limit temperature Tbmin so that the assembled battery BP is not excessively cooled, the device temperature control apparatus 1 of the present embodiment shifts to the overcooling prevention mode. To do. That is, as a result of the determination process in step S112, when it is determined that the battery temperature Tb of the assembled battery BP is lower than the allowable lower limit temperature Tbmin, the control device 100 starts cooling by the cooling device 40 in step S124 and branches. The passage opening / closing valve 50 is controlled to be opened. Moreover, the control apparatus 100 stops the action | operation of the ventilation fan BF in step S126, and stops the thermal radiation of the working fluid which exists in the inside of the condenser 14. FIG.
 本実施形態の機器温調装置1は、過冷却防止モード時に、分岐通路開閉弁50によって分岐通路部33が開放された状態で、冷却機器40による貯液部30の冷却が開始される。この際、制御装置100は、貯液部30の温度が凝縮器14の温度よりも低下するように冷却機器40を制御する。 In the device temperature control apparatus 1 of the present embodiment, the cooling of the liquid storage unit 30 by the cooling device 40 is started in a state where the branch passage portion 33 is opened by the branch passage opening / closing valve 50 in the overcooling prevention mode. At this time, the control device 100 controls the cooling device 40 so that the temperature of the liquid storage unit 30 is lower than the temperature of the condenser 14.
 機器温調装置1では、冷却機器40によって貯液部30が冷却されると、機器用流体回路10に存するガス状の作動流体が貯液部30で凝縮する。これにより、機器温調装置1では、図9に示すように、貯液部30で凝縮した液状の作動流体が、貯液部30のタンク部32に貯留される。 In the device temperature control apparatus 1, when the liquid storage unit 30 is cooled by the cooling device 40, the gaseous working fluid existing in the device fluid circuit 10 is condensed in the liquid storage unit 30. Thereby, in the apparatus temperature control apparatus 1, as shown in FIG. 9, the liquid working fluid condensed in the liquid storage part 30 is stored in the tank part 32 of the liquid storage part 30.
 機器温調装置1では、貯液部30に貯留される液状の作動流体が増加するに伴って、機器用熱交換器12の内部に存する液状の作動流体が減少する。そして、機器用熱交換器12の内部では、図10に示すように、作動流体の液面LSが機器近接部121の下方側まで低下する。すなわち、機器用熱交換器12の内部では、液状の作動流体よりもガス状の作動流体が機器近接部121に近接することになる。これにより、本実施形態の機器温調装置1では、機器用熱交換器12の作動流体の蒸発による組電池BPからの吸熱が抑制される。 In the apparatus temperature control apparatus 1, as the liquid working fluid stored in the liquid storage unit 30 increases, the liquid working fluid existing inside the apparatus heat exchanger 12 decreases. And in the heat exchanger 12 for apparatuses, as shown in FIG. 10, the liquid level LS of a working fluid falls to the downward side of the apparatus proximity part 121. As shown in FIG. That is, in the equipment heat exchanger 12, the gaseous working fluid is closer to the equipment proximity portion 121 than the liquid working fluid. Thereby, in the apparatus temperature control apparatus 1 of this embodiment, the heat absorption from the assembled battery BP by evaporation of the working fluid of the apparatus heat exchanger 12 is suppressed.
 図7に戻り、制御装置100は、冷却機器40による貯液部30の冷却を開始した後、ステップS128にて、貯液部30への液状の作動流体の貯留が完了したか否かを判定する。本実施形態の制御装置100は、ステップS126にて冷却機器40による貯液部30の冷却を開始した後、所定の基準時間が経過した際に、貯液部30への液状の作動流体の貯留が完了したと判定する。 Returning to FIG. 7, after starting the cooling of the liquid storage unit 30 by the cooling device 40, the control device 100 determines whether or not the storage of the liquid working fluid in the liquid storage unit 30 is completed in step S <b> 128. To do. The control device 100 of the present embodiment stores the liquid working fluid in the liquid storage unit 30 when a predetermined reference time has elapsed after the cooling device 40 starts cooling the cooling device 40 in step S126. Is determined to be complete.
 ここで、ステップS128の処理は、ステップS126にて冷却機器40による貯液部30の冷却を開始してからの経過時間によらず、貯液部30への液状の作動流体の貯留が完了したか否かを判定する処理となっていてもよい。 Here, in the process of step S128, the storage of the liquid working fluid in the liquid storage unit 30 is completed regardless of the elapsed time since the cooling device 40 starts cooling the liquid storage unit 30 in step S126. It may be a process for determining whether or not.
 例えば、制御装置100は、ステップS126にて冷却機器40による貯液部30の冷却を開始した後、組電池BPの電池温度Tbが所定の温度まで上昇した際に、貯液部30への液状の作動流体の貯留が完了したと判定する構成となっていてもよい。また、制御装置100は、実際の貯液部30への液状の作動流体の貯液量を監視し、当該貯液量が所定の基準量を上回った際に、貯液部30への液状の作動流体の貯留が完了したと判定する構成となっていてもよい。 For example, the control device 100 starts liquid cooling to the liquid storage unit 30 when the battery temperature Tb of the assembled battery BP rises to a predetermined temperature after starting the cooling of the liquid storage unit 30 by the cooling device 40 in step S126. It may be configured to determine that the storage of the working fluid is completed. In addition, the control device 100 monitors the liquid storage amount of the liquid working fluid in the actual liquid storage unit 30, and when the liquid storage amount exceeds a predetermined reference amount, It may be configured to determine that the working fluid has been stored.
 ステップS128にて貯液部30への液状の作動流体の貯留が完了したと判定された場合、制御装置100は、ステップS130にて、冷却機器40による貯液部30の冷却を停止すると共に、分岐通路開閉弁50によって分岐通路部33を閉鎖する。 When it is determined in step S128 that the storage of the liquid working fluid in the liquid storage unit 30 has been completed, the control device 100 stops cooling the liquid storage unit 30 by the cooling device 40 in step S130, and The branch passage portion 33 is closed by the branch passage opening / closing valve 50.
 分岐通路開閉弁50によって分岐通路部33を閉鎖する理由は、分岐通路部33が開放状態となっていると、分岐通路部33を介して貯液部30側から機器用流体回路10側に液状の作動流体が移動する可能性があるからである。 The reason why the branch passage portion 33 is closed by the branch passage opening / closing valve 50 is that when the branch passage portion 33 is open, the liquid is transferred from the liquid storage portion 30 side to the device fluid circuit 10 side via the branch passage portion 33. This is because the working fluid may move.
 以上説明した本実施形態の機器温調装置1は、組電池BPの温度調整が不要となる条件が成立した際に、冷却機器40によって貯液部30を冷却することで、貯液部30における液状の作動流体の貯液量を増加させる構成となっている。 The apparatus temperature control apparatus 1 according to the present embodiment described above is configured in the liquid storage unit 30 by cooling the liquid storage unit 30 with the cooling device 40 when a condition that does not require temperature adjustment of the assembled battery BP is satisfied. The liquid storage amount of the liquid working fluid is increased.
 これによると、組電池BPの温度調整が不要となる条件(すなわち、組電池BPを保温する条件)が成立すると、機器用流体回路10に分岐接続された貯液部30における液状の作動流体の貯液量が増加する。これに伴って、機器用流体回路10の内部に存する液状の作動流体が減少し、機器用熱交換器12における作動流体の液面が低下するので、機器用熱交換器12における液状の作動流体の蒸発による組電池BPからの吸熱を抑制することができる。 According to this, when a condition that does not require temperature adjustment of the assembled battery BP is satisfied (that is, a condition for keeping the assembled battery BP warm), the liquid working fluid in the liquid storage section 30 branched and connected to the device fluid circuit 10 The amount of liquid storage increases. Along with this, the liquid working fluid existing inside the device fluid circuit 10 decreases, and the liquid level of the working fluid in the device heat exchanger 12 decreases, so the liquid working fluid in the device heat exchanger 12 decreases. The heat absorption from the assembled battery BP due to the evaporation of can be suppressed.
 従って、本実施形態の機器温調装置1では、組電池BPの温度調整が不要となる際に組電池BPが過度に冷却されてしまうことを充分に抑えることができる。 Therefore, in the apparatus temperature control apparatus 1 of this embodiment, when the temperature adjustment of the assembled battery BP becomes unnecessary, it can fully suppress that the assembled battery BP is cooled too much.
 また、本実施形態の機器温調装置1は、組電池BPの温度調整が不要となる条件が成立すると、機器用熱交換器12の内部の作動流体の液面が機器近接部121の下方側に位置するように、貯液部30における液状の作動流体の貯液量を増加させる構成となっている。すなわち、機器温調装置1は、組電池BPを保温する条件が成立すると、機器用熱交換器12のうち組電池BPと熱交換する部位の下方側に、ガス状の作動流体を介在させた状態で液面が形成されるように、貯液部30における液状の作動流体の貯液量を増加させる。 In addition, in the device temperature adjustment device 1 of the present embodiment, when the condition that the temperature adjustment of the assembled battery BP is unnecessary is established, the liquid level of the working fluid inside the device heat exchanger 12 is below the device proximity portion 121. It is the structure which increases the liquid storage amount of the liquid working fluid in the liquid storage part 30 so that it may be located in. That is, when the condition for keeping the assembled battery BP is satisfied, the device temperature control apparatus 1 interposes a gaseous working fluid below the portion of the equipment heat exchanger 12 that exchanges heat with the assembled battery BP. The liquid storage amount of the liquid working fluid in the liquid storage unit 30 is increased so that the liquid level is formed in the state.
 これによると、組電池BPの温度調整が不要となる条件(すなわち、組電池BPを保温する条件)が成立すると、機器用熱交換器12の内部の作動流体の液面が機器近接部121の下方側まで低下する。これにより、組電池BPは、機器用熱交換器12の内部におけるガス状の作動流体が存する部位に近接することになる。このため、本実施形態の機器温調装置1では、機器用熱交換器12の作動流体の蒸発による組電池BPからの吸熱を抑制されるので、組電池BPが過度に冷却されてしまうことを充分に抑えることができる。 According to this, when a condition that does not require temperature adjustment of the assembled battery BP (that is, a condition for keeping the assembled battery BP warm) is established, the liquid level of the working fluid inside the equipment heat exchanger 12 is Decreases to the lower side. Thereby, the assembled battery BP comes close to a part where the gaseous working fluid exists in the heat exchanger 12 for equipment. For this reason, in the apparatus temperature control apparatus 1 of this embodiment, since the heat absorption from the assembled battery BP by evaporation of the working fluid of the apparatus heat exchanger 12 is suppressed, the assembled battery BP is excessively cooled. It can be suppressed sufficiently.
 ここで、機器用流体回路10には、機器用熱交換器12の鉛直方向DRgの最も上方に位置する部位よりも上方側に位置する部位に、貯液部30を分岐接続する分岐接続部31が設けられている。 Here, in the device fluid circuit 10, a branch connection portion 31 for branching and connecting the liquid storage portion 30 to a portion located on the upper side of the portion located on the uppermost side in the vertical direction DRg of the device heat exchanger 12. Is provided.
 これによると、組電池BPの温度調整を行う場合に、液状の作動流体がその自重等によって機器用熱交換器12ではなく貯液部30に流入してしまうことを抑えることができる。すなわち、組電池BPの温度調整を行う場合には、貯液部30への液状の作動流体の流入が抑制されるので、機器用流体回路10を循環する作動流体の流量を充分に確保することができる。 According to this, when the temperature of the assembled battery BP is adjusted, it is possible to prevent the liquid working fluid from flowing into the liquid storage unit 30 instead of the equipment heat exchanger 12 due to its own weight or the like. That is, when the temperature of the assembled battery BP is adjusted, the flow of the liquid working fluid into the liquid storage unit 30 is suppressed, so that a sufficient flow rate of the working fluid circulating in the device fluid circuit 10 is ensured. Can do.
 また、本実施形態の機器温調装置1は、貯液部30の内容積が、機器用熱交換器12の内容積よりも大きい容積となっている。これによれば、組電池BPの温度調整が不要となる条件が成立した際に、機器用熱交換器12の内部に存する液状の作動流体を貯液部30に貯留可能となるので、機器用熱交換器12の作動流体の蒸発による組電池BPからの吸熱を充分に抑制することが可能となる。 Further, in the device temperature control device 1 of the present embodiment, the internal volume of the liquid storage unit 30 is larger than the internal volume of the device heat exchanger 12. According to this, when the condition that the temperature adjustment of the assembled battery BP is not necessary is established, the liquid working fluid existing inside the equipment heat exchanger 12 can be stored in the liquid storage section 30. It is possible to sufficiently suppress heat absorption from the assembled battery BP due to evaporation of the working fluid in the heat exchanger 12.
 ここで、前述の如く、貯液部30の内容積は、機器用流体回路10に充填した作動流体の全てを液化させた際の液量、すなわち、全液量を貯留可能に構成となっていることが望ましい。このような構成では、組電池BPの温度調整が不要となる場合に、機器用熱交換器12に液状の作動流体が残存してしまうことを防止可能となる。 Here, as described above, the internal volume of the liquid storage unit 30 is configured to be able to store the liquid amount when all the working fluid filled in the device fluid circuit 10 is liquefied, that is, the total liquid amount. It is desirable. With such a configuration, it is possible to prevent the liquid working fluid from remaining in the equipment heat exchanger 12 when it is not necessary to adjust the temperature of the assembled battery BP.
 具体的には、本実施形態の貯液部30は、液状の作動流体を貯留するタンク部32を含んで構成されている。このように、貯液部30がタンク部32を含んだ構成となっていれば、少ない部品によって液状の作動流体を貯留するための内容積を充分に確保することができる。 Specifically, the liquid storage unit 30 of this embodiment includes a tank unit 32 that stores a liquid working fluid. As described above, when the liquid storage unit 30 includes the tank unit 32, a sufficient internal volume for storing the liquid working fluid can be secured with a small number of components.
 また、本実施形態の貯液部30は、タンク部32と機器用流体回路10とを接続する分岐通路部33を含んで構成されている。そして、タンク部32の内容積と分岐通路部33の内容積との総和が、機器用熱交換器12の内容積よりも大きい容積となっている。このように、貯液部30が分岐通路部33を含んだ構成となっていれば、タンク部32の大容量化を抑えつつ、液状の作動流体を貯留する内容積を充分に確保することができる。 In addition, the liquid storage unit 30 of the present embodiment includes a branch passage unit 33 that connects the tank unit 32 and the device fluid circuit 10. And the sum total of the internal volume of the tank part 32 and the internal volume of the branch channel | path part 33 is a volume larger than the internal volume of the heat exchanger 12 for apparatuses. Thus, if the liquid storage part 30 is configured to include the branch passage part 33, it is possible to sufficiently secure an internal volume for storing the liquid working fluid while suppressing an increase in the capacity of the tank part 32. it can.
 さらに、本実施形態の機器温調装置1は、過冷却防止モード時に、貯液部30における液状の作動流体の貯液量が所定の基準量に達すると、分岐通路開閉弁50によって分岐通路部33を閉鎖する構成となっている。 Furthermore, when the storage amount of the liquid working fluid in the liquid storage unit 30 reaches a predetermined reference amount in the supercooling prevention mode, the device temperature control apparatus 1 according to the present embodiment uses the branch channel opening / closing valve 50 to branch the channel unit. 33 is closed.
 これによれば、貯液部30に液状の作動流体を貯留した後に貯液部30と機器用流体回路10との間における作動流体の移動が遮断されるので、意図せずに貯液部30の内部の作動流体が機器用流体回路10に移動してしまうことを防止可能となる。 According to this, since the movement of the working fluid between the liquid storage unit 30 and the device fluid circuit 10 is interrupted after the liquid working fluid is stored in the liquid storage unit 30, the liquid storage unit 30 is not intended. It is possible to prevent the working fluid inside the fluid from moving to the device fluid circuit 10.
 (第1実施形態の変形例)
 以下、第1実施形態の機器温調装置1の第1~第5変形例について、図11~図16を参照して説明する。なお、本変形例で説明する内容は、特に支障が生じない範囲であれば、後述する第2実施形態の機器温調装置1に適用可能である。
(Modification of the first embodiment)
Hereinafter, first to fifth modifications of the device temperature control apparatus 1 according to the first embodiment will be described with reference to FIGS. Note that the contents described in the present modification can be applied to the device temperature control apparatus 1 according to the second embodiment to be described later as long as there is no particular problem.
 (第1変形例)
 上述の第1実施形態では、タンク部32の内容積と分岐通路部33の内容積との総和を貯液部30の内容積としているが、これに限定されない。分岐通路部33の内容積がタンク部32の内容積に比べて非常に小さくなる場合には、タンク部32の内容積を貯液部30の内容積としてもよい。この場合、貯液部30を構成するタンク部32は、その内容積が機器用熱交換器12の内部に存する液状の作動流体を貯留可能な容積となっていればよい。具体的には、貯液部30のタンク部32は、図11に示すように、機器用熱交換器12の内部に存する液状の作動流体を貯留可能なように、その内容積Vtが機器用熱交換器12の内容積Ve2よりも大きくなっていればよい。
(First modification)
In the first embodiment described above, the total volume of the internal volume of the tank portion 32 and the internal volume of the branch passage portion 33 is set as the internal volume of the liquid storage portion 30, but is not limited to this. When the internal volume of the branch passage part 33 is very small compared to the internal volume of the tank part 32, the internal volume of the tank part 32 may be used as the internal volume of the liquid storage part 30. In this case, the tank part 32 which comprises the liquid storage part 30 should just be the volume which can store the liquid working fluid which the internal volume exists in the inside of the apparatus heat exchanger 12. FIG. Specifically, as shown in FIG. 11, the tank part 32 of the liquid storage part 30 has an internal volume Vt for the equipment so that the liquid working fluid existing in the equipment heat exchanger 12 can be stored. It only needs to be larger than the internal volume Ve2 of the heat exchanger 12.
 (第2変形例)
 上述の第1実施形態では、貯液部30の内容積が、機器用熱交換器12の内容積よりも大きくなっている構成を例示したが、これに限定されない。
(Second modification)
In the first embodiment described above, the configuration in which the internal volume of the liquid storage unit 30 is larger than the internal volume of the equipment heat exchanger 12 is exemplified, but the present invention is not limited to this.
 図12に示すように、本変形例の機器温調装置1は、ガス通路部16が、機器用熱交換器12における最も上方に位置する部位Huよりも下方側に位置する下方側ガス通路部161を含んで構成されている。また、本変形例の機器温調装置1は、液通路部18が、機器用熱交換器12における最も上方に位置する部位Huよりも下方側に位置する下方側液通路部181を含んで構成されている。 As shown in FIG. 12, the device temperature control apparatus 1 of the present modification has a gas passage portion 16 that is located on the lower side of the uppermost portion Hu in the device heat exchanger 12. 161 is comprised. Moreover, the apparatus temperature control apparatus 1 of this modification is comprised including the lower side liquid passage part 181 in which the liquid channel part 18 is located in the downward side rather than the site | part Hu located in the uppermost part in the apparatus heat exchanger 12. FIG. Has been.
 そして、本変形例の貯液部30は、その内容積が、組電池BPの温度調整が不要となる条件が成立した際に、機器用熱交換器12の内部に存する液状の作動流体、および機器用熱交換器12に流れ込む可能性がある液状の作動流体を貯留可能な容積となっている。すなわち、本実施形態の貯液部30は、図13に示すように、その内容積Vc3が、機器用熱交換器12の内容積Ve1、下方側ガス通路部161の内容積Vpg、下方側液通路部181の内容積Vplの総和Ve3よりも大きくなっている。 And the liquid storage part 30 of this modification has the liquid working fluid which exists in the inside of the heat exchanger 12 for apparatuses, when the conditions in which the internal volume does not need the temperature adjustment of assembled battery BP are satisfied, and The volume is such that a liquid working fluid that may flow into the equipment heat exchanger 12 can be stored. That is, as shown in FIG. 13, the liquid storage unit 30 of the present embodiment has an internal volume Vc3 of the internal volume Ve1 of the equipment heat exchanger 12, the internal volume Vpg of the lower side gas passage 161, and the lower side liquid. The total volume Ve3 of the internal volume Vpl of the passage portion 181 is larger.
 これによれば、機器温調装置1では、機器用熱交換器12の内部の液状の作動流体に加えて、機器用熱交換器12に流れ込む可能性がある下方側ガス通路部161および下方側液通路部181に存する液状の作動流体も含めて貯液部30に貯留可能となる。このため、本変形例の機器温調装置1では、組電池BPの温度調整が不要となる場合に機器用熱交換器12における作動流体の液面を充分に低下させることができるので、機器用熱交換器12における組電池BPからの吸熱を充分に抑制することができる。 According to this, in the equipment temperature control apparatus 1, in addition to the liquid working fluid inside the equipment heat exchanger 12, the lower gas passage 161 and the lower side that may flow into the equipment heat exchanger 12. The liquid storage part 30 can be stored including the liquid working fluid existing in the liquid passage part 181. For this reason, in the apparatus temperature control apparatus 1 of this modification, when the temperature adjustment of assembled battery BP becomes unnecessary, the liquid level of the working fluid in the apparatus heat exchanger 12 can be sufficiently lowered. The heat absorption from the assembled battery BP in the heat exchanger 12 can be sufficiently suppressed.
 (第3変形例)
 上述の第1実施形態の如く、分岐接続部31を、機器用流体回路10のうち、機器用熱交換器12の鉛直方向DRgの最も上方側に位置する部位Huよりも上方側に位置する部位に設ける構成とすることが望ましいが、これに限定されない。
(Third Modification)
As in the first embodiment described above, the branch connection portion 31 is located above the portion Hu of the equipment fluid circuit 10 that is located on the uppermost side in the vertical direction DRg of the equipment heat exchanger 12. However, the present invention is not limited to this.
 分岐接続部31は、例えば、図14に示すように、機器用流体回路10のうち、機器用熱交換器12の鉛直方向DRgの最も上方側に位置する部位Huよりも下方側に位置する部位に設けられていてもよい。この場合、分岐通路開閉弁50は、冷却機器40を作動させて貯液部30に液状の作動流体を貯液させる際にだけ開放状態とし、その他のタイミングでは、閉鎖状態に維持することが望ましい。 For example, as shown in FIG. 14, the branch connection portion 31 is a part located on the lower side of the part Hu located on the uppermost side in the vertical direction DRg of the equipment heat exchanger 12 in the equipment fluid circuit 10. May be provided. In this case, it is desirable that the branch passage opening / closing valve 50 is opened only when the cooling device 40 is operated to store the liquid working fluid in the liquid storage unit 30 and is kept closed at other timings. .
 (第4変形例)
 上述の第1実施形態では、凝縮器14の内部に存する作動流体の放熱量を調整する放熱量調整部として送風ファンBFを例示したが、放熱量調整部は、送風ファンBFに限定されない。
(Fourth modification)
In the above-described first embodiment, the blower fan BF is exemplified as the heat release amount adjustment unit that adjusts the heat release amount of the working fluid existing in the condenser 14, but the heat release amount adjustment unit is not limited to the blower fan BF.
 放熱量調整部は、図15に示すように、蒸気圧縮式の冷凍サイクルの低温の冷媒が流通する冷媒側熱交換器HECで構成されていてもよい。この場合、冷凍サイクルにおける圧縮機の回転数を増減することで、凝縮器14における放熱量が変化する。このため、図15に示す冷媒側熱交換器HECを放熱量調整部とする場合、圧縮機の回転数を制御する構成が放熱量調整部を制御する制御部を構成することになる。 As shown in FIG. 15, the heat release amount adjustment unit may be configured by a refrigerant side heat exchanger HEC through which a low-temperature refrigerant in a vapor compression refrigeration cycle flows. In this case, the amount of heat release in the condenser 14 is changed by increasing or decreasing the rotational speed of the compressor in the refrigeration cycle. For this reason, when the refrigerant | coolant side heat exchanger HEC shown in FIG. 15 is used as a heat radiation amount adjustment part, the structure which controls the rotation speed of a compressor comprises the control part which controls a heat radiation amount adjustment part.
 (第5変形例)
 また、放熱量調整部は、図16に示すように、冷却水回路を流れる低温の不凍液が流通する水側熱交換器HELで構成されていてもよい。この場合、冷却水回路における水ポンプの回転数を増減することで、凝縮器14における放熱量が変化する。このため、図16に示す水側熱交換器HELを放熱量調整部とする場合、水ポンプの回転数を制御する構成が放熱量調整部を制御する制御部を構成することになる。
(5th modification)
Moreover, as shown in FIG. 16, the heat radiation amount adjustment unit may be configured by a water-side heat exchanger HEL through which a low-temperature antifreeze liquid flowing in the cooling water circuit flows. In this case, the heat radiation amount in the condenser 14 changes by increasing or decreasing the number of rotations of the water pump in the cooling water circuit. For this reason, when the water-side heat exchanger HEL shown in FIG. 16 is used as the heat release amount adjustment unit, the configuration that controls the rotation speed of the water pump constitutes the control unit that controls the heat release amount adjustment unit.
 (第6変形例)
 上述の第1実施形態の如く、冷却機器40は、タンク部32の下面部に隣接して設けることが望ましいが、これに限定されない。冷却機器40は、例えば、タンク部32の側面、または分岐通路部33の少なくとも一箇所に設けられていてもよい。
(Sixth Modification)
As in the first embodiment described above, the cooling device 40 is desirably provided adjacent to the lower surface portion of the tank portion 32, but is not limited thereto. The cooling device 40 may be provided, for example, on at least one location of the side surface of the tank portion 32 or the branch passage portion 33.
 (第2実施形態)
 次に、第2実施形態について、図17~図24を参照して説明する。本実施形態では、貯液部30Aにおける液状の作動流体の貯液量を増減する貯液量調整部を、冷却機器40ではなく、貯液部30Aの内容積を増減する容積調整部60で構成している点が第1実施形態と相違している。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIGS. In the present embodiment, the liquid storage amount adjustment unit that increases or decreases the storage amount of the liquid working fluid in the liquid storage unit 30A is configured by the volume adjustment unit 60 that increases or decreases the internal volume of the liquid storage unit 30A instead of the cooling device 40. This is different from the first embodiment.
 図17、図18に示すように、本実施形態の機器温調装置1には、機器用熱交換器12の内部の作動流体の液量を調整するために、貯液部30A、容積調整部60、分岐通路開閉弁50Aが設けられている。なお、本実施形態の機器温調装置1には、冷却機器40が設けられていない。 As shown in FIGS. 17 and 18, the device temperature control device 1 of the present embodiment includes a liquid storage unit 30 </ b> A, a volume adjustment unit in order to adjust the amount of working fluid inside the device heat exchanger 12. 60, a branch passage opening / closing valve 50A is provided. In addition, the cooling device 40 is not provided in the apparatus temperature control apparatus 1 of this embodiment.
 貯液部30Aは、機器用流体回路10に存する液状の作動流体を貯留するものである。貯液部30Aは、機器用流体回路10に分岐接続されている。本実施形態の貯液部30Aは、液通路部18に設けられた分岐接続部31Aを介して機器用流体回路10に接続されている。 The liquid storage unit 30A stores a liquid working fluid existing in the device fluid circuit 10. The liquid storage unit 30A is branched and connected to the device fluid circuit 10. The liquid storage part 30 </ b> A of the present embodiment is connected to the device fluid circuit 10 via a branch connection part 31 </ b> A provided in the liquid passage part 18.
 分岐接続部31Aは、機器用流体回路10に設けられた三方継手で構成されている。本実施形態の分岐接続部31Aは、機器用流体回路10のうち、機器用熱交換器12の鉛直方向DRgの最も上方側に位置する部位Huよりも下方側に位置する部位に設けられている。 The branch connection portion 31 </ b> A is configured by a three-way joint provided in the device fluid circuit 10. The branch connection portion 31 </ b> A of the present embodiment is provided in a part of the equipment fluid circuit 10 that is located on the lower side of the part Hu that is located on the uppermost side in the vertical direction DRg of the equipment heat exchanger 12. .
 本実施形態の貯液部30Aは、液状の作動流体を貯留するタンク部32A、およびタンク部32Aと機器用流体回路10とを接続する分岐通路部33Aを含んで構成されている。タンク部32Aは、その上面部に分岐通路部33Aが接続されている。分岐通路部33Aは、一端側がタンク部32Aの上面部に接続され、他端側が分岐接続部31Aに接続されている。 The liquid storage part 30A of the present embodiment includes a tank part 32A that stores a liquid working fluid, and a branch passage part 33A that connects the tank part 32A and the fluid circuit 10 for equipment. The tank portion 32A has a branch passage portion 33A connected to the upper surface portion thereof. One end side of the branch passage portion 33A is connected to the upper surface portion of the tank portion 32A, and the other end side is connected to the branch connection portion 31A.
 容積調整部60は、貯液部30Aの内容積を増減するものである。容積調整部60は、貯液部30Aの内部を摺動することで貯液部30Aの内容積を可変させる容量可変部61、および容量可変部61を駆動するアクチュエータ62を有している。 The volume adjustment unit 60 increases or decreases the internal volume of the liquid storage unit 30A. The volume adjusting unit 60 includes a volume variable unit 61 that varies the internal volume of the liquid storage unit 30A by sliding inside the liquid storage unit 30A, and an actuator 62 that drives the volume variable unit 61.
 本実施形態の容量可変部61は、貯液部30Aの内部を摺動可能なように、貯液部30Aの下方側に配置されたブロック状の部材で構成されている。アクチュエータ62は、貯液部30Aの内部における容量可変部61の位置を変更することで、貯液部30Aの内容積を増減させる。 The capacity variable unit 61 of the present embodiment is configured by a block-like member disposed on the lower side of the liquid storage unit 30A so as to be slidable inside the liquid storage unit 30A. The actuator 62 increases or decreases the internal volume of the liquid storage unit 30A by changing the position of the capacity variable unit 61 inside the liquid storage unit 30A.
 具体的には、容積調整部60は、アクチュエータ62によって容量可変部61を最上部となる位置に移動させた際に貯液部30Aの内容積が実質的にゼロとなるように構成されている。また、容積調整部60は、アクチュエータ62によって容量可変部61を最下部となる位置に移動させた際に貯液部30Aの内容積が最大容積となるように構成されている。本実施形態の容積調整部60は、制御装置100によって、その作動が制御される。 Specifically, the volume adjusting unit 60 is configured so that the internal volume of the liquid storage unit 30A becomes substantially zero when the variable capacity unit 61 is moved to the uppermost position by the actuator 62. . The volume adjusting unit 60 is configured so that the internal volume of the liquid storage unit 30A becomes the maximum volume when the variable capacity unit 61 is moved to the lowest position by the actuator 62. The operation of the volume adjusting unit 60 of the present embodiment is controlled by the control device 100.
 このように、本実施形態の機器温調装置1は、容積調整部60による容量可変部61の位置変更によって、貯液部30Aにおける作動流体の貯液量が増減する。本実施形態の機器温調装置1では、容積調整部60が、貯液部30Aに貯留する作動流体の貯液量を増減させる貯液量調整部として機能する。なお、本実施形態で説明する容積調整部60は、一例であって、他の構成によって実現されていてもよい。 As described above, in the device temperature control apparatus 1 according to the present embodiment, the storage amount of the working fluid in the liquid storage unit 30A is increased or decreased by changing the position of the capacity variable unit 61 by the volume adjusting unit 60. In the apparatus temperature control apparatus 1 of the present embodiment, the volume adjustment unit 60 functions as a storage amount adjustment unit that increases or decreases the storage amount of the working fluid stored in the storage unit 30A. Note that the volume adjustment unit 60 described in the present embodiment is an example, and may be realized by another configuration.
 機器温調装置1では、貯液部30Aに貯留される液状の作動流体が増加するに伴って、機器用熱交換器12の内部に存する作動流体の液量が減少する。本実施形態の容積調整部60は、組電池BPの温度調整が不要となる条件が成立した際に、機器用熱交換器12の内部の作動流体の液面が機器近接部121の下方側に位置するように、貯液部30Aにおける液状の作動流体の貯液量を増加させる構成となっている。すなわち、容積調整部60は、組電池BPを保温する条件が成立した際、機器用熱交換器12のうち組電池BPと熱交換する部位よりも下方側に、ガス状の作動流体を介在させた状態で液面を形成するように、貯液部30Aの貯液量を増加させる。 In the equipment temperature control apparatus 1, the amount of working fluid existing in the equipment heat exchanger 12 decreases as the amount of liquid working fluid stored in the liquid storage section 30A increases. When the condition that the temperature adjustment of the assembled battery BP is not necessary is established, the volume adjustment unit 60 of the present embodiment has the liquid level of the working fluid inside the device heat exchanger 12 on the lower side of the device proximity unit 121. It is the structure which increases the liquid storage amount of the liquid working fluid in 30 A of liquid storage parts so that it may be located. That is, when the condition for keeping the assembled battery BP warm is satisfied, the volume adjusting unit 60 interposes a gaseous working fluid below the portion of the equipment heat exchanger 12 that exchanges heat with the assembled battery BP. The liquid storage amount of the liquid storage part 30A is increased so as to form the liquid level in the wet state.
 貯液部30Aは、容積調整部60で貯液部30Aの内容積を増加させた際の最大容積が、機器用熱交換器12の内部の作動流体の液面が機器近接部121の下方側まで低下した際に、貯液部30Aから液状の作動流体が溢れない容積となるように構成されている。 The liquid storage unit 30A has a maximum volume when the volume adjustment unit 60 increases the internal volume of the liquid storage unit 30A. The liquid level of the working fluid inside the device heat exchanger 12 is below the device proximity unit 121. The liquid working fluid is configured such that the liquid working fluid does not overflow from the liquid storage portion 30A.
 具体的には、貯液部30Aは、容積調整部60によって貯液部30Aの内容積を増加させた際の最大容積が、機器用熱交換器12の内部に存する液状の作動流体を貯留可能な容積となっている。すなわち、本実施形態の容積調整部60は、図19に示すように、機器用熱交換器12の内部に存する液状の作動流体を貯留可能なように、貯液部30Aの内容積を増加させた際の最大容積Vc4が機器用熱交換器12の内容積Ve4よりも大きくなっている。 Specifically, the liquid storage unit 30A can store the liquid working fluid whose maximum volume when the internal volume of the liquid storage unit 30A is increased by the volume adjustment unit 60 is present in the heat exchanger 12 for equipment. The volume is large. That is, as shown in FIG. 19, the volume adjusting unit 60 of the present embodiment increases the internal volume of the liquid storage unit 30 </ b> A so that the liquid working fluid existing in the equipment heat exchanger 12 can be stored. The maximum volume Vc4 at this time is larger than the internal volume Ve4 of the equipment heat exchanger 12.
 ここで、機器用流体回路10に存する液状の作動流体の全量を貯液部30Aに貯留することで、機器用熱交換器12における組電池BPの冷却の確実に停止させることができる。このため、貯液部30Aは、その最大容積Vc4が、図20に示すように、機器用流体回路10に封入された作動流体の全てを液化させた際の液量(すなわち全液量Lall)を貯液可能な容積となっていることが望ましい。 Here, the entire amount of the liquid working fluid existing in the device fluid circuit 10 is stored in the liquid storage unit 30A, so that the cooling of the assembled battery BP in the device heat exchanger 12 can be reliably stopped. For this reason, as shown in FIG. 20, the liquid storage unit 30A has a maximum volume Vc4 that is the amount of liquid when all of the working fluid sealed in the device fluid circuit 10 is liquefied (ie, the total liquid amount All). It is desirable that the volume be sufficient to store liquid.
 分岐通路開閉弁50Aは、貯液部30Aと機器用流体回路10との間における作動流体の移動を遮断する流体遮断部である。本実施形態の分岐通路開閉弁50Aは、分岐通路部33Aに設けられている。本実施形態の分岐通路開閉弁50Aは、制御装置100によって制御される電気式の弁機構で構成されている。具体的には、本実施形態の分岐通路開閉弁50Aは、通電状態で閉弁し、非通電状態で開弁するノーマルオープン型の電磁弁で構成されている。 The branch passage opening / closing valve 50A is a fluid blocking unit that blocks the movement of the working fluid between the liquid storage unit 30A and the device fluid circuit 10. The branch passage opening / closing valve 50A of the present embodiment is provided in the branch passage portion 33A. The branch passage opening / closing valve 50 </ b> A of the present embodiment is configured by an electric valve mechanism controlled by the control device 100. Specifically, the branch passage opening / closing valve 50A of the present embodiment is a normally open electromagnetic valve that closes when energized and opens when de-energized.
 続いて、本実施形態の機器温調装置1の制御装置100について図17を参照して説明する。制御装置100は、出力側に接続された送風ファンBF、容積調整部60、分岐通路開閉弁50A等の各種機器の作動を制御する。 Then, the control apparatus 100 of the apparatus temperature control apparatus 1 of this embodiment is demonstrated with reference to FIG. The control device 100 controls the operation of various devices such as the blower fan BF, the volume adjusting unit 60, and the branch passage opening / closing valve 50A connected to the output side.
 本実施形態の制御装置100には、送風ファンBFの回転数を制御するファン制御部100a、分岐通路開閉弁50Aを制御する弁制御部100b、容積調整部60の作動を制御する容量制御部100d等が集約されている。本実施形態では、制御装置100における弁制御部100bおよび容量制御部100dが、貯液量調整部および流体遮断部を制御する制御部を構成している。 The control device 100 of the present embodiment includes a fan control unit 100a that controls the rotation speed of the blower fan BF, a valve control unit 100b that controls the branch passage opening / closing valve 50A, and a capacity control unit 100d that controls the operation of the volume adjustment unit 60. Etc. are aggregated. In the present embodiment, the valve control unit 100b and the capacity control unit 100d in the control device 100 constitute a control unit that controls the liquid storage amount adjusting unit and the fluid blocking unit.
 その他の構成は、第1実施形態と同様である。以下、本実施形態の機器温調装置1の作動について、図21のフローチャートを参照して説明する。図21に示す制御処理は、制御装置100によって所定の周期で実行される。図21に示す制御処理のうち、ステップS210~S214の処理は、第1実施形態で説明した図7のステップS110~ステップS114の処理と同様である。このため、本実施形態では、ステップS210~S214の処理について、その説明を簡略化する。 Other configurations are the same as those in the first embodiment. Hereinafter, the operation of the device temperature control device 1 of the present embodiment will be described with reference to the flowchart of FIG. The control process shown in FIG. 21 is executed by the control device 100 at a predetermined cycle. Of the control processing shown in FIG. 21, the processing of steps S210 to S214 is the same as the processing of steps S110 to S114 of FIG. 7 described in the first embodiment. For this reason, in the present embodiment, the description of steps S210 to S214 is simplified.
 図21に示すように、制御装置100は、まず、ステップS210にて、各種センサ信号を読み込む。続いて、制御装置100は、ステップS212にて、組電池BPの電池温度Tbが予め設定された組電池BPの許容下限温度Tbminよりも低いか否かを判定する。 As shown in FIG. 21, the control device 100 first reads various sensor signals in step S210. Subsequently, in step S212, control device 100 determines whether or not battery temperature Tb of assembled battery BP is lower than a preset allowable lower limit temperature Tbmin of assembled battery BP.
 ステップS212の判定処理の結果、組電池BPの電池温度Tbが許容下限温度Tbmin以上と判定された場合、制御装置100は、ステップS214にて、組電池BPの電池温度Tbが予め設定された冷却必要温度Tbthよりも高いか否かを判定する。 As a result of the determination processing in step S212, when it is determined that the battery temperature Tb of the assembled battery BP is equal to or higher than the allowable lower limit temperature Tbmin, the control device 100 performs cooling in which the battery temperature Tb of the assembled battery BP is set in advance in step S214. It is determined whether or not the temperature is higher than the necessary temperature Tbth.
 ステップS214の判定処理の結果、組電池BPの電池温度Tbが冷却必要温度Tbthよりも高いと判定された場合、機器温調装置1は、組電池BPを冷却する冷却モードに移行する。すなわち、ステップS214の判定処理の結果、組電池BPの電池温度Tbが冷却必要温度Tbthよりも高いと判定された場合、制御装置100は、ステップS216にて貯液部30Aの内容積を最小化すると共に、分岐通路開閉弁50Aを開放状態に制御する。また、制御装置100は、ステップS218にて、送風ファンBFを作動させて、凝縮器14の内部に存する作動流体の放熱を開始する。 When it is determined that the battery temperature Tb of the assembled battery BP is higher than the required cooling temperature Tbth as a result of the determination process in step S214, the device temperature adjustment device 1 shifts to a cooling mode for cooling the assembled battery BP. That is, as a result of the determination process in step S214, when it is determined that the battery temperature Tb of the assembled battery BP is higher than the required cooling temperature Tbth, the control device 100 minimizes the internal volume of the liquid storage unit 30A in step S216. At the same time, the branch passage opening / closing valve 50A is controlled to be opened. Moreover, the control apparatus 100 starts the heat dissipation of the working fluid which exists in the inside of the condenser 14 by operating the ventilation fan BF in step S218.
 具体的には、ステップS216の処理では、制御装置100が、貯液部30Aの内容積が最小容積となるように容積調整部60を制御すると共に、分岐通路部33Aが開放されるように分岐通路開閉弁50Aを制御する。なお、制御装置100は、ステップS216にて、分岐通路部33Aが開放されるように分岐通路開閉弁50Aを制御した後に、貯液部30Aの内容積が最小容積となるように容積調整部60を制御する。 Specifically, in the process of step S216, the control device 100 controls the volume adjusting unit 60 so that the internal volume of the liquid storage unit 30A becomes the minimum volume, and branches so that the branch passage unit 33A is opened. The passage opening / closing valve 50A is controlled. In step S216, the control device 100 controls the branch passage opening / closing valve 50A so that the branch passage portion 33A is opened, and then the volume adjusting unit 60 so that the internal volume of the liquid storage unit 30A becomes the minimum volume. To control.
 機器温調装置1では、冷却モード時に、車両の走行時の自己発熱等によって組電池BPの電池温度Tbが上昇すると、組電池BPの熱が機器用熱交換器12に移動する。機器用熱交換器12では、組電池BPから吸熱することで液状の作動流体の一部が蒸発する。組電池BPは、機器用熱交換器12の内部に存する作動流体の蒸発潜熱によって冷却され、その温度が低下する。 In the device temperature control device 1, when the battery temperature Tb of the assembled battery BP rises due to self-heating during traveling of the vehicle in the cooling mode, the heat of the assembled battery BP moves to the device heat exchanger 12. In the equipment heat exchanger 12, a part of the liquid working fluid evaporates by absorbing heat from the assembled battery BP. The assembled battery BP is cooled by the latent heat of vaporization of the working fluid existing inside the equipment heat exchanger 12, and the temperature thereof decreases.
 機器用熱交換器12にて蒸発したガス状の作動流体は、機器用熱交換器12のガス出口部122からガス通路部16に流出し、図22の矢印Fcgで示すように、ガス通路部16を介して凝縮器14へ移動する。 The gaseous working fluid evaporated in the equipment heat exchanger 12 flows out from the gas outlet section 122 of the equipment heat exchanger 12 to the gas passage section 16, and as shown by an arrow Fcg in FIG. 16 to condenser 14.
 凝縮器14では、送風ファンBFからの送風空気に放熱することで、ガス状の作動流体が凝縮する。凝縮器14の内部では、ガス状の作動流体が液化して作動流体の比重が増大する。これにより、凝縮器14の内部で液化した作動流体は、その自重によって凝縮器14の液出口部142に向かって下降する。 In the condenser 14, the gaseous working fluid is condensed by dissipating heat to the blown air from the blower fan BF. Inside the condenser 14, the gaseous working fluid is liquefied and the specific gravity of the working fluid increases. Thereby, the working fluid liquefied inside the condenser 14 descends toward the liquid outlet 142 of the condenser 14 by its own weight.
 凝縮器14で凝縮した液状の作動流体は、凝縮器14の液出口部142から液通路部18に流出し、図22の矢印Fclで示すように、液通路部18を介して機器用熱交換器12へ移動する。この際、貯液部30Aの内容積が最小容積となっているので、液通路部18を流通する液状の作動流体は、貯液部30Aに貯留されることなく、機器用熱交換器12へ移動する。 The liquid working fluid condensed in the condenser 14 flows out from the liquid outlet part 142 of the condenser 14 to the liquid passage part 18, and as shown by an arrow Fcl in FIG. Move to vessel 12. At this time, since the internal volume of the liquid storage part 30A is the minimum volume, the liquid working fluid that circulates in the liquid passage part 18 is not stored in the liquid storage part 30A, but is transferred to the equipment heat exchanger 12. Moving.
 このように、機器温調装置1は、冷却モード時に、作動流体がガス状態と液状態とに相変化しながら機器用熱交換器12と凝縮器14との間を循環し、機器用熱交換器12から凝縮器14に熱が輸送されることで組電池BPが冷却される。 In this way, the device temperature control device 1 circulates between the device heat exchanger 12 and the condenser 14 while the phase of the working fluid changes between the gas state and the liquid state in the cooling mode, thereby exchanging heat for the device. The assembled battery BP is cooled by transporting heat from the condenser 12 to the condenser 14.
 図21に戻り、ステップS214の判定処理の結果、組電池BPの電池温度Tbが冷却必要温度Tbth以下と判定された場合、機器温調装置1は、凝縮器14における作動流体の放熱を停止する。 Returning to FIG. 21, when the battery temperature Tb of the assembled battery BP is determined to be equal to or lower than the cooling required temperature Tbth as a result of the determination process in step S <b> 214, the device temperature adjustment device 1 stops the heat radiation of the working fluid in the condenser 14. .
 具体的には、ステップS214の判定処理の結果、組電池BPの電池温度Tbが冷却必要温度Tbth以下と判定された場合、制御装置100は、ステップS220にて貯液部30Aの内容積を最小化すると共に、分岐通路開閉弁50Aを開放状態に制御する。また、制御装置100は、ステップS222にて、送風ファンBFの作動を停止させて、凝縮器14の内部に存する作動流体の放熱を停止する。なお、制御装置100は、ステップS220にて、分岐通路部33Aが開放されるように分岐通路開閉弁50Aを制御した後に、貯液部30Aの内容積が最小容積となるように容積調整部60を制御する。 Specifically, when the battery temperature Tb of the assembled battery BP is determined to be equal to or lower than the cooling required temperature Tbth as a result of the determination process in step S214, the control device 100 minimizes the internal volume of the liquid storage unit 30A in step S220. And the branch passage opening / closing valve 50A is controlled to be opened. Moreover, the control apparatus 100 stops the action | operation of the ventilation fan BF in step S222, and stops the thermal radiation of the working fluid which exists in the inside of the condenser 14. FIG. In step S220, the control device 100 controls the branch passage opening / closing valve 50A so that the branch passage portion 33A is opened, and then the volume adjustment unit 60 so that the internal volume of the liquid storage unit 30A becomes the minimum volume. To control.
 機器温調装置1は、凝縮器14の放熱が停止されても、凝縮器14の内部に存する作動流体の温度が、組電池BPの電池温度Tbよりも高い場合、機器用熱交換器12から凝縮器14に熱が輸送されることで組電池BPが冷却される。 If the temperature of the working fluid existing inside the condenser 14 is higher than the battery temperature Tb of the assembled battery BP, the equipment temperature control device 1 is configured from the equipment heat exchanger 12 even if the heat dissipation of the condenser 14 is stopped. The assembled battery BP is cooled by transporting heat to the condenser 14.
 ここで、本実施形態の機器温調装置1は、組電池BPが過度に冷却されないように、組電池BPの電池温度Tbが許容下限温度Tbminよりも低下すると、過冷却防止モードに移行する。すなわち、ステップS212の判定処理の結果、組電池BPの電池温度Tbが許容下限温度Tbminより低いと判定された場合、制御装置100は、ステップS224にて、貯液部30Aの内容積を最大化すると共に、分岐通路開閉弁50Aを開放状態に制御する。そして、制御装置100は、ステップS226にて、送風ファンBFの作動を停止させて、凝縮器14の内部に存する作動流体の放熱を停止する。 Here, when the battery temperature Tb of the assembled battery BP is lower than the allowable lower limit temperature Tbmin, the device temperature control apparatus 1 of the present embodiment shifts to the overcooling prevention mode so that the assembled battery BP is not excessively cooled. That is, as a result of the determination process in step S212, when it is determined that the battery temperature Tb of the assembled battery BP is lower than the allowable lower limit temperature Tbmin, the control device 100 maximizes the internal volume of the liquid storage unit 30A in step S224. At the same time, the branch passage opening / closing valve 50A is controlled to be opened. And the control apparatus 100 stops the action | operation of the ventilation fan BF in step S226, and stops the thermal radiation of the working fluid which exists in the inside of the condenser 14. FIG.
 具体的には、ステップS224の処理では、制御装置100が、貯液部30Aの内容積が最大容積となるように容積調整部60を制御すると共に、分岐通路部33Aが開放されるように分岐通路開閉弁50Aを制御する。なお、制御装置100は、ステップS224にて、分岐通路部33Aが開放されるように分岐通路開閉弁50Aを制御した後に、貯液部30Aの内容積が最大容積となるように容積調整部60を制御する。 Specifically, in the process of step S224, the control device 100 controls the volume adjustment unit 60 so that the internal volume of the liquid storage unit 30A becomes the maximum volume, and branches so that the branch passage unit 33A is opened. The passage opening / closing valve 50A is controlled. In step S224, the control device 100 controls the branch passage opening / closing valve 50A so that the branch passage portion 33A is opened, and then the volume adjustment unit 60 so that the internal volume of the liquid storage unit 30A becomes the maximum volume. To control.
 機器温調装置1では、過冷却防止モード時に、分岐通路部33Aが開放された状態で、貯液部30Aの内容積が最大容積となる。このため、機器温調装置1では、図23に示すように、凝縮器14にて凝縮された液状の作動流体が、貯液部30Aに貯留される。 In the device temperature control apparatus 1, the internal volume of the liquid storage part 30A becomes the maximum volume in the state in which the branch passage part 33A is opened during the supercooling prevention mode. For this reason, in the apparatus temperature control apparatus 1, as shown in FIG. 23, the liquid working fluid condensed by the condenser 14 is stored in the liquid storage part 30A.
 機器温調装置1では、貯液部30Aに貯留される液状の作動流体が増加するに伴って、機器用熱交換器12の内部に存する液状の作動流体が減少する。また、機器用熱交換器12の内部では、図24に示すように、液状の作動流体が矢印Fclで示すように貯液部30Aに流れることで、作動流体の液面LSが機器近接部121の下方側まで低下する。すなわち、機器用熱交換器12の内部では、液状の作動流体よりもガス状の作動流体が機器近接部121に近接することになる。これにより、本実施形態の機器温調装置1では、機器用熱交換器12の作動流体の蒸発による組電池BPからの吸熱が抑制される。 In the apparatus temperature control apparatus 1, as the liquid working fluid stored in the liquid storage section 30A increases, the liquid working fluid existing inside the apparatus heat exchanger 12 decreases. Further, inside the equipment heat exchanger 12, as shown in FIG. 24, the liquid working fluid flows into the liquid storage section 30A as indicated by the arrow Fcl, so that the liquid level LS of the working fluid is changed to the equipment proximity section 121. It drops to the lower side. That is, in the equipment heat exchanger 12, the gaseous working fluid is closer to the equipment proximity portion 121 than the liquid working fluid. Thereby, in the apparatus temperature control apparatus 1 of this embodiment, the heat absorption from the assembled battery BP by evaporation of the working fluid of the apparatus heat exchanger 12 is suppressed.
 図21に戻り、制御装置100は、貯液部30Aの内容積を最大容積とした後、ステップS228にて、貯液部30Aへの液状の作動流体の貯留が完了したか否かを判定する。本実施形態の制御装置100は、ステップS226にて貯液部30Aの内容積を最大容積とした後、所定の基準時間が経過した際に、貯液部30Aへの液状の作動流体の貯留が完了したと判定する。 Returning to FIG. 21, after setting the internal volume of the liquid storage unit 30 </ b> A to the maximum volume, the control device 100 determines whether or not the storage of the liquid working fluid in the liquid storage unit 30 </ b> A is completed in step S <b> 228. . In step S226, the control device 100 according to the present embodiment stores the liquid working fluid in the liquid storage unit 30A when a predetermined reference time has elapsed after setting the internal volume of the liquid storage unit 30A to the maximum volume. Determine that completed.
 ここで、ステップS228の処理は、ステップS226にて貯液部30Aの内容積を最大容積としてからの経過時間によらず、貯液部30Aへの液状の作動流体の貯留が完了したか否かを判定する処理となっていてもよい。 Here, whether or not the storage of the liquid working fluid in the liquid storage unit 30A is completed in the process of step S228 regardless of the elapsed time since the internal volume of the liquid storage unit 30A is set to the maximum volume in step S226. It may be a process of determining.
 例えば、制御装置100は、ステップS226で貯液部30Aの内容積を最大容積とした後、組電池BPの電池温度Tbが所定の温度まで上昇した際に、貯液部30Aへの液状の作動流体の貯留が完了したと判定する構成となっていてもよい。また、制御装置100は、実際の貯液部30Aへの液状の作動流体の貯液量を監視し、当該貯液量が所定の基準量を上回った際に、貯液部30Aへの液状の作動流体の貯留が完了したと判定する構成となっていてもよい。 For example, after the internal volume of the liquid storage unit 30A is set to the maximum volume in step S226, the control device 100 operates the liquid to the liquid storage unit 30A when the battery temperature Tb of the assembled battery BP rises to a predetermined temperature. It may be configured to determine that the fluid storage is completed. In addition, the control device 100 monitors the liquid storage amount of the liquid working fluid in the actual liquid storage unit 30A, and when the liquid storage amount exceeds a predetermined reference amount, It may be configured to determine that the working fluid has been stored.
 ステップS228にて貯液部30Aへの液状の作動流体の貯留が完了したと判定された場合、制御装置100は、ステップS230にて、分岐通路開閉弁50Aによって分岐通路部33Aを閉鎖する。 When it is determined in step S228 that the storage of the liquid working fluid in the liquid storage unit 30A is completed, the control device 100 closes the branch passage portion 33A by the branch passage opening / closing valve 50A in step S230.
 分岐通路開閉弁50Aによって分岐通路部33Aを閉鎖する理由は、分岐通路部33Aが開放状態となっていると、分岐通路部33Aを介して貯液部30A側から機器用流体回路10側に液状の作動流体が移動する可能性があるからである。 The reason why the branch passage portion 33A is closed by the branch passage opening / closing valve 50A is that when the branch passage portion 33A is in an open state, the liquid is transferred from the liquid storage portion 30A side to the device fluid circuit 10 side via the branch passage portion 33A. This is because the working fluid may move.
 以上説明した本実施形態の機器温調装置1は、組電池BPの温度調整が不要となる条件が成立した際に、容積調整部60によって貯液部30Aの内容積を増加させることで、貯液部30Aにおける液状の作動流体の貯液量を増加させる構成となっている。 The apparatus temperature control apparatus 1 according to the present embodiment described above increases the internal volume of the liquid storage unit 30A by the volume adjustment unit 60 when the condition that the temperature adjustment of the assembled battery BP is not necessary is satisfied. The liquid storage amount of the liquid working fluid in the liquid portion 30A is increased.
 これによると、組電池BPの温度調整が不要となる条件(すなわち、組電池BPを保温する条件)が成立すると、機器用流体回路10に分岐して設けられた貯液部30Aにおける液状の作動流体の貯液量が増加する。これに伴って、機器用流体回路10に存する液状の作動流体が減少し、機器用熱交換器12における作動流体の液面が低下するので、機器用熱交換器12における液状の作動流体の蒸発による組電池BPからの吸熱を抑制することができる。 According to this, when a condition that does not require temperature adjustment of the assembled battery BP (that is, a condition for keeping the assembled battery BP warm) is established, the liquid operation in the liquid storage section 30A provided to be branched to the fluid circuit for equipment 10 The amount of fluid stored increases. Along with this, the liquid working fluid existing in the equipment fluid circuit 10 decreases, and the liquid level of the working fluid in the equipment heat exchanger 12 decreases, so that the liquid working fluid in the equipment heat exchanger 12 evaporates. The heat absorption from the assembled battery BP can be suppressed.
 従って、本実施形態の機器温調装置1では、第1実施形態の機器温調装置1と同様に、組電池BPの温度調整が不要となる際に組電池BPが過度に冷却されてしまうことを充分に抑えることができる。 Therefore, in the device temperature control apparatus 1 of the present embodiment, the battery pack BP is excessively cooled when the temperature adjustment of the battery pack BP is not necessary, like the device temperature control apparatus 1 of the first embodiment. Can be sufficiently suppressed.
 また、本実施形態の機器温調装置1は、組電池BPの温度調整が不要となると、機器用熱交換器12の内部の作動流体の液面が機器近接部121の下方側に位置するように、貯液部30Aにおける液状の作動流体の貯液量を増加させる構成となっている。 In addition, when the temperature adjustment of the assembled battery BP is not necessary, the device temperature control device 1 of the present embodiment is configured so that the liquid level of the working fluid inside the device heat exchanger 12 is positioned below the device proximity portion 121. In addition, the liquid storage amount of the liquid working fluid in the liquid storage section 30A is increased.
 これにより、本実施形態の機器温調装置1では、機器用熱交換器12の作動流体の蒸発による組電池BPからの吸熱を抑制されるので、組電池BPが過度に冷却されてしまうことを充分に抑えることができる。 Thereby, in the apparatus temperature control apparatus 1 of this embodiment, since the heat absorption from the assembled battery BP by evaporation of the working fluid of the apparatus heat exchanger 12 is suppressed, the assembled battery BP is excessively cooled. It can be suppressed sufficiently.
 ここで、本実施形態の機器用流体回路10には、機器用熱交換器12の鉛直方向DRgの最も上方に位置する部位よりも下方側に位置する部位に、貯液部30Aを分岐接続する分岐接続部31Aが設けられている。 Here, in the fluid circuit for equipment 10 of the present embodiment, the liquid storage unit 30A is branched and connected to a part located on the lower side than the part located on the uppermost side in the vertical direction DRg of the equipment heat exchanger 12. A branch connection 31A is provided.
 これによれば、組電池BPの温度調整が不要となる際に、機器用流体回路10に存する液状の作動流体がその自重によって貯液部30Aに流れ込むので、機器用流体回路10に液状の作動流体が残存してしまうことを抑えることができる。 According to this, when the temperature adjustment of the assembled battery BP becomes unnecessary, the liquid working fluid existing in the device fluid circuit 10 flows into the liquid storage part 30A by its own weight, so that the liquid operation fluid in the device fluid circuit 10 is operated. It is possible to prevent the fluid from remaining.
 また、本実施形態の貯液部30Aは、容積調整部60によって貯液部30Aの内容積を増加させた際の最大容積が、機器用熱交換器12の内容積よりも大きい容積となっている。これによれば、組電池BPの温度調整が不要となる際に、機器用熱交換器12の内部に存する液状の作動流体を貯液部30Aに貯留可能となるので、機器用熱交換器12の作動流体の蒸発による組電池BPからの吸熱を充分に抑制することが可能となる。 In the liquid storage unit 30A of the present embodiment, the maximum volume when the internal volume of the liquid storage unit 30A is increased by the volume adjusting unit 60 is larger than the internal volume of the equipment heat exchanger 12. Yes. According to this, when the temperature adjustment of the assembled battery BP becomes unnecessary, the liquid working fluid existing inside the equipment heat exchanger 12 can be stored in the liquid storage section 30A. It is possible to sufficiently suppress the heat absorption from the assembled battery BP due to evaporation of the working fluid.
 ここで、前述の如く、貯液部30Aの最大容積は、機器用流体回路10に充填した作動流体の全てを液化させた際の液量を貯留可能な構成となっていることが望ましい。このような構成では、組電池BPの温度調整が不要となる場合に、機器用熱交換器12に液状の作動流体が残存してしまうことを防止可能となる。 Here, as described above, it is desirable that the maximum volume of the liquid storage unit 30A has a configuration capable of storing the liquid amount when all the working fluid filled in the fluid circuit for equipment 10 is liquefied. With such a configuration, it is possible to prevent the liquid working fluid from remaining in the equipment heat exchanger 12 when it is not necessary to adjust the temperature of the assembled battery BP.
 さらに、本実施形態の機器用流体回路10は、過冷却防止モード時に、貯液部30Aにおける液状の作動流体の貯液量が所定の基準量に達すると、分岐通路開閉弁50Aによって分岐通路部33Aを閉鎖する構成となっている。 Furthermore, in the fluid circuit for equipment 10 of the present embodiment, when the storage amount of the liquid working fluid in the liquid storage unit 30A reaches a predetermined reference amount in the supercooling prevention mode, the branch channel opening / closing valve 50A causes the branch channel unit to flow. 33A is closed.
 これによれば、貯液部30Aに液状の作動流体を貯留した後に貯液部30Aと機器用流体回路10との間における作動流体の移動が遮断されるので、意図せずに貯液部30Aの内部の作動流体が機器用流体回路10に移動してしまうことを防止可能となる。 According to this, since the movement of the working fluid between the liquid storage unit 30A and the device fluid circuit 10 is blocked after the liquid working fluid is stored in the liquid storage unit 30A, the liquid storage unit 30A is not intended. It is possible to prevent the working fluid inside the fluid from moving to the device fluid circuit 10.
 (第2実施形態の変形例)
 以下、第2実施形態の機器温調装置1の第1~第3変形例について、図25~図28を参照して説明する。なお、本変形例で説明する内容は、特に支障が生じない範囲であれば、前述した第1実施形態の機器温調装置1に適用可能である。
(Modification of the second embodiment)
Hereinafter, first to third modifications of the device temperature control apparatus 1 according to the second embodiment will be described with reference to FIGS. 25 to 28. Note that the contents described in the present modification can be applied to the device temperature adjustment device 1 of the first embodiment described above as long as there is no particular problem.
 (第1変形例)
 上述の第2実施形態の如く、分岐接続部31Aを、機器用流体回路10のうち、機器用熱交換器12の鉛直方向DRgの最も上方側に位置する部位Huよりも下方側に位置する部位に設ける構成とすることが望ましいが、これに限定されない。
(First modification)
As in the second embodiment described above, the branch connection portion 31A is located on the lower side of the part Hu in the vertical direction DRg of the equipment heat exchanger 12 in the equipment fluid circuit 10. However, the present invention is not limited to this.
 分岐接続部31Aは、例えば、図25に示すように、機器用流体回路10の液通路部1のうち、機器用熱交換器12の鉛直方向DRgの最も上方側に位置する部位Huよりも上方側に位置する部位に設けられていてもよい。 For example, as shown in FIG. 25, the branch connection portion 31 </ b> A is located above the portion Hu located on the uppermost side in the vertical direction DRg of the device heat exchanger 12 in the liquid passage portion 1 of the device fluid circuit 10. You may be provided in the site | part located in the side.
 (第2変形例)
 上述の第2実施形態では、貯液部30Aの最大容積が、機器用熱交換器12の内容積よりも大きくなっている構成を例示したが、これに限定されない。
(Second modification)
In the above-described second embodiment, the configuration in which the maximum volume of the liquid storage unit 30A is larger than the internal volume of the equipment heat exchanger 12 is illustrated, but the present invention is not limited to this.
 図26に示すように、本変形例の機器温調装置1は、ガス通路部16が、機器用熱交換器12における最も上方に位置する部位Huよりも下方側に位置する下方側ガス通路部161Aを含んで構成されている。また、本変形例の機器温調装置1は、液通路部18が、機器用熱交換器12における最も上方に位置する部位Huよりも下方側に位置する下方側液通路部181Aを含んで構成されている。 As shown in FIG. 26, the device temperature control device 1 of the present modification has a gas passage portion 16 that is located on the lower side of the uppermost portion Hu in the device heat exchanger 12. 161A is comprised. Moreover, the apparatus temperature control apparatus 1 of this modification is comprised including the downward | lower side liquid passage part 181A located in the downward side rather than the site | part Hu located in the uppermost part in the apparatus heat exchanger 12. FIG. Has been.
 そして、本変形例の貯液部30Aは、その最大容積が、組電池BPの温度調整が不要となる条件が成立した際に、機器用熱交換器12の内部に存する液状の作動流体、および機器用熱交換器12に流れ込む可能性がある液状の作動流体を貯留可能な容積となっている。すなわち、本実施形態の貯液部30Aは、図26に示すように、その最大容積Vc5が、機器用熱交換器12の内容積Ve4、下方側ガス通路部161Aの内容積Vpg1、下方側液通路部181Aの内容積Vpl1の総和Ve5よりも大きくなっている。 Then, the liquid storage unit 30A of the present modification has a liquid working fluid existing in the equipment heat exchanger 12 when the maximum volume satisfies the condition that the temperature adjustment of the assembled battery BP is unnecessary, and The volume is such that a liquid working fluid that may flow into the equipment heat exchanger 12 can be stored. That is, as shown in FIG. 26, the liquid storage section 30A of the present embodiment has a maximum volume Vc5 of the internal volume Ve4 of the equipment heat exchanger 12, the internal volume Vpg1 of the lower gas passage section 161A, and the lower liquid. The total sum Ve5 of the internal volume Vpl1 of the passage portion 181A is larger.
 これによれば、機器用熱交換器12の内部の液状の作動流体に加えて、機器用熱交換器12に流れ込む可能性がある下方側ガス通路部161Aおよび下方側液通路部181Aに存する液状の作動流体も含めて貯液部30Aに貯留可能となる。このため、本変形例の機器温調装置1では、組電池BPの温度調整が不要となる場合に機器用熱交換器12における作動流体の液面を充分に低下させることができるので、機器用熱交換器12における組電池BPからの吸熱を充分に抑制することができる。 According to this, in addition to the liquid working fluid inside the equipment heat exchanger 12, the liquid existing in the lower gas passage 161 </ b> A and the lower liquid passage 181 </ b> A that may flow into the equipment heat exchanger 12. The working fluid can be stored in the liquid storage part 30A. For this reason, in the apparatus temperature control apparatus 1 of this modification, when the temperature adjustment of assembled battery BP becomes unnecessary, the liquid level of the working fluid in the apparatus heat exchanger 12 can be sufficiently lowered. The heat absorption from the assembled battery BP in the heat exchanger 12 can be sufficiently suppressed.
 (第3変形例)
 上述の第2実施形態では、貯液部30Aの最大容積が、機器用熱交換器12の内容積よりも大きくなっている構成を例示したが、これに限定されない。
(Third Modification)
In the above-described second embodiment, the configuration in which the maximum volume of the liquid storage unit 30A is larger than the internal volume of the equipment heat exchanger 12 is illustrated, but the present invention is not limited to this.
 図27に示すように、本変形例の機器温調装置1は、ガス通路部16が、機器用熱交換器12における最も下方に位置する部位Hdよりも上方側に位置する上方側ガス通路部162を含んで構成されている。また、本変形例の機器温調装置1は、液通路部18が、機器用熱交換器12における最も下方に位置する部位Hdよりも上方側に位置する上方側液通路部182を含んで構成されている。 As shown in FIG. 27, the device temperature control device 1 of the present modification has an upper gas passage portion in which the gas passage portion 16 is located above the lowermost portion Hd in the device heat exchanger 12. 162 is comprised. Moreover, the apparatus temperature control apparatus 1 of this modification is comprised including the upper side liquid channel | path part 182 in which the liquid channel part 18 is located above the part Hd located in the lowest part in the heat exchanger 12 for apparatuses. Has been.
 そして、本変形例の貯液部30Aは、その内容積が、組電池BPの温度調整が不要となる条件が成立した際に、機器用熱交換器12の内部に存する液状の作動流体、および機器用熱交換器12に流れ込む可能性がある液状の作動流体を貯留可能な容積となっている。すなわち、本実施形態の貯液部30Aは、図28に示すように、その最大容積Vc6が、機器用熱交換器12の内容積Ve4、上方側ガス通路部162の内容積Vpg2、上方側液通路部182の内容積Vpl2の総和Ve6よりも大きくなっている。 And the liquid storage part 30A of the present modification has a liquid working fluid existing inside the equipment heat exchanger 12 when the condition that its internal volume does not require temperature adjustment of the assembled battery BP, and The volume is such that a liquid working fluid that may flow into the equipment heat exchanger 12 can be stored. That is, as shown in FIG. 28, the liquid storage unit 30A of the present embodiment has a maximum volume Vc6 of the internal volume Ve4 of the equipment heat exchanger 12, the internal volume Vpg2 of the upper gas passage 162, and the upper liquid. The total volume Ve6 of the internal volume Vpl2 of the passage portion 182 is larger.
 これによれば、機器用熱交換器12の内部の液状の作動流体に加えて、機器用熱交換器12に流れ込む可能性がある上方側ガス通路部162および上方側液通路部182に存する液状の作動流体も含めて貯液部30に貯留可能となる。このため、本変形例の機器温調装置1では、組電池BPの温度調整が不要となる場合に機器用熱交換器12における作動流体の液面を充分に低下させることができるので、機器用熱交換器12における組電池BPからの吸熱を充分に抑制することができる。 According to this, in addition to the liquid working fluid inside the equipment heat exchanger 12, the liquid existing in the upper gas passage section 162 and the upper liquid passage section 182 that may flow into the equipment heat exchanger 12. The working fluid can be stored in the liquid storage unit 30. For this reason, in the apparatus temperature control apparatus 1 of this modification, when the temperature adjustment of assembled battery BP becomes unnecessary, the liquid level of the working fluid in the apparatus heat exchanger 12 can be sufficiently lowered. The heat absorption from the assembled battery BP in the heat exchanger 12 can be sufficiently suppressed.
 (他の実施形態)
 以上、本開示の代表的な実施形態について説明したが、本開示は、上述の実施形態に限定されることなく、例えば、以下のように種々変形可能である。
(Other embodiments)
As mentioned above, although typical embodiment of this indication was described, this indication is not limited to the above-mentioned embodiment, for example, can be variously changed as follows.
 上述の各実施形態では、分岐通路開閉弁50、50Aが電磁弁で構成される例について説明したが、分岐通路開閉弁50、50Aは、例えば、通電によらず作動する弁機構を有する機械式のバルブで構成されていてもよい。 In each of the above-described embodiments, an example in which the branch passage opening / closing valves 50 and 50A are configured by electromagnetic valves has been described. You may be comprised with the valve | bulb.
 上述の各実施形態の如く、貯液部30の内容積または貯液部30Aの最大容積を機器用熱交換器12の内容積よりも大きい容積とすることが望ましいが、これに限定されない。貯液部30、30Aは、機器用熱交換器12の内部の作動流体の液面が、機器近接部121の下方側まで低下した際に、液状の作動流体が溢れない容積となっていれば、その内容積または最大容積が、機器用熱交換器12の内容積よりも小さい容積となっていてもよい。 As in the above-described embodiments, it is desirable that the internal volume of the liquid storage unit 30 or the maximum volume of the liquid storage unit 30A be larger than the internal volume of the equipment heat exchanger 12, but it is not limited to this. If the liquid storage parts 30 and 30 </ b> A have such a volume that the liquid working fluid does not overflow when the liquid level of the working fluid inside the equipment heat exchanger 12 decreases to the lower side of the equipment proximity part 121. The inner volume or the maximum volume may be smaller than the inner volume of the equipment heat exchanger 12.
 上述の各実施形態では、機器用熱交換器12が組電池BPの底面部に対向する位置に配置される例について説明したが、これに限定されない。機器温調装置1は、例えば、機器用熱交換器12が組電池BPの側面部に対向する位置に配置される構成となっていてもよい。この場合、機器用熱交換器12は、その内部に作動流体が存在する限り、作動流体の液面LSが機器近接部121よりも下方側に低下しなくなる可能性がある。このため、機器用熱交換器12が組電池BPの側面部に対向配置される構成では、過冷却防止モード時に、機器用熱交換器12の内部に存する液状の作動流体の全量を貯液部30、30Aに移動させることが望ましい。 In each of the above-described embodiments, the example in which the equipment heat exchanger 12 is disposed at a position facing the bottom surface of the assembled battery BP has been described. For example, the device temperature control device 1 may be configured such that the device heat exchanger 12 is disposed at a position facing the side surface of the assembled battery BP. In this case, as long as the working fluid is present inside the equipment heat exchanger 12, the liquid level LS of the working fluid may not be lowered below the equipment proximity portion 121. For this reason, in the configuration in which the equipment heat exchanger 12 is disposed opposite to the side surface portion of the assembled battery BP, in the supercooling prevention mode, the total amount of the liquid working fluid existing in the equipment heat exchanger 12 is stored in the liquid storage section. It is desirable to move to 30, 30A.
 上述の各実施形態では、機器用熱交換器12のガス出口部122および液入口部123を互いに対向する側面部に設ける例について説明したが、これに限定されない。ガス出口部122および液入口部123は、例えば、機器用熱交換器12の上面部に設けられていてもよい。 In the above-described embodiments, the example in which the gas outlet portion 122 and the liquid inlet portion 123 of the equipment heat exchanger 12 are provided on the side portions facing each other has been described, but the present invention is not limited thereto. The gas outlet part 122 and the liquid inlet part 123 may be provided on the upper surface part of the equipment heat exchanger 12, for example.
 また、機器用熱交換器12のガス出口部122および液入口部123は、互いに鉛直方向DRgにおける高さが異なっていてもよい。この場合、ガス出口部122が液入口部123よりも高い位置となる構成とすることが望ましい。 Further, the gas outlet 122 and the liquid inlet 123 of the equipment heat exchanger 12 may have different heights in the vertical direction DRg. In this case, it is desirable that the gas outlet portion 122 is positioned higher than the liquid inlet portion 123.
 上述の各実施形態では、機器温調装置1によって単一の組電池BPの温度を調整する例について説明したが、これに限定されない。機器温調装置1は、複数の機器の温度を調整することが可能である。 In each of the above-described embodiments, the example in which the temperature of the single assembled battery BP is adjusted by the device temperature control device 1 has been described. The device temperature control device 1 can adjust the temperatures of a plurality of devices.
 上述の各実施形態では、組電池BPの温度調整が不要となる条件(すなわち、組電池BPを保温する条件)として、組電池BPの電池温度Tbが組電池BPの許容下限温度Tbminよりも低い際に成立する条件を採用しているが、これに限定されない。組電池BPの温度調整が不要となる条件(すなわち、組電池BPを保温する条件)は、例えば、組電池BPの周囲の雰囲気温度が所定の温度以下となる際に成立する条件となっていてもよい。 In each of the above-described embodiments, the battery temperature Tb of the assembled battery BP is lower than the allowable lower limit temperature Tbmin of the assembled battery BP as a condition that does not require temperature adjustment of the assembled battery BP (that is, a condition for keeping the assembled battery BP warm). However, the present invention is not limited to this. The condition that does not require the temperature adjustment of the assembled battery BP (that is, the condition for keeping the assembled battery BP warm) is a condition that is satisfied when, for example, the ambient temperature around the assembled battery BP is equal to or lower than a predetermined temperature. Also good.
 上述の各実施形態では、本開示の機器温調装置1を車両に搭載された組電池BPの電池温度Tbを調整する装置に適用する例について説明したが、これに限定されない。すなわち、本開示の機器温調装置1の適用対象は、組電池BPに限らず、他の機器の温度を調整する装置に広く適用可能である。 In each of the above-described embodiments, the example in which the device temperature control device 1 of the present disclosure is applied to a device that adjusts the battery temperature Tb of the assembled battery BP mounted on a vehicle has been described, but the present invention is not limited to this. That is, the application target of the device temperature adjustment device 1 of the present disclosure is not limited to the assembled battery BP, and can be widely applied to devices that adjust the temperature of other devices.
 上述の実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 In the above-described embodiment, it is needless to say that elements constituting the embodiment are not necessarily indispensable except for the case where it is clearly indicated that the element is essential and the case where the element is clearly considered to be essential in principle.
 上述の実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。 In the above-described embodiment, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is particularly limited to a specific number when clearly indicated as essential and in principle. Except in some cases, the number is not limited.
 上述の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。 In the above embodiment, when referring to the shape, positional relationship, etc. of the component, etc., the shape, positional relationship, etc. unless otherwise specified and in principle limited to a specific shape, positional relationship, etc. It is not limited to etc.
 (まとめ)
 上述の実施形態の一部または全部で示された第1の観点によれば、機器温調装置は、機器用流体回路に存する液状の作動流体を貯留する貯液部と、貯液部における液状の作動流体の貯液量を増減させる貯液量調整部と、を備える。そして、貯液量調整部は、温調対象機器を保温する条件が成立した際に、貯液部における液状の作動流体の貯液量を増加させる構成となっている。
(Summary)
According to the 1st viewpoint shown by one part or all part of the above-mentioned embodiment, the apparatus temperature control apparatus is a liquid storage part which stores the liquid working fluid which exists in the fluid circuit for apparatuses, and the liquid state in a liquid storage part. A liquid storage amount adjusting unit that increases or decreases the storage amount of the working fluid. The liquid storage amount adjustment unit is configured to increase the liquid storage amount of the liquid working fluid in the liquid storage unit when the condition for keeping the temperature adjustment target device is established.
 第2の観点によれば、機器温調装置の貯液量調整部は、温調対象機器を保温する条件が成立した際に、機器用熱交換器のうち温調対象機器と熱交換する部位の下方側に、ガス状の作動流体を介在させた状態で液面を形成するように、貯液部における液状の作動流体の貯液量を増加させる構成となっている。 According to the second aspect, the liquid storage amount adjustment unit of the device temperature adjustment device is a part that exchanges heat with the temperature adjustment target device in the device heat exchanger when a condition for keeping the temperature adjustment target device is established. The liquid storage amount of the liquid working fluid in the liquid storage section is increased so that the liquid level is formed in a state where the gaseous working fluid is interposed on the lower side.
 これによると、温調対象機器を保温する条件が成立した際に、機器用熱交換器の内部の作動流体の液面が温調対象機器と熱交換する部位の下方側まで低下し、温調対象機器は、機器用熱交換器の内部におけるガス状の作動流体が存する部位に近接することになる。このため、本開示の機器温調装置では、機器用熱交換器の作動流体の蒸発による温調対象機器からの吸熱を抑制されるので、温調対象機器が過度に冷却されてしまうことを充分に抑えることができる。 According to this, when the condition for maintaining the temperature control target device is established, the liquid level of the working fluid inside the device heat exchanger decreases to the lower side of the part that exchanges heat with the temperature control target device. The target device is close to a portion where the gaseous working fluid exists in the heat exchanger for the device. For this reason, in the device temperature control device of the present disclosure, heat absorption from the temperature control target device due to evaporation of the working fluid of the device heat exchanger is suppressed, so that the temperature control target device is sufficiently cooled. Can be suppressed.
 また、第3の観点によれば、機器温調装置は、貯液量調整部が、貯液部を冷却する冷却機器を含んで構成されている。そして、貯液量調整部は、温調対象機器を保温する条件が成立した際に、冷却機器によって貯液部の内部に存する作動流体を冷却することで、貯液部における液状の作動流体の貯液量を増加させる構成となっている。 Further, according to the third aspect, the device temperature control device is configured such that the liquid storage amount adjustment unit includes a cooling device for cooling the liquid storage unit. The liquid storage amount adjustment unit cools the working fluid existing inside the liquid storage unit by the cooling device when the condition for keeping the temperature control target device is established, thereby reducing the liquid working fluid in the liquid storage unit. It is configured to increase the amount of liquid storage.
 このように、冷却機器によって貯液部を冷却して貯液部における液状の作動流体の貯液量を増加させる構成とすれば、機器用流体回路の内部に存する液状の作動流体を減少させることができる。これにより、機器用熱交換器における液状の作動流体の蒸発による温調対象機器からの吸熱を抑制することができる。 In this way, if the storage unit is cooled by the cooling device to increase the storage amount of the liquid working fluid in the storage unit, the liquid working fluid existing in the fluid circuit for the device can be reduced. Can do. Thereby, the heat absorption from the temperature control object apparatus by evaporation of the liquid working fluid in the apparatus heat exchanger can be suppressed.
 また、第4の観点によれば、機器温調装置の機器用流体回路には、機器用熱交換器の鉛直方向の最も上方に位置する部位よりも上方側に位置する部位に、貯液部を分岐接続する分岐接続部が設けられている。 Moreover, according to the 4th viewpoint, in the apparatus fluid circuit of an apparatus temperature control apparatus, in the site | part located upwards rather than the site | part located in the uppermost part of the vertical direction of an apparatus heat exchanger, a liquid storage part A branch connection part for branch connection is provided.
 これによれば、温調対象機器の温度調整を行う場合に、液状の作動流体がその自重等によって機器用熱交換器ではなく貯液部に流入してしまうことを抑えることができる。すなわち、温調対象機器の温度調整を行う場合には、貯液部への液状の作動流体の流入が抑制されるので、機器用流体回路を循環する作動流体の流量を充分に確保することができる。 According to this, when the temperature of the temperature control target device is adjusted, it is possible to prevent the liquid working fluid from flowing into the liquid storage unit instead of the device heat exchanger due to its own weight or the like. That is, when the temperature of the temperature control target device is adjusted, the flow of the liquid working fluid into the liquid storage unit is suppressed, so that a sufficient flow rate of the working fluid circulating in the device fluid circuit can be secured. it can.
 また、第5の観点によれば、機器温調装置は、貯液部の内容積が、機器用熱交換器の内容積よりも大きい容積となっている。これによれば、温調対象機器の温度調整が不要となる条件が成立した際に、機器用熱交換器の内部に存する液状の作動流体を貯液部に貯留可能となるので、機器用熱交換器の作動流体の蒸発による温調対象機器からの吸熱を充分に抑制することが可能となる。 Further, according to the fifth aspect, in the device temperature control device, the internal volume of the liquid storage part is larger than the internal volume of the heat exchanger for equipment. According to this, the liquid working fluid existing inside the equipment heat exchanger can be stored in the liquid storage part when the condition that the temperature adjustment of the temperature control target equipment is unnecessary is established. It is possible to sufficiently suppress heat absorption from the temperature control target device due to evaporation of the working fluid in the exchanger.
 また、第6の観点によれば、機器温調装置の貯液部は、液状の作動流体を貯留するタンク部を含んで構成されている。このように、貯液部がタンク部を含んだ構成となっていれば、少ない部品によって液状の作動流体を貯留するための内容積を充分に確保することができる。 Further, according to the sixth aspect, the liquid storage part of the device temperature control device includes a tank part that stores a liquid working fluid. As described above, if the liquid storage part includes the tank part, the internal volume for storing the liquid working fluid can be sufficiently secured with a small number of parts.
 また、第7の観点によれば、機器温調装置の貯液部は、タンク部と機器用流体回路とを接続する分岐通路部を含んで構成されている。そして、貯液部は、タンク部の内容積と分岐通路部の内容積との総和が、機器用熱交換器の内容積よりも大きい容積となっている。このように、貯液部が分岐通路部を含んだ構成となっていれば、タンク部の大容量化を抑えつつ、液状の作動流体を貯留する内容積を充分に確保することができる。 Further, according to the seventh aspect, the liquid storage part of the equipment temperature control device includes a branch passage part that connects the tank part and the fluid circuit for equipment. And the liquid storage part is a volume whose sum total of the internal volume of a tank part and the internal volume of a branch channel | path part is larger than the internal volume of the heat exchanger for apparatuses. As described above, if the liquid storage part includes the branch passage part, it is possible to sufficiently secure an internal volume for storing the liquid working fluid while suppressing an increase in capacity of the tank part.
 また、第8の観点によれば、機器温調装置は、ガス通路部が機器用熱交換器における最も上方に位置する部位よりも下方側に位置する部位、すなわち、下方側ガス通路部を含んで構成されている。また、液通路部が機器用熱交換器における最も上方に位置する部位よりも下方側に位置する部位、すなわち、下方側液通路部を含んで構成されている。そして、貯液部の内容積は、機器用熱交換器の内容積、下方側ガス通路部の内容積、および下方側液通路部の内容積の総和よりも大きい容積となっている。 Further, according to the eighth aspect, the equipment temperature control device includes a portion where the gas passage portion is located on a lower side than a portion located on the uppermost side in the equipment heat exchanger, that is, a lower gas passage portion. It consists of Further, the liquid passage portion is configured to include a portion located on the lower side of the uppermost portion in the equipment heat exchanger, that is, a lower liquid passage portion. The internal volume of the liquid storage part is larger than the sum of the internal volume of the equipment heat exchanger, the internal volume of the lower gas passage part, and the internal volume of the lower liquid passage part.
 これによれば、温調対象機器を保温する条件が成立した際に、機器用熱交換器の内部の液状の作動流体に加えて、機器用熱交換器に流れ込む可能性がある下方側ガス通路部および下方側液通路部に存する液状の作動流体も含めて貯液部に貯留可能となる。このため、本開示の機器温調装置では、機器用熱交換器における液状の作動流体の蒸発による温調対象機器からの吸熱を充分に抑制することができる。 According to this, the lower gas passage that may flow into the equipment heat exchanger in addition to the liquid working fluid inside the equipment heat exchanger when the condition for keeping the temperature control target equipment is established. It is possible to store in the liquid storage part including the liquid working fluid existing in the part and the lower liquid passage part. For this reason, in the apparatus temperature control apparatus of this indication, the heat absorption from the temperature control object apparatus by evaporation of the liquid working fluid in the apparatus heat exchanger can fully be suppressed.
 また、第9の観点によれば、機器温調装置は、機器用流体回路に充填した作動流体の全てを液化させた際の液量を全液量としたとき、貯液部の内容積が、全液量を貯液可能な容積となっている。 Further, according to the ninth aspect, the device temperature control device is configured such that the total volume of the working fluid filled in the device fluid circuit is liquefied and the internal volume of the liquid storage part is The volume of the entire liquid can be stored.
 これによると、貯液部の内容積が、機器用流体回路に充填された作動流体の全量を液化させた際の体積よりも大きくなるので、温調対象機器の温度調整が不要となる場合に、機器用熱交換器に液状の作動流体が残存してしまうことを確実に防止することが可能となる。 According to this, when the total volume of the working fluid filled in the fluid circuit for equipment is liquefied, the internal volume of the liquid storage part becomes larger, so that it is not necessary to adjust the temperature of the temperature control target equipment. Thus, it is possible to reliably prevent the liquid working fluid from remaining in the equipment heat exchanger.
 また、第10の観点によれば、機器温調装置の貯液量調整部は、貯液部の内容積を増減する容積調整部を含んで構成されている。そして、貯液量調整部は、温調対象機器を保温する条件が成立した際に、容積調整部によって貯液部の内容積を増加させることで、貯液部における液状の作動流体の貯液量を増加させる構成となっている。 Further, according to the tenth aspect, the liquid storage amount adjustment unit of the device temperature control device includes a volume adjustment unit that increases or decreases the internal volume of the liquid storage unit. The liquid storage amount adjustment unit increases the internal volume of the liquid storage unit by the volume adjustment unit when a condition for keeping the temperature adjustment target device is established, thereby storing the liquid working fluid in the liquid storage unit. It becomes the structure which increases quantity.
 このように、容積調整部によって貯液部の内容積を増加させて貯液部における液状の作動流体の貯液量を増加させる構成とすれば、機器用流体回路に存する液状の作動流体を減少させることができる。これにより、機器用熱交換器における液状の作動流体の蒸発による温調対象機器からの吸熱を抑制することができる。 In this way, if the volume adjustment unit increases the internal volume of the liquid storage unit to increase the amount of liquid working fluid stored in the liquid storage unit, the liquid working fluid existing in the fluid circuit for equipment is reduced. Can be made. Thereby, the heat absorption from the temperature control object apparatus by evaporation of the liquid working fluid in the apparatus heat exchanger can be suppressed.
 また、第11の観点によれば、機器温調装置は、容積調整部によって貯液部の内容積を増加させた際の貯液部の最大容積が、機器用熱交換器の内容積よりも大きい容積となっている。 In addition, according to the eleventh aspect, in the device temperature control device, the maximum volume of the liquid storage unit when the internal volume of the liquid storage unit is increased by the volume adjustment unit is greater than the internal volume of the device heat exchanger. It has a large volume.
 これによれば、温調対象機器を保温する条件が成立した際に、機器用熱交換器の内部に存する液状の作動流体を貯液部に貯留可能となるので、機器用熱交換器の作動流体の蒸発による温調対象機器からの吸熱を充分に抑制することが可能となる。 According to this, since the liquid working fluid existing in the heat exchanger for equipment can be stored in the liquid storage section when the condition for keeping the temperature control target equipment is established, the operation of the equipment heat exchanger can be performed. It is possible to sufficiently suppress the heat absorption from the temperature control target device due to the evaporation of the fluid.
 また、第12の観点によれば、機器温調装置は、ガス通路部が機器用熱交換器の鉛直方向の最も上方に位置する部位よりも下方側に位置する部位、すなわち、下方側ガス通路部を含んで構成されている。また、液通路部が機器用熱交換器における最も上方に位置する部位よりも下方側に位置する部位、すなわち、下方側液通路部を含んで構成されている。そして、容積調整部によって貯液部の内容積を増加させた際の最大容積は、機器用熱交換器の内容積、下方側ガス通路部の内容積、下方側液通路部の内容積の総和よりも大きい容積となっている。 Further, according to the twelfth aspect, the equipment temperature control device is configured such that the gas passage portion is located on a lower side than the uppermost position in the vertical direction of the equipment heat exchanger, that is, the lower gas passage. Part. Further, the liquid passage portion is configured to include a portion located on the lower side of the uppermost portion in the equipment heat exchanger, that is, a lower liquid passage portion. The maximum volume when the internal volume of the liquid storage unit is increased by the volume adjusting unit is the sum of the internal volume of the equipment heat exchanger, the internal volume of the lower gas passage unit, and the internal volume of the lower liquid channel unit. It has a larger volume.
 これによれば、温調対象機器を保温する条件が成立した際に、機器用熱交換器の内部の液状の作動流体に加えて、機器用熱交換器に流れ込む可能性がある下方側ガス通路部および下方側液通路部に存する液状の作動流体も含めて貯液部に貯留可能となる。このため、本開示の機器温調装置では、機器用熱交換器における液状の作動流体の蒸発による温調対象機器からの吸熱を充分に抑制することができる。 According to this, the lower gas passage that may flow into the equipment heat exchanger in addition to the liquid working fluid inside the equipment heat exchanger when the condition for keeping the temperature control target equipment is established. It is possible to store in the liquid storage part including the liquid working fluid existing in the part and the lower liquid passage part. For this reason, in the apparatus temperature control apparatus of this indication, the heat absorption from the temperature control object apparatus by evaporation of the liquid working fluid in the apparatus heat exchanger can fully be suppressed.
 また、第13の観点によれば、機器温調装置は、ガス通路部が機器用熱交換器の鉛直方向の最も下方に位置する部位よりも上方側に位置する部位、すなわち、上方側ガス通路部を含んで構成されている。また、液通路部が機器用熱交換器における最も上方に位置する部位よりも下方側に位置する部位、すなわち、上方側液通路部を含んで構成されている。そして、容積調整部によって貯液部の内容積を増加させた際の貯液部の最大容積が、機器用熱交換器の内容積、上方側ガス通路部の内容積、上方側液通路部の内容積の総和よりも大きい容積となっている。 Further, according to the thirteenth aspect, the equipment temperature control device is configured such that the gas passage portion is located on the upper side of the vertically located part of the equipment heat exchanger, that is, the upper gas passage. Part. Further, the liquid passage portion is configured to include a portion located on the lower side of the uppermost portion in the equipment heat exchanger, that is, an upper liquid passage portion. And the maximum volume of the liquid storage part when the internal volume of the liquid storage part is increased by the volume adjusting part is the internal volume of the heat exchanger for equipment, the internal volume of the upper gas passage part, the upper volume of the upper liquid passage part The volume is larger than the total internal volume.
 これによれば、機器用熱交換器の内部の液状の作動流体に加えて、機器用熱交換器に流れ込む可能性がある上方側ガス通路部および下方側液通路部に存する液状の作動流体も含めて貯液部に貯留することが可能となる。このため、本開示の機器温調装置では、機器用熱交換器における液状の作動流体の蒸発による温調対象機器からの吸熱を充分に抑制することができる。 According to this, in addition to the liquid working fluid inside the equipment heat exchanger, the liquid working fluid existing in the upper gas passage section and the lower liquid passage section that may flow into the equipment heat exchanger is also present. It can be stored in the liquid storage part. For this reason, in the apparatus temperature control apparatus of this indication, the heat absorption from the temperature control object apparatus by evaporation of the liquid working fluid in the apparatus heat exchanger can fully be suppressed.
 また、第14の観点によれば、機器温調装置は、機器用流体回路に充填した作動流体の全てを液化させた際の液量を全液量としたとき、容積調整部によって貯液部の内容積を増加させた際の貯液部の最大容積が、全液量を貯液可能な容積となっている。 Further, according to the fourteenth aspect, the device temperature control device is configured such that when the amount of the working fluid filled in the device fluid circuit is liquefied, the liquid amount is stored by the volume adjusting unit. The maximum volume of the liquid storage part when the internal volume of the liquid is increased is a volume capable of storing the total liquid amount.
 これによると、貯液部の内容積を増加させた際の最大容積が、機器用流体回路に充填された作動流体の全量を液化させた際の体積よりも大きくなる。このような構成では、温調対象機器の温度調整が不要となる場合に、機器用熱交換器に液状の作動流体が残存してしまうことを確実に防止することが可能となる。 According to this, the maximum volume when the internal volume of the liquid storage part is increased becomes larger than the volume when the entire amount of the working fluid filled in the fluid circuit for equipment is liquefied. With such a configuration, it is possible to reliably prevent the liquid working fluid from remaining in the device heat exchanger when temperature adjustment of the temperature adjustment target device is not necessary.
 また、第15の観点によれば、機器温調装置は、機器用流体回路には、機器用熱交換器の鉛直方向の最も上方に位置する部位よりも下方側に位置する部位に、貯液部を分岐接続する分岐接続部が設けられている。 Further, according to the fifteenth aspect, the device temperature control device stores the liquid in the device fluid circuit at a position located on a lower side than a position located on the uppermost side in the vertical direction of the device heat exchanger. A branch connection part for branching the parts is provided.
 これによれば、温調対象機器を保温する場合に、機器用流体回路に存する液状の作動流体がその自重によって貯液部に流れ込むので、機器用流体回路に液状の作動流体が残存してしまうことを抑えることができる。 According to this, when the temperature control target device is kept warm, the liquid working fluid existing in the device fluid circuit flows into the liquid storage part by its own weight, so that the liquid working fluid remains in the device fluid circuit. That can be suppressed.
 また、第16の観点によれば、機器温調装置は、温調対象機器を保温する条件が、温調対象機器の温度が予め設定された温調対象機器の許容下限温度を下回った際に成立する条件となっている。 Further, according to the sixteenth aspect, the device temperature adjustment device is configured such that when the condition for keeping the temperature adjustment target device is lower than the allowable lower limit temperature of the temperature adjustment target device, the temperature of the temperature adjustment target device is set in advance. It is a condition that holds.
 このように、温調対象機器の温度が許容下限温度を下回った際に、機器用流体回路に分岐接続された貯液部における液状の作動流体の貯液量を増加させる構成とすれば、温調対象機器が過度に冷却されてしまうことを充分に抑えることができる。 In this way, when the temperature of the temperature control target device falls below the allowable lower limit temperature, the liquid storage amount of the liquid working fluid in the liquid storage portion branched and connected to the device fluid circuit is increased. It is possible to sufficiently suppress the adjustment target device from being excessively cooled.
 また、第17の観点によれば、機器温調装置は、貯液部と機器用流体回路との間における作動流体の移動を遮断する流体遮断部と、貯液量調整部および流体遮断部を制御する制御部と、を備える。そして、制御部は、貯液量調整部によって貯液部における液状の作動流体の貯液量を増加させた後、貯液部における液状の作動流体の貯液量が所定の基準量に達すると、流体遮断部によって貯液部と機器用流体回路との間における作動流体の移動を遮断する。 According to the seventeenth aspect, the device temperature control device includes a fluid blocking unit that blocks movement of the working fluid between the liquid storage unit and the device fluid circuit, a liquid storage amount adjusting unit, and a fluid blocking unit. A control unit for controlling. Then, the control unit increases the storage amount of the liquid working fluid in the storage unit by the storage amount adjustment unit, and then the storage amount of the liquid working fluid in the storage unit reaches a predetermined reference amount. The movement of the working fluid between the liquid storage unit and the device fluid circuit is blocked by the fluid blocking unit.
 これによれば、貯液部に液状の作動流体を貯留した後に貯液部と機器用流体回路との間における作動流体の移動が遮断されるので、貯液部に液状の作動流体を貯留した後に、貯液部の内部の作動流体が機器用流体回路に移動することを防止可能となる。 According to this, since the movement of the working fluid between the liquid storage unit and the device fluid circuit is blocked after the liquid working fluid is stored in the liquid storage unit, the liquid working fluid is stored in the liquid storage unit. Later, it becomes possible to prevent the working fluid inside the liquid storage part from moving to the fluid circuit for equipment.
 また、第18の観点によれば、機器温調装置は、温調対象機器が、車両に搭載される組電池で構成されている。これによれば、組電池の温度が過度に低下してしまうことを抑えることができるので、組電池における化学変化の抑制による出力特性の悪化、組電池の内部抵抗の増加による入力特性の悪化を回避することが可能となる。 Further, according to the eighteenth aspect, the device temperature adjustment device is configured by a battery pack in which the temperature adjustment target device is mounted on a vehicle. According to this, since the temperature of the assembled battery can be prevented from excessively decreasing, the output characteristics are deteriorated due to the suppression of chemical changes in the assembled battery, and the input characteristics are deteriorated due to an increase in the internal resistance of the assembled battery. It can be avoided.

Claims (18)

  1.  少なくとも1つの温調対象機器(BP)の温度を調整可能な機器温調装置であって、
     前記温調対象機器から吸熱して液状の作動流体を蒸発させる機器用熱交換器(12)と、
     前記機器用熱交換器よりも上方に配置され、前記機器用熱交換器にて蒸発したガス状の作動流体を凝縮させる凝縮器(14)と、
     前記機器用熱交換器にて蒸発したガス状の作動流体を前記凝縮器に導くガス通路部(16)と、
     前記凝縮器にて凝縮した液状の作動流体を前記機器用熱交換器に導く液通路部(18)と、
     前記機器用熱交換器、前記凝縮器、前記ガス通路部、および前記液通路部を含んで構成される機器用流体回路(10)から分岐して設けられ、前記機器用流体回路に存する液状の作動流体を貯留する貯液部(30、30A)と、
     前記貯液部における液状の作動流体の貯液量を増減させる貯液量調整部(40、60)と、を備え、
     前記貯液量調整部は、前記温調対象機器を保温する条件が成立した際に、前記貯液部における液状の作動流体の貯液量を増加させる構成となっている機器温調装置。
    A device temperature control device capable of adjusting the temperature of at least one temperature control target device (BP),
    An equipment heat exchanger (12) that absorbs heat from the temperature control target equipment and evaporates the liquid working fluid;
    A condenser (14) disposed above the equipment heat exchanger and condensing the gaseous working fluid evaporated in the equipment heat exchanger;
    A gas passage portion (16) for guiding the gaseous working fluid evaporated in the equipment heat exchanger to the condenser;
    A liquid passage portion (18) for guiding the liquid working fluid condensed in the condenser to the equipment heat exchanger;
    The apparatus heat circuit, the condenser, the gas passage part, and the liquid circuit part (10) configured to include the liquid passage part are branched from the liquid circuit that exists in the equipment fluid circuit. A liquid storage section (30, 30A) for storing the working fluid;
    A liquid storage amount adjustment unit (40, 60) for increasing or decreasing the amount of liquid working fluid stored in the liquid storage unit,
    The liquid storage amount adjustment unit is a device temperature adjustment device configured to increase the liquid storage amount of the liquid working fluid in the liquid storage unit when a condition for maintaining the temperature adjustment target device is established.
  2.  前記貯液量調整部は、前記温調対象機器を保温する条件が成立した際に、前記機器用熱交換器のうち前記温調対象機器と熱交換する部位よりも下方側に、ガス状の作動流体を介在させた状態で液面を形成するように、前記貯液部における液状の作動流体の貯液量を増加させる構成となっている請求項1に記載の機器温調装置。 When the condition for keeping the temperature adjustment target device is established, the liquid storage amount adjustment unit is in a gaseous state below the portion of the heat exchanger for the device that performs heat exchange with the temperature adjustment target device. The apparatus temperature control device according to claim 1, wherein the liquid storage amount of the liquid working fluid in the liquid storage unit is increased so as to form a liquid level with the working fluid interposed.
  3.  前記貯液量調整部は、
     前記貯液部を冷却する冷却機器(40)を含んで構成され、
     前記温調対象機器を保温する条件が成立した際に、前記冷却機器によって前記貯液部の内部に存する作動流体を冷却することで、前記貯液部における液状の作動流体の貯液量を増加させる構成となっている請求項1または2に記載の機器温調装置。
    The liquid storage amount adjusting unit is
    A cooling device (40) configured to cool the liquid storage unit;
    When the condition for keeping the temperature control target device is established, the amount of liquid working fluid stored in the liquid storage unit is increased by cooling the working fluid existing in the liquid storage unit by the cooling device. The device temperature control device according to claim 1 or 2, wherein the device temperature control device is configured to be configured.
  4.  前記機器用流体回路には、前記機器用熱交換器の鉛直方向の最も上方に位置する部位よりも上方側に位置する部位に、前記貯液部を分岐接続する分岐接続部(31)が設けられている請求項3に記載の機器温調装置。 The fluid circuit for equipment is provided with a branch connection part (31) for branching and connecting the liquid storage part at a part located above the part located at the uppermost position in the vertical direction of the heat exchanger for equipment. The apparatus temperature control apparatus of Claim 3 currently provided.
  5.  前記貯液部の内容積は、前記機器用熱交換器の内容積よりも大きい容積となっている請求項1ないし4のいずれか1つに記載の機器温調装置。 The apparatus temperature control device according to any one of claims 1 to 4, wherein an inner volume of the liquid storage unit is larger than an inner volume of the apparatus heat exchanger.
  6.  前記貯液部は、液状の作動流体を貯留するタンク部(32)を含んで構成されている請求項1ないし5のいずれか1つに記載の機器温調装置。 The device temperature control device according to any one of claims 1 to 5, wherein the liquid storage part includes a tank part (32) for storing a liquid working fluid.
  7.  前記貯液部は、
     前記タンク部と前記機器用流体回路とを接続する分岐通路部(33)を含んで構成され、
     前記タンク部の内容積と前記分岐通路部の内容積との総和が、前記機器用熱交換器の内容積よりも大きい容積となっている請求項6に記載の機器温調装置。
    The liquid reservoir is
    A branch passage portion (33) for connecting the tank portion and the fluid circuit for equipment is configured,
    The equipment temperature control device according to claim 6, wherein a total sum of an internal volume of the tank section and an internal volume of the branch passage section is larger than an internal volume of the equipment heat exchanger.
  8.  前記ガス通路部のうち前記機器用熱交換器の最も上方に位置する部位よりも下方側に位置する部位を下方側ガス通路部(161)とし、前記液通路部のうち前記機器用熱交換器の最も上方に位置する部位よりも下方側に位置する部位を下方側液通路部(181)としたとき、
     前記貯液部の内容積は、前記機器用熱交換器の内容積、前記下方側ガス通路部の内容積、および前記下方側液通路部の内容積の総和よりも大きい容積となっている請求項1ないし7のいずれか1つに記載の機器温調装置。
    Of the gas passage part, a part located on the lower side of the part located on the uppermost side of the heat exchanger for equipment is defined as a lower gas passage part (161), and the heat exchanger for equipment in the liquid passage part. When the part located on the lower side than the part located on the uppermost side is the lower side liquid passage part (181),
    The internal volume of the liquid storage part is larger than the sum of the internal volume of the equipment heat exchanger, the internal volume of the lower gas passage part, and the internal volume of the lower liquid passage part. Item 8. The apparatus temperature control device according to any one of Items 1 to 7.
  9.  前記機器用流体回路に充填した作動流体の全てを液化させた際の液量を全液量としたとき、
     前記貯液部の内容積は、前記全液量を貯液可能な容積となっている請求項1ないし8のいずれか1つに記載の機器温調装置。
    When the total amount of liquid when all the working fluid filled in the fluid circuit for equipment is liquefied,
    The apparatus temperature control device according to any one of claims 1 to 8, wherein an inner volume of the liquid storage section is a volume capable of storing the total liquid amount.
  10.  前記貯液量調整部は、
     前記貯液部の内容積を増減する容積調整部(60)を含んで構成され、
     前記温調対象機器を保温する条件が成立した際に、前記容積調整部によって前記貯液部の内容積を増加させることで、前記貯液部における液状の作動流体の貯液量を増加させる構成となっている請求項1または2に記載の機器温調装置。
    The liquid storage amount adjusting unit is
    A volume adjusting unit (60) for increasing or decreasing the internal volume of the liquid storage unit;
    A configuration for increasing the liquid storage amount of the liquid working fluid in the liquid storage unit by increasing the internal volume of the liquid storage unit by the volume adjusting unit when a condition for keeping the temperature control target device is established. The apparatus temperature control apparatus according to claim 1 or 2.
  11.  前記容積調整部によって前記貯液部の内容積を増加させた際の前記貯液部の最大容積は、前記機器用熱交換器の内容積よりも大きい容積となっている請求項10に記載の機器温調装置。 The maximum volume of the liquid storage unit when the internal volume of the liquid storage unit is increased by the volume adjustment unit is a volume larger than the internal volume of the equipment heat exchanger. Equipment temperature control device.
  12.  前記ガス通路部のうち前記機器用熱交換器の最も上方に位置する部位よりも下方側に位置する部位を下方側ガス通路部(161A)とし、前記液通路部のうち前記機器用熱交換器の最も上方に位置する部位よりも下方側に位置する部位を下方側液通路部(181A)としたとき、
     前記容積調整部によって前記貯液部の内容積を増加させた際の最大容積は、前記機器用熱交換器の内容積、前記下方側ガス通路部の内容積、前記下方側液通路部の内容積の総和よりも大きい容積となっている請求項10または11に記載の機器温調装置。
    Of the gas passage part, a part located on the lower side of the part located on the uppermost side of the heat exchanger for equipment is defined as a lower gas passage part (161A), and the heat exchanger for equipment in the liquid passage part. When the portion located on the lower side than the portion located on the uppermost side is the lower liquid passage portion (181A),
    The maximum volume when the internal volume of the liquid storage unit is increased by the volume adjusting unit is the internal volume of the equipment heat exchanger, the internal volume of the lower gas passage unit, and the content of the lower liquid channel unit The apparatus temperature control device according to claim 10 or 11, wherein the device has a volume larger than a sum of products.
  13.  前記ガス通路部のうち前記機器用熱交換器の最も下方に位置する部位よりも上方側に位置する部位を上方側ガス通路部(162)とし、前記液通路部のうち前記機器用熱交換器の最も上方に位置する部位よりも下方側に位置する部位を上方側液通路部(182)としたとき、
     前記容積調整部によって前記貯液部の内容積を増加させた際の前記貯液部の最大容積が、前記機器用熱交換器の内容積、前記上方側ガス通路部の内容積、前記上方側液通路部の内容積の総和よりも大きい容積となっている請求項10または11に記載の機器温調装置。
    A portion of the gas passage portion that is located on the upper side of the portion that is located at the lowest position of the equipment heat exchanger is referred to as an upper gas passage portion (162), and the heat exchanger for the equipment of the liquid passage portion. When the portion located on the lower side than the portion located on the uppermost side is the upper liquid passage portion (182),
    The maximum volume of the liquid storage part when the internal volume of the liquid storage part is increased by the volume adjusting part is the internal volume of the equipment heat exchanger, the internal volume of the upper gas passage part, the upper side The device temperature control device according to claim 10 or 11, wherein the device has a volume larger than a total sum of internal volumes of the liquid passage portions.
  14.  前記機器用流体回路に充填した作動流体の全てを液化させた際の液量を全液量としたとき、
     前記容積調整部によって前記貯液部の内容積を増加させた際の前記貯液部の最大容積が、前記全液量を貯液可能な容積となっている請求項10ないし13のいずれか1つに記載の機器温調装置。
    When the total amount of liquid when all the working fluid filled in the fluid circuit for equipment is liquefied,
    The maximum volume of the liquid storage unit when the internal volume of the liquid storage unit is increased by the volume adjusting unit is a volume capable of storing the total liquid amount. Equipment temperature control device as described in one.
  15.  前記機器用流体回路には、前記機器用熱交換器の鉛直方向の最も上方に位置する部位よりも下方側に位置する部位に、前記貯液部を分岐接続する分岐接続部(31A)が設けられている請求項10ないし14のいずれか1つに記載の機器温調装置。 The fluid circuit for equipment is provided with a branch connection part (31A) for branching and connecting the liquid storage part at a part located below the part located at the uppermost part in the vertical direction of the heat exchanger for equipment. The apparatus temperature control apparatus as described in any one of Claim 10 thru | or 14 currently used.
  16.  前記温調対象機器を保温する条件は、前記温調対象機器の温度が予め設定された前記温調対象機器の許容下限温度を下回った際に成立する条件となっている請求項1ないし15のいずれか1つに記載の機器温調装置。 The condition for maintaining the temperature control target device is a condition that is satisfied when the temperature of the temperature control target device falls below a preset allowable lower limit temperature of the temperature control target device. The apparatus temperature control apparatus as described in any one.
  17.  前記貯液部と前記機器用流体回路との間における作動流体の移動を遮断する流体遮断部(50、50A)と、
     前記貯液量調整部および前記流体遮断部を制御する制御部(100)と、を備え、
     前記制御部は、前記貯液量調整部によって前記貯液部における液状の作動流体の貯液量を増加させた後、前記貯液部における液状の作動流体の貯液量が所定の基準量に達すると、前記流体遮断部によって前記貯液部と前記機器用流体回路との間における作動流体の移動を遮断する請求項1ないし16のいずれか1つに記載の機器温調装置。
    A fluid blocking section (50, 50A) for blocking the movement of the working fluid between the liquid storage section and the device fluid circuit;
    A control unit (100) for controlling the liquid storage amount adjusting unit and the fluid blocking unit,
    The control unit increases the storage amount of the liquid working fluid in the storage unit by the storage amount adjustment unit, and then the storage amount of the liquid working fluid in the storage unit becomes a predetermined reference amount. The apparatus temperature control device according to any one of claims 1 to 16, wherein when it reaches, the fluid blocking section blocks the movement of the working fluid between the liquid storage section and the apparatus fluid circuit.
  18.  前記温調対象機器は、車両に搭載される組電池(BP)で構成されている請求項1ないし17のいずれか1つに記載の機器温調装置。 The device for temperature regulation according to any one of claims 1 to 17, wherein the temperature regulation target device is configured by a battery pack (BP) mounted on a vehicle.
PCT/JP2017/028056 2016-09-09 2017-08-02 Device temperature adjusting apparatus WO2018047532A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018538295A JP6601567B2 (en) 2016-09-09 2017-08-02 Equipment temperature controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016176787 2016-09-09
JP2016-176787 2016-09-09

Publications (1)

Publication Number Publication Date
WO2018047532A1 true WO2018047532A1 (en) 2018-03-15

Family

ID=61561762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028056 WO2018047532A1 (en) 2016-09-09 2017-08-02 Device temperature adjusting apparatus

Country Status (2)

Country Link
JP (1) JP6601567B2 (en)
WO (1) WO2018047532A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203152A1 (en) * 2019-03-29 2020-10-08 株式会社デンソー Thermosiphon-type cooling device for vehicle
US10906141B2 (en) 2016-09-09 2021-02-02 Denso Corporation Method for manufacturing device temperature control device and method for filling working fluid
WO2021025128A1 (en) * 2019-08-08 2021-02-11 株式会社デンソー Temperature regulator
US10950909B2 (en) 2016-09-09 2021-03-16 Denso Corporation Device temperature regulator
US11029098B2 (en) 2016-09-09 2021-06-08 Denso Corporation Device temperature regulator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52114157A (en) * 1976-03-22 1977-09-24 Hitachi Ltd Heat transfer device
JPH01252834A (en) * 1988-03-31 1989-10-09 Sanki Eng Co Ltd Coolant natural circulation type heat transferring device
WO1999030091A1 (en) * 1997-11-21 1999-06-17 Telefonaktiebolaget Lm Ericsson (Publ) Cooling capacity control
JP2000277177A (en) * 1999-03-29 2000-10-06 Hitachi Ltd Secondary battery module
JP2011204154A (en) * 2010-03-26 2011-10-13 Hitachi Plant Technologies Ltd Cooling system of electronic apparatus
JP2016509147A (en) * 2013-04-18 2016-03-24 トヨタ自動車株式会社 Heat transport equipment
JP2016164478A (en) * 2015-03-06 2016-09-08 株式会社東芝 Cooling device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52114157A (en) * 1976-03-22 1977-09-24 Hitachi Ltd Heat transfer device
JPH01252834A (en) * 1988-03-31 1989-10-09 Sanki Eng Co Ltd Coolant natural circulation type heat transferring device
WO1999030091A1 (en) * 1997-11-21 1999-06-17 Telefonaktiebolaget Lm Ericsson (Publ) Cooling capacity control
JP2000277177A (en) * 1999-03-29 2000-10-06 Hitachi Ltd Secondary battery module
JP2011204154A (en) * 2010-03-26 2011-10-13 Hitachi Plant Technologies Ltd Cooling system of electronic apparatus
JP2016509147A (en) * 2013-04-18 2016-03-24 トヨタ自動車株式会社 Heat transport equipment
JP2016164478A (en) * 2015-03-06 2016-09-08 株式会社東芝 Cooling device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10906141B2 (en) 2016-09-09 2021-02-02 Denso Corporation Method for manufacturing device temperature control device and method for filling working fluid
US10950909B2 (en) 2016-09-09 2021-03-16 Denso Corporation Device temperature regulator
US11029098B2 (en) 2016-09-09 2021-06-08 Denso Corporation Device temperature regulator
WO2020203152A1 (en) * 2019-03-29 2020-10-08 株式会社デンソー Thermosiphon-type cooling device for vehicle
WO2021025128A1 (en) * 2019-08-08 2021-02-11 株式会社デンソー Temperature regulator

Also Published As

Publication number Publication date
JPWO2018047532A1 (en) 2019-02-21
JP6601567B2 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
JP6579276B2 (en) Equipment temperature controller
JP6604442B2 (en) Equipment temperature controller
JP6601567B2 (en) Equipment temperature controller
WO2018168276A1 (en) Device temperature adjusting apparatus
JP2019016584A (en) Device temperature adjusting apparatus
CN111295555A (en) Equipment cooling device
JP6604441B2 (en) Method for manufacturing apparatus temperature control device and method for filling working fluid
JP6669266B2 (en) Equipment temperature controller
US20190214695A1 (en) Device temperature controller
WO2018047534A1 (en) Instrument temperature adjustment device
JP6784279B2 (en) Equipment temperature controller
WO2018055926A1 (en) Device temperature adjusting apparatus
WO2018047538A1 (en) Device temperature control system
WO2019150751A1 (en) Temperature regulating device
WO2019058805A1 (en) Device temperature control device
US20190204014A1 (en) Device temperature regulator
WO2019093230A1 (en) Device-temperature adjusting apparatus
WO2020203152A1 (en) Thermosiphon-type cooling device for vehicle
JP6733630B2 (en) Thermo siphon
WO2020004573A1 (en) Apparatus temperature adjusting device
WO2018070182A1 (en) Appliance temperature regulating apparatus
WO2019087574A1 (en) Thermosiphon-type temperature control device
JP2020008271A (en) Apparatus temperature conditioning device
JP2020008270A (en) Apparatus temperature conditioning device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018538295

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848477

Country of ref document: EP

Kind code of ref document: A1